25
Swiss neutrino meeting The Beta-beam http://cern.ch/beta-beam/ Mats Lindroos on behalf of The beta-beam study group

The Beta-beam cern.ch/beta-beam

  • Upload
    oistin

  • View
    50

  • Download
    0

Embed Size (px)

DESCRIPTION

The Beta-beam http://cern.ch/beta-beam/. Mats Lindroos on behalf of The beta-beam study group. Collaborators. The beta-beam study group: CEA, France: Jacques Bouchez, Saclay, Paris Olivier Napoly, Saclay, Paris Jacques Payet, Saclay, Paris - PowerPoint PPT Presentation

Citation preview

Page 1: The Beta-beam cern.ch/beta-beam

Swiss neutrino meeting

The Beta-beamhttp://cern.ch/beta-beam/

Mats Lindroos on behalf of

The beta-beam study group

Page 2: The Beta-beam cern.ch/beta-beam

Swiss neutrino meeting

Collaborators• The beta-beam study group:

– CEA, France: Jacques Bouchez, Saclay, Paris Olivier Napoly, Saclay, Paris Jacques Payet, Saclay, Paris

– CERN, Switzerland: Michael Benedikt, AB Peter Butler, EP Roland Garoby, AB Steven Hancock, AB Ulli Koester, EP Mats Lindroos, AB Matteo Magistris, TIS Thomas Nilsson, EP Fredrik Wenander, AB

– Geneva University, Switzerland: Alain Blondel Simone Gilardoni– GSI, Germany: Oliver Boine-Frankenheim B. Franzke R. Hollinger

Markus Steck Peter Spiller Helmuth Weick – IFIC, Valencia: Jordi Burguet, Juan-Jose Gomez-Cadenas, Pilar

Hernandez, Jose Bernabeu – IN2P3, France: Bernard Laune, Orsay, Paris Alex Mueller, Orsay, Paris

Pascal Sortais, Grenoble Antonio Villari, GANIL, CAEN Cristina Volpe, Orsay, Paris

– INFN, Italy: Alberto Facco, Legnaro Mauro Mezzetto, Padua Vittorio Palladino, Napoli Andrea Pisent, Legnaro Piero Zucchelli, Sezione di Ferrara

– Louvain-la-neuve, Belgium: Thierry Delbar Guido Ryckewaert – UK: Marielle Chartier, Liverpool university Chris Prior, RAL and Oxford

university – Uppsala university, The Svedberg laboratory, Sweden: Dag

Reistad – Associate: Rick Baartman, TRIUMF, Vancouver, Canada Andreas

Jansson, Fermi lab, USA, Mike Zisman, LBL, USA

Page 3: The Beta-beam cern.ch/beta-beam

Swiss neutrino meeting

The beta-beam

• Idea by Piero Zucchelli– A novel concept for a neutrino factory: the

beta-beam, Phys. Let. B, 532 (2002) 166-172

• The CERN base line scenario– Avoid anything that requires a “technology

jump” which would cost time and money (and be risky)

– Make use of a maximum of the existing infrastructure

– If possible find an “existing” detector site

Page 4: The Beta-beam cern.ch/beta-beam

Swiss neutrino meeting

CERN: -beam

baseline scenario

PS

Decay

RingISOL target & Ion source

SPL

Cyclotrons, linac or FFAG

Decay ring

Brho = 1500 Tm

B = 5 T

Lss = 2500 m

SPS

ECR

Rapid cycling synchrotron

MeV 86.1 Average

MeV 937.1 Average

189

1810

63

62

cms

cms

E

eFeNe

E

eLiHe

Nuclear Physics

,

,

Page 5: The Beta-beam cern.ch/beta-beam

Swiss neutrino meeting

Target values for the decay

ring18Neon10+ (single target)

– In decay ring: 4.5x1012 ions

– Energy: 55 GeV/u– Rel. gamma: 60– Rigidity: 335 Tm

• The neutrino beam at the experiment should have the “time stamp” of the circulating beam in the decay ring.

• The beam has to be concentrated to as few and as short bunches as possible to maximize the number of ions/nanosecond. (background suppression), aim for a duty factor of 10-4

6Helium2+

– In Decay ring: 1.0x1014 ions – Energy: 139 GeV/u– Rel. gamma: 150– Rigidity: 1500 Tm

Page 6: The Beta-beam cern.ch/beta-beam

Swiss neutrino meeting

ISOL production

1 GeV p

p n

2 3 8

U

2 0 1

F r

+ spallation

1 1

L i X

+ + fragmentation

1 4 3

C s Y

+ + fission

Page 7: The Beta-beam cern.ch/beta-beam

Swiss neutrino meeting

Layout very similar to planned EURISOL converter target aiming for 1015 fissions per s.

66He production by He production by 99Be(n,Be(n,))

Converter technology: (J. Nolen, NPA 701 (2002) 312c)

Courtesy of Will Talbert, Mahlon Wilson (Los Alamaos) and Dave Ross (TRIUMF)

Page 8: The Beta-beam cern.ch/beta-beam

Swiss neutrino meeting

Scenario 1Scenario 1

• Spallation of close-by target nuclides:18,19Ne from MgO and 34,35Ar in CaO

– Production rate for 18Ne is 1x1012 s-1 (with 2.2 GeV 100 A proton

beam, cross-sections of some mb and a 1 m long oxide target of 10%

theoretical density)

– 19Ne can be produced with one order of magnitude higher intensity

but the half life is 17 seconds!

Scenario 2Scenario 2

• alternatively use (,n) and (3He,n) reactions:

12C(3,4He,n)14,15O, 16O(3,4He,n)18,19Ne, 32S(3,4He,n)34,35Ar

– Intense 3,4He beams of 10-100 mA 50 MeV are required

Production of Production of ++ emitters emitters

Page 9: The Beta-beam cern.ch/beta-beam

Swiss neutrino meeting

60-90 GHz « ECR Duoplasmatron » for

pre-bunching of gaseous RIB

Very high densitymagnetized plasma

ne ~ 1014 cm-3

2.0 – 3.0 T pulsed coils or SC coils

60-90 GHz / 10-100 KW10 –200 µs / = 6-3 mm

optical axial coupling

optical radial coupling(if gas only)

1-3 mm100 KV

extractionUHF windowor « glass » chamber (?)

Target

Rapid pulsed valve

20 – 100 µs20 – 200 mA

1012 to 1013 ions per bunchwith high efficiency

Very small plasmachamber ~ 20 mm / L ~ 5 cm

Arbitrary distanceif gas

Moriond meeting:

Pascal Sortais et al.

LPSC-Grenoble

Page 10: The Beta-beam cern.ch/beta-beam

Swiss neutrino meeting

Overview:

Accumulation

• Sequential filling of 16 buckets in the PS from the storage ring

Page 11: The Beta-beam cern.ch/beta-beam

Swiss neutrino meeting

SPS

Stacking in the Decay ring

• Ejection to matched dispersion trajectory

• Asymmetric bunch merging

SPSSPSSPS

SPSSPSSPS

SPS SPS

Page 12: The Beta-beam cern.ch/beta-beam

Swiss neutrino meeting

Asymmetric bunch merging

Page 13: The Beta-beam cern.ch/beta-beam

Swiss neutrino meeting

Asymmetric bunch

merging

60 40 20 0 20 40 60ns

4

2

0

2

4

MeV

0

0.1

0.2

0.3

0.4

0.5

A

4014

3014

2014

1014 0

eVe

0 5 10 15 20 25Iterations

0

8.17 1011

esVe

rms 0.0585 eVs BF 0.16

matched 0.298 eVs Ne 1.57 1011

2 prmsp 1.2 103 fs0;1 822;790 Hz

60 40 20 0 20 40 60ns

4

2

0

2

4

MeV

0

0.1

0.2

0.3

0.4

0.5

A

4014

3014

2014

1014 0

eVe

0 5 10 15 20 25Iterations

0

8.1 1011

esVe

rms 0.0639 eVs BF 0.168

matched 0.323 eVs Ne 1.6 1011

2 prmsp 1.25 103 fs0;1 823;790 Hz

125 100 75 50 25 0 25 50ns7.5

5

2.5

0

2.5

5

7.5

MeV

0

0.1

0.2

0.3

0.4

0.5

0.6

A

4014

3014

2014

1014 0

eVe

0 5 10 15 20 25Iterations

0

8.52 1011

esVe

rms 0.0583 eVs BF 0.14

matched 0.317 eVs Ne 1.63 1011

2 prmsp 1.34 103 fs0;1 0;1060 Hz

100 75 50 25 0 25 50 75ns4

2

0

2

4

MeV

0

0.1

0.2

0.3

0.4

A

6014

5014

4014

3014

2014

1014 0

eVe

0 10 20 30 40 50Iterations

0

8.16 1011

esVe

rms 0.0593 eVs BF 0.224

matched 0.333 eVs Ne 1.56 1011

2 prmsp 8.5 104 fs0;1 0;415 Hz(S. Hancock, M. Benedikt and J,-

L.Vallet, A proof of principle of asymmteric bunch pair merging, AB-note-2003-080 MD)

Page 14: The Beta-beam cern.ch/beta-beam

Swiss neutrino meeting

Decay losses• Losses during acceleration are being

studied:– Full FLUKA simulations in progress for all

stages (M. Magistris and M. Silari, Parameters of radiological interest for a beta-beam decay ring, TIS-2003-017-RP-TN)

– Preliminary results:• Can be managed in low energy part• PS will be heavily activated

– New fast cycling PS?• SPS OK!• Full FLUKA simulations of decay ring losses:

– Tritium and Sodium production surrounding rock well below national limits

– Reasonable requirements of concreting of tunnel walls to enable decommissioning of the tunnel and fixation of Tritium and Sodium

Page 15: The Beta-beam cern.ch/beta-beam

Swiss neutrino meeting

SC magnets• Dipoles can be built

with no coils in the path of the decaying particles to minimize peak power density in superconductor– The losses have been

simulated and one possible dipole design has been proposed

S. Russenschuck, CERN

Page 16: The Beta-beam cern.ch/beta-beam

Swiss neutrino meeting

Tunnels and Magnets• Civil engineering costs: Estimate of 400 MCHF for 1.3%

incline (13.9 mrad)– Ringlenth: 6850 m, Radius=300 m, Straight sections=2500 m

• Magnet cost: First estimate at 100 MCHF

FLUKA simulated losses in surrounding rock (no public health implications)

Page 17: The Beta-beam cern.ch/beta-beam

Swiss neutrino meeting

IntensitiesStage 6He 18Ne (single

target)

From ECR source: 2.0x1013 ions per second

0.8x1011 ions per second

Storage ring: 1.0x1012 ions per bunch

4.1x1010 ions per bunch

Fast cycling synch: 1.0x1012 ion per bunch 4.1x1010 ion per bunch

PS after acceleration:

1.0x1013 ions per batch 5.2x1011 ions per batch

SPS after acceleration:

0.9x1013 ions per batch 4.9x1011 ions per batch

Decay ring: 2.0x1014 ions in four 10 ns long bunch

9.1x1012 ions in four 10 ns long bunch

Only -decay losses accounted for, add efficiency losses (50%)

Page 18: The Beta-beam cern.ch/beta-beam

Swiss neutrino meeting

Low energy beta-

beam• The proposal

– To exploit the beta-beam concept to produce intense and pure low-energy neutrino beams (C. Volpe, hep-ph/0303222, To appear in Journ. Phys. G. 30(2004)L1)

• Physics potential– Neutrino-nucleus interaction

studies for particle, nuclear physics, astrophysics (nucleosynthesis)

– Neutrino properties, like n magnetic moment

N

boost

6HeBeta-beam

6He 6Li+e+e QMeV

eee

eE

T

6He

Page 19: The Beta-beam cern.ch/beta-beam

Swiss neutrino meeting

(J. Serreau and C. Volpe, hep-ph/0403293, submitted to Phys. Rev. D.)

Small RingLarge Ring

2577982645103707 7922

94531956

e + 208Pb

e + Nucleus

e + 16O

e + D

Events/year for =14

Small Ring : Lss = 150 m, Ltot = 450 m.Large Ring :Lss = 2.5 km, Ltot = 7.5 km

Neutrino Fluxes

Neutrino-nucleus Interaction Rates

at a Low-energy Beta-beam Facility

CERN

GANIL

(EURISOL)

GSI

Intensities Detectors

1012 /s 1 4

1013 /s 1-100

109 /s 1-10 4andClosedetector

4andClosedetector

Autin et al,J.Phys. (2003).

H. Weick (GSI)

A. Villari (GANIL)

Page 20: The Beta-beam cern.ch/beta-beam

Swiss neutrino meeting

R&D (improvements)

• Production of RIB (intensity)– Simulations (GEANT, FLUKA)– Target design, only 100 kW primary proton beam in present design– Accumulation scenario

• Acceleration and storgae– FFAG versa linac/storage ring/RCS– Two types of ions in the ring

• Tracking studies (intensity)– Loss management

• Superconducting dipoles ( of neutrinos)– Pulsed for new PS/SPS (GSI FAIR)– High field dipoles for decay ring to reduce arc length– Radiation hardness (Super FRS)

SPLISOL Target + ECR

Linac, cyclotron or FFAG

Rapidcycling

synchrotronPS SPS

Decay ring

Page 21: The Beta-beam cern.ch/beta-beam

Swiss neutrino meeting

The EURISOL concept

Page 22: The Beta-beam cern.ch/beta-beam

Swiss neutrino meeting

EURISOL DS• Physics, beams and safety

– Physics and instrumentation (Liverpool)– Beam intensity calculations (GSI)– Safety and radioprotection (Saclay)

• Accelerators : Synergies with HIPPI (CARE)– Proton accelerator design (INFN Legnaro)– Heavy ion accelerator design (GANIL)– SC cavity development (IPN Orsay): SC cavity prototypes

and multipurpose cryomodule• Targets and ion sources : Synergies with

spallation sources– Multi-MW target station (CERN, PSI) : mercury converter– Direct target (CERN) : Several target-ion source prototypes– Fission target (INFN Legnaro) : UCx target

• Beta-Beam : Synergies with BENE– Beam preparation (Jyväskylä) : 60 GHz ECR source– Beta-beam aspects (CERN)

Page 23: The Beta-beam cern.ch/beta-beam

Swiss neutrino meeting

EURISOL DS

Page 24: The Beta-beam cern.ch/beta-beam

Swiss neutrino meeting

Design Study

EURISOLBeta-beam Coordination

Beta-beam parameter group Above 100 MeV/u

Targets (PSI)60 GHz ECR

Low energy beta-beamAnd many more…

USERSFrejus

Gran SassoHigh GammaAstro-Physics

Nuclear Physics(, intensity and

duty factor)

OTHER LABSTRIUMF

FFAGTracking

CollimatorsUS studyNeutrino

Factory DS

Conceptual Design # with price ### M€

Page 25: The Beta-beam cern.ch/beta-beam

Swiss neutrino meeting

• A boost for radioactive nuclear beams

• A boost for neutrino physics

boost

6HeBeta-beam

A EURISOL/beta-beam facility at CERN!