28
The Atmosphere: Part 6: The Hadley Circulation Composition / Structure Radiative transfer Vertical and latitudinal heat transport Atmospheric circulation Climate modeling Suggested further reading: James, Introduction to Circulating Atmospheres (Cambridge, 1994) Lindzen, Dynamics in Atmospheric Physics (Cambridge, 1990)

The Atmosphere: Part 6: The Hadley Circulation

  • Upload
    weston

  • View
    37

  • Download
    0

Embed Size (px)

DESCRIPTION

The Atmosphere: Part 6: The Hadley Circulation. Composition / Structure Radiative transfer Vertical and latitudinal heat transport Atmospheric circulation Climate modeling. Suggested further reading: James, Introduction to Circulating Atmospheres (Cambridge, 1994) - PowerPoint PPT Presentation

Citation preview

Page 1: The Atmosphere: Part 6: The Hadley Circulation

The Atmosphere:Part 6: The Hadley Circulation

• Composition / Structure

• Radiative transfer

• Vertical and latitudinal heat transport• Atmospheric circulation• Climate modeling

Suggested further reading:

James, Introduction to Circulating Atmospheres (Cambridge, 1994)

Lindzen, Dynamics in Atmospheric Physics (Cambridge, 1990)

Page 2: The Atmosphere: Part 6: The Hadley Circulation

Calculated rad-con equilibrium T vs. observed T

pole-to-equator temperature contrast too big in equilibrium state (especially in winter)

Page 3: The Atmosphere: Part 6: The Hadley Circulation

Zonally averaged net radiation

Diurnally-averaged radiation

Implied energy transport: requires fluid motions to effect the implied heat transport

Observed radiative budget

Page 4: The Atmosphere: Part 6: The Hadley Circulation

Roles of atmosphere and ocean

Trenberth & Caron (2001)

net

ocean

atmosphere

Page 5: The Atmosphere: Part 6: The Hadley Circulation

Rotating vs. nonrotating fluids

Ω

φ

u

ΩΩsinφ

f = 0

f > 0

f < 0

Page 6: The Atmosphere: Part 6: The Hadley Circulation

Hypothetical 2D atmosphere relaxed toward RCE

φ

x

0

2D: no zonal variations

Annual mean forcing — symmetric about equator

Page 7: The Atmosphere: Part 6: The Hadley Circulation

A 2D atmosphere forced toward radiative-convective equilibrium

Te(φ,p) dQ

dt cp

dTdt

g dzdt

J

(J = diabatic heating rate per unit volume)

dTdt

w J cp

1 T Te , z

Page 8: The Atmosphere: Part 6: The Hadley Circulation

Hypothetical 2D atmosphere relaxed toward RCE

dTdt

w 1 T Te , z

φ

dudt

fv g zx

0

u t

v uy

w u z

fv 0

m ur r2

uacos a2 cos2

a

r

φ

Ω

dmdt

m t

u m 0

Above the frictional boundary layer,x

0

Absolute angular momentum per unit mass

Page 9: The Atmosphere: Part 6: The Hadley Circulation

Angular momentum constraint

dmdt

m t

u m 0

φ

Above the frictional boundary layer,

In steady state,

u m 0

m uacos a2 cos2

Alan Plumb
Page 10: The Atmosphere: Part 6: The Hadley Circulation

Angular momentum constraint

dmdt

m t

u m 0

φ

Above the frictional boundary layer,

In steady state,

u m 0

Either 1) v=w=0 Or 2) but m constant along streamlines

dTdt

w 1 T Te , z

T = Te(φ,z)

m uacos a2 cos2

φ 0 15 30 45 60U(ms-1) 0 32 134 327 695

v Ty

w Tz

1 T Te , z

v, w 0

u a sin 2cos

(if u=0 at equator)

Alan Plumb
Page 11: The Atmosphere: Part 6: The Hadley Circulation

Angular momentum constraint

dmdt

m t

u m 0

φ

Above the frictional boundary layer,

In steady state,

u m 0

Either 1) v=w=0 Or 2) but m constant along streamlines

dTdt

w 1 T Te , z

T = Te(φ,z)

m uacos a2 cos2

φ 0 15 30 45 60U(ms-1) 0 32 134 327 695

u a sin 2cos

v Ty

w Tz

1 T Te , z

v, w 0

(if u=0 at equator)

Alan Plumb
Page 12: The Atmosphere: Part 6: The Hadley Circulation

u m 0

2) v 0

solution (2) no good at high latitudes

1) v 0 ; T Te , zNear equator, Te A B 2

up

Rfp

Ty

Rap

12 sin

T RB

ap

u finite (and positive) in upper levels at equator; angular momentum maximum there; not allowed

solution (1) no good at equator

Hadley Cell

T = Te

Page 13: The Atmosphere: Part 6: The Hadley Circulation

u m 0

2) v 0

solution (2) no good at high latitudes

1) v 0 ; T Te , zNear equator, Te A B 2

up

Rfp

Ty

Rap

12 sin

T RB

ap

u finite (and positive) in upper levels at equator; angular momentum maximum there; not allowed

solution (1) no good at equator

Hadley Cell

T = Te

Page 14: The Atmosphere: Part 6: The Hadley Circulation

Observed Hadley cell

v,w

Page 15: The Atmosphere: Part 6: The Hadley Circulation

Structure within the Hadley cell

Hadley Cell

T = Te

In upper troposphere,

uut a sin 2cos

Page 16: The Atmosphere: Part 6: The Hadley Circulation

Structure within the Hadley cell

Hadley Cell

T = Te

In upper troposphere,

uut a sin 2cos J

Page 17: The Atmosphere: Part 6: The Hadley Circulation

Observed Hadley cell

u

v,w

Subtropical jets

Page 18: The Atmosphere: Part 6: The Hadley Circulation

Structure within the Hadley cell

Hadley Cell

T = Te

Near equator,

In upper troposphere,

uut a sin 2cos

uut a 2

But in lower troposphere,

ult 0(because of friction ).

10.750.50.250

1

0.75

0.5

0.25

0

x

y

x

y

T~φ4

Te~φ2

up

Rfp

Ty

Rafp

T

T afp

Rup

2 aR

u lnp

lt

ut T d lnp 2 a

R uut ult

2 aR

uut 2 3a3

R 3

lt

utT d lnp const. 3a3

2R 4

Page 19: The Atmosphere: Part 6: The Hadley Circulation

Structure within the Hadley cell

Hadley Cell

T = Te

Near equator,

In upper troposphere,

uut a sin 2cos

uut a 2

But in lower troposphere,

ult 0(because of friction ).

10.750.50.250

1

0.75

0.5

0.25

0

x

y

x

y

T~φ4

Te~φ2

up

Rfp

Ty

Rafp

T

T afp

Rup

2 aR

u lnp

lt

ut T d lnp 2 a

R uut ult

2 aR

uut 2 3a3

R 3

lt

utT d lnp const. 3a3

2R 4

Vertically averaged T very flat within cell

Page 20: The Atmosphere: Part 6: The Hadley Circulation

Observed Hadley cell

T

v,w

Page 21: The Atmosphere: Part 6: The Hadley Circulation

Structure within the Hadley cell

Hadley Cell

T = Te

Near equator,

In upper troposphere,

uut a sin 2cos

uut a 2

But in lower troposphere,

ult 0(because of friction ).

10.750.50.250

1

0.75

0.5

0.25

0

x

y

x

y

T~φ4

Te~φ2

T<Te: diabatic heating

➙ upwelling

T>Te: diabatic cooling

➙ downwelling

edge of cell

v Ty

w Tz

1 T Te , z

Page 22: The Atmosphere: Part 6: The Hadley Circulation

The symmetric Hadley circulation

Page 23: The Atmosphere: Part 6: The Hadley Circulation

JJA circulation over oceans

(“ITCZ” = Intertropical Convergence Zone)

Page 24: The Atmosphere: Part 6: The Hadley Circulation

Monsoon circulations(in presence of land)

summerwinter

Page 25: The Atmosphere: Part 6: The Hadley Circulation

Satellite-measured (TRMM) rainfall, Jan/Jul 2003

Page 26: The Atmosphere: Part 6: The Hadley Circulation

Satellite-measure (TRMM) rainfall, Jan/Jul 2003

ITCZSouth Asian monsoondeserts

Page 27: The Atmosphere: Part 6: The Hadley Circulation

Heat (energy) transport by the Hadley cell

Poleward mass flux (kg/s) = Mut

Equatorward mass flux (kg/s) = Mlt

Mass balance: Mut = Mlt = M

Moist static energy (per unit mass)

E = cpT + gz + Lq

Net poleward energy flux

F = MutEut – MltElt

= M(Eut – Elt)

But

(i) Convection guarantees

Eut = Elt at equator

(ii) Hadley cell makes T flat across the cell

➙ weak poleward energy transport

Page 28: The Atmosphere: Part 6: The Hadley Circulation

Roles of atmosphere and ocean

Trenberth & Caron (2001)

net

ocean

atmosphere