41
The Application of Advanced Oxidation Processes (AOPs) and Development of Electrochemical Advanced Oxidation Processes (EAOPs) From Bench to Pilot Scale American Chemistry Society Annual Meeting, Boston, Aug 21th 2018 Brook Byers Institute for Sustainable Systems School of Civil and Environmental Engineering Georgia Institute of Technology Xiaoyang Meng, Weiqiu Zhang, John Crittenden *

The Application of Advanced Oxidation Processes (AOPs) and ...€¦ · We define the electron efficiency to be = 32 12 ·( J 4𝑥)· Where TOC in mg (c)/L and COD in mg ( 2)/L, n

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: The Application of Advanced Oxidation Processes (AOPs) and ...€¦ · We define the electron efficiency to be = 32 12 ·( J 4𝑥)· Where TOC in mg (c)/L and COD in mg ( 2)/L, n

The Application of Advanced Oxidation Processes

(AOPs) and Development of Electrochemical

Advanced Oxidation Processes (EAOPs)

From Bench to Pilot Scale

American Chemistry Society Annual Meeting Boston Aug 21th 2018

Brook Byers Institute for Sustainable Systems

School of Civil and Environmental Engineering

Georgia Institute of Technology

Xiaoyang Meng Weiqiu Zhang John Crittenden

Advanced Oxidation processes (AOPs) that produce

hydroxyl radicals (HOmiddot) at ambient temperature and

atmospheric pressure are promising water treatment

technology

HOmiddot radicals are highly reactive electrophiles that react

rapidly and non-selectively with the electron-rich sites of

compounds

HOmiddot radicals are capable of mineralizing organic compounds

into carbon dioxide CO2 and water H2O

Introduction ndash What are AOPs 12

Introduction ndash What are AOPs 22

According to Bolton and Carter (Bolton and Cater 1994) the

following general pattern of oxidation is observed for AOPs

The most significant observed by-products are the carboxylic

acids due to the fact that the second order rate constants for

these compounds are much lower than those for most

organics However if adequate reaction time is provided all

by-products (gt99 as measured by a TOC mass balance) are

destroyed

Oxidized Pollutants are more biodegradable We will show a

practical application

Organic Carboxylic Carbon dioxideAldehydespollutant acids and mineral acids

AOPs Investigated

Electrochemical AOPs Anode H2O rarr HOmiddot + e- + H+

Electrochemical

Advanced Oxidation

Electrochemical

Oxidation

Direct Oxidation

(Direct Electron Transfer on Anode)

amp

Indirect Oxidation(Oxidants Generated on Anode)

Principals of Electrochemical AOPs

Wastewater Flow

e

Cathode

Cations

Anode

Anions

Electron flow depends on ion flow

119860119899119900119889119890 rarr ℎ119907119887+ + 119890119888119887

minus

ℎ+ + 1198672119874 rarr 119867119874 sdot +119867+

We use semiconductors

as anode materials

Hydroxyl Radical Generation for 2D

Electrode

Schematic of the three-

dimensional electrode system

The anode material is a wire

mesh of blue-TiO2 nanotubes

combined with SnO2-Sb

119860119899119900119889119890 rarr ℎ119907119887+ + 119890119888119887

minus

ℎ+ + 1198672119874 rarr 119867119874 sdot +119867+

Three-Dimensional EAOP System

Cathode119890 + +119867+ rarr 121198672

Electrochemical Oxidation Processes

2-Dimensional and 3-Dimensional Electrodes

3D Electrode

bull Lower cell voltage lower EEO

bull Works with low ionic strength

EAOP Systems Comparison

Loss Electron Oxidation (LEO) Oxidation Potential vs NHE

21198672119874 rarr 4119867+ + 4119890minus + 1198742 1198640 = minus123 119881

2H2119874 rarr 11986721198742 + 2119867+ + 2119890minus 1198640 = minus177 119881

211987811987442minus rarr 11987821198748

2minus + 2119890minus 1198640 = minus201 119881

1198672119874 + 1198742 rarr 1198743 + 2119867+ + 2119890minus 1198640 = minus207 119881

11987811987442minus rarr 1198781198744

minus middot +119890minus 1198640 = minus260 119881

1198672119874 rarr 119867119874 middot +119867+ + 119890minus 1198640 = minus274 119881

119860119899119900119889119890 rarr ℎ119907119887+ + 119890119888119887

minus

ℎ+ + 1198672119874 rarr 119867119874 sdot +119867+

Ideally we want every electron to

create one HO∙

Band Gap Engineering

Gain Electron Reduction (GER) Reduction Potential vs NHE

2119867+ + 2119890minus rarr 1198672 1198640 = 000 119881

1198742 + 2119867+ + 2119890minus rarr 11986721198742 1198640 = 062 119881

Base substrate for Anode 1 and 2 Ti (2~3 mm thick)

Anode 1 TiO2 NanotubesSnO2-SbPTFE-PbO2

Inner Layer TiO2 Nanotube array

Intermediate layer -SnO2-Sb (Sb2O4)

Outer Layer PTFE-PbO2

Anode 2 Blue TiO2 NanotubesAged SnO2-Sb

Inner Layer Blue TiO2 Nanotube array

Outer Layer -SnO2-Sb (Sb2O4)

TiO2 band gap rutile 30 eV anatase 32 eV blue 33 eV

SnO2 band gap rutile 36 eV PbO2 16 eV (good for higher

current densities)

Multi-Layered Semiconductor Anode

Mixed Metal Oxide electrode (MMO)

a) b)

c)

SEM of (a) TiO2-Nanotubes Substrate (b) SnO2-Sb intermediate layer

(c) PTFEPbO2 electrode

SEM Characterization of Layers Anode 1Anode 1 TiO2 NanotubesSnO2-SbPTFE-PbO2

Half coated surface (coated only 5 times which

still expose some nanotubes surface) with non-

aging sol-gel (exhibit less compact morphology

and large crystal size)

Fully coated aged SnO2-Sb layer (15 times coating)

shows compact crystals configuration and smaller

size which improved surface area and surface

reaction sites

Half-Coated Non-Aged vs Fully

Coated Aged Anode 2Anode 2 Blue TiO2 NanotubesAged SnO2-Sb

The estimated life time of Blue TiO2 nanotubes and Aged SnO2-Sb is 2189

and 4794 h at operational current densities of 10 and 5 mAcm2

Characterization Voltammetry

Linear sweep voltammetry (LSV) of the 1 2 anode BDD for a 05 M H2SO4 solution (pH = 0) Scan rate is

10 mVs The standard reduction potentials (pH=0) for O2 H2O2 O3 and HOmiddot are +123 V +177 V +207 V

and +274 V

Patent

Pending

119889 119861119860

119889119905= 119896119861119860119867119874 times 119861119860 times 119867119874 119904119904

= 119896119861119860[119861119860]

119867119874 119904119904 =119896119861119860

119896119861119860119867119874

Anode material 2 743times10-14 molL

Anode material 1 477times10-14 molL

The steady state hydroxyl radical

concentration is estimated from 1 mM

benzoic acid degradation in a 30 mM

NaClO4 at 5 mAcm2 [HO]=kBAkHO

119896119861119860119867119874 = 59 times 109119871(119898119900119897119904)

Hydroxyl Radicals Production Comparison

Actual industrial used anode TiPbO2

Pilot treatment results will show in a minute

These blue NTA are unstable because they are not

coated with SnO2 ndash Sb

The stoichiometric equation for benzoic acid is given as

119862711986761198742 + 121198672119874 rarr 71198621198742 + 30119867+ + 30119890minus

We define the electron efficiency to be

119864119864 =32

12middot (

119899

4119909) middot

119889 119879119874119862

119889 119862119874119863

Where TOC in mg (c)L and COD in mg (1198742)L n is the

number of electrons transfer from the anode for a

complete oxidation reaction and x is the number of

carbon atoms in the organic contaminants

According to the equation and calculation the electron

efficiency for 2D and 3D systems in this case are

119864119864 2119863 = 0866 (866) and 119864119864 3119863 = 1067 (1067)

For 1mmolL (~122mgL) TOC ~90mgL COD

~190mgL

Low electrolyte concentration condition 0005 M Na2SO4

Electron Efficiency (Faraday Efficiency)

Investigate amp optimize electrode

spacing amp fluid velocity

Mass Transfer Impact of EAOPs

We used Differential Column Batch Reactor (DCBR)

in experiments

(a) ofloxacin destruction by 1 anode for various electrode spacing (b) pseudo-first-order rate constants (c) EEO

Anode surface area 10 cm2 electrode spacing 1 cm fluid velocity 0033 ms initial ofloxacin concentration 20

mgL voltage 35-86 V electrolyte concentration is 005 M Na2SO4 pH value 625 and temperature is 25

Mass Transfer Impact Electrode Spacing

for 2D Electrode

(a) ofloxacin destruction on 1 anode for various fluid velocity (b) pseudo-first-order rate constants (c) EEO

Anode surface area 10 cm2 electrode spacing 1 cm fluid velocity 0033 ms initial ofloxacin concentration 20

mgL voltage 35-86 V electrolyte concentration is 005 M Na2SO4 pH value 625 and temperature is 25

Mass Transfer Impact Fluid Velocity

120570 =119896119891 sdot 120579

119896119891 sdot 120579 + 119896119872119886119909 sdot 119889

Effectiveness factor in different fluid velocity and the best fitted model 1

anode surface area 10 cm2 electrode spacing 1 cm electrolyte 005 M

Na2SO4 solution current density 30 mAcm2 initial ofloxacin concentration

20 mgL voltage 63-64 v pH value 625 temperature 25

l

du

Plain channel

119878ℎ =119896119891 sdot 119889

119863119897= 33 sdot

119889

119897sdot Re sdot 119878119888

13

Re =120588 sdot 119906 sdot 119889

120583

119878119888 =120583

120588 sdot 119863119897

120570 =119903119900119887119904

119903max=

119896119900119887119904 119877

119896max 119877

Sherwood number

Reynolds number

Schmidt number

Ω = 0436 means more than

56 oxidation rate reduced

by mass transfer

Mass Transfer Impact Effectiveness Factor

Many AOP follow a pseudo-first order rate

EEO is useful because if EEO is 5kWhr-order then if

you supply 5 1

15 kWm3 then you will 90 99 999 destruction of

the parent compound

Note COD and TOC have a much slower rate

Byproducts are less toxic and more biodegradable

Figure of Merit Electrical Energy Used per

Order (EEO) of Parent Compound Destroyed

EEO in Conventional AOPs

Conventional AOP Example EEO in UVH2O2

119864119864119874 =119875 times 119905

119881 times log1198620119862

+11986211986721198742

times00022119897119887

119892times 11986411986721198742

log1198620119862

119864119864119874 =2303 times 119875 times 1198961 11986721198742 0 + 1198962 1198671198621198743

minus0 + 1198963 119873119874119872 0 + 1198964 119877 0 times ε11986721198742

11986721198742 0 + ε119877 119877 0 + ε119873119874119872 119873119874119872 0

119875119880119881 times 1198964 times ε1198672119874211986721198742 0 times 1 minus 10minus119860 times V

+ 34 gramL times 11986721198742 0 times 00022 119897119887119892119903119886119898 times 11986411986721198742 times 1000 Lm3

bull Target contaminant concentrations oxidant dosage NOM determine the EEO of

conventional AOPs

EEO in EAOPs

EEO in EAOPs

EEO =v times j times A times V times t

V times logC0C

=v times j times A times t

logC0C

EEO =v times j times A

0434 times 119896119878 times Ω

v voltage V

j current densitymA

cm2

A surface area per volumem2

m3

V volumem3

C concentrationmol

m3

ks surface reaction rate sminus1

kobs observed reaction rate sminus1

Ω effectiveness factor

Ω =119896119900119887119904

119896119878

bull Target contaminants concentration dose does not effect EEO in EAOPs

bull EEO is a constant under same operational conditions

01 1 10 100 1000 10000 100000

Ultrapure Water

Distilled Water

Tap Water

Potable Water In The US

Surface Water

Industrial Wastewater

Seawater

Conductivity microScm

Water Streams Conductivity Guide

2D vs 3D EEO Comparison

Degradation of 1 mmolL benzoic acid in a 470 mL differential column batch reactor pH controlled

~68 surface water used has a low conductivity 112 microscm controlled current density is 30 mAcm2

2D anode size is 10 cm2 3D used 80 meshed Ti gauze has surface area 718 cm210 cm2 DCBR

operated at Re 194 Sc 2727 Sh 194 kf 64times10-6 ms Dl 9times10-6 cm2s

2D Electrode

3D Electrode

EEO Analysis in EAOPs

Electrolyte

Concentration

BA

concentrati

on

Voltage Current

Density

EEO

molL mgL V mAcm2 kWhm3

Surface

Water+BA~00004

(113 microScm)

24

(02 mM) 60 105 1738Surface

Water+BA 00004122

(1 mM) 60 105 2003Industrial

Water+BA

01

(16210

microScm) 24 73 304 175Industrial

Water+BA 01 122 8 30 207

Voltage Current

Density

EEO

V mAcm2 kWhm3

152 105 868

3D System2D System

bull Ionic strength is important in EAOPs NOM is not

bull Initial concentration C0does not effect EEO (at least for the

concentrations we tested)

bull Accordingly the pseudo ndash first surface rate constant is same for

different influent concentrations and the same operational

conditions for the conditions we tested

bull We expect to see the reaction rate to decrease with high C0 because

at high concentrations all the reactions site on the anode will be

occupied preventing the oxidation rate from increasing (Langmuir-

Hinshelwood Hougen Watson kinetics confirmation needed)

53 304 290

Conventional AOPs vs EAOPs Modeling 13

A case study to compare EEOs for

UVH2O2 H2O2O3 UVHOCl UVPersulfate UVTiO2

EAOPs (two-dimensional and three-dimensional)

Simulation Conditions[HCO3

minus] = 3 mM [NOM] = 2 mgL [Cl-] = 0001 M

pH = 7 kBA = 59times10-9 L(molmiddotS)Same 22 W input energy gives UV light intensity = 164times10-6 Einstein s-1 L-1

Initial Concentrations [R] (Benzoic Acid in this case) = 20 200 2000 mgL

Quantum yield

UVH2O2 = 05 UVHOCl = 09 UVPersulfate = 07

UVTiO2 = 004 (light transmission efficiency = 04)

Chemical production energy

H2O2 = 49 kWhlb persulfate = 49 kWhlb HOCl = 51 kWhlb O3 = 5 kWhlb

Note TiO2 and electrodes production energies are not included in simulation

EAOPs assumptions amp parameters

J = 30 mAcm2 2D anode size A = 10 cm2 3D anode size A= 718 cm2 (80 meshed Ti gauze)

Sc = 2727 Sh = 194 Dl = 9times10-6 cm2s d = 1 cm

Note pumping energy is small compare to electricity and neglected in simulation

Q = 20 mLmin Re = 1851 kf = 235times10-6 ms

Q = 500 mLmin Re = 46296 kf = 688times10-6 ms

Q = 2000 mLmin Re = 203704 kf = 113times10-5 ms (Re lt 2100 in laminar flow)

Minimal

EEO

(kWhm3)

Optimal

OxidantCatalyst

Dosage

9072 [TiO2]=300 mgL

4022 [Persulfate]=16 gL

2718 [H2O2]=0612 gL

2442 [HOCl]=026 gL

679 [H2O2]=0028 mgL

Electrolyte

(Na2SO4)

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

0M3702

0001M 6466 2405

0005M 3781 2069

001M 2676 1552

01M 469 1294

AOPs Minimal

EEO

(kWhm3)

Optimal

OxidantCatalyst

Dosage

UVTiO2 1038 [TiO2]=300 mgL

UVPersulfate 128 [Persulfate]=117 gL

UV H2O2 090 [H2O2]=0204 gL

UVHOCl 367 [HOCl]=014 gL

H2O2O3 0015 [H2O2]=00206 mgL

[R]0 = 20 mgL

~16 mgL TOC

[R]0 = 200 mgL

~140 mgL TOC

Minimal

EEO

(kWhm3)

Optimal

OxidantCatalyst

Dosage

88271 [TiO2]=300 mgL

8208 [Persulfate]=581 gL

1768 [H2O2]=184 gL

8335 [HOCl]=0776 gL

17648 [H2O2]=0035 mgL

[R]0 = 2000 mgL

~1379 mgL TOC

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

3545

6015 2260

3559 1937

2504 1448

455 1207

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

3404

5634 2136

3367 1824

2357 1360

443 1132

Re = 1851 Re = 46296 Re = 203704

Conventional AOPs vs EAOPs Modeling 23

Mass Transfer Increase

Ion

Str

en

gth

In

crease

Conventional AOPs vs EAOPs Modeling 33

AOPs Minimal

EEO

(kWhm3)

Optimal

OxidantCatalyst

Dosage

UVTiO2 1038 [TiO2]=300 mgL

UVPersulfate 128 [Persulfate]=117 gL

UV H2O2 090 [H2O2]=0204 gL

UVHOCl 367 [HOCl]=014 gL

H2O2O3 0015 [H2O2]=00206 mgL

[R]0 = 20 mgL

~16 mgL TOC For low concentration treatment

objectives EAOPs may not be as good as

compared to conventional AOPs

Conventional UVH2O2 and H2O2O3 are

the best conventional AOPs for BA

Electrolyte

(Na2SO4)

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

0M3702

0001M 6466 2405

0005M 3781 2069

001M 2676 1552

01M 469 1294

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

3545

6015 2260

3559 1937

2504 1448

455 1207

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

3404

5634 2136

3367 1824

2357 1360

443 1132

Re = 1851 Re = 46296 Re = 203704Mass Transfer Increase

Ion

Str

en

gth

In

crease

Conventional AOPs vs EAOPs Modeling 33

Minimal

EEO

(kWhm3)

Optimal

OxidantCatalyst

Dosage

88271 [TiO2]=300 mgL

8208 [Persulfate]=581 gL

1768 [H2O2]=184 gL

8335 [HOCl]=0776 gL

17648 [H2O2]=0035 mgL

[R]0 = 2000 mgL

~1379 mgL TOC For high concentration treatment objectives

EAOPs are more energy efficient

3D-EAOP saves more energy than 2D because

it requires lower applied voltage

3D-EAOP works better than 2D in low ion

strength treatment

Electrolyte

(Na2SO4)

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

0M3702

0001M 6466 2405

0005M 3781 2069

001M 2676 1552

01M 469 1294

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

3545

6015 2260

3559 1937

2504 1448

455 1207

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

3404

5634 2136

3367 1824

2357 1360

443 1132

Re = 1851 Re = 46296 Re = 203704Mass Transfer Increase

Ion

Str

en

gth

In

crease

Limiting Current in Different Conditions

jlim = n times F times kf times Csalt

Electrolyte

Concentration Q Q Q

Na2SO4 mlmin mlmin mlmin

20 500 2000

Re Re Re

1852 46296 185185

kf kf kf

ms ms ms

235405E-06 688E-06 109E-05

jlim jlim jlim

molL mAcm2 mAcm2 mAcm2

0001 068 199 316

jlim jlim jlim

molL mAcm2 mAcm2 mAcm2

0005 341 996 1581

jlim jlim jlim

molL mAcm2 mAcm2 mAcm2

001 681 1992 3163

jlim jlim jlim

molL mAcm2 mAcm2 mAcm2

005 3407 9962 15814

jlim jlim jlim

molL mAcm2 mAcm2 mAcm2

01 6814 19924 31627

Parameters Symbol Units Value

Influent concentration C0 mgL 20

Effluent concentration Ce mgL 02

Flow rate Q m3day 1000

Pseudo first order rate constant k min 0042

Size of reactor VRequired m3 38 m3

Detention time τ min 548

Electrode spacing d cm 1

Fluid velocity u ms 0033

Electrolyte Na2SO4 Concentration M 005

Current density J mAcm2 30

Assuming a Plug Flow Reactor (PFR) to be Confirmed with CFD

Full Scale Reactor Design

Full Scale Reactor Design

Rough Design of Reactor (top view)

1 2 3 4 5 6 7 8 9 10

105 meters

long

10 meters

electrodes

10 meters

2 meters deep

Reactor Channel

1 meter

hellip

5 cm 95 cmInfluent Effluent

The total costs (capital costs + energy costs) as a function of different electrode spacing for different theoretical

reaction rate In here the treatment objective is 99 removal flow rate is 1000 m3day and the fluid velocity is 00116

ms The flow channel has eddy promoter and its electrode spacing and obstacle distance ratio is 13 The electricity

price is $00512kWh and the pumping power is 853 kW The electrode price is $300m2 and its lifetime is 2000 h

Capital Expenditure Operational Expenditure

CapEx vs OpEx

Cost Analysis for Preliminary Design

The total costs (capital costs + energy costs) as a function of different electrode spacing for different theoretical

reaction rate In here the treatment objective is 99 removal flow rate is 1000 m3day and the fluid velocity is 00116

ms The flow channel has eddy promoter and its electrode spacing and obstacle distance ratio is 13 The electricity

price is $00512kWh and the pumping power is 853 kW The electrode price is $300m2 and its lifetime is 2000 h

Currently we are at only Ω=0436

Computer-based First-Principles Kinetic Model

Reaction Pathway Generator

(Graph Theory)

Rate Constants Estimator

(Group Contribution Method

Free Energy Linear

Relationship

Genetic Algorithm)

Ordinary Differential

Equations

(ODEs) Generator and Solver

(Gearrsquos Algorithm or

Monte Carlo algorithm)

Kinetic Monte Carlo Solver can

solve 1 million ODEs on PC

within 30 minutes

Complexity of Reaction PathwayExample

General reaction mechanisms that HObull initiates based on past experimental studies

Stefan and Bolton 1998 1999 1999 Stefan et al 1996 2000 Cooper et al 2009 Li et al 2004 2007 von Sonntag and

Schuchmann 1984 Schuchmann and von Sonntag 1979

Type of mechanismNumber of

speciesNumber of reactions

Full mechanism 120 370

Reduced mechanism 41 89

The criterion for DRG method is 1

Reaction rate constants are obtained from group contribution method (Minakata et al 2009 ESampT 43 6220-6227) and literature includingNate et al 1990 J Phys Chem Ref Data 19 413-513Nate et al 1995 J Phys Chem Ref Data 25 709-1050Buxton et al 1988 J Phys Chem Ref Data 17 513-886von Sonntag et al 1991 Angeuz Chem Int Ed Engl 30 1229-1253Li et al 2009 ESampT 43 2831-2837Li et al 2007 ESampT 41 1696-1703

Initial concentration of TCE 108 mM

Initial concentration of O2 22 mM

Initial concentration of H2O2 104 mM

Initial pH 59

Wave length of UV 200~300 nm

Light intensity779times10-6

EinsteinLmiddots

Reactor typeCompletely mixed batch reactor

Reaction time 30 min

Comparison of concentration profiles of major species for experimental data (Li Stefan Crittenden 2007 ESampT 41 1696-1703) and simulation results

00

20

40

60

80

100

120

00

02

04

06

08

10

12

0 5 10 15 20 25 30[H

2O

2]

(mM

)

[Ma

jor

spec

ies]

(m

M)

Time(min)

TCE exp

formic acid exp

oxalic acid exp

20 times DCA exp

20 times MCA exp

TCE cal

formic acid cal

oxalic acid cal

20 times DCA cal

20 times MCA cal

H2O2 exp

H2O2 cal

The photolysis of TCE was added manually because it is not included in this version of the pathway generator

Predicted Concentration Profiles of

Trichloroethene (TCE) and Stable-byproducts in UVH2O2 AOP

Comparison of number averaged molecular

weight (MW) for experimental data

(Vijayalakshmi et al J Appl Polym Sci 2006

100 3997-4003) and on-the-fly KMC model

The KMC model used a population number of 108L to

represent a concentration of 1molL

0

02

04

06

08

1

12

14

16

18

0 25 50 75 100 125 150 175 200

Aver

aged

mole

cu

lar

wei

gh

t (1

05

gm

ol)

Time (min)

Experiment

On-the-fly KMC

0

02

04

06

08

1

12

0 25 50 75 100 125 150 175 200

Nu

mb

er o

f re

act

ion

s (1

06)

Time (min)

Time evolvement of the number of generated

reactions for the degradation of PAM during the

UVTiO2 process

Degradation of Polyacrylamide (PAM)

Simulation Results for PAM Degradation in UVTiO2 AOP

Guo X Minakata D and Crittenden J 2015 On-the-fly kinetic Monte Carlo simulation of aqueous phase advanced oxidation processes Environmental science amp technology 49(15) pp9230-9236

1 Crittenden John C Shumin Hu David W Hand and Sarah Green ldquoA Kinetic Model for H2O2UV Process in a Completely Mixed Batch Reactorrdquo Water Research 33(10) 2315-2328 (1999)

2 Li K Crittenden JC Computerized pathway elucidation for hydroxyl radical induced chain reaction mechanisms in aqueous phase AOPs Environmental Science amp Technology 2009 43(8) 2831-2837

3 Li K Stefan MI Crittenden JC Trichloroethene degradation by UVH2O2 advanced oxidation process product study and kinetic modeling Environmental Science amp Technology 2007 41 1696-1703

4 Li K M I Stefan and J C Crittenden ldquoUV Photolysis of Trichloroethylene (TCE) Product Study and Kinetic Modelingrdquo Environmental Science and Technology Vol 38 No 24 6685-6693 (2004)

5 Ke Li David R Hokanson John C Crittenden R Rhodes Trussell and Daisuke Minakata ldquoEvaluating UVH2O2 Processes for Methyl tert-Butyl Ether (MtBE) and tertiary Butyl Alcohol (TBA) Removal from

Drinking Water Source Effect of Pretreatment Options and Light Sourcesrdquo Water Research 2008 Volume 42 (20) 5045-5053

6 Minakata D Li K Westerhoff P Crittenden J Development of a group contribution method to predict aqueous phase hydroxyl radical reaction rate constants Environmental Science amp Technology 2009 43

6220-6227

7 Minakata D Crittenden J Linear Free Energy Relationships between the Aqueous Phase Hydroxyl Radical (HObull) Reaction Rate Constants and the Free Energy of Activation Environmental Science amp Technology

2011a 45 3479-3486

8 Minakata D Song W Crittenden J Reactivity of aqueous phase hydroxyl radical with halogenated carboxylate anions Experimental and theoretical studies Environmental Science amp Technology 2011 45 6057-

6065

9 Daisuke Minakata Stephen P Mezyk Jace W Jones Brittany R Daws John C Crittenden ldquoDevelopment of Linear Free Energy Relationships for Aqueous Phase Radical-Involved Chemical Reactionsrdquo

Environmental Science amp Technology 2014 48 (23) 13925-13932

10 Xin Guo Daisuke Minakata John C Crittenden ldquoOn-the-Fly Kinetic Monte Carlo Simulation of Aqueous Phase Advanced Oxidation Processesrdquo Environmental Science and Technology 2015 49 (15) 9230ndash9236

11 Guo X Minakata D Crittenden JC ldquoComputer-Based First-Principles Kinetic Monte Carlo Simulation of Polyethylene Glycol Degradation in Aqueous Phase UVH2O2 Advanced Oxidation Processrdquo

Environmental Science amp Technology 2014 48 10813minus10820

12 Xin Guo Daisuke Minakata Junfeng Niu John C Crittenden ldquoComputer-based First-principles Kinetic Modeling of Degradation Pathways and Byproduct Fates in Aqueous Phase Advanced Oxidation Processesrdquo

Environmental Science and Technology 2014 48 (10) pp 5718ndash5725

13 Yajie Qian Xin Guo Yalei Zhang Yue Peng Peizhe Sun Ching-Hua Huang Junfeng Niu Xuefei Zhou John C Crittenden ldquoPerfluorooctanoic Acid Degradation Using UVminusPersulfate Process Modeling of the

Degradation and Chlorate Formationrdquo 2015 Environmental Science and Technology 50 (2) 772ndash781

14 Ruzhen Xie Xiaoyang Meng Peizhe Sun Junfeng Niu Wenju JiangLawrence Bottomley Duo Li Yongsheng Chen John C CrittendenrdquoElectrochemical Oxidation of Ofloxacin Using a TiO2-based SnO2-

SbPolytetrafluoroethylene Resin-PbO2 Electrode Reaction Kinetics and Mass Transfer Impactrdquo 2016 Applied Catalysis B Environmental 203 (2017) 515ndash525

15 Westerhoff Paul Moon Hye Minakata Daisuke Crittenden John ldquoOxidation of Organics in Retentates from Reverse Osmosis Wastewater Reuse Facilitiesrdquo Water Research 43 (16) 3992-2998

16 Liu L Chen F Yang F Chen Y Crittenden J ldquoPhotocatalytic degradation of 24-dichlorophenol using nanoscale FeTiO2rdquo Chemical Engineering Journal 2012 181ndash182 (0)189-195

References

References

17 Ying Wang Jiasheng Fang John C Crittenden Chanchan Shen ldquoNovel RGO120572-FeOOH Supported Catalyst for Fenton Oxidation of Phenol at a Wide pH Range Using Solar-Light-Driven Irradiationrdquo 2017 Journal

of Hazardous Materials 329 321ndash329

18 Xiaodong Ma Mengying Zhao Qin Pang Meihua Zheng Hongwen Sun John C Crittenden Yanying Zhu Yongsheng Chen ldquoDevelopment of Novel CaCO3Fe2O3 Nanorods for Low Temperature 12-

Dichlorobenzene Oxidationrdquo 2017 Applied Catalysis A General 522 (2016) 70ndash79

19 Heacutector L Otaacutelvaro-Mariacuten Miguel Angel Mueses John C Crittenden Fiderman Machuca-Martinez ldquoSolar Photoreactor Design by the Photon Path Length and Optimization of the Radiant Field in a TiO2-based CPC

Reactorrdquo 2017 Chemical Engineering Journal 315 283ndash295

20 Qi Wang Naxin Zhu Enqin Liu Chenlu Zhang John C Crittenden Yi ZhangYanqing CongldquoFabrication of Visible-Light Active Fe2O3-GQDsNF-TiO2 Composite Film with Highly Enhanced

Photoelectrocatalytic Performancerdquo 2017 Applied Catalysis B Environmental 205 347ndash356

21 Junfeng Niu Lifeng Yin Yunrong Dai Yueping Bao John C Crittenden ldquoDesign of Visible Light Responsive Photocatalysts for Selective Reduction of Chlorinated Organic Compounds in Waterrdquo 2016 Applied

Catalysis A General 521 90ndash95

22 Chaojie Jiang Lifen Liu John C Crittenden ldquoAn Electrochemical Process that Uses an Fe0TiO2 Cathode to Degrade Typical Dyes and Antibiotics and a Bio-anode that Produces Electricityrdquo 2016 Frontiers of

Environmental Science amp Engineering 10(4) 15

23 Yijing Xia Qizhou Dai Mili Weng Yue Peng Jinming Luo Xiaoyang Meng Xubiao Luo Jianmeng Chen John C Crittenden ldquoFabrication and Electrochemical Treatment Application of an Al-Doped PbO2

Electrode with High Oxidation Capability Oxygen Evolution Potential and Reusabilityrdquo2015 Journal of The Electrochemical Society 162 (10) E258-E262

24 Feng Duan Yuping Li Hongbin Cao Yi Wang John C Crittenden Yi Zhang ldquoActivated Carbon Electrodes Electrochemical Oxidation Coupled with Desalination for Wastewater Treatmentrdquo 2015 Chemosphere

125 205-211

25 Xing Linlin Xie Yongbing Cao Hongbin Minakata Daisuke Zhang Yi Crittenden John C ldquoActivated carbon-enhanced ozonation of oxalate attributed to HObull oxidation in bulk solution and surface oxidation

Effects of the type and number of basic sitesrdquo Chemical Engineering Journal 2014 245 71-79

26 Yao H Sun P Minakata D Crittenden JC Huang C-H ldquoKinetics and Modeling of Degradation of Ionophore Antibiotics by UV and UVH2O2rdquo Environmental Science and Technology 2013 (47) 4581-

45892

26 Li Yang et al Synergistic photogeneration of reactive oxygen species by dissolved organic matter and C60 in aqueous phase Environmental science amp technology 492 (2015) 965-973

28 Niu Junfeng et al Photocatalytic reduction of triclosan on AundashCu 2 O nanowire arrays as plasmonic photocatalysts under visible light irradiation Physical Chemistry Chemical Physics 1726 (2015) 17421-17428

29 Niu Junfeng et al Design of visible light responsive photocatalysts for selective reduction of chlorinated organic compounds in water Applied Catalysis A General 521 (2016) 90-95

30 Tianyin Huang Jiabin Chen Zhongming Wang Xin Guo John C Crittenden ldquoExcellent Performance of Cobalt-Impregnated Activated Carbon in Peroxymonosulfate Activation for Acid Orange 7 Oxidationrdquo 2017

Environmental Science and Pollution Research Volume 24 (10) 9651ndash9661

References

31 Yang Li Junfeng Niu Enxiang Shang John C Crittenden ldquoPhotochemical Transformation and Photoinduced Toxicity Reduction of Silver Nanoparticles in the Presence of Perfluorocarboxylic Acids under UV

Irradiationrdquo Environmental Science and Technology 2014 48 (9) pp 4946ndash4953

32 Cao H Xing L Wu G Xie S Zhang SY Minakata D Crittenden JC ldquoPromoting effect of nitration modification on activated carbon in the catalytic ozonation of oxalic acidrdquo Applied Catalysis B

Environmental 2014 146 169-176

33 Konsowa A H Ossman M E Chen Y Crittenden J C ldquoDecolorization of industrial wastewater by ozonation followed by adsorption on activated carbonrdquo Journal of Hazardous Materials 176 (2010) 181-185

November 10 2009

34 Wipada Sanongraj Yongsheng Chen John Crittenden David Hand and David Perram ldquoDevelopment of Photocatalytic Oxidation Model Part I-Mathematical Model for Photocatalytic Destruction of Organic

Contaminants in Airrdquo Journal of the Air and Waste Management Association 571112ndash1122 September 2007

35 Chen Y JC Crittenden S Hackney L Sutter and DW Hand ldquoPreparation of a Novel TiO2-based p-n Junction Nanotube Photocatalystrdquo Environmental Science and Technology Vol 39 No 5 1201-1208 (2005)

36 Suri RPS J Liu JC Crittenden DW Hand and DL Perram Removal and Destruction of Organic Contaminants in Water Using Adsorption Steam Regeneration and Photocatalytic Oxidation A Pilot Scale

Studyrdquo Journal of Air and Waste Management Volume 49 (August 1999) 951 ndash 958

37 Burns RA JC Crittenden DW Hand VH Selzer LL Sutter SR Salman Effect of Inorganic Ions in the Heterogeneous Photocatalysis of Trichloroethene ASCE Journal of Environmental Engineering Vol

125 No 1 pp 77-85 (January 1999)

38 Liu J JC Crittenden DW Hand and DL Perram Regeneration of Adsorbents Using Heterogeneous Photocatalytic Oxidationrdquo Journal of Environmental Engineering Vol 122 No 8 pp 707-714 (1996)

39 Crittenden JC J Liu DW Hand and DL Perram Photocatalytic Oxidation of Chlorinated Hydrocarbons in Waterrdquo Water Research Vol31 No 3 pp 429-438 (1997)

40 Crittenden JC RPS Suri DL Perram and DW Hand Decontamination of Water Using Adsorption and Photocatalysisrdquo Water Research Vol 31 No 3 pp 411-418 (1997)

41 Crittenden JC Y Zhang DW Hand and DL Perram Destruction of Organic Compounds in Water Using Fixed-Bed Photocatalysts Journal of Solar Energy Engineering (ASME) Vol 118 No 5 pp 123 -129

(1996)

42 Crittenden JC Y Zhang DW Hand and DL Perram Solar Detoxification of Fuel-Contaminated Groundwater Using Fixed-Bed Photocatalystsrdquo Water Environment Research Vol 68 No 3 pp 270-278

(1996)

43 Zhang Y JC Crittenden and DW Hand The Solar Photocatalytic Decontamination of Waterrdquo Chemistry amp Industry Vol 18 pp 714-717 September (1994)

44 Mourand JT JC Crittenden DW Hand DL Perram and S Notthakun Regeneration of Spent Adsorbents Using Advanced Oxidationrdquo Water Environment Federation Vol 67 No 3 pp 355-363 (1995)

45 Hand DW DL Perram and JC Crittenden Destruction of DBP Precursors with Catalytic Oxidationrdquo American Water Works Association Journal Vol 87 No 6 pp 84-96 (1995)

46 Zhang Y JC Crittenden DW Hand and DL Perram Fixed-Bed Photo-catalysts for Solar Decontamination of Waterrdquo Environmental Science amp Technology Vol 28 No 3 pp 435-442 (1994)

47 Suri RPS J Liu DW Hand JC Crittenden DL Perram and ME Mullins Heterogeneous Photocatalytic Oxidation of Hazardous Organic Contaminants in Waterrdquo Water Environment Federation Vol 65 No

5 pp 665-673 (1993)

Page 2: The Application of Advanced Oxidation Processes (AOPs) and ...€¦ · We define the electron efficiency to be = 32 12 ·( J 4𝑥)· Where TOC in mg (c)/L and COD in mg ( 2)/L, n

Advanced Oxidation processes (AOPs) that produce

hydroxyl radicals (HOmiddot) at ambient temperature and

atmospheric pressure are promising water treatment

technology

HOmiddot radicals are highly reactive electrophiles that react

rapidly and non-selectively with the electron-rich sites of

compounds

HOmiddot radicals are capable of mineralizing organic compounds

into carbon dioxide CO2 and water H2O

Introduction ndash What are AOPs 12

Introduction ndash What are AOPs 22

According to Bolton and Carter (Bolton and Cater 1994) the

following general pattern of oxidation is observed for AOPs

The most significant observed by-products are the carboxylic

acids due to the fact that the second order rate constants for

these compounds are much lower than those for most

organics However if adequate reaction time is provided all

by-products (gt99 as measured by a TOC mass balance) are

destroyed

Oxidized Pollutants are more biodegradable We will show a

practical application

Organic Carboxylic Carbon dioxideAldehydespollutant acids and mineral acids

AOPs Investigated

Electrochemical AOPs Anode H2O rarr HOmiddot + e- + H+

Electrochemical

Advanced Oxidation

Electrochemical

Oxidation

Direct Oxidation

(Direct Electron Transfer on Anode)

amp

Indirect Oxidation(Oxidants Generated on Anode)

Principals of Electrochemical AOPs

Wastewater Flow

e

Cathode

Cations

Anode

Anions

Electron flow depends on ion flow

119860119899119900119889119890 rarr ℎ119907119887+ + 119890119888119887

minus

ℎ+ + 1198672119874 rarr 119867119874 sdot +119867+

We use semiconductors

as anode materials

Hydroxyl Radical Generation for 2D

Electrode

Schematic of the three-

dimensional electrode system

The anode material is a wire

mesh of blue-TiO2 nanotubes

combined with SnO2-Sb

119860119899119900119889119890 rarr ℎ119907119887+ + 119890119888119887

minus

ℎ+ + 1198672119874 rarr 119867119874 sdot +119867+

Three-Dimensional EAOP System

Cathode119890 + +119867+ rarr 121198672

Electrochemical Oxidation Processes

2-Dimensional and 3-Dimensional Electrodes

3D Electrode

bull Lower cell voltage lower EEO

bull Works with low ionic strength

EAOP Systems Comparison

Loss Electron Oxidation (LEO) Oxidation Potential vs NHE

21198672119874 rarr 4119867+ + 4119890minus + 1198742 1198640 = minus123 119881

2H2119874 rarr 11986721198742 + 2119867+ + 2119890minus 1198640 = minus177 119881

211987811987442minus rarr 11987821198748

2minus + 2119890minus 1198640 = minus201 119881

1198672119874 + 1198742 rarr 1198743 + 2119867+ + 2119890minus 1198640 = minus207 119881

11987811987442minus rarr 1198781198744

minus middot +119890minus 1198640 = minus260 119881

1198672119874 rarr 119867119874 middot +119867+ + 119890minus 1198640 = minus274 119881

119860119899119900119889119890 rarr ℎ119907119887+ + 119890119888119887

minus

ℎ+ + 1198672119874 rarr 119867119874 sdot +119867+

Ideally we want every electron to

create one HO∙

Band Gap Engineering

Gain Electron Reduction (GER) Reduction Potential vs NHE

2119867+ + 2119890minus rarr 1198672 1198640 = 000 119881

1198742 + 2119867+ + 2119890minus rarr 11986721198742 1198640 = 062 119881

Base substrate for Anode 1 and 2 Ti (2~3 mm thick)

Anode 1 TiO2 NanotubesSnO2-SbPTFE-PbO2

Inner Layer TiO2 Nanotube array

Intermediate layer -SnO2-Sb (Sb2O4)

Outer Layer PTFE-PbO2

Anode 2 Blue TiO2 NanotubesAged SnO2-Sb

Inner Layer Blue TiO2 Nanotube array

Outer Layer -SnO2-Sb (Sb2O4)

TiO2 band gap rutile 30 eV anatase 32 eV blue 33 eV

SnO2 band gap rutile 36 eV PbO2 16 eV (good for higher

current densities)

Multi-Layered Semiconductor Anode

Mixed Metal Oxide electrode (MMO)

a) b)

c)

SEM of (a) TiO2-Nanotubes Substrate (b) SnO2-Sb intermediate layer

(c) PTFEPbO2 electrode

SEM Characterization of Layers Anode 1Anode 1 TiO2 NanotubesSnO2-SbPTFE-PbO2

Half coated surface (coated only 5 times which

still expose some nanotubes surface) with non-

aging sol-gel (exhibit less compact morphology

and large crystal size)

Fully coated aged SnO2-Sb layer (15 times coating)

shows compact crystals configuration and smaller

size which improved surface area and surface

reaction sites

Half-Coated Non-Aged vs Fully

Coated Aged Anode 2Anode 2 Blue TiO2 NanotubesAged SnO2-Sb

The estimated life time of Blue TiO2 nanotubes and Aged SnO2-Sb is 2189

and 4794 h at operational current densities of 10 and 5 mAcm2

Characterization Voltammetry

Linear sweep voltammetry (LSV) of the 1 2 anode BDD for a 05 M H2SO4 solution (pH = 0) Scan rate is

10 mVs The standard reduction potentials (pH=0) for O2 H2O2 O3 and HOmiddot are +123 V +177 V +207 V

and +274 V

Patent

Pending

119889 119861119860

119889119905= 119896119861119860119867119874 times 119861119860 times 119867119874 119904119904

= 119896119861119860[119861119860]

119867119874 119904119904 =119896119861119860

119896119861119860119867119874

Anode material 2 743times10-14 molL

Anode material 1 477times10-14 molL

The steady state hydroxyl radical

concentration is estimated from 1 mM

benzoic acid degradation in a 30 mM

NaClO4 at 5 mAcm2 [HO]=kBAkHO

119896119861119860119867119874 = 59 times 109119871(119898119900119897119904)

Hydroxyl Radicals Production Comparison

Actual industrial used anode TiPbO2

Pilot treatment results will show in a minute

These blue NTA are unstable because they are not

coated with SnO2 ndash Sb

The stoichiometric equation for benzoic acid is given as

119862711986761198742 + 121198672119874 rarr 71198621198742 + 30119867+ + 30119890minus

We define the electron efficiency to be

119864119864 =32

12middot (

119899

4119909) middot

119889 119879119874119862

119889 119862119874119863

Where TOC in mg (c)L and COD in mg (1198742)L n is the

number of electrons transfer from the anode for a

complete oxidation reaction and x is the number of

carbon atoms in the organic contaminants

According to the equation and calculation the electron

efficiency for 2D and 3D systems in this case are

119864119864 2119863 = 0866 (866) and 119864119864 3119863 = 1067 (1067)

For 1mmolL (~122mgL) TOC ~90mgL COD

~190mgL

Low electrolyte concentration condition 0005 M Na2SO4

Electron Efficiency (Faraday Efficiency)

Investigate amp optimize electrode

spacing amp fluid velocity

Mass Transfer Impact of EAOPs

We used Differential Column Batch Reactor (DCBR)

in experiments

(a) ofloxacin destruction by 1 anode for various electrode spacing (b) pseudo-first-order rate constants (c) EEO

Anode surface area 10 cm2 electrode spacing 1 cm fluid velocity 0033 ms initial ofloxacin concentration 20

mgL voltage 35-86 V electrolyte concentration is 005 M Na2SO4 pH value 625 and temperature is 25

Mass Transfer Impact Electrode Spacing

for 2D Electrode

(a) ofloxacin destruction on 1 anode for various fluid velocity (b) pseudo-first-order rate constants (c) EEO

Anode surface area 10 cm2 electrode spacing 1 cm fluid velocity 0033 ms initial ofloxacin concentration 20

mgL voltage 35-86 V electrolyte concentration is 005 M Na2SO4 pH value 625 and temperature is 25

Mass Transfer Impact Fluid Velocity

120570 =119896119891 sdot 120579

119896119891 sdot 120579 + 119896119872119886119909 sdot 119889

Effectiveness factor in different fluid velocity and the best fitted model 1

anode surface area 10 cm2 electrode spacing 1 cm electrolyte 005 M

Na2SO4 solution current density 30 mAcm2 initial ofloxacin concentration

20 mgL voltage 63-64 v pH value 625 temperature 25

l

du

Plain channel

119878ℎ =119896119891 sdot 119889

119863119897= 33 sdot

119889

119897sdot Re sdot 119878119888

13

Re =120588 sdot 119906 sdot 119889

120583

119878119888 =120583

120588 sdot 119863119897

120570 =119903119900119887119904

119903max=

119896119900119887119904 119877

119896max 119877

Sherwood number

Reynolds number

Schmidt number

Ω = 0436 means more than

56 oxidation rate reduced

by mass transfer

Mass Transfer Impact Effectiveness Factor

Many AOP follow a pseudo-first order rate

EEO is useful because if EEO is 5kWhr-order then if

you supply 5 1

15 kWm3 then you will 90 99 999 destruction of

the parent compound

Note COD and TOC have a much slower rate

Byproducts are less toxic and more biodegradable

Figure of Merit Electrical Energy Used per

Order (EEO) of Parent Compound Destroyed

EEO in Conventional AOPs

Conventional AOP Example EEO in UVH2O2

119864119864119874 =119875 times 119905

119881 times log1198620119862

+11986211986721198742

times00022119897119887

119892times 11986411986721198742

log1198620119862

119864119864119874 =2303 times 119875 times 1198961 11986721198742 0 + 1198962 1198671198621198743

minus0 + 1198963 119873119874119872 0 + 1198964 119877 0 times ε11986721198742

11986721198742 0 + ε119877 119877 0 + ε119873119874119872 119873119874119872 0

119875119880119881 times 1198964 times ε1198672119874211986721198742 0 times 1 minus 10minus119860 times V

+ 34 gramL times 11986721198742 0 times 00022 119897119887119892119903119886119898 times 11986411986721198742 times 1000 Lm3

bull Target contaminant concentrations oxidant dosage NOM determine the EEO of

conventional AOPs

EEO in EAOPs

EEO in EAOPs

EEO =v times j times A times V times t

V times logC0C

=v times j times A times t

logC0C

EEO =v times j times A

0434 times 119896119878 times Ω

v voltage V

j current densitymA

cm2

A surface area per volumem2

m3

V volumem3

C concentrationmol

m3

ks surface reaction rate sminus1

kobs observed reaction rate sminus1

Ω effectiveness factor

Ω =119896119900119887119904

119896119878

bull Target contaminants concentration dose does not effect EEO in EAOPs

bull EEO is a constant under same operational conditions

01 1 10 100 1000 10000 100000

Ultrapure Water

Distilled Water

Tap Water

Potable Water In The US

Surface Water

Industrial Wastewater

Seawater

Conductivity microScm

Water Streams Conductivity Guide

2D vs 3D EEO Comparison

Degradation of 1 mmolL benzoic acid in a 470 mL differential column batch reactor pH controlled

~68 surface water used has a low conductivity 112 microscm controlled current density is 30 mAcm2

2D anode size is 10 cm2 3D used 80 meshed Ti gauze has surface area 718 cm210 cm2 DCBR

operated at Re 194 Sc 2727 Sh 194 kf 64times10-6 ms Dl 9times10-6 cm2s

2D Electrode

3D Electrode

EEO Analysis in EAOPs

Electrolyte

Concentration

BA

concentrati

on

Voltage Current

Density

EEO

molL mgL V mAcm2 kWhm3

Surface

Water+BA~00004

(113 microScm)

24

(02 mM) 60 105 1738Surface

Water+BA 00004122

(1 mM) 60 105 2003Industrial

Water+BA

01

(16210

microScm) 24 73 304 175Industrial

Water+BA 01 122 8 30 207

Voltage Current

Density

EEO

V mAcm2 kWhm3

152 105 868

3D System2D System

bull Ionic strength is important in EAOPs NOM is not

bull Initial concentration C0does not effect EEO (at least for the

concentrations we tested)

bull Accordingly the pseudo ndash first surface rate constant is same for

different influent concentrations and the same operational

conditions for the conditions we tested

bull We expect to see the reaction rate to decrease with high C0 because

at high concentrations all the reactions site on the anode will be

occupied preventing the oxidation rate from increasing (Langmuir-

Hinshelwood Hougen Watson kinetics confirmation needed)

53 304 290

Conventional AOPs vs EAOPs Modeling 13

A case study to compare EEOs for

UVH2O2 H2O2O3 UVHOCl UVPersulfate UVTiO2

EAOPs (two-dimensional and three-dimensional)

Simulation Conditions[HCO3

minus] = 3 mM [NOM] = 2 mgL [Cl-] = 0001 M

pH = 7 kBA = 59times10-9 L(molmiddotS)Same 22 W input energy gives UV light intensity = 164times10-6 Einstein s-1 L-1

Initial Concentrations [R] (Benzoic Acid in this case) = 20 200 2000 mgL

Quantum yield

UVH2O2 = 05 UVHOCl = 09 UVPersulfate = 07

UVTiO2 = 004 (light transmission efficiency = 04)

Chemical production energy

H2O2 = 49 kWhlb persulfate = 49 kWhlb HOCl = 51 kWhlb O3 = 5 kWhlb

Note TiO2 and electrodes production energies are not included in simulation

EAOPs assumptions amp parameters

J = 30 mAcm2 2D anode size A = 10 cm2 3D anode size A= 718 cm2 (80 meshed Ti gauze)

Sc = 2727 Sh = 194 Dl = 9times10-6 cm2s d = 1 cm

Note pumping energy is small compare to electricity and neglected in simulation

Q = 20 mLmin Re = 1851 kf = 235times10-6 ms

Q = 500 mLmin Re = 46296 kf = 688times10-6 ms

Q = 2000 mLmin Re = 203704 kf = 113times10-5 ms (Re lt 2100 in laminar flow)

Minimal

EEO

(kWhm3)

Optimal

OxidantCatalyst

Dosage

9072 [TiO2]=300 mgL

4022 [Persulfate]=16 gL

2718 [H2O2]=0612 gL

2442 [HOCl]=026 gL

679 [H2O2]=0028 mgL

Electrolyte

(Na2SO4)

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

0M3702

0001M 6466 2405

0005M 3781 2069

001M 2676 1552

01M 469 1294

AOPs Minimal

EEO

(kWhm3)

Optimal

OxidantCatalyst

Dosage

UVTiO2 1038 [TiO2]=300 mgL

UVPersulfate 128 [Persulfate]=117 gL

UV H2O2 090 [H2O2]=0204 gL

UVHOCl 367 [HOCl]=014 gL

H2O2O3 0015 [H2O2]=00206 mgL

[R]0 = 20 mgL

~16 mgL TOC

[R]0 = 200 mgL

~140 mgL TOC

Minimal

EEO

(kWhm3)

Optimal

OxidantCatalyst

Dosage

88271 [TiO2]=300 mgL

8208 [Persulfate]=581 gL

1768 [H2O2]=184 gL

8335 [HOCl]=0776 gL

17648 [H2O2]=0035 mgL

[R]0 = 2000 mgL

~1379 mgL TOC

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

3545

6015 2260

3559 1937

2504 1448

455 1207

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

3404

5634 2136

3367 1824

2357 1360

443 1132

Re = 1851 Re = 46296 Re = 203704

Conventional AOPs vs EAOPs Modeling 23

Mass Transfer Increase

Ion

Str

en

gth

In

crease

Conventional AOPs vs EAOPs Modeling 33

AOPs Minimal

EEO

(kWhm3)

Optimal

OxidantCatalyst

Dosage

UVTiO2 1038 [TiO2]=300 mgL

UVPersulfate 128 [Persulfate]=117 gL

UV H2O2 090 [H2O2]=0204 gL

UVHOCl 367 [HOCl]=014 gL

H2O2O3 0015 [H2O2]=00206 mgL

[R]0 = 20 mgL

~16 mgL TOC For low concentration treatment

objectives EAOPs may not be as good as

compared to conventional AOPs

Conventional UVH2O2 and H2O2O3 are

the best conventional AOPs for BA

Electrolyte

(Na2SO4)

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

0M3702

0001M 6466 2405

0005M 3781 2069

001M 2676 1552

01M 469 1294

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

3545

6015 2260

3559 1937

2504 1448

455 1207

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

3404

5634 2136

3367 1824

2357 1360

443 1132

Re = 1851 Re = 46296 Re = 203704Mass Transfer Increase

Ion

Str

en

gth

In

crease

Conventional AOPs vs EAOPs Modeling 33

Minimal

EEO

(kWhm3)

Optimal

OxidantCatalyst

Dosage

88271 [TiO2]=300 mgL

8208 [Persulfate]=581 gL

1768 [H2O2]=184 gL

8335 [HOCl]=0776 gL

17648 [H2O2]=0035 mgL

[R]0 = 2000 mgL

~1379 mgL TOC For high concentration treatment objectives

EAOPs are more energy efficient

3D-EAOP saves more energy than 2D because

it requires lower applied voltage

3D-EAOP works better than 2D in low ion

strength treatment

Electrolyte

(Na2SO4)

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

0M3702

0001M 6466 2405

0005M 3781 2069

001M 2676 1552

01M 469 1294

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

3545

6015 2260

3559 1937

2504 1448

455 1207

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

3404

5634 2136

3367 1824

2357 1360

443 1132

Re = 1851 Re = 46296 Re = 203704Mass Transfer Increase

Ion

Str

en

gth

In

crease

Limiting Current in Different Conditions

jlim = n times F times kf times Csalt

Electrolyte

Concentration Q Q Q

Na2SO4 mlmin mlmin mlmin

20 500 2000

Re Re Re

1852 46296 185185

kf kf kf

ms ms ms

235405E-06 688E-06 109E-05

jlim jlim jlim

molL mAcm2 mAcm2 mAcm2

0001 068 199 316

jlim jlim jlim

molL mAcm2 mAcm2 mAcm2

0005 341 996 1581

jlim jlim jlim

molL mAcm2 mAcm2 mAcm2

001 681 1992 3163

jlim jlim jlim

molL mAcm2 mAcm2 mAcm2

005 3407 9962 15814

jlim jlim jlim

molL mAcm2 mAcm2 mAcm2

01 6814 19924 31627

Parameters Symbol Units Value

Influent concentration C0 mgL 20

Effluent concentration Ce mgL 02

Flow rate Q m3day 1000

Pseudo first order rate constant k min 0042

Size of reactor VRequired m3 38 m3

Detention time τ min 548

Electrode spacing d cm 1

Fluid velocity u ms 0033

Electrolyte Na2SO4 Concentration M 005

Current density J mAcm2 30

Assuming a Plug Flow Reactor (PFR) to be Confirmed with CFD

Full Scale Reactor Design

Full Scale Reactor Design

Rough Design of Reactor (top view)

1 2 3 4 5 6 7 8 9 10

105 meters

long

10 meters

electrodes

10 meters

2 meters deep

Reactor Channel

1 meter

hellip

5 cm 95 cmInfluent Effluent

The total costs (capital costs + energy costs) as a function of different electrode spacing for different theoretical

reaction rate In here the treatment objective is 99 removal flow rate is 1000 m3day and the fluid velocity is 00116

ms The flow channel has eddy promoter and its electrode spacing and obstacle distance ratio is 13 The electricity

price is $00512kWh and the pumping power is 853 kW The electrode price is $300m2 and its lifetime is 2000 h

Capital Expenditure Operational Expenditure

CapEx vs OpEx

Cost Analysis for Preliminary Design

The total costs (capital costs + energy costs) as a function of different electrode spacing for different theoretical

reaction rate In here the treatment objective is 99 removal flow rate is 1000 m3day and the fluid velocity is 00116

ms The flow channel has eddy promoter and its electrode spacing and obstacle distance ratio is 13 The electricity

price is $00512kWh and the pumping power is 853 kW The electrode price is $300m2 and its lifetime is 2000 h

Currently we are at only Ω=0436

Computer-based First-Principles Kinetic Model

Reaction Pathway Generator

(Graph Theory)

Rate Constants Estimator

(Group Contribution Method

Free Energy Linear

Relationship

Genetic Algorithm)

Ordinary Differential

Equations

(ODEs) Generator and Solver

(Gearrsquos Algorithm or

Monte Carlo algorithm)

Kinetic Monte Carlo Solver can

solve 1 million ODEs on PC

within 30 minutes

Complexity of Reaction PathwayExample

General reaction mechanisms that HObull initiates based on past experimental studies

Stefan and Bolton 1998 1999 1999 Stefan et al 1996 2000 Cooper et al 2009 Li et al 2004 2007 von Sonntag and

Schuchmann 1984 Schuchmann and von Sonntag 1979

Type of mechanismNumber of

speciesNumber of reactions

Full mechanism 120 370

Reduced mechanism 41 89

The criterion for DRG method is 1

Reaction rate constants are obtained from group contribution method (Minakata et al 2009 ESampT 43 6220-6227) and literature includingNate et al 1990 J Phys Chem Ref Data 19 413-513Nate et al 1995 J Phys Chem Ref Data 25 709-1050Buxton et al 1988 J Phys Chem Ref Data 17 513-886von Sonntag et al 1991 Angeuz Chem Int Ed Engl 30 1229-1253Li et al 2009 ESampT 43 2831-2837Li et al 2007 ESampT 41 1696-1703

Initial concentration of TCE 108 mM

Initial concentration of O2 22 mM

Initial concentration of H2O2 104 mM

Initial pH 59

Wave length of UV 200~300 nm

Light intensity779times10-6

EinsteinLmiddots

Reactor typeCompletely mixed batch reactor

Reaction time 30 min

Comparison of concentration profiles of major species for experimental data (Li Stefan Crittenden 2007 ESampT 41 1696-1703) and simulation results

00

20

40

60

80

100

120

00

02

04

06

08

10

12

0 5 10 15 20 25 30[H

2O

2]

(mM

)

[Ma

jor

spec

ies]

(m

M)

Time(min)

TCE exp

formic acid exp

oxalic acid exp

20 times DCA exp

20 times MCA exp

TCE cal

formic acid cal

oxalic acid cal

20 times DCA cal

20 times MCA cal

H2O2 exp

H2O2 cal

The photolysis of TCE was added manually because it is not included in this version of the pathway generator

Predicted Concentration Profiles of

Trichloroethene (TCE) and Stable-byproducts in UVH2O2 AOP

Comparison of number averaged molecular

weight (MW) for experimental data

(Vijayalakshmi et al J Appl Polym Sci 2006

100 3997-4003) and on-the-fly KMC model

The KMC model used a population number of 108L to

represent a concentration of 1molL

0

02

04

06

08

1

12

14

16

18

0 25 50 75 100 125 150 175 200

Aver

aged

mole

cu

lar

wei

gh

t (1

05

gm

ol)

Time (min)

Experiment

On-the-fly KMC

0

02

04

06

08

1

12

0 25 50 75 100 125 150 175 200

Nu

mb

er o

f re

act

ion

s (1

06)

Time (min)

Time evolvement of the number of generated

reactions for the degradation of PAM during the

UVTiO2 process

Degradation of Polyacrylamide (PAM)

Simulation Results for PAM Degradation in UVTiO2 AOP

Guo X Minakata D and Crittenden J 2015 On-the-fly kinetic Monte Carlo simulation of aqueous phase advanced oxidation processes Environmental science amp technology 49(15) pp9230-9236

1 Crittenden John C Shumin Hu David W Hand and Sarah Green ldquoA Kinetic Model for H2O2UV Process in a Completely Mixed Batch Reactorrdquo Water Research 33(10) 2315-2328 (1999)

2 Li K Crittenden JC Computerized pathway elucidation for hydroxyl radical induced chain reaction mechanisms in aqueous phase AOPs Environmental Science amp Technology 2009 43(8) 2831-2837

3 Li K Stefan MI Crittenden JC Trichloroethene degradation by UVH2O2 advanced oxidation process product study and kinetic modeling Environmental Science amp Technology 2007 41 1696-1703

4 Li K M I Stefan and J C Crittenden ldquoUV Photolysis of Trichloroethylene (TCE) Product Study and Kinetic Modelingrdquo Environmental Science and Technology Vol 38 No 24 6685-6693 (2004)

5 Ke Li David R Hokanson John C Crittenden R Rhodes Trussell and Daisuke Minakata ldquoEvaluating UVH2O2 Processes for Methyl tert-Butyl Ether (MtBE) and tertiary Butyl Alcohol (TBA) Removal from

Drinking Water Source Effect of Pretreatment Options and Light Sourcesrdquo Water Research 2008 Volume 42 (20) 5045-5053

6 Minakata D Li K Westerhoff P Crittenden J Development of a group contribution method to predict aqueous phase hydroxyl radical reaction rate constants Environmental Science amp Technology 2009 43

6220-6227

7 Minakata D Crittenden J Linear Free Energy Relationships between the Aqueous Phase Hydroxyl Radical (HObull) Reaction Rate Constants and the Free Energy of Activation Environmental Science amp Technology

2011a 45 3479-3486

8 Minakata D Song W Crittenden J Reactivity of aqueous phase hydroxyl radical with halogenated carboxylate anions Experimental and theoretical studies Environmental Science amp Technology 2011 45 6057-

6065

9 Daisuke Minakata Stephen P Mezyk Jace W Jones Brittany R Daws John C Crittenden ldquoDevelopment of Linear Free Energy Relationships for Aqueous Phase Radical-Involved Chemical Reactionsrdquo

Environmental Science amp Technology 2014 48 (23) 13925-13932

10 Xin Guo Daisuke Minakata John C Crittenden ldquoOn-the-Fly Kinetic Monte Carlo Simulation of Aqueous Phase Advanced Oxidation Processesrdquo Environmental Science and Technology 2015 49 (15) 9230ndash9236

11 Guo X Minakata D Crittenden JC ldquoComputer-Based First-Principles Kinetic Monte Carlo Simulation of Polyethylene Glycol Degradation in Aqueous Phase UVH2O2 Advanced Oxidation Processrdquo

Environmental Science amp Technology 2014 48 10813minus10820

12 Xin Guo Daisuke Minakata Junfeng Niu John C Crittenden ldquoComputer-based First-principles Kinetic Modeling of Degradation Pathways and Byproduct Fates in Aqueous Phase Advanced Oxidation Processesrdquo

Environmental Science and Technology 2014 48 (10) pp 5718ndash5725

13 Yajie Qian Xin Guo Yalei Zhang Yue Peng Peizhe Sun Ching-Hua Huang Junfeng Niu Xuefei Zhou John C Crittenden ldquoPerfluorooctanoic Acid Degradation Using UVminusPersulfate Process Modeling of the

Degradation and Chlorate Formationrdquo 2015 Environmental Science and Technology 50 (2) 772ndash781

14 Ruzhen Xie Xiaoyang Meng Peizhe Sun Junfeng Niu Wenju JiangLawrence Bottomley Duo Li Yongsheng Chen John C CrittendenrdquoElectrochemical Oxidation of Ofloxacin Using a TiO2-based SnO2-

SbPolytetrafluoroethylene Resin-PbO2 Electrode Reaction Kinetics and Mass Transfer Impactrdquo 2016 Applied Catalysis B Environmental 203 (2017) 515ndash525

15 Westerhoff Paul Moon Hye Minakata Daisuke Crittenden John ldquoOxidation of Organics in Retentates from Reverse Osmosis Wastewater Reuse Facilitiesrdquo Water Research 43 (16) 3992-2998

16 Liu L Chen F Yang F Chen Y Crittenden J ldquoPhotocatalytic degradation of 24-dichlorophenol using nanoscale FeTiO2rdquo Chemical Engineering Journal 2012 181ndash182 (0)189-195

References

References

17 Ying Wang Jiasheng Fang John C Crittenden Chanchan Shen ldquoNovel RGO120572-FeOOH Supported Catalyst for Fenton Oxidation of Phenol at a Wide pH Range Using Solar-Light-Driven Irradiationrdquo 2017 Journal

of Hazardous Materials 329 321ndash329

18 Xiaodong Ma Mengying Zhao Qin Pang Meihua Zheng Hongwen Sun John C Crittenden Yanying Zhu Yongsheng Chen ldquoDevelopment of Novel CaCO3Fe2O3 Nanorods for Low Temperature 12-

Dichlorobenzene Oxidationrdquo 2017 Applied Catalysis A General 522 (2016) 70ndash79

19 Heacutector L Otaacutelvaro-Mariacuten Miguel Angel Mueses John C Crittenden Fiderman Machuca-Martinez ldquoSolar Photoreactor Design by the Photon Path Length and Optimization of the Radiant Field in a TiO2-based CPC

Reactorrdquo 2017 Chemical Engineering Journal 315 283ndash295

20 Qi Wang Naxin Zhu Enqin Liu Chenlu Zhang John C Crittenden Yi ZhangYanqing CongldquoFabrication of Visible-Light Active Fe2O3-GQDsNF-TiO2 Composite Film with Highly Enhanced

Photoelectrocatalytic Performancerdquo 2017 Applied Catalysis B Environmental 205 347ndash356

21 Junfeng Niu Lifeng Yin Yunrong Dai Yueping Bao John C Crittenden ldquoDesign of Visible Light Responsive Photocatalysts for Selective Reduction of Chlorinated Organic Compounds in Waterrdquo 2016 Applied

Catalysis A General 521 90ndash95

22 Chaojie Jiang Lifen Liu John C Crittenden ldquoAn Electrochemical Process that Uses an Fe0TiO2 Cathode to Degrade Typical Dyes and Antibiotics and a Bio-anode that Produces Electricityrdquo 2016 Frontiers of

Environmental Science amp Engineering 10(4) 15

23 Yijing Xia Qizhou Dai Mili Weng Yue Peng Jinming Luo Xiaoyang Meng Xubiao Luo Jianmeng Chen John C Crittenden ldquoFabrication and Electrochemical Treatment Application of an Al-Doped PbO2

Electrode with High Oxidation Capability Oxygen Evolution Potential and Reusabilityrdquo2015 Journal of The Electrochemical Society 162 (10) E258-E262

24 Feng Duan Yuping Li Hongbin Cao Yi Wang John C Crittenden Yi Zhang ldquoActivated Carbon Electrodes Electrochemical Oxidation Coupled with Desalination for Wastewater Treatmentrdquo 2015 Chemosphere

125 205-211

25 Xing Linlin Xie Yongbing Cao Hongbin Minakata Daisuke Zhang Yi Crittenden John C ldquoActivated carbon-enhanced ozonation of oxalate attributed to HObull oxidation in bulk solution and surface oxidation

Effects of the type and number of basic sitesrdquo Chemical Engineering Journal 2014 245 71-79

26 Yao H Sun P Minakata D Crittenden JC Huang C-H ldquoKinetics and Modeling of Degradation of Ionophore Antibiotics by UV and UVH2O2rdquo Environmental Science and Technology 2013 (47) 4581-

45892

26 Li Yang et al Synergistic photogeneration of reactive oxygen species by dissolved organic matter and C60 in aqueous phase Environmental science amp technology 492 (2015) 965-973

28 Niu Junfeng et al Photocatalytic reduction of triclosan on AundashCu 2 O nanowire arrays as plasmonic photocatalysts under visible light irradiation Physical Chemistry Chemical Physics 1726 (2015) 17421-17428

29 Niu Junfeng et al Design of visible light responsive photocatalysts for selective reduction of chlorinated organic compounds in water Applied Catalysis A General 521 (2016) 90-95

30 Tianyin Huang Jiabin Chen Zhongming Wang Xin Guo John C Crittenden ldquoExcellent Performance of Cobalt-Impregnated Activated Carbon in Peroxymonosulfate Activation for Acid Orange 7 Oxidationrdquo 2017

Environmental Science and Pollution Research Volume 24 (10) 9651ndash9661

References

31 Yang Li Junfeng Niu Enxiang Shang John C Crittenden ldquoPhotochemical Transformation and Photoinduced Toxicity Reduction of Silver Nanoparticles in the Presence of Perfluorocarboxylic Acids under UV

Irradiationrdquo Environmental Science and Technology 2014 48 (9) pp 4946ndash4953

32 Cao H Xing L Wu G Xie S Zhang SY Minakata D Crittenden JC ldquoPromoting effect of nitration modification on activated carbon in the catalytic ozonation of oxalic acidrdquo Applied Catalysis B

Environmental 2014 146 169-176

33 Konsowa A H Ossman M E Chen Y Crittenden J C ldquoDecolorization of industrial wastewater by ozonation followed by adsorption on activated carbonrdquo Journal of Hazardous Materials 176 (2010) 181-185

November 10 2009

34 Wipada Sanongraj Yongsheng Chen John Crittenden David Hand and David Perram ldquoDevelopment of Photocatalytic Oxidation Model Part I-Mathematical Model for Photocatalytic Destruction of Organic

Contaminants in Airrdquo Journal of the Air and Waste Management Association 571112ndash1122 September 2007

35 Chen Y JC Crittenden S Hackney L Sutter and DW Hand ldquoPreparation of a Novel TiO2-based p-n Junction Nanotube Photocatalystrdquo Environmental Science and Technology Vol 39 No 5 1201-1208 (2005)

36 Suri RPS J Liu JC Crittenden DW Hand and DL Perram Removal and Destruction of Organic Contaminants in Water Using Adsorption Steam Regeneration and Photocatalytic Oxidation A Pilot Scale

Studyrdquo Journal of Air and Waste Management Volume 49 (August 1999) 951 ndash 958

37 Burns RA JC Crittenden DW Hand VH Selzer LL Sutter SR Salman Effect of Inorganic Ions in the Heterogeneous Photocatalysis of Trichloroethene ASCE Journal of Environmental Engineering Vol

125 No 1 pp 77-85 (January 1999)

38 Liu J JC Crittenden DW Hand and DL Perram Regeneration of Adsorbents Using Heterogeneous Photocatalytic Oxidationrdquo Journal of Environmental Engineering Vol 122 No 8 pp 707-714 (1996)

39 Crittenden JC J Liu DW Hand and DL Perram Photocatalytic Oxidation of Chlorinated Hydrocarbons in Waterrdquo Water Research Vol31 No 3 pp 429-438 (1997)

40 Crittenden JC RPS Suri DL Perram and DW Hand Decontamination of Water Using Adsorption and Photocatalysisrdquo Water Research Vol 31 No 3 pp 411-418 (1997)

41 Crittenden JC Y Zhang DW Hand and DL Perram Destruction of Organic Compounds in Water Using Fixed-Bed Photocatalysts Journal of Solar Energy Engineering (ASME) Vol 118 No 5 pp 123 -129

(1996)

42 Crittenden JC Y Zhang DW Hand and DL Perram Solar Detoxification of Fuel-Contaminated Groundwater Using Fixed-Bed Photocatalystsrdquo Water Environment Research Vol 68 No 3 pp 270-278

(1996)

43 Zhang Y JC Crittenden and DW Hand The Solar Photocatalytic Decontamination of Waterrdquo Chemistry amp Industry Vol 18 pp 714-717 September (1994)

44 Mourand JT JC Crittenden DW Hand DL Perram and S Notthakun Regeneration of Spent Adsorbents Using Advanced Oxidationrdquo Water Environment Federation Vol 67 No 3 pp 355-363 (1995)

45 Hand DW DL Perram and JC Crittenden Destruction of DBP Precursors with Catalytic Oxidationrdquo American Water Works Association Journal Vol 87 No 6 pp 84-96 (1995)

46 Zhang Y JC Crittenden DW Hand and DL Perram Fixed-Bed Photo-catalysts for Solar Decontamination of Waterrdquo Environmental Science amp Technology Vol 28 No 3 pp 435-442 (1994)

47 Suri RPS J Liu DW Hand JC Crittenden DL Perram and ME Mullins Heterogeneous Photocatalytic Oxidation of Hazardous Organic Contaminants in Waterrdquo Water Environment Federation Vol 65 No

5 pp 665-673 (1993)

Page 3: The Application of Advanced Oxidation Processes (AOPs) and ...€¦ · We define the electron efficiency to be = 32 12 ·( J 4𝑥)· Where TOC in mg (c)/L and COD in mg ( 2)/L, n

Introduction ndash What are AOPs 22

According to Bolton and Carter (Bolton and Cater 1994) the

following general pattern of oxidation is observed for AOPs

The most significant observed by-products are the carboxylic

acids due to the fact that the second order rate constants for

these compounds are much lower than those for most

organics However if adequate reaction time is provided all

by-products (gt99 as measured by a TOC mass balance) are

destroyed

Oxidized Pollutants are more biodegradable We will show a

practical application

Organic Carboxylic Carbon dioxideAldehydespollutant acids and mineral acids

AOPs Investigated

Electrochemical AOPs Anode H2O rarr HOmiddot + e- + H+

Electrochemical

Advanced Oxidation

Electrochemical

Oxidation

Direct Oxidation

(Direct Electron Transfer on Anode)

amp

Indirect Oxidation(Oxidants Generated on Anode)

Principals of Electrochemical AOPs

Wastewater Flow

e

Cathode

Cations

Anode

Anions

Electron flow depends on ion flow

119860119899119900119889119890 rarr ℎ119907119887+ + 119890119888119887

minus

ℎ+ + 1198672119874 rarr 119867119874 sdot +119867+

We use semiconductors

as anode materials

Hydroxyl Radical Generation for 2D

Electrode

Schematic of the three-

dimensional electrode system

The anode material is a wire

mesh of blue-TiO2 nanotubes

combined with SnO2-Sb

119860119899119900119889119890 rarr ℎ119907119887+ + 119890119888119887

minus

ℎ+ + 1198672119874 rarr 119867119874 sdot +119867+

Three-Dimensional EAOP System

Cathode119890 + +119867+ rarr 121198672

Electrochemical Oxidation Processes

2-Dimensional and 3-Dimensional Electrodes

3D Electrode

bull Lower cell voltage lower EEO

bull Works with low ionic strength

EAOP Systems Comparison

Loss Electron Oxidation (LEO) Oxidation Potential vs NHE

21198672119874 rarr 4119867+ + 4119890minus + 1198742 1198640 = minus123 119881

2H2119874 rarr 11986721198742 + 2119867+ + 2119890minus 1198640 = minus177 119881

211987811987442minus rarr 11987821198748

2minus + 2119890minus 1198640 = minus201 119881

1198672119874 + 1198742 rarr 1198743 + 2119867+ + 2119890minus 1198640 = minus207 119881

11987811987442minus rarr 1198781198744

minus middot +119890minus 1198640 = minus260 119881

1198672119874 rarr 119867119874 middot +119867+ + 119890minus 1198640 = minus274 119881

119860119899119900119889119890 rarr ℎ119907119887+ + 119890119888119887

minus

ℎ+ + 1198672119874 rarr 119867119874 sdot +119867+

Ideally we want every electron to

create one HO∙

Band Gap Engineering

Gain Electron Reduction (GER) Reduction Potential vs NHE

2119867+ + 2119890minus rarr 1198672 1198640 = 000 119881

1198742 + 2119867+ + 2119890minus rarr 11986721198742 1198640 = 062 119881

Base substrate for Anode 1 and 2 Ti (2~3 mm thick)

Anode 1 TiO2 NanotubesSnO2-SbPTFE-PbO2

Inner Layer TiO2 Nanotube array

Intermediate layer -SnO2-Sb (Sb2O4)

Outer Layer PTFE-PbO2

Anode 2 Blue TiO2 NanotubesAged SnO2-Sb

Inner Layer Blue TiO2 Nanotube array

Outer Layer -SnO2-Sb (Sb2O4)

TiO2 band gap rutile 30 eV anatase 32 eV blue 33 eV

SnO2 band gap rutile 36 eV PbO2 16 eV (good for higher

current densities)

Multi-Layered Semiconductor Anode

Mixed Metal Oxide electrode (MMO)

a) b)

c)

SEM of (a) TiO2-Nanotubes Substrate (b) SnO2-Sb intermediate layer

(c) PTFEPbO2 electrode

SEM Characterization of Layers Anode 1Anode 1 TiO2 NanotubesSnO2-SbPTFE-PbO2

Half coated surface (coated only 5 times which

still expose some nanotubes surface) with non-

aging sol-gel (exhibit less compact morphology

and large crystal size)

Fully coated aged SnO2-Sb layer (15 times coating)

shows compact crystals configuration and smaller

size which improved surface area and surface

reaction sites

Half-Coated Non-Aged vs Fully

Coated Aged Anode 2Anode 2 Blue TiO2 NanotubesAged SnO2-Sb

The estimated life time of Blue TiO2 nanotubes and Aged SnO2-Sb is 2189

and 4794 h at operational current densities of 10 and 5 mAcm2

Characterization Voltammetry

Linear sweep voltammetry (LSV) of the 1 2 anode BDD for a 05 M H2SO4 solution (pH = 0) Scan rate is

10 mVs The standard reduction potentials (pH=0) for O2 H2O2 O3 and HOmiddot are +123 V +177 V +207 V

and +274 V

Patent

Pending

119889 119861119860

119889119905= 119896119861119860119867119874 times 119861119860 times 119867119874 119904119904

= 119896119861119860[119861119860]

119867119874 119904119904 =119896119861119860

119896119861119860119867119874

Anode material 2 743times10-14 molL

Anode material 1 477times10-14 molL

The steady state hydroxyl radical

concentration is estimated from 1 mM

benzoic acid degradation in a 30 mM

NaClO4 at 5 mAcm2 [HO]=kBAkHO

119896119861119860119867119874 = 59 times 109119871(119898119900119897119904)

Hydroxyl Radicals Production Comparison

Actual industrial used anode TiPbO2

Pilot treatment results will show in a minute

These blue NTA are unstable because they are not

coated with SnO2 ndash Sb

The stoichiometric equation for benzoic acid is given as

119862711986761198742 + 121198672119874 rarr 71198621198742 + 30119867+ + 30119890minus

We define the electron efficiency to be

119864119864 =32

12middot (

119899

4119909) middot

119889 119879119874119862

119889 119862119874119863

Where TOC in mg (c)L and COD in mg (1198742)L n is the

number of electrons transfer from the anode for a

complete oxidation reaction and x is the number of

carbon atoms in the organic contaminants

According to the equation and calculation the electron

efficiency for 2D and 3D systems in this case are

119864119864 2119863 = 0866 (866) and 119864119864 3119863 = 1067 (1067)

For 1mmolL (~122mgL) TOC ~90mgL COD

~190mgL

Low electrolyte concentration condition 0005 M Na2SO4

Electron Efficiency (Faraday Efficiency)

Investigate amp optimize electrode

spacing amp fluid velocity

Mass Transfer Impact of EAOPs

We used Differential Column Batch Reactor (DCBR)

in experiments

(a) ofloxacin destruction by 1 anode for various electrode spacing (b) pseudo-first-order rate constants (c) EEO

Anode surface area 10 cm2 electrode spacing 1 cm fluid velocity 0033 ms initial ofloxacin concentration 20

mgL voltage 35-86 V electrolyte concentration is 005 M Na2SO4 pH value 625 and temperature is 25

Mass Transfer Impact Electrode Spacing

for 2D Electrode

(a) ofloxacin destruction on 1 anode for various fluid velocity (b) pseudo-first-order rate constants (c) EEO

Anode surface area 10 cm2 electrode spacing 1 cm fluid velocity 0033 ms initial ofloxacin concentration 20

mgL voltage 35-86 V electrolyte concentration is 005 M Na2SO4 pH value 625 and temperature is 25

Mass Transfer Impact Fluid Velocity

120570 =119896119891 sdot 120579

119896119891 sdot 120579 + 119896119872119886119909 sdot 119889

Effectiveness factor in different fluid velocity and the best fitted model 1

anode surface area 10 cm2 electrode spacing 1 cm electrolyte 005 M

Na2SO4 solution current density 30 mAcm2 initial ofloxacin concentration

20 mgL voltage 63-64 v pH value 625 temperature 25

l

du

Plain channel

119878ℎ =119896119891 sdot 119889

119863119897= 33 sdot

119889

119897sdot Re sdot 119878119888

13

Re =120588 sdot 119906 sdot 119889

120583

119878119888 =120583

120588 sdot 119863119897

120570 =119903119900119887119904

119903max=

119896119900119887119904 119877

119896max 119877

Sherwood number

Reynolds number

Schmidt number

Ω = 0436 means more than

56 oxidation rate reduced

by mass transfer

Mass Transfer Impact Effectiveness Factor

Many AOP follow a pseudo-first order rate

EEO is useful because if EEO is 5kWhr-order then if

you supply 5 1

15 kWm3 then you will 90 99 999 destruction of

the parent compound

Note COD and TOC have a much slower rate

Byproducts are less toxic and more biodegradable

Figure of Merit Electrical Energy Used per

Order (EEO) of Parent Compound Destroyed

EEO in Conventional AOPs

Conventional AOP Example EEO in UVH2O2

119864119864119874 =119875 times 119905

119881 times log1198620119862

+11986211986721198742

times00022119897119887

119892times 11986411986721198742

log1198620119862

119864119864119874 =2303 times 119875 times 1198961 11986721198742 0 + 1198962 1198671198621198743

minus0 + 1198963 119873119874119872 0 + 1198964 119877 0 times ε11986721198742

11986721198742 0 + ε119877 119877 0 + ε119873119874119872 119873119874119872 0

119875119880119881 times 1198964 times ε1198672119874211986721198742 0 times 1 minus 10minus119860 times V

+ 34 gramL times 11986721198742 0 times 00022 119897119887119892119903119886119898 times 11986411986721198742 times 1000 Lm3

bull Target contaminant concentrations oxidant dosage NOM determine the EEO of

conventional AOPs

EEO in EAOPs

EEO in EAOPs

EEO =v times j times A times V times t

V times logC0C

=v times j times A times t

logC0C

EEO =v times j times A

0434 times 119896119878 times Ω

v voltage V

j current densitymA

cm2

A surface area per volumem2

m3

V volumem3

C concentrationmol

m3

ks surface reaction rate sminus1

kobs observed reaction rate sminus1

Ω effectiveness factor

Ω =119896119900119887119904

119896119878

bull Target contaminants concentration dose does not effect EEO in EAOPs

bull EEO is a constant under same operational conditions

01 1 10 100 1000 10000 100000

Ultrapure Water

Distilled Water

Tap Water

Potable Water In The US

Surface Water

Industrial Wastewater

Seawater

Conductivity microScm

Water Streams Conductivity Guide

2D vs 3D EEO Comparison

Degradation of 1 mmolL benzoic acid in a 470 mL differential column batch reactor pH controlled

~68 surface water used has a low conductivity 112 microscm controlled current density is 30 mAcm2

2D anode size is 10 cm2 3D used 80 meshed Ti gauze has surface area 718 cm210 cm2 DCBR

operated at Re 194 Sc 2727 Sh 194 kf 64times10-6 ms Dl 9times10-6 cm2s

2D Electrode

3D Electrode

EEO Analysis in EAOPs

Electrolyte

Concentration

BA

concentrati

on

Voltage Current

Density

EEO

molL mgL V mAcm2 kWhm3

Surface

Water+BA~00004

(113 microScm)

24

(02 mM) 60 105 1738Surface

Water+BA 00004122

(1 mM) 60 105 2003Industrial

Water+BA

01

(16210

microScm) 24 73 304 175Industrial

Water+BA 01 122 8 30 207

Voltage Current

Density

EEO

V mAcm2 kWhm3

152 105 868

3D System2D System

bull Ionic strength is important in EAOPs NOM is not

bull Initial concentration C0does not effect EEO (at least for the

concentrations we tested)

bull Accordingly the pseudo ndash first surface rate constant is same for

different influent concentrations and the same operational

conditions for the conditions we tested

bull We expect to see the reaction rate to decrease with high C0 because

at high concentrations all the reactions site on the anode will be

occupied preventing the oxidation rate from increasing (Langmuir-

Hinshelwood Hougen Watson kinetics confirmation needed)

53 304 290

Conventional AOPs vs EAOPs Modeling 13

A case study to compare EEOs for

UVH2O2 H2O2O3 UVHOCl UVPersulfate UVTiO2

EAOPs (two-dimensional and three-dimensional)

Simulation Conditions[HCO3

minus] = 3 mM [NOM] = 2 mgL [Cl-] = 0001 M

pH = 7 kBA = 59times10-9 L(molmiddotS)Same 22 W input energy gives UV light intensity = 164times10-6 Einstein s-1 L-1

Initial Concentrations [R] (Benzoic Acid in this case) = 20 200 2000 mgL

Quantum yield

UVH2O2 = 05 UVHOCl = 09 UVPersulfate = 07

UVTiO2 = 004 (light transmission efficiency = 04)

Chemical production energy

H2O2 = 49 kWhlb persulfate = 49 kWhlb HOCl = 51 kWhlb O3 = 5 kWhlb

Note TiO2 and electrodes production energies are not included in simulation

EAOPs assumptions amp parameters

J = 30 mAcm2 2D anode size A = 10 cm2 3D anode size A= 718 cm2 (80 meshed Ti gauze)

Sc = 2727 Sh = 194 Dl = 9times10-6 cm2s d = 1 cm

Note pumping energy is small compare to electricity and neglected in simulation

Q = 20 mLmin Re = 1851 kf = 235times10-6 ms

Q = 500 mLmin Re = 46296 kf = 688times10-6 ms

Q = 2000 mLmin Re = 203704 kf = 113times10-5 ms (Re lt 2100 in laminar flow)

Minimal

EEO

(kWhm3)

Optimal

OxidantCatalyst

Dosage

9072 [TiO2]=300 mgL

4022 [Persulfate]=16 gL

2718 [H2O2]=0612 gL

2442 [HOCl]=026 gL

679 [H2O2]=0028 mgL

Electrolyte

(Na2SO4)

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

0M3702

0001M 6466 2405

0005M 3781 2069

001M 2676 1552

01M 469 1294

AOPs Minimal

EEO

(kWhm3)

Optimal

OxidantCatalyst

Dosage

UVTiO2 1038 [TiO2]=300 mgL

UVPersulfate 128 [Persulfate]=117 gL

UV H2O2 090 [H2O2]=0204 gL

UVHOCl 367 [HOCl]=014 gL

H2O2O3 0015 [H2O2]=00206 mgL

[R]0 = 20 mgL

~16 mgL TOC

[R]0 = 200 mgL

~140 mgL TOC

Minimal

EEO

(kWhm3)

Optimal

OxidantCatalyst

Dosage

88271 [TiO2]=300 mgL

8208 [Persulfate]=581 gL

1768 [H2O2]=184 gL

8335 [HOCl]=0776 gL

17648 [H2O2]=0035 mgL

[R]0 = 2000 mgL

~1379 mgL TOC

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

3545

6015 2260

3559 1937

2504 1448

455 1207

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

3404

5634 2136

3367 1824

2357 1360

443 1132

Re = 1851 Re = 46296 Re = 203704

Conventional AOPs vs EAOPs Modeling 23

Mass Transfer Increase

Ion

Str

en

gth

In

crease

Conventional AOPs vs EAOPs Modeling 33

AOPs Minimal

EEO

(kWhm3)

Optimal

OxidantCatalyst

Dosage

UVTiO2 1038 [TiO2]=300 mgL

UVPersulfate 128 [Persulfate]=117 gL

UV H2O2 090 [H2O2]=0204 gL

UVHOCl 367 [HOCl]=014 gL

H2O2O3 0015 [H2O2]=00206 mgL

[R]0 = 20 mgL

~16 mgL TOC For low concentration treatment

objectives EAOPs may not be as good as

compared to conventional AOPs

Conventional UVH2O2 and H2O2O3 are

the best conventional AOPs for BA

Electrolyte

(Na2SO4)

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

0M3702

0001M 6466 2405

0005M 3781 2069

001M 2676 1552

01M 469 1294

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

3545

6015 2260

3559 1937

2504 1448

455 1207

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

3404

5634 2136

3367 1824

2357 1360

443 1132

Re = 1851 Re = 46296 Re = 203704Mass Transfer Increase

Ion

Str

en

gth

In

crease

Conventional AOPs vs EAOPs Modeling 33

Minimal

EEO

(kWhm3)

Optimal

OxidantCatalyst

Dosage

88271 [TiO2]=300 mgL

8208 [Persulfate]=581 gL

1768 [H2O2]=184 gL

8335 [HOCl]=0776 gL

17648 [H2O2]=0035 mgL

[R]0 = 2000 mgL

~1379 mgL TOC For high concentration treatment objectives

EAOPs are more energy efficient

3D-EAOP saves more energy than 2D because

it requires lower applied voltage

3D-EAOP works better than 2D in low ion

strength treatment

Electrolyte

(Na2SO4)

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

0M3702

0001M 6466 2405

0005M 3781 2069

001M 2676 1552

01M 469 1294

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

3545

6015 2260

3559 1937

2504 1448

455 1207

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

3404

5634 2136

3367 1824

2357 1360

443 1132

Re = 1851 Re = 46296 Re = 203704Mass Transfer Increase

Ion

Str

en

gth

In

crease

Limiting Current in Different Conditions

jlim = n times F times kf times Csalt

Electrolyte

Concentration Q Q Q

Na2SO4 mlmin mlmin mlmin

20 500 2000

Re Re Re

1852 46296 185185

kf kf kf

ms ms ms

235405E-06 688E-06 109E-05

jlim jlim jlim

molL mAcm2 mAcm2 mAcm2

0001 068 199 316

jlim jlim jlim

molL mAcm2 mAcm2 mAcm2

0005 341 996 1581

jlim jlim jlim

molL mAcm2 mAcm2 mAcm2

001 681 1992 3163

jlim jlim jlim

molL mAcm2 mAcm2 mAcm2

005 3407 9962 15814

jlim jlim jlim

molL mAcm2 mAcm2 mAcm2

01 6814 19924 31627

Parameters Symbol Units Value

Influent concentration C0 mgL 20

Effluent concentration Ce mgL 02

Flow rate Q m3day 1000

Pseudo first order rate constant k min 0042

Size of reactor VRequired m3 38 m3

Detention time τ min 548

Electrode spacing d cm 1

Fluid velocity u ms 0033

Electrolyte Na2SO4 Concentration M 005

Current density J mAcm2 30

Assuming a Plug Flow Reactor (PFR) to be Confirmed with CFD

Full Scale Reactor Design

Full Scale Reactor Design

Rough Design of Reactor (top view)

1 2 3 4 5 6 7 8 9 10

105 meters

long

10 meters

electrodes

10 meters

2 meters deep

Reactor Channel

1 meter

hellip

5 cm 95 cmInfluent Effluent

The total costs (capital costs + energy costs) as a function of different electrode spacing for different theoretical

reaction rate In here the treatment objective is 99 removal flow rate is 1000 m3day and the fluid velocity is 00116

ms The flow channel has eddy promoter and its electrode spacing and obstacle distance ratio is 13 The electricity

price is $00512kWh and the pumping power is 853 kW The electrode price is $300m2 and its lifetime is 2000 h

Capital Expenditure Operational Expenditure

CapEx vs OpEx

Cost Analysis for Preliminary Design

The total costs (capital costs + energy costs) as a function of different electrode spacing for different theoretical

reaction rate In here the treatment objective is 99 removal flow rate is 1000 m3day and the fluid velocity is 00116

ms The flow channel has eddy promoter and its electrode spacing and obstacle distance ratio is 13 The electricity

price is $00512kWh and the pumping power is 853 kW The electrode price is $300m2 and its lifetime is 2000 h

Currently we are at only Ω=0436

Computer-based First-Principles Kinetic Model

Reaction Pathway Generator

(Graph Theory)

Rate Constants Estimator

(Group Contribution Method

Free Energy Linear

Relationship

Genetic Algorithm)

Ordinary Differential

Equations

(ODEs) Generator and Solver

(Gearrsquos Algorithm or

Monte Carlo algorithm)

Kinetic Monte Carlo Solver can

solve 1 million ODEs on PC

within 30 minutes

Complexity of Reaction PathwayExample

General reaction mechanisms that HObull initiates based on past experimental studies

Stefan and Bolton 1998 1999 1999 Stefan et al 1996 2000 Cooper et al 2009 Li et al 2004 2007 von Sonntag and

Schuchmann 1984 Schuchmann and von Sonntag 1979

Type of mechanismNumber of

speciesNumber of reactions

Full mechanism 120 370

Reduced mechanism 41 89

The criterion for DRG method is 1

Reaction rate constants are obtained from group contribution method (Minakata et al 2009 ESampT 43 6220-6227) and literature includingNate et al 1990 J Phys Chem Ref Data 19 413-513Nate et al 1995 J Phys Chem Ref Data 25 709-1050Buxton et al 1988 J Phys Chem Ref Data 17 513-886von Sonntag et al 1991 Angeuz Chem Int Ed Engl 30 1229-1253Li et al 2009 ESampT 43 2831-2837Li et al 2007 ESampT 41 1696-1703

Initial concentration of TCE 108 mM

Initial concentration of O2 22 mM

Initial concentration of H2O2 104 mM

Initial pH 59

Wave length of UV 200~300 nm

Light intensity779times10-6

EinsteinLmiddots

Reactor typeCompletely mixed batch reactor

Reaction time 30 min

Comparison of concentration profiles of major species for experimental data (Li Stefan Crittenden 2007 ESampT 41 1696-1703) and simulation results

00

20

40

60

80

100

120

00

02

04

06

08

10

12

0 5 10 15 20 25 30[H

2O

2]

(mM

)

[Ma

jor

spec

ies]

(m

M)

Time(min)

TCE exp

formic acid exp

oxalic acid exp

20 times DCA exp

20 times MCA exp

TCE cal

formic acid cal

oxalic acid cal

20 times DCA cal

20 times MCA cal

H2O2 exp

H2O2 cal

The photolysis of TCE was added manually because it is not included in this version of the pathway generator

Predicted Concentration Profiles of

Trichloroethene (TCE) and Stable-byproducts in UVH2O2 AOP

Comparison of number averaged molecular

weight (MW) for experimental data

(Vijayalakshmi et al J Appl Polym Sci 2006

100 3997-4003) and on-the-fly KMC model

The KMC model used a population number of 108L to

represent a concentration of 1molL

0

02

04

06

08

1

12

14

16

18

0 25 50 75 100 125 150 175 200

Aver

aged

mole

cu

lar

wei

gh

t (1

05

gm

ol)

Time (min)

Experiment

On-the-fly KMC

0

02

04

06

08

1

12

0 25 50 75 100 125 150 175 200

Nu

mb

er o

f re

act

ion

s (1

06)

Time (min)

Time evolvement of the number of generated

reactions for the degradation of PAM during the

UVTiO2 process

Degradation of Polyacrylamide (PAM)

Simulation Results for PAM Degradation in UVTiO2 AOP

Guo X Minakata D and Crittenden J 2015 On-the-fly kinetic Monte Carlo simulation of aqueous phase advanced oxidation processes Environmental science amp technology 49(15) pp9230-9236

1 Crittenden John C Shumin Hu David W Hand and Sarah Green ldquoA Kinetic Model for H2O2UV Process in a Completely Mixed Batch Reactorrdquo Water Research 33(10) 2315-2328 (1999)

2 Li K Crittenden JC Computerized pathway elucidation for hydroxyl radical induced chain reaction mechanisms in aqueous phase AOPs Environmental Science amp Technology 2009 43(8) 2831-2837

3 Li K Stefan MI Crittenden JC Trichloroethene degradation by UVH2O2 advanced oxidation process product study and kinetic modeling Environmental Science amp Technology 2007 41 1696-1703

4 Li K M I Stefan and J C Crittenden ldquoUV Photolysis of Trichloroethylene (TCE) Product Study and Kinetic Modelingrdquo Environmental Science and Technology Vol 38 No 24 6685-6693 (2004)

5 Ke Li David R Hokanson John C Crittenden R Rhodes Trussell and Daisuke Minakata ldquoEvaluating UVH2O2 Processes for Methyl tert-Butyl Ether (MtBE) and tertiary Butyl Alcohol (TBA) Removal from

Drinking Water Source Effect of Pretreatment Options and Light Sourcesrdquo Water Research 2008 Volume 42 (20) 5045-5053

6 Minakata D Li K Westerhoff P Crittenden J Development of a group contribution method to predict aqueous phase hydroxyl radical reaction rate constants Environmental Science amp Technology 2009 43

6220-6227

7 Minakata D Crittenden J Linear Free Energy Relationships between the Aqueous Phase Hydroxyl Radical (HObull) Reaction Rate Constants and the Free Energy of Activation Environmental Science amp Technology

2011a 45 3479-3486

8 Minakata D Song W Crittenden J Reactivity of aqueous phase hydroxyl radical with halogenated carboxylate anions Experimental and theoretical studies Environmental Science amp Technology 2011 45 6057-

6065

9 Daisuke Minakata Stephen P Mezyk Jace W Jones Brittany R Daws John C Crittenden ldquoDevelopment of Linear Free Energy Relationships for Aqueous Phase Radical-Involved Chemical Reactionsrdquo

Environmental Science amp Technology 2014 48 (23) 13925-13932

10 Xin Guo Daisuke Minakata John C Crittenden ldquoOn-the-Fly Kinetic Monte Carlo Simulation of Aqueous Phase Advanced Oxidation Processesrdquo Environmental Science and Technology 2015 49 (15) 9230ndash9236

11 Guo X Minakata D Crittenden JC ldquoComputer-Based First-Principles Kinetic Monte Carlo Simulation of Polyethylene Glycol Degradation in Aqueous Phase UVH2O2 Advanced Oxidation Processrdquo

Environmental Science amp Technology 2014 48 10813minus10820

12 Xin Guo Daisuke Minakata Junfeng Niu John C Crittenden ldquoComputer-based First-principles Kinetic Modeling of Degradation Pathways and Byproduct Fates in Aqueous Phase Advanced Oxidation Processesrdquo

Environmental Science and Technology 2014 48 (10) pp 5718ndash5725

13 Yajie Qian Xin Guo Yalei Zhang Yue Peng Peizhe Sun Ching-Hua Huang Junfeng Niu Xuefei Zhou John C Crittenden ldquoPerfluorooctanoic Acid Degradation Using UVminusPersulfate Process Modeling of the

Degradation and Chlorate Formationrdquo 2015 Environmental Science and Technology 50 (2) 772ndash781

14 Ruzhen Xie Xiaoyang Meng Peizhe Sun Junfeng Niu Wenju JiangLawrence Bottomley Duo Li Yongsheng Chen John C CrittendenrdquoElectrochemical Oxidation of Ofloxacin Using a TiO2-based SnO2-

SbPolytetrafluoroethylene Resin-PbO2 Electrode Reaction Kinetics and Mass Transfer Impactrdquo 2016 Applied Catalysis B Environmental 203 (2017) 515ndash525

15 Westerhoff Paul Moon Hye Minakata Daisuke Crittenden John ldquoOxidation of Organics in Retentates from Reverse Osmosis Wastewater Reuse Facilitiesrdquo Water Research 43 (16) 3992-2998

16 Liu L Chen F Yang F Chen Y Crittenden J ldquoPhotocatalytic degradation of 24-dichlorophenol using nanoscale FeTiO2rdquo Chemical Engineering Journal 2012 181ndash182 (0)189-195

References

References

17 Ying Wang Jiasheng Fang John C Crittenden Chanchan Shen ldquoNovel RGO120572-FeOOH Supported Catalyst for Fenton Oxidation of Phenol at a Wide pH Range Using Solar-Light-Driven Irradiationrdquo 2017 Journal

of Hazardous Materials 329 321ndash329

18 Xiaodong Ma Mengying Zhao Qin Pang Meihua Zheng Hongwen Sun John C Crittenden Yanying Zhu Yongsheng Chen ldquoDevelopment of Novel CaCO3Fe2O3 Nanorods for Low Temperature 12-

Dichlorobenzene Oxidationrdquo 2017 Applied Catalysis A General 522 (2016) 70ndash79

19 Heacutector L Otaacutelvaro-Mariacuten Miguel Angel Mueses John C Crittenden Fiderman Machuca-Martinez ldquoSolar Photoreactor Design by the Photon Path Length and Optimization of the Radiant Field in a TiO2-based CPC

Reactorrdquo 2017 Chemical Engineering Journal 315 283ndash295

20 Qi Wang Naxin Zhu Enqin Liu Chenlu Zhang John C Crittenden Yi ZhangYanqing CongldquoFabrication of Visible-Light Active Fe2O3-GQDsNF-TiO2 Composite Film with Highly Enhanced

Photoelectrocatalytic Performancerdquo 2017 Applied Catalysis B Environmental 205 347ndash356

21 Junfeng Niu Lifeng Yin Yunrong Dai Yueping Bao John C Crittenden ldquoDesign of Visible Light Responsive Photocatalysts for Selective Reduction of Chlorinated Organic Compounds in Waterrdquo 2016 Applied

Catalysis A General 521 90ndash95

22 Chaojie Jiang Lifen Liu John C Crittenden ldquoAn Electrochemical Process that Uses an Fe0TiO2 Cathode to Degrade Typical Dyes and Antibiotics and a Bio-anode that Produces Electricityrdquo 2016 Frontiers of

Environmental Science amp Engineering 10(4) 15

23 Yijing Xia Qizhou Dai Mili Weng Yue Peng Jinming Luo Xiaoyang Meng Xubiao Luo Jianmeng Chen John C Crittenden ldquoFabrication and Electrochemical Treatment Application of an Al-Doped PbO2

Electrode with High Oxidation Capability Oxygen Evolution Potential and Reusabilityrdquo2015 Journal of The Electrochemical Society 162 (10) E258-E262

24 Feng Duan Yuping Li Hongbin Cao Yi Wang John C Crittenden Yi Zhang ldquoActivated Carbon Electrodes Electrochemical Oxidation Coupled with Desalination for Wastewater Treatmentrdquo 2015 Chemosphere

125 205-211

25 Xing Linlin Xie Yongbing Cao Hongbin Minakata Daisuke Zhang Yi Crittenden John C ldquoActivated carbon-enhanced ozonation of oxalate attributed to HObull oxidation in bulk solution and surface oxidation

Effects of the type and number of basic sitesrdquo Chemical Engineering Journal 2014 245 71-79

26 Yao H Sun P Minakata D Crittenden JC Huang C-H ldquoKinetics and Modeling of Degradation of Ionophore Antibiotics by UV and UVH2O2rdquo Environmental Science and Technology 2013 (47) 4581-

45892

26 Li Yang et al Synergistic photogeneration of reactive oxygen species by dissolved organic matter and C60 in aqueous phase Environmental science amp technology 492 (2015) 965-973

28 Niu Junfeng et al Photocatalytic reduction of triclosan on AundashCu 2 O nanowire arrays as plasmonic photocatalysts under visible light irradiation Physical Chemistry Chemical Physics 1726 (2015) 17421-17428

29 Niu Junfeng et al Design of visible light responsive photocatalysts for selective reduction of chlorinated organic compounds in water Applied Catalysis A General 521 (2016) 90-95

30 Tianyin Huang Jiabin Chen Zhongming Wang Xin Guo John C Crittenden ldquoExcellent Performance of Cobalt-Impregnated Activated Carbon in Peroxymonosulfate Activation for Acid Orange 7 Oxidationrdquo 2017

Environmental Science and Pollution Research Volume 24 (10) 9651ndash9661

References

31 Yang Li Junfeng Niu Enxiang Shang John C Crittenden ldquoPhotochemical Transformation and Photoinduced Toxicity Reduction of Silver Nanoparticles in the Presence of Perfluorocarboxylic Acids under UV

Irradiationrdquo Environmental Science and Technology 2014 48 (9) pp 4946ndash4953

32 Cao H Xing L Wu G Xie S Zhang SY Minakata D Crittenden JC ldquoPromoting effect of nitration modification on activated carbon in the catalytic ozonation of oxalic acidrdquo Applied Catalysis B

Environmental 2014 146 169-176

33 Konsowa A H Ossman M E Chen Y Crittenden J C ldquoDecolorization of industrial wastewater by ozonation followed by adsorption on activated carbonrdquo Journal of Hazardous Materials 176 (2010) 181-185

November 10 2009

34 Wipada Sanongraj Yongsheng Chen John Crittenden David Hand and David Perram ldquoDevelopment of Photocatalytic Oxidation Model Part I-Mathematical Model for Photocatalytic Destruction of Organic

Contaminants in Airrdquo Journal of the Air and Waste Management Association 571112ndash1122 September 2007

35 Chen Y JC Crittenden S Hackney L Sutter and DW Hand ldquoPreparation of a Novel TiO2-based p-n Junction Nanotube Photocatalystrdquo Environmental Science and Technology Vol 39 No 5 1201-1208 (2005)

36 Suri RPS J Liu JC Crittenden DW Hand and DL Perram Removal and Destruction of Organic Contaminants in Water Using Adsorption Steam Regeneration and Photocatalytic Oxidation A Pilot Scale

Studyrdquo Journal of Air and Waste Management Volume 49 (August 1999) 951 ndash 958

37 Burns RA JC Crittenden DW Hand VH Selzer LL Sutter SR Salman Effect of Inorganic Ions in the Heterogeneous Photocatalysis of Trichloroethene ASCE Journal of Environmental Engineering Vol

125 No 1 pp 77-85 (January 1999)

38 Liu J JC Crittenden DW Hand and DL Perram Regeneration of Adsorbents Using Heterogeneous Photocatalytic Oxidationrdquo Journal of Environmental Engineering Vol 122 No 8 pp 707-714 (1996)

39 Crittenden JC J Liu DW Hand and DL Perram Photocatalytic Oxidation of Chlorinated Hydrocarbons in Waterrdquo Water Research Vol31 No 3 pp 429-438 (1997)

40 Crittenden JC RPS Suri DL Perram and DW Hand Decontamination of Water Using Adsorption and Photocatalysisrdquo Water Research Vol 31 No 3 pp 411-418 (1997)

41 Crittenden JC Y Zhang DW Hand and DL Perram Destruction of Organic Compounds in Water Using Fixed-Bed Photocatalysts Journal of Solar Energy Engineering (ASME) Vol 118 No 5 pp 123 -129

(1996)

42 Crittenden JC Y Zhang DW Hand and DL Perram Solar Detoxification of Fuel-Contaminated Groundwater Using Fixed-Bed Photocatalystsrdquo Water Environment Research Vol 68 No 3 pp 270-278

(1996)

43 Zhang Y JC Crittenden and DW Hand The Solar Photocatalytic Decontamination of Waterrdquo Chemistry amp Industry Vol 18 pp 714-717 September (1994)

44 Mourand JT JC Crittenden DW Hand DL Perram and S Notthakun Regeneration of Spent Adsorbents Using Advanced Oxidationrdquo Water Environment Federation Vol 67 No 3 pp 355-363 (1995)

45 Hand DW DL Perram and JC Crittenden Destruction of DBP Precursors with Catalytic Oxidationrdquo American Water Works Association Journal Vol 87 No 6 pp 84-96 (1995)

46 Zhang Y JC Crittenden DW Hand and DL Perram Fixed-Bed Photo-catalysts for Solar Decontamination of Waterrdquo Environmental Science amp Technology Vol 28 No 3 pp 435-442 (1994)

47 Suri RPS J Liu DW Hand JC Crittenden DL Perram and ME Mullins Heterogeneous Photocatalytic Oxidation of Hazardous Organic Contaminants in Waterrdquo Water Environment Federation Vol 65 No

5 pp 665-673 (1993)

Page 4: The Application of Advanced Oxidation Processes (AOPs) and ...€¦ · We define the electron efficiency to be = 32 12 ·( J 4𝑥)· Where TOC in mg (c)/L and COD in mg ( 2)/L, n

AOPs Investigated

Electrochemical AOPs Anode H2O rarr HOmiddot + e- + H+

Electrochemical

Advanced Oxidation

Electrochemical

Oxidation

Direct Oxidation

(Direct Electron Transfer on Anode)

amp

Indirect Oxidation(Oxidants Generated on Anode)

Principals of Electrochemical AOPs

Wastewater Flow

e

Cathode

Cations

Anode

Anions

Electron flow depends on ion flow

119860119899119900119889119890 rarr ℎ119907119887+ + 119890119888119887

minus

ℎ+ + 1198672119874 rarr 119867119874 sdot +119867+

We use semiconductors

as anode materials

Hydroxyl Radical Generation for 2D

Electrode

Schematic of the three-

dimensional electrode system

The anode material is a wire

mesh of blue-TiO2 nanotubes

combined with SnO2-Sb

119860119899119900119889119890 rarr ℎ119907119887+ + 119890119888119887

minus

ℎ+ + 1198672119874 rarr 119867119874 sdot +119867+

Three-Dimensional EAOP System

Cathode119890 + +119867+ rarr 121198672

Electrochemical Oxidation Processes

2-Dimensional and 3-Dimensional Electrodes

3D Electrode

bull Lower cell voltage lower EEO

bull Works with low ionic strength

EAOP Systems Comparison

Loss Electron Oxidation (LEO) Oxidation Potential vs NHE

21198672119874 rarr 4119867+ + 4119890minus + 1198742 1198640 = minus123 119881

2H2119874 rarr 11986721198742 + 2119867+ + 2119890minus 1198640 = minus177 119881

211987811987442minus rarr 11987821198748

2minus + 2119890minus 1198640 = minus201 119881

1198672119874 + 1198742 rarr 1198743 + 2119867+ + 2119890minus 1198640 = minus207 119881

11987811987442minus rarr 1198781198744

minus middot +119890minus 1198640 = minus260 119881

1198672119874 rarr 119867119874 middot +119867+ + 119890minus 1198640 = minus274 119881

119860119899119900119889119890 rarr ℎ119907119887+ + 119890119888119887

minus

ℎ+ + 1198672119874 rarr 119867119874 sdot +119867+

Ideally we want every electron to

create one HO∙

Band Gap Engineering

Gain Electron Reduction (GER) Reduction Potential vs NHE

2119867+ + 2119890minus rarr 1198672 1198640 = 000 119881

1198742 + 2119867+ + 2119890minus rarr 11986721198742 1198640 = 062 119881

Base substrate for Anode 1 and 2 Ti (2~3 mm thick)

Anode 1 TiO2 NanotubesSnO2-SbPTFE-PbO2

Inner Layer TiO2 Nanotube array

Intermediate layer -SnO2-Sb (Sb2O4)

Outer Layer PTFE-PbO2

Anode 2 Blue TiO2 NanotubesAged SnO2-Sb

Inner Layer Blue TiO2 Nanotube array

Outer Layer -SnO2-Sb (Sb2O4)

TiO2 band gap rutile 30 eV anatase 32 eV blue 33 eV

SnO2 band gap rutile 36 eV PbO2 16 eV (good for higher

current densities)

Multi-Layered Semiconductor Anode

Mixed Metal Oxide electrode (MMO)

a) b)

c)

SEM of (a) TiO2-Nanotubes Substrate (b) SnO2-Sb intermediate layer

(c) PTFEPbO2 electrode

SEM Characterization of Layers Anode 1Anode 1 TiO2 NanotubesSnO2-SbPTFE-PbO2

Half coated surface (coated only 5 times which

still expose some nanotubes surface) with non-

aging sol-gel (exhibit less compact morphology

and large crystal size)

Fully coated aged SnO2-Sb layer (15 times coating)

shows compact crystals configuration and smaller

size which improved surface area and surface

reaction sites

Half-Coated Non-Aged vs Fully

Coated Aged Anode 2Anode 2 Blue TiO2 NanotubesAged SnO2-Sb

The estimated life time of Blue TiO2 nanotubes and Aged SnO2-Sb is 2189

and 4794 h at operational current densities of 10 and 5 mAcm2

Characterization Voltammetry

Linear sweep voltammetry (LSV) of the 1 2 anode BDD for a 05 M H2SO4 solution (pH = 0) Scan rate is

10 mVs The standard reduction potentials (pH=0) for O2 H2O2 O3 and HOmiddot are +123 V +177 V +207 V

and +274 V

Patent

Pending

119889 119861119860

119889119905= 119896119861119860119867119874 times 119861119860 times 119867119874 119904119904

= 119896119861119860[119861119860]

119867119874 119904119904 =119896119861119860

119896119861119860119867119874

Anode material 2 743times10-14 molL

Anode material 1 477times10-14 molL

The steady state hydroxyl radical

concentration is estimated from 1 mM

benzoic acid degradation in a 30 mM

NaClO4 at 5 mAcm2 [HO]=kBAkHO

119896119861119860119867119874 = 59 times 109119871(119898119900119897119904)

Hydroxyl Radicals Production Comparison

Actual industrial used anode TiPbO2

Pilot treatment results will show in a minute

These blue NTA are unstable because they are not

coated with SnO2 ndash Sb

The stoichiometric equation for benzoic acid is given as

119862711986761198742 + 121198672119874 rarr 71198621198742 + 30119867+ + 30119890minus

We define the electron efficiency to be

119864119864 =32

12middot (

119899

4119909) middot

119889 119879119874119862

119889 119862119874119863

Where TOC in mg (c)L and COD in mg (1198742)L n is the

number of electrons transfer from the anode for a

complete oxidation reaction and x is the number of

carbon atoms in the organic contaminants

According to the equation and calculation the electron

efficiency for 2D and 3D systems in this case are

119864119864 2119863 = 0866 (866) and 119864119864 3119863 = 1067 (1067)

For 1mmolL (~122mgL) TOC ~90mgL COD

~190mgL

Low electrolyte concentration condition 0005 M Na2SO4

Electron Efficiency (Faraday Efficiency)

Investigate amp optimize electrode

spacing amp fluid velocity

Mass Transfer Impact of EAOPs

We used Differential Column Batch Reactor (DCBR)

in experiments

(a) ofloxacin destruction by 1 anode for various electrode spacing (b) pseudo-first-order rate constants (c) EEO

Anode surface area 10 cm2 electrode spacing 1 cm fluid velocity 0033 ms initial ofloxacin concentration 20

mgL voltage 35-86 V electrolyte concentration is 005 M Na2SO4 pH value 625 and temperature is 25

Mass Transfer Impact Electrode Spacing

for 2D Electrode

(a) ofloxacin destruction on 1 anode for various fluid velocity (b) pseudo-first-order rate constants (c) EEO

Anode surface area 10 cm2 electrode spacing 1 cm fluid velocity 0033 ms initial ofloxacin concentration 20

mgL voltage 35-86 V electrolyte concentration is 005 M Na2SO4 pH value 625 and temperature is 25

Mass Transfer Impact Fluid Velocity

120570 =119896119891 sdot 120579

119896119891 sdot 120579 + 119896119872119886119909 sdot 119889

Effectiveness factor in different fluid velocity and the best fitted model 1

anode surface area 10 cm2 electrode spacing 1 cm electrolyte 005 M

Na2SO4 solution current density 30 mAcm2 initial ofloxacin concentration

20 mgL voltage 63-64 v pH value 625 temperature 25

l

du

Plain channel

119878ℎ =119896119891 sdot 119889

119863119897= 33 sdot

119889

119897sdot Re sdot 119878119888

13

Re =120588 sdot 119906 sdot 119889

120583

119878119888 =120583

120588 sdot 119863119897

120570 =119903119900119887119904

119903max=

119896119900119887119904 119877

119896max 119877

Sherwood number

Reynolds number

Schmidt number

Ω = 0436 means more than

56 oxidation rate reduced

by mass transfer

Mass Transfer Impact Effectiveness Factor

Many AOP follow a pseudo-first order rate

EEO is useful because if EEO is 5kWhr-order then if

you supply 5 1

15 kWm3 then you will 90 99 999 destruction of

the parent compound

Note COD and TOC have a much slower rate

Byproducts are less toxic and more biodegradable

Figure of Merit Electrical Energy Used per

Order (EEO) of Parent Compound Destroyed

EEO in Conventional AOPs

Conventional AOP Example EEO in UVH2O2

119864119864119874 =119875 times 119905

119881 times log1198620119862

+11986211986721198742

times00022119897119887

119892times 11986411986721198742

log1198620119862

119864119864119874 =2303 times 119875 times 1198961 11986721198742 0 + 1198962 1198671198621198743

minus0 + 1198963 119873119874119872 0 + 1198964 119877 0 times ε11986721198742

11986721198742 0 + ε119877 119877 0 + ε119873119874119872 119873119874119872 0

119875119880119881 times 1198964 times ε1198672119874211986721198742 0 times 1 minus 10minus119860 times V

+ 34 gramL times 11986721198742 0 times 00022 119897119887119892119903119886119898 times 11986411986721198742 times 1000 Lm3

bull Target contaminant concentrations oxidant dosage NOM determine the EEO of

conventional AOPs

EEO in EAOPs

EEO in EAOPs

EEO =v times j times A times V times t

V times logC0C

=v times j times A times t

logC0C

EEO =v times j times A

0434 times 119896119878 times Ω

v voltage V

j current densitymA

cm2

A surface area per volumem2

m3

V volumem3

C concentrationmol

m3

ks surface reaction rate sminus1

kobs observed reaction rate sminus1

Ω effectiveness factor

Ω =119896119900119887119904

119896119878

bull Target contaminants concentration dose does not effect EEO in EAOPs

bull EEO is a constant under same operational conditions

01 1 10 100 1000 10000 100000

Ultrapure Water

Distilled Water

Tap Water

Potable Water In The US

Surface Water

Industrial Wastewater

Seawater

Conductivity microScm

Water Streams Conductivity Guide

2D vs 3D EEO Comparison

Degradation of 1 mmolL benzoic acid in a 470 mL differential column batch reactor pH controlled

~68 surface water used has a low conductivity 112 microscm controlled current density is 30 mAcm2

2D anode size is 10 cm2 3D used 80 meshed Ti gauze has surface area 718 cm210 cm2 DCBR

operated at Re 194 Sc 2727 Sh 194 kf 64times10-6 ms Dl 9times10-6 cm2s

2D Electrode

3D Electrode

EEO Analysis in EAOPs

Electrolyte

Concentration

BA

concentrati

on

Voltage Current

Density

EEO

molL mgL V mAcm2 kWhm3

Surface

Water+BA~00004

(113 microScm)

24

(02 mM) 60 105 1738Surface

Water+BA 00004122

(1 mM) 60 105 2003Industrial

Water+BA

01

(16210

microScm) 24 73 304 175Industrial

Water+BA 01 122 8 30 207

Voltage Current

Density

EEO

V mAcm2 kWhm3

152 105 868

3D System2D System

bull Ionic strength is important in EAOPs NOM is not

bull Initial concentration C0does not effect EEO (at least for the

concentrations we tested)

bull Accordingly the pseudo ndash first surface rate constant is same for

different influent concentrations and the same operational

conditions for the conditions we tested

bull We expect to see the reaction rate to decrease with high C0 because

at high concentrations all the reactions site on the anode will be

occupied preventing the oxidation rate from increasing (Langmuir-

Hinshelwood Hougen Watson kinetics confirmation needed)

53 304 290

Conventional AOPs vs EAOPs Modeling 13

A case study to compare EEOs for

UVH2O2 H2O2O3 UVHOCl UVPersulfate UVTiO2

EAOPs (two-dimensional and three-dimensional)

Simulation Conditions[HCO3

minus] = 3 mM [NOM] = 2 mgL [Cl-] = 0001 M

pH = 7 kBA = 59times10-9 L(molmiddotS)Same 22 W input energy gives UV light intensity = 164times10-6 Einstein s-1 L-1

Initial Concentrations [R] (Benzoic Acid in this case) = 20 200 2000 mgL

Quantum yield

UVH2O2 = 05 UVHOCl = 09 UVPersulfate = 07

UVTiO2 = 004 (light transmission efficiency = 04)

Chemical production energy

H2O2 = 49 kWhlb persulfate = 49 kWhlb HOCl = 51 kWhlb O3 = 5 kWhlb

Note TiO2 and electrodes production energies are not included in simulation

EAOPs assumptions amp parameters

J = 30 mAcm2 2D anode size A = 10 cm2 3D anode size A= 718 cm2 (80 meshed Ti gauze)

Sc = 2727 Sh = 194 Dl = 9times10-6 cm2s d = 1 cm

Note pumping energy is small compare to electricity and neglected in simulation

Q = 20 mLmin Re = 1851 kf = 235times10-6 ms

Q = 500 mLmin Re = 46296 kf = 688times10-6 ms

Q = 2000 mLmin Re = 203704 kf = 113times10-5 ms (Re lt 2100 in laminar flow)

Minimal

EEO

(kWhm3)

Optimal

OxidantCatalyst

Dosage

9072 [TiO2]=300 mgL

4022 [Persulfate]=16 gL

2718 [H2O2]=0612 gL

2442 [HOCl]=026 gL

679 [H2O2]=0028 mgL

Electrolyte

(Na2SO4)

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

0M3702

0001M 6466 2405

0005M 3781 2069

001M 2676 1552

01M 469 1294

AOPs Minimal

EEO

(kWhm3)

Optimal

OxidantCatalyst

Dosage

UVTiO2 1038 [TiO2]=300 mgL

UVPersulfate 128 [Persulfate]=117 gL

UV H2O2 090 [H2O2]=0204 gL

UVHOCl 367 [HOCl]=014 gL

H2O2O3 0015 [H2O2]=00206 mgL

[R]0 = 20 mgL

~16 mgL TOC

[R]0 = 200 mgL

~140 mgL TOC

Minimal

EEO

(kWhm3)

Optimal

OxidantCatalyst

Dosage

88271 [TiO2]=300 mgL

8208 [Persulfate]=581 gL

1768 [H2O2]=184 gL

8335 [HOCl]=0776 gL

17648 [H2O2]=0035 mgL

[R]0 = 2000 mgL

~1379 mgL TOC

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

3545

6015 2260

3559 1937

2504 1448

455 1207

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

3404

5634 2136

3367 1824

2357 1360

443 1132

Re = 1851 Re = 46296 Re = 203704

Conventional AOPs vs EAOPs Modeling 23

Mass Transfer Increase

Ion

Str

en

gth

In

crease

Conventional AOPs vs EAOPs Modeling 33

AOPs Minimal

EEO

(kWhm3)

Optimal

OxidantCatalyst

Dosage

UVTiO2 1038 [TiO2]=300 mgL

UVPersulfate 128 [Persulfate]=117 gL

UV H2O2 090 [H2O2]=0204 gL

UVHOCl 367 [HOCl]=014 gL

H2O2O3 0015 [H2O2]=00206 mgL

[R]0 = 20 mgL

~16 mgL TOC For low concentration treatment

objectives EAOPs may not be as good as

compared to conventional AOPs

Conventional UVH2O2 and H2O2O3 are

the best conventional AOPs for BA

Electrolyte

(Na2SO4)

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

0M3702

0001M 6466 2405

0005M 3781 2069

001M 2676 1552

01M 469 1294

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

3545

6015 2260

3559 1937

2504 1448

455 1207

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

3404

5634 2136

3367 1824

2357 1360

443 1132

Re = 1851 Re = 46296 Re = 203704Mass Transfer Increase

Ion

Str

en

gth

In

crease

Conventional AOPs vs EAOPs Modeling 33

Minimal

EEO

(kWhm3)

Optimal

OxidantCatalyst

Dosage

88271 [TiO2]=300 mgL

8208 [Persulfate]=581 gL

1768 [H2O2]=184 gL

8335 [HOCl]=0776 gL

17648 [H2O2]=0035 mgL

[R]0 = 2000 mgL

~1379 mgL TOC For high concentration treatment objectives

EAOPs are more energy efficient

3D-EAOP saves more energy than 2D because

it requires lower applied voltage

3D-EAOP works better than 2D in low ion

strength treatment

Electrolyte

(Na2SO4)

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

0M3702

0001M 6466 2405

0005M 3781 2069

001M 2676 1552

01M 469 1294

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

3545

6015 2260

3559 1937

2504 1448

455 1207

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

3404

5634 2136

3367 1824

2357 1360

443 1132

Re = 1851 Re = 46296 Re = 203704Mass Transfer Increase

Ion

Str

en

gth

In

crease

Limiting Current in Different Conditions

jlim = n times F times kf times Csalt

Electrolyte

Concentration Q Q Q

Na2SO4 mlmin mlmin mlmin

20 500 2000

Re Re Re

1852 46296 185185

kf kf kf

ms ms ms

235405E-06 688E-06 109E-05

jlim jlim jlim

molL mAcm2 mAcm2 mAcm2

0001 068 199 316

jlim jlim jlim

molL mAcm2 mAcm2 mAcm2

0005 341 996 1581

jlim jlim jlim

molL mAcm2 mAcm2 mAcm2

001 681 1992 3163

jlim jlim jlim

molL mAcm2 mAcm2 mAcm2

005 3407 9962 15814

jlim jlim jlim

molL mAcm2 mAcm2 mAcm2

01 6814 19924 31627

Parameters Symbol Units Value

Influent concentration C0 mgL 20

Effluent concentration Ce mgL 02

Flow rate Q m3day 1000

Pseudo first order rate constant k min 0042

Size of reactor VRequired m3 38 m3

Detention time τ min 548

Electrode spacing d cm 1

Fluid velocity u ms 0033

Electrolyte Na2SO4 Concentration M 005

Current density J mAcm2 30

Assuming a Plug Flow Reactor (PFR) to be Confirmed with CFD

Full Scale Reactor Design

Full Scale Reactor Design

Rough Design of Reactor (top view)

1 2 3 4 5 6 7 8 9 10

105 meters

long

10 meters

electrodes

10 meters

2 meters deep

Reactor Channel

1 meter

hellip

5 cm 95 cmInfluent Effluent

The total costs (capital costs + energy costs) as a function of different electrode spacing for different theoretical

reaction rate In here the treatment objective is 99 removal flow rate is 1000 m3day and the fluid velocity is 00116

ms The flow channel has eddy promoter and its electrode spacing and obstacle distance ratio is 13 The electricity

price is $00512kWh and the pumping power is 853 kW The electrode price is $300m2 and its lifetime is 2000 h

Capital Expenditure Operational Expenditure

CapEx vs OpEx

Cost Analysis for Preliminary Design

The total costs (capital costs + energy costs) as a function of different electrode spacing for different theoretical

reaction rate In here the treatment objective is 99 removal flow rate is 1000 m3day and the fluid velocity is 00116

ms The flow channel has eddy promoter and its electrode spacing and obstacle distance ratio is 13 The electricity

price is $00512kWh and the pumping power is 853 kW The electrode price is $300m2 and its lifetime is 2000 h

Currently we are at only Ω=0436

Computer-based First-Principles Kinetic Model

Reaction Pathway Generator

(Graph Theory)

Rate Constants Estimator

(Group Contribution Method

Free Energy Linear

Relationship

Genetic Algorithm)

Ordinary Differential

Equations

(ODEs) Generator and Solver

(Gearrsquos Algorithm or

Monte Carlo algorithm)

Kinetic Monte Carlo Solver can

solve 1 million ODEs on PC

within 30 minutes

Complexity of Reaction PathwayExample

General reaction mechanisms that HObull initiates based on past experimental studies

Stefan and Bolton 1998 1999 1999 Stefan et al 1996 2000 Cooper et al 2009 Li et al 2004 2007 von Sonntag and

Schuchmann 1984 Schuchmann and von Sonntag 1979

Type of mechanismNumber of

speciesNumber of reactions

Full mechanism 120 370

Reduced mechanism 41 89

The criterion for DRG method is 1

Reaction rate constants are obtained from group contribution method (Minakata et al 2009 ESampT 43 6220-6227) and literature includingNate et al 1990 J Phys Chem Ref Data 19 413-513Nate et al 1995 J Phys Chem Ref Data 25 709-1050Buxton et al 1988 J Phys Chem Ref Data 17 513-886von Sonntag et al 1991 Angeuz Chem Int Ed Engl 30 1229-1253Li et al 2009 ESampT 43 2831-2837Li et al 2007 ESampT 41 1696-1703

Initial concentration of TCE 108 mM

Initial concentration of O2 22 mM

Initial concentration of H2O2 104 mM

Initial pH 59

Wave length of UV 200~300 nm

Light intensity779times10-6

EinsteinLmiddots

Reactor typeCompletely mixed batch reactor

Reaction time 30 min

Comparison of concentration profiles of major species for experimental data (Li Stefan Crittenden 2007 ESampT 41 1696-1703) and simulation results

00

20

40

60

80

100

120

00

02

04

06

08

10

12

0 5 10 15 20 25 30[H

2O

2]

(mM

)

[Ma

jor

spec

ies]

(m

M)

Time(min)

TCE exp

formic acid exp

oxalic acid exp

20 times DCA exp

20 times MCA exp

TCE cal

formic acid cal

oxalic acid cal

20 times DCA cal

20 times MCA cal

H2O2 exp

H2O2 cal

The photolysis of TCE was added manually because it is not included in this version of the pathway generator

Predicted Concentration Profiles of

Trichloroethene (TCE) and Stable-byproducts in UVH2O2 AOP

Comparison of number averaged molecular

weight (MW) for experimental data

(Vijayalakshmi et al J Appl Polym Sci 2006

100 3997-4003) and on-the-fly KMC model

The KMC model used a population number of 108L to

represent a concentration of 1molL

0

02

04

06

08

1

12

14

16

18

0 25 50 75 100 125 150 175 200

Aver

aged

mole

cu

lar

wei

gh

t (1

05

gm

ol)

Time (min)

Experiment

On-the-fly KMC

0

02

04

06

08

1

12

0 25 50 75 100 125 150 175 200

Nu

mb

er o

f re

act

ion

s (1

06)

Time (min)

Time evolvement of the number of generated

reactions for the degradation of PAM during the

UVTiO2 process

Degradation of Polyacrylamide (PAM)

Simulation Results for PAM Degradation in UVTiO2 AOP

Guo X Minakata D and Crittenden J 2015 On-the-fly kinetic Monte Carlo simulation of aqueous phase advanced oxidation processes Environmental science amp technology 49(15) pp9230-9236

1 Crittenden John C Shumin Hu David W Hand and Sarah Green ldquoA Kinetic Model for H2O2UV Process in a Completely Mixed Batch Reactorrdquo Water Research 33(10) 2315-2328 (1999)

2 Li K Crittenden JC Computerized pathway elucidation for hydroxyl radical induced chain reaction mechanisms in aqueous phase AOPs Environmental Science amp Technology 2009 43(8) 2831-2837

3 Li K Stefan MI Crittenden JC Trichloroethene degradation by UVH2O2 advanced oxidation process product study and kinetic modeling Environmental Science amp Technology 2007 41 1696-1703

4 Li K M I Stefan and J C Crittenden ldquoUV Photolysis of Trichloroethylene (TCE) Product Study and Kinetic Modelingrdquo Environmental Science and Technology Vol 38 No 24 6685-6693 (2004)

5 Ke Li David R Hokanson John C Crittenden R Rhodes Trussell and Daisuke Minakata ldquoEvaluating UVH2O2 Processes for Methyl tert-Butyl Ether (MtBE) and tertiary Butyl Alcohol (TBA) Removal from

Drinking Water Source Effect of Pretreatment Options and Light Sourcesrdquo Water Research 2008 Volume 42 (20) 5045-5053

6 Minakata D Li K Westerhoff P Crittenden J Development of a group contribution method to predict aqueous phase hydroxyl radical reaction rate constants Environmental Science amp Technology 2009 43

6220-6227

7 Minakata D Crittenden J Linear Free Energy Relationships between the Aqueous Phase Hydroxyl Radical (HObull) Reaction Rate Constants and the Free Energy of Activation Environmental Science amp Technology

2011a 45 3479-3486

8 Minakata D Song W Crittenden J Reactivity of aqueous phase hydroxyl radical with halogenated carboxylate anions Experimental and theoretical studies Environmental Science amp Technology 2011 45 6057-

6065

9 Daisuke Minakata Stephen P Mezyk Jace W Jones Brittany R Daws John C Crittenden ldquoDevelopment of Linear Free Energy Relationships for Aqueous Phase Radical-Involved Chemical Reactionsrdquo

Environmental Science amp Technology 2014 48 (23) 13925-13932

10 Xin Guo Daisuke Minakata John C Crittenden ldquoOn-the-Fly Kinetic Monte Carlo Simulation of Aqueous Phase Advanced Oxidation Processesrdquo Environmental Science and Technology 2015 49 (15) 9230ndash9236

11 Guo X Minakata D Crittenden JC ldquoComputer-Based First-Principles Kinetic Monte Carlo Simulation of Polyethylene Glycol Degradation in Aqueous Phase UVH2O2 Advanced Oxidation Processrdquo

Environmental Science amp Technology 2014 48 10813minus10820

12 Xin Guo Daisuke Minakata Junfeng Niu John C Crittenden ldquoComputer-based First-principles Kinetic Modeling of Degradation Pathways and Byproduct Fates in Aqueous Phase Advanced Oxidation Processesrdquo

Environmental Science and Technology 2014 48 (10) pp 5718ndash5725

13 Yajie Qian Xin Guo Yalei Zhang Yue Peng Peizhe Sun Ching-Hua Huang Junfeng Niu Xuefei Zhou John C Crittenden ldquoPerfluorooctanoic Acid Degradation Using UVminusPersulfate Process Modeling of the

Degradation and Chlorate Formationrdquo 2015 Environmental Science and Technology 50 (2) 772ndash781

14 Ruzhen Xie Xiaoyang Meng Peizhe Sun Junfeng Niu Wenju JiangLawrence Bottomley Duo Li Yongsheng Chen John C CrittendenrdquoElectrochemical Oxidation of Ofloxacin Using a TiO2-based SnO2-

SbPolytetrafluoroethylene Resin-PbO2 Electrode Reaction Kinetics and Mass Transfer Impactrdquo 2016 Applied Catalysis B Environmental 203 (2017) 515ndash525

15 Westerhoff Paul Moon Hye Minakata Daisuke Crittenden John ldquoOxidation of Organics in Retentates from Reverse Osmosis Wastewater Reuse Facilitiesrdquo Water Research 43 (16) 3992-2998

16 Liu L Chen F Yang F Chen Y Crittenden J ldquoPhotocatalytic degradation of 24-dichlorophenol using nanoscale FeTiO2rdquo Chemical Engineering Journal 2012 181ndash182 (0)189-195

References

References

17 Ying Wang Jiasheng Fang John C Crittenden Chanchan Shen ldquoNovel RGO120572-FeOOH Supported Catalyst for Fenton Oxidation of Phenol at a Wide pH Range Using Solar-Light-Driven Irradiationrdquo 2017 Journal

of Hazardous Materials 329 321ndash329

18 Xiaodong Ma Mengying Zhao Qin Pang Meihua Zheng Hongwen Sun John C Crittenden Yanying Zhu Yongsheng Chen ldquoDevelopment of Novel CaCO3Fe2O3 Nanorods for Low Temperature 12-

Dichlorobenzene Oxidationrdquo 2017 Applied Catalysis A General 522 (2016) 70ndash79

19 Heacutector L Otaacutelvaro-Mariacuten Miguel Angel Mueses John C Crittenden Fiderman Machuca-Martinez ldquoSolar Photoreactor Design by the Photon Path Length and Optimization of the Radiant Field in a TiO2-based CPC

Reactorrdquo 2017 Chemical Engineering Journal 315 283ndash295

20 Qi Wang Naxin Zhu Enqin Liu Chenlu Zhang John C Crittenden Yi ZhangYanqing CongldquoFabrication of Visible-Light Active Fe2O3-GQDsNF-TiO2 Composite Film with Highly Enhanced

Photoelectrocatalytic Performancerdquo 2017 Applied Catalysis B Environmental 205 347ndash356

21 Junfeng Niu Lifeng Yin Yunrong Dai Yueping Bao John C Crittenden ldquoDesign of Visible Light Responsive Photocatalysts for Selective Reduction of Chlorinated Organic Compounds in Waterrdquo 2016 Applied

Catalysis A General 521 90ndash95

22 Chaojie Jiang Lifen Liu John C Crittenden ldquoAn Electrochemical Process that Uses an Fe0TiO2 Cathode to Degrade Typical Dyes and Antibiotics and a Bio-anode that Produces Electricityrdquo 2016 Frontiers of

Environmental Science amp Engineering 10(4) 15

23 Yijing Xia Qizhou Dai Mili Weng Yue Peng Jinming Luo Xiaoyang Meng Xubiao Luo Jianmeng Chen John C Crittenden ldquoFabrication and Electrochemical Treatment Application of an Al-Doped PbO2

Electrode with High Oxidation Capability Oxygen Evolution Potential and Reusabilityrdquo2015 Journal of The Electrochemical Society 162 (10) E258-E262

24 Feng Duan Yuping Li Hongbin Cao Yi Wang John C Crittenden Yi Zhang ldquoActivated Carbon Electrodes Electrochemical Oxidation Coupled with Desalination for Wastewater Treatmentrdquo 2015 Chemosphere

125 205-211

25 Xing Linlin Xie Yongbing Cao Hongbin Minakata Daisuke Zhang Yi Crittenden John C ldquoActivated carbon-enhanced ozonation of oxalate attributed to HObull oxidation in bulk solution and surface oxidation

Effects of the type and number of basic sitesrdquo Chemical Engineering Journal 2014 245 71-79

26 Yao H Sun P Minakata D Crittenden JC Huang C-H ldquoKinetics and Modeling of Degradation of Ionophore Antibiotics by UV and UVH2O2rdquo Environmental Science and Technology 2013 (47) 4581-

45892

26 Li Yang et al Synergistic photogeneration of reactive oxygen species by dissolved organic matter and C60 in aqueous phase Environmental science amp technology 492 (2015) 965-973

28 Niu Junfeng et al Photocatalytic reduction of triclosan on AundashCu 2 O nanowire arrays as plasmonic photocatalysts under visible light irradiation Physical Chemistry Chemical Physics 1726 (2015) 17421-17428

29 Niu Junfeng et al Design of visible light responsive photocatalysts for selective reduction of chlorinated organic compounds in water Applied Catalysis A General 521 (2016) 90-95

30 Tianyin Huang Jiabin Chen Zhongming Wang Xin Guo John C Crittenden ldquoExcellent Performance of Cobalt-Impregnated Activated Carbon in Peroxymonosulfate Activation for Acid Orange 7 Oxidationrdquo 2017

Environmental Science and Pollution Research Volume 24 (10) 9651ndash9661

References

31 Yang Li Junfeng Niu Enxiang Shang John C Crittenden ldquoPhotochemical Transformation and Photoinduced Toxicity Reduction of Silver Nanoparticles in the Presence of Perfluorocarboxylic Acids under UV

Irradiationrdquo Environmental Science and Technology 2014 48 (9) pp 4946ndash4953

32 Cao H Xing L Wu G Xie S Zhang SY Minakata D Crittenden JC ldquoPromoting effect of nitration modification on activated carbon in the catalytic ozonation of oxalic acidrdquo Applied Catalysis B

Environmental 2014 146 169-176

33 Konsowa A H Ossman M E Chen Y Crittenden J C ldquoDecolorization of industrial wastewater by ozonation followed by adsorption on activated carbonrdquo Journal of Hazardous Materials 176 (2010) 181-185

November 10 2009

34 Wipada Sanongraj Yongsheng Chen John Crittenden David Hand and David Perram ldquoDevelopment of Photocatalytic Oxidation Model Part I-Mathematical Model for Photocatalytic Destruction of Organic

Contaminants in Airrdquo Journal of the Air and Waste Management Association 571112ndash1122 September 2007

35 Chen Y JC Crittenden S Hackney L Sutter and DW Hand ldquoPreparation of a Novel TiO2-based p-n Junction Nanotube Photocatalystrdquo Environmental Science and Technology Vol 39 No 5 1201-1208 (2005)

36 Suri RPS J Liu JC Crittenden DW Hand and DL Perram Removal and Destruction of Organic Contaminants in Water Using Adsorption Steam Regeneration and Photocatalytic Oxidation A Pilot Scale

Studyrdquo Journal of Air and Waste Management Volume 49 (August 1999) 951 ndash 958

37 Burns RA JC Crittenden DW Hand VH Selzer LL Sutter SR Salman Effect of Inorganic Ions in the Heterogeneous Photocatalysis of Trichloroethene ASCE Journal of Environmental Engineering Vol

125 No 1 pp 77-85 (January 1999)

38 Liu J JC Crittenden DW Hand and DL Perram Regeneration of Adsorbents Using Heterogeneous Photocatalytic Oxidationrdquo Journal of Environmental Engineering Vol 122 No 8 pp 707-714 (1996)

39 Crittenden JC J Liu DW Hand and DL Perram Photocatalytic Oxidation of Chlorinated Hydrocarbons in Waterrdquo Water Research Vol31 No 3 pp 429-438 (1997)

40 Crittenden JC RPS Suri DL Perram and DW Hand Decontamination of Water Using Adsorption and Photocatalysisrdquo Water Research Vol 31 No 3 pp 411-418 (1997)

41 Crittenden JC Y Zhang DW Hand and DL Perram Destruction of Organic Compounds in Water Using Fixed-Bed Photocatalysts Journal of Solar Energy Engineering (ASME) Vol 118 No 5 pp 123 -129

(1996)

42 Crittenden JC Y Zhang DW Hand and DL Perram Solar Detoxification of Fuel-Contaminated Groundwater Using Fixed-Bed Photocatalystsrdquo Water Environment Research Vol 68 No 3 pp 270-278

(1996)

43 Zhang Y JC Crittenden and DW Hand The Solar Photocatalytic Decontamination of Waterrdquo Chemistry amp Industry Vol 18 pp 714-717 September (1994)

44 Mourand JT JC Crittenden DW Hand DL Perram and S Notthakun Regeneration of Spent Adsorbents Using Advanced Oxidationrdquo Water Environment Federation Vol 67 No 3 pp 355-363 (1995)

45 Hand DW DL Perram and JC Crittenden Destruction of DBP Precursors with Catalytic Oxidationrdquo American Water Works Association Journal Vol 87 No 6 pp 84-96 (1995)

46 Zhang Y JC Crittenden DW Hand and DL Perram Fixed-Bed Photo-catalysts for Solar Decontamination of Waterrdquo Environmental Science amp Technology Vol 28 No 3 pp 435-442 (1994)

47 Suri RPS J Liu DW Hand JC Crittenden DL Perram and ME Mullins Heterogeneous Photocatalytic Oxidation of Hazardous Organic Contaminants in Waterrdquo Water Environment Federation Vol 65 No

5 pp 665-673 (1993)

Page 5: The Application of Advanced Oxidation Processes (AOPs) and ...€¦ · We define the electron efficiency to be = 32 12 ·( J 4𝑥)· Where TOC in mg (c)/L and COD in mg ( 2)/L, n

Electrochemical

Advanced Oxidation

Electrochemical

Oxidation

Direct Oxidation

(Direct Electron Transfer on Anode)

amp

Indirect Oxidation(Oxidants Generated on Anode)

Principals of Electrochemical AOPs

Wastewater Flow

e

Cathode

Cations

Anode

Anions

Electron flow depends on ion flow

119860119899119900119889119890 rarr ℎ119907119887+ + 119890119888119887

minus

ℎ+ + 1198672119874 rarr 119867119874 sdot +119867+

We use semiconductors

as anode materials

Hydroxyl Radical Generation for 2D

Electrode

Schematic of the three-

dimensional electrode system

The anode material is a wire

mesh of blue-TiO2 nanotubes

combined with SnO2-Sb

119860119899119900119889119890 rarr ℎ119907119887+ + 119890119888119887

minus

ℎ+ + 1198672119874 rarr 119867119874 sdot +119867+

Three-Dimensional EAOP System

Cathode119890 + +119867+ rarr 121198672

Electrochemical Oxidation Processes

2-Dimensional and 3-Dimensional Electrodes

3D Electrode

bull Lower cell voltage lower EEO

bull Works with low ionic strength

EAOP Systems Comparison

Loss Electron Oxidation (LEO) Oxidation Potential vs NHE

21198672119874 rarr 4119867+ + 4119890minus + 1198742 1198640 = minus123 119881

2H2119874 rarr 11986721198742 + 2119867+ + 2119890minus 1198640 = minus177 119881

211987811987442minus rarr 11987821198748

2minus + 2119890minus 1198640 = minus201 119881

1198672119874 + 1198742 rarr 1198743 + 2119867+ + 2119890minus 1198640 = minus207 119881

11987811987442minus rarr 1198781198744

minus middot +119890minus 1198640 = minus260 119881

1198672119874 rarr 119867119874 middot +119867+ + 119890minus 1198640 = minus274 119881

119860119899119900119889119890 rarr ℎ119907119887+ + 119890119888119887

minus

ℎ+ + 1198672119874 rarr 119867119874 sdot +119867+

Ideally we want every electron to

create one HO∙

Band Gap Engineering

Gain Electron Reduction (GER) Reduction Potential vs NHE

2119867+ + 2119890minus rarr 1198672 1198640 = 000 119881

1198742 + 2119867+ + 2119890minus rarr 11986721198742 1198640 = 062 119881

Base substrate for Anode 1 and 2 Ti (2~3 mm thick)

Anode 1 TiO2 NanotubesSnO2-SbPTFE-PbO2

Inner Layer TiO2 Nanotube array

Intermediate layer -SnO2-Sb (Sb2O4)

Outer Layer PTFE-PbO2

Anode 2 Blue TiO2 NanotubesAged SnO2-Sb

Inner Layer Blue TiO2 Nanotube array

Outer Layer -SnO2-Sb (Sb2O4)

TiO2 band gap rutile 30 eV anatase 32 eV blue 33 eV

SnO2 band gap rutile 36 eV PbO2 16 eV (good for higher

current densities)

Multi-Layered Semiconductor Anode

Mixed Metal Oxide electrode (MMO)

a) b)

c)

SEM of (a) TiO2-Nanotubes Substrate (b) SnO2-Sb intermediate layer

(c) PTFEPbO2 electrode

SEM Characterization of Layers Anode 1Anode 1 TiO2 NanotubesSnO2-SbPTFE-PbO2

Half coated surface (coated only 5 times which

still expose some nanotubes surface) with non-

aging sol-gel (exhibit less compact morphology

and large crystal size)

Fully coated aged SnO2-Sb layer (15 times coating)

shows compact crystals configuration and smaller

size which improved surface area and surface

reaction sites

Half-Coated Non-Aged vs Fully

Coated Aged Anode 2Anode 2 Blue TiO2 NanotubesAged SnO2-Sb

The estimated life time of Blue TiO2 nanotubes and Aged SnO2-Sb is 2189

and 4794 h at operational current densities of 10 and 5 mAcm2

Characterization Voltammetry

Linear sweep voltammetry (LSV) of the 1 2 anode BDD for a 05 M H2SO4 solution (pH = 0) Scan rate is

10 mVs The standard reduction potentials (pH=0) for O2 H2O2 O3 and HOmiddot are +123 V +177 V +207 V

and +274 V

Patent

Pending

119889 119861119860

119889119905= 119896119861119860119867119874 times 119861119860 times 119867119874 119904119904

= 119896119861119860[119861119860]

119867119874 119904119904 =119896119861119860

119896119861119860119867119874

Anode material 2 743times10-14 molL

Anode material 1 477times10-14 molL

The steady state hydroxyl radical

concentration is estimated from 1 mM

benzoic acid degradation in a 30 mM

NaClO4 at 5 mAcm2 [HO]=kBAkHO

119896119861119860119867119874 = 59 times 109119871(119898119900119897119904)

Hydroxyl Radicals Production Comparison

Actual industrial used anode TiPbO2

Pilot treatment results will show in a minute

These blue NTA are unstable because they are not

coated with SnO2 ndash Sb

The stoichiometric equation for benzoic acid is given as

119862711986761198742 + 121198672119874 rarr 71198621198742 + 30119867+ + 30119890minus

We define the electron efficiency to be

119864119864 =32

12middot (

119899

4119909) middot

119889 119879119874119862

119889 119862119874119863

Where TOC in mg (c)L and COD in mg (1198742)L n is the

number of electrons transfer from the anode for a

complete oxidation reaction and x is the number of

carbon atoms in the organic contaminants

According to the equation and calculation the electron

efficiency for 2D and 3D systems in this case are

119864119864 2119863 = 0866 (866) and 119864119864 3119863 = 1067 (1067)

For 1mmolL (~122mgL) TOC ~90mgL COD

~190mgL

Low electrolyte concentration condition 0005 M Na2SO4

Electron Efficiency (Faraday Efficiency)

Investigate amp optimize electrode

spacing amp fluid velocity

Mass Transfer Impact of EAOPs

We used Differential Column Batch Reactor (DCBR)

in experiments

(a) ofloxacin destruction by 1 anode for various electrode spacing (b) pseudo-first-order rate constants (c) EEO

Anode surface area 10 cm2 electrode spacing 1 cm fluid velocity 0033 ms initial ofloxacin concentration 20

mgL voltage 35-86 V electrolyte concentration is 005 M Na2SO4 pH value 625 and temperature is 25

Mass Transfer Impact Electrode Spacing

for 2D Electrode

(a) ofloxacin destruction on 1 anode for various fluid velocity (b) pseudo-first-order rate constants (c) EEO

Anode surface area 10 cm2 electrode spacing 1 cm fluid velocity 0033 ms initial ofloxacin concentration 20

mgL voltage 35-86 V electrolyte concentration is 005 M Na2SO4 pH value 625 and temperature is 25

Mass Transfer Impact Fluid Velocity

120570 =119896119891 sdot 120579

119896119891 sdot 120579 + 119896119872119886119909 sdot 119889

Effectiveness factor in different fluid velocity and the best fitted model 1

anode surface area 10 cm2 electrode spacing 1 cm electrolyte 005 M

Na2SO4 solution current density 30 mAcm2 initial ofloxacin concentration

20 mgL voltage 63-64 v pH value 625 temperature 25

l

du

Plain channel

119878ℎ =119896119891 sdot 119889

119863119897= 33 sdot

119889

119897sdot Re sdot 119878119888

13

Re =120588 sdot 119906 sdot 119889

120583

119878119888 =120583

120588 sdot 119863119897

120570 =119903119900119887119904

119903max=

119896119900119887119904 119877

119896max 119877

Sherwood number

Reynolds number

Schmidt number

Ω = 0436 means more than

56 oxidation rate reduced

by mass transfer

Mass Transfer Impact Effectiveness Factor

Many AOP follow a pseudo-first order rate

EEO is useful because if EEO is 5kWhr-order then if

you supply 5 1

15 kWm3 then you will 90 99 999 destruction of

the parent compound

Note COD and TOC have a much slower rate

Byproducts are less toxic and more biodegradable

Figure of Merit Electrical Energy Used per

Order (EEO) of Parent Compound Destroyed

EEO in Conventional AOPs

Conventional AOP Example EEO in UVH2O2

119864119864119874 =119875 times 119905

119881 times log1198620119862

+11986211986721198742

times00022119897119887

119892times 11986411986721198742

log1198620119862

119864119864119874 =2303 times 119875 times 1198961 11986721198742 0 + 1198962 1198671198621198743

minus0 + 1198963 119873119874119872 0 + 1198964 119877 0 times ε11986721198742

11986721198742 0 + ε119877 119877 0 + ε119873119874119872 119873119874119872 0

119875119880119881 times 1198964 times ε1198672119874211986721198742 0 times 1 minus 10minus119860 times V

+ 34 gramL times 11986721198742 0 times 00022 119897119887119892119903119886119898 times 11986411986721198742 times 1000 Lm3

bull Target contaminant concentrations oxidant dosage NOM determine the EEO of

conventional AOPs

EEO in EAOPs

EEO in EAOPs

EEO =v times j times A times V times t

V times logC0C

=v times j times A times t

logC0C

EEO =v times j times A

0434 times 119896119878 times Ω

v voltage V

j current densitymA

cm2

A surface area per volumem2

m3

V volumem3

C concentrationmol

m3

ks surface reaction rate sminus1

kobs observed reaction rate sminus1

Ω effectiveness factor

Ω =119896119900119887119904

119896119878

bull Target contaminants concentration dose does not effect EEO in EAOPs

bull EEO is a constant under same operational conditions

01 1 10 100 1000 10000 100000

Ultrapure Water

Distilled Water

Tap Water

Potable Water In The US

Surface Water

Industrial Wastewater

Seawater

Conductivity microScm

Water Streams Conductivity Guide

2D vs 3D EEO Comparison

Degradation of 1 mmolL benzoic acid in a 470 mL differential column batch reactor pH controlled

~68 surface water used has a low conductivity 112 microscm controlled current density is 30 mAcm2

2D anode size is 10 cm2 3D used 80 meshed Ti gauze has surface area 718 cm210 cm2 DCBR

operated at Re 194 Sc 2727 Sh 194 kf 64times10-6 ms Dl 9times10-6 cm2s

2D Electrode

3D Electrode

EEO Analysis in EAOPs

Electrolyte

Concentration

BA

concentrati

on

Voltage Current

Density

EEO

molL mgL V mAcm2 kWhm3

Surface

Water+BA~00004

(113 microScm)

24

(02 mM) 60 105 1738Surface

Water+BA 00004122

(1 mM) 60 105 2003Industrial

Water+BA

01

(16210

microScm) 24 73 304 175Industrial

Water+BA 01 122 8 30 207

Voltage Current

Density

EEO

V mAcm2 kWhm3

152 105 868

3D System2D System

bull Ionic strength is important in EAOPs NOM is not

bull Initial concentration C0does not effect EEO (at least for the

concentrations we tested)

bull Accordingly the pseudo ndash first surface rate constant is same for

different influent concentrations and the same operational

conditions for the conditions we tested

bull We expect to see the reaction rate to decrease with high C0 because

at high concentrations all the reactions site on the anode will be

occupied preventing the oxidation rate from increasing (Langmuir-

Hinshelwood Hougen Watson kinetics confirmation needed)

53 304 290

Conventional AOPs vs EAOPs Modeling 13

A case study to compare EEOs for

UVH2O2 H2O2O3 UVHOCl UVPersulfate UVTiO2

EAOPs (two-dimensional and three-dimensional)

Simulation Conditions[HCO3

minus] = 3 mM [NOM] = 2 mgL [Cl-] = 0001 M

pH = 7 kBA = 59times10-9 L(molmiddotS)Same 22 W input energy gives UV light intensity = 164times10-6 Einstein s-1 L-1

Initial Concentrations [R] (Benzoic Acid in this case) = 20 200 2000 mgL

Quantum yield

UVH2O2 = 05 UVHOCl = 09 UVPersulfate = 07

UVTiO2 = 004 (light transmission efficiency = 04)

Chemical production energy

H2O2 = 49 kWhlb persulfate = 49 kWhlb HOCl = 51 kWhlb O3 = 5 kWhlb

Note TiO2 and electrodes production energies are not included in simulation

EAOPs assumptions amp parameters

J = 30 mAcm2 2D anode size A = 10 cm2 3D anode size A= 718 cm2 (80 meshed Ti gauze)

Sc = 2727 Sh = 194 Dl = 9times10-6 cm2s d = 1 cm

Note pumping energy is small compare to electricity and neglected in simulation

Q = 20 mLmin Re = 1851 kf = 235times10-6 ms

Q = 500 mLmin Re = 46296 kf = 688times10-6 ms

Q = 2000 mLmin Re = 203704 kf = 113times10-5 ms (Re lt 2100 in laminar flow)

Minimal

EEO

(kWhm3)

Optimal

OxidantCatalyst

Dosage

9072 [TiO2]=300 mgL

4022 [Persulfate]=16 gL

2718 [H2O2]=0612 gL

2442 [HOCl]=026 gL

679 [H2O2]=0028 mgL

Electrolyte

(Na2SO4)

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

0M3702

0001M 6466 2405

0005M 3781 2069

001M 2676 1552

01M 469 1294

AOPs Minimal

EEO

(kWhm3)

Optimal

OxidantCatalyst

Dosage

UVTiO2 1038 [TiO2]=300 mgL

UVPersulfate 128 [Persulfate]=117 gL

UV H2O2 090 [H2O2]=0204 gL

UVHOCl 367 [HOCl]=014 gL

H2O2O3 0015 [H2O2]=00206 mgL

[R]0 = 20 mgL

~16 mgL TOC

[R]0 = 200 mgL

~140 mgL TOC

Minimal

EEO

(kWhm3)

Optimal

OxidantCatalyst

Dosage

88271 [TiO2]=300 mgL

8208 [Persulfate]=581 gL

1768 [H2O2]=184 gL

8335 [HOCl]=0776 gL

17648 [H2O2]=0035 mgL

[R]0 = 2000 mgL

~1379 mgL TOC

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

3545

6015 2260

3559 1937

2504 1448

455 1207

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

3404

5634 2136

3367 1824

2357 1360

443 1132

Re = 1851 Re = 46296 Re = 203704

Conventional AOPs vs EAOPs Modeling 23

Mass Transfer Increase

Ion

Str

en

gth

In

crease

Conventional AOPs vs EAOPs Modeling 33

AOPs Minimal

EEO

(kWhm3)

Optimal

OxidantCatalyst

Dosage

UVTiO2 1038 [TiO2]=300 mgL

UVPersulfate 128 [Persulfate]=117 gL

UV H2O2 090 [H2O2]=0204 gL

UVHOCl 367 [HOCl]=014 gL

H2O2O3 0015 [H2O2]=00206 mgL

[R]0 = 20 mgL

~16 mgL TOC For low concentration treatment

objectives EAOPs may not be as good as

compared to conventional AOPs

Conventional UVH2O2 and H2O2O3 are

the best conventional AOPs for BA

Electrolyte

(Na2SO4)

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

0M3702

0001M 6466 2405

0005M 3781 2069

001M 2676 1552

01M 469 1294

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

3545

6015 2260

3559 1937

2504 1448

455 1207

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

3404

5634 2136

3367 1824

2357 1360

443 1132

Re = 1851 Re = 46296 Re = 203704Mass Transfer Increase

Ion

Str

en

gth

In

crease

Conventional AOPs vs EAOPs Modeling 33

Minimal

EEO

(kWhm3)

Optimal

OxidantCatalyst

Dosage

88271 [TiO2]=300 mgL

8208 [Persulfate]=581 gL

1768 [H2O2]=184 gL

8335 [HOCl]=0776 gL

17648 [H2O2]=0035 mgL

[R]0 = 2000 mgL

~1379 mgL TOC For high concentration treatment objectives

EAOPs are more energy efficient

3D-EAOP saves more energy than 2D because

it requires lower applied voltage

3D-EAOP works better than 2D in low ion

strength treatment

Electrolyte

(Na2SO4)

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

0M3702

0001M 6466 2405

0005M 3781 2069

001M 2676 1552

01M 469 1294

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

3545

6015 2260

3559 1937

2504 1448

455 1207

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

3404

5634 2136

3367 1824

2357 1360

443 1132

Re = 1851 Re = 46296 Re = 203704Mass Transfer Increase

Ion

Str

en

gth

In

crease

Limiting Current in Different Conditions

jlim = n times F times kf times Csalt

Electrolyte

Concentration Q Q Q

Na2SO4 mlmin mlmin mlmin

20 500 2000

Re Re Re

1852 46296 185185

kf kf kf

ms ms ms

235405E-06 688E-06 109E-05

jlim jlim jlim

molL mAcm2 mAcm2 mAcm2

0001 068 199 316

jlim jlim jlim

molL mAcm2 mAcm2 mAcm2

0005 341 996 1581

jlim jlim jlim

molL mAcm2 mAcm2 mAcm2

001 681 1992 3163

jlim jlim jlim

molL mAcm2 mAcm2 mAcm2

005 3407 9962 15814

jlim jlim jlim

molL mAcm2 mAcm2 mAcm2

01 6814 19924 31627

Parameters Symbol Units Value

Influent concentration C0 mgL 20

Effluent concentration Ce mgL 02

Flow rate Q m3day 1000

Pseudo first order rate constant k min 0042

Size of reactor VRequired m3 38 m3

Detention time τ min 548

Electrode spacing d cm 1

Fluid velocity u ms 0033

Electrolyte Na2SO4 Concentration M 005

Current density J mAcm2 30

Assuming a Plug Flow Reactor (PFR) to be Confirmed with CFD

Full Scale Reactor Design

Full Scale Reactor Design

Rough Design of Reactor (top view)

1 2 3 4 5 6 7 8 9 10

105 meters

long

10 meters

electrodes

10 meters

2 meters deep

Reactor Channel

1 meter

hellip

5 cm 95 cmInfluent Effluent

The total costs (capital costs + energy costs) as a function of different electrode spacing for different theoretical

reaction rate In here the treatment objective is 99 removal flow rate is 1000 m3day and the fluid velocity is 00116

ms The flow channel has eddy promoter and its electrode spacing and obstacle distance ratio is 13 The electricity

price is $00512kWh and the pumping power is 853 kW The electrode price is $300m2 and its lifetime is 2000 h

Capital Expenditure Operational Expenditure

CapEx vs OpEx

Cost Analysis for Preliminary Design

The total costs (capital costs + energy costs) as a function of different electrode spacing for different theoretical

reaction rate In here the treatment objective is 99 removal flow rate is 1000 m3day and the fluid velocity is 00116

ms The flow channel has eddy promoter and its electrode spacing and obstacle distance ratio is 13 The electricity

price is $00512kWh and the pumping power is 853 kW The electrode price is $300m2 and its lifetime is 2000 h

Currently we are at only Ω=0436

Computer-based First-Principles Kinetic Model

Reaction Pathway Generator

(Graph Theory)

Rate Constants Estimator

(Group Contribution Method

Free Energy Linear

Relationship

Genetic Algorithm)

Ordinary Differential

Equations

(ODEs) Generator and Solver

(Gearrsquos Algorithm or

Monte Carlo algorithm)

Kinetic Monte Carlo Solver can

solve 1 million ODEs on PC

within 30 minutes

Complexity of Reaction PathwayExample

General reaction mechanisms that HObull initiates based on past experimental studies

Stefan and Bolton 1998 1999 1999 Stefan et al 1996 2000 Cooper et al 2009 Li et al 2004 2007 von Sonntag and

Schuchmann 1984 Schuchmann and von Sonntag 1979

Type of mechanismNumber of

speciesNumber of reactions

Full mechanism 120 370

Reduced mechanism 41 89

The criterion for DRG method is 1

Reaction rate constants are obtained from group contribution method (Minakata et al 2009 ESampT 43 6220-6227) and literature includingNate et al 1990 J Phys Chem Ref Data 19 413-513Nate et al 1995 J Phys Chem Ref Data 25 709-1050Buxton et al 1988 J Phys Chem Ref Data 17 513-886von Sonntag et al 1991 Angeuz Chem Int Ed Engl 30 1229-1253Li et al 2009 ESampT 43 2831-2837Li et al 2007 ESampT 41 1696-1703

Initial concentration of TCE 108 mM

Initial concentration of O2 22 mM

Initial concentration of H2O2 104 mM

Initial pH 59

Wave length of UV 200~300 nm

Light intensity779times10-6

EinsteinLmiddots

Reactor typeCompletely mixed batch reactor

Reaction time 30 min

Comparison of concentration profiles of major species for experimental data (Li Stefan Crittenden 2007 ESampT 41 1696-1703) and simulation results

00

20

40

60

80

100

120

00

02

04

06

08

10

12

0 5 10 15 20 25 30[H

2O

2]

(mM

)

[Ma

jor

spec

ies]

(m

M)

Time(min)

TCE exp

formic acid exp

oxalic acid exp

20 times DCA exp

20 times MCA exp

TCE cal

formic acid cal

oxalic acid cal

20 times DCA cal

20 times MCA cal

H2O2 exp

H2O2 cal

The photolysis of TCE was added manually because it is not included in this version of the pathway generator

Predicted Concentration Profiles of

Trichloroethene (TCE) and Stable-byproducts in UVH2O2 AOP

Comparison of number averaged molecular

weight (MW) for experimental data

(Vijayalakshmi et al J Appl Polym Sci 2006

100 3997-4003) and on-the-fly KMC model

The KMC model used a population number of 108L to

represent a concentration of 1molL

0

02

04

06

08

1

12

14

16

18

0 25 50 75 100 125 150 175 200

Aver

aged

mole

cu

lar

wei

gh

t (1

05

gm

ol)

Time (min)

Experiment

On-the-fly KMC

0

02

04

06

08

1

12

0 25 50 75 100 125 150 175 200

Nu

mb

er o

f re

act

ion

s (1

06)

Time (min)

Time evolvement of the number of generated

reactions for the degradation of PAM during the

UVTiO2 process

Degradation of Polyacrylamide (PAM)

Simulation Results for PAM Degradation in UVTiO2 AOP

Guo X Minakata D and Crittenden J 2015 On-the-fly kinetic Monte Carlo simulation of aqueous phase advanced oxidation processes Environmental science amp technology 49(15) pp9230-9236

1 Crittenden John C Shumin Hu David W Hand and Sarah Green ldquoA Kinetic Model for H2O2UV Process in a Completely Mixed Batch Reactorrdquo Water Research 33(10) 2315-2328 (1999)

2 Li K Crittenden JC Computerized pathway elucidation for hydroxyl radical induced chain reaction mechanisms in aqueous phase AOPs Environmental Science amp Technology 2009 43(8) 2831-2837

3 Li K Stefan MI Crittenden JC Trichloroethene degradation by UVH2O2 advanced oxidation process product study and kinetic modeling Environmental Science amp Technology 2007 41 1696-1703

4 Li K M I Stefan and J C Crittenden ldquoUV Photolysis of Trichloroethylene (TCE) Product Study and Kinetic Modelingrdquo Environmental Science and Technology Vol 38 No 24 6685-6693 (2004)

5 Ke Li David R Hokanson John C Crittenden R Rhodes Trussell and Daisuke Minakata ldquoEvaluating UVH2O2 Processes for Methyl tert-Butyl Ether (MtBE) and tertiary Butyl Alcohol (TBA) Removal from

Drinking Water Source Effect of Pretreatment Options and Light Sourcesrdquo Water Research 2008 Volume 42 (20) 5045-5053

6 Minakata D Li K Westerhoff P Crittenden J Development of a group contribution method to predict aqueous phase hydroxyl radical reaction rate constants Environmental Science amp Technology 2009 43

6220-6227

7 Minakata D Crittenden J Linear Free Energy Relationships between the Aqueous Phase Hydroxyl Radical (HObull) Reaction Rate Constants and the Free Energy of Activation Environmental Science amp Technology

2011a 45 3479-3486

8 Minakata D Song W Crittenden J Reactivity of aqueous phase hydroxyl radical with halogenated carboxylate anions Experimental and theoretical studies Environmental Science amp Technology 2011 45 6057-

6065

9 Daisuke Minakata Stephen P Mezyk Jace W Jones Brittany R Daws John C Crittenden ldquoDevelopment of Linear Free Energy Relationships for Aqueous Phase Radical-Involved Chemical Reactionsrdquo

Environmental Science amp Technology 2014 48 (23) 13925-13932

10 Xin Guo Daisuke Minakata John C Crittenden ldquoOn-the-Fly Kinetic Monte Carlo Simulation of Aqueous Phase Advanced Oxidation Processesrdquo Environmental Science and Technology 2015 49 (15) 9230ndash9236

11 Guo X Minakata D Crittenden JC ldquoComputer-Based First-Principles Kinetic Monte Carlo Simulation of Polyethylene Glycol Degradation in Aqueous Phase UVH2O2 Advanced Oxidation Processrdquo

Environmental Science amp Technology 2014 48 10813minus10820

12 Xin Guo Daisuke Minakata Junfeng Niu John C Crittenden ldquoComputer-based First-principles Kinetic Modeling of Degradation Pathways and Byproduct Fates in Aqueous Phase Advanced Oxidation Processesrdquo

Environmental Science and Technology 2014 48 (10) pp 5718ndash5725

13 Yajie Qian Xin Guo Yalei Zhang Yue Peng Peizhe Sun Ching-Hua Huang Junfeng Niu Xuefei Zhou John C Crittenden ldquoPerfluorooctanoic Acid Degradation Using UVminusPersulfate Process Modeling of the

Degradation and Chlorate Formationrdquo 2015 Environmental Science and Technology 50 (2) 772ndash781

14 Ruzhen Xie Xiaoyang Meng Peizhe Sun Junfeng Niu Wenju JiangLawrence Bottomley Duo Li Yongsheng Chen John C CrittendenrdquoElectrochemical Oxidation of Ofloxacin Using a TiO2-based SnO2-

SbPolytetrafluoroethylene Resin-PbO2 Electrode Reaction Kinetics and Mass Transfer Impactrdquo 2016 Applied Catalysis B Environmental 203 (2017) 515ndash525

15 Westerhoff Paul Moon Hye Minakata Daisuke Crittenden John ldquoOxidation of Organics in Retentates from Reverse Osmosis Wastewater Reuse Facilitiesrdquo Water Research 43 (16) 3992-2998

16 Liu L Chen F Yang F Chen Y Crittenden J ldquoPhotocatalytic degradation of 24-dichlorophenol using nanoscale FeTiO2rdquo Chemical Engineering Journal 2012 181ndash182 (0)189-195

References

References

17 Ying Wang Jiasheng Fang John C Crittenden Chanchan Shen ldquoNovel RGO120572-FeOOH Supported Catalyst for Fenton Oxidation of Phenol at a Wide pH Range Using Solar-Light-Driven Irradiationrdquo 2017 Journal

of Hazardous Materials 329 321ndash329

18 Xiaodong Ma Mengying Zhao Qin Pang Meihua Zheng Hongwen Sun John C Crittenden Yanying Zhu Yongsheng Chen ldquoDevelopment of Novel CaCO3Fe2O3 Nanorods for Low Temperature 12-

Dichlorobenzene Oxidationrdquo 2017 Applied Catalysis A General 522 (2016) 70ndash79

19 Heacutector L Otaacutelvaro-Mariacuten Miguel Angel Mueses John C Crittenden Fiderman Machuca-Martinez ldquoSolar Photoreactor Design by the Photon Path Length and Optimization of the Radiant Field in a TiO2-based CPC

Reactorrdquo 2017 Chemical Engineering Journal 315 283ndash295

20 Qi Wang Naxin Zhu Enqin Liu Chenlu Zhang John C Crittenden Yi ZhangYanqing CongldquoFabrication of Visible-Light Active Fe2O3-GQDsNF-TiO2 Composite Film with Highly Enhanced

Photoelectrocatalytic Performancerdquo 2017 Applied Catalysis B Environmental 205 347ndash356

21 Junfeng Niu Lifeng Yin Yunrong Dai Yueping Bao John C Crittenden ldquoDesign of Visible Light Responsive Photocatalysts for Selective Reduction of Chlorinated Organic Compounds in Waterrdquo 2016 Applied

Catalysis A General 521 90ndash95

22 Chaojie Jiang Lifen Liu John C Crittenden ldquoAn Electrochemical Process that Uses an Fe0TiO2 Cathode to Degrade Typical Dyes and Antibiotics and a Bio-anode that Produces Electricityrdquo 2016 Frontiers of

Environmental Science amp Engineering 10(4) 15

23 Yijing Xia Qizhou Dai Mili Weng Yue Peng Jinming Luo Xiaoyang Meng Xubiao Luo Jianmeng Chen John C Crittenden ldquoFabrication and Electrochemical Treatment Application of an Al-Doped PbO2

Electrode with High Oxidation Capability Oxygen Evolution Potential and Reusabilityrdquo2015 Journal of The Electrochemical Society 162 (10) E258-E262

24 Feng Duan Yuping Li Hongbin Cao Yi Wang John C Crittenden Yi Zhang ldquoActivated Carbon Electrodes Electrochemical Oxidation Coupled with Desalination for Wastewater Treatmentrdquo 2015 Chemosphere

125 205-211

25 Xing Linlin Xie Yongbing Cao Hongbin Minakata Daisuke Zhang Yi Crittenden John C ldquoActivated carbon-enhanced ozonation of oxalate attributed to HObull oxidation in bulk solution and surface oxidation

Effects of the type and number of basic sitesrdquo Chemical Engineering Journal 2014 245 71-79

26 Yao H Sun P Minakata D Crittenden JC Huang C-H ldquoKinetics and Modeling of Degradation of Ionophore Antibiotics by UV and UVH2O2rdquo Environmental Science and Technology 2013 (47) 4581-

45892

26 Li Yang et al Synergistic photogeneration of reactive oxygen species by dissolved organic matter and C60 in aqueous phase Environmental science amp technology 492 (2015) 965-973

28 Niu Junfeng et al Photocatalytic reduction of triclosan on AundashCu 2 O nanowire arrays as plasmonic photocatalysts under visible light irradiation Physical Chemistry Chemical Physics 1726 (2015) 17421-17428

29 Niu Junfeng et al Design of visible light responsive photocatalysts for selective reduction of chlorinated organic compounds in water Applied Catalysis A General 521 (2016) 90-95

30 Tianyin Huang Jiabin Chen Zhongming Wang Xin Guo John C Crittenden ldquoExcellent Performance of Cobalt-Impregnated Activated Carbon in Peroxymonosulfate Activation for Acid Orange 7 Oxidationrdquo 2017

Environmental Science and Pollution Research Volume 24 (10) 9651ndash9661

References

31 Yang Li Junfeng Niu Enxiang Shang John C Crittenden ldquoPhotochemical Transformation and Photoinduced Toxicity Reduction of Silver Nanoparticles in the Presence of Perfluorocarboxylic Acids under UV

Irradiationrdquo Environmental Science and Technology 2014 48 (9) pp 4946ndash4953

32 Cao H Xing L Wu G Xie S Zhang SY Minakata D Crittenden JC ldquoPromoting effect of nitration modification on activated carbon in the catalytic ozonation of oxalic acidrdquo Applied Catalysis B

Environmental 2014 146 169-176

33 Konsowa A H Ossman M E Chen Y Crittenden J C ldquoDecolorization of industrial wastewater by ozonation followed by adsorption on activated carbonrdquo Journal of Hazardous Materials 176 (2010) 181-185

November 10 2009

34 Wipada Sanongraj Yongsheng Chen John Crittenden David Hand and David Perram ldquoDevelopment of Photocatalytic Oxidation Model Part I-Mathematical Model for Photocatalytic Destruction of Organic

Contaminants in Airrdquo Journal of the Air and Waste Management Association 571112ndash1122 September 2007

35 Chen Y JC Crittenden S Hackney L Sutter and DW Hand ldquoPreparation of a Novel TiO2-based p-n Junction Nanotube Photocatalystrdquo Environmental Science and Technology Vol 39 No 5 1201-1208 (2005)

36 Suri RPS J Liu JC Crittenden DW Hand and DL Perram Removal and Destruction of Organic Contaminants in Water Using Adsorption Steam Regeneration and Photocatalytic Oxidation A Pilot Scale

Studyrdquo Journal of Air and Waste Management Volume 49 (August 1999) 951 ndash 958

37 Burns RA JC Crittenden DW Hand VH Selzer LL Sutter SR Salman Effect of Inorganic Ions in the Heterogeneous Photocatalysis of Trichloroethene ASCE Journal of Environmental Engineering Vol

125 No 1 pp 77-85 (January 1999)

38 Liu J JC Crittenden DW Hand and DL Perram Regeneration of Adsorbents Using Heterogeneous Photocatalytic Oxidationrdquo Journal of Environmental Engineering Vol 122 No 8 pp 707-714 (1996)

39 Crittenden JC J Liu DW Hand and DL Perram Photocatalytic Oxidation of Chlorinated Hydrocarbons in Waterrdquo Water Research Vol31 No 3 pp 429-438 (1997)

40 Crittenden JC RPS Suri DL Perram and DW Hand Decontamination of Water Using Adsorption and Photocatalysisrdquo Water Research Vol 31 No 3 pp 411-418 (1997)

41 Crittenden JC Y Zhang DW Hand and DL Perram Destruction of Organic Compounds in Water Using Fixed-Bed Photocatalysts Journal of Solar Energy Engineering (ASME) Vol 118 No 5 pp 123 -129

(1996)

42 Crittenden JC Y Zhang DW Hand and DL Perram Solar Detoxification of Fuel-Contaminated Groundwater Using Fixed-Bed Photocatalystsrdquo Water Environment Research Vol 68 No 3 pp 270-278

(1996)

43 Zhang Y JC Crittenden and DW Hand The Solar Photocatalytic Decontamination of Waterrdquo Chemistry amp Industry Vol 18 pp 714-717 September (1994)

44 Mourand JT JC Crittenden DW Hand DL Perram and S Notthakun Regeneration of Spent Adsorbents Using Advanced Oxidationrdquo Water Environment Federation Vol 67 No 3 pp 355-363 (1995)

45 Hand DW DL Perram and JC Crittenden Destruction of DBP Precursors with Catalytic Oxidationrdquo American Water Works Association Journal Vol 87 No 6 pp 84-96 (1995)

46 Zhang Y JC Crittenden DW Hand and DL Perram Fixed-Bed Photo-catalysts for Solar Decontamination of Waterrdquo Environmental Science amp Technology Vol 28 No 3 pp 435-442 (1994)

47 Suri RPS J Liu DW Hand JC Crittenden DL Perram and ME Mullins Heterogeneous Photocatalytic Oxidation of Hazardous Organic Contaminants in Waterrdquo Water Environment Federation Vol 65 No

5 pp 665-673 (1993)

Page 6: The Application of Advanced Oxidation Processes (AOPs) and ...€¦ · We define the electron efficiency to be = 32 12 ·( J 4𝑥)· Where TOC in mg (c)/L and COD in mg ( 2)/L, n

Wastewater Flow

e

Cathode

Cations

Anode

Anions

Electron flow depends on ion flow

119860119899119900119889119890 rarr ℎ119907119887+ + 119890119888119887

minus

ℎ+ + 1198672119874 rarr 119867119874 sdot +119867+

We use semiconductors

as anode materials

Hydroxyl Radical Generation for 2D

Electrode

Schematic of the three-

dimensional electrode system

The anode material is a wire

mesh of blue-TiO2 nanotubes

combined with SnO2-Sb

119860119899119900119889119890 rarr ℎ119907119887+ + 119890119888119887

minus

ℎ+ + 1198672119874 rarr 119867119874 sdot +119867+

Three-Dimensional EAOP System

Cathode119890 + +119867+ rarr 121198672

Electrochemical Oxidation Processes

2-Dimensional and 3-Dimensional Electrodes

3D Electrode

bull Lower cell voltage lower EEO

bull Works with low ionic strength

EAOP Systems Comparison

Loss Electron Oxidation (LEO) Oxidation Potential vs NHE

21198672119874 rarr 4119867+ + 4119890minus + 1198742 1198640 = minus123 119881

2H2119874 rarr 11986721198742 + 2119867+ + 2119890minus 1198640 = minus177 119881

211987811987442minus rarr 11987821198748

2minus + 2119890minus 1198640 = minus201 119881

1198672119874 + 1198742 rarr 1198743 + 2119867+ + 2119890minus 1198640 = minus207 119881

11987811987442minus rarr 1198781198744

minus middot +119890minus 1198640 = minus260 119881

1198672119874 rarr 119867119874 middot +119867+ + 119890minus 1198640 = minus274 119881

119860119899119900119889119890 rarr ℎ119907119887+ + 119890119888119887

minus

ℎ+ + 1198672119874 rarr 119867119874 sdot +119867+

Ideally we want every electron to

create one HO∙

Band Gap Engineering

Gain Electron Reduction (GER) Reduction Potential vs NHE

2119867+ + 2119890minus rarr 1198672 1198640 = 000 119881

1198742 + 2119867+ + 2119890minus rarr 11986721198742 1198640 = 062 119881

Base substrate for Anode 1 and 2 Ti (2~3 mm thick)

Anode 1 TiO2 NanotubesSnO2-SbPTFE-PbO2

Inner Layer TiO2 Nanotube array

Intermediate layer -SnO2-Sb (Sb2O4)

Outer Layer PTFE-PbO2

Anode 2 Blue TiO2 NanotubesAged SnO2-Sb

Inner Layer Blue TiO2 Nanotube array

Outer Layer -SnO2-Sb (Sb2O4)

TiO2 band gap rutile 30 eV anatase 32 eV blue 33 eV

SnO2 band gap rutile 36 eV PbO2 16 eV (good for higher

current densities)

Multi-Layered Semiconductor Anode

Mixed Metal Oxide electrode (MMO)

a) b)

c)

SEM of (a) TiO2-Nanotubes Substrate (b) SnO2-Sb intermediate layer

(c) PTFEPbO2 electrode

SEM Characterization of Layers Anode 1Anode 1 TiO2 NanotubesSnO2-SbPTFE-PbO2

Half coated surface (coated only 5 times which

still expose some nanotubes surface) with non-

aging sol-gel (exhibit less compact morphology

and large crystal size)

Fully coated aged SnO2-Sb layer (15 times coating)

shows compact crystals configuration and smaller

size which improved surface area and surface

reaction sites

Half-Coated Non-Aged vs Fully

Coated Aged Anode 2Anode 2 Blue TiO2 NanotubesAged SnO2-Sb

The estimated life time of Blue TiO2 nanotubes and Aged SnO2-Sb is 2189

and 4794 h at operational current densities of 10 and 5 mAcm2

Characterization Voltammetry

Linear sweep voltammetry (LSV) of the 1 2 anode BDD for a 05 M H2SO4 solution (pH = 0) Scan rate is

10 mVs The standard reduction potentials (pH=0) for O2 H2O2 O3 and HOmiddot are +123 V +177 V +207 V

and +274 V

Patent

Pending

119889 119861119860

119889119905= 119896119861119860119867119874 times 119861119860 times 119867119874 119904119904

= 119896119861119860[119861119860]

119867119874 119904119904 =119896119861119860

119896119861119860119867119874

Anode material 2 743times10-14 molL

Anode material 1 477times10-14 molL

The steady state hydroxyl radical

concentration is estimated from 1 mM

benzoic acid degradation in a 30 mM

NaClO4 at 5 mAcm2 [HO]=kBAkHO

119896119861119860119867119874 = 59 times 109119871(119898119900119897119904)

Hydroxyl Radicals Production Comparison

Actual industrial used anode TiPbO2

Pilot treatment results will show in a minute

These blue NTA are unstable because they are not

coated with SnO2 ndash Sb

The stoichiometric equation for benzoic acid is given as

119862711986761198742 + 121198672119874 rarr 71198621198742 + 30119867+ + 30119890minus

We define the electron efficiency to be

119864119864 =32

12middot (

119899

4119909) middot

119889 119879119874119862

119889 119862119874119863

Where TOC in mg (c)L and COD in mg (1198742)L n is the

number of electrons transfer from the anode for a

complete oxidation reaction and x is the number of

carbon atoms in the organic contaminants

According to the equation and calculation the electron

efficiency for 2D and 3D systems in this case are

119864119864 2119863 = 0866 (866) and 119864119864 3119863 = 1067 (1067)

For 1mmolL (~122mgL) TOC ~90mgL COD

~190mgL

Low electrolyte concentration condition 0005 M Na2SO4

Electron Efficiency (Faraday Efficiency)

Investigate amp optimize electrode

spacing amp fluid velocity

Mass Transfer Impact of EAOPs

We used Differential Column Batch Reactor (DCBR)

in experiments

(a) ofloxacin destruction by 1 anode for various electrode spacing (b) pseudo-first-order rate constants (c) EEO

Anode surface area 10 cm2 electrode spacing 1 cm fluid velocity 0033 ms initial ofloxacin concentration 20

mgL voltage 35-86 V electrolyte concentration is 005 M Na2SO4 pH value 625 and temperature is 25

Mass Transfer Impact Electrode Spacing

for 2D Electrode

(a) ofloxacin destruction on 1 anode for various fluid velocity (b) pseudo-first-order rate constants (c) EEO

Anode surface area 10 cm2 electrode spacing 1 cm fluid velocity 0033 ms initial ofloxacin concentration 20

mgL voltage 35-86 V electrolyte concentration is 005 M Na2SO4 pH value 625 and temperature is 25

Mass Transfer Impact Fluid Velocity

120570 =119896119891 sdot 120579

119896119891 sdot 120579 + 119896119872119886119909 sdot 119889

Effectiveness factor in different fluid velocity and the best fitted model 1

anode surface area 10 cm2 electrode spacing 1 cm electrolyte 005 M

Na2SO4 solution current density 30 mAcm2 initial ofloxacin concentration

20 mgL voltage 63-64 v pH value 625 temperature 25

l

du

Plain channel

119878ℎ =119896119891 sdot 119889

119863119897= 33 sdot

119889

119897sdot Re sdot 119878119888

13

Re =120588 sdot 119906 sdot 119889

120583

119878119888 =120583

120588 sdot 119863119897

120570 =119903119900119887119904

119903max=

119896119900119887119904 119877

119896max 119877

Sherwood number

Reynolds number

Schmidt number

Ω = 0436 means more than

56 oxidation rate reduced

by mass transfer

Mass Transfer Impact Effectiveness Factor

Many AOP follow a pseudo-first order rate

EEO is useful because if EEO is 5kWhr-order then if

you supply 5 1

15 kWm3 then you will 90 99 999 destruction of

the parent compound

Note COD and TOC have a much slower rate

Byproducts are less toxic and more biodegradable

Figure of Merit Electrical Energy Used per

Order (EEO) of Parent Compound Destroyed

EEO in Conventional AOPs

Conventional AOP Example EEO in UVH2O2

119864119864119874 =119875 times 119905

119881 times log1198620119862

+11986211986721198742

times00022119897119887

119892times 11986411986721198742

log1198620119862

119864119864119874 =2303 times 119875 times 1198961 11986721198742 0 + 1198962 1198671198621198743

minus0 + 1198963 119873119874119872 0 + 1198964 119877 0 times ε11986721198742

11986721198742 0 + ε119877 119877 0 + ε119873119874119872 119873119874119872 0

119875119880119881 times 1198964 times ε1198672119874211986721198742 0 times 1 minus 10minus119860 times V

+ 34 gramL times 11986721198742 0 times 00022 119897119887119892119903119886119898 times 11986411986721198742 times 1000 Lm3

bull Target contaminant concentrations oxidant dosage NOM determine the EEO of

conventional AOPs

EEO in EAOPs

EEO in EAOPs

EEO =v times j times A times V times t

V times logC0C

=v times j times A times t

logC0C

EEO =v times j times A

0434 times 119896119878 times Ω

v voltage V

j current densitymA

cm2

A surface area per volumem2

m3

V volumem3

C concentrationmol

m3

ks surface reaction rate sminus1

kobs observed reaction rate sminus1

Ω effectiveness factor

Ω =119896119900119887119904

119896119878

bull Target contaminants concentration dose does not effect EEO in EAOPs

bull EEO is a constant under same operational conditions

01 1 10 100 1000 10000 100000

Ultrapure Water

Distilled Water

Tap Water

Potable Water In The US

Surface Water

Industrial Wastewater

Seawater

Conductivity microScm

Water Streams Conductivity Guide

2D vs 3D EEO Comparison

Degradation of 1 mmolL benzoic acid in a 470 mL differential column batch reactor pH controlled

~68 surface water used has a low conductivity 112 microscm controlled current density is 30 mAcm2

2D anode size is 10 cm2 3D used 80 meshed Ti gauze has surface area 718 cm210 cm2 DCBR

operated at Re 194 Sc 2727 Sh 194 kf 64times10-6 ms Dl 9times10-6 cm2s

2D Electrode

3D Electrode

EEO Analysis in EAOPs

Electrolyte

Concentration

BA

concentrati

on

Voltage Current

Density

EEO

molL mgL V mAcm2 kWhm3

Surface

Water+BA~00004

(113 microScm)

24

(02 mM) 60 105 1738Surface

Water+BA 00004122

(1 mM) 60 105 2003Industrial

Water+BA

01

(16210

microScm) 24 73 304 175Industrial

Water+BA 01 122 8 30 207

Voltage Current

Density

EEO

V mAcm2 kWhm3

152 105 868

3D System2D System

bull Ionic strength is important in EAOPs NOM is not

bull Initial concentration C0does not effect EEO (at least for the

concentrations we tested)

bull Accordingly the pseudo ndash first surface rate constant is same for

different influent concentrations and the same operational

conditions for the conditions we tested

bull We expect to see the reaction rate to decrease with high C0 because

at high concentrations all the reactions site on the anode will be

occupied preventing the oxidation rate from increasing (Langmuir-

Hinshelwood Hougen Watson kinetics confirmation needed)

53 304 290

Conventional AOPs vs EAOPs Modeling 13

A case study to compare EEOs for

UVH2O2 H2O2O3 UVHOCl UVPersulfate UVTiO2

EAOPs (two-dimensional and three-dimensional)

Simulation Conditions[HCO3

minus] = 3 mM [NOM] = 2 mgL [Cl-] = 0001 M

pH = 7 kBA = 59times10-9 L(molmiddotS)Same 22 W input energy gives UV light intensity = 164times10-6 Einstein s-1 L-1

Initial Concentrations [R] (Benzoic Acid in this case) = 20 200 2000 mgL

Quantum yield

UVH2O2 = 05 UVHOCl = 09 UVPersulfate = 07

UVTiO2 = 004 (light transmission efficiency = 04)

Chemical production energy

H2O2 = 49 kWhlb persulfate = 49 kWhlb HOCl = 51 kWhlb O3 = 5 kWhlb

Note TiO2 and electrodes production energies are not included in simulation

EAOPs assumptions amp parameters

J = 30 mAcm2 2D anode size A = 10 cm2 3D anode size A= 718 cm2 (80 meshed Ti gauze)

Sc = 2727 Sh = 194 Dl = 9times10-6 cm2s d = 1 cm

Note pumping energy is small compare to electricity and neglected in simulation

Q = 20 mLmin Re = 1851 kf = 235times10-6 ms

Q = 500 mLmin Re = 46296 kf = 688times10-6 ms

Q = 2000 mLmin Re = 203704 kf = 113times10-5 ms (Re lt 2100 in laminar flow)

Minimal

EEO

(kWhm3)

Optimal

OxidantCatalyst

Dosage

9072 [TiO2]=300 mgL

4022 [Persulfate]=16 gL

2718 [H2O2]=0612 gL

2442 [HOCl]=026 gL

679 [H2O2]=0028 mgL

Electrolyte

(Na2SO4)

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

0M3702

0001M 6466 2405

0005M 3781 2069

001M 2676 1552

01M 469 1294

AOPs Minimal

EEO

(kWhm3)

Optimal

OxidantCatalyst

Dosage

UVTiO2 1038 [TiO2]=300 mgL

UVPersulfate 128 [Persulfate]=117 gL

UV H2O2 090 [H2O2]=0204 gL

UVHOCl 367 [HOCl]=014 gL

H2O2O3 0015 [H2O2]=00206 mgL

[R]0 = 20 mgL

~16 mgL TOC

[R]0 = 200 mgL

~140 mgL TOC

Minimal

EEO

(kWhm3)

Optimal

OxidantCatalyst

Dosage

88271 [TiO2]=300 mgL

8208 [Persulfate]=581 gL

1768 [H2O2]=184 gL

8335 [HOCl]=0776 gL

17648 [H2O2]=0035 mgL

[R]0 = 2000 mgL

~1379 mgL TOC

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

3545

6015 2260

3559 1937

2504 1448

455 1207

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

3404

5634 2136

3367 1824

2357 1360

443 1132

Re = 1851 Re = 46296 Re = 203704

Conventional AOPs vs EAOPs Modeling 23

Mass Transfer Increase

Ion

Str

en

gth

In

crease

Conventional AOPs vs EAOPs Modeling 33

AOPs Minimal

EEO

(kWhm3)

Optimal

OxidantCatalyst

Dosage

UVTiO2 1038 [TiO2]=300 mgL

UVPersulfate 128 [Persulfate]=117 gL

UV H2O2 090 [H2O2]=0204 gL

UVHOCl 367 [HOCl]=014 gL

H2O2O3 0015 [H2O2]=00206 mgL

[R]0 = 20 mgL

~16 mgL TOC For low concentration treatment

objectives EAOPs may not be as good as

compared to conventional AOPs

Conventional UVH2O2 and H2O2O3 are

the best conventional AOPs for BA

Electrolyte

(Na2SO4)

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

0M3702

0001M 6466 2405

0005M 3781 2069

001M 2676 1552

01M 469 1294

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

3545

6015 2260

3559 1937

2504 1448

455 1207

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

3404

5634 2136

3367 1824

2357 1360

443 1132

Re = 1851 Re = 46296 Re = 203704Mass Transfer Increase

Ion

Str

en

gth

In

crease

Conventional AOPs vs EAOPs Modeling 33

Minimal

EEO

(kWhm3)

Optimal

OxidantCatalyst

Dosage

88271 [TiO2]=300 mgL

8208 [Persulfate]=581 gL

1768 [H2O2]=184 gL

8335 [HOCl]=0776 gL

17648 [H2O2]=0035 mgL

[R]0 = 2000 mgL

~1379 mgL TOC For high concentration treatment objectives

EAOPs are more energy efficient

3D-EAOP saves more energy than 2D because

it requires lower applied voltage

3D-EAOP works better than 2D in low ion

strength treatment

Electrolyte

(Na2SO4)

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

0M3702

0001M 6466 2405

0005M 3781 2069

001M 2676 1552

01M 469 1294

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

3545

6015 2260

3559 1937

2504 1448

455 1207

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

3404

5634 2136

3367 1824

2357 1360

443 1132

Re = 1851 Re = 46296 Re = 203704Mass Transfer Increase

Ion

Str

en

gth

In

crease

Limiting Current in Different Conditions

jlim = n times F times kf times Csalt

Electrolyte

Concentration Q Q Q

Na2SO4 mlmin mlmin mlmin

20 500 2000

Re Re Re

1852 46296 185185

kf kf kf

ms ms ms

235405E-06 688E-06 109E-05

jlim jlim jlim

molL mAcm2 mAcm2 mAcm2

0001 068 199 316

jlim jlim jlim

molL mAcm2 mAcm2 mAcm2

0005 341 996 1581

jlim jlim jlim

molL mAcm2 mAcm2 mAcm2

001 681 1992 3163

jlim jlim jlim

molL mAcm2 mAcm2 mAcm2

005 3407 9962 15814

jlim jlim jlim

molL mAcm2 mAcm2 mAcm2

01 6814 19924 31627

Parameters Symbol Units Value

Influent concentration C0 mgL 20

Effluent concentration Ce mgL 02

Flow rate Q m3day 1000

Pseudo first order rate constant k min 0042

Size of reactor VRequired m3 38 m3

Detention time τ min 548

Electrode spacing d cm 1

Fluid velocity u ms 0033

Electrolyte Na2SO4 Concentration M 005

Current density J mAcm2 30

Assuming a Plug Flow Reactor (PFR) to be Confirmed with CFD

Full Scale Reactor Design

Full Scale Reactor Design

Rough Design of Reactor (top view)

1 2 3 4 5 6 7 8 9 10

105 meters

long

10 meters

electrodes

10 meters

2 meters deep

Reactor Channel

1 meter

hellip

5 cm 95 cmInfluent Effluent

The total costs (capital costs + energy costs) as a function of different electrode spacing for different theoretical

reaction rate In here the treatment objective is 99 removal flow rate is 1000 m3day and the fluid velocity is 00116

ms The flow channel has eddy promoter and its electrode spacing and obstacle distance ratio is 13 The electricity

price is $00512kWh and the pumping power is 853 kW The electrode price is $300m2 and its lifetime is 2000 h

Capital Expenditure Operational Expenditure

CapEx vs OpEx

Cost Analysis for Preliminary Design

The total costs (capital costs + energy costs) as a function of different electrode spacing for different theoretical

reaction rate In here the treatment objective is 99 removal flow rate is 1000 m3day and the fluid velocity is 00116

ms The flow channel has eddy promoter and its electrode spacing and obstacle distance ratio is 13 The electricity

price is $00512kWh and the pumping power is 853 kW The electrode price is $300m2 and its lifetime is 2000 h

Currently we are at only Ω=0436

Computer-based First-Principles Kinetic Model

Reaction Pathway Generator

(Graph Theory)

Rate Constants Estimator

(Group Contribution Method

Free Energy Linear

Relationship

Genetic Algorithm)

Ordinary Differential

Equations

(ODEs) Generator and Solver

(Gearrsquos Algorithm or

Monte Carlo algorithm)

Kinetic Monte Carlo Solver can

solve 1 million ODEs on PC

within 30 minutes

Complexity of Reaction PathwayExample

General reaction mechanisms that HObull initiates based on past experimental studies

Stefan and Bolton 1998 1999 1999 Stefan et al 1996 2000 Cooper et al 2009 Li et al 2004 2007 von Sonntag and

Schuchmann 1984 Schuchmann and von Sonntag 1979

Type of mechanismNumber of

speciesNumber of reactions

Full mechanism 120 370

Reduced mechanism 41 89

The criterion for DRG method is 1

Reaction rate constants are obtained from group contribution method (Minakata et al 2009 ESampT 43 6220-6227) and literature includingNate et al 1990 J Phys Chem Ref Data 19 413-513Nate et al 1995 J Phys Chem Ref Data 25 709-1050Buxton et al 1988 J Phys Chem Ref Data 17 513-886von Sonntag et al 1991 Angeuz Chem Int Ed Engl 30 1229-1253Li et al 2009 ESampT 43 2831-2837Li et al 2007 ESampT 41 1696-1703

Initial concentration of TCE 108 mM

Initial concentration of O2 22 mM

Initial concentration of H2O2 104 mM

Initial pH 59

Wave length of UV 200~300 nm

Light intensity779times10-6

EinsteinLmiddots

Reactor typeCompletely mixed batch reactor

Reaction time 30 min

Comparison of concentration profiles of major species for experimental data (Li Stefan Crittenden 2007 ESampT 41 1696-1703) and simulation results

00

20

40

60

80

100

120

00

02

04

06

08

10

12

0 5 10 15 20 25 30[H

2O

2]

(mM

)

[Ma

jor

spec

ies]

(m

M)

Time(min)

TCE exp

formic acid exp

oxalic acid exp

20 times DCA exp

20 times MCA exp

TCE cal

formic acid cal

oxalic acid cal

20 times DCA cal

20 times MCA cal

H2O2 exp

H2O2 cal

The photolysis of TCE was added manually because it is not included in this version of the pathway generator

Predicted Concentration Profiles of

Trichloroethene (TCE) and Stable-byproducts in UVH2O2 AOP

Comparison of number averaged molecular

weight (MW) for experimental data

(Vijayalakshmi et al J Appl Polym Sci 2006

100 3997-4003) and on-the-fly KMC model

The KMC model used a population number of 108L to

represent a concentration of 1molL

0

02

04

06

08

1

12

14

16

18

0 25 50 75 100 125 150 175 200

Aver

aged

mole

cu

lar

wei

gh

t (1

05

gm

ol)

Time (min)

Experiment

On-the-fly KMC

0

02

04

06

08

1

12

0 25 50 75 100 125 150 175 200

Nu

mb

er o

f re

act

ion

s (1

06)

Time (min)

Time evolvement of the number of generated

reactions for the degradation of PAM during the

UVTiO2 process

Degradation of Polyacrylamide (PAM)

Simulation Results for PAM Degradation in UVTiO2 AOP

Guo X Minakata D and Crittenden J 2015 On-the-fly kinetic Monte Carlo simulation of aqueous phase advanced oxidation processes Environmental science amp technology 49(15) pp9230-9236

1 Crittenden John C Shumin Hu David W Hand and Sarah Green ldquoA Kinetic Model for H2O2UV Process in a Completely Mixed Batch Reactorrdquo Water Research 33(10) 2315-2328 (1999)

2 Li K Crittenden JC Computerized pathway elucidation for hydroxyl radical induced chain reaction mechanisms in aqueous phase AOPs Environmental Science amp Technology 2009 43(8) 2831-2837

3 Li K Stefan MI Crittenden JC Trichloroethene degradation by UVH2O2 advanced oxidation process product study and kinetic modeling Environmental Science amp Technology 2007 41 1696-1703

4 Li K M I Stefan and J C Crittenden ldquoUV Photolysis of Trichloroethylene (TCE) Product Study and Kinetic Modelingrdquo Environmental Science and Technology Vol 38 No 24 6685-6693 (2004)

5 Ke Li David R Hokanson John C Crittenden R Rhodes Trussell and Daisuke Minakata ldquoEvaluating UVH2O2 Processes for Methyl tert-Butyl Ether (MtBE) and tertiary Butyl Alcohol (TBA) Removal from

Drinking Water Source Effect of Pretreatment Options and Light Sourcesrdquo Water Research 2008 Volume 42 (20) 5045-5053

6 Minakata D Li K Westerhoff P Crittenden J Development of a group contribution method to predict aqueous phase hydroxyl radical reaction rate constants Environmental Science amp Technology 2009 43

6220-6227

7 Minakata D Crittenden J Linear Free Energy Relationships between the Aqueous Phase Hydroxyl Radical (HObull) Reaction Rate Constants and the Free Energy of Activation Environmental Science amp Technology

2011a 45 3479-3486

8 Minakata D Song W Crittenden J Reactivity of aqueous phase hydroxyl radical with halogenated carboxylate anions Experimental and theoretical studies Environmental Science amp Technology 2011 45 6057-

6065

9 Daisuke Minakata Stephen P Mezyk Jace W Jones Brittany R Daws John C Crittenden ldquoDevelopment of Linear Free Energy Relationships for Aqueous Phase Radical-Involved Chemical Reactionsrdquo

Environmental Science amp Technology 2014 48 (23) 13925-13932

10 Xin Guo Daisuke Minakata John C Crittenden ldquoOn-the-Fly Kinetic Monte Carlo Simulation of Aqueous Phase Advanced Oxidation Processesrdquo Environmental Science and Technology 2015 49 (15) 9230ndash9236

11 Guo X Minakata D Crittenden JC ldquoComputer-Based First-Principles Kinetic Monte Carlo Simulation of Polyethylene Glycol Degradation in Aqueous Phase UVH2O2 Advanced Oxidation Processrdquo

Environmental Science amp Technology 2014 48 10813minus10820

12 Xin Guo Daisuke Minakata Junfeng Niu John C Crittenden ldquoComputer-based First-principles Kinetic Modeling of Degradation Pathways and Byproduct Fates in Aqueous Phase Advanced Oxidation Processesrdquo

Environmental Science and Technology 2014 48 (10) pp 5718ndash5725

13 Yajie Qian Xin Guo Yalei Zhang Yue Peng Peizhe Sun Ching-Hua Huang Junfeng Niu Xuefei Zhou John C Crittenden ldquoPerfluorooctanoic Acid Degradation Using UVminusPersulfate Process Modeling of the

Degradation and Chlorate Formationrdquo 2015 Environmental Science and Technology 50 (2) 772ndash781

14 Ruzhen Xie Xiaoyang Meng Peizhe Sun Junfeng Niu Wenju JiangLawrence Bottomley Duo Li Yongsheng Chen John C CrittendenrdquoElectrochemical Oxidation of Ofloxacin Using a TiO2-based SnO2-

SbPolytetrafluoroethylene Resin-PbO2 Electrode Reaction Kinetics and Mass Transfer Impactrdquo 2016 Applied Catalysis B Environmental 203 (2017) 515ndash525

15 Westerhoff Paul Moon Hye Minakata Daisuke Crittenden John ldquoOxidation of Organics in Retentates from Reverse Osmosis Wastewater Reuse Facilitiesrdquo Water Research 43 (16) 3992-2998

16 Liu L Chen F Yang F Chen Y Crittenden J ldquoPhotocatalytic degradation of 24-dichlorophenol using nanoscale FeTiO2rdquo Chemical Engineering Journal 2012 181ndash182 (0)189-195

References

References

17 Ying Wang Jiasheng Fang John C Crittenden Chanchan Shen ldquoNovel RGO120572-FeOOH Supported Catalyst for Fenton Oxidation of Phenol at a Wide pH Range Using Solar-Light-Driven Irradiationrdquo 2017 Journal

of Hazardous Materials 329 321ndash329

18 Xiaodong Ma Mengying Zhao Qin Pang Meihua Zheng Hongwen Sun John C Crittenden Yanying Zhu Yongsheng Chen ldquoDevelopment of Novel CaCO3Fe2O3 Nanorods for Low Temperature 12-

Dichlorobenzene Oxidationrdquo 2017 Applied Catalysis A General 522 (2016) 70ndash79

19 Heacutector L Otaacutelvaro-Mariacuten Miguel Angel Mueses John C Crittenden Fiderman Machuca-Martinez ldquoSolar Photoreactor Design by the Photon Path Length and Optimization of the Radiant Field in a TiO2-based CPC

Reactorrdquo 2017 Chemical Engineering Journal 315 283ndash295

20 Qi Wang Naxin Zhu Enqin Liu Chenlu Zhang John C Crittenden Yi ZhangYanqing CongldquoFabrication of Visible-Light Active Fe2O3-GQDsNF-TiO2 Composite Film with Highly Enhanced

Photoelectrocatalytic Performancerdquo 2017 Applied Catalysis B Environmental 205 347ndash356

21 Junfeng Niu Lifeng Yin Yunrong Dai Yueping Bao John C Crittenden ldquoDesign of Visible Light Responsive Photocatalysts for Selective Reduction of Chlorinated Organic Compounds in Waterrdquo 2016 Applied

Catalysis A General 521 90ndash95

22 Chaojie Jiang Lifen Liu John C Crittenden ldquoAn Electrochemical Process that Uses an Fe0TiO2 Cathode to Degrade Typical Dyes and Antibiotics and a Bio-anode that Produces Electricityrdquo 2016 Frontiers of

Environmental Science amp Engineering 10(4) 15

23 Yijing Xia Qizhou Dai Mili Weng Yue Peng Jinming Luo Xiaoyang Meng Xubiao Luo Jianmeng Chen John C Crittenden ldquoFabrication and Electrochemical Treatment Application of an Al-Doped PbO2

Electrode with High Oxidation Capability Oxygen Evolution Potential and Reusabilityrdquo2015 Journal of The Electrochemical Society 162 (10) E258-E262

24 Feng Duan Yuping Li Hongbin Cao Yi Wang John C Crittenden Yi Zhang ldquoActivated Carbon Electrodes Electrochemical Oxidation Coupled with Desalination for Wastewater Treatmentrdquo 2015 Chemosphere

125 205-211

25 Xing Linlin Xie Yongbing Cao Hongbin Minakata Daisuke Zhang Yi Crittenden John C ldquoActivated carbon-enhanced ozonation of oxalate attributed to HObull oxidation in bulk solution and surface oxidation

Effects of the type and number of basic sitesrdquo Chemical Engineering Journal 2014 245 71-79

26 Yao H Sun P Minakata D Crittenden JC Huang C-H ldquoKinetics and Modeling of Degradation of Ionophore Antibiotics by UV and UVH2O2rdquo Environmental Science and Technology 2013 (47) 4581-

45892

26 Li Yang et al Synergistic photogeneration of reactive oxygen species by dissolved organic matter and C60 in aqueous phase Environmental science amp technology 492 (2015) 965-973

28 Niu Junfeng et al Photocatalytic reduction of triclosan on AundashCu 2 O nanowire arrays as plasmonic photocatalysts under visible light irradiation Physical Chemistry Chemical Physics 1726 (2015) 17421-17428

29 Niu Junfeng et al Design of visible light responsive photocatalysts for selective reduction of chlorinated organic compounds in water Applied Catalysis A General 521 (2016) 90-95

30 Tianyin Huang Jiabin Chen Zhongming Wang Xin Guo John C Crittenden ldquoExcellent Performance of Cobalt-Impregnated Activated Carbon in Peroxymonosulfate Activation for Acid Orange 7 Oxidationrdquo 2017

Environmental Science and Pollution Research Volume 24 (10) 9651ndash9661

References

31 Yang Li Junfeng Niu Enxiang Shang John C Crittenden ldquoPhotochemical Transformation and Photoinduced Toxicity Reduction of Silver Nanoparticles in the Presence of Perfluorocarboxylic Acids under UV

Irradiationrdquo Environmental Science and Technology 2014 48 (9) pp 4946ndash4953

32 Cao H Xing L Wu G Xie S Zhang SY Minakata D Crittenden JC ldquoPromoting effect of nitration modification on activated carbon in the catalytic ozonation of oxalic acidrdquo Applied Catalysis B

Environmental 2014 146 169-176

33 Konsowa A H Ossman M E Chen Y Crittenden J C ldquoDecolorization of industrial wastewater by ozonation followed by adsorption on activated carbonrdquo Journal of Hazardous Materials 176 (2010) 181-185

November 10 2009

34 Wipada Sanongraj Yongsheng Chen John Crittenden David Hand and David Perram ldquoDevelopment of Photocatalytic Oxidation Model Part I-Mathematical Model for Photocatalytic Destruction of Organic

Contaminants in Airrdquo Journal of the Air and Waste Management Association 571112ndash1122 September 2007

35 Chen Y JC Crittenden S Hackney L Sutter and DW Hand ldquoPreparation of a Novel TiO2-based p-n Junction Nanotube Photocatalystrdquo Environmental Science and Technology Vol 39 No 5 1201-1208 (2005)

36 Suri RPS J Liu JC Crittenden DW Hand and DL Perram Removal and Destruction of Organic Contaminants in Water Using Adsorption Steam Regeneration and Photocatalytic Oxidation A Pilot Scale

Studyrdquo Journal of Air and Waste Management Volume 49 (August 1999) 951 ndash 958

37 Burns RA JC Crittenden DW Hand VH Selzer LL Sutter SR Salman Effect of Inorganic Ions in the Heterogeneous Photocatalysis of Trichloroethene ASCE Journal of Environmental Engineering Vol

125 No 1 pp 77-85 (January 1999)

38 Liu J JC Crittenden DW Hand and DL Perram Regeneration of Adsorbents Using Heterogeneous Photocatalytic Oxidationrdquo Journal of Environmental Engineering Vol 122 No 8 pp 707-714 (1996)

39 Crittenden JC J Liu DW Hand and DL Perram Photocatalytic Oxidation of Chlorinated Hydrocarbons in Waterrdquo Water Research Vol31 No 3 pp 429-438 (1997)

40 Crittenden JC RPS Suri DL Perram and DW Hand Decontamination of Water Using Adsorption and Photocatalysisrdquo Water Research Vol 31 No 3 pp 411-418 (1997)

41 Crittenden JC Y Zhang DW Hand and DL Perram Destruction of Organic Compounds in Water Using Fixed-Bed Photocatalysts Journal of Solar Energy Engineering (ASME) Vol 118 No 5 pp 123 -129

(1996)

42 Crittenden JC Y Zhang DW Hand and DL Perram Solar Detoxification of Fuel-Contaminated Groundwater Using Fixed-Bed Photocatalystsrdquo Water Environment Research Vol 68 No 3 pp 270-278

(1996)

43 Zhang Y JC Crittenden and DW Hand The Solar Photocatalytic Decontamination of Waterrdquo Chemistry amp Industry Vol 18 pp 714-717 September (1994)

44 Mourand JT JC Crittenden DW Hand DL Perram and S Notthakun Regeneration of Spent Adsorbents Using Advanced Oxidationrdquo Water Environment Federation Vol 67 No 3 pp 355-363 (1995)

45 Hand DW DL Perram and JC Crittenden Destruction of DBP Precursors with Catalytic Oxidationrdquo American Water Works Association Journal Vol 87 No 6 pp 84-96 (1995)

46 Zhang Y JC Crittenden DW Hand and DL Perram Fixed-Bed Photo-catalysts for Solar Decontamination of Waterrdquo Environmental Science amp Technology Vol 28 No 3 pp 435-442 (1994)

47 Suri RPS J Liu DW Hand JC Crittenden DL Perram and ME Mullins Heterogeneous Photocatalytic Oxidation of Hazardous Organic Contaminants in Waterrdquo Water Environment Federation Vol 65 No

5 pp 665-673 (1993)

Page 7: The Application of Advanced Oxidation Processes (AOPs) and ...€¦ · We define the electron efficiency to be = 32 12 ·( J 4𝑥)· Where TOC in mg (c)/L and COD in mg ( 2)/L, n

Schematic of the three-

dimensional electrode system

The anode material is a wire

mesh of blue-TiO2 nanotubes

combined with SnO2-Sb

119860119899119900119889119890 rarr ℎ119907119887+ + 119890119888119887

minus

ℎ+ + 1198672119874 rarr 119867119874 sdot +119867+

Three-Dimensional EAOP System

Cathode119890 + +119867+ rarr 121198672

Electrochemical Oxidation Processes

2-Dimensional and 3-Dimensional Electrodes

3D Electrode

bull Lower cell voltage lower EEO

bull Works with low ionic strength

EAOP Systems Comparison

Loss Electron Oxidation (LEO) Oxidation Potential vs NHE

21198672119874 rarr 4119867+ + 4119890minus + 1198742 1198640 = minus123 119881

2H2119874 rarr 11986721198742 + 2119867+ + 2119890minus 1198640 = minus177 119881

211987811987442minus rarr 11987821198748

2minus + 2119890minus 1198640 = minus201 119881

1198672119874 + 1198742 rarr 1198743 + 2119867+ + 2119890minus 1198640 = minus207 119881

11987811987442minus rarr 1198781198744

minus middot +119890minus 1198640 = minus260 119881

1198672119874 rarr 119867119874 middot +119867+ + 119890minus 1198640 = minus274 119881

119860119899119900119889119890 rarr ℎ119907119887+ + 119890119888119887

minus

ℎ+ + 1198672119874 rarr 119867119874 sdot +119867+

Ideally we want every electron to

create one HO∙

Band Gap Engineering

Gain Electron Reduction (GER) Reduction Potential vs NHE

2119867+ + 2119890minus rarr 1198672 1198640 = 000 119881

1198742 + 2119867+ + 2119890minus rarr 11986721198742 1198640 = 062 119881

Base substrate for Anode 1 and 2 Ti (2~3 mm thick)

Anode 1 TiO2 NanotubesSnO2-SbPTFE-PbO2

Inner Layer TiO2 Nanotube array

Intermediate layer -SnO2-Sb (Sb2O4)

Outer Layer PTFE-PbO2

Anode 2 Blue TiO2 NanotubesAged SnO2-Sb

Inner Layer Blue TiO2 Nanotube array

Outer Layer -SnO2-Sb (Sb2O4)

TiO2 band gap rutile 30 eV anatase 32 eV blue 33 eV

SnO2 band gap rutile 36 eV PbO2 16 eV (good for higher

current densities)

Multi-Layered Semiconductor Anode

Mixed Metal Oxide electrode (MMO)

a) b)

c)

SEM of (a) TiO2-Nanotubes Substrate (b) SnO2-Sb intermediate layer

(c) PTFEPbO2 electrode

SEM Characterization of Layers Anode 1Anode 1 TiO2 NanotubesSnO2-SbPTFE-PbO2

Half coated surface (coated only 5 times which

still expose some nanotubes surface) with non-

aging sol-gel (exhibit less compact morphology

and large crystal size)

Fully coated aged SnO2-Sb layer (15 times coating)

shows compact crystals configuration and smaller

size which improved surface area and surface

reaction sites

Half-Coated Non-Aged vs Fully

Coated Aged Anode 2Anode 2 Blue TiO2 NanotubesAged SnO2-Sb

The estimated life time of Blue TiO2 nanotubes and Aged SnO2-Sb is 2189

and 4794 h at operational current densities of 10 and 5 mAcm2

Characterization Voltammetry

Linear sweep voltammetry (LSV) of the 1 2 anode BDD for a 05 M H2SO4 solution (pH = 0) Scan rate is

10 mVs The standard reduction potentials (pH=0) for O2 H2O2 O3 and HOmiddot are +123 V +177 V +207 V

and +274 V

Patent

Pending

119889 119861119860

119889119905= 119896119861119860119867119874 times 119861119860 times 119867119874 119904119904

= 119896119861119860[119861119860]

119867119874 119904119904 =119896119861119860

119896119861119860119867119874

Anode material 2 743times10-14 molL

Anode material 1 477times10-14 molL

The steady state hydroxyl radical

concentration is estimated from 1 mM

benzoic acid degradation in a 30 mM

NaClO4 at 5 mAcm2 [HO]=kBAkHO

119896119861119860119867119874 = 59 times 109119871(119898119900119897119904)

Hydroxyl Radicals Production Comparison

Actual industrial used anode TiPbO2

Pilot treatment results will show in a minute

These blue NTA are unstable because they are not

coated with SnO2 ndash Sb

The stoichiometric equation for benzoic acid is given as

119862711986761198742 + 121198672119874 rarr 71198621198742 + 30119867+ + 30119890minus

We define the electron efficiency to be

119864119864 =32

12middot (

119899

4119909) middot

119889 119879119874119862

119889 119862119874119863

Where TOC in mg (c)L and COD in mg (1198742)L n is the

number of electrons transfer from the anode for a

complete oxidation reaction and x is the number of

carbon atoms in the organic contaminants

According to the equation and calculation the electron

efficiency for 2D and 3D systems in this case are

119864119864 2119863 = 0866 (866) and 119864119864 3119863 = 1067 (1067)

For 1mmolL (~122mgL) TOC ~90mgL COD

~190mgL

Low electrolyte concentration condition 0005 M Na2SO4

Electron Efficiency (Faraday Efficiency)

Investigate amp optimize electrode

spacing amp fluid velocity

Mass Transfer Impact of EAOPs

We used Differential Column Batch Reactor (DCBR)

in experiments

(a) ofloxacin destruction by 1 anode for various electrode spacing (b) pseudo-first-order rate constants (c) EEO

Anode surface area 10 cm2 electrode spacing 1 cm fluid velocity 0033 ms initial ofloxacin concentration 20

mgL voltage 35-86 V electrolyte concentration is 005 M Na2SO4 pH value 625 and temperature is 25

Mass Transfer Impact Electrode Spacing

for 2D Electrode

(a) ofloxacin destruction on 1 anode for various fluid velocity (b) pseudo-first-order rate constants (c) EEO

Anode surface area 10 cm2 electrode spacing 1 cm fluid velocity 0033 ms initial ofloxacin concentration 20

mgL voltage 35-86 V electrolyte concentration is 005 M Na2SO4 pH value 625 and temperature is 25

Mass Transfer Impact Fluid Velocity

120570 =119896119891 sdot 120579

119896119891 sdot 120579 + 119896119872119886119909 sdot 119889

Effectiveness factor in different fluid velocity and the best fitted model 1

anode surface area 10 cm2 electrode spacing 1 cm electrolyte 005 M

Na2SO4 solution current density 30 mAcm2 initial ofloxacin concentration

20 mgL voltage 63-64 v pH value 625 temperature 25

l

du

Plain channel

119878ℎ =119896119891 sdot 119889

119863119897= 33 sdot

119889

119897sdot Re sdot 119878119888

13

Re =120588 sdot 119906 sdot 119889

120583

119878119888 =120583

120588 sdot 119863119897

120570 =119903119900119887119904

119903max=

119896119900119887119904 119877

119896max 119877

Sherwood number

Reynolds number

Schmidt number

Ω = 0436 means more than

56 oxidation rate reduced

by mass transfer

Mass Transfer Impact Effectiveness Factor

Many AOP follow a pseudo-first order rate

EEO is useful because if EEO is 5kWhr-order then if

you supply 5 1

15 kWm3 then you will 90 99 999 destruction of

the parent compound

Note COD and TOC have a much slower rate

Byproducts are less toxic and more biodegradable

Figure of Merit Electrical Energy Used per

Order (EEO) of Parent Compound Destroyed

EEO in Conventional AOPs

Conventional AOP Example EEO in UVH2O2

119864119864119874 =119875 times 119905

119881 times log1198620119862

+11986211986721198742

times00022119897119887

119892times 11986411986721198742

log1198620119862

119864119864119874 =2303 times 119875 times 1198961 11986721198742 0 + 1198962 1198671198621198743

minus0 + 1198963 119873119874119872 0 + 1198964 119877 0 times ε11986721198742

11986721198742 0 + ε119877 119877 0 + ε119873119874119872 119873119874119872 0

119875119880119881 times 1198964 times ε1198672119874211986721198742 0 times 1 minus 10minus119860 times V

+ 34 gramL times 11986721198742 0 times 00022 119897119887119892119903119886119898 times 11986411986721198742 times 1000 Lm3

bull Target contaminant concentrations oxidant dosage NOM determine the EEO of

conventional AOPs

EEO in EAOPs

EEO in EAOPs

EEO =v times j times A times V times t

V times logC0C

=v times j times A times t

logC0C

EEO =v times j times A

0434 times 119896119878 times Ω

v voltage V

j current densitymA

cm2

A surface area per volumem2

m3

V volumem3

C concentrationmol

m3

ks surface reaction rate sminus1

kobs observed reaction rate sminus1

Ω effectiveness factor

Ω =119896119900119887119904

119896119878

bull Target contaminants concentration dose does not effect EEO in EAOPs

bull EEO is a constant under same operational conditions

01 1 10 100 1000 10000 100000

Ultrapure Water

Distilled Water

Tap Water

Potable Water In The US

Surface Water

Industrial Wastewater

Seawater

Conductivity microScm

Water Streams Conductivity Guide

2D vs 3D EEO Comparison

Degradation of 1 mmolL benzoic acid in a 470 mL differential column batch reactor pH controlled

~68 surface water used has a low conductivity 112 microscm controlled current density is 30 mAcm2

2D anode size is 10 cm2 3D used 80 meshed Ti gauze has surface area 718 cm210 cm2 DCBR

operated at Re 194 Sc 2727 Sh 194 kf 64times10-6 ms Dl 9times10-6 cm2s

2D Electrode

3D Electrode

EEO Analysis in EAOPs

Electrolyte

Concentration

BA

concentrati

on

Voltage Current

Density

EEO

molL mgL V mAcm2 kWhm3

Surface

Water+BA~00004

(113 microScm)

24

(02 mM) 60 105 1738Surface

Water+BA 00004122

(1 mM) 60 105 2003Industrial

Water+BA

01

(16210

microScm) 24 73 304 175Industrial

Water+BA 01 122 8 30 207

Voltage Current

Density

EEO

V mAcm2 kWhm3

152 105 868

3D System2D System

bull Ionic strength is important in EAOPs NOM is not

bull Initial concentration C0does not effect EEO (at least for the

concentrations we tested)

bull Accordingly the pseudo ndash first surface rate constant is same for

different influent concentrations and the same operational

conditions for the conditions we tested

bull We expect to see the reaction rate to decrease with high C0 because

at high concentrations all the reactions site on the anode will be

occupied preventing the oxidation rate from increasing (Langmuir-

Hinshelwood Hougen Watson kinetics confirmation needed)

53 304 290

Conventional AOPs vs EAOPs Modeling 13

A case study to compare EEOs for

UVH2O2 H2O2O3 UVHOCl UVPersulfate UVTiO2

EAOPs (two-dimensional and three-dimensional)

Simulation Conditions[HCO3

minus] = 3 mM [NOM] = 2 mgL [Cl-] = 0001 M

pH = 7 kBA = 59times10-9 L(molmiddotS)Same 22 W input energy gives UV light intensity = 164times10-6 Einstein s-1 L-1

Initial Concentrations [R] (Benzoic Acid in this case) = 20 200 2000 mgL

Quantum yield

UVH2O2 = 05 UVHOCl = 09 UVPersulfate = 07

UVTiO2 = 004 (light transmission efficiency = 04)

Chemical production energy

H2O2 = 49 kWhlb persulfate = 49 kWhlb HOCl = 51 kWhlb O3 = 5 kWhlb

Note TiO2 and electrodes production energies are not included in simulation

EAOPs assumptions amp parameters

J = 30 mAcm2 2D anode size A = 10 cm2 3D anode size A= 718 cm2 (80 meshed Ti gauze)

Sc = 2727 Sh = 194 Dl = 9times10-6 cm2s d = 1 cm

Note pumping energy is small compare to electricity and neglected in simulation

Q = 20 mLmin Re = 1851 kf = 235times10-6 ms

Q = 500 mLmin Re = 46296 kf = 688times10-6 ms

Q = 2000 mLmin Re = 203704 kf = 113times10-5 ms (Re lt 2100 in laminar flow)

Minimal

EEO

(kWhm3)

Optimal

OxidantCatalyst

Dosage

9072 [TiO2]=300 mgL

4022 [Persulfate]=16 gL

2718 [H2O2]=0612 gL

2442 [HOCl]=026 gL

679 [H2O2]=0028 mgL

Electrolyte

(Na2SO4)

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

0M3702

0001M 6466 2405

0005M 3781 2069

001M 2676 1552

01M 469 1294

AOPs Minimal

EEO

(kWhm3)

Optimal

OxidantCatalyst

Dosage

UVTiO2 1038 [TiO2]=300 mgL

UVPersulfate 128 [Persulfate]=117 gL

UV H2O2 090 [H2O2]=0204 gL

UVHOCl 367 [HOCl]=014 gL

H2O2O3 0015 [H2O2]=00206 mgL

[R]0 = 20 mgL

~16 mgL TOC

[R]0 = 200 mgL

~140 mgL TOC

Minimal

EEO

(kWhm3)

Optimal

OxidantCatalyst

Dosage

88271 [TiO2]=300 mgL

8208 [Persulfate]=581 gL

1768 [H2O2]=184 gL

8335 [HOCl]=0776 gL

17648 [H2O2]=0035 mgL

[R]0 = 2000 mgL

~1379 mgL TOC

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

3545

6015 2260

3559 1937

2504 1448

455 1207

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

3404

5634 2136

3367 1824

2357 1360

443 1132

Re = 1851 Re = 46296 Re = 203704

Conventional AOPs vs EAOPs Modeling 23

Mass Transfer Increase

Ion

Str

en

gth

In

crease

Conventional AOPs vs EAOPs Modeling 33

AOPs Minimal

EEO

(kWhm3)

Optimal

OxidantCatalyst

Dosage

UVTiO2 1038 [TiO2]=300 mgL

UVPersulfate 128 [Persulfate]=117 gL

UV H2O2 090 [H2O2]=0204 gL

UVHOCl 367 [HOCl]=014 gL

H2O2O3 0015 [H2O2]=00206 mgL

[R]0 = 20 mgL

~16 mgL TOC For low concentration treatment

objectives EAOPs may not be as good as

compared to conventional AOPs

Conventional UVH2O2 and H2O2O3 are

the best conventional AOPs for BA

Electrolyte

(Na2SO4)

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

0M3702

0001M 6466 2405

0005M 3781 2069

001M 2676 1552

01M 469 1294

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

3545

6015 2260

3559 1937

2504 1448

455 1207

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

3404

5634 2136

3367 1824

2357 1360

443 1132

Re = 1851 Re = 46296 Re = 203704Mass Transfer Increase

Ion

Str

en

gth

In

crease

Conventional AOPs vs EAOPs Modeling 33

Minimal

EEO

(kWhm3)

Optimal

OxidantCatalyst

Dosage

88271 [TiO2]=300 mgL

8208 [Persulfate]=581 gL

1768 [H2O2]=184 gL

8335 [HOCl]=0776 gL

17648 [H2O2]=0035 mgL

[R]0 = 2000 mgL

~1379 mgL TOC For high concentration treatment objectives

EAOPs are more energy efficient

3D-EAOP saves more energy than 2D because

it requires lower applied voltage

3D-EAOP works better than 2D in low ion

strength treatment

Electrolyte

(Na2SO4)

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

0M3702

0001M 6466 2405

0005M 3781 2069

001M 2676 1552

01M 469 1294

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

3545

6015 2260

3559 1937

2504 1448

455 1207

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

3404

5634 2136

3367 1824

2357 1360

443 1132

Re = 1851 Re = 46296 Re = 203704Mass Transfer Increase

Ion

Str

en

gth

In

crease

Limiting Current in Different Conditions

jlim = n times F times kf times Csalt

Electrolyte

Concentration Q Q Q

Na2SO4 mlmin mlmin mlmin

20 500 2000

Re Re Re

1852 46296 185185

kf kf kf

ms ms ms

235405E-06 688E-06 109E-05

jlim jlim jlim

molL mAcm2 mAcm2 mAcm2

0001 068 199 316

jlim jlim jlim

molL mAcm2 mAcm2 mAcm2

0005 341 996 1581

jlim jlim jlim

molL mAcm2 mAcm2 mAcm2

001 681 1992 3163

jlim jlim jlim

molL mAcm2 mAcm2 mAcm2

005 3407 9962 15814

jlim jlim jlim

molL mAcm2 mAcm2 mAcm2

01 6814 19924 31627

Parameters Symbol Units Value

Influent concentration C0 mgL 20

Effluent concentration Ce mgL 02

Flow rate Q m3day 1000

Pseudo first order rate constant k min 0042

Size of reactor VRequired m3 38 m3

Detention time τ min 548

Electrode spacing d cm 1

Fluid velocity u ms 0033

Electrolyte Na2SO4 Concentration M 005

Current density J mAcm2 30

Assuming a Plug Flow Reactor (PFR) to be Confirmed with CFD

Full Scale Reactor Design

Full Scale Reactor Design

Rough Design of Reactor (top view)

1 2 3 4 5 6 7 8 9 10

105 meters

long

10 meters

electrodes

10 meters

2 meters deep

Reactor Channel

1 meter

hellip

5 cm 95 cmInfluent Effluent

The total costs (capital costs + energy costs) as a function of different electrode spacing for different theoretical

reaction rate In here the treatment objective is 99 removal flow rate is 1000 m3day and the fluid velocity is 00116

ms The flow channel has eddy promoter and its electrode spacing and obstacle distance ratio is 13 The electricity

price is $00512kWh and the pumping power is 853 kW The electrode price is $300m2 and its lifetime is 2000 h

Capital Expenditure Operational Expenditure

CapEx vs OpEx

Cost Analysis for Preliminary Design

The total costs (capital costs + energy costs) as a function of different electrode spacing for different theoretical

reaction rate In here the treatment objective is 99 removal flow rate is 1000 m3day and the fluid velocity is 00116

ms The flow channel has eddy promoter and its electrode spacing and obstacle distance ratio is 13 The electricity

price is $00512kWh and the pumping power is 853 kW The electrode price is $300m2 and its lifetime is 2000 h

Currently we are at only Ω=0436

Computer-based First-Principles Kinetic Model

Reaction Pathway Generator

(Graph Theory)

Rate Constants Estimator

(Group Contribution Method

Free Energy Linear

Relationship

Genetic Algorithm)

Ordinary Differential

Equations

(ODEs) Generator and Solver

(Gearrsquos Algorithm or

Monte Carlo algorithm)

Kinetic Monte Carlo Solver can

solve 1 million ODEs on PC

within 30 minutes

Complexity of Reaction PathwayExample

General reaction mechanisms that HObull initiates based on past experimental studies

Stefan and Bolton 1998 1999 1999 Stefan et al 1996 2000 Cooper et al 2009 Li et al 2004 2007 von Sonntag and

Schuchmann 1984 Schuchmann and von Sonntag 1979

Type of mechanismNumber of

speciesNumber of reactions

Full mechanism 120 370

Reduced mechanism 41 89

The criterion for DRG method is 1

Reaction rate constants are obtained from group contribution method (Minakata et al 2009 ESampT 43 6220-6227) and literature includingNate et al 1990 J Phys Chem Ref Data 19 413-513Nate et al 1995 J Phys Chem Ref Data 25 709-1050Buxton et al 1988 J Phys Chem Ref Data 17 513-886von Sonntag et al 1991 Angeuz Chem Int Ed Engl 30 1229-1253Li et al 2009 ESampT 43 2831-2837Li et al 2007 ESampT 41 1696-1703

Initial concentration of TCE 108 mM

Initial concentration of O2 22 mM

Initial concentration of H2O2 104 mM

Initial pH 59

Wave length of UV 200~300 nm

Light intensity779times10-6

EinsteinLmiddots

Reactor typeCompletely mixed batch reactor

Reaction time 30 min

Comparison of concentration profiles of major species for experimental data (Li Stefan Crittenden 2007 ESampT 41 1696-1703) and simulation results

00

20

40

60

80

100

120

00

02

04

06

08

10

12

0 5 10 15 20 25 30[H

2O

2]

(mM

)

[Ma

jor

spec

ies]

(m

M)

Time(min)

TCE exp

formic acid exp

oxalic acid exp

20 times DCA exp

20 times MCA exp

TCE cal

formic acid cal

oxalic acid cal

20 times DCA cal

20 times MCA cal

H2O2 exp

H2O2 cal

The photolysis of TCE was added manually because it is not included in this version of the pathway generator

Predicted Concentration Profiles of

Trichloroethene (TCE) and Stable-byproducts in UVH2O2 AOP

Comparison of number averaged molecular

weight (MW) for experimental data

(Vijayalakshmi et al J Appl Polym Sci 2006

100 3997-4003) and on-the-fly KMC model

The KMC model used a population number of 108L to

represent a concentration of 1molL

0

02

04

06

08

1

12

14

16

18

0 25 50 75 100 125 150 175 200

Aver

aged

mole

cu

lar

wei

gh

t (1

05

gm

ol)

Time (min)

Experiment

On-the-fly KMC

0

02

04

06

08

1

12

0 25 50 75 100 125 150 175 200

Nu

mb

er o

f re

act

ion

s (1

06)

Time (min)

Time evolvement of the number of generated

reactions for the degradation of PAM during the

UVTiO2 process

Degradation of Polyacrylamide (PAM)

Simulation Results for PAM Degradation in UVTiO2 AOP

Guo X Minakata D and Crittenden J 2015 On-the-fly kinetic Monte Carlo simulation of aqueous phase advanced oxidation processes Environmental science amp technology 49(15) pp9230-9236

1 Crittenden John C Shumin Hu David W Hand and Sarah Green ldquoA Kinetic Model for H2O2UV Process in a Completely Mixed Batch Reactorrdquo Water Research 33(10) 2315-2328 (1999)

2 Li K Crittenden JC Computerized pathway elucidation for hydroxyl radical induced chain reaction mechanisms in aqueous phase AOPs Environmental Science amp Technology 2009 43(8) 2831-2837

3 Li K Stefan MI Crittenden JC Trichloroethene degradation by UVH2O2 advanced oxidation process product study and kinetic modeling Environmental Science amp Technology 2007 41 1696-1703

4 Li K M I Stefan and J C Crittenden ldquoUV Photolysis of Trichloroethylene (TCE) Product Study and Kinetic Modelingrdquo Environmental Science and Technology Vol 38 No 24 6685-6693 (2004)

5 Ke Li David R Hokanson John C Crittenden R Rhodes Trussell and Daisuke Minakata ldquoEvaluating UVH2O2 Processes for Methyl tert-Butyl Ether (MtBE) and tertiary Butyl Alcohol (TBA) Removal from

Drinking Water Source Effect of Pretreatment Options and Light Sourcesrdquo Water Research 2008 Volume 42 (20) 5045-5053

6 Minakata D Li K Westerhoff P Crittenden J Development of a group contribution method to predict aqueous phase hydroxyl radical reaction rate constants Environmental Science amp Technology 2009 43

6220-6227

7 Minakata D Crittenden J Linear Free Energy Relationships between the Aqueous Phase Hydroxyl Radical (HObull) Reaction Rate Constants and the Free Energy of Activation Environmental Science amp Technology

2011a 45 3479-3486

8 Minakata D Song W Crittenden J Reactivity of aqueous phase hydroxyl radical with halogenated carboxylate anions Experimental and theoretical studies Environmental Science amp Technology 2011 45 6057-

6065

9 Daisuke Minakata Stephen P Mezyk Jace W Jones Brittany R Daws John C Crittenden ldquoDevelopment of Linear Free Energy Relationships for Aqueous Phase Radical-Involved Chemical Reactionsrdquo

Environmental Science amp Technology 2014 48 (23) 13925-13932

10 Xin Guo Daisuke Minakata John C Crittenden ldquoOn-the-Fly Kinetic Monte Carlo Simulation of Aqueous Phase Advanced Oxidation Processesrdquo Environmental Science and Technology 2015 49 (15) 9230ndash9236

11 Guo X Minakata D Crittenden JC ldquoComputer-Based First-Principles Kinetic Monte Carlo Simulation of Polyethylene Glycol Degradation in Aqueous Phase UVH2O2 Advanced Oxidation Processrdquo

Environmental Science amp Technology 2014 48 10813minus10820

12 Xin Guo Daisuke Minakata Junfeng Niu John C Crittenden ldquoComputer-based First-principles Kinetic Modeling of Degradation Pathways and Byproduct Fates in Aqueous Phase Advanced Oxidation Processesrdquo

Environmental Science and Technology 2014 48 (10) pp 5718ndash5725

13 Yajie Qian Xin Guo Yalei Zhang Yue Peng Peizhe Sun Ching-Hua Huang Junfeng Niu Xuefei Zhou John C Crittenden ldquoPerfluorooctanoic Acid Degradation Using UVminusPersulfate Process Modeling of the

Degradation and Chlorate Formationrdquo 2015 Environmental Science and Technology 50 (2) 772ndash781

14 Ruzhen Xie Xiaoyang Meng Peizhe Sun Junfeng Niu Wenju JiangLawrence Bottomley Duo Li Yongsheng Chen John C CrittendenrdquoElectrochemical Oxidation of Ofloxacin Using a TiO2-based SnO2-

SbPolytetrafluoroethylene Resin-PbO2 Electrode Reaction Kinetics and Mass Transfer Impactrdquo 2016 Applied Catalysis B Environmental 203 (2017) 515ndash525

15 Westerhoff Paul Moon Hye Minakata Daisuke Crittenden John ldquoOxidation of Organics in Retentates from Reverse Osmosis Wastewater Reuse Facilitiesrdquo Water Research 43 (16) 3992-2998

16 Liu L Chen F Yang F Chen Y Crittenden J ldquoPhotocatalytic degradation of 24-dichlorophenol using nanoscale FeTiO2rdquo Chemical Engineering Journal 2012 181ndash182 (0)189-195

References

References

17 Ying Wang Jiasheng Fang John C Crittenden Chanchan Shen ldquoNovel RGO120572-FeOOH Supported Catalyst for Fenton Oxidation of Phenol at a Wide pH Range Using Solar-Light-Driven Irradiationrdquo 2017 Journal

of Hazardous Materials 329 321ndash329

18 Xiaodong Ma Mengying Zhao Qin Pang Meihua Zheng Hongwen Sun John C Crittenden Yanying Zhu Yongsheng Chen ldquoDevelopment of Novel CaCO3Fe2O3 Nanorods for Low Temperature 12-

Dichlorobenzene Oxidationrdquo 2017 Applied Catalysis A General 522 (2016) 70ndash79

19 Heacutector L Otaacutelvaro-Mariacuten Miguel Angel Mueses John C Crittenden Fiderman Machuca-Martinez ldquoSolar Photoreactor Design by the Photon Path Length and Optimization of the Radiant Field in a TiO2-based CPC

Reactorrdquo 2017 Chemical Engineering Journal 315 283ndash295

20 Qi Wang Naxin Zhu Enqin Liu Chenlu Zhang John C Crittenden Yi ZhangYanqing CongldquoFabrication of Visible-Light Active Fe2O3-GQDsNF-TiO2 Composite Film with Highly Enhanced

Photoelectrocatalytic Performancerdquo 2017 Applied Catalysis B Environmental 205 347ndash356

21 Junfeng Niu Lifeng Yin Yunrong Dai Yueping Bao John C Crittenden ldquoDesign of Visible Light Responsive Photocatalysts for Selective Reduction of Chlorinated Organic Compounds in Waterrdquo 2016 Applied

Catalysis A General 521 90ndash95

22 Chaojie Jiang Lifen Liu John C Crittenden ldquoAn Electrochemical Process that Uses an Fe0TiO2 Cathode to Degrade Typical Dyes and Antibiotics and a Bio-anode that Produces Electricityrdquo 2016 Frontiers of

Environmental Science amp Engineering 10(4) 15

23 Yijing Xia Qizhou Dai Mili Weng Yue Peng Jinming Luo Xiaoyang Meng Xubiao Luo Jianmeng Chen John C Crittenden ldquoFabrication and Electrochemical Treatment Application of an Al-Doped PbO2

Electrode with High Oxidation Capability Oxygen Evolution Potential and Reusabilityrdquo2015 Journal of The Electrochemical Society 162 (10) E258-E262

24 Feng Duan Yuping Li Hongbin Cao Yi Wang John C Crittenden Yi Zhang ldquoActivated Carbon Electrodes Electrochemical Oxidation Coupled with Desalination for Wastewater Treatmentrdquo 2015 Chemosphere

125 205-211

25 Xing Linlin Xie Yongbing Cao Hongbin Minakata Daisuke Zhang Yi Crittenden John C ldquoActivated carbon-enhanced ozonation of oxalate attributed to HObull oxidation in bulk solution and surface oxidation

Effects of the type and number of basic sitesrdquo Chemical Engineering Journal 2014 245 71-79

26 Yao H Sun P Minakata D Crittenden JC Huang C-H ldquoKinetics and Modeling of Degradation of Ionophore Antibiotics by UV and UVH2O2rdquo Environmental Science and Technology 2013 (47) 4581-

45892

26 Li Yang et al Synergistic photogeneration of reactive oxygen species by dissolved organic matter and C60 in aqueous phase Environmental science amp technology 492 (2015) 965-973

28 Niu Junfeng et al Photocatalytic reduction of triclosan on AundashCu 2 O nanowire arrays as plasmonic photocatalysts under visible light irradiation Physical Chemistry Chemical Physics 1726 (2015) 17421-17428

29 Niu Junfeng et al Design of visible light responsive photocatalysts for selective reduction of chlorinated organic compounds in water Applied Catalysis A General 521 (2016) 90-95

30 Tianyin Huang Jiabin Chen Zhongming Wang Xin Guo John C Crittenden ldquoExcellent Performance of Cobalt-Impregnated Activated Carbon in Peroxymonosulfate Activation for Acid Orange 7 Oxidationrdquo 2017

Environmental Science and Pollution Research Volume 24 (10) 9651ndash9661

References

31 Yang Li Junfeng Niu Enxiang Shang John C Crittenden ldquoPhotochemical Transformation and Photoinduced Toxicity Reduction of Silver Nanoparticles in the Presence of Perfluorocarboxylic Acids under UV

Irradiationrdquo Environmental Science and Technology 2014 48 (9) pp 4946ndash4953

32 Cao H Xing L Wu G Xie S Zhang SY Minakata D Crittenden JC ldquoPromoting effect of nitration modification on activated carbon in the catalytic ozonation of oxalic acidrdquo Applied Catalysis B

Environmental 2014 146 169-176

33 Konsowa A H Ossman M E Chen Y Crittenden J C ldquoDecolorization of industrial wastewater by ozonation followed by adsorption on activated carbonrdquo Journal of Hazardous Materials 176 (2010) 181-185

November 10 2009

34 Wipada Sanongraj Yongsheng Chen John Crittenden David Hand and David Perram ldquoDevelopment of Photocatalytic Oxidation Model Part I-Mathematical Model for Photocatalytic Destruction of Organic

Contaminants in Airrdquo Journal of the Air and Waste Management Association 571112ndash1122 September 2007

35 Chen Y JC Crittenden S Hackney L Sutter and DW Hand ldquoPreparation of a Novel TiO2-based p-n Junction Nanotube Photocatalystrdquo Environmental Science and Technology Vol 39 No 5 1201-1208 (2005)

36 Suri RPS J Liu JC Crittenden DW Hand and DL Perram Removal and Destruction of Organic Contaminants in Water Using Adsorption Steam Regeneration and Photocatalytic Oxidation A Pilot Scale

Studyrdquo Journal of Air and Waste Management Volume 49 (August 1999) 951 ndash 958

37 Burns RA JC Crittenden DW Hand VH Selzer LL Sutter SR Salman Effect of Inorganic Ions in the Heterogeneous Photocatalysis of Trichloroethene ASCE Journal of Environmental Engineering Vol

125 No 1 pp 77-85 (January 1999)

38 Liu J JC Crittenden DW Hand and DL Perram Regeneration of Adsorbents Using Heterogeneous Photocatalytic Oxidationrdquo Journal of Environmental Engineering Vol 122 No 8 pp 707-714 (1996)

39 Crittenden JC J Liu DW Hand and DL Perram Photocatalytic Oxidation of Chlorinated Hydrocarbons in Waterrdquo Water Research Vol31 No 3 pp 429-438 (1997)

40 Crittenden JC RPS Suri DL Perram and DW Hand Decontamination of Water Using Adsorption and Photocatalysisrdquo Water Research Vol 31 No 3 pp 411-418 (1997)

41 Crittenden JC Y Zhang DW Hand and DL Perram Destruction of Organic Compounds in Water Using Fixed-Bed Photocatalysts Journal of Solar Energy Engineering (ASME) Vol 118 No 5 pp 123 -129

(1996)

42 Crittenden JC Y Zhang DW Hand and DL Perram Solar Detoxification of Fuel-Contaminated Groundwater Using Fixed-Bed Photocatalystsrdquo Water Environment Research Vol 68 No 3 pp 270-278

(1996)

43 Zhang Y JC Crittenden and DW Hand The Solar Photocatalytic Decontamination of Waterrdquo Chemistry amp Industry Vol 18 pp 714-717 September (1994)

44 Mourand JT JC Crittenden DW Hand DL Perram and S Notthakun Regeneration of Spent Adsorbents Using Advanced Oxidationrdquo Water Environment Federation Vol 67 No 3 pp 355-363 (1995)

45 Hand DW DL Perram and JC Crittenden Destruction of DBP Precursors with Catalytic Oxidationrdquo American Water Works Association Journal Vol 87 No 6 pp 84-96 (1995)

46 Zhang Y JC Crittenden DW Hand and DL Perram Fixed-Bed Photo-catalysts for Solar Decontamination of Waterrdquo Environmental Science amp Technology Vol 28 No 3 pp 435-442 (1994)

47 Suri RPS J Liu DW Hand JC Crittenden DL Perram and ME Mullins Heterogeneous Photocatalytic Oxidation of Hazardous Organic Contaminants in Waterrdquo Water Environment Federation Vol 65 No

5 pp 665-673 (1993)

Page 8: The Application of Advanced Oxidation Processes (AOPs) and ...€¦ · We define the electron efficiency to be = 32 12 ·( J 4𝑥)· Where TOC in mg (c)/L and COD in mg ( 2)/L, n

Electrochemical Oxidation Processes

2-Dimensional and 3-Dimensional Electrodes

3D Electrode

bull Lower cell voltage lower EEO

bull Works with low ionic strength

EAOP Systems Comparison

Loss Electron Oxidation (LEO) Oxidation Potential vs NHE

21198672119874 rarr 4119867+ + 4119890minus + 1198742 1198640 = minus123 119881

2H2119874 rarr 11986721198742 + 2119867+ + 2119890minus 1198640 = minus177 119881

211987811987442minus rarr 11987821198748

2minus + 2119890minus 1198640 = minus201 119881

1198672119874 + 1198742 rarr 1198743 + 2119867+ + 2119890minus 1198640 = minus207 119881

11987811987442minus rarr 1198781198744

minus middot +119890minus 1198640 = minus260 119881

1198672119874 rarr 119867119874 middot +119867+ + 119890minus 1198640 = minus274 119881

119860119899119900119889119890 rarr ℎ119907119887+ + 119890119888119887

minus

ℎ+ + 1198672119874 rarr 119867119874 sdot +119867+

Ideally we want every electron to

create one HO∙

Band Gap Engineering

Gain Electron Reduction (GER) Reduction Potential vs NHE

2119867+ + 2119890minus rarr 1198672 1198640 = 000 119881

1198742 + 2119867+ + 2119890minus rarr 11986721198742 1198640 = 062 119881

Base substrate for Anode 1 and 2 Ti (2~3 mm thick)

Anode 1 TiO2 NanotubesSnO2-SbPTFE-PbO2

Inner Layer TiO2 Nanotube array

Intermediate layer -SnO2-Sb (Sb2O4)

Outer Layer PTFE-PbO2

Anode 2 Blue TiO2 NanotubesAged SnO2-Sb

Inner Layer Blue TiO2 Nanotube array

Outer Layer -SnO2-Sb (Sb2O4)

TiO2 band gap rutile 30 eV anatase 32 eV blue 33 eV

SnO2 band gap rutile 36 eV PbO2 16 eV (good for higher

current densities)

Multi-Layered Semiconductor Anode

Mixed Metal Oxide electrode (MMO)

a) b)

c)

SEM of (a) TiO2-Nanotubes Substrate (b) SnO2-Sb intermediate layer

(c) PTFEPbO2 electrode

SEM Characterization of Layers Anode 1Anode 1 TiO2 NanotubesSnO2-SbPTFE-PbO2

Half coated surface (coated only 5 times which

still expose some nanotubes surface) with non-

aging sol-gel (exhibit less compact morphology

and large crystal size)

Fully coated aged SnO2-Sb layer (15 times coating)

shows compact crystals configuration and smaller

size which improved surface area and surface

reaction sites

Half-Coated Non-Aged vs Fully

Coated Aged Anode 2Anode 2 Blue TiO2 NanotubesAged SnO2-Sb

The estimated life time of Blue TiO2 nanotubes and Aged SnO2-Sb is 2189

and 4794 h at operational current densities of 10 and 5 mAcm2

Characterization Voltammetry

Linear sweep voltammetry (LSV) of the 1 2 anode BDD for a 05 M H2SO4 solution (pH = 0) Scan rate is

10 mVs The standard reduction potentials (pH=0) for O2 H2O2 O3 and HOmiddot are +123 V +177 V +207 V

and +274 V

Patent

Pending

119889 119861119860

119889119905= 119896119861119860119867119874 times 119861119860 times 119867119874 119904119904

= 119896119861119860[119861119860]

119867119874 119904119904 =119896119861119860

119896119861119860119867119874

Anode material 2 743times10-14 molL

Anode material 1 477times10-14 molL

The steady state hydroxyl radical

concentration is estimated from 1 mM

benzoic acid degradation in a 30 mM

NaClO4 at 5 mAcm2 [HO]=kBAkHO

119896119861119860119867119874 = 59 times 109119871(119898119900119897119904)

Hydroxyl Radicals Production Comparison

Actual industrial used anode TiPbO2

Pilot treatment results will show in a minute

These blue NTA are unstable because they are not

coated with SnO2 ndash Sb

The stoichiometric equation for benzoic acid is given as

119862711986761198742 + 121198672119874 rarr 71198621198742 + 30119867+ + 30119890minus

We define the electron efficiency to be

119864119864 =32

12middot (

119899

4119909) middot

119889 119879119874119862

119889 119862119874119863

Where TOC in mg (c)L and COD in mg (1198742)L n is the

number of electrons transfer from the anode for a

complete oxidation reaction and x is the number of

carbon atoms in the organic contaminants

According to the equation and calculation the electron

efficiency for 2D and 3D systems in this case are

119864119864 2119863 = 0866 (866) and 119864119864 3119863 = 1067 (1067)

For 1mmolL (~122mgL) TOC ~90mgL COD

~190mgL

Low electrolyte concentration condition 0005 M Na2SO4

Electron Efficiency (Faraday Efficiency)

Investigate amp optimize electrode

spacing amp fluid velocity

Mass Transfer Impact of EAOPs

We used Differential Column Batch Reactor (DCBR)

in experiments

(a) ofloxacin destruction by 1 anode for various electrode spacing (b) pseudo-first-order rate constants (c) EEO

Anode surface area 10 cm2 electrode spacing 1 cm fluid velocity 0033 ms initial ofloxacin concentration 20

mgL voltage 35-86 V electrolyte concentration is 005 M Na2SO4 pH value 625 and temperature is 25

Mass Transfer Impact Electrode Spacing

for 2D Electrode

(a) ofloxacin destruction on 1 anode for various fluid velocity (b) pseudo-first-order rate constants (c) EEO

Anode surface area 10 cm2 electrode spacing 1 cm fluid velocity 0033 ms initial ofloxacin concentration 20

mgL voltage 35-86 V electrolyte concentration is 005 M Na2SO4 pH value 625 and temperature is 25

Mass Transfer Impact Fluid Velocity

120570 =119896119891 sdot 120579

119896119891 sdot 120579 + 119896119872119886119909 sdot 119889

Effectiveness factor in different fluid velocity and the best fitted model 1

anode surface area 10 cm2 electrode spacing 1 cm electrolyte 005 M

Na2SO4 solution current density 30 mAcm2 initial ofloxacin concentration

20 mgL voltage 63-64 v pH value 625 temperature 25

l

du

Plain channel

119878ℎ =119896119891 sdot 119889

119863119897= 33 sdot

119889

119897sdot Re sdot 119878119888

13

Re =120588 sdot 119906 sdot 119889

120583

119878119888 =120583

120588 sdot 119863119897

120570 =119903119900119887119904

119903max=

119896119900119887119904 119877

119896max 119877

Sherwood number

Reynolds number

Schmidt number

Ω = 0436 means more than

56 oxidation rate reduced

by mass transfer

Mass Transfer Impact Effectiveness Factor

Many AOP follow a pseudo-first order rate

EEO is useful because if EEO is 5kWhr-order then if

you supply 5 1

15 kWm3 then you will 90 99 999 destruction of

the parent compound

Note COD and TOC have a much slower rate

Byproducts are less toxic and more biodegradable

Figure of Merit Electrical Energy Used per

Order (EEO) of Parent Compound Destroyed

EEO in Conventional AOPs

Conventional AOP Example EEO in UVH2O2

119864119864119874 =119875 times 119905

119881 times log1198620119862

+11986211986721198742

times00022119897119887

119892times 11986411986721198742

log1198620119862

119864119864119874 =2303 times 119875 times 1198961 11986721198742 0 + 1198962 1198671198621198743

minus0 + 1198963 119873119874119872 0 + 1198964 119877 0 times ε11986721198742

11986721198742 0 + ε119877 119877 0 + ε119873119874119872 119873119874119872 0

119875119880119881 times 1198964 times ε1198672119874211986721198742 0 times 1 minus 10minus119860 times V

+ 34 gramL times 11986721198742 0 times 00022 119897119887119892119903119886119898 times 11986411986721198742 times 1000 Lm3

bull Target contaminant concentrations oxidant dosage NOM determine the EEO of

conventional AOPs

EEO in EAOPs

EEO in EAOPs

EEO =v times j times A times V times t

V times logC0C

=v times j times A times t

logC0C

EEO =v times j times A

0434 times 119896119878 times Ω

v voltage V

j current densitymA

cm2

A surface area per volumem2

m3

V volumem3

C concentrationmol

m3

ks surface reaction rate sminus1

kobs observed reaction rate sminus1

Ω effectiveness factor

Ω =119896119900119887119904

119896119878

bull Target contaminants concentration dose does not effect EEO in EAOPs

bull EEO is a constant under same operational conditions

01 1 10 100 1000 10000 100000

Ultrapure Water

Distilled Water

Tap Water

Potable Water In The US

Surface Water

Industrial Wastewater

Seawater

Conductivity microScm

Water Streams Conductivity Guide

2D vs 3D EEO Comparison

Degradation of 1 mmolL benzoic acid in a 470 mL differential column batch reactor pH controlled

~68 surface water used has a low conductivity 112 microscm controlled current density is 30 mAcm2

2D anode size is 10 cm2 3D used 80 meshed Ti gauze has surface area 718 cm210 cm2 DCBR

operated at Re 194 Sc 2727 Sh 194 kf 64times10-6 ms Dl 9times10-6 cm2s

2D Electrode

3D Electrode

EEO Analysis in EAOPs

Electrolyte

Concentration

BA

concentrati

on

Voltage Current

Density

EEO

molL mgL V mAcm2 kWhm3

Surface

Water+BA~00004

(113 microScm)

24

(02 mM) 60 105 1738Surface

Water+BA 00004122

(1 mM) 60 105 2003Industrial

Water+BA

01

(16210

microScm) 24 73 304 175Industrial

Water+BA 01 122 8 30 207

Voltage Current

Density

EEO

V mAcm2 kWhm3

152 105 868

3D System2D System

bull Ionic strength is important in EAOPs NOM is not

bull Initial concentration C0does not effect EEO (at least for the

concentrations we tested)

bull Accordingly the pseudo ndash first surface rate constant is same for

different influent concentrations and the same operational

conditions for the conditions we tested

bull We expect to see the reaction rate to decrease with high C0 because

at high concentrations all the reactions site on the anode will be

occupied preventing the oxidation rate from increasing (Langmuir-

Hinshelwood Hougen Watson kinetics confirmation needed)

53 304 290

Conventional AOPs vs EAOPs Modeling 13

A case study to compare EEOs for

UVH2O2 H2O2O3 UVHOCl UVPersulfate UVTiO2

EAOPs (two-dimensional and three-dimensional)

Simulation Conditions[HCO3

minus] = 3 mM [NOM] = 2 mgL [Cl-] = 0001 M

pH = 7 kBA = 59times10-9 L(molmiddotS)Same 22 W input energy gives UV light intensity = 164times10-6 Einstein s-1 L-1

Initial Concentrations [R] (Benzoic Acid in this case) = 20 200 2000 mgL

Quantum yield

UVH2O2 = 05 UVHOCl = 09 UVPersulfate = 07

UVTiO2 = 004 (light transmission efficiency = 04)

Chemical production energy

H2O2 = 49 kWhlb persulfate = 49 kWhlb HOCl = 51 kWhlb O3 = 5 kWhlb

Note TiO2 and electrodes production energies are not included in simulation

EAOPs assumptions amp parameters

J = 30 mAcm2 2D anode size A = 10 cm2 3D anode size A= 718 cm2 (80 meshed Ti gauze)

Sc = 2727 Sh = 194 Dl = 9times10-6 cm2s d = 1 cm

Note pumping energy is small compare to electricity and neglected in simulation

Q = 20 mLmin Re = 1851 kf = 235times10-6 ms

Q = 500 mLmin Re = 46296 kf = 688times10-6 ms

Q = 2000 mLmin Re = 203704 kf = 113times10-5 ms (Re lt 2100 in laminar flow)

Minimal

EEO

(kWhm3)

Optimal

OxidantCatalyst

Dosage

9072 [TiO2]=300 mgL

4022 [Persulfate]=16 gL

2718 [H2O2]=0612 gL

2442 [HOCl]=026 gL

679 [H2O2]=0028 mgL

Electrolyte

(Na2SO4)

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

0M3702

0001M 6466 2405

0005M 3781 2069

001M 2676 1552

01M 469 1294

AOPs Minimal

EEO

(kWhm3)

Optimal

OxidantCatalyst

Dosage

UVTiO2 1038 [TiO2]=300 mgL

UVPersulfate 128 [Persulfate]=117 gL

UV H2O2 090 [H2O2]=0204 gL

UVHOCl 367 [HOCl]=014 gL

H2O2O3 0015 [H2O2]=00206 mgL

[R]0 = 20 mgL

~16 mgL TOC

[R]0 = 200 mgL

~140 mgL TOC

Minimal

EEO

(kWhm3)

Optimal

OxidantCatalyst

Dosage

88271 [TiO2]=300 mgL

8208 [Persulfate]=581 gL

1768 [H2O2]=184 gL

8335 [HOCl]=0776 gL

17648 [H2O2]=0035 mgL

[R]0 = 2000 mgL

~1379 mgL TOC

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

3545

6015 2260

3559 1937

2504 1448

455 1207

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

3404

5634 2136

3367 1824

2357 1360

443 1132

Re = 1851 Re = 46296 Re = 203704

Conventional AOPs vs EAOPs Modeling 23

Mass Transfer Increase

Ion

Str

en

gth

In

crease

Conventional AOPs vs EAOPs Modeling 33

AOPs Minimal

EEO

(kWhm3)

Optimal

OxidantCatalyst

Dosage

UVTiO2 1038 [TiO2]=300 mgL

UVPersulfate 128 [Persulfate]=117 gL

UV H2O2 090 [H2O2]=0204 gL

UVHOCl 367 [HOCl]=014 gL

H2O2O3 0015 [H2O2]=00206 mgL

[R]0 = 20 mgL

~16 mgL TOC For low concentration treatment

objectives EAOPs may not be as good as

compared to conventional AOPs

Conventional UVH2O2 and H2O2O3 are

the best conventional AOPs for BA

Electrolyte

(Na2SO4)

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

0M3702

0001M 6466 2405

0005M 3781 2069

001M 2676 1552

01M 469 1294

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

3545

6015 2260

3559 1937

2504 1448

455 1207

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

3404

5634 2136

3367 1824

2357 1360

443 1132

Re = 1851 Re = 46296 Re = 203704Mass Transfer Increase

Ion

Str

en

gth

In

crease

Conventional AOPs vs EAOPs Modeling 33

Minimal

EEO

(kWhm3)

Optimal

OxidantCatalyst

Dosage

88271 [TiO2]=300 mgL

8208 [Persulfate]=581 gL

1768 [H2O2]=184 gL

8335 [HOCl]=0776 gL

17648 [H2O2]=0035 mgL

[R]0 = 2000 mgL

~1379 mgL TOC For high concentration treatment objectives

EAOPs are more energy efficient

3D-EAOP saves more energy than 2D because

it requires lower applied voltage

3D-EAOP works better than 2D in low ion

strength treatment

Electrolyte

(Na2SO4)

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

0M3702

0001M 6466 2405

0005M 3781 2069

001M 2676 1552

01M 469 1294

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

3545

6015 2260

3559 1937

2504 1448

455 1207

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

3404

5634 2136

3367 1824

2357 1360

443 1132

Re = 1851 Re = 46296 Re = 203704Mass Transfer Increase

Ion

Str

en

gth

In

crease

Limiting Current in Different Conditions

jlim = n times F times kf times Csalt

Electrolyte

Concentration Q Q Q

Na2SO4 mlmin mlmin mlmin

20 500 2000

Re Re Re

1852 46296 185185

kf kf kf

ms ms ms

235405E-06 688E-06 109E-05

jlim jlim jlim

molL mAcm2 mAcm2 mAcm2

0001 068 199 316

jlim jlim jlim

molL mAcm2 mAcm2 mAcm2

0005 341 996 1581

jlim jlim jlim

molL mAcm2 mAcm2 mAcm2

001 681 1992 3163

jlim jlim jlim

molL mAcm2 mAcm2 mAcm2

005 3407 9962 15814

jlim jlim jlim

molL mAcm2 mAcm2 mAcm2

01 6814 19924 31627

Parameters Symbol Units Value

Influent concentration C0 mgL 20

Effluent concentration Ce mgL 02

Flow rate Q m3day 1000

Pseudo first order rate constant k min 0042

Size of reactor VRequired m3 38 m3

Detention time τ min 548

Electrode spacing d cm 1

Fluid velocity u ms 0033

Electrolyte Na2SO4 Concentration M 005

Current density J mAcm2 30

Assuming a Plug Flow Reactor (PFR) to be Confirmed with CFD

Full Scale Reactor Design

Full Scale Reactor Design

Rough Design of Reactor (top view)

1 2 3 4 5 6 7 8 9 10

105 meters

long

10 meters

electrodes

10 meters

2 meters deep

Reactor Channel

1 meter

hellip

5 cm 95 cmInfluent Effluent

The total costs (capital costs + energy costs) as a function of different electrode spacing for different theoretical

reaction rate In here the treatment objective is 99 removal flow rate is 1000 m3day and the fluid velocity is 00116

ms The flow channel has eddy promoter and its electrode spacing and obstacle distance ratio is 13 The electricity

price is $00512kWh and the pumping power is 853 kW The electrode price is $300m2 and its lifetime is 2000 h

Capital Expenditure Operational Expenditure

CapEx vs OpEx

Cost Analysis for Preliminary Design

The total costs (capital costs + energy costs) as a function of different electrode spacing for different theoretical

reaction rate In here the treatment objective is 99 removal flow rate is 1000 m3day and the fluid velocity is 00116

ms The flow channel has eddy promoter and its electrode spacing and obstacle distance ratio is 13 The electricity

price is $00512kWh and the pumping power is 853 kW The electrode price is $300m2 and its lifetime is 2000 h

Currently we are at only Ω=0436

Computer-based First-Principles Kinetic Model

Reaction Pathway Generator

(Graph Theory)

Rate Constants Estimator

(Group Contribution Method

Free Energy Linear

Relationship

Genetic Algorithm)

Ordinary Differential

Equations

(ODEs) Generator and Solver

(Gearrsquos Algorithm or

Monte Carlo algorithm)

Kinetic Monte Carlo Solver can

solve 1 million ODEs on PC

within 30 minutes

Complexity of Reaction PathwayExample

General reaction mechanisms that HObull initiates based on past experimental studies

Stefan and Bolton 1998 1999 1999 Stefan et al 1996 2000 Cooper et al 2009 Li et al 2004 2007 von Sonntag and

Schuchmann 1984 Schuchmann and von Sonntag 1979

Type of mechanismNumber of

speciesNumber of reactions

Full mechanism 120 370

Reduced mechanism 41 89

The criterion for DRG method is 1

Reaction rate constants are obtained from group contribution method (Minakata et al 2009 ESampT 43 6220-6227) and literature includingNate et al 1990 J Phys Chem Ref Data 19 413-513Nate et al 1995 J Phys Chem Ref Data 25 709-1050Buxton et al 1988 J Phys Chem Ref Data 17 513-886von Sonntag et al 1991 Angeuz Chem Int Ed Engl 30 1229-1253Li et al 2009 ESampT 43 2831-2837Li et al 2007 ESampT 41 1696-1703

Initial concentration of TCE 108 mM

Initial concentration of O2 22 mM

Initial concentration of H2O2 104 mM

Initial pH 59

Wave length of UV 200~300 nm

Light intensity779times10-6

EinsteinLmiddots

Reactor typeCompletely mixed batch reactor

Reaction time 30 min

Comparison of concentration profiles of major species for experimental data (Li Stefan Crittenden 2007 ESampT 41 1696-1703) and simulation results

00

20

40

60

80

100

120

00

02

04

06

08

10

12

0 5 10 15 20 25 30[H

2O

2]

(mM

)

[Ma

jor

spec

ies]

(m

M)

Time(min)

TCE exp

formic acid exp

oxalic acid exp

20 times DCA exp

20 times MCA exp

TCE cal

formic acid cal

oxalic acid cal

20 times DCA cal

20 times MCA cal

H2O2 exp

H2O2 cal

The photolysis of TCE was added manually because it is not included in this version of the pathway generator

Predicted Concentration Profiles of

Trichloroethene (TCE) and Stable-byproducts in UVH2O2 AOP

Comparison of number averaged molecular

weight (MW) for experimental data

(Vijayalakshmi et al J Appl Polym Sci 2006

100 3997-4003) and on-the-fly KMC model

The KMC model used a population number of 108L to

represent a concentration of 1molL

0

02

04

06

08

1

12

14

16

18

0 25 50 75 100 125 150 175 200

Aver

aged

mole

cu

lar

wei

gh

t (1

05

gm

ol)

Time (min)

Experiment

On-the-fly KMC

0

02

04

06

08

1

12

0 25 50 75 100 125 150 175 200

Nu

mb

er o

f re

act

ion

s (1

06)

Time (min)

Time evolvement of the number of generated

reactions for the degradation of PAM during the

UVTiO2 process

Degradation of Polyacrylamide (PAM)

Simulation Results for PAM Degradation in UVTiO2 AOP

Guo X Minakata D and Crittenden J 2015 On-the-fly kinetic Monte Carlo simulation of aqueous phase advanced oxidation processes Environmental science amp technology 49(15) pp9230-9236

1 Crittenden John C Shumin Hu David W Hand and Sarah Green ldquoA Kinetic Model for H2O2UV Process in a Completely Mixed Batch Reactorrdquo Water Research 33(10) 2315-2328 (1999)

2 Li K Crittenden JC Computerized pathway elucidation for hydroxyl radical induced chain reaction mechanisms in aqueous phase AOPs Environmental Science amp Technology 2009 43(8) 2831-2837

3 Li K Stefan MI Crittenden JC Trichloroethene degradation by UVH2O2 advanced oxidation process product study and kinetic modeling Environmental Science amp Technology 2007 41 1696-1703

4 Li K M I Stefan and J C Crittenden ldquoUV Photolysis of Trichloroethylene (TCE) Product Study and Kinetic Modelingrdquo Environmental Science and Technology Vol 38 No 24 6685-6693 (2004)

5 Ke Li David R Hokanson John C Crittenden R Rhodes Trussell and Daisuke Minakata ldquoEvaluating UVH2O2 Processes for Methyl tert-Butyl Ether (MtBE) and tertiary Butyl Alcohol (TBA) Removal from

Drinking Water Source Effect of Pretreatment Options and Light Sourcesrdquo Water Research 2008 Volume 42 (20) 5045-5053

6 Minakata D Li K Westerhoff P Crittenden J Development of a group contribution method to predict aqueous phase hydroxyl radical reaction rate constants Environmental Science amp Technology 2009 43

6220-6227

7 Minakata D Crittenden J Linear Free Energy Relationships between the Aqueous Phase Hydroxyl Radical (HObull) Reaction Rate Constants and the Free Energy of Activation Environmental Science amp Technology

2011a 45 3479-3486

8 Minakata D Song W Crittenden J Reactivity of aqueous phase hydroxyl radical with halogenated carboxylate anions Experimental and theoretical studies Environmental Science amp Technology 2011 45 6057-

6065

9 Daisuke Minakata Stephen P Mezyk Jace W Jones Brittany R Daws John C Crittenden ldquoDevelopment of Linear Free Energy Relationships for Aqueous Phase Radical-Involved Chemical Reactionsrdquo

Environmental Science amp Technology 2014 48 (23) 13925-13932

10 Xin Guo Daisuke Minakata John C Crittenden ldquoOn-the-Fly Kinetic Monte Carlo Simulation of Aqueous Phase Advanced Oxidation Processesrdquo Environmental Science and Technology 2015 49 (15) 9230ndash9236

11 Guo X Minakata D Crittenden JC ldquoComputer-Based First-Principles Kinetic Monte Carlo Simulation of Polyethylene Glycol Degradation in Aqueous Phase UVH2O2 Advanced Oxidation Processrdquo

Environmental Science amp Technology 2014 48 10813minus10820

12 Xin Guo Daisuke Minakata Junfeng Niu John C Crittenden ldquoComputer-based First-principles Kinetic Modeling of Degradation Pathways and Byproduct Fates in Aqueous Phase Advanced Oxidation Processesrdquo

Environmental Science and Technology 2014 48 (10) pp 5718ndash5725

13 Yajie Qian Xin Guo Yalei Zhang Yue Peng Peizhe Sun Ching-Hua Huang Junfeng Niu Xuefei Zhou John C Crittenden ldquoPerfluorooctanoic Acid Degradation Using UVminusPersulfate Process Modeling of the

Degradation and Chlorate Formationrdquo 2015 Environmental Science and Technology 50 (2) 772ndash781

14 Ruzhen Xie Xiaoyang Meng Peizhe Sun Junfeng Niu Wenju JiangLawrence Bottomley Duo Li Yongsheng Chen John C CrittendenrdquoElectrochemical Oxidation of Ofloxacin Using a TiO2-based SnO2-

SbPolytetrafluoroethylene Resin-PbO2 Electrode Reaction Kinetics and Mass Transfer Impactrdquo 2016 Applied Catalysis B Environmental 203 (2017) 515ndash525

15 Westerhoff Paul Moon Hye Minakata Daisuke Crittenden John ldquoOxidation of Organics in Retentates from Reverse Osmosis Wastewater Reuse Facilitiesrdquo Water Research 43 (16) 3992-2998

16 Liu L Chen F Yang F Chen Y Crittenden J ldquoPhotocatalytic degradation of 24-dichlorophenol using nanoscale FeTiO2rdquo Chemical Engineering Journal 2012 181ndash182 (0)189-195

References

References

17 Ying Wang Jiasheng Fang John C Crittenden Chanchan Shen ldquoNovel RGO120572-FeOOH Supported Catalyst for Fenton Oxidation of Phenol at a Wide pH Range Using Solar-Light-Driven Irradiationrdquo 2017 Journal

of Hazardous Materials 329 321ndash329

18 Xiaodong Ma Mengying Zhao Qin Pang Meihua Zheng Hongwen Sun John C Crittenden Yanying Zhu Yongsheng Chen ldquoDevelopment of Novel CaCO3Fe2O3 Nanorods for Low Temperature 12-

Dichlorobenzene Oxidationrdquo 2017 Applied Catalysis A General 522 (2016) 70ndash79

19 Heacutector L Otaacutelvaro-Mariacuten Miguel Angel Mueses John C Crittenden Fiderman Machuca-Martinez ldquoSolar Photoreactor Design by the Photon Path Length and Optimization of the Radiant Field in a TiO2-based CPC

Reactorrdquo 2017 Chemical Engineering Journal 315 283ndash295

20 Qi Wang Naxin Zhu Enqin Liu Chenlu Zhang John C Crittenden Yi ZhangYanqing CongldquoFabrication of Visible-Light Active Fe2O3-GQDsNF-TiO2 Composite Film with Highly Enhanced

Photoelectrocatalytic Performancerdquo 2017 Applied Catalysis B Environmental 205 347ndash356

21 Junfeng Niu Lifeng Yin Yunrong Dai Yueping Bao John C Crittenden ldquoDesign of Visible Light Responsive Photocatalysts for Selective Reduction of Chlorinated Organic Compounds in Waterrdquo 2016 Applied

Catalysis A General 521 90ndash95

22 Chaojie Jiang Lifen Liu John C Crittenden ldquoAn Electrochemical Process that Uses an Fe0TiO2 Cathode to Degrade Typical Dyes and Antibiotics and a Bio-anode that Produces Electricityrdquo 2016 Frontiers of

Environmental Science amp Engineering 10(4) 15

23 Yijing Xia Qizhou Dai Mili Weng Yue Peng Jinming Luo Xiaoyang Meng Xubiao Luo Jianmeng Chen John C Crittenden ldquoFabrication and Electrochemical Treatment Application of an Al-Doped PbO2

Electrode with High Oxidation Capability Oxygen Evolution Potential and Reusabilityrdquo2015 Journal of The Electrochemical Society 162 (10) E258-E262

24 Feng Duan Yuping Li Hongbin Cao Yi Wang John C Crittenden Yi Zhang ldquoActivated Carbon Electrodes Electrochemical Oxidation Coupled with Desalination for Wastewater Treatmentrdquo 2015 Chemosphere

125 205-211

25 Xing Linlin Xie Yongbing Cao Hongbin Minakata Daisuke Zhang Yi Crittenden John C ldquoActivated carbon-enhanced ozonation of oxalate attributed to HObull oxidation in bulk solution and surface oxidation

Effects of the type and number of basic sitesrdquo Chemical Engineering Journal 2014 245 71-79

26 Yao H Sun P Minakata D Crittenden JC Huang C-H ldquoKinetics and Modeling of Degradation of Ionophore Antibiotics by UV and UVH2O2rdquo Environmental Science and Technology 2013 (47) 4581-

45892

26 Li Yang et al Synergistic photogeneration of reactive oxygen species by dissolved organic matter and C60 in aqueous phase Environmental science amp technology 492 (2015) 965-973

28 Niu Junfeng et al Photocatalytic reduction of triclosan on AundashCu 2 O nanowire arrays as plasmonic photocatalysts under visible light irradiation Physical Chemistry Chemical Physics 1726 (2015) 17421-17428

29 Niu Junfeng et al Design of visible light responsive photocatalysts for selective reduction of chlorinated organic compounds in water Applied Catalysis A General 521 (2016) 90-95

30 Tianyin Huang Jiabin Chen Zhongming Wang Xin Guo John C Crittenden ldquoExcellent Performance of Cobalt-Impregnated Activated Carbon in Peroxymonosulfate Activation for Acid Orange 7 Oxidationrdquo 2017

Environmental Science and Pollution Research Volume 24 (10) 9651ndash9661

References

31 Yang Li Junfeng Niu Enxiang Shang John C Crittenden ldquoPhotochemical Transformation and Photoinduced Toxicity Reduction of Silver Nanoparticles in the Presence of Perfluorocarboxylic Acids under UV

Irradiationrdquo Environmental Science and Technology 2014 48 (9) pp 4946ndash4953

32 Cao H Xing L Wu G Xie S Zhang SY Minakata D Crittenden JC ldquoPromoting effect of nitration modification on activated carbon in the catalytic ozonation of oxalic acidrdquo Applied Catalysis B

Environmental 2014 146 169-176

33 Konsowa A H Ossman M E Chen Y Crittenden J C ldquoDecolorization of industrial wastewater by ozonation followed by adsorption on activated carbonrdquo Journal of Hazardous Materials 176 (2010) 181-185

November 10 2009

34 Wipada Sanongraj Yongsheng Chen John Crittenden David Hand and David Perram ldquoDevelopment of Photocatalytic Oxidation Model Part I-Mathematical Model for Photocatalytic Destruction of Organic

Contaminants in Airrdquo Journal of the Air and Waste Management Association 571112ndash1122 September 2007

35 Chen Y JC Crittenden S Hackney L Sutter and DW Hand ldquoPreparation of a Novel TiO2-based p-n Junction Nanotube Photocatalystrdquo Environmental Science and Technology Vol 39 No 5 1201-1208 (2005)

36 Suri RPS J Liu JC Crittenden DW Hand and DL Perram Removal and Destruction of Organic Contaminants in Water Using Adsorption Steam Regeneration and Photocatalytic Oxidation A Pilot Scale

Studyrdquo Journal of Air and Waste Management Volume 49 (August 1999) 951 ndash 958

37 Burns RA JC Crittenden DW Hand VH Selzer LL Sutter SR Salman Effect of Inorganic Ions in the Heterogeneous Photocatalysis of Trichloroethene ASCE Journal of Environmental Engineering Vol

125 No 1 pp 77-85 (January 1999)

38 Liu J JC Crittenden DW Hand and DL Perram Regeneration of Adsorbents Using Heterogeneous Photocatalytic Oxidationrdquo Journal of Environmental Engineering Vol 122 No 8 pp 707-714 (1996)

39 Crittenden JC J Liu DW Hand and DL Perram Photocatalytic Oxidation of Chlorinated Hydrocarbons in Waterrdquo Water Research Vol31 No 3 pp 429-438 (1997)

40 Crittenden JC RPS Suri DL Perram and DW Hand Decontamination of Water Using Adsorption and Photocatalysisrdquo Water Research Vol 31 No 3 pp 411-418 (1997)

41 Crittenden JC Y Zhang DW Hand and DL Perram Destruction of Organic Compounds in Water Using Fixed-Bed Photocatalysts Journal of Solar Energy Engineering (ASME) Vol 118 No 5 pp 123 -129

(1996)

42 Crittenden JC Y Zhang DW Hand and DL Perram Solar Detoxification of Fuel-Contaminated Groundwater Using Fixed-Bed Photocatalystsrdquo Water Environment Research Vol 68 No 3 pp 270-278

(1996)

43 Zhang Y JC Crittenden and DW Hand The Solar Photocatalytic Decontamination of Waterrdquo Chemistry amp Industry Vol 18 pp 714-717 September (1994)

44 Mourand JT JC Crittenden DW Hand DL Perram and S Notthakun Regeneration of Spent Adsorbents Using Advanced Oxidationrdquo Water Environment Federation Vol 67 No 3 pp 355-363 (1995)

45 Hand DW DL Perram and JC Crittenden Destruction of DBP Precursors with Catalytic Oxidationrdquo American Water Works Association Journal Vol 87 No 6 pp 84-96 (1995)

46 Zhang Y JC Crittenden DW Hand and DL Perram Fixed-Bed Photo-catalysts for Solar Decontamination of Waterrdquo Environmental Science amp Technology Vol 28 No 3 pp 435-442 (1994)

47 Suri RPS J Liu DW Hand JC Crittenden DL Perram and ME Mullins Heterogeneous Photocatalytic Oxidation of Hazardous Organic Contaminants in Waterrdquo Water Environment Federation Vol 65 No

5 pp 665-673 (1993)

Page 9: The Application of Advanced Oxidation Processes (AOPs) and ...€¦ · We define the electron efficiency to be = 32 12 ·( J 4𝑥)· Where TOC in mg (c)/L and COD in mg ( 2)/L, n

Loss Electron Oxidation (LEO) Oxidation Potential vs NHE

21198672119874 rarr 4119867+ + 4119890minus + 1198742 1198640 = minus123 119881

2H2119874 rarr 11986721198742 + 2119867+ + 2119890minus 1198640 = minus177 119881

211987811987442minus rarr 11987821198748

2minus + 2119890minus 1198640 = minus201 119881

1198672119874 + 1198742 rarr 1198743 + 2119867+ + 2119890minus 1198640 = minus207 119881

11987811987442minus rarr 1198781198744

minus middot +119890minus 1198640 = minus260 119881

1198672119874 rarr 119867119874 middot +119867+ + 119890minus 1198640 = minus274 119881

119860119899119900119889119890 rarr ℎ119907119887+ + 119890119888119887

minus

ℎ+ + 1198672119874 rarr 119867119874 sdot +119867+

Ideally we want every electron to

create one HO∙

Band Gap Engineering

Gain Electron Reduction (GER) Reduction Potential vs NHE

2119867+ + 2119890minus rarr 1198672 1198640 = 000 119881

1198742 + 2119867+ + 2119890minus rarr 11986721198742 1198640 = 062 119881

Base substrate for Anode 1 and 2 Ti (2~3 mm thick)

Anode 1 TiO2 NanotubesSnO2-SbPTFE-PbO2

Inner Layer TiO2 Nanotube array

Intermediate layer -SnO2-Sb (Sb2O4)

Outer Layer PTFE-PbO2

Anode 2 Blue TiO2 NanotubesAged SnO2-Sb

Inner Layer Blue TiO2 Nanotube array

Outer Layer -SnO2-Sb (Sb2O4)

TiO2 band gap rutile 30 eV anatase 32 eV blue 33 eV

SnO2 band gap rutile 36 eV PbO2 16 eV (good for higher

current densities)

Multi-Layered Semiconductor Anode

Mixed Metal Oxide electrode (MMO)

a) b)

c)

SEM of (a) TiO2-Nanotubes Substrate (b) SnO2-Sb intermediate layer

(c) PTFEPbO2 electrode

SEM Characterization of Layers Anode 1Anode 1 TiO2 NanotubesSnO2-SbPTFE-PbO2

Half coated surface (coated only 5 times which

still expose some nanotubes surface) with non-

aging sol-gel (exhibit less compact morphology

and large crystal size)

Fully coated aged SnO2-Sb layer (15 times coating)

shows compact crystals configuration and smaller

size which improved surface area and surface

reaction sites

Half-Coated Non-Aged vs Fully

Coated Aged Anode 2Anode 2 Blue TiO2 NanotubesAged SnO2-Sb

The estimated life time of Blue TiO2 nanotubes and Aged SnO2-Sb is 2189

and 4794 h at operational current densities of 10 and 5 mAcm2

Characterization Voltammetry

Linear sweep voltammetry (LSV) of the 1 2 anode BDD for a 05 M H2SO4 solution (pH = 0) Scan rate is

10 mVs The standard reduction potentials (pH=0) for O2 H2O2 O3 and HOmiddot are +123 V +177 V +207 V

and +274 V

Patent

Pending

119889 119861119860

119889119905= 119896119861119860119867119874 times 119861119860 times 119867119874 119904119904

= 119896119861119860[119861119860]

119867119874 119904119904 =119896119861119860

119896119861119860119867119874

Anode material 2 743times10-14 molL

Anode material 1 477times10-14 molL

The steady state hydroxyl radical

concentration is estimated from 1 mM

benzoic acid degradation in a 30 mM

NaClO4 at 5 mAcm2 [HO]=kBAkHO

119896119861119860119867119874 = 59 times 109119871(119898119900119897119904)

Hydroxyl Radicals Production Comparison

Actual industrial used anode TiPbO2

Pilot treatment results will show in a minute

These blue NTA are unstable because they are not

coated with SnO2 ndash Sb

The stoichiometric equation for benzoic acid is given as

119862711986761198742 + 121198672119874 rarr 71198621198742 + 30119867+ + 30119890minus

We define the electron efficiency to be

119864119864 =32

12middot (

119899

4119909) middot

119889 119879119874119862

119889 119862119874119863

Where TOC in mg (c)L and COD in mg (1198742)L n is the

number of electrons transfer from the anode for a

complete oxidation reaction and x is the number of

carbon atoms in the organic contaminants

According to the equation and calculation the electron

efficiency for 2D and 3D systems in this case are

119864119864 2119863 = 0866 (866) and 119864119864 3119863 = 1067 (1067)

For 1mmolL (~122mgL) TOC ~90mgL COD

~190mgL

Low electrolyte concentration condition 0005 M Na2SO4

Electron Efficiency (Faraday Efficiency)

Investigate amp optimize electrode

spacing amp fluid velocity

Mass Transfer Impact of EAOPs

We used Differential Column Batch Reactor (DCBR)

in experiments

(a) ofloxacin destruction by 1 anode for various electrode spacing (b) pseudo-first-order rate constants (c) EEO

Anode surface area 10 cm2 electrode spacing 1 cm fluid velocity 0033 ms initial ofloxacin concentration 20

mgL voltage 35-86 V electrolyte concentration is 005 M Na2SO4 pH value 625 and temperature is 25

Mass Transfer Impact Electrode Spacing

for 2D Electrode

(a) ofloxacin destruction on 1 anode for various fluid velocity (b) pseudo-first-order rate constants (c) EEO

Anode surface area 10 cm2 electrode spacing 1 cm fluid velocity 0033 ms initial ofloxacin concentration 20

mgL voltage 35-86 V electrolyte concentration is 005 M Na2SO4 pH value 625 and temperature is 25

Mass Transfer Impact Fluid Velocity

120570 =119896119891 sdot 120579

119896119891 sdot 120579 + 119896119872119886119909 sdot 119889

Effectiveness factor in different fluid velocity and the best fitted model 1

anode surface area 10 cm2 electrode spacing 1 cm electrolyte 005 M

Na2SO4 solution current density 30 mAcm2 initial ofloxacin concentration

20 mgL voltage 63-64 v pH value 625 temperature 25

l

du

Plain channel

119878ℎ =119896119891 sdot 119889

119863119897= 33 sdot

119889

119897sdot Re sdot 119878119888

13

Re =120588 sdot 119906 sdot 119889

120583

119878119888 =120583

120588 sdot 119863119897

120570 =119903119900119887119904

119903max=

119896119900119887119904 119877

119896max 119877

Sherwood number

Reynolds number

Schmidt number

Ω = 0436 means more than

56 oxidation rate reduced

by mass transfer

Mass Transfer Impact Effectiveness Factor

Many AOP follow a pseudo-first order rate

EEO is useful because if EEO is 5kWhr-order then if

you supply 5 1

15 kWm3 then you will 90 99 999 destruction of

the parent compound

Note COD and TOC have a much slower rate

Byproducts are less toxic and more biodegradable

Figure of Merit Electrical Energy Used per

Order (EEO) of Parent Compound Destroyed

EEO in Conventional AOPs

Conventional AOP Example EEO in UVH2O2

119864119864119874 =119875 times 119905

119881 times log1198620119862

+11986211986721198742

times00022119897119887

119892times 11986411986721198742

log1198620119862

119864119864119874 =2303 times 119875 times 1198961 11986721198742 0 + 1198962 1198671198621198743

minus0 + 1198963 119873119874119872 0 + 1198964 119877 0 times ε11986721198742

11986721198742 0 + ε119877 119877 0 + ε119873119874119872 119873119874119872 0

119875119880119881 times 1198964 times ε1198672119874211986721198742 0 times 1 minus 10minus119860 times V

+ 34 gramL times 11986721198742 0 times 00022 119897119887119892119903119886119898 times 11986411986721198742 times 1000 Lm3

bull Target contaminant concentrations oxidant dosage NOM determine the EEO of

conventional AOPs

EEO in EAOPs

EEO in EAOPs

EEO =v times j times A times V times t

V times logC0C

=v times j times A times t

logC0C

EEO =v times j times A

0434 times 119896119878 times Ω

v voltage V

j current densitymA

cm2

A surface area per volumem2

m3

V volumem3

C concentrationmol

m3

ks surface reaction rate sminus1

kobs observed reaction rate sminus1

Ω effectiveness factor

Ω =119896119900119887119904

119896119878

bull Target contaminants concentration dose does not effect EEO in EAOPs

bull EEO is a constant under same operational conditions

01 1 10 100 1000 10000 100000

Ultrapure Water

Distilled Water

Tap Water

Potable Water In The US

Surface Water

Industrial Wastewater

Seawater

Conductivity microScm

Water Streams Conductivity Guide

2D vs 3D EEO Comparison

Degradation of 1 mmolL benzoic acid in a 470 mL differential column batch reactor pH controlled

~68 surface water used has a low conductivity 112 microscm controlled current density is 30 mAcm2

2D anode size is 10 cm2 3D used 80 meshed Ti gauze has surface area 718 cm210 cm2 DCBR

operated at Re 194 Sc 2727 Sh 194 kf 64times10-6 ms Dl 9times10-6 cm2s

2D Electrode

3D Electrode

EEO Analysis in EAOPs

Electrolyte

Concentration

BA

concentrati

on

Voltage Current

Density

EEO

molL mgL V mAcm2 kWhm3

Surface

Water+BA~00004

(113 microScm)

24

(02 mM) 60 105 1738Surface

Water+BA 00004122

(1 mM) 60 105 2003Industrial

Water+BA

01

(16210

microScm) 24 73 304 175Industrial

Water+BA 01 122 8 30 207

Voltage Current

Density

EEO

V mAcm2 kWhm3

152 105 868

3D System2D System

bull Ionic strength is important in EAOPs NOM is not

bull Initial concentration C0does not effect EEO (at least for the

concentrations we tested)

bull Accordingly the pseudo ndash first surface rate constant is same for

different influent concentrations and the same operational

conditions for the conditions we tested

bull We expect to see the reaction rate to decrease with high C0 because

at high concentrations all the reactions site on the anode will be

occupied preventing the oxidation rate from increasing (Langmuir-

Hinshelwood Hougen Watson kinetics confirmation needed)

53 304 290

Conventional AOPs vs EAOPs Modeling 13

A case study to compare EEOs for

UVH2O2 H2O2O3 UVHOCl UVPersulfate UVTiO2

EAOPs (two-dimensional and three-dimensional)

Simulation Conditions[HCO3

minus] = 3 mM [NOM] = 2 mgL [Cl-] = 0001 M

pH = 7 kBA = 59times10-9 L(molmiddotS)Same 22 W input energy gives UV light intensity = 164times10-6 Einstein s-1 L-1

Initial Concentrations [R] (Benzoic Acid in this case) = 20 200 2000 mgL

Quantum yield

UVH2O2 = 05 UVHOCl = 09 UVPersulfate = 07

UVTiO2 = 004 (light transmission efficiency = 04)

Chemical production energy

H2O2 = 49 kWhlb persulfate = 49 kWhlb HOCl = 51 kWhlb O3 = 5 kWhlb

Note TiO2 and electrodes production energies are not included in simulation

EAOPs assumptions amp parameters

J = 30 mAcm2 2D anode size A = 10 cm2 3D anode size A= 718 cm2 (80 meshed Ti gauze)

Sc = 2727 Sh = 194 Dl = 9times10-6 cm2s d = 1 cm

Note pumping energy is small compare to electricity and neglected in simulation

Q = 20 mLmin Re = 1851 kf = 235times10-6 ms

Q = 500 mLmin Re = 46296 kf = 688times10-6 ms

Q = 2000 mLmin Re = 203704 kf = 113times10-5 ms (Re lt 2100 in laminar flow)

Minimal

EEO

(kWhm3)

Optimal

OxidantCatalyst

Dosage

9072 [TiO2]=300 mgL

4022 [Persulfate]=16 gL

2718 [H2O2]=0612 gL

2442 [HOCl]=026 gL

679 [H2O2]=0028 mgL

Electrolyte

(Na2SO4)

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

0M3702

0001M 6466 2405

0005M 3781 2069

001M 2676 1552

01M 469 1294

AOPs Minimal

EEO

(kWhm3)

Optimal

OxidantCatalyst

Dosage

UVTiO2 1038 [TiO2]=300 mgL

UVPersulfate 128 [Persulfate]=117 gL

UV H2O2 090 [H2O2]=0204 gL

UVHOCl 367 [HOCl]=014 gL

H2O2O3 0015 [H2O2]=00206 mgL

[R]0 = 20 mgL

~16 mgL TOC

[R]0 = 200 mgL

~140 mgL TOC

Minimal

EEO

(kWhm3)

Optimal

OxidantCatalyst

Dosage

88271 [TiO2]=300 mgL

8208 [Persulfate]=581 gL

1768 [H2O2]=184 gL

8335 [HOCl]=0776 gL

17648 [H2O2]=0035 mgL

[R]0 = 2000 mgL

~1379 mgL TOC

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

3545

6015 2260

3559 1937

2504 1448

455 1207

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

3404

5634 2136

3367 1824

2357 1360

443 1132

Re = 1851 Re = 46296 Re = 203704

Conventional AOPs vs EAOPs Modeling 23

Mass Transfer Increase

Ion

Str

en

gth

In

crease

Conventional AOPs vs EAOPs Modeling 33

AOPs Minimal

EEO

(kWhm3)

Optimal

OxidantCatalyst

Dosage

UVTiO2 1038 [TiO2]=300 mgL

UVPersulfate 128 [Persulfate]=117 gL

UV H2O2 090 [H2O2]=0204 gL

UVHOCl 367 [HOCl]=014 gL

H2O2O3 0015 [H2O2]=00206 mgL

[R]0 = 20 mgL

~16 mgL TOC For low concentration treatment

objectives EAOPs may not be as good as

compared to conventional AOPs

Conventional UVH2O2 and H2O2O3 are

the best conventional AOPs for BA

Electrolyte

(Na2SO4)

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

0M3702

0001M 6466 2405

0005M 3781 2069

001M 2676 1552

01M 469 1294

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

3545

6015 2260

3559 1937

2504 1448

455 1207

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

3404

5634 2136

3367 1824

2357 1360

443 1132

Re = 1851 Re = 46296 Re = 203704Mass Transfer Increase

Ion

Str

en

gth

In

crease

Conventional AOPs vs EAOPs Modeling 33

Minimal

EEO

(kWhm3)

Optimal

OxidantCatalyst

Dosage

88271 [TiO2]=300 mgL

8208 [Persulfate]=581 gL

1768 [H2O2]=184 gL

8335 [HOCl]=0776 gL

17648 [H2O2]=0035 mgL

[R]0 = 2000 mgL

~1379 mgL TOC For high concentration treatment objectives

EAOPs are more energy efficient

3D-EAOP saves more energy than 2D because

it requires lower applied voltage

3D-EAOP works better than 2D in low ion

strength treatment

Electrolyte

(Na2SO4)

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

0M3702

0001M 6466 2405

0005M 3781 2069

001M 2676 1552

01M 469 1294

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

3545

6015 2260

3559 1937

2504 1448

455 1207

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

3404

5634 2136

3367 1824

2357 1360

443 1132

Re = 1851 Re = 46296 Re = 203704Mass Transfer Increase

Ion

Str

en

gth

In

crease

Limiting Current in Different Conditions

jlim = n times F times kf times Csalt

Electrolyte

Concentration Q Q Q

Na2SO4 mlmin mlmin mlmin

20 500 2000

Re Re Re

1852 46296 185185

kf kf kf

ms ms ms

235405E-06 688E-06 109E-05

jlim jlim jlim

molL mAcm2 mAcm2 mAcm2

0001 068 199 316

jlim jlim jlim

molL mAcm2 mAcm2 mAcm2

0005 341 996 1581

jlim jlim jlim

molL mAcm2 mAcm2 mAcm2

001 681 1992 3163

jlim jlim jlim

molL mAcm2 mAcm2 mAcm2

005 3407 9962 15814

jlim jlim jlim

molL mAcm2 mAcm2 mAcm2

01 6814 19924 31627

Parameters Symbol Units Value

Influent concentration C0 mgL 20

Effluent concentration Ce mgL 02

Flow rate Q m3day 1000

Pseudo first order rate constant k min 0042

Size of reactor VRequired m3 38 m3

Detention time τ min 548

Electrode spacing d cm 1

Fluid velocity u ms 0033

Electrolyte Na2SO4 Concentration M 005

Current density J mAcm2 30

Assuming a Plug Flow Reactor (PFR) to be Confirmed with CFD

Full Scale Reactor Design

Full Scale Reactor Design

Rough Design of Reactor (top view)

1 2 3 4 5 6 7 8 9 10

105 meters

long

10 meters

electrodes

10 meters

2 meters deep

Reactor Channel

1 meter

hellip

5 cm 95 cmInfluent Effluent

The total costs (capital costs + energy costs) as a function of different electrode spacing for different theoretical

reaction rate In here the treatment objective is 99 removal flow rate is 1000 m3day and the fluid velocity is 00116

ms The flow channel has eddy promoter and its electrode spacing and obstacle distance ratio is 13 The electricity

price is $00512kWh and the pumping power is 853 kW The electrode price is $300m2 and its lifetime is 2000 h

Capital Expenditure Operational Expenditure

CapEx vs OpEx

Cost Analysis for Preliminary Design

The total costs (capital costs + energy costs) as a function of different electrode spacing for different theoretical

reaction rate In here the treatment objective is 99 removal flow rate is 1000 m3day and the fluid velocity is 00116

ms The flow channel has eddy promoter and its electrode spacing and obstacle distance ratio is 13 The electricity

price is $00512kWh and the pumping power is 853 kW The electrode price is $300m2 and its lifetime is 2000 h

Currently we are at only Ω=0436

Computer-based First-Principles Kinetic Model

Reaction Pathway Generator

(Graph Theory)

Rate Constants Estimator

(Group Contribution Method

Free Energy Linear

Relationship

Genetic Algorithm)

Ordinary Differential

Equations

(ODEs) Generator and Solver

(Gearrsquos Algorithm or

Monte Carlo algorithm)

Kinetic Monte Carlo Solver can

solve 1 million ODEs on PC

within 30 minutes

Complexity of Reaction PathwayExample

General reaction mechanisms that HObull initiates based on past experimental studies

Stefan and Bolton 1998 1999 1999 Stefan et al 1996 2000 Cooper et al 2009 Li et al 2004 2007 von Sonntag and

Schuchmann 1984 Schuchmann and von Sonntag 1979

Type of mechanismNumber of

speciesNumber of reactions

Full mechanism 120 370

Reduced mechanism 41 89

The criterion for DRG method is 1

Reaction rate constants are obtained from group contribution method (Minakata et al 2009 ESampT 43 6220-6227) and literature includingNate et al 1990 J Phys Chem Ref Data 19 413-513Nate et al 1995 J Phys Chem Ref Data 25 709-1050Buxton et al 1988 J Phys Chem Ref Data 17 513-886von Sonntag et al 1991 Angeuz Chem Int Ed Engl 30 1229-1253Li et al 2009 ESampT 43 2831-2837Li et al 2007 ESampT 41 1696-1703

Initial concentration of TCE 108 mM

Initial concentration of O2 22 mM

Initial concentration of H2O2 104 mM

Initial pH 59

Wave length of UV 200~300 nm

Light intensity779times10-6

EinsteinLmiddots

Reactor typeCompletely mixed batch reactor

Reaction time 30 min

Comparison of concentration profiles of major species for experimental data (Li Stefan Crittenden 2007 ESampT 41 1696-1703) and simulation results

00

20

40

60

80

100

120

00

02

04

06

08

10

12

0 5 10 15 20 25 30[H

2O

2]

(mM

)

[Ma

jor

spec

ies]

(m

M)

Time(min)

TCE exp

formic acid exp

oxalic acid exp

20 times DCA exp

20 times MCA exp

TCE cal

formic acid cal

oxalic acid cal

20 times DCA cal

20 times MCA cal

H2O2 exp

H2O2 cal

The photolysis of TCE was added manually because it is not included in this version of the pathway generator

Predicted Concentration Profiles of

Trichloroethene (TCE) and Stable-byproducts in UVH2O2 AOP

Comparison of number averaged molecular

weight (MW) for experimental data

(Vijayalakshmi et al J Appl Polym Sci 2006

100 3997-4003) and on-the-fly KMC model

The KMC model used a population number of 108L to

represent a concentration of 1molL

0

02

04

06

08

1

12

14

16

18

0 25 50 75 100 125 150 175 200

Aver

aged

mole

cu

lar

wei

gh

t (1

05

gm

ol)

Time (min)

Experiment

On-the-fly KMC

0

02

04

06

08

1

12

0 25 50 75 100 125 150 175 200

Nu

mb

er o

f re

act

ion

s (1

06)

Time (min)

Time evolvement of the number of generated

reactions for the degradation of PAM during the

UVTiO2 process

Degradation of Polyacrylamide (PAM)

Simulation Results for PAM Degradation in UVTiO2 AOP

Guo X Minakata D and Crittenden J 2015 On-the-fly kinetic Monte Carlo simulation of aqueous phase advanced oxidation processes Environmental science amp technology 49(15) pp9230-9236

1 Crittenden John C Shumin Hu David W Hand and Sarah Green ldquoA Kinetic Model for H2O2UV Process in a Completely Mixed Batch Reactorrdquo Water Research 33(10) 2315-2328 (1999)

2 Li K Crittenden JC Computerized pathway elucidation for hydroxyl radical induced chain reaction mechanisms in aqueous phase AOPs Environmental Science amp Technology 2009 43(8) 2831-2837

3 Li K Stefan MI Crittenden JC Trichloroethene degradation by UVH2O2 advanced oxidation process product study and kinetic modeling Environmental Science amp Technology 2007 41 1696-1703

4 Li K M I Stefan and J C Crittenden ldquoUV Photolysis of Trichloroethylene (TCE) Product Study and Kinetic Modelingrdquo Environmental Science and Technology Vol 38 No 24 6685-6693 (2004)

5 Ke Li David R Hokanson John C Crittenden R Rhodes Trussell and Daisuke Minakata ldquoEvaluating UVH2O2 Processes for Methyl tert-Butyl Ether (MtBE) and tertiary Butyl Alcohol (TBA) Removal from

Drinking Water Source Effect of Pretreatment Options and Light Sourcesrdquo Water Research 2008 Volume 42 (20) 5045-5053

6 Minakata D Li K Westerhoff P Crittenden J Development of a group contribution method to predict aqueous phase hydroxyl radical reaction rate constants Environmental Science amp Technology 2009 43

6220-6227

7 Minakata D Crittenden J Linear Free Energy Relationships between the Aqueous Phase Hydroxyl Radical (HObull) Reaction Rate Constants and the Free Energy of Activation Environmental Science amp Technology

2011a 45 3479-3486

8 Minakata D Song W Crittenden J Reactivity of aqueous phase hydroxyl radical with halogenated carboxylate anions Experimental and theoretical studies Environmental Science amp Technology 2011 45 6057-

6065

9 Daisuke Minakata Stephen P Mezyk Jace W Jones Brittany R Daws John C Crittenden ldquoDevelopment of Linear Free Energy Relationships for Aqueous Phase Radical-Involved Chemical Reactionsrdquo

Environmental Science amp Technology 2014 48 (23) 13925-13932

10 Xin Guo Daisuke Minakata John C Crittenden ldquoOn-the-Fly Kinetic Monte Carlo Simulation of Aqueous Phase Advanced Oxidation Processesrdquo Environmental Science and Technology 2015 49 (15) 9230ndash9236

11 Guo X Minakata D Crittenden JC ldquoComputer-Based First-Principles Kinetic Monte Carlo Simulation of Polyethylene Glycol Degradation in Aqueous Phase UVH2O2 Advanced Oxidation Processrdquo

Environmental Science amp Technology 2014 48 10813minus10820

12 Xin Guo Daisuke Minakata Junfeng Niu John C Crittenden ldquoComputer-based First-principles Kinetic Modeling of Degradation Pathways and Byproduct Fates in Aqueous Phase Advanced Oxidation Processesrdquo

Environmental Science and Technology 2014 48 (10) pp 5718ndash5725

13 Yajie Qian Xin Guo Yalei Zhang Yue Peng Peizhe Sun Ching-Hua Huang Junfeng Niu Xuefei Zhou John C Crittenden ldquoPerfluorooctanoic Acid Degradation Using UVminusPersulfate Process Modeling of the

Degradation and Chlorate Formationrdquo 2015 Environmental Science and Technology 50 (2) 772ndash781

14 Ruzhen Xie Xiaoyang Meng Peizhe Sun Junfeng Niu Wenju JiangLawrence Bottomley Duo Li Yongsheng Chen John C CrittendenrdquoElectrochemical Oxidation of Ofloxacin Using a TiO2-based SnO2-

SbPolytetrafluoroethylene Resin-PbO2 Electrode Reaction Kinetics and Mass Transfer Impactrdquo 2016 Applied Catalysis B Environmental 203 (2017) 515ndash525

15 Westerhoff Paul Moon Hye Minakata Daisuke Crittenden John ldquoOxidation of Organics in Retentates from Reverse Osmosis Wastewater Reuse Facilitiesrdquo Water Research 43 (16) 3992-2998

16 Liu L Chen F Yang F Chen Y Crittenden J ldquoPhotocatalytic degradation of 24-dichlorophenol using nanoscale FeTiO2rdquo Chemical Engineering Journal 2012 181ndash182 (0)189-195

References

References

17 Ying Wang Jiasheng Fang John C Crittenden Chanchan Shen ldquoNovel RGO120572-FeOOH Supported Catalyst for Fenton Oxidation of Phenol at a Wide pH Range Using Solar-Light-Driven Irradiationrdquo 2017 Journal

of Hazardous Materials 329 321ndash329

18 Xiaodong Ma Mengying Zhao Qin Pang Meihua Zheng Hongwen Sun John C Crittenden Yanying Zhu Yongsheng Chen ldquoDevelopment of Novel CaCO3Fe2O3 Nanorods for Low Temperature 12-

Dichlorobenzene Oxidationrdquo 2017 Applied Catalysis A General 522 (2016) 70ndash79

19 Heacutector L Otaacutelvaro-Mariacuten Miguel Angel Mueses John C Crittenden Fiderman Machuca-Martinez ldquoSolar Photoreactor Design by the Photon Path Length and Optimization of the Radiant Field in a TiO2-based CPC

Reactorrdquo 2017 Chemical Engineering Journal 315 283ndash295

20 Qi Wang Naxin Zhu Enqin Liu Chenlu Zhang John C Crittenden Yi ZhangYanqing CongldquoFabrication of Visible-Light Active Fe2O3-GQDsNF-TiO2 Composite Film with Highly Enhanced

Photoelectrocatalytic Performancerdquo 2017 Applied Catalysis B Environmental 205 347ndash356

21 Junfeng Niu Lifeng Yin Yunrong Dai Yueping Bao John C Crittenden ldquoDesign of Visible Light Responsive Photocatalysts for Selective Reduction of Chlorinated Organic Compounds in Waterrdquo 2016 Applied

Catalysis A General 521 90ndash95

22 Chaojie Jiang Lifen Liu John C Crittenden ldquoAn Electrochemical Process that Uses an Fe0TiO2 Cathode to Degrade Typical Dyes and Antibiotics and a Bio-anode that Produces Electricityrdquo 2016 Frontiers of

Environmental Science amp Engineering 10(4) 15

23 Yijing Xia Qizhou Dai Mili Weng Yue Peng Jinming Luo Xiaoyang Meng Xubiao Luo Jianmeng Chen John C Crittenden ldquoFabrication and Electrochemical Treatment Application of an Al-Doped PbO2

Electrode with High Oxidation Capability Oxygen Evolution Potential and Reusabilityrdquo2015 Journal of The Electrochemical Society 162 (10) E258-E262

24 Feng Duan Yuping Li Hongbin Cao Yi Wang John C Crittenden Yi Zhang ldquoActivated Carbon Electrodes Electrochemical Oxidation Coupled with Desalination for Wastewater Treatmentrdquo 2015 Chemosphere

125 205-211

25 Xing Linlin Xie Yongbing Cao Hongbin Minakata Daisuke Zhang Yi Crittenden John C ldquoActivated carbon-enhanced ozonation of oxalate attributed to HObull oxidation in bulk solution and surface oxidation

Effects of the type and number of basic sitesrdquo Chemical Engineering Journal 2014 245 71-79

26 Yao H Sun P Minakata D Crittenden JC Huang C-H ldquoKinetics and Modeling of Degradation of Ionophore Antibiotics by UV and UVH2O2rdquo Environmental Science and Technology 2013 (47) 4581-

45892

26 Li Yang et al Synergistic photogeneration of reactive oxygen species by dissolved organic matter and C60 in aqueous phase Environmental science amp technology 492 (2015) 965-973

28 Niu Junfeng et al Photocatalytic reduction of triclosan on AundashCu 2 O nanowire arrays as plasmonic photocatalysts under visible light irradiation Physical Chemistry Chemical Physics 1726 (2015) 17421-17428

29 Niu Junfeng et al Design of visible light responsive photocatalysts for selective reduction of chlorinated organic compounds in water Applied Catalysis A General 521 (2016) 90-95

30 Tianyin Huang Jiabin Chen Zhongming Wang Xin Guo John C Crittenden ldquoExcellent Performance of Cobalt-Impregnated Activated Carbon in Peroxymonosulfate Activation for Acid Orange 7 Oxidationrdquo 2017

Environmental Science and Pollution Research Volume 24 (10) 9651ndash9661

References

31 Yang Li Junfeng Niu Enxiang Shang John C Crittenden ldquoPhotochemical Transformation and Photoinduced Toxicity Reduction of Silver Nanoparticles in the Presence of Perfluorocarboxylic Acids under UV

Irradiationrdquo Environmental Science and Technology 2014 48 (9) pp 4946ndash4953

32 Cao H Xing L Wu G Xie S Zhang SY Minakata D Crittenden JC ldquoPromoting effect of nitration modification on activated carbon in the catalytic ozonation of oxalic acidrdquo Applied Catalysis B

Environmental 2014 146 169-176

33 Konsowa A H Ossman M E Chen Y Crittenden J C ldquoDecolorization of industrial wastewater by ozonation followed by adsorption on activated carbonrdquo Journal of Hazardous Materials 176 (2010) 181-185

November 10 2009

34 Wipada Sanongraj Yongsheng Chen John Crittenden David Hand and David Perram ldquoDevelopment of Photocatalytic Oxidation Model Part I-Mathematical Model for Photocatalytic Destruction of Organic

Contaminants in Airrdquo Journal of the Air and Waste Management Association 571112ndash1122 September 2007

35 Chen Y JC Crittenden S Hackney L Sutter and DW Hand ldquoPreparation of a Novel TiO2-based p-n Junction Nanotube Photocatalystrdquo Environmental Science and Technology Vol 39 No 5 1201-1208 (2005)

36 Suri RPS J Liu JC Crittenden DW Hand and DL Perram Removal and Destruction of Organic Contaminants in Water Using Adsorption Steam Regeneration and Photocatalytic Oxidation A Pilot Scale

Studyrdquo Journal of Air and Waste Management Volume 49 (August 1999) 951 ndash 958

37 Burns RA JC Crittenden DW Hand VH Selzer LL Sutter SR Salman Effect of Inorganic Ions in the Heterogeneous Photocatalysis of Trichloroethene ASCE Journal of Environmental Engineering Vol

125 No 1 pp 77-85 (January 1999)

38 Liu J JC Crittenden DW Hand and DL Perram Regeneration of Adsorbents Using Heterogeneous Photocatalytic Oxidationrdquo Journal of Environmental Engineering Vol 122 No 8 pp 707-714 (1996)

39 Crittenden JC J Liu DW Hand and DL Perram Photocatalytic Oxidation of Chlorinated Hydrocarbons in Waterrdquo Water Research Vol31 No 3 pp 429-438 (1997)

40 Crittenden JC RPS Suri DL Perram and DW Hand Decontamination of Water Using Adsorption and Photocatalysisrdquo Water Research Vol 31 No 3 pp 411-418 (1997)

41 Crittenden JC Y Zhang DW Hand and DL Perram Destruction of Organic Compounds in Water Using Fixed-Bed Photocatalysts Journal of Solar Energy Engineering (ASME) Vol 118 No 5 pp 123 -129

(1996)

42 Crittenden JC Y Zhang DW Hand and DL Perram Solar Detoxification of Fuel-Contaminated Groundwater Using Fixed-Bed Photocatalystsrdquo Water Environment Research Vol 68 No 3 pp 270-278

(1996)

43 Zhang Y JC Crittenden and DW Hand The Solar Photocatalytic Decontamination of Waterrdquo Chemistry amp Industry Vol 18 pp 714-717 September (1994)

44 Mourand JT JC Crittenden DW Hand DL Perram and S Notthakun Regeneration of Spent Adsorbents Using Advanced Oxidationrdquo Water Environment Federation Vol 67 No 3 pp 355-363 (1995)

45 Hand DW DL Perram and JC Crittenden Destruction of DBP Precursors with Catalytic Oxidationrdquo American Water Works Association Journal Vol 87 No 6 pp 84-96 (1995)

46 Zhang Y JC Crittenden DW Hand and DL Perram Fixed-Bed Photo-catalysts for Solar Decontamination of Waterrdquo Environmental Science amp Technology Vol 28 No 3 pp 435-442 (1994)

47 Suri RPS J Liu DW Hand JC Crittenden DL Perram and ME Mullins Heterogeneous Photocatalytic Oxidation of Hazardous Organic Contaminants in Waterrdquo Water Environment Federation Vol 65 No

5 pp 665-673 (1993)

Page 10: The Application of Advanced Oxidation Processes (AOPs) and ...€¦ · We define the electron efficiency to be = 32 12 ·( J 4𝑥)· Where TOC in mg (c)/L and COD in mg ( 2)/L, n

Base substrate for Anode 1 and 2 Ti (2~3 mm thick)

Anode 1 TiO2 NanotubesSnO2-SbPTFE-PbO2

Inner Layer TiO2 Nanotube array

Intermediate layer -SnO2-Sb (Sb2O4)

Outer Layer PTFE-PbO2

Anode 2 Blue TiO2 NanotubesAged SnO2-Sb

Inner Layer Blue TiO2 Nanotube array

Outer Layer -SnO2-Sb (Sb2O4)

TiO2 band gap rutile 30 eV anatase 32 eV blue 33 eV

SnO2 band gap rutile 36 eV PbO2 16 eV (good for higher

current densities)

Multi-Layered Semiconductor Anode

Mixed Metal Oxide electrode (MMO)

a) b)

c)

SEM of (a) TiO2-Nanotubes Substrate (b) SnO2-Sb intermediate layer

(c) PTFEPbO2 electrode

SEM Characterization of Layers Anode 1Anode 1 TiO2 NanotubesSnO2-SbPTFE-PbO2

Half coated surface (coated only 5 times which

still expose some nanotubes surface) with non-

aging sol-gel (exhibit less compact morphology

and large crystal size)

Fully coated aged SnO2-Sb layer (15 times coating)

shows compact crystals configuration and smaller

size which improved surface area and surface

reaction sites

Half-Coated Non-Aged vs Fully

Coated Aged Anode 2Anode 2 Blue TiO2 NanotubesAged SnO2-Sb

The estimated life time of Blue TiO2 nanotubes and Aged SnO2-Sb is 2189

and 4794 h at operational current densities of 10 and 5 mAcm2

Characterization Voltammetry

Linear sweep voltammetry (LSV) of the 1 2 anode BDD for a 05 M H2SO4 solution (pH = 0) Scan rate is

10 mVs The standard reduction potentials (pH=0) for O2 H2O2 O3 and HOmiddot are +123 V +177 V +207 V

and +274 V

Patent

Pending

119889 119861119860

119889119905= 119896119861119860119867119874 times 119861119860 times 119867119874 119904119904

= 119896119861119860[119861119860]

119867119874 119904119904 =119896119861119860

119896119861119860119867119874

Anode material 2 743times10-14 molL

Anode material 1 477times10-14 molL

The steady state hydroxyl radical

concentration is estimated from 1 mM

benzoic acid degradation in a 30 mM

NaClO4 at 5 mAcm2 [HO]=kBAkHO

119896119861119860119867119874 = 59 times 109119871(119898119900119897119904)

Hydroxyl Radicals Production Comparison

Actual industrial used anode TiPbO2

Pilot treatment results will show in a minute

These blue NTA are unstable because they are not

coated with SnO2 ndash Sb

The stoichiometric equation for benzoic acid is given as

119862711986761198742 + 121198672119874 rarr 71198621198742 + 30119867+ + 30119890minus

We define the electron efficiency to be

119864119864 =32

12middot (

119899

4119909) middot

119889 119879119874119862

119889 119862119874119863

Where TOC in mg (c)L and COD in mg (1198742)L n is the

number of electrons transfer from the anode for a

complete oxidation reaction and x is the number of

carbon atoms in the organic contaminants

According to the equation and calculation the electron

efficiency for 2D and 3D systems in this case are

119864119864 2119863 = 0866 (866) and 119864119864 3119863 = 1067 (1067)

For 1mmolL (~122mgL) TOC ~90mgL COD

~190mgL

Low electrolyte concentration condition 0005 M Na2SO4

Electron Efficiency (Faraday Efficiency)

Investigate amp optimize electrode

spacing amp fluid velocity

Mass Transfer Impact of EAOPs

We used Differential Column Batch Reactor (DCBR)

in experiments

(a) ofloxacin destruction by 1 anode for various electrode spacing (b) pseudo-first-order rate constants (c) EEO

Anode surface area 10 cm2 electrode spacing 1 cm fluid velocity 0033 ms initial ofloxacin concentration 20

mgL voltage 35-86 V electrolyte concentration is 005 M Na2SO4 pH value 625 and temperature is 25

Mass Transfer Impact Electrode Spacing

for 2D Electrode

(a) ofloxacin destruction on 1 anode for various fluid velocity (b) pseudo-first-order rate constants (c) EEO

Anode surface area 10 cm2 electrode spacing 1 cm fluid velocity 0033 ms initial ofloxacin concentration 20

mgL voltage 35-86 V electrolyte concentration is 005 M Na2SO4 pH value 625 and temperature is 25

Mass Transfer Impact Fluid Velocity

120570 =119896119891 sdot 120579

119896119891 sdot 120579 + 119896119872119886119909 sdot 119889

Effectiveness factor in different fluid velocity and the best fitted model 1

anode surface area 10 cm2 electrode spacing 1 cm electrolyte 005 M

Na2SO4 solution current density 30 mAcm2 initial ofloxacin concentration

20 mgL voltage 63-64 v pH value 625 temperature 25

l

du

Plain channel

119878ℎ =119896119891 sdot 119889

119863119897= 33 sdot

119889

119897sdot Re sdot 119878119888

13

Re =120588 sdot 119906 sdot 119889

120583

119878119888 =120583

120588 sdot 119863119897

120570 =119903119900119887119904

119903max=

119896119900119887119904 119877

119896max 119877

Sherwood number

Reynolds number

Schmidt number

Ω = 0436 means more than

56 oxidation rate reduced

by mass transfer

Mass Transfer Impact Effectiveness Factor

Many AOP follow a pseudo-first order rate

EEO is useful because if EEO is 5kWhr-order then if

you supply 5 1

15 kWm3 then you will 90 99 999 destruction of

the parent compound

Note COD and TOC have a much slower rate

Byproducts are less toxic and more biodegradable

Figure of Merit Electrical Energy Used per

Order (EEO) of Parent Compound Destroyed

EEO in Conventional AOPs

Conventional AOP Example EEO in UVH2O2

119864119864119874 =119875 times 119905

119881 times log1198620119862

+11986211986721198742

times00022119897119887

119892times 11986411986721198742

log1198620119862

119864119864119874 =2303 times 119875 times 1198961 11986721198742 0 + 1198962 1198671198621198743

minus0 + 1198963 119873119874119872 0 + 1198964 119877 0 times ε11986721198742

11986721198742 0 + ε119877 119877 0 + ε119873119874119872 119873119874119872 0

119875119880119881 times 1198964 times ε1198672119874211986721198742 0 times 1 minus 10minus119860 times V

+ 34 gramL times 11986721198742 0 times 00022 119897119887119892119903119886119898 times 11986411986721198742 times 1000 Lm3

bull Target contaminant concentrations oxidant dosage NOM determine the EEO of

conventional AOPs

EEO in EAOPs

EEO in EAOPs

EEO =v times j times A times V times t

V times logC0C

=v times j times A times t

logC0C

EEO =v times j times A

0434 times 119896119878 times Ω

v voltage V

j current densitymA

cm2

A surface area per volumem2

m3

V volumem3

C concentrationmol

m3

ks surface reaction rate sminus1

kobs observed reaction rate sminus1

Ω effectiveness factor

Ω =119896119900119887119904

119896119878

bull Target contaminants concentration dose does not effect EEO in EAOPs

bull EEO is a constant under same operational conditions

01 1 10 100 1000 10000 100000

Ultrapure Water

Distilled Water

Tap Water

Potable Water In The US

Surface Water

Industrial Wastewater

Seawater

Conductivity microScm

Water Streams Conductivity Guide

2D vs 3D EEO Comparison

Degradation of 1 mmolL benzoic acid in a 470 mL differential column batch reactor pH controlled

~68 surface water used has a low conductivity 112 microscm controlled current density is 30 mAcm2

2D anode size is 10 cm2 3D used 80 meshed Ti gauze has surface area 718 cm210 cm2 DCBR

operated at Re 194 Sc 2727 Sh 194 kf 64times10-6 ms Dl 9times10-6 cm2s

2D Electrode

3D Electrode

EEO Analysis in EAOPs

Electrolyte

Concentration

BA

concentrati

on

Voltage Current

Density

EEO

molL mgL V mAcm2 kWhm3

Surface

Water+BA~00004

(113 microScm)

24

(02 mM) 60 105 1738Surface

Water+BA 00004122

(1 mM) 60 105 2003Industrial

Water+BA

01

(16210

microScm) 24 73 304 175Industrial

Water+BA 01 122 8 30 207

Voltage Current

Density

EEO

V mAcm2 kWhm3

152 105 868

3D System2D System

bull Ionic strength is important in EAOPs NOM is not

bull Initial concentration C0does not effect EEO (at least for the

concentrations we tested)

bull Accordingly the pseudo ndash first surface rate constant is same for

different influent concentrations and the same operational

conditions for the conditions we tested

bull We expect to see the reaction rate to decrease with high C0 because

at high concentrations all the reactions site on the anode will be

occupied preventing the oxidation rate from increasing (Langmuir-

Hinshelwood Hougen Watson kinetics confirmation needed)

53 304 290

Conventional AOPs vs EAOPs Modeling 13

A case study to compare EEOs for

UVH2O2 H2O2O3 UVHOCl UVPersulfate UVTiO2

EAOPs (two-dimensional and three-dimensional)

Simulation Conditions[HCO3

minus] = 3 mM [NOM] = 2 mgL [Cl-] = 0001 M

pH = 7 kBA = 59times10-9 L(molmiddotS)Same 22 W input energy gives UV light intensity = 164times10-6 Einstein s-1 L-1

Initial Concentrations [R] (Benzoic Acid in this case) = 20 200 2000 mgL

Quantum yield

UVH2O2 = 05 UVHOCl = 09 UVPersulfate = 07

UVTiO2 = 004 (light transmission efficiency = 04)

Chemical production energy

H2O2 = 49 kWhlb persulfate = 49 kWhlb HOCl = 51 kWhlb O3 = 5 kWhlb

Note TiO2 and electrodes production energies are not included in simulation

EAOPs assumptions amp parameters

J = 30 mAcm2 2D anode size A = 10 cm2 3D anode size A= 718 cm2 (80 meshed Ti gauze)

Sc = 2727 Sh = 194 Dl = 9times10-6 cm2s d = 1 cm

Note pumping energy is small compare to electricity and neglected in simulation

Q = 20 mLmin Re = 1851 kf = 235times10-6 ms

Q = 500 mLmin Re = 46296 kf = 688times10-6 ms

Q = 2000 mLmin Re = 203704 kf = 113times10-5 ms (Re lt 2100 in laminar flow)

Minimal

EEO

(kWhm3)

Optimal

OxidantCatalyst

Dosage

9072 [TiO2]=300 mgL

4022 [Persulfate]=16 gL

2718 [H2O2]=0612 gL

2442 [HOCl]=026 gL

679 [H2O2]=0028 mgL

Electrolyte

(Na2SO4)

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

0M3702

0001M 6466 2405

0005M 3781 2069

001M 2676 1552

01M 469 1294

AOPs Minimal

EEO

(kWhm3)

Optimal

OxidantCatalyst

Dosage

UVTiO2 1038 [TiO2]=300 mgL

UVPersulfate 128 [Persulfate]=117 gL

UV H2O2 090 [H2O2]=0204 gL

UVHOCl 367 [HOCl]=014 gL

H2O2O3 0015 [H2O2]=00206 mgL

[R]0 = 20 mgL

~16 mgL TOC

[R]0 = 200 mgL

~140 mgL TOC

Minimal

EEO

(kWhm3)

Optimal

OxidantCatalyst

Dosage

88271 [TiO2]=300 mgL

8208 [Persulfate]=581 gL

1768 [H2O2]=184 gL

8335 [HOCl]=0776 gL

17648 [H2O2]=0035 mgL

[R]0 = 2000 mgL

~1379 mgL TOC

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

3545

6015 2260

3559 1937

2504 1448

455 1207

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

3404

5634 2136

3367 1824

2357 1360

443 1132

Re = 1851 Re = 46296 Re = 203704

Conventional AOPs vs EAOPs Modeling 23

Mass Transfer Increase

Ion

Str

en

gth

In

crease

Conventional AOPs vs EAOPs Modeling 33

AOPs Minimal

EEO

(kWhm3)

Optimal

OxidantCatalyst

Dosage

UVTiO2 1038 [TiO2]=300 mgL

UVPersulfate 128 [Persulfate]=117 gL

UV H2O2 090 [H2O2]=0204 gL

UVHOCl 367 [HOCl]=014 gL

H2O2O3 0015 [H2O2]=00206 mgL

[R]0 = 20 mgL

~16 mgL TOC For low concentration treatment

objectives EAOPs may not be as good as

compared to conventional AOPs

Conventional UVH2O2 and H2O2O3 are

the best conventional AOPs for BA

Electrolyte

(Na2SO4)

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

0M3702

0001M 6466 2405

0005M 3781 2069

001M 2676 1552

01M 469 1294

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

3545

6015 2260

3559 1937

2504 1448

455 1207

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

3404

5634 2136

3367 1824

2357 1360

443 1132

Re = 1851 Re = 46296 Re = 203704Mass Transfer Increase

Ion

Str

en

gth

In

crease

Conventional AOPs vs EAOPs Modeling 33

Minimal

EEO

(kWhm3)

Optimal

OxidantCatalyst

Dosage

88271 [TiO2]=300 mgL

8208 [Persulfate]=581 gL

1768 [H2O2]=184 gL

8335 [HOCl]=0776 gL

17648 [H2O2]=0035 mgL

[R]0 = 2000 mgL

~1379 mgL TOC For high concentration treatment objectives

EAOPs are more energy efficient

3D-EAOP saves more energy than 2D because

it requires lower applied voltage

3D-EAOP works better than 2D in low ion

strength treatment

Electrolyte

(Na2SO4)

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

0M3702

0001M 6466 2405

0005M 3781 2069

001M 2676 1552

01M 469 1294

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

3545

6015 2260

3559 1937

2504 1448

455 1207

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

3404

5634 2136

3367 1824

2357 1360

443 1132

Re = 1851 Re = 46296 Re = 203704Mass Transfer Increase

Ion

Str

en

gth

In

crease

Limiting Current in Different Conditions

jlim = n times F times kf times Csalt

Electrolyte

Concentration Q Q Q

Na2SO4 mlmin mlmin mlmin

20 500 2000

Re Re Re

1852 46296 185185

kf kf kf

ms ms ms

235405E-06 688E-06 109E-05

jlim jlim jlim

molL mAcm2 mAcm2 mAcm2

0001 068 199 316

jlim jlim jlim

molL mAcm2 mAcm2 mAcm2

0005 341 996 1581

jlim jlim jlim

molL mAcm2 mAcm2 mAcm2

001 681 1992 3163

jlim jlim jlim

molL mAcm2 mAcm2 mAcm2

005 3407 9962 15814

jlim jlim jlim

molL mAcm2 mAcm2 mAcm2

01 6814 19924 31627

Parameters Symbol Units Value

Influent concentration C0 mgL 20

Effluent concentration Ce mgL 02

Flow rate Q m3day 1000

Pseudo first order rate constant k min 0042

Size of reactor VRequired m3 38 m3

Detention time τ min 548

Electrode spacing d cm 1

Fluid velocity u ms 0033

Electrolyte Na2SO4 Concentration M 005

Current density J mAcm2 30

Assuming a Plug Flow Reactor (PFR) to be Confirmed with CFD

Full Scale Reactor Design

Full Scale Reactor Design

Rough Design of Reactor (top view)

1 2 3 4 5 6 7 8 9 10

105 meters

long

10 meters

electrodes

10 meters

2 meters deep

Reactor Channel

1 meter

hellip

5 cm 95 cmInfluent Effluent

The total costs (capital costs + energy costs) as a function of different electrode spacing for different theoretical

reaction rate In here the treatment objective is 99 removal flow rate is 1000 m3day and the fluid velocity is 00116

ms The flow channel has eddy promoter and its electrode spacing and obstacle distance ratio is 13 The electricity

price is $00512kWh and the pumping power is 853 kW The electrode price is $300m2 and its lifetime is 2000 h

Capital Expenditure Operational Expenditure

CapEx vs OpEx

Cost Analysis for Preliminary Design

The total costs (capital costs + energy costs) as a function of different electrode spacing for different theoretical

reaction rate In here the treatment objective is 99 removal flow rate is 1000 m3day and the fluid velocity is 00116

ms The flow channel has eddy promoter and its electrode spacing and obstacle distance ratio is 13 The electricity

price is $00512kWh and the pumping power is 853 kW The electrode price is $300m2 and its lifetime is 2000 h

Currently we are at only Ω=0436

Computer-based First-Principles Kinetic Model

Reaction Pathway Generator

(Graph Theory)

Rate Constants Estimator

(Group Contribution Method

Free Energy Linear

Relationship

Genetic Algorithm)

Ordinary Differential

Equations

(ODEs) Generator and Solver

(Gearrsquos Algorithm or

Monte Carlo algorithm)

Kinetic Monte Carlo Solver can

solve 1 million ODEs on PC

within 30 minutes

Complexity of Reaction PathwayExample

General reaction mechanisms that HObull initiates based on past experimental studies

Stefan and Bolton 1998 1999 1999 Stefan et al 1996 2000 Cooper et al 2009 Li et al 2004 2007 von Sonntag and

Schuchmann 1984 Schuchmann and von Sonntag 1979

Type of mechanismNumber of

speciesNumber of reactions

Full mechanism 120 370

Reduced mechanism 41 89

The criterion for DRG method is 1

Reaction rate constants are obtained from group contribution method (Minakata et al 2009 ESampT 43 6220-6227) and literature includingNate et al 1990 J Phys Chem Ref Data 19 413-513Nate et al 1995 J Phys Chem Ref Data 25 709-1050Buxton et al 1988 J Phys Chem Ref Data 17 513-886von Sonntag et al 1991 Angeuz Chem Int Ed Engl 30 1229-1253Li et al 2009 ESampT 43 2831-2837Li et al 2007 ESampT 41 1696-1703

Initial concentration of TCE 108 mM

Initial concentration of O2 22 mM

Initial concentration of H2O2 104 mM

Initial pH 59

Wave length of UV 200~300 nm

Light intensity779times10-6

EinsteinLmiddots

Reactor typeCompletely mixed batch reactor

Reaction time 30 min

Comparison of concentration profiles of major species for experimental data (Li Stefan Crittenden 2007 ESampT 41 1696-1703) and simulation results

00

20

40

60

80

100

120

00

02

04

06

08

10

12

0 5 10 15 20 25 30[H

2O

2]

(mM

)

[Ma

jor

spec

ies]

(m

M)

Time(min)

TCE exp

formic acid exp

oxalic acid exp

20 times DCA exp

20 times MCA exp

TCE cal

formic acid cal

oxalic acid cal

20 times DCA cal

20 times MCA cal

H2O2 exp

H2O2 cal

The photolysis of TCE was added manually because it is not included in this version of the pathway generator

Predicted Concentration Profiles of

Trichloroethene (TCE) and Stable-byproducts in UVH2O2 AOP

Comparison of number averaged molecular

weight (MW) for experimental data

(Vijayalakshmi et al J Appl Polym Sci 2006

100 3997-4003) and on-the-fly KMC model

The KMC model used a population number of 108L to

represent a concentration of 1molL

0

02

04

06

08

1

12

14

16

18

0 25 50 75 100 125 150 175 200

Aver

aged

mole

cu

lar

wei

gh

t (1

05

gm

ol)

Time (min)

Experiment

On-the-fly KMC

0

02

04

06

08

1

12

0 25 50 75 100 125 150 175 200

Nu

mb

er o

f re

act

ion

s (1

06)

Time (min)

Time evolvement of the number of generated

reactions for the degradation of PAM during the

UVTiO2 process

Degradation of Polyacrylamide (PAM)

Simulation Results for PAM Degradation in UVTiO2 AOP

Guo X Minakata D and Crittenden J 2015 On-the-fly kinetic Monte Carlo simulation of aqueous phase advanced oxidation processes Environmental science amp technology 49(15) pp9230-9236

1 Crittenden John C Shumin Hu David W Hand and Sarah Green ldquoA Kinetic Model for H2O2UV Process in a Completely Mixed Batch Reactorrdquo Water Research 33(10) 2315-2328 (1999)

2 Li K Crittenden JC Computerized pathway elucidation for hydroxyl radical induced chain reaction mechanisms in aqueous phase AOPs Environmental Science amp Technology 2009 43(8) 2831-2837

3 Li K Stefan MI Crittenden JC Trichloroethene degradation by UVH2O2 advanced oxidation process product study and kinetic modeling Environmental Science amp Technology 2007 41 1696-1703

4 Li K M I Stefan and J C Crittenden ldquoUV Photolysis of Trichloroethylene (TCE) Product Study and Kinetic Modelingrdquo Environmental Science and Technology Vol 38 No 24 6685-6693 (2004)

5 Ke Li David R Hokanson John C Crittenden R Rhodes Trussell and Daisuke Minakata ldquoEvaluating UVH2O2 Processes for Methyl tert-Butyl Ether (MtBE) and tertiary Butyl Alcohol (TBA) Removal from

Drinking Water Source Effect of Pretreatment Options and Light Sourcesrdquo Water Research 2008 Volume 42 (20) 5045-5053

6 Minakata D Li K Westerhoff P Crittenden J Development of a group contribution method to predict aqueous phase hydroxyl radical reaction rate constants Environmental Science amp Technology 2009 43

6220-6227

7 Minakata D Crittenden J Linear Free Energy Relationships between the Aqueous Phase Hydroxyl Radical (HObull) Reaction Rate Constants and the Free Energy of Activation Environmental Science amp Technology

2011a 45 3479-3486

8 Minakata D Song W Crittenden J Reactivity of aqueous phase hydroxyl radical with halogenated carboxylate anions Experimental and theoretical studies Environmental Science amp Technology 2011 45 6057-

6065

9 Daisuke Minakata Stephen P Mezyk Jace W Jones Brittany R Daws John C Crittenden ldquoDevelopment of Linear Free Energy Relationships for Aqueous Phase Radical-Involved Chemical Reactionsrdquo

Environmental Science amp Technology 2014 48 (23) 13925-13932

10 Xin Guo Daisuke Minakata John C Crittenden ldquoOn-the-Fly Kinetic Monte Carlo Simulation of Aqueous Phase Advanced Oxidation Processesrdquo Environmental Science and Technology 2015 49 (15) 9230ndash9236

11 Guo X Minakata D Crittenden JC ldquoComputer-Based First-Principles Kinetic Monte Carlo Simulation of Polyethylene Glycol Degradation in Aqueous Phase UVH2O2 Advanced Oxidation Processrdquo

Environmental Science amp Technology 2014 48 10813minus10820

12 Xin Guo Daisuke Minakata Junfeng Niu John C Crittenden ldquoComputer-based First-principles Kinetic Modeling of Degradation Pathways and Byproduct Fates in Aqueous Phase Advanced Oxidation Processesrdquo

Environmental Science and Technology 2014 48 (10) pp 5718ndash5725

13 Yajie Qian Xin Guo Yalei Zhang Yue Peng Peizhe Sun Ching-Hua Huang Junfeng Niu Xuefei Zhou John C Crittenden ldquoPerfluorooctanoic Acid Degradation Using UVminusPersulfate Process Modeling of the

Degradation and Chlorate Formationrdquo 2015 Environmental Science and Technology 50 (2) 772ndash781

14 Ruzhen Xie Xiaoyang Meng Peizhe Sun Junfeng Niu Wenju JiangLawrence Bottomley Duo Li Yongsheng Chen John C CrittendenrdquoElectrochemical Oxidation of Ofloxacin Using a TiO2-based SnO2-

SbPolytetrafluoroethylene Resin-PbO2 Electrode Reaction Kinetics and Mass Transfer Impactrdquo 2016 Applied Catalysis B Environmental 203 (2017) 515ndash525

15 Westerhoff Paul Moon Hye Minakata Daisuke Crittenden John ldquoOxidation of Organics in Retentates from Reverse Osmosis Wastewater Reuse Facilitiesrdquo Water Research 43 (16) 3992-2998

16 Liu L Chen F Yang F Chen Y Crittenden J ldquoPhotocatalytic degradation of 24-dichlorophenol using nanoscale FeTiO2rdquo Chemical Engineering Journal 2012 181ndash182 (0)189-195

References

References

17 Ying Wang Jiasheng Fang John C Crittenden Chanchan Shen ldquoNovel RGO120572-FeOOH Supported Catalyst for Fenton Oxidation of Phenol at a Wide pH Range Using Solar-Light-Driven Irradiationrdquo 2017 Journal

of Hazardous Materials 329 321ndash329

18 Xiaodong Ma Mengying Zhao Qin Pang Meihua Zheng Hongwen Sun John C Crittenden Yanying Zhu Yongsheng Chen ldquoDevelopment of Novel CaCO3Fe2O3 Nanorods for Low Temperature 12-

Dichlorobenzene Oxidationrdquo 2017 Applied Catalysis A General 522 (2016) 70ndash79

19 Heacutector L Otaacutelvaro-Mariacuten Miguel Angel Mueses John C Crittenden Fiderman Machuca-Martinez ldquoSolar Photoreactor Design by the Photon Path Length and Optimization of the Radiant Field in a TiO2-based CPC

Reactorrdquo 2017 Chemical Engineering Journal 315 283ndash295

20 Qi Wang Naxin Zhu Enqin Liu Chenlu Zhang John C Crittenden Yi ZhangYanqing CongldquoFabrication of Visible-Light Active Fe2O3-GQDsNF-TiO2 Composite Film with Highly Enhanced

Photoelectrocatalytic Performancerdquo 2017 Applied Catalysis B Environmental 205 347ndash356

21 Junfeng Niu Lifeng Yin Yunrong Dai Yueping Bao John C Crittenden ldquoDesign of Visible Light Responsive Photocatalysts for Selective Reduction of Chlorinated Organic Compounds in Waterrdquo 2016 Applied

Catalysis A General 521 90ndash95

22 Chaojie Jiang Lifen Liu John C Crittenden ldquoAn Electrochemical Process that Uses an Fe0TiO2 Cathode to Degrade Typical Dyes and Antibiotics and a Bio-anode that Produces Electricityrdquo 2016 Frontiers of

Environmental Science amp Engineering 10(4) 15

23 Yijing Xia Qizhou Dai Mili Weng Yue Peng Jinming Luo Xiaoyang Meng Xubiao Luo Jianmeng Chen John C Crittenden ldquoFabrication and Electrochemical Treatment Application of an Al-Doped PbO2

Electrode with High Oxidation Capability Oxygen Evolution Potential and Reusabilityrdquo2015 Journal of The Electrochemical Society 162 (10) E258-E262

24 Feng Duan Yuping Li Hongbin Cao Yi Wang John C Crittenden Yi Zhang ldquoActivated Carbon Electrodes Electrochemical Oxidation Coupled with Desalination for Wastewater Treatmentrdquo 2015 Chemosphere

125 205-211

25 Xing Linlin Xie Yongbing Cao Hongbin Minakata Daisuke Zhang Yi Crittenden John C ldquoActivated carbon-enhanced ozonation of oxalate attributed to HObull oxidation in bulk solution and surface oxidation

Effects of the type and number of basic sitesrdquo Chemical Engineering Journal 2014 245 71-79

26 Yao H Sun P Minakata D Crittenden JC Huang C-H ldquoKinetics and Modeling of Degradation of Ionophore Antibiotics by UV and UVH2O2rdquo Environmental Science and Technology 2013 (47) 4581-

45892

26 Li Yang et al Synergistic photogeneration of reactive oxygen species by dissolved organic matter and C60 in aqueous phase Environmental science amp technology 492 (2015) 965-973

28 Niu Junfeng et al Photocatalytic reduction of triclosan on AundashCu 2 O nanowire arrays as plasmonic photocatalysts under visible light irradiation Physical Chemistry Chemical Physics 1726 (2015) 17421-17428

29 Niu Junfeng et al Design of visible light responsive photocatalysts for selective reduction of chlorinated organic compounds in water Applied Catalysis A General 521 (2016) 90-95

30 Tianyin Huang Jiabin Chen Zhongming Wang Xin Guo John C Crittenden ldquoExcellent Performance of Cobalt-Impregnated Activated Carbon in Peroxymonosulfate Activation for Acid Orange 7 Oxidationrdquo 2017

Environmental Science and Pollution Research Volume 24 (10) 9651ndash9661

References

31 Yang Li Junfeng Niu Enxiang Shang John C Crittenden ldquoPhotochemical Transformation and Photoinduced Toxicity Reduction of Silver Nanoparticles in the Presence of Perfluorocarboxylic Acids under UV

Irradiationrdquo Environmental Science and Technology 2014 48 (9) pp 4946ndash4953

32 Cao H Xing L Wu G Xie S Zhang SY Minakata D Crittenden JC ldquoPromoting effect of nitration modification on activated carbon in the catalytic ozonation of oxalic acidrdquo Applied Catalysis B

Environmental 2014 146 169-176

33 Konsowa A H Ossman M E Chen Y Crittenden J C ldquoDecolorization of industrial wastewater by ozonation followed by adsorption on activated carbonrdquo Journal of Hazardous Materials 176 (2010) 181-185

November 10 2009

34 Wipada Sanongraj Yongsheng Chen John Crittenden David Hand and David Perram ldquoDevelopment of Photocatalytic Oxidation Model Part I-Mathematical Model for Photocatalytic Destruction of Organic

Contaminants in Airrdquo Journal of the Air and Waste Management Association 571112ndash1122 September 2007

35 Chen Y JC Crittenden S Hackney L Sutter and DW Hand ldquoPreparation of a Novel TiO2-based p-n Junction Nanotube Photocatalystrdquo Environmental Science and Technology Vol 39 No 5 1201-1208 (2005)

36 Suri RPS J Liu JC Crittenden DW Hand and DL Perram Removal and Destruction of Organic Contaminants in Water Using Adsorption Steam Regeneration and Photocatalytic Oxidation A Pilot Scale

Studyrdquo Journal of Air and Waste Management Volume 49 (August 1999) 951 ndash 958

37 Burns RA JC Crittenden DW Hand VH Selzer LL Sutter SR Salman Effect of Inorganic Ions in the Heterogeneous Photocatalysis of Trichloroethene ASCE Journal of Environmental Engineering Vol

125 No 1 pp 77-85 (January 1999)

38 Liu J JC Crittenden DW Hand and DL Perram Regeneration of Adsorbents Using Heterogeneous Photocatalytic Oxidationrdquo Journal of Environmental Engineering Vol 122 No 8 pp 707-714 (1996)

39 Crittenden JC J Liu DW Hand and DL Perram Photocatalytic Oxidation of Chlorinated Hydrocarbons in Waterrdquo Water Research Vol31 No 3 pp 429-438 (1997)

40 Crittenden JC RPS Suri DL Perram and DW Hand Decontamination of Water Using Adsorption and Photocatalysisrdquo Water Research Vol 31 No 3 pp 411-418 (1997)

41 Crittenden JC Y Zhang DW Hand and DL Perram Destruction of Organic Compounds in Water Using Fixed-Bed Photocatalysts Journal of Solar Energy Engineering (ASME) Vol 118 No 5 pp 123 -129

(1996)

42 Crittenden JC Y Zhang DW Hand and DL Perram Solar Detoxification of Fuel-Contaminated Groundwater Using Fixed-Bed Photocatalystsrdquo Water Environment Research Vol 68 No 3 pp 270-278

(1996)

43 Zhang Y JC Crittenden and DW Hand The Solar Photocatalytic Decontamination of Waterrdquo Chemistry amp Industry Vol 18 pp 714-717 September (1994)

44 Mourand JT JC Crittenden DW Hand DL Perram and S Notthakun Regeneration of Spent Adsorbents Using Advanced Oxidationrdquo Water Environment Federation Vol 67 No 3 pp 355-363 (1995)

45 Hand DW DL Perram and JC Crittenden Destruction of DBP Precursors with Catalytic Oxidationrdquo American Water Works Association Journal Vol 87 No 6 pp 84-96 (1995)

46 Zhang Y JC Crittenden DW Hand and DL Perram Fixed-Bed Photo-catalysts for Solar Decontamination of Waterrdquo Environmental Science amp Technology Vol 28 No 3 pp 435-442 (1994)

47 Suri RPS J Liu DW Hand JC Crittenden DL Perram and ME Mullins Heterogeneous Photocatalytic Oxidation of Hazardous Organic Contaminants in Waterrdquo Water Environment Federation Vol 65 No

5 pp 665-673 (1993)

Page 11: The Application of Advanced Oxidation Processes (AOPs) and ...€¦ · We define the electron efficiency to be = 32 12 ·( J 4𝑥)· Where TOC in mg (c)/L and COD in mg ( 2)/L, n

a) b)

c)

SEM of (a) TiO2-Nanotubes Substrate (b) SnO2-Sb intermediate layer

(c) PTFEPbO2 electrode

SEM Characterization of Layers Anode 1Anode 1 TiO2 NanotubesSnO2-SbPTFE-PbO2

Half coated surface (coated only 5 times which

still expose some nanotubes surface) with non-

aging sol-gel (exhibit less compact morphology

and large crystal size)

Fully coated aged SnO2-Sb layer (15 times coating)

shows compact crystals configuration and smaller

size which improved surface area and surface

reaction sites

Half-Coated Non-Aged vs Fully

Coated Aged Anode 2Anode 2 Blue TiO2 NanotubesAged SnO2-Sb

The estimated life time of Blue TiO2 nanotubes and Aged SnO2-Sb is 2189

and 4794 h at operational current densities of 10 and 5 mAcm2

Characterization Voltammetry

Linear sweep voltammetry (LSV) of the 1 2 anode BDD for a 05 M H2SO4 solution (pH = 0) Scan rate is

10 mVs The standard reduction potentials (pH=0) for O2 H2O2 O3 and HOmiddot are +123 V +177 V +207 V

and +274 V

Patent

Pending

119889 119861119860

119889119905= 119896119861119860119867119874 times 119861119860 times 119867119874 119904119904

= 119896119861119860[119861119860]

119867119874 119904119904 =119896119861119860

119896119861119860119867119874

Anode material 2 743times10-14 molL

Anode material 1 477times10-14 molL

The steady state hydroxyl radical

concentration is estimated from 1 mM

benzoic acid degradation in a 30 mM

NaClO4 at 5 mAcm2 [HO]=kBAkHO

119896119861119860119867119874 = 59 times 109119871(119898119900119897119904)

Hydroxyl Radicals Production Comparison

Actual industrial used anode TiPbO2

Pilot treatment results will show in a minute

These blue NTA are unstable because they are not

coated with SnO2 ndash Sb

The stoichiometric equation for benzoic acid is given as

119862711986761198742 + 121198672119874 rarr 71198621198742 + 30119867+ + 30119890minus

We define the electron efficiency to be

119864119864 =32

12middot (

119899

4119909) middot

119889 119879119874119862

119889 119862119874119863

Where TOC in mg (c)L and COD in mg (1198742)L n is the

number of electrons transfer from the anode for a

complete oxidation reaction and x is the number of

carbon atoms in the organic contaminants

According to the equation and calculation the electron

efficiency for 2D and 3D systems in this case are

119864119864 2119863 = 0866 (866) and 119864119864 3119863 = 1067 (1067)

For 1mmolL (~122mgL) TOC ~90mgL COD

~190mgL

Low electrolyte concentration condition 0005 M Na2SO4

Electron Efficiency (Faraday Efficiency)

Investigate amp optimize electrode

spacing amp fluid velocity

Mass Transfer Impact of EAOPs

We used Differential Column Batch Reactor (DCBR)

in experiments

(a) ofloxacin destruction by 1 anode for various electrode spacing (b) pseudo-first-order rate constants (c) EEO

Anode surface area 10 cm2 electrode spacing 1 cm fluid velocity 0033 ms initial ofloxacin concentration 20

mgL voltage 35-86 V electrolyte concentration is 005 M Na2SO4 pH value 625 and temperature is 25

Mass Transfer Impact Electrode Spacing

for 2D Electrode

(a) ofloxacin destruction on 1 anode for various fluid velocity (b) pseudo-first-order rate constants (c) EEO

Anode surface area 10 cm2 electrode spacing 1 cm fluid velocity 0033 ms initial ofloxacin concentration 20

mgL voltage 35-86 V electrolyte concentration is 005 M Na2SO4 pH value 625 and temperature is 25

Mass Transfer Impact Fluid Velocity

120570 =119896119891 sdot 120579

119896119891 sdot 120579 + 119896119872119886119909 sdot 119889

Effectiveness factor in different fluid velocity and the best fitted model 1

anode surface area 10 cm2 electrode spacing 1 cm electrolyte 005 M

Na2SO4 solution current density 30 mAcm2 initial ofloxacin concentration

20 mgL voltage 63-64 v pH value 625 temperature 25

l

du

Plain channel

119878ℎ =119896119891 sdot 119889

119863119897= 33 sdot

119889

119897sdot Re sdot 119878119888

13

Re =120588 sdot 119906 sdot 119889

120583

119878119888 =120583

120588 sdot 119863119897

120570 =119903119900119887119904

119903max=

119896119900119887119904 119877

119896max 119877

Sherwood number

Reynolds number

Schmidt number

Ω = 0436 means more than

56 oxidation rate reduced

by mass transfer

Mass Transfer Impact Effectiveness Factor

Many AOP follow a pseudo-first order rate

EEO is useful because if EEO is 5kWhr-order then if

you supply 5 1

15 kWm3 then you will 90 99 999 destruction of

the parent compound

Note COD and TOC have a much slower rate

Byproducts are less toxic and more biodegradable

Figure of Merit Electrical Energy Used per

Order (EEO) of Parent Compound Destroyed

EEO in Conventional AOPs

Conventional AOP Example EEO in UVH2O2

119864119864119874 =119875 times 119905

119881 times log1198620119862

+11986211986721198742

times00022119897119887

119892times 11986411986721198742

log1198620119862

119864119864119874 =2303 times 119875 times 1198961 11986721198742 0 + 1198962 1198671198621198743

minus0 + 1198963 119873119874119872 0 + 1198964 119877 0 times ε11986721198742

11986721198742 0 + ε119877 119877 0 + ε119873119874119872 119873119874119872 0

119875119880119881 times 1198964 times ε1198672119874211986721198742 0 times 1 minus 10minus119860 times V

+ 34 gramL times 11986721198742 0 times 00022 119897119887119892119903119886119898 times 11986411986721198742 times 1000 Lm3

bull Target contaminant concentrations oxidant dosage NOM determine the EEO of

conventional AOPs

EEO in EAOPs

EEO in EAOPs

EEO =v times j times A times V times t

V times logC0C

=v times j times A times t

logC0C

EEO =v times j times A

0434 times 119896119878 times Ω

v voltage V

j current densitymA

cm2

A surface area per volumem2

m3

V volumem3

C concentrationmol

m3

ks surface reaction rate sminus1

kobs observed reaction rate sminus1

Ω effectiveness factor

Ω =119896119900119887119904

119896119878

bull Target contaminants concentration dose does not effect EEO in EAOPs

bull EEO is a constant under same operational conditions

01 1 10 100 1000 10000 100000

Ultrapure Water

Distilled Water

Tap Water

Potable Water In The US

Surface Water

Industrial Wastewater

Seawater

Conductivity microScm

Water Streams Conductivity Guide

2D vs 3D EEO Comparison

Degradation of 1 mmolL benzoic acid in a 470 mL differential column batch reactor pH controlled

~68 surface water used has a low conductivity 112 microscm controlled current density is 30 mAcm2

2D anode size is 10 cm2 3D used 80 meshed Ti gauze has surface area 718 cm210 cm2 DCBR

operated at Re 194 Sc 2727 Sh 194 kf 64times10-6 ms Dl 9times10-6 cm2s

2D Electrode

3D Electrode

EEO Analysis in EAOPs

Electrolyte

Concentration

BA

concentrati

on

Voltage Current

Density

EEO

molL mgL V mAcm2 kWhm3

Surface

Water+BA~00004

(113 microScm)

24

(02 mM) 60 105 1738Surface

Water+BA 00004122

(1 mM) 60 105 2003Industrial

Water+BA

01

(16210

microScm) 24 73 304 175Industrial

Water+BA 01 122 8 30 207

Voltage Current

Density

EEO

V mAcm2 kWhm3

152 105 868

3D System2D System

bull Ionic strength is important in EAOPs NOM is not

bull Initial concentration C0does not effect EEO (at least for the

concentrations we tested)

bull Accordingly the pseudo ndash first surface rate constant is same for

different influent concentrations and the same operational

conditions for the conditions we tested

bull We expect to see the reaction rate to decrease with high C0 because

at high concentrations all the reactions site on the anode will be

occupied preventing the oxidation rate from increasing (Langmuir-

Hinshelwood Hougen Watson kinetics confirmation needed)

53 304 290

Conventional AOPs vs EAOPs Modeling 13

A case study to compare EEOs for

UVH2O2 H2O2O3 UVHOCl UVPersulfate UVTiO2

EAOPs (two-dimensional and three-dimensional)

Simulation Conditions[HCO3

minus] = 3 mM [NOM] = 2 mgL [Cl-] = 0001 M

pH = 7 kBA = 59times10-9 L(molmiddotS)Same 22 W input energy gives UV light intensity = 164times10-6 Einstein s-1 L-1

Initial Concentrations [R] (Benzoic Acid in this case) = 20 200 2000 mgL

Quantum yield

UVH2O2 = 05 UVHOCl = 09 UVPersulfate = 07

UVTiO2 = 004 (light transmission efficiency = 04)

Chemical production energy

H2O2 = 49 kWhlb persulfate = 49 kWhlb HOCl = 51 kWhlb O3 = 5 kWhlb

Note TiO2 and electrodes production energies are not included in simulation

EAOPs assumptions amp parameters

J = 30 mAcm2 2D anode size A = 10 cm2 3D anode size A= 718 cm2 (80 meshed Ti gauze)

Sc = 2727 Sh = 194 Dl = 9times10-6 cm2s d = 1 cm

Note pumping energy is small compare to electricity and neglected in simulation

Q = 20 mLmin Re = 1851 kf = 235times10-6 ms

Q = 500 mLmin Re = 46296 kf = 688times10-6 ms

Q = 2000 mLmin Re = 203704 kf = 113times10-5 ms (Re lt 2100 in laminar flow)

Minimal

EEO

(kWhm3)

Optimal

OxidantCatalyst

Dosage

9072 [TiO2]=300 mgL

4022 [Persulfate]=16 gL

2718 [H2O2]=0612 gL

2442 [HOCl]=026 gL

679 [H2O2]=0028 mgL

Electrolyte

(Na2SO4)

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

0M3702

0001M 6466 2405

0005M 3781 2069

001M 2676 1552

01M 469 1294

AOPs Minimal

EEO

(kWhm3)

Optimal

OxidantCatalyst

Dosage

UVTiO2 1038 [TiO2]=300 mgL

UVPersulfate 128 [Persulfate]=117 gL

UV H2O2 090 [H2O2]=0204 gL

UVHOCl 367 [HOCl]=014 gL

H2O2O3 0015 [H2O2]=00206 mgL

[R]0 = 20 mgL

~16 mgL TOC

[R]0 = 200 mgL

~140 mgL TOC

Minimal

EEO

(kWhm3)

Optimal

OxidantCatalyst

Dosage

88271 [TiO2]=300 mgL

8208 [Persulfate]=581 gL

1768 [H2O2]=184 gL

8335 [HOCl]=0776 gL

17648 [H2O2]=0035 mgL

[R]0 = 2000 mgL

~1379 mgL TOC

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

3545

6015 2260

3559 1937

2504 1448

455 1207

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

3404

5634 2136

3367 1824

2357 1360

443 1132

Re = 1851 Re = 46296 Re = 203704

Conventional AOPs vs EAOPs Modeling 23

Mass Transfer Increase

Ion

Str

en

gth

In

crease

Conventional AOPs vs EAOPs Modeling 33

AOPs Minimal

EEO

(kWhm3)

Optimal

OxidantCatalyst

Dosage

UVTiO2 1038 [TiO2]=300 mgL

UVPersulfate 128 [Persulfate]=117 gL

UV H2O2 090 [H2O2]=0204 gL

UVHOCl 367 [HOCl]=014 gL

H2O2O3 0015 [H2O2]=00206 mgL

[R]0 = 20 mgL

~16 mgL TOC For low concentration treatment

objectives EAOPs may not be as good as

compared to conventional AOPs

Conventional UVH2O2 and H2O2O3 are

the best conventional AOPs for BA

Electrolyte

(Na2SO4)

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

0M3702

0001M 6466 2405

0005M 3781 2069

001M 2676 1552

01M 469 1294

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

3545

6015 2260

3559 1937

2504 1448

455 1207

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

3404

5634 2136

3367 1824

2357 1360

443 1132

Re = 1851 Re = 46296 Re = 203704Mass Transfer Increase

Ion

Str

en

gth

In

crease

Conventional AOPs vs EAOPs Modeling 33

Minimal

EEO

(kWhm3)

Optimal

OxidantCatalyst

Dosage

88271 [TiO2]=300 mgL

8208 [Persulfate]=581 gL

1768 [H2O2]=184 gL

8335 [HOCl]=0776 gL

17648 [H2O2]=0035 mgL

[R]0 = 2000 mgL

~1379 mgL TOC For high concentration treatment objectives

EAOPs are more energy efficient

3D-EAOP saves more energy than 2D because

it requires lower applied voltage

3D-EAOP works better than 2D in low ion

strength treatment

Electrolyte

(Na2SO4)

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

0M3702

0001M 6466 2405

0005M 3781 2069

001M 2676 1552

01M 469 1294

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

3545

6015 2260

3559 1937

2504 1448

455 1207

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

3404

5634 2136

3367 1824

2357 1360

443 1132

Re = 1851 Re = 46296 Re = 203704Mass Transfer Increase

Ion

Str

en

gth

In

crease

Limiting Current in Different Conditions

jlim = n times F times kf times Csalt

Electrolyte

Concentration Q Q Q

Na2SO4 mlmin mlmin mlmin

20 500 2000

Re Re Re

1852 46296 185185

kf kf kf

ms ms ms

235405E-06 688E-06 109E-05

jlim jlim jlim

molL mAcm2 mAcm2 mAcm2

0001 068 199 316

jlim jlim jlim

molL mAcm2 mAcm2 mAcm2

0005 341 996 1581

jlim jlim jlim

molL mAcm2 mAcm2 mAcm2

001 681 1992 3163

jlim jlim jlim

molL mAcm2 mAcm2 mAcm2

005 3407 9962 15814

jlim jlim jlim

molL mAcm2 mAcm2 mAcm2

01 6814 19924 31627

Parameters Symbol Units Value

Influent concentration C0 mgL 20

Effluent concentration Ce mgL 02

Flow rate Q m3day 1000

Pseudo first order rate constant k min 0042

Size of reactor VRequired m3 38 m3

Detention time τ min 548

Electrode spacing d cm 1

Fluid velocity u ms 0033

Electrolyte Na2SO4 Concentration M 005

Current density J mAcm2 30

Assuming a Plug Flow Reactor (PFR) to be Confirmed with CFD

Full Scale Reactor Design

Full Scale Reactor Design

Rough Design of Reactor (top view)

1 2 3 4 5 6 7 8 9 10

105 meters

long

10 meters

electrodes

10 meters

2 meters deep

Reactor Channel

1 meter

hellip

5 cm 95 cmInfluent Effluent

The total costs (capital costs + energy costs) as a function of different electrode spacing for different theoretical

reaction rate In here the treatment objective is 99 removal flow rate is 1000 m3day and the fluid velocity is 00116

ms The flow channel has eddy promoter and its electrode spacing and obstacle distance ratio is 13 The electricity

price is $00512kWh and the pumping power is 853 kW The electrode price is $300m2 and its lifetime is 2000 h

Capital Expenditure Operational Expenditure

CapEx vs OpEx

Cost Analysis for Preliminary Design

The total costs (capital costs + energy costs) as a function of different electrode spacing for different theoretical

reaction rate In here the treatment objective is 99 removal flow rate is 1000 m3day and the fluid velocity is 00116

ms The flow channel has eddy promoter and its electrode spacing and obstacle distance ratio is 13 The electricity

price is $00512kWh and the pumping power is 853 kW The electrode price is $300m2 and its lifetime is 2000 h

Currently we are at only Ω=0436

Computer-based First-Principles Kinetic Model

Reaction Pathway Generator

(Graph Theory)

Rate Constants Estimator

(Group Contribution Method

Free Energy Linear

Relationship

Genetic Algorithm)

Ordinary Differential

Equations

(ODEs) Generator and Solver

(Gearrsquos Algorithm or

Monte Carlo algorithm)

Kinetic Monte Carlo Solver can

solve 1 million ODEs on PC

within 30 minutes

Complexity of Reaction PathwayExample

General reaction mechanisms that HObull initiates based on past experimental studies

Stefan and Bolton 1998 1999 1999 Stefan et al 1996 2000 Cooper et al 2009 Li et al 2004 2007 von Sonntag and

Schuchmann 1984 Schuchmann and von Sonntag 1979

Type of mechanismNumber of

speciesNumber of reactions

Full mechanism 120 370

Reduced mechanism 41 89

The criterion for DRG method is 1

Reaction rate constants are obtained from group contribution method (Minakata et al 2009 ESampT 43 6220-6227) and literature includingNate et al 1990 J Phys Chem Ref Data 19 413-513Nate et al 1995 J Phys Chem Ref Data 25 709-1050Buxton et al 1988 J Phys Chem Ref Data 17 513-886von Sonntag et al 1991 Angeuz Chem Int Ed Engl 30 1229-1253Li et al 2009 ESampT 43 2831-2837Li et al 2007 ESampT 41 1696-1703

Initial concentration of TCE 108 mM

Initial concentration of O2 22 mM

Initial concentration of H2O2 104 mM

Initial pH 59

Wave length of UV 200~300 nm

Light intensity779times10-6

EinsteinLmiddots

Reactor typeCompletely mixed batch reactor

Reaction time 30 min

Comparison of concentration profiles of major species for experimental data (Li Stefan Crittenden 2007 ESampT 41 1696-1703) and simulation results

00

20

40

60

80

100

120

00

02

04

06

08

10

12

0 5 10 15 20 25 30[H

2O

2]

(mM

)

[Ma

jor

spec

ies]

(m

M)

Time(min)

TCE exp

formic acid exp

oxalic acid exp

20 times DCA exp

20 times MCA exp

TCE cal

formic acid cal

oxalic acid cal

20 times DCA cal

20 times MCA cal

H2O2 exp

H2O2 cal

The photolysis of TCE was added manually because it is not included in this version of the pathway generator

Predicted Concentration Profiles of

Trichloroethene (TCE) and Stable-byproducts in UVH2O2 AOP

Comparison of number averaged molecular

weight (MW) for experimental data

(Vijayalakshmi et al J Appl Polym Sci 2006

100 3997-4003) and on-the-fly KMC model

The KMC model used a population number of 108L to

represent a concentration of 1molL

0

02

04

06

08

1

12

14

16

18

0 25 50 75 100 125 150 175 200

Aver

aged

mole

cu

lar

wei

gh

t (1

05

gm

ol)

Time (min)

Experiment

On-the-fly KMC

0

02

04

06

08

1

12

0 25 50 75 100 125 150 175 200

Nu

mb

er o

f re

act

ion

s (1

06)

Time (min)

Time evolvement of the number of generated

reactions for the degradation of PAM during the

UVTiO2 process

Degradation of Polyacrylamide (PAM)

Simulation Results for PAM Degradation in UVTiO2 AOP

Guo X Minakata D and Crittenden J 2015 On-the-fly kinetic Monte Carlo simulation of aqueous phase advanced oxidation processes Environmental science amp technology 49(15) pp9230-9236

1 Crittenden John C Shumin Hu David W Hand and Sarah Green ldquoA Kinetic Model for H2O2UV Process in a Completely Mixed Batch Reactorrdquo Water Research 33(10) 2315-2328 (1999)

2 Li K Crittenden JC Computerized pathway elucidation for hydroxyl radical induced chain reaction mechanisms in aqueous phase AOPs Environmental Science amp Technology 2009 43(8) 2831-2837

3 Li K Stefan MI Crittenden JC Trichloroethene degradation by UVH2O2 advanced oxidation process product study and kinetic modeling Environmental Science amp Technology 2007 41 1696-1703

4 Li K M I Stefan and J C Crittenden ldquoUV Photolysis of Trichloroethylene (TCE) Product Study and Kinetic Modelingrdquo Environmental Science and Technology Vol 38 No 24 6685-6693 (2004)

5 Ke Li David R Hokanson John C Crittenden R Rhodes Trussell and Daisuke Minakata ldquoEvaluating UVH2O2 Processes for Methyl tert-Butyl Ether (MtBE) and tertiary Butyl Alcohol (TBA) Removal from

Drinking Water Source Effect of Pretreatment Options and Light Sourcesrdquo Water Research 2008 Volume 42 (20) 5045-5053

6 Minakata D Li K Westerhoff P Crittenden J Development of a group contribution method to predict aqueous phase hydroxyl radical reaction rate constants Environmental Science amp Technology 2009 43

6220-6227

7 Minakata D Crittenden J Linear Free Energy Relationships between the Aqueous Phase Hydroxyl Radical (HObull) Reaction Rate Constants and the Free Energy of Activation Environmental Science amp Technology

2011a 45 3479-3486

8 Minakata D Song W Crittenden J Reactivity of aqueous phase hydroxyl radical with halogenated carboxylate anions Experimental and theoretical studies Environmental Science amp Technology 2011 45 6057-

6065

9 Daisuke Minakata Stephen P Mezyk Jace W Jones Brittany R Daws John C Crittenden ldquoDevelopment of Linear Free Energy Relationships for Aqueous Phase Radical-Involved Chemical Reactionsrdquo

Environmental Science amp Technology 2014 48 (23) 13925-13932

10 Xin Guo Daisuke Minakata John C Crittenden ldquoOn-the-Fly Kinetic Monte Carlo Simulation of Aqueous Phase Advanced Oxidation Processesrdquo Environmental Science and Technology 2015 49 (15) 9230ndash9236

11 Guo X Minakata D Crittenden JC ldquoComputer-Based First-Principles Kinetic Monte Carlo Simulation of Polyethylene Glycol Degradation in Aqueous Phase UVH2O2 Advanced Oxidation Processrdquo

Environmental Science amp Technology 2014 48 10813minus10820

12 Xin Guo Daisuke Minakata Junfeng Niu John C Crittenden ldquoComputer-based First-principles Kinetic Modeling of Degradation Pathways and Byproduct Fates in Aqueous Phase Advanced Oxidation Processesrdquo

Environmental Science and Technology 2014 48 (10) pp 5718ndash5725

13 Yajie Qian Xin Guo Yalei Zhang Yue Peng Peizhe Sun Ching-Hua Huang Junfeng Niu Xuefei Zhou John C Crittenden ldquoPerfluorooctanoic Acid Degradation Using UVminusPersulfate Process Modeling of the

Degradation and Chlorate Formationrdquo 2015 Environmental Science and Technology 50 (2) 772ndash781

14 Ruzhen Xie Xiaoyang Meng Peizhe Sun Junfeng Niu Wenju JiangLawrence Bottomley Duo Li Yongsheng Chen John C CrittendenrdquoElectrochemical Oxidation of Ofloxacin Using a TiO2-based SnO2-

SbPolytetrafluoroethylene Resin-PbO2 Electrode Reaction Kinetics and Mass Transfer Impactrdquo 2016 Applied Catalysis B Environmental 203 (2017) 515ndash525

15 Westerhoff Paul Moon Hye Minakata Daisuke Crittenden John ldquoOxidation of Organics in Retentates from Reverse Osmosis Wastewater Reuse Facilitiesrdquo Water Research 43 (16) 3992-2998

16 Liu L Chen F Yang F Chen Y Crittenden J ldquoPhotocatalytic degradation of 24-dichlorophenol using nanoscale FeTiO2rdquo Chemical Engineering Journal 2012 181ndash182 (0)189-195

References

References

17 Ying Wang Jiasheng Fang John C Crittenden Chanchan Shen ldquoNovel RGO120572-FeOOH Supported Catalyst for Fenton Oxidation of Phenol at a Wide pH Range Using Solar-Light-Driven Irradiationrdquo 2017 Journal

of Hazardous Materials 329 321ndash329

18 Xiaodong Ma Mengying Zhao Qin Pang Meihua Zheng Hongwen Sun John C Crittenden Yanying Zhu Yongsheng Chen ldquoDevelopment of Novel CaCO3Fe2O3 Nanorods for Low Temperature 12-

Dichlorobenzene Oxidationrdquo 2017 Applied Catalysis A General 522 (2016) 70ndash79

19 Heacutector L Otaacutelvaro-Mariacuten Miguel Angel Mueses John C Crittenden Fiderman Machuca-Martinez ldquoSolar Photoreactor Design by the Photon Path Length and Optimization of the Radiant Field in a TiO2-based CPC

Reactorrdquo 2017 Chemical Engineering Journal 315 283ndash295

20 Qi Wang Naxin Zhu Enqin Liu Chenlu Zhang John C Crittenden Yi ZhangYanqing CongldquoFabrication of Visible-Light Active Fe2O3-GQDsNF-TiO2 Composite Film with Highly Enhanced

Photoelectrocatalytic Performancerdquo 2017 Applied Catalysis B Environmental 205 347ndash356

21 Junfeng Niu Lifeng Yin Yunrong Dai Yueping Bao John C Crittenden ldquoDesign of Visible Light Responsive Photocatalysts for Selective Reduction of Chlorinated Organic Compounds in Waterrdquo 2016 Applied

Catalysis A General 521 90ndash95

22 Chaojie Jiang Lifen Liu John C Crittenden ldquoAn Electrochemical Process that Uses an Fe0TiO2 Cathode to Degrade Typical Dyes and Antibiotics and a Bio-anode that Produces Electricityrdquo 2016 Frontiers of

Environmental Science amp Engineering 10(4) 15

23 Yijing Xia Qizhou Dai Mili Weng Yue Peng Jinming Luo Xiaoyang Meng Xubiao Luo Jianmeng Chen John C Crittenden ldquoFabrication and Electrochemical Treatment Application of an Al-Doped PbO2

Electrode with High Oxidation Capability Oxygen Evolution Potential and Reusabilityrdquo2015 Journal of The Electrochemical Society 162 (10) E258-E262

24 Feng Duan Yuping Li Hongbin Cao Yi Wang John C Crittenden Yi Zhang ldquoActivated Carbon Electrodes Electrochemical Oxidation Coupled with Desalination for Wastewater Treatmentrdquo 2015 Chemosphere

125 205-211

25 Xing Linlin Xie Yongbing Cao Hongbin Minakata Daisuke Zhang Yi Crittenden John C ldquoActivated carbon-enhanced ozonation of oxalate attributed to HObull oxidation in bulk solution and surface oxidation

Effects of the type and number of basic sitesrdquo Chemical Engineering Journal 2014 245 71-79

26 Yao H Sun P Minakata D Crittenden JC Huang C-H ldquoKinetics and Modeling of Degradation of Ionophore Antibiotics by UV and UVH2O2rdquo Environmental Science and Technology 2013 (47) 4581-

45892

26 Li Yang et al Synergistic photogeneration of reactive oxygen species by dissolved organic matter and C60 in aqueous phase Environmental science amp technology 492 (2015) 965-973

28 Niu Junfeng et al Photocatalytic reduction of triclosan on AundashCu 2 O nanowire arrays as plasmonic photocatalysts under visible light irradiation Physical Chemistry Chemical Physics 1726 (2015) 17421-17428

29 Niu Junfeng et al Design of visible light responsive photocatalysts for selective reduction of chlorinated organic compounds in water Applied Catalysis A General 521 (2016) 90-95

30 Tianyin Huang Jiabin Chen Zhongming Wang Xin Guo John C Crittenden ldquoExcellent Performance of Cobalt-Impregnated Activated Carbon in Peroxymonosulfate Activation for Acid Orange 7 Oxidationrdquo 2017

Environmental Science and Pollution Research Volume 24 (10) 9651ndash9661

References

31 Yang Li Junfeng Niu Enxiang Shang John C Crittenden ldquoPhotochemical Transformation and Photoinduced Toxicity Reduction of Silver Nanoparticles in the Presence of Perfluorocarboxylic Acids under UV

Irradiationrdquo Environmental Science and Technology 2014 48 (9) pp 4946ndash4953

32 Cao H Xing L Wu G Xie S Zhang SY Minakata D Crittenden JC ldquoPromoting effect of nitration modification on activated carbon in the catalytic ozonation of oxalic acidrdquo Applied Catalysis B

Environmental 2014 146 169-176

33 Konsowa A H Ossman M E Chen Y Crittenden J C ldquoDecolorization of industrial wastewater by ozonation followed by adsorption on activated carbonrdquo Journal of Hazardous Materials 176 (2010) 181-185

November 10 2009

34 Wipada Sanongraj Yongsheng Chen John Crittenden David Hand and David Perram ldquoDevelopment of Photocatalytic Oxidation Model Part I-Mathematical Model for Photocatalytic Destruction of Organic

Contaminants in Airrdquo Journal of the Air and Waste Management Association 571112ndash1122 September 2007

35 Chen Y JC Crittenden S Hackney L Sutter and DW Hand ldquoPreparation of a Novel TiO2-based p-n Junction Nanotube Photocatalystrdquo Environmental Science and Technology Vol 39 No 5 1201-1208 (2005)

36 Suri RPS J Liu JC Crittenden DW Hand and DL Perram Removal and Destruction of Organic Contaminants in Water Using Adsorption Steam Regeneration and Photocatalytic Oxidation A Pilot Scale

Studyrdquo Journal of Air and Waste Management Volume 49 (August 1999) 951 ndash 958

37 Burns RA JC Crittenden DW Hand VH Selzer LL Sutter SR Salman Effect of Inorganic Ions in the Heterogeneous Photocatalysis of Trichloroethene ASCE Journal of Environmental Engineering Vol

125 No 1 pp 77-85 (January 1999)

38 Liu J JC Crittenden DW Hand and DL Perram Regeneration of Adsorbents Using Heterogeneous Photocatalytic Oxidationrdquo Journal of Environmental Engineering Vol 122 No 8 pp 707-714 (1996)

39 Crittenden JC J Liu DW Hand and DL Perram Photocatalytic Oxidation of Chlorinated Hydrocarbons in Waterrdquo Water Research Vol31 No 3 pp 429-438 (1997)

40 Crittenden JC RPS Suri DL Perram and DW Hand Decontamination of Water Using Adsorption and Photocatalysisrdquo Water Research Vol 31 No 3 pp 411-418 (1997)

41 Crittenden JC Y Zhang DW Hand and DL Perram Destruction of Organic Compounds in Water Using Fixed-Bed Photocatalysts Journal of Solar Energy Engineering (ASME) Vol 118 No 5 pp 123 -129

(1996)

42 Crittenden JC Y Zhang DW Hand and DL Perram Solar Detoxification of Fuel-Contaminated Groundwater Using Fixed-Bed Photocatalystsrdquo Water Environment Research Vol 68 No 3 pp 270-278

(1996)

43 Zhang Y JC Crittenden and DW Hand The Solar Photocatalytic Decontamination of Waterrdquo Chemistry amp Industry Vol 18 pp 714-717 September (1994)

44 Mourand JT JC Crittenden DW Hand DL Perram and S Notthakun Regeneration of Spent Adsorbents Using Advanced Oxidationrdquo Water Environment Federation Vol 67 No 3 pp 355-363 (1995)

45 Hand DW DL Perram and JC Crittenden Destruction of DBP Precursors with Catalytic Oxidationrdquo American Water Works Association Journal Vol 87 No 6 pp 84-96 (1995)

46 Zhang Y JC Crittenden DW Hand and DL Perram Fixed-Bed Photo-catalysts for Solar Decontamination of Waterrdquo Environmental Science amp Technology Vol 28 No 3 pp 435-442 (1994)

47 Suri RPS J Liu DW Hand JC Crittenden DL Perram and ME Mullins Heterogeneous Photocatalytic Oxidation of Hazardous Organic Contaminants in Waterrdquo Water Environment Federation Vol 65 No

5 pp 665-673 (1993)

Page 12: The Application of Advanced Oxidation Processes (AOPs) and ...€¦ · We define the electron efficiency to be = 32 12 ·( J 4𝑥)· Where TOC in mg (c)/L and COD in mg ( 2)/L, n

Half coated surface (coated only 5 times which

still expose some nanotubes surface) with non-

aging sol-gel (exhibit less compact morphology

and large crystal size)

Fully coated aged SnO2-Sb layer (15 times coating)

shows compact crystals configuration and smaller

size which improved surface area and surface

reaction sites

Half-Coated Non-Aged vs Fully

Coated Aged Anode 2Anode 2 Blue TiO2 NanotubesAged SnO2-Sb

The estimated life time of Blue TiO2 nanotubes and Aged SnO2-Sb is 2189

and 4794 h at operational current densities of 10 and 5 mAcm2

Characterization Voltammetry

Linear sweep voltammetry (LSV) of the 1 2 anode BDD for a 05 M H2SO4 solution (pH = 0) Scan rate is

10 mVs The standard reduction potentials (pH=0) for O2 H2O2 O3 and HOmiddot are +123 V +177 V +207 V

and +274 V

Patent

Pending

119889 119861119860

119889119905= 119896119861119860119867119874 times 119861119860 times 119867119874 119904119904

= 119896119861119860[119861119860]

119867119874 119904119904 =119896119861119860

119896119861119860119867119874

Anode material 2 743times10-14 molL

Anode material 1 477times10-14 molL

The steady state hydroxyl radical

concentration is estimated from 1 mM

benzoic acid degradation in a 30 mM

NaClO4 at 5 mAcm2 [HO]=kBAkHO

119896119861119860119867119874 = 59 times 109119871(119898119900119897119904)

Hydroxyl Radicals Production Comparison

Actual industrial used anode TiPbO2

Pilot treatment results will show in a minute

These blue NTA are unstable because they are not

coated with SnO2 ndash Sb

The stoichiometric equation for benzoic acid is given as

119862711986761198742 + 121198672119874 rarr 71198621198742 + 30119867+ + 30119890minus

We define the electron efficiency to be

119864119864 =32

12middot (

119899

4119909) middot

119889 119879119874119862

119889 119862119874119863

Where TOC in mg (c)L and COD in mg (1198742)L n is the

number of electrons transfer from the anode for a

complete oxidation reaction and x is the number of

carbon atoms in the organic contaminants

According to the equation and calculation the electron

efficiency for 2D and 3D systems in this case are

119864119864 2119863 = 0866 (866) and 119864119864 3119863 = 1067 (1067)

For 1mmolL (~122mgL) TOC ~90mgL COD

~190mgL

Low electrolyte concentration condition 0005 M Na2SO4

Electron Efficiency (Faraday Efficiency)

Investigate amp optimize electrode

spacing amp fluid velocity

Mass Transfer Impact of EAOPs

We used Differential Column Batch Reactor (DCBR)

in experiments

(a) ofloxacin destruction by 1 anode for various electrode spacing (b) pseudo-first-order rate constants (c) EEO

Anode surface area 10 cm2 electrode spacing 1 cm fluid velocity 0033 ms initial ofloxacin concentration 20

mgL voltage 35-86 V electrolyte concentration is 005 M Na2SO4 pH value 625 and temperature is 25

Mass Transfer Impact Electrode Spacing

for 2D Electrode

(a) ofloxacin destruction on 1 anode for various fluid velocity (b) pseudo-first-order rate constants (c) EEO

Anode surface area 10 cm2 electrode spacing 1 cm fluid velocity 0033 ms initial ofloxacin concentration 20

mgL voltage 35-86 V electrolyte concentration is 005 M Na2SO4 pH value 625 and temperature is 25

Mass Transfer Impact Fluid Velocity

120570 =119896119891 sdot 120579

119896119891 sdot 120579 + 119896119872119886119909 sdot 119889

Effectiveness factor in different fluid velocity and the best fitted model 1

anode surface area 10 cm2 electrode spacing 1 cm electrolyte 005 M

Na2SO4 solution current density 30 mAcm2 initial ofloxacin concentration

20 mgL voltage 63-64 v pH value 625 temperature 25

l

du

Plain channel

119878ℎ =119896119891 sdot 119889

119863119897= 33 sdot

119889

119897sdot Re sdot 119878119888

13

Re =120588 sdot 119906 sdot 119889

120583

119878119888 =120583

120588 sdot 119863119897

120570 =119903119900119887119904

119903max=

119896119900119887119904 119877

119896max 119877

Sherwood number

Reynolds number

Schmidt number

Ω = 0436 means more than

56 oxidation rate reduced

by mass transfer

Mass Transfer Impact Effectiveness Factor

Many AOP follow a pseudo-first order rate

EEO is useful because if EEO is 5kWhr-order then if

you supply 5 1

15 kWm3 then you will 90 99 999 destruction of

the parent compound

Note COD and TOC have a much slower rate

Byproducts are less toxic and more biodegradable

Figure of Merit Electrical Energy Used per

Order (EEO) of Parent Compound Destroyed

EEO in Conventional AOPs

Conventional AOP Example EEO in UVH2O2

119864119864119874 =119875 times 119905

119881 times log1198620119862

+11986211986721198742

times00022119897119887

119892times 11986411986721198742

log1198620119862

119864119864119874 =2303 times 119875 times 1198961 11986721198742 0 + 1198962 1198671198621198743

minus0 + 1198963 119873119874119872 0 + 1198964 119877 0 times ε11986721198742

11986721198742 0 + ε119877 119877 0 + ε119873119874119872 119873119874119872 0

119875119880119881 times 1198964 times ε1198672119874211986721198742 0 times 1 minus 10minus119860 times V

+ 34 gramL times 11986721198742 0 times 00022 119897119887119892119903119886119898 times 11986411986721198742 times 1000 Lm3

bull Target contaminant concentrations oxidant dosage NOM determine the EEO of

conventional AOPs

EEO in EAOPs

EEO in EAOPs

EEO =v times j times A times V times t

V times logC0C

=v times j times A times t

logC0C

EEO =v times j times A

0434 times 119896119878 times Ω

v voltage V

j current densitymA

cm2

A surface area per volumem2

m3

V volumem3

C concentrationmol

m3

ks surface reaction rate sminus1

kobs observed reaction rate sminus1

Ω effectiveness factor

Ω =119896119900119887119904

119896119878

bull Target contaminants concentration dose does not effect EEO in EAOPs

bull EEO is a constant under same operational conditions

01 1 10 100 1000 10000 100000

Ultrapure Water

Distilled Water

Tap Water

Potable Water In The US

Surface Water

Industrial Wastewater

Seawater

Conductivity microScm

Water Streams Conductivity Guide

2D vs 3D EEO Comparison

Degradation of 1 mmolL benzoic acid in a 470 mL differential column batch reactor pH controlled

~68 surface water used has a low conductivity 112 microscm controlled current density is 30 mAcm2

2D anode size is 10 cm2 3D used 80 meshed Ti gauze has surface area 718 cm210 cm2 DCBR

operated at Re 194 Sc 2727 Sh 194 kf 64times10-6 ms Dl 9times10-6 cm2s

2D Electrode

3D Electrode

EEO Analysis in EAOPs

Electrolyte

Concentration

BA

concentrati

on

Voltage Current

Density

EEO

molL mgL V mAcm2 kWhm3

Surface

Water+BA~00004

(113 microScm)

24

(02 mM) 60 105 1738Surface

Water+BA 00004122

(1 mM) 60 105 2003Industrial

Water+BA

01

(16210

microScm) 24 73 304 175Industrial

Water+BA 01 122 8 30 207

Voltage Current

Density

EEO

V mAcm2 kWhm3

152 105 868

3D System2D System

bull Ionic strength is important in EAOPs NOM is not

bull Initial concentration C0does not effect EEO (at least for the

concentrations we tested)

bull Accordingly the pseudo ndash first surface rate constant is same for

different influent concentrations and the same operational

conditions for the conditions we tested

bull We expect to see the reaction rate to decrease with high C0 because

at high concentrations all the reactions site on the anode will be

occupied preventing the oxidation rate from increasing (Langmuir-

Hinshelwood Hougen Watson kinetics confirmation needed)

53 304 290

Conventional AOPs vs EAOPs Modeling 13

A case study to compare EEOs for

UVH2O2 H2O2O3 UVHOCl UVPersulfate UVTiO2

EAOPs (two-dimensional and three-dimensional)

Simulation Conditions[HCO3

minus] = 3 mM [NOM] = 2 mgL [Cl-] = 0001 M

pH = 7 kBA = 59times10-9 L(molmiddotS)Same 22 W input energy gives UV light intensity = 164times10-6 Einstein s-1 L-1

Initial Concentrations [R] (Benzoic Acid in this case) = 20 200 2000 mgL

Quantum yield

UVH2O2 = 05 UVHOCl = 09 UVPersulfate = 07

UVTiO2 = 004 (light transmission efficiency = 04)

Chemical production energy

H2O2 = 49 kWhlb persulfate = 49 kWhlb HOCl = 51 kWhlb O3 = 5 kWhlb

Note TiO2 and electrodes production energies are not included in simulation

EAOPs assumptions amp parameters

J = 30 mAcm2 2D anode size A = 10 cm2 3D anode size A= 718 cm2 (80 meshed Ti gauze)

Sc = 2727 Sh = 194 Dl = 9times10-6 cm2s d = 1 cm

Note pumping energy is small compare to electricity and neglected in simulation

Q = 20 mLmin Re = 1851 kf = 235times10-6 ms

Q = 500 mLmin Re = 46296 kf = 688times10-6 ms

Q = 2000 mLmin Re = 203704 kf = 113times10-5 ms (Re lt 2100 in laminar flow)

Minimal

EEO

(kWhm3)

Optimal

OxidantCatalyst

Dosage

9072 [TiO2]=300 mgL

4022 [Persulfate]=16 gL

2718 [H2O2]=0612 gL

2442 [HOCl]=026 gL

679 [H2O2]=0028 mgL

Electrolyte

(Na2SO4)

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

0M3702

0001M 6466 2405

0005M 3781 2069

001M 2676 1552

01M 469 1294

AOPs Minimal

EEO

(kWhm3)

Optimal

OxidantCatalyst

Dosage

UVTiO2 1038 [TiO2]=300 mgL

UVPersulfate 128 [Persulfate]=117 gL

UV H2O2 090 [H2O2]=0204 gL

UVHOCl 367 [HOCl]=014 gL

H2O2O3 0015 [H2O2]=00206 mgL

[R]0 = 20 mgL

~16 mgL TOC

[R]0 = 200 mgL

~140 mgL TOC

Minimal

EEO

(kWhm3)

Optimal

OxidantCatalyst

Dosage

88271 [TiO2]=300 mgL

8208 [Persulfate]=581 gL

1768 [H2O2]=184 gL

8335 [HOCl]=0776 gL

17648 [H2O2]=0035 mgL

[R]0 = 2000 mgL

~1379 mgL TOC

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

3545

6015 2260

3559 1937

2504 1448

455 1207

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

3404

5634 2136

3367 1824

2357 1360

443 1132

Re = 1851 Re = 46296 Re = 203704

Conventional AOPs vs EAOPs Modeling 23

Mass Transfer Increase

Ion

Str

en

gth

In

crease

Conventional AOPs vs EAOPs Modeling 33

AOPs Minimal

EEO

(kWhm3)

Optimal

OxidantCatalyst

Dosage

UVTiO2 1038 [TiO2]=300 mgL

UVPersulfate 128 [Persulfate]=117 gL

UV H2O2 090 [H2O2]=0204 gL

UVHOCl 367 [HOCl]=014 gL

H2O2O3 0015 [H2O2]=00206 mgL

[R]0 = 20 mgL

~16 mgL TOC For low concentration treatment

objectives EAOPs may not be as good as

compared to conventional AOPs

Conventional UVH2O2 and H2O2O3 are

the best conventional AOPs for BA

Electrolyte

(Na2SO4)

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

0M3702

0001M 6466 2405

0005M 3781 2069

001M 2676 1552

01M 469 1294

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

3545

6015 2260

3559 1937

2504 1448

455 1207

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

3404

5634 2136

3367 1824

2357 1360

443 1132

Re = 1851 Re = 46296 Re = 203704Mass Transfer Increase

Ion

Str

en

gth

In

crease

Conventional AOPs vs EAOPs Modeling 33

Minimal

EEO

(kWhm3)

Optimal

OxidantCatalyst

Dosage

88271 [TiO2]=300 mgL

8208 [Persulfate]=581 gL

1768 [H2O2]=184 gL

8335 [HOCl]=0776 gL

17648 [H2O2]=0035 mgL

[R]0 = 2000 mgL

~1379 mgL TOC For high concentration treatment objectives

EAOPs are more energy efficient

3D-EAOP saves more energy than 2D because

it requires lower applied voltage

3D-EAOP works better than 2D in low ion

strength treatment

Electrolyte

(Na2SO4)

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

0M3702

0001M 6466 2405

0005M 3781 2069

001M 2676 1552

01M 469 1294

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

3545

6015 2260

3559 1937

2504 1448

455 1207

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

3404

5634 2136

3367 1824

2357 1360

443 1132

Re = 1851 Re = 46296 Re = 203704Mass Transfer Increase

Ion

Str

en

gth

In

crease

Limiting Current in Different Conditions

jlim = n times F times kf times Csalt

Electrolyte

Concentration Q Q Q

Na2SO4 mlmin mlmin mlmin

20 500 2000

Re Re Re

1852 46296 185185

kf kf kf

ms ms ms

235405E-06 688E-06 109E-05

jlim jlim jlim

molL mAcm2 mAcm2 mAcm2

0001 068 199 316

jlim jlim jlim

molL mAcm2 mAcm2 mAcm2

0005 341 996 1581

jlim jlim jlim

molL mAcm2 mAcm2 mAcm2

001 681 1992 3163

jlim jlim jlim

molL mAcm2 mAcm2 mAcm2

005 3407 9962 15814

jlim jlim jlim

molL mAcm2 mAcm2 mAcm2

01 6814 19924 31627

Parameters Symbol Units Value

Influent concentration C0 mgL 20

Effluent concentration Ce mgL 02

Flow rate Q m3day 1000

Pseudo first order rate constant k min 0042

Size of reactor VRequired m3 38 m3

Detention time τ min 548

Electrode spacing d cm 1

Fluid velocity u ms 0033

Electrolyte Na2SO4 Concentration M 005

Current density J mAcm2 30

Assuming a Plug Flow Reactor (PFR) to be Confirmed with CFD

Full Scale Reactor Design

Full Scale Reactor Design

Rough Design of Reactor (top view)

1 2 3 4 5 6 7 8 9 10

105 meters

long

10 meters

electrodes

10 meters

2 meters deep

Reactor Channel

1 meter

hellip

5 cm 95 cmInfluent Effluent

The total costs (capital costs + energy costs) as a function of different electrode spacing for different theoretical

reaction rate In here the treatment objective is 99 removal flow rate is 1000 m3day and the fluid velocity is 00116

ms The flow channel has eddy promoter and its electrode spacing and obstacle distance ratio is 13 The electricity

price is $00512kWh and the pumping power is 853 kW The electrode price is $300m2 and its lifetime is 2000 h

Capital Expenditure Operational Expenditure

CapEx vs OpEx

Cost Analysis for Preliminary Design

The total costs (capital costs + energy costs) as a function of different electrode spacing for different theoretical

reaction rate In here the treatment objective is 99 removal flow rate is 1000 m3day and the fluid velocity is 00116

ms The flow channel has eddy promoter and its electrode spacing and obstacle distance ratio is 13 The electricity

price is $00512kWh and the pumping power is 853 kW The electrode price is $300m2 and its lifetime is 2000 h

Currently we are at only Ω=0436

Computer-based First-Principles Kinetic Model

Reaction Pathway Generator

(Graph Theory)

Rate Constants Estimator

(Group Contribution Method

Free Energy Linear

Relationship

Genetic Algorithm)

Ordinary Differential

Equations

(ODEs) Generator and Solver

(Gearrsquos Algorithm or

Monte Carlo algorithm)

Kinetic Monte Carlo Solver can

solve 1 million ODEs on PC

within 30 minutes

Complexity of Reaction PathwayExample

General reaction mechanisms that HObull initiates based on past experimental studies

Stefan and Bolton 1998 1999 1999 Stefan et al 1996 2000 Cooper et al 2009 Li et al 2004 2007 von Sonntag and

Schuchmann 1984 Schuchmann and von Sonntag 1979

Type of mechanismNumber of

speciesNumber of reactions

Full mechanism 120 370

Reduced mechanism 41 89

The criterion for DRG method is 1

Reaction rate constants are obtained from group contribution method (Minakata et al 2009 ESampT 43 6220-6227) and literature includingNate et al 1990 J Phys Chem Ref Data 19 413-513Nate et al 1995 J Phys Chem Ref Data 25 709-1050Buxton et al 1988 J Phys Chem Ref Data 17 513-886von Sonntag et al 1991 Angeuz Chem Int Ed Engl 30 1229-1253Li et al 2009 ESampT 43 2831-2837Li et al 2007 ESampT 41 1696-1703

Initial concentration of TCE 108 mM

Initial concentration of O2 22 mM

Initial concentration of H2O2 104 mM

Initial pH 59

Wave length of UV 200~300 nm

Light intensity779times10-6

EinsteinLmiddots

Reactor typeCompletely mixed batch reactor

Reaction time 30 min

Comparison of concentration profiles of major species for experimental data (Li Stefan Crittenden 2007 ESampT 41 1696-1703) and simulation results

00

20

40

60

80

100

120

00

02

04

06

08

10

12

0 5 10 15 20 25 30[H

2O

2]

(mM

)

[Ma

jor

spec

ies]

(m

M)

Time(min)

TCE exp

formic acid exp

oxalic acid exp

20 times DCA exp

20 times MCA exp

TCE cal

formic acid cal

oxalic acid cal

20 times DCA cal

20 times MCA cal

H2O2 exp

H2O2 cal

The photolysis of TCE was added manually because it is not included in this version of the pathway generator

Predicted Concentration Profiles of

Trichloroethene (TCE) and Stable-byproducts in UVH2O2 AOP

Comparison of number averaged molecular

weight (MW) for experimental data

(Vijayalakshmi et al J Appl Polym Sci 2006

100 3997-4003) and on-the-fly KMC model

The KMC model used a population number of 108L to

represent a concentration of 1molL

0

02

04

06

08

1

12

14

16

18

0 25 50 75 100 125 150 175 200

Aver

aged

mole

cu

lar

wei

gh

t (1

05

gm

ol)

Time (min)

Experiment

On-the-fly KMC

0

02

04

06

08

1

12

0 25 50 75 100 125 150 175 200

Nu

mb

er o

f re

act

ion

s (1

06)

Time (min)

Time evolvement of the number of generated

reactions for the degradation of PAM during the

UVTiO2 process

Degradation of Polyacrylamide (PAM)

Simulation Results for PAM Degradation in UVTiO2 AOP

Guo X Minakata D and Crittenden J 2015 On-the-fly kinetic Monte Carlo simulation of aqueous phase advanced oxidation processes Environmental science amp technology 49(15) pp9230-9236

1 Crittenden John C Shumin Hu David W Hand and Sarah Green ldquoA Kinetic Model for H2O2UV Process in a Completely Mixed Batch Reactorrdquo Water Research 33(10) 2315-2328 (1999)

2 Li K Crittenden JC Computerized pathway elucidation for hydroxyl radical induced chain reaction mechanisms in aqueous phase AOPs Environmental Science amp Technology 2009 43(8) 2831-2837

3 Li K Stefan MI Crittenden JC Trichloroethene degradation by UVH2O2 advanced oxidation process product study and kinetic modeling Environmental Science amp Technology 2007 41 1696-1703

4 Li K M I Stefan and J C Crittenden ldquoUV Photolysis of Trichloroethylene (TCE) Product Study and Kinetic Modelingrdquo Environmental Science and Technology Vol 38 No 24 6685-6693 (2004)

5 Ke Li David R Hokanson John C Crittenden R Rhodes Trussell and Daisuke Minakata ldquoEvaluating UVH2O2 Processes for Methyl tert-Butyl Ether (MtBE) and tertiary Butyl Alcohol (TBA) Removal from

Drinking Water Source Effect of Pretreatment Options and Light Sourcesrdquo Water Research 2008 Volume 42 (20) 5045-5053

6 Minakata D Li K Westerhoff P Crittenden J Development of a group contribution method to predict aqueous phase hydroxyl radical reaction rate constants Environmental Science amp Technology 2009 43

6220-6227

7 Minakata D Crittenden J Linear Free Energy Relationships between the Aqueous Phase Hydroxyl Radical (HObull) Reaction Rate Constants and the Free Energy of Activation Environmental Science amp Technology

2011a 45 3479-3486

8 Minakata D Song W Crittenden J Reactivity of aqueous phase hydroxyl radical with halogenated carboxylate anions Experimental and theoretical studies Environmental Science amp Technology 2011 45 6057-

6065

9 Daisuke Minakata Stephen P Mezyk Jace W Jones Brittany R Daws John C Crittenden ldquoDevelopment of Linear Free Energy Relationships for Aqueous Phase Radical-Involved Chemical Reactionsrdquo

Environmental Science amp Technology 2014 48 (23) 13925-13932

10 Xin Guo Daisuke Minakata John C Crittenden ldquoOn-the-Fly Kinetic Monte Carlo Simulation of Aqueous Phase Advanced Oxidation Processesrdquo Environmental Science and Technology 2015 49 (15) 9230ndash9236

11 Guo X Minakata D Crittenden JC ldquoComputer-Based First-Principles Kinetic Monte Carlo Simulation of Polyethylene Glycol Degradation in Aqueous Phase UVH2O2 Advanced Oxidation Processrdquo

Environmental Science amp Technology 2014 48 10813minus10820

12 Xin Guo Daisuke Minakata Junfeng Niu John C Crittenden ldquoComputer-based First-principles Kinetic Modeling of Degradation Pathways and Byproduct Fates in Aqueous Phase Advanced Oxidation Processesrdquo

Environmental Science and Technology 2014 48 (10) pp 5718ndash5725

13 Yajie Qian Xin Guo Yalei Zhang Yue Peng Peizhe Sun Ching-Hua Huang Junfeng Niu Xuefei Zhou John C Crittenden ldquoPerfluorooctanoic Acid Degradation Using UVminusPersulfate Process Modeling of the

Degradation and Chlorate Formationrdquo 2015 Environmental Science and Technology 50 (2) 772ndash781

14 Ruzhen Xie Xiaoyang Meng Peizhe Sun Junfeng Niu Wenju JiangLawrence Bottomley Duo Li Yongsheng Chen John C CrittendenrdquoElectrochemical Oxidation of Ofloxacin Using a TiO2-based SnO2-

SbPolytetrafluoroethylene Resin-PbO2 Electrode Reaction Kinetics and Mass Transfer Impactrdquo 2016 Applied Catalysis B Environmental 203 (2017) 515ndash525

15 Westerhoff Paul Moon Hye Minakata Daisuke Crittenden John ldquoOxidation of Organics in Retentates from Reverse Osmosis Wastewater Reuse Facilitiesrdquo Water Research 43 (16) 3992-2998

16 Liu L Chen F Yang F Chen Y Crittenden J ldquoPhotocatalytic degradation of 24-dichlorophenol using nanoscale FeTiO2rdquo Chemical Engineering Journal 2012 181ndash182 (0)189-195

References

References

17 Ying Wang Jiasheng Fang John C Crittenden Chanchan Shen ldquoNovel RGO120572-FeOOH Supported Catalyst for Fenton Oxidation of Phenol at a Wide pH Range Using Solar-Light-Driven Irradiationrdquo 2017 Journal

of Hazardous Materials 329 321ndash329

18 Xiaodong Ma Mengying Zhao Qin Pang Meihua Zheng Hongwen Sun John C Crittenden Yanying Zhu Yongsheng Chen ldquoDevelopment of Novel CaCO3Fe2O3 Nanorods for Low Temperature 12-

Dichlorobenzene Oxidationrdquo 2017 Applied Catalysis A General 522 (2016) 70ndash79

19 Heacutector L Otaacutelvaro-Mariacuten Miguel Angel Mueses John C Crittenden Fiderman Machuca-Martinez ldquoSolar Photoreactor Design by the Photon Path Length and Optimization of the Radiant Field in a TiO2-based CPC

Reactorrdquo 2017 Chemical Engineering Journal 315 283ndash295

20 Qi Wang Naxin Zhu Enqin Liu Chenlu Zhang John C Crittenden Yi ZhangYanqing CongldquoFabrication of Visible-Light Active Fe2O3-GQDsNF-TiO2 Composite Film with Highly Enhanced

Photoelectrocatalytic Performancerdquo 2017 Applied Catalysis B Environmental 205 347ndash356

21 Junfeng Niu Lifeng Yin Yunrong Dai Yueping Bao John C Crittenden ldquoDesign of Visible Light Responsive Photocatalysts for Selective Reduction of Chlorinated Organic Compounds in Waterrdquo 2016 Applied

Catalysis A General 521 90ndash95

22 Chaojie Jiang Lifen Liu John C Crittenden ldquoAn Electrochemical Process that Uses an Fe0TiO2 Cathode to Degrade Typical Dyes and Antibiotics and a Bio-anode that Produces Electricityrdquo 2016 Frontiers of

Environmental Science amp Engineering 10(4) 15

23 Yijing Xia Qizhou Dai Mili Weng Yue Peng Jinming Luo Xiaoyang Meng Xubiao Luo Jianmeng Chen John C Crittenden ldquoFabrication and Electrochemical Treatment Application of an Al-Doped PbO2

Electrode with High Oxidation Capability Oxygen Evolution Potential and Reusabilityrdquo2015 Journal of The Electrochemical Society 162 (10) E258-E262

24 Feng Duan Yuping Li Hongbin Cao Yi Wang John C Crittenden Yi Zhang ldquoActivated Carbon Electrodes Electrochemical Oxidation Coupled with Desalination for Wastewater Treatmentrdquo 2015 Chemosphere

125 205-211

25 Xing Linlin Xie Yongbing Cao Hongbin Minakata Daisuke Zhang Yi Crittenden John C ldquoActivated carbon-enhanced ozonation of oxalate attributed to HObull oxidation in bulk solution and surface oxidation

Effects of the type and number of basic sitesrdquo Chemical Engineering Journal 2014 245 71-79

26 Yao H Sun P Minakata D Crittenden JC Huang C-H ldquoKinetics and Modeling of Degradation of Ionophore Antibiotics by UV and UVH2O2rdquo Environmental Science and Technology 2013 (47) 4581-

45892

26 Li Yang et al Synergistic photogeneration of reactive oxygen species by dissolved organic matter and C60 in aqueous phase Environmental science amp technology 492 (2015) 965-973

28 Niu Junfeng et al Photocatalytic reduction of triclosan on AundashCu 2 O nanowire arrays as plasmonic photocatalysts under visible light irradiation Physical Chemistry Chemical Physics 1726 (2015) 17421-17428

29 Niu Junfeng et al Design of visible light responsive photocatalysts for selective reduction of chlorinated organic compounds in water Applied Catalysis A General 521 (2016) 90-95

30 Tianyin Huang Jiabin Chen Zhongming Wang Xin Guo John C Crittenden ldquoExcellent Performance of Cobalt-Impregnated Activated Carbon in Peroxymonosulfate Activation for Acid Orange 7 Oxidationrdquo 2017

Environmental Science and Pollution Research Volume 24 (10) 9651ndash9661

References

31 Yang Li Junfeng Niu Enxiang Shang John C Crittenden ldquoPhotochemical Transformation and Photoinduced Toxicity Reduction of Silver Nanoparticles in the Presence of Perfluorocarboxylic Acids under UV

Irradiationrdquo Environmental Science and Technology 2014 48 (9) pp 4946ndash4953

32 Cao H Xing L Wu G Xie S Zhang SY Minakata D Crittenden JC ldquoPromoting effect of nitration modification on activated carbon in the catalytic ozonation of oxalic acidrdquo Applied Catalysis B

Environmental 2014 146 169-176

33 Konsowa A H Ossman M E Chen Y Crittenden J C ldquoDecolorization of industrial wastewater by ozonation followed by adsorption on activated carbonrdquo Journal of Hazardous Materials 176 (2010) 181-185

November 10 2009

34 Wipada Sanongraj Yongsheng Chen John Crittenden David Hand and David Perram ldquoDevelopment of Photocatalytic Oxidation Model Part I-Mathematical Model for Photocatalytic Destruction of Organic

Contaminants in Airrdquo Journal of the Air and Waste Management Association 571112ndash1122 September 2007

35 Chen Y JC Crittenden S Hackney L Sutter and DW Hand ldquoPreparation of a Novel TiO2-based p-n Junction Nanotube Photocatalystrdquo Environmental Science and Technology Vol 39 No 5 1201-1208 (2005)

36 Suri RPS J Liu JC Crittenden DW Hand and DL Perram Removal and Destruction of Organic Contaminants in Water Using Adsorption Steam Regeneration and Photocatalytic Oxidation A Pilot Scale

Studyrdquo Journal of Air and Waste Management Volume 49 (August 1999) 951 ndash 958

37 Burns RA JC Crittenden DW Hand VH Selzer LL Sutter SR Salman Effect of Inorganic Ions in the Heterogeneous Photocatalysis of Trichloroethene ASCE Journal of Environmental Engineering Vol

125 No 1 pp 77-85 (January 1999)

38 Liu J JC Crittenden DW Hand and DL Perram Regeneration of Adsorbents Using Heterogeneous Photocatalytic Oxidationrdquo Journal of Environmental Engineering Vol 122 No 8 pp 707-714 (1996)

39 Crittenden JC J Liu DW Hand and DL Perram Photocatalytic Oxidation of Chlorinated Hydrocarbons in Waterrdquo Water Research Vol31 No 3 pp 429-438 (1997)

40 Crittenden JC RPS Suri DL Perram and DW Hand Decontamination of Water Using Adsorption and Photocatalysisrdquo Water Research Vol 31 No 3 pp 411-418 (1997)

41 Crittenden JC Y Zhang DW Hand and DL Perram Destruction of Organic Compounds in Water Using Fixed-Bed Photocatalysts Journal of Solar Energy Engineering (ASME) Vol 118 No 5 pp 123 -129

(1996)

42 Crittenden JC Y Zhang DW Hand and DL Perram Solar Detoxification of Fuel-Contaminated Groundwater Using Fixed-Bed Photocatalystsrdquo Water Environment Research Vol 68 No 3 pp 270-278

(1996)

43 Zhang Y JC Crittenden and DW Hand The Solar Photocatalytic Decontamination of Waterrdquo Chemistry amp Industry Vol 18 pp 714-717 September (1994)

44 Mourand JT JC Crittenden DW Hand DL Perram and S Notthakun Regeneration of Spent Adsorbents Using Advanced Oxidationrdquo Water Environment Federation Vol 67 No 3 pp 355-363 (1995)

45 Hand DW DL Perram and JC Crittenden Destruction of DBP Precursors with Catalytic Oxidationrdquo American Water Works Association Journal Vol 87 No 6 pp 84-96 (1995)

46 Zhang Y JC Crittenden DW Hand and DL Perram Fixed-Bed Photo-catalysts for Solar Decontamination of Waterrdquo Environmental Science amp Technology Vol 28 No 3 pp 435-442 (1994)

47 Suri RPS J Liu DW Hand JC Crittenden DL Perram and ME Mullins Heterogeneous Photocatalytic Oxidation of Hazardous Organic Contaminants in Waterrdquo Water Environment Federation Vol 65 No

5 pp 665-673 (1993)

Page 13: The Application of Advanced Oxidation Processes (AOPs) and ...€¦ · We define the electron efficiency to be = 32 12 ·( J 4𝑥)· Where TOC in mg (c)/L and COD in mg ( 2)/L, n

Characterization Voltammetry

Linear sweep voltammetry (LSV) of the 1 2 anode BDD for a 05 M H2SO4 solution (pH = 0) Scan rate is

10 mVs The standard reduction potentials (pH=0) for O2 H2O2 O3 and HOmiddot are +123 V +177 V +207 V

and +274 V

Patent

Pending

119889 119861119860

119889119905= 119896119861119860119867119874 times 119861119860 times 119867119874 119904119904

= 119896119861119860[119861119860]

119867119874 119904119904 =119896119861119860

119896119861119860119867119874

Anode material 2 743times10-14 molL

Anode material 1 477times10-14 molL

The steady state hydroxyl radical

concentration is estimated from 1 mM

benzoic acid degradation in a 30 mM

NaClO4 at 5 mAcm2 [HO]=kBAkHO

119896119861119860119867119874 = 59 times 109119871(119898119900119897119904)

Hydroxyl Radicals Production Comparison

Actual industrial used anode TiPbO2

Pilot treatment results will show in a minute

These blue NTA are unstable because they are not

coated with SnO2 ndash Sb

The stoichiometric equation for benzoic acid is given as

119862711986761198742 + 121198672119874 rarr 71198621198742 + 30119867+ + 30119890minus

We define the electron efficiency to be

119864119864 =32

12middot (

119899

4119909) middot

119889 119879119874119862

119889 119862119874119863

Where TOC in mg (c)L and COD in mg (1198742)L n is the

number of electrons transfer from the anode for a

complete oxidation reaction and x is the number of

carbon atoms in the organic contaminants

According to the equation and calculation the electron

efficiency for 2D and 3D systems in this case are

119864119864 2119863 = 0866 (866) and 119864119864 3119863 = 1067 (1067)

For 1mmolL (~122mgL) TOC ~90mgL COD

~190mgL

Low electrolyte concentration condition 0005 M Na2SO4

Electron Efficiency (Faraday Efficiency)

Investigate amp optimize electrode

spacing amp fluid velocity

Mass Transfer Impact of EAOPs

We used Differential Column Batch Reactor (DCBR)

in experiments

(a) ofloxacin destruction by 1 anode for various electrode spacing (b) pseudo-first-order rate constants (c) EEO

Anode surface area 10 cm2 electrode spacing 1 cm fluid velocity 0033 ms initial ofloxacin concentration 20

mgL voltage 35-86 V electrolyte concentration is 005 M Na2SO4 pH value 625 and temperature is 25

Mass Transfer Impact Electrode Spacing

for 2D Electrode

(a) ofloxacin destruction on 1 anode for various fluid velocity (b) pseudo-first-order rate constants (c) EEO

Anode surface area 10 cm2 electrode spacing 1 cm fluid velocity 0033 ms initial ofloxacin concentration 20

mgL voltage 35-86 V electrolyte concentration is 005 M Na2SO4 pH value 625 and temperature is 25

Mass Transfer Impact Fluid Velocity

120570 =119896119891 sdot 120579

119896119891 sdot 120579 + 119896119872119886119909 sdot 119889

Effectiveness factor in different fluid velocity and the best fitted model 1

anode surface area 10 cm2 electrode spacing 1 cm electrolyte 005 M

Na2SO4 solution current density 30 mAcm2 initial ofloxacin concentration

20 mgL voltage 63-64 v pH value 625 temperature 25

l

du

Plain channel

119878ℎ =119896119891 sdot 119889

119863119897= 33 sdot

119889

119897sdot Re sdot 119878119888

13

Re =120588 sdot 119906 sdot 119889

120583

119878119888 =120583

120588 sdot 119863119897

120570 =119903119900119887119904

119903max=

119896119900119887119904 119877

119896max 119877

Sherwood number

Reynolds number

Schmidt number

Ω = 0436 means more than

56 oxidation rate reduced

by mass transfer

Mass Transfer Impact Effectiveness Factor

Many AOP follow a pseudo-first order rate

EEO is useful because if EEO is 5kWhr-order then if

you supply 5 1

15 kWm3 then you will 90 99 999 destruction of

the parent compound

Note COD and TOC have a much slower rate

Byproducts are less toxic and more biodegradable

Figure of Merit Electrical Energy Used per

Order (EEO) of Parent Compound Destroyed

EEO in Conventional AOPs

Conventional AOP Example EEO in UVH2O2

119864119864119874 =119875 times 119905

119881 times log1198620119862

+11986211986721198742

times00022119897119887

119892times 11986411986721198742

log1198620119862

119864119864119874 =2303 times 119875 times 1198961 11986721198742 0 + 1198962 1198671198621198743

minus0 + 1198963 119873119874119872 0 + 1198964 119877 0 times ε11986721198742

11986721198742 0 + ε119877 119877 0 + ε119873119874119872 119873119874119872 0

119875119880119881 times 1198964 times ε1198672119874211986721198742 0 times 1 minus 10minus119860 times V

+ 34 gramL times 11986721198742 0 times 00022 119897119887119892119903119886119898 times 11986411986721198742 times 1000 Lm3

bull Target contaminant concentrations oxidant dosage NOM determine the EEO of

conventional AOPs

EEO in EAOPs

EEO in EAOPs

EEO =v times j times A times V times t

V times logC0C

=v times j times A times t

logC0C

EEO =v times j times A

0434 times 119896119878 times Ω

v voltage V

j current densitymA

cm2

A surface area per volumem2

m3

V volumem3

C concentrationmol

m3

ks surface reaction rate sminus1

kobs observed reaction rate sminus1

Ω effectiveness factor

Ω =119896119900119887119904

119896119878

bull Target contaminants concentration dose does not effect EEO in EAOPs

bull EEO is a constant under same operational conditions

01 1 10 100 1000 10000 100000

Ultrapure Water

Distilled Water

Tap Water

Potable Water In The US

Surface Water

Industrial Wastewater

Seawater

Conductivity microScm

Water Streams Conductivity Guide

2D vs 3D EEO Comparison

Degradation of 1 mmolL benzoic acid in a 470 mL differential column batch reactor pH controlled

~68 surface water used has a low conductivity 112 microscm controlled current density is 30 mAcm2

2D anode size is 10 cm2 3D used 80 meshed Ti gauze has surface area 718 cm210 cm2 DCBR

operated at Re 194 Sc 2727 Sh 194 kf 64times10-6 ms Dl 9times10-6 cm2s

2D Electrode

3D Electrode

EEO Analysis in EAOPs

Electrolyte

Concentration

BA

concentrati

on

Voltage Current

Density

EEO

molL mgL V mAcm2 kWhm3

Surface

Water+BA~00004

(113 microScm)

24

(02 mM) 60 105 1738Surface

Water+BA 00004122

(1 mM) 60 105 2003Industrial

Water+BA

01

(16210

microScm) 24 73 304 175Industrial

Water+BA 01 122 8 30 207

Voltage Current

Density

EEO

V mAcm2 kWhm3

152 105 868

3D System2D System

bull Ionic strength is important in EAOPs NOM is not

bull Initial concentration C0does not effect EEO (at least for the

concentrations we tested)

bull Accordingly the pseudo ndash first surface rate constant is same for

different influent concentrations and the same operational

conditions for the conditions we tested

bull We expect to see the reaction rate to decrease with high C0 because

at high concentrations all the reactions site on the anode will be

occupied preventing the oxidation rate from increasing (Langmuir-

Hinshelwood Hougen Watson kinetics confirmation needed)

53 304 290

Conventional AOPs vs EAOPs Modeling 13

A case study to compare EEOs for

UVH2O2 H2O2O3 UVHOCl UVPersulfate UVTiO2

EAOPs (two-dimensional and three-dimensional)

Simulation Conditions[HCO3

minus] = 3 mM [NOM] = 2 mgL [Cl-] = 0001 M

pH = 7 kBA = 59times10-9 L(molmiddotS)Same 22 W input energy gives UV light intensity = 164times10-6 Einstein s-1 L-1

Initial Concentrations [R] (Benzoic Acid in this case) = 20 200 2000 mgL

Quantum yield

UVH2O2 = 05 UVHOCl = 09 UVPersulfate = 07

UVTiO2 = 004 (light transmission efficiency = 04)

Chemical production energy

H2O2 = 49 kWhlb persulfate = 49 kWhlb HOCl = 51 kWhlb O3 = 5 kWhlb

Note TiO2 and electrodes production energies are not included in simulation

EAOPs assumptions amp parameters

J = 30 mAcm2 2D anode size A = 10 cm2 3D anode size A= 718 cm2 (80 meshed Ti gauze)

Sc = 2727 Sh = 194 Dl = 9times10-6 cm2s d = 1 cm

Note pumping energy is small compare to electricity and neglected in simulation

Q = 20 mLmin Re = 1851 kf = 235times10-6 ms

Q = 500 mLmin Re = 46296 kf = 688times10-6 ms

Q = 2000 mLmin Re = 203704 kf = 113times10-5 ms (Re lt 2100 in laminar flow)

Minimal

EEO

(kWhm3)

Optimal

OxidantCatalyst

Dosage

9072 [TiO2]=300 mgL

4022 [Persulfate]=16 gL

2718 [H2O2]=0612 gL

2442 [HOCl]=026 gL

679 [H2O2]=0028 mgL

Electrolyte

(Na2SO4)

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

0M3702

0001M 6466 2405

0005M 3781 2069

001M 2676 1552

01M 469 1294

AOPs Minimal

EEO

(kWhm3)

Optimal

OxidantCatalyst

Dosage

UVTiO2 1038 [TiO2]=300 mgL

UVPersulfate 128 [Persulfate]=117 gL

UV H2O2 090 [H2O2]=0204 gL

UVHOCl 367 [HOCl]=014 gL

H2O2O3 0015 [H2O2]=00206 mgL

[R]0 = 20 mgL

~16 mgL TOC

[R]0 = 200 mgL

~140 mgL TOC

Minimal

EEO

(kWhm3)

Optimal

OxidantCatalyst

Dosage

88271 [TiO2]=300 mgL

8208 [Persulfate]=581 gL

1768 [H2O2]=184 gL

8335 [HOCl]=0776 gL

17648 [H2O2]=0035 mgL

[R]0 = 2000 mgL

~1379 mgL TOC

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

3545

6015 2260

3559 1937

2504 1448

455 1207

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

3404

5634 2136

3367 1824

2357 1360

443 1132

Re = 1851 Re = 46296 Re = 203704

Conventional AOPs vs EAOPs Modeling 23

Mass Transfer Increase

Ion

Str

en

gth

In

crease

Conventional AOPs vs EAOPs Modeling 33

AOPs Minimal

EEO

(kWhm3)

Optimal

OxidantCatalyst

Dosage

UVTiO2 1038 [TiO2]=300 mgL

UVPersulfate 128 [Persulfate]=117 gL

UV H2O2 090 [H2O2]=0204 gL

UVHOCl 367 [HOCl]=014 gL

H2O2O3 0015 [H2O2]=00206 mgL

[R]0 = 20 mgL

~16 mgL TOC For low concentration treatment

objectives EAOPs may not be as good as

compared to conventional AOPs

Conventional UVH2O2 and H2O2O3 are

the best conventional AOPs for BA

Electrolyte

(Na2SO4)

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

0M3702

0001M 6466 2405

0005M 3781 2069

001M 2676 1552

01M 469 1294

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

3545

6015 2260

3559 1937

2504 1448

455 1207

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

3404

5634 2136

3367 1824

2357 1360

443 1132

Re = 1851 Re = 46296 Re = 203704Mass Transfer Increase

Ion

Str

en

gth

In

crease

Conventional AOPs vs EAOPs Modeling 33

Minimal

EEO

(kWhm3)

Optimal

OxidantCatalyst

Dosage

88271 [TiO2]=300 mgL

8208 [Persulfate]=581 gL

1768 [H2O2]=184 gL

8335 [HOCl]=0776 gL

17648 [H2O2]=0035 mgL

[R]0 = 2000 mgL

~1379 mgL TOC For high concentration treatment objectives

EAOPs are more energy efficient

3D-EAOP saves more energy than 2D because

it requires lower applied voltage

3D-EAOP works better than 2D in low ion

strength treatment

Electrolyte

(Na2SO4)

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

0M3702

0001M 6466 2405

0005M 3781 2069

001M 2676 1552

01M 469 1294

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

3545

6015 2260

3559 1937

2504 1448

455 1207

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

3404

5634 2136

3367 1824

2357 1360

443 1132

Re = 1851 Re = 46296 Re = 203704Mass Transfer Increase

Ion

Str

en

gth

In

crease

Limiting Current in Different Conditions

jlim = n times F times kf times Csalt

Electrolyte

Concentration Q Q Q

Na2SO4 mlmin mlmin mlmin

20 500 2000

Re Re Re

1852 46296 185185

kf kf kf

ms ms ms

235405E-06 688E-06 109E-05

jlim jlim jlim

molL mAcm2 mAcm2 mAcm2

0001 068 199 316

jlim jlim jlim

molL mAcm2 mAcm2 mAcm2

0005 341 996 1581

jlim jlim jlim

molL mAcm2 mAcm2 mAcm2

001 681 1992 3163

jlim jlim jlim

molL mAcm2 mAcm2 mAcm2

005 3407 9962 15814

jlim jlim jlim

molL mAcm2 mAcm2 mAcm2

01 6814 19924 31627

Parameters Symbol Units Value

Influent concentration C0 mgL 20

Effluent concentration Ce mgL 02

Flow rate Q m3day 1000

Pseudo first order rate constant k min 0042

Size of reactor VRequired m3 38 m3

Detention time τ min 548

Electrode spacing d cm 1

Fluid velocity u ms 0033

Electrolyte Na2SO4 Concentration M 005

Current density J mAcm2 30

Assuming a Plug Flow Reactor (PFR) to be Confirmed with CFD

Full Scale Reactor Design

Full Scale Reactor Design

Rough Design of Reactor (top view)

1 2 3 4 5 6 7 8 9 10

105 meters

long

10 meters

electrodes

10 meters

2 meters deep

Reactor Channel

1 meter

hellip

5 cm 95 cmInfluent Effluent

The total costs (capital costs + energy costs) as a function of different electrode spacing for different theoretical

reaction rate In here the treatment objective is 99 removal flow rate is 1000 m3day and the fluid velocity is 00116

ms The flow channel has eddy promoter and its electrode spacing and obstacle distance ratio is 13 The electricity

price is $00512kWh and the pumping power is 853 kW The electrode price is $300m2 and its lifetime is 2000 h

Capital Expenditure Operational Expenditure

CapEx vs OpEx

Cost Analysis for Preliminary Design

The total costs (capital costs + energy costs) as a function of different electrode spacing for different theoretical

reaction rate In here the treatment objective is 99 removal flow rate is 1000 m3day and the fluid velocity is 00116

ms The flow channel has eddy promoter and its electrode spacing and obstacle distance ratio is 13 The electricity

price is $00512kWh and the pumping power is 853 kW The electrode price is $300m2 and its lifetime is 2000 h

Currently we are at only Ω=0436

Computer-based First-Principles Kinetic Model

Reaction Pathway Generator

(Graph Theory)

Rate Constants Estimator

(Group Contribution Method

Free Energy Linear

Relationship

Genetic Algorithm)

Ordinary Differential

Equations

(ODEs) Generator and Solver

(Gearrsquos Algorithm or

Monte Carlo algorithm)

Kinetic Monte Carlo Solver can

solve 1 million ODEs on PC

within 30 minutes

Complexity of Reaction PathwayExample

General reaction mechanisms that HObull initiates based on past experimental studies

Stefan and Bolton 1998 1999 1999 Stefan et al 1996 2000 Cooper et al 2009 Li et al 2004 2007 von Sonntag and

Schuchmann 1984 Schuchmann and von Sonntag 1979

Type of mechanismNumber of

speciesNumber of reactions

Full mechanism 120 370

Reduced mechanism 41 89

The criterion for DRG method is 1

Reaction rate constants are obtained from group contribution method (Minakata et al 2009 ESampT 43 6220-6227) and literature includingNate et al 1990 J Phys Chem Ref Data 19 413-513Nate et al 1995 J Phys Chem Ref Data 25 709-1050Buxton et al 1988 J Phys Chem Ref Data 17 513-886von Sonntag et al 1991 Angeuz Chem Int Ed Engl 30 1229-1253Li et al 2009 ESampT 43 2831-2837Li et al 2007 ESampT 41 1696-1703

Initial concentration of TCE 108 mM

Initial concentration of O2 22 mM

Initial concentration of H2O2 104 mM

Initial pH 59

Wave length of UV 200~300 nm

Light intensity779times10-6

EinsteinLmiddots

Reactor typeCompletely mixed batch reactor

Reaction time 30 min

Comparison of concentration profiles of major species for experimental data (Li Stefan Crittenden 2007 ESampT 41 1696-1703) and simulation results

00

20

40

60

80

100

120

00

02

04

06

08

10

12

0 5 10 15 20 25 30[H

2O

2]

(mM

)

[Ma

jor

spec

ies]

(m

M)

Time(min)

TCE exp

formic acid exp

oxalic acid exp

20 times DCA exp

20 times MCA exp

TCE cal

formic acid cal

oxalic acid cal

20 times DCA cal

20 times MCA cal

H2O2 exp

H2O2 cal

The photolysis of TCE was added manually because it is not included in this version of the pathway generator

Predicted Concentration Profiles of

Trichloroethene (TCE) and Stable-byproducts in UVH2O2 AOP

Comparison of number averaged molecular

weight (MW) for experimental data

(Vijayalakshmi et al J Appl Polym Sci 2006

100 3997-4003) and on-the-fly KMC model

The KMC model used a population number of 108L to

represent a concentration of 1molL

0

02

04

06

08

1

12

14

16

18

0 25 50 75 100 125 150 175 200

Aver

aged

mole

cu

lar

wei

gh

t (1

05

gm

ol)

Time (min)

Experiment

On-the-fly KMC

0

02

04

06

08

1

12

0 25 50 75 100 125 150 175 200

Nu

mb

er o

f re

act

ion

s (1

06)

Time (min)

Time evolvement of the number of generated

reactions for the degradation of PAM during the

UVTiO2 process

Degradation of Polyacrylamide (PAM)

Simulation Results for PAM Degradation in UVTiO2 AOP

Guo X Minakata D and Crittenden J 2015 On-the-fly kinetic Monte Carlo simulation of aqueous phase advanced oxidation processes Environmental science amp technology 49(15) pp9230-9236

1 Crittenden John C Shumin Hu David W Hand and Sarah Green ldquoA Kinetic Model for H2O2UV Process in a Completely Mixed Batch Reactorrdquo Water Research 33(10) 2315-2328 (1999)

2 Li K Crittenden JC Computerized pathway elucidation for hydroxyl radical induced chain reaction mechanisms in aqueous phase AOPs Environmental Science amp Technology 2009 43(8) 2831-2837

3 Li K Stefan MI Crittenden JC Trichloroethene degradation by UVH2O2 advanced oxidation process product study and kinetic modeling Environmental Science amp Technology 2007 41 1696-1703

4 Li K M I Stefan and J C Crittenden ldquoUV Photolysis of Trichloroethylene (TCE) Product Study and Kinetic Modelingrdquo Environmental Science and Technology Vol 38 No 24 6685-6693 (2004)

5 Ke Li David R Hokanson John C Crittenden R Rhodes Trussell and Daisuke Minakata ldquoEvaluating UVH2O2 Processes for Methyl tert-Butyl Ether (MtBE) and tertiary Butyl Alcohol (TBA) Removal from

Drinking Water Source Effect of Pretreatment Options and Light Sourcesrdquo Water Research 2008 Volume 42 (20) 5045-5053

6 Minakata D Li K Westerhoff P Crittenden J Development of a group contribution method to predict aqueous phase hydroxyl radical reaction rate constants Environmental Science amp Technology 2009 43

6220-6227

7 Minakata D Crittenden J Linear Free Energy Relationships between the Aqueous Phase Hydroxyl Radical (HObull) Reaction Rate Constants and the Free Energy of Activation Environmental Science amp Technology

2011a 45 3479-3486

8 Minakata D Song W Crittenden J Reactivity of aqueous phase hydroxyl radical with halogenated carboxylate anions Experimental and theoretical studies Environmental Science amp Technology 2011 45 6057-

6065

9 Daisuke Minakata Stephen P Mezyk Jace W Jones Brittany R Daws John C Crittenden ldquoDevelopment of Linear Free Energy Relationships for Aqueous Phase Radical-Involved Chemical Reactionsrdquo

Environmental Science amp Technology 2014 48 (23) 13925-13932

10 Xin Guo Daisuke Minakata John C Crittenden ldquoOn-the-Fly Kinetic Monte Carlo Simulation of Aqueous Phase Advanced Oxidation Processesrdquo Environmental Science and Technology 2015 49 (15) 9230ndash9236

11 Guo X Minakata D Crittenden JC ldquoComputer-Based First-Principles Kinetic Monte Carlo Simulation of Polyethylene Glycol Degradation in Aqueous Phase UVH2O2 Advanced Oxidation Processrdquo

Environmental Science amp Technology 2014 48 10813minus10820

12 Xin Guo Daisuke Minakata Junfeng Niu John C Crittenden ldquoComputer-based First-principles Kinetic Modeling of Degradation Pathways and Byproduct Fates in Aqueous Phase Advanced Oxidation Processesrdquo

Environmental Science and Technology 2014 48 (10) pp 5718ndash5725

13 Yajie Qian Xin Guo Yalei Zhang Yue Peng Peizhe Sun Ching-Hua Huang Junfeng Niu Xuefei Zhou John C Crittenden ldquoPerfluorooctanoic Acid Degradation Using UVminusPersulfate Process Modeling of the

Degradation and Chlorate Formationrdquo 2015 Environmental Science and Technology 50 (2) 772ndash781

14 Ruzhen Xie Xiaoyang Meng Peizhe Sun Junfeng Niu Wenju JiangLawrence Bottomley Duo Li Yongsheng Chen John C CrittendenrdquoElectrochemical Oxidation of Ofloxacin Using a TiO2-based SnO2-

SbPolytetrafluoroethylene Resin-PbO2 Electrode Reaction Kinetics and Mass Transfer Impactrdquo 2016 Applied Catalysis B Environmental 203 (2017) 515ndash525

15 Westerhoff Paul Moon Hye Minakata Daisuke Crittenden John ldquoOxidation of Organics in Retentates from Reverse Osmosis Wastewater Reuse Facilitiesrdquo Water Research 43 (16) 3992-2998

16 Liu L Chen F Yang F Chen Y Crittenden J ldquoPhotocatalytic degradation of 24-dichlorophenol using nanoscale FeTiO2rdquo Chemical Engineering Journal 2012 181ndash182 (0)189-195

References

References

17 Ying Wang Jiasheng Fang John C Crittenden Chanchan Shen ldquoNovel RGO120572-FeOOH Supported Catalyst for Fenton Oxidation of Phenol at a Wide pH Range Using Solar-Light-Driven Irradiationrdquo 2017 Journal

of Hazardous Materials 329 321ndash329

18 Xiaodong Ma Mengying Zhao Qin Pang Meihua Zheng Hongwen Sun John C Crittenden Yanying Zhu Yongsheng Chen ldquoDevelopment of Novel CaCO3Fe2O3 Nanorods for Low Temperature 12-

Dichlorobenzene Oxidationrdquo 2017 Applied Catalysis A General 522 (2016) 70ndash79

19 Heacutector L Otaacutelvaro-Mariacuten Miguel Angel Mueses John C Crittenden Fiderman Machuca-Martinez ldquoSolar Photoreactor Design by the Photon Path Length and Optimization of the Radiant Field in a TiO2-based CPC

Reactorrdquo 2017 Chemical Engineering Journal 315 283ndash295

20 Qi Wang Naxin Zhu Enqin Liu Chenlu Zhang John C Crittenden Yi ZhangYanqing CongldquoFabrication of Visible-Light Active Fe2O3-GQDsNF-TiO2 Composite Film with Highly Enhanced

Photoelectrocatalytic Performancerdquo 2017 Applied Catalysis B Environmental 205 347ndash356

21 Junfeng Niu Lifeng Yin Yunrong Dai Yueping Bao John C Crittenden ldquoDesign of Visible Light Responsive Photocatalysts for Selective Reduction of Chlorinated Organic Compounds in Waterrdquo 2016 Applied

Catalysis A General 521 90ndash95

22 Chaojie Jiang Lifen Liu John C Crittenden ldquoAn Electrochemical Process that Uses an Fe0TiO2 Cathode to Degrade Typical Dyes and Antibiotics and a Bio-anode that Produces Electricityrdquo 2016 Frontiers of

Environmental Science amp Engineering 10(4) 15

23 Yijing Xia Qizhou Dai Mili Weng Yue Peng Jinming Luo Xiaoyang Meng Xubiao Luo Jianmeng Chen John C Crittenden ldquoFabrication and Electrochemical Treatment Application of an Al-Doped PbO2

Electrode with High Oxidation Capability Oxygen Evolution Potential and Reusabilityrdquo2015 Journal of The Electrochemical Society 162 (10) E258-E262

24 Feng Duan Yuping Li Hongbin Cao Yi Wang John C Crittenden Yi Zhang ldquoActivated Carbon Electrodes Electrochemical Oxidation Coupled with Desalination for Wastewater Treatmentrdquo 2015 Chemosphere

125 205-211

25 Xing Linlin Xie Yongbing Cao Hongbin Minakata Daisuke Zhang Yi Crittenden John C ldquoActivated carbon-enhanced ozonation of oxalate attributed to HObull oxidation in bulk solution and surface oxidation

Effects of the type and number of basic sitesrdquo Chemical Engineering Journal 2014 245 71-79

26 Yao H Sun P Minakata D Crittenden JC Huang C-H ldquoKinetics and Modeling of Degradation of Ionophore Antibiotics by UV and UVH2O2rdquo Environmental Science and Technology 2013 (47) 4581-

45892

26 Li Yang et al Synergistic photogeneration of reactive oxygen species by dissolved organic matter and C60 in aqueous phase Environmental science amp technology 492 (2015) 965-973

28 Niu Junfeng et al Photocatalytic reduction of triclosan on AundashCu 2 O nanowire arrays as plasmonic photocatalysts under visible light irradiation Physical Chemistry Chemical Physics 1726 (2015) 17421-17428

29 Niu Junfeng et al Design of visible light responsive photocatalysts for selective reduction of chlorinated organic compounds in water Applied Catalysis A General 521 (2016) 90-95

30 Tianyin Huang Jiabin Chen Zhongming Wang Xin Guo John C Crittenden ldquoExcellent Performance of Cobalt-Impregnated Activated Carbon in Peroxymonosulfate Activation for Acid Orange 7 Oxidationrdquo 2017

Environmental Science and Pollution Research Volume 24 (10) 9651ndash9661

References

31 Yang Li Junfeng Niu Enxiang Shang John C Crittenden ldquoPhotochemical Transformation and Photoinduced Toxicity Reduction of Silver Nanoparticles in the Presence of Perfluorocarboxylic Acids under UV

Irradiationrdquo Environmental Science and Technology 2014 48 (9) pp 4946ndash4953

32 Cao H Xing L Wu G Xie S Zhang SY Minakata D Crittenden JC ldquoPromoting effect of nitration modification on activated carbon in the catalytic ozonation of oxalic acidrdquo Applied Catalysis B

Environmental 2014 146 169-176

33 Konsowa A H Ossman M E Chen Y Crittenden J C ldquoDecolorization of industrial wastewater by ozonation followed by adsorption on activated carbonrdquo Journal of Hazardous Materials 176 (2010) 181-185

November 10 2009

34 Wipada Sanongraj Yongsheng Chen John Crittenden David Hand and David Perram ldquoDevelopment of Photocatalytic Oxidation Model Part I-Mathematical Model for Photocatalytic Destruction of Organic

Contaminants in Airrdquo Journal of the Air and Waste Management Association 571112ndash1122 September 2007

35 Chen Y JC Crittenden S Hackney L Sutter and DW Hand ldquoPreparation of a Novel TiO2-based p-n Junction Nanotube Photocatalystrdquo Environmental Science and Technology Vol 39 No 5 1201-1208 (2005)

36 Suri RPS J Liu JC Crittenden DW Hand and DL Perram Removal and Destruction of Organic Contaminants in Water Using Adsorption Steam Regeneration and Photocatalytic Oxidation A Pilot Scale

Studyrdquo Journal of Air and Waste Management Volume 49 (August 1999) 951 ndash 958

37 Burns RA JC Crittenden DW Hand VH Selzer LL Sutter SR Salman Effect of Inorganic Ions in the Heterogeneous Photocatalysis of Trichloroethene ASCE Journal of Environmental Engineering Vol

125 No 1 pp 77-85 (January 1999)

38 Liu J JC Crittenden DW Hand and DL Perram Regeneration of Adsorbents Using Heterogeneous Photocatalytic Oxidationrdquo Journal of Environmental Engineering Vol 122 No 8 pp 707-714 (1996)

39 Crittenden JC J Liu DW Hand and DL Perram Photocatalytic Oxidation of Chlorinated Hydrocarbons in Waterrdquo Water Research Vol31 No 3 pp 429-438 (1997)

40 Crittenden JC RPS Suri DL Perram and DW Hand Decontamination of Water Using Adsorption and Photocatalysisrdquo Water Research Vol 31 No 3 pp 411-418 (1997)

41 Crittenden JC Y Zhang DW Hand and DL Perram Destruction of Organic Compounds in Water Using Fixed-Bed Photocatalysts Journal of Solar Energy Engineering (ASME) Vol 118 No 5 pp 123 -129

(1996)

42 Crittenden JC Y Zhang DW Hand and DL Perram Solar Detoxification of Fuel-Contaminated Groundwater Using Fixed-Bed Photocatalystsrdquo Water Environment Research Vol 68 No 3 pp 270-278

(1996)

43 Zhang Y JC Crittenden and DW Hand The Solar Photocatalytic Decontamination of Waterrdquo Chemistry amp Industry Vol 18 pp 714-717 September (1994)

44 Mourand JT JC Crittenden DW Hand DL Perram and S Notthakun Regeneration of Spent Adsorbents Using Advanced Oxidationrdquo Water Environment Federation Vol 67 No 3 pp 355-363 (1995)

45 Hand DW DL Perram and JC Crittenden Destruction of DBP Precursors with Catalytic Oxidationrdquo American Water Works Association Journal Vol 87 No 6 pp 84-96 (1995)

46 Zhang Y JC Crittenden DW Hand and DL Perram Fixed-Bed Photo-catalysts for Solar Decontamination of Waterrdquo Environmental Science amp Technology Vol 28 No 3 pp 435-442 (1994)

47 Suri RPS J Liu DW Hand JC Crittenden DL Perram and ME Mullins Heterogeneous Photocatalytic Oxidation of Hazardous Organic Contaminants in Waterrdquo Water Environment Federation Vol 65 No

5 pp 665-673 (1993)

Page 14: The Application of Advanced Oxidation Processes (AOPs) and ...€¦ · We define the electron efficiency to be = 32 12 ·( J 4𝑥)· Where TOC in mg (c)/L and COD in mg ( 2)/L, n

119889 119861119860

119889119905= 119896119861119860119867119874 times 119861119860 times 119867119874 119904119904

= 119896119861119860[119861119860]

119867119874 119904119904 =119896119861119860

119896119861119860119867119874

Anode material 2 743times10-14 molL

Anode material 1 477times10-14 molL

The steady state hydroxyl radical

concentration is estimated from 1 mM

benzoic acid degradation in a 30 mM

NaClO4 at 5 mAcm2 [HO]=kBAkHO

119896119861119860119867119874 = 59 times 109119871(119898119900119897119904)

Hydroxyl Radicals Production Comparison

Actual industrial used anode TiPbO2

Pilot treatment results will show in a minute

These blue NTA are unstable because they are not

coated with SnO2 ndash Sb

The stoichiometric equation for benzoic acid is given as

119862711986761198742 + 121198672119874 rarr 71198621198742 + 30119867+ + 30119890minus

We define the electron efficiency to be

119864119864 =32

12middot (

119899

4119909) middot

119889 119879119874119862

119889 119862119874119863

Where TOC in mg (c)L and COD in mg (1198742)L n is the

number of electrons transfer from the anode for a

complete oxidation reaction and x is the number of

carbon atoms in the organic contaminants

According to the equation and calculation the electron

efficiency for 2D and 3D systems in this case are

119864119864 2119863 = 0866 (866) and 119864119864 3119863 = 1067 (1067)

For 1mmolL (~122mgL) TOC ~90mgL COD

~190mgL

Low electrolyte concentration condition 0005 M Na2SO4

Electron Efficiency (Faraday Efficiency)

Investigate amp optimize electrode

spacing amp fluid velocity

Mass Transfer Impact of EAOPs

We used Differential Column Batch Reactor (DCBR)

in experiments

(a) ofloxacin destruction by 1 anode for various electrode spacing (b) pseudo-first-order rate constants (c) EEO

Anode surface area 10 cm2 electrode spacing 1 cm fluid velocity 0033 ms initial ofloxacin concentration 20

mgL voltage 35-86 V electrolyte concentration is 005 M Na2SO4 pH value 625 and temperature is 25

Mass Transfer Impact Electrode Spacing

for 2D Electrode

(a) ofloxacin destruction on 1 anode for various fluid velocity (b) pseudo-first-order rate constants (c) EEO

Anode surface area 10 cm2 electrode spacing 1 cm fluid velocity 0033 ms initial ofloxacin concentration 20

mgL voltage 35-86 V electrolyte concentration is 005 M Na2SO4 pH value 625 and temperature is 25

Mass Transfer Impact Fluid Velocity

120570 =119896119891 sdot 120579

119896119891 sdot 120579 + 119896119872119886119909 sdot 119889

Effectiveness factor in different fluid velocity and the best fitted model 1

anode surface area 10 cm2 electrode spacing 1 cm electrolyte 005 M

Na2SO4 solution current density 30 mAcm2 initial ofloxacin concentration

20 mgL voltage 63-64 v pH value 625 temperature 25

l

du

Plain channel

119878ℎ =119896119891 sdot 119889

119863119897= 33 sdot

119889

119897sdot Re sdot 119878119888

13

Re =120588 sdot 119906 sdot 119889

120583

119878119888 =120583

120588 sdot 119863119897

120570 =119903119900119887119904

119903max=

119896119900119887119904 119877

119896max 119877

Sherwood number

Reynolds number

Schmidt number

Ω = 0436 means more than

56 oxidation rate reduced

by mass transfer

Mass Transfer Impact Effectiveness Factor

Many AOP follow a pseudo-first order rate

EEO is useful because if EEO is 5kWhr-order then if

you supply 5 1

15 kWm3 then you will 90 99 999 destruction of

the parent compound

Note COD and TOC have a much slower rate

Byproducts are less toxic and more biodegradable

Figure of Merit Electrical Energy Used per

Order (EEO) of Parent Compound Destroyed

EEO in Conventional AOPs

Conventional AOP Example EEO in UVH2O2

119864119864119874 =119875 times 119905

119881 times log1198620119862

+11986211986721198742

times00022119897119887

119892times 11986411986721198742

log1198620119862

119864119864119874 =2303 times 119875 times 1198961 11986721198742 0 + 1198962 1198671198621198743

minus0 + 1198963 119873119874119872 0 + 1198964 119877 0 times ε11986721198742

11986721198742 0 + ε119877 119877 0 + ε119873119874119872 119873119874119872 0

119875119880119881 times 1198964 times ε1198672119874211986721198742 0 times 1 minus 10minus119860 times V

+ 34 gramL times 11986721198742 0 times 00022 119897119887119892119903119886119898 times 11986411986721198742 times 1000 Lm3

bull Target contaminant concentrations oxidant dosage NOM determine the EEO of

conventional AOPs

EEO in EAOPs

EEO in EAOPs

EEO =v times j times A times V times t

V times logC0C

=v times j times A times t

logC0C

EEO =v times j times A

0434 times 119896119878 times Ω

v voltage V

j current densitymA

cm2

A surface area per volumem2

m3

V volumem3

C concentrationmol

m3

ks surface reaction rate sminus1

kobs observed reaction rate sminus1

Ω effectiveness factor

Ω =119896119900119887119904

119896119878

bull Target contaminants concentration dose does not effect EEO in EAOPs

bull EEO is a constant under same operational conditions

01 1 10 100 1000 10000 100000

Ultrapure Water

Distilled Water

Tap Water

Potable Water In The US

Surface Water

Industrial Wastewater

Seawater

Conductivity microScm

Water Streams Conductivity Guide

2D vs 3D EEO Comparison

Degradation of 1 mmolL benzoic acid in a 470 mL differential column batch reactor pH controlled

~68 surface water used has a low conductivity 112 microscm controlled current density is 30 mAcm2

2D anode size is 10 cm2 3D used 80 meshed Ti gauze has surface area 718 cm210 cm2 DCBR

operated at Re 194 Sc 2727 Sh 194 kf 64times10-6 ms Dl 9times10-6 cm2s

2D Electrode

3D Electrode

EEO Analysis in EAOPs

Electrolyte

Concentration

BA

concentrati

on

Voltage Current

Density

EEO

molL mgL V mAcm2 kWhm3

Surface

Water+BA~00004

(113 microScm)

24

(02 mM) 60 105 1738Surface

Water+BA 00004122

(1 mM) 60 105 2003Industrial

Water+BA

01

(16210

microScm) 24 73 304 175Industrial

Water+BA 01 122 8 30 207

Voltage Current

Density

EEO

V mAcm2 kWhm3

152 105 868

3D System2D System

bull Ionic strength is important in EAOPs NOM is not

bull Initial concentration C0does not effect EEO (at least for the

concentrations we tested)

bull Accordingly the pseudo ndash first surface rate constant is same for

different influent concentrations and the same operational

conditions for the conditions we tested

bull We expect to see the reaction rate to decrease with high C0 because

at high concentrations all the reactions site on the anode will be

occupied preventing the oxidation rate from increasing (Langmuir-

Hinshelwood Hougen Watson kinetics confirmation needed)

53 304 290

Conventional AOPs vs EAOPs Modeling 13

A case study to compare EEOs for

UVH2O2 H2O2O3 UVHOCl UVPersulfate UVTiO2

EAOPs (two-dimensional and three-dimensional)

Simulation Conditions[HCO3

minus] = 3 mM [NOM] = 2 mgL [Cl-] = 0001 M

pH = 7 kBA = 59times10-9 L(molmiddotS)Same 22 W input energy gives UV light intensity = 164times10-6 Einstein s-1 L-1

Initial Concentrations [R] (Benzoic Acid in this case) = 20 200 2000 mgL

Quantum yield

UVH2O2 = 05 UVHOCl = 09 UVPersulfate = 07

UVTiO2 = 004 (light transmission efficiency = 04)

Chemical production energy

H2O2 = 49 kWhlb persulfate = 49 kWhlb HOCl = 51 kWhlb O3 = 5 kWhlb

Note TiO2 and electrodes production energies are not included in simulation

EAOPs assumptions amp parameters

J = 30 mAcm2 2D anode size A = 10 cm2 3D anode size A= 718 cm2 (80 meshed Ti gauze)

Sc = 2727 Sh = 194 Dl = 9times10-6 cm2s d = 1 cm

Note pumping energy is small compare to electricity and neglected in simulation

Q = 20 mLmin Re = 1851 kf = 235times10-6 ms

Q = 500 mLmin Re = 46296 kf = 688times10-6 ms

Q = 2000 mLmin Re = 203704 kf = 113times10-5 ms (Re lt 2100 in laminar flow)

Minimal

EEO

(kWhm3)

Optimal

OxidantCatalyst

Dosage

9072 [TiO2]=300 mgL

4022 [Persulfate]=16 gL

2718 [H2O2]=0612 gL

2442 [HOCl]=026 gL

679 [H2O2]=0028 mgL

Electrolyte

(Na2SO4)

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

0M3702

0001M 6466 2405

0005M 3781 2069

001M 2676 1552

01M 469 1294

AOPs Minimal

EEO

(kWhm3)

Optimal

OxidantCatalyst

Dosage

UVTiO2 1038 [TiO2]=300 mgL

UVPersulfate 128 [Persulfate]=117 gL

UV H2O2 090 [H2O2]=0204 gL

UVHOCl 367 [HOCl]=014 gL

H2O2O3 0015 [H2O2]=00206 mgL

[R]0 = 20 mgL

~16 mgL TOC

[R]0 = 200 mgL

~140 mgL TOC

Minimal

EEO

(kWhm3)

Optimal

OxidantCatalyst

Dosage

88271 [TiO2]=300 mgL

8208 [Persulfate]=581 gL

1768 [H2O2]=184 gL

8335 [HOCl]=0776 gL

17648 [H2O2]=0035 mgL

[R]0 = 2000 mgL

~1379 mgL TOC

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

3545

6015 2260

3559 1937

2504 1448

455 1207

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

3404

5634 2136

3367 1824

2357 1360

443 1132

Re = 1851 Re = 46296 Re = 203704

Conventional AOPs vs EAOPs Modeling 23

Mass Transfer Increase

Ion

Str

en

gth

In

crease

Conventional AOPs vs EAOPs Modeling 33

AOPs Minimal

EEO

(kWhm3)

Optimal

OxidantCatalyst

Dosage

UVTiO2 1038 [TiO2]=300 mgL

UVPersulfate 128 [Persulfate]=117 gL

UV H2O2 090 [H2O2]=0204 gL

UVHOCl 367 [HOCl]=014 gL

H2O2O3 0015 [H2O2]=00206 mgL

[R]0 = 20 mgL

~16 mgL TOC For low concentration treatment

objectives EAOPs may not be as good as

compared to conventional AOPs

Conventional UVH2O2 and H2O2O3 are

the best conventional AOPs for BA

Electrolyte

(Na2SO4)

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

0M3702

0001M 6466 2405

0005M 3781 2069

001M 2676 1552

01M 469 1294

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

3545

6015 2260

3559 1937

2504 1448

455 1207

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

3404

5634 2136

3367 1824

2357 1360

443 1132

Re = 1851 Re = 46296 Re = 203704Mass Transfer Increase

Ion

Str

en

gth

In

crease

Conventional AOPs vs EAOPs Modeling 33

Minimal

EEO

(kWhm3)

Optimal

OxidantCatalyst

Dosage

88271 [TiO2]=300 mgL

8208 [Persulfate]=581 gL

1768 [H2O2]=184 gL

8335 [HOCl]=0776 gL

17648 [H2O2]=0035 mgL

[R]0 = 2000 mgL

~1379 mgL TOC For high concentration treatment objectives

EAOPs are more energy efficient

3D-EAOP saves more energy than 2D because

it requires lower applied voltage

3D-EAOP works better than 2D in low ion

strength treatment

Electrolyte

(Na2SO4)

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

0M3702

0001M 6466 2405

0005M 3781 2069

001M 2676 1552

01M 469 1294

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

3545

6015 2260

3559 1937

2504 1448

455 1207

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

3404

5634 2136

3367 1824

2357 1360

443 1132

Re = 1851 Re = 46296 Re = 203704Mass Transfer Increase

Ion

Str

en

gth

In

crease

Limiting Current in Different Conditions

jlim = n times F times kf times Csalt

Electrolyte

Concentration Q Q Q

Na2SO4 mlmin mlmin mlmin

20 500 2000

Re Re Re

1852 46296 185185

kf kf kf

ms ms ms

235405E-06 688E-06 109E-05

jlim jlim jlim

molL mAcm2 mAcm2 mAcm2

0001 068 199 316

jlim jlim jlim

molL mAcm2 mAcm2 mAcm2

0005 341 996 1581

jlim jlim jlim

molL mAcm2 mAcm2 mAcm2

001 681 1992 3163

jlim jlim jlim

molL mAcm2 mAcm2 mAcm2

005 3407 9962 15814

jlim jlim jlim

molL mAcm2 mAcm2 mAcm2

01 6814 19924 31627

Parameters Symbol Units Value

Influent concentration C0 mgL 20

Effluent concentration Ce mgL 02

Flow rate Q m3day 1000

Pseudo first order rate constant k min 0042

Size of reactor VRequired m3 38 m3

Detention time τ min 548

Electrode spacing d cm 1

Fluid velocity u ms 0033

Electrolyte Na2SO4 Concentration M 005

Current density J mAcm2 30

Assuming a Plug Flow Reactor (PFR) to be Confirmed with CFD

Full Scale Reactor Design

Full Scale Reactor Design

Rough Design of Reactor (top view)

1 2 3 4 5 6 7 8 9 10

105 meters

long

10 meters

electrodes

10 meters

2 meters deep

Reactor Channel

1 meter

hellip

5 cm 95 cmInfluent Effluent

The total costs (capital costs + energy costs) as a function of different electrode spacing for different theoretical

reaction rate In here the treatment objective is 99 removal flow rate is 1000 m3day and the fluid velocity is 00116

ms The flow channel has eddy promoter and its electrode spacing and obstacle distance ratio is 13 The electricity

price is $00512kWh and the pumping power is 853 kW The electrode price is $300m2 and its lifetime is 2000 h

Capital Expenditure Operational Expenditure

CapEx vs OpEx

Cost Analysis for Preliminary Design

The total costs (capital costs + energy costs) as a function of different electrode spacing for different theoretical

reaction rate In here the treatment objective is 99 removal flow rate is 1000 m3day and the fluid velocity is 00116

ms The flow channel has eddy promoter and its electrode spacing and obstacle distance ratio is 13 The electricity

price is $00512kWh and the pumping power is 853 kW The electrode price is $300m2 and its lifetime is 2000 h

Currently we are at only Ω=0436

Computer-based First-Principles Kinetic Model

Reaction Pathway Generator

(Graph Theory)

Rate Constants Estimator

(Group Contribution Method

Free Energy Linear

Relationship

Genetic Algorithm)

Ordinary Differential

Equations

(ODEs) Generator and Solver

(Gearrsquos Algorithm or

Monte Carlo algorithm)

Kinetic Monte Carlo Solver can

solve 1 million ODEs on PC

within 30 minutes

Complexity of Reaction PathwayExample

General reaction mechanisms that HObull initiates based on past experimental studies

Stefan and Bolton 1998 1999 1999 Stefan et al 1996 2000 Cooper et al 2009 Li et al 2004 2007 von Sonntag and

Schuchmann 1984 Schuchmann and von Sonntag 1979

Type of mechanismNumber of

speciesNumber of reactions

Full mechanism 120 370

Reduced mechanism 41 89

The criterion for DRG method is 1

Reaction rate constants are obtained from group contribution method (Minakata et al 2009 ESampT 43 6220-6227) and literature includingNate et al 1990 J Phys Chem Ref Data 19 413-513Nate et al 1995 J Phys Chem Ref Data 25 709-1050Buxton et al 1988 J Phys Chem Ref Data 17 513-886von Sonntag et al 1991 Angeuz Chem Int Ed Engl 30 1229-1253Li et al 2009 ESampT 43 2831-2837Li et al 2007 ESampT 41 1696-1703

Initial concentration of TCE 108 mM

Initial concentration of O2 22 mM

Initial concentration of H2O2 104 mM

Initial pH 59

Wave length of UV 200~300 nm

Light intensity779times10-6

EinsteinLmiddots

Reactor typeCompletely mixed batch reactor

Reaction time 30 min

Comparison of concentration profiles of major species for experimental data (Li Stefan Crittenden 2007 ESampT 41 1696-1703) and simulation results

00

20

40

60

80

100

120

00

02

04

06

08

10

12

0 5 10 15 20 25 30[H

2O

2]

(mM

)

[Ma

jor

spec

ies]

(m

M)

Time(min)

TCE exp

formic acid exp

oxalic acid exp

20 times DCA exp

20 times MCA exp

TCE cal

formic acid cal

oxalic acid cal

20 times DCA cal

20 times MCA cal

H2O2 exp

H2O2 cal

The photolysis of TCE was added manually because it is not included in this version of the pathway generator

Predicted Concentration Profiles of

Trichloroethene (TCE) and Stable-byproducts in UVH2O2 AOP

Comparison of number averaged molecular

weight (MW) for experimental data

(Vijayalakshmi et al J Appl Polym Sci 2006

100 3997-4003) and on-the-fly KMC model

The KMC model used a population number of 108L to

represent a concentration of 1molL

0

02

04

06

08

1

12

14

16

18

0 25 50 75 100 125 150 175 200

Aver

aged

mole

cu

lar

wei

gh

t (1

05

gm

ol)

Time (min)

Experiment

On-the-fly KMC

0

02

04

06

08

1

12

0 25 50 75 100 125 150 175 200

Nu

mb

er o

f re

act

ion

s (1

06)

Time (min)

Time evolvement of the number of generated

reactions for the degradation of PAM during the

UVTiO2 process

Degradation of Polyacrylamide (PAM)

Simulation Results for PAM Degradation in UVTiO2 AOP

Guo X Minakata D and Crittenden J 2015 On-the-fly kinetic Monte Carlo simulation of aqueous phase advanced oxidation processes Environmental science amp technology 49(15) pp9230-9236

1 Crittenden John C Shumin Hu David W Hand and Sarah Green ldquoA Kinetic Model for H2O2UV Process in a Completely Mixed Batch Reactorrdquo Water Research 33(10) 2315-2328 (1999)

2 Li K Crittenden JC Computerized pathway elucidation for hydroxyl radical induced chain reaction mechanisms in aqueous phase AOPs Environmental Science amp Technology 2009 43(8) 2831-2837

3 Li K Stefan MI Crittenden JC Trichloroethene degradation by UVH2O2 advanced oxidation process product study and kinetic modeling Environmental Science amp Technology 2007 41 1696-1703

4 Li K M I Stefan and J C Crittenden ldquoUV Photolysis of Trichloroethylene (TCE) Product Study and Kinetic Modelingrdquo Environmental Science and Technology Vol 38 No 24 6685-6693 (2004)

5 Ke Li David R Hokanson John C Crittenden R Rhodes Trussell and Daisuke Minakata ldquoEvaluating UVH2O2 Processes for Methyl tert-Butyl Ether (MtBE) and tertiary Butyl Alcohol (TBA) Removal from

Drinking Water Source Effect of Pretreatment Options and Light Sourcesrdquo Water Research 2008 Volume 42 (20) 5045-5053

6 Minakata D Li K Westerhoff P Crittenden J Development of a group contribution method to predict aqueous phase hydroxyl radical reaction rate constants Environmental Science amp Technology 2009 43

6220-6227

7 Minakata D Crittenden J Linear Free Energy Relationships between the Aqueous Phase Hydroxyl Radical (HObull) Reaction Rate Constants and the Free Energy of Activation Environmental Science amp Technology

2011a 45 3479-3486

8 Minakata D Song W Crittenden J Reactivity of aqueous phase hydroxyl radical with halogenated carboxylate anions Experimental and theoretical studies Environmental Science amp Technology 2011 45 6057-

6065

9 Daisuke Minakata Stephen P Mezyk Jace W Jones Brittany R Daws John C Crittenden ldquoDevelopment of Linear Free Energy Relationships for Aqueous Phase Radical-Involved Chemical Reactionsrdquo

Environmental Science amp Technology 2014 48 (23) 13925-13932

10 Xin Guo Daisuke Minakata John C Crittenden ldquoOn-the-Fly Kinetic Monte Carlo Simulation of Aqueous Phase Advanced Oxidation Processesrdquo Environmental Science and Technology 2015 49 (15) 9230ndash9236

11 Guo X Minakata D Crittenden JC ldquoComputer-Based First-Principles Kinetic Monte Carlo Simulation of Polyethylene Glycol Degradation in Aqueous Phase UVH2O2 Advanced Oxidation Processrdquo

Environmental Science amp Technology 2014 48 10813minus10820

12 Xin Guo Daisuke Minakata Junfeng Niu John C Crittenden ldquoComputer-based First-principles Kinetic Modeling of Degradation Pathways and Byproduct Fates in Aqueous Phase Advanced Oxidation Processesrdquo

Environmental Science and Technology 2014 48 (10) pp 5718ndash5725

13 Yajie Qian Xin Guo Yalei Zhang Yue Peng Peizhe Sun Ching-Hua Huang Junfeng Niu Xuefei Zhou John C Crittenden ldquoPerfluorooctanoic Acid Degradation Using UVminusPersulfate Process Modeling of the

Degradation and Chlorate Formationrdquo 2015 Environmental Science and Technology 50 (2) 772ndash781

14 Ruzhen Xie Xiaoyang Meng Peizhe Sun Junfeng Niu Wenju JiangLawrence Bottomley Duo Li Yongsheng Chen John C CrittendenrdquoElectrochemical Oxidation of Ofloxacin Using a TiO2-based SnO2-

SbPolytetrafluoroethylene Resin-PbO2 Electrode Reaction Kinetics and Mass Transfer Impactrdquo 2016 Applied Catalysis B Environmental 203 (2017) 515ndash525

15 Westerhoff Paul Moon Hye Minakata Daisuke Crittenden John ldquoOxidation of Organics in Retentates from Reverse Osmosis Wastewater Reuse Facilitiesrdquo Water Research 43 (16) 3992-2998

16 Liu L Chen F Yang F Chen Y Crittenden J ldquoPhotocatalytic degradation of 24-dichlorophenol using nanoscale FeTiO2rdquo Chemical Engineering Journal 2012 181ndash182 (0)189-195

References

References

17 Ying Wang Jiasheng Fang John C Crittenden Chanchan Shen ldquoNovel RGO120572-FeOOH Supported Catalyst for Fenton Oxidation of Phenol at a Wide pH Range Using Solar-Light-Driven Irradiationrdquo 2017 Journal

of Hazardous Materials 329 321ndash329

18 Xiaodong Ma Mengying Zhao Qin Pang Meihua Zheng Hongwen Sun John C Crittenden Yanying Zhu Yongsheng Chen ldquoDevelopment of Novel CaCO3Fe2O3 Nanorods for Low Temperature 12-

Dichlorobenzene Oxidationrdquo 2017 Applied Catalysis A General 522 (2016) 70ndash79

19 Heacutector L Otaacutelvaro-Mariacuten Miguel Angel Mueses John C Crittenden Fiderman Machuca-Martinez ldquoSolar Photoreactor Design by the Photon Path Length and Optimization of the Radiant Field in a TiO2-based CPC

Reactorrdquo 2017 Chemical Engineering Journal 315 283ndash295

20 Qi Wang Naxin Zhu Enqin Liu Chenlu Zhang John C Crittenden Yi ZhangYanqing CongldquoFabrication of Visible-Light Active Fe2O3-GQDsNF-TiO2 Composite Film with Highly Enhanced

Photoelectrocatalytic Performancerdquo 2017 Applied Catalysis B Environmental 205 347ndash356

21 Junfeng Niu Lifeng Yin Yunrong Dai Yueping Bao John C Crittenden ldquoDesign of Visible Light Responsive Photocatalysts for Selective Reduction of Chlorinated Organic Compounds in Waterrdquo 2016 Applied

Catalysis A General 521 90ndash95

22 Chaojie Jiang Lifen Liu John C Crittenden ldquoAn Electrochemical Process that Uses an Fe0TiO2 Cathode to Degrade Typical Dyes and Antibiotics and a Bio-anode that Produces Electricityrdquo 2016 Frontiers of

Environmental Science amp Engineering 10(4) 15

23 Yijing Xia Qizhou Dai Mili Weng Yue Peng Jinming Luo Xiaoyang Meng Xubiao Luo Jianmeng Chen John C Crittenden ldquoFabrication and Electrochemical Treatment Application of an Al-Doped PbO2

Electrode with High Oxidation Capability Oxygen Evolution Potential and Reusabilityrdquo2015 Journal of The Electrochemical Society 162 (10) E258-E262

24 Feng Duan Yuping Li Hongbin Cao Yi Wang John C Crittenden Yi Zhang ldquoActivated Carbon Electrodes Electrochemical Oxidation Coupled with Desalination for Wastewater Treatmentrdquo 2015 Chemosphere

125 205-211

25 Xing Linlin Xie Yongbing Cao Hongbin Minakata Daisuke Zhang Yi Crittenden John C ldquoActivated carbon-enhanced ozonation of oxalate attributed to HObull oxidation in bulk solution and surface oxidation

Effects of the type and number of basic sitesrdquo Chemical Engineering Journal 2014 245 71-79

26 Yao H Sun P Minakata D Crittenden JC Huang C-H ldquoKinetics and Modeling of Degradation of Ionophore Antibiotics by UV and UVH2O2rdquo Environmental Science and Technology 2013 (47) 4581-

45892

26 Li Yang et al Synergistic photogeneration of reactive oxygen species by dissolved organic matter and C60 in aqueous phase Environmental science amp technology 492 (2015) 965-973

28 Niu Junfeng et al Photocatalytic reduction of triclosan on AundashCu 2 O nanowire arrays as plasmonic photocatalysts under visible light irradiation Physical Chemistry Chemical Physics 1726 (2015) 17421-17428

29 Niu Junfeng et al Design of visible light responsive photocatalysts for selective reduction of chlorinated organic compounds in water Applied Catalysis A General 521 (2016) 90-95

30 Tianyin Huang Jiabin Chen Zhongming Wang Xin Guo John C Crittenden ldquoExcellent Performance of Cobalt-Impregnated Activated Carbon in Peroxymonosulfate Activation for Acid Orange 7 Oxidationrdquo 2017

Environmental Science and Pollution Research Volume 24 (10) 9651ndash9661

References

31 Yang Li Junfeng Niu Enxiang Shang John C Crittenden ldquoPhotochemical Transformation and Photoinduced Toxicity Reduction of Silver Nanoparticles in the Presence of Perfluorocarboxylic Acids under UV

Irradiationrdquo Environmental Science and Technology 2014 48 (9) pp 4946ndash4953

32 Cao H Xing L Wu G Xie S Zhang SY Minakata D Crittenden JC ldquoPromoting effect of nitration modification on activated carbon in the catalytic ozonation of oxalic acidrdquo Applied Catalysis B

Environmental 2014 146 169-176

33 Konsowa A H Ossman M E Chen Y Crittenden J C ldquoDecolorization of industrial wastewater by ozonation followed by adsorption on activated carbonrdquo Journal of Hazardous Materials 176 (2010) 181-185

November 10 2009

34 Wipada Sanongraj Yongsheng Chen John Crittenden David Hand and David Perram ldquoDevelopment of Photocatalytic Oxidation Model Part I-Mathematical Model for Photocatalytic Destruction of Organic

Contaminants in Airrdquo Journal of the Air and Waste Management Association 571112ndash1122 September 2007

35 Chen Y JC Crittenden S Hackney L Sutter and DW Hand ldquoPreparation of a Novel TiO2-based p-n Junction Nanotube Photocatalystrdquo Environmental Science and Technology Vol 39 No 5 1201-1208 (2005)

36 Suri RPS J Liu JC Crittenden DW Hand and DL Perram Removal and Destruction of Organic Contaminants in Water Using Adsorption Steam Regeneration and Photocatalytic Oxidation A Pilot Scale

Studyrdquo Journal of Air and Waste Management Volume 49 (August 1999) 951 ndash 958

37 Burns RA JC Crittenden DW Hand VH Selzer LL Sutter SR Salman Effect of Inorganic Ions in the Heterogeneous Photocatalysis of Trichloroethene ASCE Journal of Environmental Engineering Vol

125 No 1 pp 77-85 (January 1999)

38 Liu J JC Crittenden DW Hand and DL Perram Regeneration of Adsorbents Using Heterogeneous Photocatalytic Oxidationrdquo Journal of Environmental Engineering Vol 122 No 8 pp 707-714 (1996)

39 Crittenden JC J Liu DW Hand and DL Perram Photocatalytic Oxidation of Chlorinated Hydrocarbons in Waterrdquo Water Research Vol31 No 3 pp 429-438 (1997)

40 Crittenden JC RPS Suri DL Perram and DW Hand Decontamination of Water Using Adsorption and Photocatalysisrdquo Water Research Vol 31 No 3 pp 411-418 (1997)

41 Crittenden JC Y Zhang DW Hand and DL Perram Destruction of Organic Compounds in Water Using Fixed-Bed Photocatalysts Journal of Solar Energy Engineering (ASME) Vol 118 No 5 pp 123 -129

(1996)

42 Crittenden JC Y Zhang DW Hand and DL Perram Solar Detoxification of Fuel-Contaminated Groundwater Using Fixed-Bed Photocatalystsrdquo Water Environment Research Vol 68 No 3 pp 270-278

(1996)

43 Zhang Y JC Crittenden and DW Hand The Solar Photocatalytic Decontamination of Waterrdquo Chemistry amp Industry Vol 18 pp 714-717 September (1994)

44 Mourand JT JC Crittenden DW Hand DL Perram and S Notthakun Regeneration of Spent Adsorbents Using Advanced Oxidationrdquo Water Environment Federation Vol 67 No 3 pp 355-363 (1995)

45 Hand DW DL Perram and JC Crittenden Destruction of DBP Precursors with Catalytic Oxidationrdquo American Water Works Association Journal Vol 87 No 6 pp 84-96 (1995)

46 Zhang Y JC Crittenden DW Hand and DL Perram Fixed-Bed Photo-catalysts for Solar Decontamination of Waterrdquo Environmental Science amp Technology Vol 28 No 3 pp 435-442 (1994)

47 Suri RPS J Liu DW Hand JC Crittenden DL Perram and ME Mullins Heterogeneous Photocatalytic Oxidation of Hazardous Organic Contaminants in Waterrdquo Water Environment Federation Vol 65 No

5 pp 665-673 (1993)

Page 15: The Application of Advanced Oxidation Processes (AOPs) and ...€¦ · We define the electron efficiency to be = 32 12 ·( J 4𝑥)· Where TOC in mg (c)/L and COD in mg ( 2)/L, n

The stoichiometric equation for benzoic acid is given as

119862711986761198742 + 121198672119874 rarr 71198621198742 + 30119867+ + 30119890minus

We define the electron efficiency to be

119864119864 =32

12middot (

119899

4119909) middot

119889 119879119874119862

119889 119862119874119863

Where TOC in mg (c)L and COD in mg (1198742)L n is the

number of electrons transfer from the anode for a

complete oxidation reaction and x is the number of

carbon atoms in the organic contaminants

According to the equation and calculation the electron

efficiency for 2D and 3D systems in this case are

119864119864 2119863 = 0866 (866) and 119864119864 3119863 = 1067 (1067)

For 1mmolL (~122mgL) TOC ~90mgL COD

~190mgL

Low electrolyte concentration condition 0005 M Na2SO4

Electron Efficiency (Faraday Efficiency)

Investigate amp optimize electrode

spacing amp fluid velocity

Mass Transfer Impact of EAOPs

We used Differential Column Batch Reactor (DCBR)

in experiments

(a) ofloxacin destruction by 1 anode for various electrode spacing (b) pseudo-first-order rate constants (c) EEO

Anode surface area 10 cm2 electrode spacing 1 cm fluid velocity 0033 ms initial ofloxacin concentration 20

mgL voltage 35-86 V electrolyte concentration is 005 M Na2SO4 pH value 625 and temperature is 25

Mass Transfer Impact Electrode Spacing

for 2D Electrode

(a) ofloxacin destruction on 1 anode for various fluid velocity (b) pseudo-first-order rate constants (c) EEO

Anode surface area 10 cm2 electrode spacing 1 cm fluid velocity 0033 ms initial ofloxacin concentration 20

mgL voltage 35-86 V electrolyte concentration is 005 M Na2SO4 pH value 625 and temperature is 25

Mass Transfer Impact Fluid Velocity

120570 =119896119891 sdot 120579

119896119891 sdot 120579 + 119896119872119886119909 sdot 119889

Effectiveness factor in different fluid velocity and the best fitted model 1

anode surface area 10 cm2 electrode spacing 1 cm electrolyte 005 M

Na2SO4 solution current density 30 mAcm2 initial ofloxacin concentration

20 mgL voltage 63-64 v pH value 625 temperature 25

l

du

Plain channel

119878ℎ =119896119891 sdot 119889

119863119897= 33 sdot

119889

119897sdot Re sdot 119878119888

13

Re =120588 sdot 119906 sdot 119889

120583

119878119888 =120583

120588 sdot 119863119897

120570 =119903119900119887119904

119903max=

119896119900119887119904 119877

119896max 119877

Sherwood number

Reynolds number

Schmidt number

Ω = 0436 means more than

56 oxidation rate reduced

by mass transfer

Mass Transfer Impact Effectiveness Factor

Many AOP follow a pseudo-first order rate

EEO is useful because if EEO is 5kWhr-order then if

you supply 5 1

15 kWm3 then you will 90 99 999 destruction of

the parent compound

Note COD and TOC have a much slower rate

Byproducts are less toxic and more biodegradable

Figure of Merit Electrical Energy Used per

Order (EEO) of Parent Compound Destroyed

EEO in Conventional AOPs

Conventional AOP Example EEO in UVH2O2

119864119864119874 =119875 times 119905

119881 times log1198620119862

+11986211986721198742

times00022119897119887

119892times 11986411986721198742

log1198620119862

119864119864119874 =2303 times 119875 times 1198961 11986721198742 0 + 1198962 1198671198621198743

minus0 + 1198963 119873119874119872 0 + 1198964 119877 0 times ε11986721198742

11986721198742 0 + ε119877 119877 0 + ε119873119874119872 119873119874119872 0

119875119880119881 times 1198964 times ε1198672119874211986721198742 0 times 1 minus 10minus119860 times V

+ 34 gramL times 11986721198742 0 times 00022 119897119887119892119903119886119898 times 11986411986721198742 times 1000 Lm3

bull Target contaminant concentrations oxidant dosage NOM determine the EEO of

conventional AOPs

EEO in EAOPs

EEO in EAOPs

EEO =v times j times A times V times t

V times logC0C

=v times j times A times t

logC0C

EEO =v times j times A

0434 times 119896119878 times Ω

v voltage V

j current densitymA

cm2

A surface area per volumem2

m3

V volumem3

C concentrationmol

m3

ks surface reaction rate sminus1

kobs observed reaction rate sminus1

Ω effectiveness factor

Ω =119896119900119887119904

119896119878

bull Target contaminants concentration dose does not effect EEO in EAOPs

bull EEO is a constant under same operational conditions

01 1 10 100 1000 10000 100000

Ultrapure Water

Distilled Water

Tap Water

Potable Water In The US

Surface Water

Industrial Wastewater

Seawater

Conductivity microScm

Water Streams Conductivity Guide

2D vs 3D EEO Comparison

Degradation of 1 mmolL benzoic acid in a 470 mL differential column batch reactor pH controlled

~68 surface water used has a low conductivity 112 microscm controlled current density is 30 mAcm2

2D anode size is 10 cm2 3D used 80 meshed Ti gauze has surface area 718 cm210 cm2 DCBR

operated at Re 194 Sc 2727 Sh 194 kf 64times10-6 ms Dl 9times10-6 cm2s

2D Electrode

3D Electrode

EEO Analysis in EAOPs

Electrolyte

Concentration

BA

concentrati

on

Voltage Current

Density

EEO

molL mgL V mAcm2 kWhm3

Surface

Water+BA~00004

(113 microScm)

24

(02 mM) 60 105 1738Surface

Water+BA 00004122

(1 mM) 60 105 2003Industrial

Water+BA

01

(16210

microScm) 24 73 304 175Industrial

Water+BA 01 122 8 30 207

Voltage Current

Density

EEO

V mAcm2 kWhm3

152 105 868

3D System2D System

bull Ionic strength is important in EAOPs NOM is not

bull Initial concentration C0does not effect EEO (at least for the

concentrations we tested)

bull Accordingly the pseudo ndash first surface rate constant is same for

different influent concentrations and the same operational

conditions for the conditions we tested

bull We expect to see the reaction rate to decrease with high C0 because

at high concentrations all the reactions site on the anode will be

occupied preventing the oxidation rate from increasing (Langmuir-

Hinshelwood Hougen Watson kinetics confirmation needed)

53 304 290

Conventional AOPs vs EAOPs Modeling 13

A case study to compare EEOs for

UVH2O2 H2O2O3 UVHOCl UVPersulfate UVTiO2

EAOPs (two-dimensional and three-dimensional)

Simulation Conditions[HCO3

minus] = 3 mM [NOM] = 2 mgL [Cl-] = 0001 M

pH = 7 kBA = 59times10-9 L(molmiddotS)Same 22 W input energy gives UV light intensity = 164times10-6 Einstein s-1 L-1

Initial Concentrations [R] (Benzoic Acid in this case) = 20 200 2000 mgL

Quantum yield

UVH2O2 = 05 UVHOCl = 09 UVPersulfate = 07

UVTiO2 = 004 (light transmission efficiency = 04)

Chemical production energy

H2O2 = 49 kWhlb persulfate = 49 kWhlb HOCl = 51 kWhlb O3 = 5 kWhlb

Note TiO2 and electrodes production energies are not included in simulation

EAOPs assumptions amp parameters

J = 30 mAcm2 2D anode size A = 10 cm2 3D anode size A= 718 cm2 (80 meshed Ti gauze)

Sc = 2727 Sh = 194 Dl = 9times10-6 cm2s d = 1 cm

Note pumping energy is small compare to electricity and neglected in simulation

Q = 20 mLmin Re = 1851 kf = 235times10-6 ms

Q = 500 mLmin Re = 46296 kf = 688times10-6 ms

Q = 2000 mLmin Re = 203704 kf = 113times10-5 ms (Re lt 2100 in laminar flow)

Minimal

EEO

(kWhm3)

Optimal

OxidantCatalyst

Dosage

9072 [TiO2]=300 mgL

4022 [Persulfate]=16 gL

2718 [H2O2]=0612 gL

2442 [HOCl]=026 gL

679 [H2O2]=0028 mgL

Electrolyte

(Na2SO4)

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

0M3702

0001M 6466 2405

0005M 3781 2069

001M 2676 1552

01M 469 1294

AOPs Minimal

EEO

(kWhm3)

Optimal

OxidantCatalyst

Dosage

UVTiO2 1038 [TiO2]=300 mgL

UVPersulfate 128 [Persulfate]=117 gL

UV H2O2 090 [H2O2]=0204 gL

UVHOCl 367 [HOCl]=014 gL

H2O2O3 0015 [H2O2]=00206 mgL

[R]0 = 20 mgL

~16 mgL TOC

[R]0 = 200 mgL

~140 mgL TOC

Minimal

EEO

(kWhm3)

Optimal

OxidantCatalyst

Dosage

88271 [TiO2]=300 mgL

8208 [Persulfate]=581 gL

1768 [H2O2]=184 gL

8335 [HOCl]=0776 gL

17648 [H2O2]=0035 mgL

[R]0 = 2000 mgL

~1379 mgL TOC

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

3545

6015 2260

3559 1937

2504 1448

455 1207

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

3404

5634 2136

3367 1824

2357 1360

443 1132

Re = 1851 Re = 46296 Re = 203704

Conventional AOPs vs EAOPs Modeling 23

Mass Transfer Increase

Ion

Str

en

gth

In

crease

Conventional AOPs vs EAOPs Modeling 33

AOPs Minimal

EEO

(kWhm3)

Optimal

OxidantCatalyst

Dosage

UVTiO2 1038 [TiO2]=300 mgL

UVPersulfate 128 [Persulfate]=117 gL

UV H2O2 090 [H2O2]=0204 gL

UVHOCl 367 [HOCl]=014 gL

H2O2O3 0015 [H2O2]=00206 mgL

[R]0 = 20 mgL

~16 mgL TOC For low concentration treatment

objectives EAOPs may not be as good as

compared to conventional AOPs

Conventional UVH2O2 and H2O2O3 are

the best conventional AOPs for BA

Electrolyte

(Na2SO4)

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

0M3702

0001M 6466 2405

0005M 3781 2069

001M 2676 1552

01M 469 1294

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

3545

6015 2260

3559 1937

2504 1448

455 1207

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

3404

5634 2136

3367 1824

2357 1360

443 1132

Re = 1851 Re = 46296 Re = 203704Mass Transfer Increase

Ion

Str

en

gth

In

crease

Conventional AOPs vs EAOPs Modeling 33

Minimal

EEO

(kWhm3)

Optimal

OxidantCatalyst

Dosage

88271 [TiO2]=300 mgL

8208 [Persulfate]=581 gL

1768 [H2O2]=184 gL

8335 [HOCl]=0776 gL

17648 [H2O2]=0035 mgL

[R]0 = 2000 mgL

~1379 mgL TOC For high concentration treatment objectives

EAOPs are more energy efficient

3D-EAOP saves more energy than 2D because

it requires lower applied voltage

3D-EAOP works better than 2D in low ion

strength treatment

Electrolyte

(Na2SO4)

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

0M3702

0001M 6466 2405

0005M 3781 2069

001M 2676 1552

01M 469 1294

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

3545

6015 2260

3559 1937

2504 1448

455 1207

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

3404

5634 2136

3367 1824

2357 1360

443 1132

Re = 1851 Re = 46296 Re = 203704Mass Transfer Increase

Ion

Str

en

gth

In

crease

Limiting Current in Different Conditions

jlim = n times F times kf times Csalt

Electrolyte

Concentration Q Q Q

Na2SO4 mlmin mlmin mlmin

20 500 2000

Re Re Re

1852 46296 185185

kf kf kf

ms ms ms

235405E-06 688E-06 109E-05

jlim jlim jlim

molL mAcm2 mAcm2 mAcm2

0001 068 199 316

jlim jlim jlim

molL mAcm2 mAcm2 mAcm2

0005 341 996 1581

jlim jlim jlim

molL mAcm2 mAcm2 mAcm2

001 681 1992 3163

jlim jlim jlim

molL mAcm2 mAcm2 mAcm2

005 3407 9962 15814

jlim jlim jlim

molL mAcm2 mAcm2 mAcm2

01 6814 19924 31627

Parameters Symbol Units Value

Influent concentration C0 mgL 20

Effluent concentration Ce mgL 02

Flow rate Q m3day 1000

Pseudo first order rate constant k min 0042

Size of reactor VRequired m3 38 m3

Detention time τ min 548

Electrode spacing d cm 1

Fluid velocity u ms 0033

Electrolyte Na2SO4 Concentration M 005

Current density J mAcm2 30

Assuming a Plug Flow Reactor (PFR) to be Confirmed with CFD

Full Scale Reactor Design

Full Scale Reactor Design

Rough Design of Reactor (top view)

1 2 3 4 5 6 7 8 9 10

105 meters

long

10 meters

electrodes

10 meters

2 meters deep

Reactor Channel

1 meter

hellip

5 cm 95 cmInfluent Effluent

The total costs (capital costs + energy costs) as a function of different electrode spacing for different theoretical

reaction rate In here the treatment objective is 99 removal flow rate is 1000 m3day and the fluid velocity is 00116

ms The flow channel has eddy promoter and its electrode spacing and obstacle distance ratio is 13 The electricity

price is $00512kWh and the pumping power is 853 kW The electrode price is $300m2 and its lifetime is 2000 h

Capital Expenditure Operational Expenditure

CapEx vs OpEx

Cost Analysis for Preliminary Design

The total costs (capital costs + energy costs) as a function of different electrode spacing for different theoretical

reaction rate In here the treatment objective is 99 removal flow rate is 1000 m3day and the fluid velocity is 00116

ms The flow channel has eddy promoter and its electrode spacing and obstacle distance ratio is 13 The electricity

price is $00512kWh and the pumping power is 853 kW The electrode price is $300m2 and its lifetime is 2000 h

Currently we are at only Ω=0436

Computer-based First-Principles Kinetic Model

Reaction Pathway Generator

(Graph Theory)

Rate Constants Estimator

(Group Contribution Method

Free Energy Linear

Relationship

Genetic Algorithm)

Ordinary Differential

Equations

(ODEs) Generator and Solver

(Gearrsquos Algorithm or

Monte Carlo algorithm)

Kinetic Monte Carlo Solver can

solve 1 million ODEs on PC

within 30 minutes

Complexity of Reaction PathwayExample

General reaction mechanisms that HObull initiates based on past experimental studies

Stefan and Bolton 1998 1999 1999 Stefan et al 1996 2000 Cooper et al 2009 Li et al 2004 2007 von Sonntag and

Schuchmann 1984 Schuchmann and von Sonntag 1979

Type of mechanismNumber of

speciesNumber of reactions

Full mechanism 120 370

Reduced mechanism 41 89

The criterion for DRG method is 1

Reaction rate constants are obtained from group contribution method (Minakata et al 2009 ESampT 43 6220-6227) and literature includingNate et al 1990 J Phys Chem Ref Data 19 413-513Nate et al 1995 J Phys Chem Ref Data 25 709-1050Buxton et al 1988 J Phys Chem Ref Data 17 513-886von Sonntag et al 1991 Angeuz Chem Int Ed Engl 30 1229-1253Li et al 2009 ESampT 43 2831-2837Li et al 2007 ESampT 41 1696-1703

Initial concentration of TCE 108 mM

Initial concentration of O2 22 mM

Initial concentration of H2O2 104 mM

Initial pH 59

Wave length of UV 200~300 nm

Light intensity779times10-6

EinsteinLmiddots

Reactor typeCompletely mixed batch reactor

Reaction time 30 min

Comparison of concentration profiles of major species for experimental data (Li Stefan Crittenden 2007 ESampT 41 1696-1703) and simulation results

00

20

40

60

80

100

120

00

02

04

06

08

10

12

0 5 10 15 20 25 30[H

2O

2]

(mM

)

[Ma

jor

spec

ies]

(m

M)

Time(min)

TCE exp

formic acid exp

oxalic acid exp

20 times DCA exp

20 times MCA exp

TCE cal

formic acid cal

oxalic acid cal

20 times DCA cal

20 times MCA cal

H2O2 exp

H2O2 cal

The photolysis of TCE was added manually because it is not included in this version of the pathway generator

Predicted Concentration Profiles of

Trichloroethene (TCE) and Stable-byproducts in UVH2O2 AOP

Comparison of number averaged molecular

weight (MW) for experimental data

(Vijayalakshmi et al J Appl Polym Sci 2006

100 3997-4003) and on-the-fly KMC model

The KMC model used a population number of 108L to

represent a concentration of 1molL

0

02

04

06

08

1

12

14

16

18

0 25 50 75 100 125 150 175 200

Aver

aged

mole

cu

lar

wei

gh

t (1

05

gm

ol)

Time (min)

Experiment

On-the-fly KMC

0

02

04

06

08

1

12

0 25 50 75 100 125 150 175 200

Nu

mb

er o

f re

act

ion

s (1

06)

Time (min)

Time evolvement of the number of generated

reactions for the degradation of PAM during the

UVTiO2 process

Degradation of Polyacrylamide (PAM)

Simulation Results for PAM Degradation in UVTiO2 AOP

Guo X Minakata D and Crittenden J 2015 On-the-fly kinetic Monte Carlo simulation of aqueous phase advanced oxidation processes Environmental science amp technology 49(15) pp9230-9236

1 Crittenden John C Shumin Hu David W Hand and Sarah Green ldquoA Kinetic Model for H2O2UV Process in a Completely Mixed Batch Reactorrdquo Water Research 33(10) 2315-2328 (1999)

2 Li K Crittenden JC Computerized pathway elucidation for hydroxyl radical induced chain reaction mechanisms in aqueous phase AOPs Environmental Science amp Technology 2009 43(8) 2831-2837

3 Li K Stefan MI Crittenden JC Trichloroethene degradation by UVH2O2 advanced oxidation process product study and kinetic modeling Environmental Science amp Technology 2007 41 1696-1703

4 Li K M I Stefan and J C Crittenden ldquoUV Photolysis of Trichloroethylene (TCE) Product Study and Kinetic Modelingrdquo Environmental Science and Technology Vol 38 No 24 6685-6693 (2004)

5 Ke Li David R Hokanson John C Crittenden R Rhodes Trussell and Daisuke Minakata ldquoEvaluating UVH2O2 Processes for Methyl tert-Butyl Ether (MtBE) and tertiary Butyl Alcohol (TBA) Removal from

Drinking Water Source Effect of Pretreatment Options and Light Sourcesrdquo Water Research 2008 Volume 42 (20) 5045-5053

6 Minakata D Li K Westerhoff P Crittenden J Development of a group contribution method to predict aqueous phase hydroxyl radical reaction rate constants Environmental Science amp Technology 2009 43

6220-6227

7 Minakata D Crittenden J Linear Free Energy Relationships between the Aqueous Phase Hydroxyl Radical (HObull) Reaction Rate Constants and the Free Energy of Activation Environmental Science amp Technology

2011a 45 3479-3486

8 Minakata D Song W Crittenden J Reactivity of aqueous phase hydroxyl radical with halogenated carboxylate anions Experimental and theoretical studies Environmental Science amp Technology 2011 45 6057-

6065

9 Daisuke Minakata Stephen P Mezyk Jace W Jones Brittany R Daws John C Crittenden ldquoDevelopment of Linear Free Energy Relationships for Aqueous Phase Radical-Involved Chemical Reactionsrdquo

Environmental Science amp Technology 2014 48 (23) 13925-13932

10 Xin Guo Daisuke Minakata John C Crittenden ldquoOn-the-Fly Kinetic Monte Carlo Simulation of Aqueous Phase Advanced Oxidation Processesrdquo Environmental Science and Technology 2015 49 (15) 9230ndash9236

11 Guo X Minakata D Crittenden JC ldquoComputer-Based First-Principles Kinetic Monte Carlo Simulation of Polyethylene Glycol Degradation in Aqueous Phase UVH2O2 Advanced Oxidation Processrdquo

Environmental Science amp Technology 2014 48 10813minus10820

12 Xin Guo Daisuke Minakata Junfeng Niu John C Crittenden ldquoComputer-based First-principles Kinetic Modeling of Degradation Pathways and Byproduct Fates in Aqueous Phase Advanced Oxidation Processesrdquo

Environmental Science and Technology 2014 48 (10) pp 5718ndash5725

13 Yajie Qian Xin Guo Yalei Zhang Yue Peng Peizhe Sun Ching-Hua Huang Junfeng Niu Xuefei Zhou John C Crittenden ldquoPerfluorooctanoic Acid Degradation Using UVminusPersulfate Process Modeling of the

Degradation and Chlorate Formationrdquo 2015 Environmental Science and Technology 50 (2) 772ndash781

14 Ruzhen Xie Xiaoyang Meng Peizhe Sun Junfeng Niu Wenju JiangLawrence Bottomley Duo Li Yongsheng Chen John C CrittendenrdquoElectrochemical Oxidation of Ofloxacin Using a TiO2-based SnO2-

SbPolytetrafluoroethylene Resin-PbO2 Electrode Reaction Kinetics and Mass Transfer Impactrdquo 2016 Applied Catalysis B Environmental 203 (2017) 515ndash525

15 Westerhoff Paul Moon Hye Minakata Daisuke Crittenden John ldquoOxidation of Organics in Retentates from Reverse Osmosis Wastewater Reuse Facilitiesrdquo Water Research 43 (16) 3992-2998

16 Liu L Chen F Yang F Chen Y Crittenden J ldquoPhotocatalytic degradation of 24-dichlorophenol using nanoscale FeTiO2rdquo Chemical Engineering Journal 2012 181ndash182 (0)189-195

References

References

17 Ying Wang Jiasheng Fang John C Crittenden Chanchan Shen ldquoNovel RGO120572-FeOOH Supported Catalyst for Fenton Oxidation of Phenol at a Wide pH Range Using Solar-Light-Driven Irradiationrdquo 2017 Journal

of Hazardous Materials 329 321ndash329

18 Xiaodong Ma Mengying Zhao Qin Pang Meihua Zheng Hongwen Sun John C Crittenden Yanying Zhu Yongsheng Chen ldquoDevelopment of Novel CaCO3Fe2O3 Nanorods for Low Temperature 12-

Dichlorobenzene Oxidationrdquo 2017 Applied Catalysis A General 522 (2016) 70ndash79

19 Heacutector L Otaacutelvaro-Mariacuten Miguel Angel Mueses John C Crittenden Fiderman Machuca-Martinez ldquoSolar Photoreactor Design by the Photon Path Length and Optimization of the Radiant Field in a TiO2-based CPC

Reactorrdquo 2017 Chemical Engineering Journal 315 283ndash295

20 Qi Wang Naxin Zhu Enqin Liu Chenlu Zhang John C Crittenden Yi ZhangYanqing CongldquoFabrication of Visible-Light Active Fe2O3-GQDsNF-TiO2 Composite Film with Highly Enhanced

Photoelectrocatalytic Performancerdquo 2017 Applied Catalysis B Environmental 205 347ndash356

21 Junfeng Niu Lifeng Yin Yunrong Dai Yueping Bao John C Crittenden ldquoDesign of Visible Light Responsive Photocatalysts for Selective Reduction of Chlorinated Organic Compounds in Waterrdquo 2016 Applied

Catalysis A General 521 90ndash95

22 Chaojie Jiang Lifen Liu John C Crittenden ldquoAn Electrochemical Process that Uses an Fe0TiO2 Cathode to Degrade Typical Dyes and Antibiotics and a Bio-anode that Produces Electricityrdquo 2016 Frontiers of

Environmental Science amp Engineering 10(4) 15

23 Yijing Xia Qizhou Dai Mili Weng Yue Peng Jinming Luo Xiaoyang Meng Xubiao Luo Jianmeng Chen John C Crittenden ldquoFabrication and Electrochemical Treatment Application of an Al-Doped PbO2

Electrode with High Oxidation Capability Oxygen Evolution Potential and Reusabilityrdquo2015 Journal of The Electrochemical Society 162 (10) E258-E262

24 Feng Duan Yuping Li Hongbin Cao Yi Wang John C Crittenden Yi Zhang ldquoActivated Carbon Electrodes Electrochemical Oxidation Coupled with Desalination for Wastewater Treatmentrdquo 2015 Chemosphere

125 205-211

25 Xing Linlin Xie Yongbing Cao Hongbin Minakata Daisuke Zhang Yi Crittenden John C ldquoActivated carbon-enhanced ozonation of oxalate attributed to HObull oxidation in bulk solution and surface oxidation

Effects of the type and number of basic sitesrdquo Chemical Engineering Journal 2014 245 71-79

26 Yao H Sun P Minakata D Crittenden JC Huang C-H ldquoKinetics and Modeling of Degradation of Ionophore Antibiotics by UV and UVH2O2rdquo Environmental Science and Technology 2013 (47) 4581-

45892

26 Li Yang et al Synergistic photogeneration of reactive oxygen species by dissolved organic matter and C60 in aqueous phase Environmental science amp technology 492 (2015) 965-973

28 Niu Junfeng et al Photocatalytic reduction of triclosan on AundashCu 2 O nanowire arrays as plasmonic photocatalysts under visible light irradiation Physical Chemistry Chemical Physics 1726 (2015) 17421-17428

29 Niu Junfeng et al Design of visible light responsive photocatalysts for selective reduction of chlorinated organic compounds in water Applied Catalysis A General 521 (2016) 90-95

30 Tianyin Huang Jiabin Chen Zhongming Wang Xin Guo John C Crittenden ldquoExcellent Performance of Cobalt-Impregnated Activated Carbon in Peroxymonosulfate Activation for Acid Orange 7 Oxidationrdquo 2017

Environmental Science and Pollution Research Volume 24 (10) 9651ndash9661

References

31 Yang Li Junfeng Niu Enxiang Shang John C Crittenden ldquoPhotochemical Transformation and Photoinduced Toxicity Reduction of Silver Nanoparticles in the Presence of Perfluorocarboxylic Acids under UV

Irradiationrdquo Environmental Science and Technology 2014 48 (9) pp 4946ndash4953

32 Cao H Xing L Wu G Xie S Zhang SY Minakata D Crittenden JC ldquoPromoting effect of nitration modification on activated carbon in the catalytic ozonation of oxalic acidrdquo Applied Catalysis B

Environmental 2014 146 169-176

33 Konsowa A H Ossman M E Chen Y Crittenden J C ldquoDecolorization of industrial wastewater by ozonation followed by adsorption on activated carbonrdquo Journal of Hazardous Materials 176 (2010) 181-185

November 10 2009

34 Wipada Sanongraj Yongsheng Chen John Crittenden David Hand and David Perram ldquoDevelopment of Photocatalytic Oxidation Model Part I-Mathematical Model for Photocatalytic Destruction of Organic

Contaminants in Airrdquo Journal of the Air and Waste Management Association 571112ndash1122 September 2007

35 Chen Y JC Crittenden S Hackney L Sutter and DW Hand ldquoPreparation of a Novel TiO2-based p-n Junction Nanotube Photocatalystrdquo Environmental Science and Technology Vol 39 No 5 1201-1208 (2005)

36 Suri RPS J Liu JC Crittenden DW Hand and DL Perram Removal and Destruction of Organic Contaminants in Water Using Adsorption Steam Regeneration and Photocatalytic Oxidation A Pilot Scale

Studyrdquo Journal of Air and Waste Management Volume 49 (August 1999) 951 ndash 958

37 Burns RA JC Crittenden DW Hand VH Selzer LL Sutter SR Salman Effect of Inorganic Ions in the Heterogeneous Photocatalysis of Trichloroethene ASCE Journal of Environmental Engineering Vol

125 No 1 pp 77-85 (January 1999)

38 Liu J JC Crittenden DW Hand and DL Perram Regeneration of Adsorbents Using Heterogeneous Photocatalytic Oxidationrdquo Journal of Environmental Engineering Vol 122 No 8 pp 707-714 (1996)

39 Crittenden JC J Liu DW Hand and DL Perram Photocatalytic Oxidation of Chlorinated Hydrocarbons in Waterrdquo Water Research Vol31 No 3 pp 429-438 (1997)

40 Crittenden JC RPS Suri DL Perram and DW Hand Decontamination of Water Using Adsorption and Photocatalysisrdquo Water Research Vol 31 No 3 pp 411-418 (1997)

41 Crittenden JC Y Zhang DW Hand and DL Perram Destruction of Organic Compounds in Water Using Fixed-Bed Photocatalysts Journal of Solar Energy Engineering (ASME) Vol 118 No 5 pp 123 -129

(1996)

42 Crittenden JC Y Zhang DW Hand and DL Perram Solar Detoxification of Fuel-Contaminated Groundwater Using Fixed-Bed Photocatalystsrdquo Water Environment Research Vol 68 No 3 pp 270-278

(1996)

43 Zhang Y JC Crittenden and DW Hand The Solar Photocatalytic Decontamination of Waterrdquo Chemistry amp Industry Vol 18 pp 714-717 September (1994)

44 Mourand JT JC Crittenden DW Hand DL Perram and S Notthakun Regeneration of Spent Adsorbents Using Advanced Oxidationrdquo Water Environment Federation Vol 67 No 3 pp 355-363 (1995)

45 Hand DW DL Perram and JC Crittenden Destruction of DBP Precursors with Catalytic Oxidationrdquo American Water Works Association Journal Vol 87 No 6 pp 84-96 (1995)

46 Zhang Y JC Crittenden DW Hand and DL Perram Fixed-Bed Photo-catalysts for Solar Decontamination of Waterrdquo Environmental Science amp Technology Vol 28 No 3 pp 435-442 (1994)

47 Suri RPS J Liu DW Hand JC Crittenden DL Perram and ME Mullins Heterogeneous Photocatalytic Oxidation of Hazardous Organic Contaminants in Waterrdquo Water Environment Federation Vol 65 No

5 pp 665-673 (1993)

Page 16: The Application of Advanced Oxidation Processes (AOPs) and ...€¦ · We define the electron efficiency to be = 32 12 ·( J 4𝑥)· Where TOC in mg (c)/L and COD in mg ( 2)/L, n

Investigate amp optimize electrode

spacing amp fluid velocity

Mass Transfer Impact of EAOPs

We used Differential Column Batch Reactor (DCBR)

in experiments

(a) ofloxacin destruction by 1 anode for various electrode spacing (b) pseudo-first-order rate constants (c) EEO

Anode surface area 10 cm2 electrode spacing 1 cm fluid velocity 0033 ms initial ofloxacin concentration 20

mgL voltage 35-86 V electrolyte concentration is 005 M Na2SO4 pH value 625 and temperature is 25

Mass Transfer Impact Electrode Spacing

for 2D Electrode

(a) ofloxacin destruction on 1 anode for various fluid velocity (b) pseudo-first-order rate constants (c) EEO

Anode surface area 10 cm2 electrode spacing 1 cm fluid velocity 0033 ms initial ofloxacin concentration 20

mgL voltage 35-86 V electrolyte concentration is 005 M Na2SO4 pH value 625 and temperature is 25

Mass Transfer Impact Fluid Velocity

120570 =119896119891 sdot 120579

119896119891 sdot 120579 + 119896119872119886119909 sdot 119889

Effectiveness factor in different fluid velocity and the best fitted model 1

anode surface area 10 cm2 electrode spacing 1 cm electrolyte 005 M

Na2SO4 solution current density 30 mAcm2 initial ofloxacin concentration

20 mgL voltage 63-64 v pH value 625 temperature 25

l

du

Plain channel

119878ℎ =119896119891 sdot 119889

119863119897= 33 sdot

119889

119897sdot Re sdot 119878119888

13

Re =120588 sdot 119906 sdot 119889

120583

119878119888 =120583

120588 sdot 119863119897

120570 =119903119900119887119904

119903max=

119896119900119887119904 119877

119896max 119877

Sherwood number

Reynolds number

Schmidt number

Ω = 0436 means more than

56 oxidation rate reduced

by mass transfer

Mass Transfer Impact Effectiveness Factor

Many AOP follow a pseudo-first order rate

EEO is useful because if EEO is 5kWhr-order then if

you supply 5 1

15 kWm3 then you will 90 99 999 destruction of

the parent compound

Note COD and TOC have a much slower rate

Byproducts are less toxic and more biodegradable

Figure of Merit Electrical Energy Used per

Order (EEO) of Parent Compound Destroyed

EEO in Conventional AOPs

Conventional AOP Example EEO in UVH2O2

119864119864119874 =119875 times 119905

119881 times log1198620119862

+11986211986721198742

times00022119897119887

119892times 11986411986721198742

log1198620119862

119864119864119874 =2303 times 119875 times 1198961 11986721198742 0 + 1198962 1198671198621198743

minus0 + 1198963 119873119874119872 0 + 1198964 119877 0 times ε11986721198742

11986721198742 0 + ε119877 119877 0 + ε119873119874119872 119873119874119872 0

119875119880119881 times 1198964 times ε1198672119874211986721198742 0 times 1 minus 10minus119860 times V

+ 34 gramL times 11986721198742 0 times 00022 119897119887119892119903119886119898 times 11986411986721198742 times 1000 Lm3

bull Target contaminant concentrations oxidant dosage NOM determine the EEO of

conventional AOPs

EEO in EAOPs

EEO in EAOPs

EEO =v times j times A times V times t

V times logC0C

=v times j times A times t

logC0C

EEO =v times j times A

0434 times 119896119878 times Ω

v voltage V

j current densitymA

cm2

A surface area per volumem2

m3

V volumem3

C concentrationmol

m3

ks surface reaction rate sminus1

kobs observed reaction rate sminus1

Ω effectiveness factor

Ω =119896119900119887119904

119896119878

bull Target contaminants concentration dose does not effect EEO in EAOPs

bull EEO is a constant under same operational conditions

01 1 10 100 1000 10000 100000

Ultrapure Water

Distilled Water

Tap Water

Potable Water In The US

Surface Water

Industrial Wastewater

Seawater

Conductivity microScm

Water Streams Conductivity Guide

2D vs 3D EEO Comparison

Degradation of 1 mmolL benzoic acid in a 470 mL differential column batch reactor pH controlled

~68 surface water used has a low conductivity 112 microscm controlled current density is 30 mAcm2

2D anode size is 10 cm2 3D used 80 meshed Ti gauze has surface area 718 cm210 cm2 DCBR

operated at Re 194 Sc 2727 Sh 194 kf 64times10-6 ms Dl 9times10-6 cm2s

2D Electrode

3D Electrode

EEO Analysis in EAOPs

Electrolyte

Concentration

BA

concentrati

on

Voltage Current

Density

EEO

molL mgL V mAcm2 kWhm3

Surface

Water+BA~00004

(113 microScm)

24

(02 mM) 60 105 1738Surface

Water+BA 00004122

(1 mM) 60 105 2003Industrial

Water+BA

01

(16210

microScm) 24 73 304 175Industrial

Water+BA 01 122 8 30 207

Voltage Current

Density

EEO

V mAcm2 kWhm3

152 105 868

3D System2D System

bull Ionic strength is important in EAOPs NOM is not

bull Initial concentration C0does not effect EEO (at least for the

concentrations we tested)

bull Accordingly the pseudo ndash first surface rate constant is same for

different influent concentrations and the same operational

conditions for the conditions we tested

bull We expect to see the reaction rate to decrease with high C0 because

at high concentrations all the reactions site on the anode will be

occupied preventing the oxidation rate from increasing (Langmuir-

Hinshelwood Hougen Watson kinetics confirmation needed)

53 304 290

Conventional AOPs vs EAOPs Modeling 13

A case study to compare EEOs for

UVH2O2 H2O2O3 UVHOCl UVPersulfate UVTiO2

EAOPs (two-dimensional and three-dimensional)

Simulation Conditions[HCO3

minus] = 3 mM [NOM] = 2 mgL [Cl-] = 0001 M

pH = 7 kBA = 59times10-9 L(molmiddotS)Same 22 W input energy gives UV light intensity = 164times10-6 Einstein s-1 L-1

Initial Concentrations [R] (Benzoic Acid in this case) = 20 200 2000 mgL

Quantum yield

UVH2O2 = 05 UVHOCl = 09 UVPersulfate = 07

UVTiO2 = 004 (light transmission efficiency = 04)

Chemical production energy

H2O2 = 49 kWhlb persulfate = 49 kWhlb HOCl = 51 kWhlb O3 = 5 kWhlb

Note TiO2 and electrodes production energies are not included in simulation

EAOPs assumptions amp parameters

J = 30 mAcm2 2D anode size A = 10 cm2 3D anode size A= 718 cm2 (80 meshed Ti gauze)

Sc = 2727 Sh = 194 Dl = 9times10-6 cm2s d = 1 cm

Note pumping energy is small compare to electricity and neglected in simulation

Q = 20 mLmin Re = 1851 kf = 235times10-6 ms

Q = 500 mLmin Re = 46296 kf = 688times10-6 ms

Q = 2000 mLmin Re = 203704 kf = 113times10-5 ms (Re lt 2100 in laminar flow)

Minimal

EEO

(kWhm3)

Optimal

OxidantCatalyst

Dosage

9072 [TiO2]=300 mgL

4022 [Persulfate]=16 gL

2718 [H2O2]=0612 gL

2442 [HOCl]=026 gL

679 [H2O2]=0028 mgL

Electrolyte

(Na2SO4)

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

0M3702

0001M 6466 2405

0005M 3781 2069

001M 2676 1552

01M 469 1294

AOPs Minimal

EEO

(kWhm3)

Optimal

OxidantCatalyst

Dosage

UVTiO2 1038 [TiO2]=300 mgL

UVPersulfate 128 [Persulfate]=117 gL

UV H2O2 090 [H2O2]=0204 gL

UVHOCl 367 [HOCl]=014 gL

H2O2O3 0015 [H2O2]=00206 mgL

[R]0 = 20 mgL

~16 mgL TOC

[R]0 = 200 mgL

~140 mgL TOC

Minimal

EEO

(kWhm3)

Optimal

OxidantCatalyst

Dosage

88271 [TiO2]=300 mgL

8208 [Persulfate]=581 gL

1768 [H2O2]=184 gL

8335 [HOCl]=0776 gL

17648 [H2O2]=0035 mgL

[R]0 = 2000 mgL

~1379 mgL TOC

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

3545

6015 2260

3559 1937

2504 1448

455 1207

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

3404

5634 2136

3367 1824

2357 1360

443 1132

Re = 1851 Re = 46296 Re = 203704

Conventional AOPs vs EAOPs Modeling 23

Mass Transfer Increase

Ion

Str

en

gth

In

crease

Conventional AOPs vs EAOPs Modeling 33

AOPs Minimal

EEO

(kWhm3)

Optimal

OxidantCatalyst

Dosage

UVTiO2 1038 [TiO2]=300 mgL

UVPersulfate 128 [Persulfate]=117 gL

UV H2O2 090 [H2O2]=0204 gL

UVHOCl 367 [HOCl]=014 gL

H2O2O3 0015 [H2O2]=00206 mgL

[R]0 = 20 mgL

~16 mgL TOC For low concentration treatment

objectives EAOPs may not be as good as

compared to conventional AOPs

Conventional UVH2O2 and H2O2O3 are

the best conventional AOPs for BA

Electrolyte

(Na2SO4)

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

0M3702

0001M 6466 2405

0005M 3781 2069

001M 2676 1552

01M 469 1294

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

3545

6015 2260

3559 1937

2504 1448

455 1207

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

3404

5634 2136

3367 1824

2357 1360

443 1132

Re = 1851 Re = 46296 Re = 203704Mass Transfer Increase

Ion

Str

en

gth

In

crease

Conventional AOPs vs EAOPs Modeling 33

Minimal

EEO

(kWhm3)

Optimal

OxidantCatalyst

Dosage

88271 [TiO2]=300 mgL

8208 [Persulfate]=581 gL

1768 [H2O2]=184 gL

8335 [HOCl]=0776 gL

17648 [H2O2]=0035 mgL

[R]0 = 2000 mgL

~1379 mgL TOC For high concentration treatment objectives

EAOPs are more energy efficient

3D-EAOP saves more energy than 2D because

it requires lower applied voltage

3D-EAOP works better than 2D in low ion

strength treatment

Electrolyte

(Na2SO4)

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

0M3702

0001M 6466 2405

0005M 3781 2069

001M 2676 1552

01M 469 1294

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

3545

6015 2260

3559 1937

2504 1448

455 1207

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

3404

5634 2136

3367 1824

2357 1360

443 1132

Re = 1851 Re = 46296 Re = 203704Mass Transfer Increase

Ion

Str

en

gth

In

crease

Limiting Current in Different Conditions

jlim = n times F times kf times Csalt

Electrolyte

Concentration Q Q Q

Na2SO4 mlmin mlmin mlmin

20 500 2000

Re Re Re

1852 46296 185185

kf kf kf

ms ms ms

235405E-06 688E-06 109E-05

jlim jlim jlim

molL mAcm2 mAcm2 mAcm2

0001 068 199 316

jlim jlim jlim

molL mAcm2 mAcm2 mAcm2

0005 341 996 1581

jlim jlim jlim

molL mAcm2 mAcm2 mAcm2

001 681 1992 3163

jlim jlim jlim

molL mAcm2 mAcm2 mAcm2

005 3407 9962 15814

jlim jlim jlim

molL mAcm2 mAcm2 mAcm2

01 6814 19924 31627

Parameters Symbol Units Value

Influent concentration C0 mgL 20

Effluent concentration Ce mgL 02

Flow rate Q m3day 1000

Pseudo first order rate constant k min 0042

Size of reactor VRequired m3 38 m3

Detention time τ min 548

Electrode spacing d cm 1

Fluid velocity u ms 0033

Electrolyte Na2SO4 Concentration M 005

Current density J mAcm2 30

Assuming a Plug Flow Reactor (PFR) to be Confirmed with CFD

Full Scale Reactor Design

Full Scale Reactor Design

Rough Design of Reactor (top view)

1 2 3 4 5 6 7 8 9 10

105 meters

long

10 meters

electrodes

10 meters

2 meters deep

Reactor Channel

1 meter

hellip

5 cm 95 cmInfluent Effluent

The total costs (capital costs + energy costs) as a function of different electrode spacing for different theoretical

reaction rate In here the treatment objective is 99 removal flow rate is 1000 m3day and the fluid velocity is 00116

ms The flow channel has eddy promoter and its electrode spacing and obstacle distance ratio is 13 The electricity

price is $00512kWh and the pumping power is 853 kW The electrode price is $300m2 and its lifetime is 2000 h

Capital Expenditure Operational Expenditure

CapEx vs OpEx

Cost Analysis for Preliminary Design

The total costs (capital costs + energy costs) as a function of different electrode spacing for different theoretical

reaction rate In here the treatment objective is 99 removal flow rate is 1000 m3day and the fluid velocity is 00116

ms The flow channel has eddy promoter and its electrode spacing and obstacle distance ratio is 13 The electricity

price is $00512kWh and the pumping power is 853 kW The electrode price is $300m2 and its lifetime is 2000 h

Currently we are at only Ω=0436

Computer-based First-Principles Kinetic Model

Reaction Pathway Generator

(Graph Theory)

Rate Constants Estimator

(Group Contribution Method

Free Energy Linear

Relationship

Genetic Algorithm)

Ordinary Differential

Equations

(ODEs) Generator and Solver

(Gearrsquos Algorithm or

Monte Carlo algorithm)

Kinetic Monte Carlo Solver can

solve 1 million ODEs on PC

within 30 minutes

Complexity of Reaction PathwayExample

General reaction mechanisms that HObull initiates based on past experimental studies

Stefan and Bolton 1998 1999 1999 Stefan et al 1996 2000 Cooper et al 2009 Li et al 2004 2007 von Sonntag and

Schuchmann 1984 Schuchmann and von Sonntag 1979

Type of mechanismNumber of

speciesNumber of reactions

Full mechanism 120 370

Reduced mechanism 41 89

The criterion for DRG method is 1

Reaction rate constants are obtained from group contribution method (Minakata et al 2009 ESampT 43 6220-6227) and literature includingNate et al 1990 J Phys Chem Ref Data 19 413-513Nate et al 1995 J Phys Chem Ref Data 25 709-1050Buxton et al 1988 J Phys Chem Ref Data 17 513-886von Sonntag et al 1991 Angeuz Chem Int Ed Engl 30 1229-1253Li et al 2009 ESampT 43 2831-2837Li et al 2007 ESampT 41 1696-1703

Initial concentration of TCE 108 mM

Initial concentration of O2 22 mM

Initial concentration of H2O2 104 mM

Initial pH 59

Wave length of UV 200~300 nm

Light intensity779times10-6

EinsteinLmiddots

Reactor typeCompletely mixed batch reactor

Reaction time 30 min

Comparison of concentration profiles of major species for experimental data (Li Stefan Crittenden 2007 ESampT 41 1696-1703) and simulation results

00

20

40

60

80

100

120

00

02

04

06

08

10

12

0 5 10 15 20 25 30[H

2O

2]

(mM

)

[Ma

jor

spec

ies]

(m

M)

Time(min)

TCE exp

formic acid exp

oxalic acid exp

20 times DCA exp

20 times MCA exp

TCE cal

formic acid cal

oxalic acid cal

20 times DCA cal

20 times MCA cal

H2O2 exp

H2O2 cal

The photolysis of TCE was added manually because it is not included in this version of the pathway generator

Predicted Concentration Profiles of

Trichloroethene (TCE) and Stable-byproducts in UVH2O2 AOP

Comparison of number averaged molecular

weight (MW) for experimental data

(Vijayalakshmi et al J Appl Polym Sci 2006

100 3997-4003) and on-the-fly KMC model

The KMC model used a population number of 108L to

represent a concentration of 1molL

0

02

04

06

08

1

12

14

16

18

0 25 50 75 100 125 150 175 200

Aver

aged

mole

cu

lar

wei

gh

t (1

05

gm

ol)

Time (min)

Experiment

On-the-fly KMC

0

02

04

06

08

1

12

0 25 50 75 100 125 150 175 200

Nu

mb

er o

f re

act

ion

s (1

06)

Time (min)

Time evolvement of the number of generated

reactions for the degradation of PAM during the

UVTiO2 process

Degradation of Polyacrylamide (PAM)

Simulation Results for PAM Degradation in UVTiO2 AOP

Guo X Minakata D and Crittenden J 2015 On-the-fly kinetic Monte Carlo simulation of aqueous phase advanced oxidation processes Environmental science amp technology 49(15) pp9230-9236

1 Crittenden John C Shumin Hu David W Hand and Sarah Green ldquoA Kinetic Model for H2O2UV Process in a Completely Mixed Batch Reactorrdquo Water Research 33(10) 2315-2328 (1999)

2 Li K Crittenden JC Computerized pathway elucidation for hydroxyl radical induced chain reaction mechanisms in aqueous phase AOPs Environmental Science amp Technology 2009 43(8) 2831-2837

3 Li K Stefan MI Crittenden JC Trichloroethene degradation by UVH2O2 advanced oxidation process product study and kinetic modeling Environmental Science amp Technology 2007 41 1696-1703

4 Li K M I Stefan and J C Crittenden ldquoUV Photolysis of Trichloroethylene (TCE) Product Study and Kinetic Modelingrdquo Environmental Science and Technology Vol 38 No 24 6685-6693 (2004)

5 Ke Li David R Hokanson John C Crittenden R Rhodes Trussell and Daisuke Minakata ldquoEvaluating UVH2O2 Processes for Methyl tert-Butyl Ether (MtBE) and tertiary Butyl Alcohol (TBA) Removal from

Drinking Water Source Effect of Pretreatment Options and Light Sourcesrdquo Water Research 2008 Volume 42 (20) 5045-5053

6 Minakata D Li K Westerhoff P Crittenden J Development of a group contribution method to predict aqueous phase hydroxyl radical reaction rate constants Environmental Science amp Technology 2009 43

6220-6227

7 Minakata D Crittenden J Linear Free Energy Relationships between the Aqueous Phase Hydroxyl Radical (HObull) Reaction Rate Constants and the Free Energy of Activation Environmental Science amp Technology

2011a 45 3479-3486

8 Minakata D Song W Crittenden J Reactivity of aqueous phase hydroxyl radical with halogenated carboxylate anions Experimental and theoretical studies Environmental Science amp Technology 2011 45 6057-

6065

9 Daisuke Minakata Stephen P Mezyk Jace W Jones Brittany R Daws John C Crittenden ldquoDevelopment of Linear Free Energy Relationships for Aqueous Phase Radical-Involved Chemical Reactionsrdquo

Environmental Science amp Technology 2014 48 (23) 13925-13932

10 Xin Guo Daisuke Minakata John C Crittenden ldquoOn-the-Fly Kinetic Monte Carlo Simulation of Aqueous Phase Advanced Oxidation Processesrdquo Environmental Science and Technology 2015 49 (15) 9230ndash9236

11 Guo X Minakata D Crittenden JC ldquoComputer-Based First-Principles Kinetic Monte Carlo Simulation of Polyethylene Glycol Degradation in Aqueous Phase UVH2O2 Advanced Oxidation Processrdquo

Environmental Science amp Technology 2014 48 10813minus10820

12 Xin Guo Daisuke Minakata Junfeng Niu John C Crittenden ldquoComputer-based First-principles Kinetic Modeling of Degradation Pathways and Byproduct Fates in Aqueous Phase Advanced Oxidation Processesrdquo

Environmental Science and Technology 2014 48 (10) pp 5718ndash5725

13 Yajie Qian Xin Guo Yalei Zhang Yue Peng Peizhe Sun Ching-Hua Huang Junfeng Niu Xuefei Zhou John C Crittenden ldquoPerfluorooctanoic Acid Degradation Using UVminusPersulfate Process Modeling of the

Degradation and Chlorate Formationrdquo 2015 Environmental Science and Technology 50 (2) 772ndash781

14 Ruzhen Xie Xiaoyang Meng Peizhe Sun Junfeng Niu Wenju JiangLawrence Bottomley Duo Li Yongsheng Chen John C CrittendenrdquoElectrochemical Oxidation of Ofloxacin Using a TiO2-based SnO2-

SbPolytetrafluoroethylene Resin-PbO2 Electrode Reaction Kinetics and Mass Transfer Impactrdquo 2016 Applied Catalysis B Environmental 203 (2017) 515ndash525

15 Westerhoff Paul Moon Hye Minakata Daisuke Crittenden John ldquoOxidation of Organics in Retentates from Reverse Osmosis Wastewater Reuse Facilitiesrdquo Water Research 43 (16) 3992-2998

16 Liu L Chen F Yang F Chen Y Crittenden J ldquoPhotocatalytic degradation of 24-dichlorophenol using nanoscale FeTiO2rdquo Chemical Engineering Journal 2012 181ndash182 (0)189-195

References

References

17 Ying Wang Jiasheng Fang John C Crittenden Chanchan Shen ldquoNovel RGO120572-FeOOH Supported Catalyst for Fenton Oxidation of Phenol at a Wide pH Range Using Solar-Light-Driven Irradiationrdquo 2017 Journal

of Hazardous Materials 329 321ndash329

18 Xiaodong Ma Mengying Zhao Qin Pang Meihua Zheng Hongwen Sun John C Crittenden Yanying Zhu Yongsheng Chen ldquoDevelopment of Novel CaCO3Fe2O3 Nanorods for Low Temperature 12-

Dichlorobenzene Oxidationrdquo 2017 Applied Catalysis A General 522 (2016) 70ndash79

19 Heacutector L Otaacutelvaro-Mariacuten Miguel Angel Mueses John C Crittenden Fiderman Machuca-Martinez ldquoSolar Photoreactor Design by the Photon Path Length and Optimization of the Radiant Field in a TiO2-based CPC

Reactorrdquo 2017 Chemical Engineering Journal 315 283ndash295

20 Qi Wang Naxin Zhu Enqin Liu Chenlu Zhang John C Crittenden Yi ZhangYanqing CongldquoFabrication of Visible-Light Active Fe2O3-GQDsNF-TiO2 Composite Film with Highly Enhanced

Photoelectrocatalytic Performancerdquo 2017 Applied Catalysis B Environmental 205 347ndash356

21 Junfeng Niu Lifeng Yin Yunrong Dai Yueping Bao John C Crittenden ldquoDesign of Visible Light Responsive Photocatalysts for Selective Reduction of Chlorinated Organic Compounds in Waterrdquo 2016 Applied

Catalysis A General 521 90ndash95

22 Chaojie Jiang Lifen Liu John C Crittenden ldquoAn Electrochemical Process that Uses an Fe0TiO2 Cathode to Degrade Typical Dyes and Antibiotics and a Bio-anode that Produces Electricityrdquo 2016 Frontiers of

Environmental Science amp Engineering 10(4) 15

23 Yijing Xia Qizhou Dai Mili Weng Yue Peng Jinming Luo Xiaoyang Meng Xubiao Luo Jianmeng Chen John C Crittenden ldquoFabrication and Electrochemical Treatment Application of an Al-Doped PbO2

Electrode with High Oxidation Capability Oxygen Evolution Potential and Reusabilityrdquo2015 Journal of The Electrochemical Society 162 (10) E258-E262

24 Feng Duan Yuping Li Hongbin Cao Yi Wang John C Crittenden Yi Zhang ldquoActivated Carbon Electrodes Electrochemical Oxidation Coupled with Desalination for Wastewater Treatmentrdquo 2015 Chemosphere

125 205-211

25 Xing Linlin Xie Yongbing Cao Hongbin Minakata Daisuke Zhang Yi Crittenden John C ldquoActivated carbon-enhanced ozonation of oxalate attributed to HObull oxidation in bulk solution and surface oxidation

Effects of the type and number of basic sitesrdquo Chemical Engineering Journal 2014 245 71-79

26 Yao H Sun P Minakata D Crittenden JC Huang C-H ldquoKinetics and Modeling of Degradation of Ionophore Antibiotics by UV and UVH2O2rdquo Environmental Science and Technology 2013 (47) 4581-

45892

26 Li Yang et al Synergistic photogeneration of reactive oxygen species by dissolved organic matter and C60 in aqueous phase Environmental science amp technology 492 (2015) 965-973

28 Niu Junfeng et al Photocatalytic reduction of triclosan on AundashCu 2 O nanowire arrays as plasmonic photocatalysts under visible light irradiation Physical Chemistry Chemical Physics 1726 (2015) 17421-17428

29 Niu Junfeng et al Design of visible light responsive photocatalysts for selective reduction of chlorinated organic compounds in water Applied Catalysis A General 521 (2016) 90-95

30 Tianyin Huang Jiabin Chen Zhongming Wang Xin Guo John C Crittenden ldquoExcellent Performance of Cobalt-Impregnated Activated Carbon in Peroxymonosulfate Activation for Acid Orange 7 Oxidationrdquo 2017

Environmental Science and Pollution Research Volume 24 (10) 9651ndash9661

References

31 Yang Li Junfeng Niu Enxiang Shang John C Crittenden ldquoPhotochemical Transformation and Photoinduced Toxicity Reduction of Silver Nanoparticles in the Presence of Perfluorocarboxylic Acids under UV

Irradiationrdquo Environmental Science and Technology 2014 48 (9) pp 4946ndash4953

32 Cao H Xing L Wu G Xie S Zhang SY Minakata D Crittenden JC ldquoPromoting effect of nitration modification on activated carbon in the catalytic ozonation of oxalic acidrdquo Applied Catalysis B

Environmental 2014 146 169-176

33 Konsowa A H Ossman M E Chen Y Crittenden J C ldquoDecolorization of industrial wastewater by ozonation followed by adsorption on activated carbonrdquo Journal of Hazardous Materials 176 (2010) 181-185

November 10 2009

34 Wipada Sanongraj Yongsheng Chen John Crittenden David Hand and David Perram ldquoDevelopment of Photocatalytic Oxidation Model Part I-Mathematical Model for Photocatalytic Destruction of Organic

Contaminants in Airrdquo Journal of the Air and Waste Management Association 571112ndash1122 September 2007

35 Chen Y JC Crittenden S Hackney L Sutter and DW Hand ldquoPreparation of a Novel TiO2-based p-n Junction Nanotube Photocatalystrdquo Environmental Science and Technology Vol 39 No 5 1201-1208 (2005)

36 Suri RPS J Liu JC Crittenden DW Hand and DL Perram Removal and Destruction of Organic Contaminants in Water Using Adsorption Steam Regeneration and Photocatalytic Oxidation A Pilot Scale

Studyrdquo Journal of Air and Waste Management Volume 49 (August 1999) 951 ndash 958

37 Burns RA JC Crittenden DW Hand VH Selzer LL Sutter SR Salman Effect of Inorganic Ions in the Heterogeneous Photocatalysis of Trichloroethene ASCE Journal of Environmental Engineering Vol

125 No 1 pp 77-85 (January 1999)

38 Liu J JC Crittenden DW Hand and DL Perram Regeneration of Adsorbents Using Heterogeneous Photocatalytic Oxidationrdquo Journal of Environmental Engineering Vol 122 No 8 pp 707-714 (1996)

39 Crittenden JC J Liu DW Hand and DL Perram Photocatalytic Oxidation of Chlorinated Hydrocarbons in Waterrdquo Water Research Vol31 No 3 pp 429-438 (1997)

40 Crittenden JC RPS Suri DL Perram and DW Hand Decontamination of Water Using Adsorption and Photocatalysisrdquo Water Research Vol 31 No 3 pp 411-418 (1997)

41 Crittenden JC Y Zhang DW Hand and DL Perram Destruction of Organic Compounds in Water Using Fixed-Bed Photocatalysts Journal of Solar Energy Engineering (ASME) Vol 118 No 5 pp 123 -129

(1996)

42 Crittenden JC Y Zhang DW Hand and DL Perram Solar Detoxification of Fuel-Contaminated Groundwater Using Fixed-Bed Photocatalystsrdquo Water Environment Research Vol 68 No 3 pp 270-278

(1996)

43 Zhang Y JC Crittenden and DW Hand The Solar Photocatalytic Decontamination of Waterrdquo Chemistry amp Industry Vol 18 pp 714-717 September (1994)

44 Mourand JT JC Crittenden DW Hand DL Perram and S Notthakun Regeneration of Spent Adsorbents Using Advanced Oxidationrdquo Water Environment Federation Vol 67 No 3 pp 355-363 (1995)

45 Hand DW DL Perram and JC Crittenden Destruction of DBP Precursors with Catalytic Oxidationrdquo American Water Works Association Journal Vol 87 No 6 pp 84-96 (1995)

46 Zhang Y JC Crittenden DW Hand and DL Perram Fixed-Bed Photo-catalysts for Solar Decontamination of Waterrdquo Environmental Science amp Technology Vol 28 No 3 pp 435-442 (1994)

47 Suri RPS J Liu DW Hand JC Crittenden DL Perram and ME Mullins Heterogeneous Photocatalytic Oxidation of Hazardous Organic Contaminants in Waterrdquo Water Environment Federation Vol 65 No

5 pp 665-673 (1993)

Page 17: The Application of Advanced Oxidation Processes (AOPs) and ...€¦ · We define the electron efficiency to be = 32 12 ·( J 4𝑥)· Where TOC in mg (c)/L and COD in mg ( 2)/L, n

(a) ofloxacin destruction by 1 anode for various electrode spacing (b) pseudo-first-order rate constants (c) EEO

Anode surface area 10 cm2 electrode spacing 1 cm fluid velocity 0033 ms initial ofloxacin concentration 20

mgL voltage 35-86 V electrolyte concentration is 005 M Na2SO4 pH value 625 and temperature is 25

Mass Transfer Impact Electrode Spacing

for 2D Electrode

(a) ofloxacin destruction on 1 anode for various fluid velocity (b) pseudo-first-order rate constants (c) EEO

Anode surface area 10 cm2 electrode spacing 1 cm fluid velocity 0033 ms initial ofloxacin concentration 20

mgL voltage 35-86 V electrolyte concentration is 005 M Na2SO4 pH value 625 and temperature is 25

Mass Transfer Impact Fluid Velocity

120570 =119896119891 sdot 120579

119896119891 sdot 120579 + 119896119872119886119909 sdot 119889

Effectiveness factor in different fluid velocity and the best fitted model 1

anode surface area 10 cm2 electrode spacing 1 cm electrolyte 005 M

Na2SO4 solution current density 30 mAcm2 initial ofloxacin concentration

20 mgL voltage 63-64 v pH value 625 temperature 25

l

du

Plain channel

119878ℎ =119896119891 sdot 119889

119863119897= 33 sdot

119889

119897sdot Re sdot 119878119888

13

Re =120588 sdot 119906 sdot 119889

120583

119878119888 =120583

120588 sdot 119863119897

120570 =119903119900119887119904

119903max=

119896119900119887119904 119877

119896max 119877

Sherwood number

Reynolds number

Schmidt number

Ω = 0436 means more than

56 oxidation rate reduced

by mass transfer

Mass Transfer Impact Effectiveness Factor

Many AOP follow a pseudo-first order rate

EEO is useful because if EEO is 5kWhr-order then if

you supply 5 1

15 kWm3 then you will 90 99 999 destruction of

the parent compound

Note COD and TOC have a much slower rate

Byproducts are less toxic and more biodegradable

Figure of Merit Electrical Energy Used per

Order (EEO) of Parent Compound Destroyed

EEO in Conventional AOPs

Conventional AOP Example EEO in UVH2O2

119864119864119874 =119875 times 119905

119881 times log1198620119862

+11986211986721198742

times00022119897119887

119892times 11986411986721198742

log1198620119862

119864119864119874 =2303 times 119875 times 1198961 11986721198742 0 + 1198962 1198671198621198743

minus0 + 1198963 119873119874119872 0 + 1198964 119877 0 times ε11986721198742

11986721198742 0 + ε119877 119877 0 + ε119873119874119872 119873119874119872 0

119875119880119881 times 1198964 times ε1198672119874211986721198742 0 times 1 minus 10minus119860 times V

+ 34 gramL times 11986721198742 0 times 00022 119897119887119892119903119886119898 times 11986411986721198742 times 1000 Lm3

bull Target contaminant concentrations oxidant dosage NOM determine the EEO of

conventional AOPs

EEO in EAOPs

EEO in EAOPs

EEO =v times j times A times V times t

V times logC0C

=v times j times A times t

logC0C

EEO =v times j times A

0434 times 119896119878 times Ω

v voltage V

j current densitymA

cm2

A surface area per volumem2

m3

V volumem3

C concentrationmol

m3

ks surface reaction rate sminus1

kobs observed reaction rate sminus1

Ω effectiveness factor

Ω =119896119900119887119904

119896119878

bull Target contaminants concentration dose does not effect EEO in EAOPs

bull EEO is a constant under same operational conditions

01 1 10 100 1000 10000 100000

Ultrapure Water

Distilled Water

Tap Water

Potable Water In The US

Surface Water

Industrial Wastewater

Seawater

Conductivity microScm

Water Streams Conductivity Guide

2D vs 3D EEO Comparison

Degradation of 1 mmolL benzoic acid in a 470 mL differential column batch reactor pH controlled

~68 surface water used has a low conductivity 112 microscm controlled current density is 30 mAcm2

2D anode size is 10 cm2 3D used 80 meshed Ti gauze has surface area 718 cm210 cm2 DCBR

operated at Re 194 Sc 2727 Sh 194 kf 64times10-6 ms Dl 9times10-6 cm2s

2D Electrode

3D Electrode

EEO Analysis in EAOPs

Electrolyte

Concentration

BA

concentrati

on

Voltage Current

Density

EEO

molL mgL V mAcm2 kWhm3

Surface

Water+BA~00004

(113 microScm)

24

(02 mM) 60 105 1738Surface

Water+BA 00004122

(1 mM) 60 105 2003Industrial

Water+BA

01

(16210

microScm) 24 73 304 175Industrial

Water+BA 01 122 8 30 207

Voltage Current

Density

EEO

V mAcm2 kWhm3

152 105 868

3D System2D System

bull Ionic strength is important in EAOPs NOM is not

bull Initial concentration C0does not effect EEO (at least for the

concentrations we tested)

bull Accordingly the pseudo ndash first surface rate constant is same for

different influent concentrations and the same operational

conditions for the conditions we tested

bull We expect to see the reaction rate to decrease with high C0 because

at high concentrations all the reactions site on the anode will be

occupied preventing the oxidation rate from increasing (Langmuir-

Hinshelwood Hougen Watson kinetics confirmation needed)

53 304 290

Conventional AOPs vs EAOPs Modeling 13

A case study to compare EEOs for

UVH2O2 H2O2O3 UVHOCl UVPersulfate UVTiO2

EAOPs (two-dimensional and three-dimensional)

Simulation Conditions[HCO3

minus] = 3 mM [NOM] = 2 mgL [Cl-] = 0001 M

pH = 7 kBA = 59times10-9 L(molmiddotS)Same 22 W input energy gives UV light intensity = 164times10-6 Einstein s-1 L-1

Initial Concentrations [R] (Benzoic Acid in this case) = 20 200 2000 mgL

Quantum yield

UVH2O2 = 05 UVHOCl = 09 UVPersulfate = 07

UVTiO2 = 004 (light transmission efficiency = 04)

Chemical production energy

H2O2 = 49 kWhlb persulfate = 49 kWhlb HOCl = 51 kWhlb O3 = 5 kWhlb

Note TiO2 and electrodes production energies are not included in simulation

EAOPs assumptions amp parameters

J = 30 mAcm2 2D anode size A = 10 cm2 3D anode size A= 718 cm2 (80 meshed Ti gauze)

Sc = 2727 Sh = 194 Dl = 9times10-6 cm2s d = 1 cm

Note pumping energy is small compare to electricity and neglected in simulation

Q = 20 mLmin Re = 1851 kf = 235times10-6 ms

Q = 500 mLmin Re = 46296 kf = 688times10-6 ms

Q = 2000 mLmin Re = 203704 kf = 113times10-5 ms (Re lt 2100 in laminar flow)

Minimal

EEO

(kWhm3)

Optimal

OxidantCatalyst

Dosage

9072 [TiO2]=300 mgL

4022 [Persulfate]=16 gL

2718 [H2O2]=0612 gL

2442 [HOCl]=026 gL

679 [H2O2]=0028 mgL

Electrolyte

(Na2SO4)

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

0M3702

0001M 6466 2405

0005M 3781 2069

001M 2676 1552

01M 469 1294

AOPs Minimal

EEO

(kWhm3)

Optimal

OxidantCatalyst

Dosage

UVTiO2 1038 [TiO2]=300 mgL

UVPersulfate 128 [Persulfate]=117 gL

UV H2O2 090 [H2O2]=0204 gL

UVHOCl 367 [HOCl]=014 gL

H2O2O3 0015 [H2O2]=00206 mgL

[R]0 = 20 mgL

~16 mgL TOC

[R]0 = 200 mgL

~140 mgL TOC

Minimal

EEO

(kWhm3)

Optimal

OxidantCatalyst

Dosage

88271 [TiO2]=300 mgL

8208 [Persulfate]=581 gL

1768 [H2O2]=184 gL

8335 [HOCl]=0776 gL

17648 [H2O2]=0035 mgL

[R]0 = 2000 mgL

~1379 mgL TOC

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

3545

6015 2260

3559 1937

2504 1448

455 1207

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

3404

5634 2136

3367 1824

2357 1360

443 1132

Re = 1851 Re = 46296 Re = 203704

Conventional AOPs vs EAOPs Modeling 23

Mass Transfer Increase

Ion

Str

en

gth

In

crease

Conventional AOPs vs EAOPs Modeling 33

AOPs Minimal

EEO

(kWhm3)

Optimal

OxidantCatalyst

Dosage

UVTiO2 1038 [TiO2]=300 mgL

UVPersulfate 128 [Persulfate]=117 gL

UV H2O2 090 [H2O2]=0204 gL

UVHOCl 367 [HOCl]=014 gL

H2O2O3 0015 [H2O2]=00206 mgL

[R]0 = 20 mgL

~16 mgL TOC For low concentration treatment

objectives EAOPs may not be as good as

compared to conventional AOPs

Conventional UVH2O2 and H2O2O3 are

the best conventional AOPs for BA

Electrolyte

(Na2SO4)

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

0M3702

0001M 6466 2405

0005M 3781 2069

001M 2676 1552

01M 469 1294

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

3545

6015 2260

3559 1937

2504 1448

455 1207

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

3404

5634 2136

3367 1824

2357 1360

443 1132

Re = 1851 Re = 46296 Re = 203704Mass Transfer Increase

Ion

Str

en

gth

In

crease

Conventional AOPs vs EAOPs Modeling 33

Minimal

EEO

(kWhm3)

Optimal

OxidantCatalyst

Dosage

88271 [TiO2]=300 mgL

8208 [Persulfate]=581 gL

1768 [H2O2]=184 gL

8335 [HOCl]=0776 gL

17648 [H2O2]=0035 mgL

[R]0 = 2000 mgL

~1379 mgL TOC For high concentration treatment objectives

EAOPs are more energy efficient

3D-EAOP saves more energy than 2D because

it requires lower applied voltage

3D-EAOP works better than 2D in low ion

strength treatment

Electrolyte

(Na2SO4)

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

0M3702

0001M 6466 2405

0005M 3781 2069

001M 2676 1552

01M 469 1294

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

3545

6015 2260

3559 1937

2504 1448

455 1207

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

3404

5634 2136

3367 1824

2357 1360

443 1132

Re = 1851 Re = 46296 Re = 203704Mass Transfer Increase

Ion

Str

en

gth

In

crease

Limiting Current in Different Conditions

jlim = n times F times kf times Csalt

Electrolyte

Concentration Q Q Q

Na2SO4 mlmin mlmin mlmin

20 500 2000

Re Re Re

1852 46296 185185

kf kf kf

ms ms ms

235405E-06 688E-06 109E-05

jlim jlim jlim

molL mAcm2 mAcm2 mAcm2

0001 068 199 316

jlim jlim jlim

molL mAcm2 mAcm2 mAcm2

0005 341 996 1581

jlim jlim jlim

molL mAcm2 mAcm2 mAcm2

001 681 1992 3163

jlim jlim jlim

molL mAcm2 mAcm2 mAcm2

005 3407 9962 15814

jlim jlim jlim

molL mAcm2 mAcm2 mAcm2

01 6814 19924 31627

Parameters Symbol Units Value

Influent concentration C0 mgL 20

Effluent concentration Ce mgL 02

Flow rate Q m3day 1000

Pseudo first order rate constant k min 0042

Size of reactor VRequired m3 38 m3

Detention time τ min 548

Electrode spacing d cm 1

Fluid velocity u ms 0033

Electrolyte Na2SO4 Concentration M 005

Current density J mAcm2 30

Assuming a Plug Flow Reactor (PFR) to be Confirmed with CFD

Full Scale Reactor Design

Full Scale Reactor Design

Rough Design of Reactor (top view)

1 2 3 4 5 6 7 8 9 10

105 meters

long

10 meters

electrodes

10 meters

2 meters deep

Reactor Channel

1 meter

hellip

5 cm 95 cmInfluent Effluent

The total costs (capital costs + energy costs) as a function of different electrode spacing for different theoretical

reaction rate In here the treatment objective is 99 removal flow rate is 1000 m3day and the fluid velocity is 00116

ms The flow channel has eddy promoter and its electrode spacing and obstacle distance ratio is 13 The electricity

price is $00512kWh and the pumping power is 853 kW The electrode price is $300m2 and its lifetime is 2000 h

Capital Expenditure Operational Expenditure

CapEx vs OpEx

Cost Analysis for Preliminary Design

The total costs (capital costs + energy costs) as a function of different electrode spacing for different theoretical

reaction rate In here the treatment objective is 99 removal flow rate is 1000 m3day and the fluid velocity is 00116

ms The flow channel has eddy promoter and its electrode spacing and obstacle distance ratio is 13 The electricity

price is $00512kWh and the pumping power is 853 kW The electrode price is $300m2 and its lifetime is 2000 h

Currently we are at only Ω=0436

Computer-based First-Principles Kinetic Model

Reaction Pathway Generator

(Graph Theory)

Rate Constants Estimator

(Group Contribution Method

Free Energy Linear

Relationship

Genetic Algorithm)

Ordinary Differential

Equations

(ODEs) Generator and Solver

(Gearrsquos Algorithm or

Monte Carlo algorithm)

Kinetic Monte Carlo Solver can

solve 1 million ODEs on PC

within 30 minutes

Complexity of Reaction PathwayExample

General reaction mechanisms that HObull initiates based on past experimental studies

Stefan and Bolton 1998 1999 1999 Stefan et al 1996 2000 Cooper et al 2009 Li et al 2004 2007 von Sonntag and

Schuchmann 1984 Schuchmann and von Sonntag 1979

Type of mechanismNumber of

speciesNumber of reactions

Full mechanism 120 370

Reduced mechanism 41 89

The criterion for DRG method is 1

Reaction rate constants are obtained from group contribution method (Minakata et al 2009 ESampT 43 6220-6227) and literature includingNate et al 1990 J Phys Chem Ref Data 19 413-513Nate et al 1995 J Phys Chem Ref Data 25 709-1050Buxton et al 1988 J Phys Chem Ref Data 17 513-886von Sonntag et al 1991 Angeuz Chem Int Ed Engl 30 1229-1253Li et al 2009 ESampT 43 2831-2837Li et al 2007 ESampT 41 1696-1703

Initial concentration of TCE 108 mM

Initial concentration of O2 22 mM

Initial concentration of H2O2 104 mM

Initial pH 59

Wave length of UV 200~300 nm

Light intensity779times10-6

EinsteinLmiddots

Reactor typeCompletely mixed batch reactor

Reaction time 30 min

Comparison of concentration profiles of major species for experimental data (Li Stefan Crittenden 2007 ESampT 41 1696-1703) and simulation results

00

20

40

60

80

100

120

00

02

04

06

08

10

12

0 5 10 15 20 25 30[H

2O

2]

(mM

)

[Ma

jor

spec

ies]

(m

M)

Time(min)

TCE exp

formic acid exp

oxalic acid exp

20 times DCA exp

20 times MCA exp

TCE cal

formic acid cal

oxalic acid cal

20 times DCA cal

20 times MCA cal

H2O2 exp

H2O2 cal

The photolysis of TCE was added manually because it is not included in this version of the pathway generator

Predicted Concentration Profiles of

Trichloroethene (TCE) and Stable-byproducts in UVH2O2 AOP

Comparison of number averaged molecular

weight (MW) for experimental data

(Vijayalakshmi et al J Appl Polym Sci 2006

100 3997-4003) and on-the-fly KMC model

The KMC model used a population number of 108L to

represent a concentration of 1molL

0

02

04

06

08

1

12

14

16

18

0 25 50 75 100 125 150 175 200

Aver

aged

mole

cu

lar

wei

gh

t (1

05

gm

ol)

Time (min)

Experiment

On-the-fly KMC

0

02

04

06

08

1

12

0 25 50 75 100 125 150 175 200

Nu

mb

er o

f re

act

ion

s (1

06)

Time (min)

Time evolvement of the number of generated

reactions for the degradation of PAM during the

UVTiO2 process

Degradation of Polyacrylamide (PAM)

Simulation Results for PAM Degradation in UVTiO2 AOP

Guo X Minakata D and Crittenden J 2015 On-the-fly kinetic Monte Carlo simulation of aqueous phase advanced oxidation processes Environmental science amp technology 49(15) pp9230-9236

1 Crittenden John C Shumin Hu David W Hand and Sarah Green ldquoA Kinetic Model for H2O2UV Process in a Completely Mixed Batch Reactorrdquo Water Research 33(10) 2315-2328 (1999)

2 Li K Crittenden JC Computerized pathway elucidation for hydroxyl radical induced chain reaction mechanisms in aqueous phase AOPs Environmental Science amp Technology 2009 43(8) 2831-2837

3 Li K Stefan MI Crittenden JC Trichloroethene degradation by UVH2O2 advanced oxidation process product study and kinetic modeling Environmental Science amp Technology 2007 41 1696-1703

4 Li K M I Stefan and J C Crittenden ldquoUV Photolysis of Trichloroethylene (TCE) Product Study and Kinetic Modelingrdquo Environmental Science and Technology Vol 38 No 24 6685-6693 (2004)

5 Ke Li David R Hokanson John C Crittenden R Rhodes Trussell and Daisuke Minakata ldquoEvaluating UVH2O2 Processes for Methyl tert-Butyl Ether (MtBE) and tertiary Butyl Alcohol (TBA) Removal from

Drinking Water Source Effect of Pretreatment Options and Light Sourcesrdquo Water Research 2008 Volume 42 (20) 5045-5053

6 Minakata D Li K Westerhoff P Crittenden J Development of a group contribution method to predict aqueous phase hydroxyl radical reaction rate constants Environmental Science amp Technology 2009 43

6220-6227

7 Minakata D Crittenden J Linear Free Energy Relationships between the Aqueous Phase Hydroxyl Radical (HObull) Reaction Rate Constants and the Free Energy of Activation Environmental Science amp Technology

2011a 45 3479-3486

8 Minakata D Song W Crittenden J Reactivity of aqueous phase hydroxyl radical with halogenated carboxylate anions Experimental and theoretical studies Environmental Science amp Technology 2011 45 6057-

6065

9 Daisuke Minakata Stephen P Mezyk Jace W Jones Brittany R Daws John C Crittenden ldquoDevelopment of Linear Free Energy Relationships for Aqueous Phase Radical-Involved Chemical Reactionsrdquo

Environmental Science amp Technology 2014 48 (23) 13925-13932

10 Xin Guo Daisuke Minakata John C Crittenden ldquoOn-the-Fly Kinetic Monte Carlo Simulation of Aqueous Phase Advanced Oxidation Processesrdquo Environmental Science and Technology 2015 49 (15) 9230ndash9236

11 Guo X Minakata D Crittenden JC ldquoComputer-Based First-Principles Kinetic Monte Carlo Simulation of Polyethylene Glycol Degradation in Aqueous Phase UVH2O2 Advanced Oxidation Processrdquo

Environmental Science amp Technology 2014 48 10813minus10820

12 Xin Guo Daisuke Minakata Junfeng Niu John C Crittenden ldquoComputer-based First-principles Kinetic Modeling of Degradation Pathways and Byproduct Fates in Aqueous Phase Advanced Oxidation Processesrdquo

Environmental Science and Technology 2014 48 (10) pp 5718ndash5725

13 Yajie Qian Xin Guo Yalei Zhang Yue Peng Peizhe Sun Ching-Hua Huang Junfeng Niu Xuefei Zhou John C Crittenden ldquoPerfluorooctanoic Acid Degradation Using UVminusPersulfate Process Modeling of the

Degradation and Chlorate Formationrdquo 2015 Environmental Science and Technology 50 (2) 772ndash781

14 Ruzhen Xie Xiaoyang Meng Peizhe Sun Junfeng Niu Wenju JiangLawrence Bottomley Duo Li Yongsheng Chen John C CrittendenrdquoElectrochemical Oxidation of Ofloxacin Using a TiO2-based SnO2-

SbPolytetrafluoroethylene Resin-PbO2 Electrode Reaction Kinetics and Mass Transfer Impactrdquo 2016 Applied Catalysis B Environmental 203 (2017) 515ndash525

15 Westerhoff Paul Moon Hye Minakata Daisuke Crittenden John ldquoOxidation of Organics in Retentates from Reverse Osmosis Wastewater Reuse Facilitiesrdquo Water Research 43 (16) 3992-2998

16 Liu L Chen F Yang F Chen Y Crittenden J ldquoPhotocatalytic degradation of 24-dichlorophenol using nanoscale FeTiO2rdquo Chemical Engineering Journal 2012 181ndash182 (0)189-195

References

References

17 Ying Wang Jiasheng Fang John C Crittenden Chanchan Shen ldquoNovel RGO120572-FeOOH Supported Catalyst for Fenton Oxidation of Phenol at a Wide pH Range Using Solar-Light-Driven Irradiationrdquo 2017 Journal

of Hazardous Materials 329 321ndash329

18 Xiaodong Ma Mengying Zhao Qin Pang Meihua Zheng Hongwen Sun John C Crittenden Yanying Zhu Yongsheng Chen ldquoDevelopment of Novel CaCO3Fe2O3 Nanorods for Low Temperature 12-

Dichlorobenzene Oxidationrdquo 2017 Applied Catalysis A General 522 (2016) 70ndash79

19 Heacutector L Otaacutelvaro-Mariacuten Miguel Angel Mueses John C Crittenden Fiderman Machuca-Martinez ldquoSolar Photoreactor Design by the Photon Path Length and Optimization of the Radiant Field in a TiO2-based CPC

Reactorrdquo 2017 Chemical Engineering Journal 315 283ndash295

20 Qi Wang Naxin Zhu Enqin Liu Chenlu Zhang John C Crittenden Yi ZhangYanqing CongldquoFabrication of Visible-Light Active Fe2O3-GQDsNF-TiO2 Composite Film with Highly Enhanced

Photoelectrocatalytic Performancerdquo 2017 Applied Catalysis B Environmental 205 347ndash356

21 Junfeng Niu Lifeng Yin Yunrong Dai Yueping Bao John C Crittenden ldquoDesign of Visible Light Responsive Photocatalysts for Selective Reduction of Chlorinated Organic Compounds in Waterrdquo 2016 Applied

Catalysis A General 521 90ndash95

22 Chaojie Jiang Lifen Liu John C Crittenden ldquoAn Electrochemical Process that Uses an Fe0TiO2 Cathode to Degrade Typical Dyes and Antibiotics and a Bio-anode that Produces Electricityrdquo 2016 Frontiers of

Environmental Science amp Engineering 10(4) 15

23 Yijing Xia Qizhou Dai Mili Weng Yue Peng Jinming Luo Xiaoyang Meng Xubiao Luo Jianmeng Chen John C Crittenden ldquoFabrication and Electrochemical Treatment Application of an Al-Doped PbO2

Electrode with High Oxidation Capability Oxygen Evolution Potential and Reusabilityrdquo2015 Journal of The Electrochemical Society 162 (10) E258-E262

24 Feng Duan Yuping Li Hongbin Cao Yi Wang John C Crittenden Yi Zhang ldquoActivated Carbon Electrodes Electrochemical Oxidation Coupled with Desalination for Wastewater Treatmentrdquo 2015 Chemosphere

125 205-211

25 Xing Linlin Xie Yongbing Cao Hongbin Minakata Daisuke Zhang Yi Crittenden John C ldquoActivated carbon-enhanced ozonation of oxalate attributed to HObull oxidation in bulk solution and surface oxidation

Effects of the type and number of basic sitesrdquo Chemical Engineering Journal 2014 245 71-79

26 Yao H Sun P Minakata D Crittenden JC Huang C-H ldquoKinetics and Modeling of Degradation of Ionophore Antibiotics by UV and UVH2O2rdquo Environmental Science and Technology 2013 (47) 4581-

45892

26 Li Yang et al Synergistic photogeneration of reactive oxygen species by dissolved organic matter and C60 in aqueous phase Environmental science amp technology 492 (2015) 965-973

28 Niu Junfeng et al Photocatalytic reduction of triclosan on AundashCu 2 O nanowire arrays as plasmonic photocatalysts under visible light irradiation Physical Chemistry Chemical Physics 1726 (2015) 17421-17428

29 Niu Junfeng et al Design of visible light responsive photocatalysts for selective reduction of chlorinated organic compounds in water Applied Catalysis A General 521 (2016) 90-95

30 Tianyin Huang Jiabin Chen Zhongming Wang Xin Guo John C Crittenden ldquoExcellent Performance of Cobalt-Impregnated Activated Carbon in Peroxymonosulfate Activation for Acid Orange 7 Oxidationrdquo 2017

Environmental Science and Pollution Research Volume 24 (10) 9651ndash9661

References

31 Yang Li Junfeng Niu Enxiang Shang John C Crittenden ldquoPhotochemical Transformation and Photoinduced Toxicity Reduction of Silver Nanoparticles in the Presence of Perfluorocarboxylic Acids under UV

Irradiationrdquo Environmental Science and Technology 2014 48 (9) pp 4946ndash4953

32 Cao H Xing L Wu G Xie S Zhang SY Minakata D Crittenden JC ldquoPromoting effect of nitration modification on activated carbon in the catalytic ozonation of oxalic acidrdquo Applied Catalysis B

Environmental 2014 146 169-176

33 Konsowa A H Ossman M E Chen Y Crittenden J C ldquoDecolorization of industrial wastewater by ozonation followed by adsorption on activated carbonrdquo Journal of Hazardous Materials 176 (2010) 181-185

November 10 2009

34 Wipada Sanongraj Yongsheng Chen John Crittenden David Hand and David Perram ldquoDevelopment of Photocatalytic Oxidation Model Part I-Mathematical Model for Photocatalytic Destruction of Organic

Contaminants in Airrdquo Journal of the Air and Waste Management Association 571112ndash1122 September 2007

35 Chen Y JC Crittenden S Hackney L Sutter and DW Hand ldquoPreparation of a Novel TiO2-based p-n Junction Nanotube Photocatalystrdquo Environmental Science and Technology Vol 39 No 5 1201-1208 (2005)

36 Suri RPS J Liu JC Crittenden DW Hand and DL Perram Removal and Destruction of Organic Contaminants in Water Using Adsorption Steam Regeneration and Photocatalytic Oxidation A Pilot Scale

Studyrdquo Journal of Air and Waste Management Volume 49 (August 1999) 951 ndash 958

37 Burns RA JC Crittenden DW Hand VH Selzer LL Sutter SR Salman Effect of Inorganic Ions in the Heterogeneous Photocatalysis of Trichloroethene ASCE Journal of Environmental Engineering Vol

125 No 1 pp 77-85 (January 1999)

38 Liu J JC Crittenden DW Hand and DL Perram Regeneration of Adsorbents Using Heterogeneous Photocatalytic Oxidationrdquo Journal of Environmental Engineering Vol 122 No 8 pp 707-714 (1996)

39 Crittenden JC J Liu DW Hand and DL Perram Photocatalytic Oxidation of Chlorinated Hydrocarbons in Waterrdquo Water Research Vol31 No 3 pp 429-438 (1997)

40 Crittenden JC RPS Suri DL Perram and DW Hand Decontamination of Water Using Adsorption and Photocatalysisrdquo Water Research Vol 31 No 3 pp 411-418 (1997)

41 Crittenden JC Y Zhang DW Hand and DL Perram Destruction of Organic Compounds in Water Using Fixed-Bed Photocatalysts Journal of Solar Energy Engineering (ASME) Vol 118 No 5 pp 123 -129

(1996)

42 Crittenden JC Y Zhang DW Hand and DL Perram Solar Detoxification of Fuel-Contaminated Groundwater Using Fixed-Bed Photocatalystsrdquo Water Environment Research Vol 68 No 3 pp 270-278

(1996)

43 Zhang Y JC Crittenden and DW Hand The Solar Photocatalytic Decontamination of Waterrdquo Chemistry amp Industry Vol 18 pp 714-717 September (1994)

44 Mourand JT JC Crittenden DW Hand DL Perram and S Notthakun Regeneration of Spent Adsorbents Using Advanced Oxidationrdquo Water Environment Federation Vol 67 No 3 pp 355-363 (1995)

45 Hand DW DL Perram and JC Crittenden Destruction of DBP Precursors with Catalytic Oxidationrdquo American Water Works Association Journal Vol 87 No 6 pp 84-96 (1995)

46 Zhang Y JC Crittenden DW Hand and DL Perram Fixed-Bed Photo-catalysts for Solar Decontamination of Waterrdquo Environmental Science amp Technology Vol 28 No 3 pp 435-442 (1994)

47 Suri RPS J Liu DW Hand JC Crittenden DL Perram and ME Mullins Heterogeneous Photocatalytic Oxidation of Hazardous Organic Contaminants in Waterrdquo Water Environment Federation Vol 65 No

5 pp 665-673 (1993)

Page 18: The Application of Advanced Oxidation Processes (AOPs) and ...€¦ · We define the electron efficiency to be = 32 12 ·( J 4𝑥)· Where TOC in mg (c)/L and COD in mg ( 2)/L, n

(a) ofloxacin destruction on 1 anode for various fluid velocity (b) pseudo-first-order rate constants (c) EEO

Anode surface area 10 cm2 electrode spacing 1 cm fluid velocity 0033 ms initial ofloxacin concentration 20

mgL voltage 35-86 V electrolyte concentration is 005 M Na2SO4 pH value 625 and temperature is 25

Mass Transfer Impact Fluid Velocity

120570 =119896119891 sdot 120579

119896119891 sdot 120579 + 119896119872119886119909 sdot 119889

Effectiveness factor in different fluid velocity and the best fitted model 1

anode surface area 10 cm2 electrode spacing 1 cm electrolyte 005 M

Na2SO4 solution current density 30 mAcm2 initial ofloxacin concentration

20 mgL voltage 63-64 v pH value 625 temperature 25

l

du

Plain channel

119878ℎ =119896119891 sdot 119889

119863119897= 33 sdot

119889

119897sdot Re sdot 119878119888

13

Re =120588 sdot 119906 sdot 119889

120583

119878119888 =120583

120588 sdot 119863119897

120570 =119903119900119887119904

119903max=

119896119900119887119904 119877

119896max 119877

Sherwood number

Reynolds number

Schmidt number

Ω = 0436 means more than

56 oxidation rate reduced

by mass transfer

Mass Transfer Impact Effectiveness Factor

Many AOP follow a pseudo-first order rate

EEO is useful because if EEO is 5kWhr-order then if

you supply 5 1

15 kWm3 then you will 90 99 999 destruction of

the parent compound

Note COD and TOC have a much slower rate

Byproducts are less toxic and more biodegradable

Figure of Merit Electrical Energy Used per

Order (EEO) of Parent Compound Destroyed

EEO in Conventional AOPs

Conventional AOP Example EEO in UVH2O2

119864119864119874 =119875 times 119905

119881 times log1198620119862

+11986211986721198742

times00022119897119887

119892times 11986411986721198742

log1198620119862

119864119864119874 =2303 times 119875 times 1198961 11986721198742 0 + 1198962 1198671198621198743

minus0 + 1198963 119873119874119872 0 + 1198964 119877 0 times ε11986721198742

11986721198742 0 + ε119877 119877 0 + ε119873119874119872 119873119874119872 0

119875119880119881 times 1198964 times ε1198672119874211986721198742 0 times 1 minus 10minus119860 times V

+ 34 gramL times 11986721198742 0 times 00022 119897119887119892119903119886119898 times 11986411986721198742 times 1000 Lm3

bull Target contaminant concentrations oxidant dosage NOM determine the EEO of

conventional AOPs

EEO in EAOPs

EEO in EAOPs

EEO =v times j times A times V times t

V times logC0C

=v times j times A times t

logC0C

EEO =v times j times A

0434 times 119896119878 times Ω

v voltage V

j current densitymA

cm2

A surface area per volumem2

m3

V volumem3

C concentrationmol

m3

ks surface reaction rate sminus1

kobs observed reaction rate sminus1

Ω effectiveness factor

Ω =119896119900119887119904

119896119878

bull Target contaminants concentration dose does not effect EEO in EAOPs

bull EEO is a constant under same operational conditions

01 1 10 100 1000 10000 100000

Ultrapure Water

Distilled Water

Tap Water

Potable Water In The US

Surface Water

Industrial Wastewater

Seawater

Conductivity microScm

Water Streams Conductivity Guide

2D vs 3D EEO Comparison

Degradation of 1 mmolL benzoic acid in a 470 mL differential column batch reactor pH controlled

~68 surface water used has a low conductivity 112 microscm controlled current density is 30 mAcm2

2D anode size is 10 cm2 3D used 80 meshed Ti gauze has surface area 718 cm210 cm2 DCBR

operated at Re 194 Sc 2727 Sh 194 kf 64times10-6 ms Dl 9times10-6 cm2s

2D Electrode

3D Electrode

EEO Analysis in EAOPs

Electrolyte

Concentration

BA

concentrati

on

Voltage Current

Density

EEO

molL mgL V mAcm2 kWhm3

Surface

Water+BA~00004

(113 microScm)

24

(02 mM) 60 105 1738Surface

Water+BA 00004122

(1 mM) 60 105 2003Industrial

Water+BA

01

(16210

microScm) 24 73 304 175Industrial

Water+BA 01 122 8 30 207

Voltage Current

Density

EEO

V mAcm2 kWhm3

152 105 868

3D System2D System

bull Ionic strength is important in EAOPs NOM is not

bull Initial concentration C0does not effect EEO (at least for the

concentrations we tested)

bull Accordingly the pseudo ndash first surface rate constant is same for

different influent concentrations and the same operational

conditions for the conditions we tested

bull We expect to see the reaction rate to decrease with high C0 because

at high concentrations all the reactions site on the anode will be

occupied preventing the oxidation rate from increasing (Langmuir-

Hinshelwood Hougen Watson kinetics confirmation needed)

53 304 290

Conventional AOPs vs EAOPs Modeling 13

A case study to compare EEOs for

UVH2O2 H2O2O3 UVHOCl UVPersulfate UVTiO2

EAOPs (two-dimensional and three-dimensional)

Simulation Conditions[HCO3

minus] = 3 mM [NOM] = 2 mgL [Cl-] = 0001 M

pH = 7 kBA = 59times10-9 L(molmiddotS)Same 22 W input energy gives UV light intensity = 164times10-6 Einstein s-1 L-1

Initial Concentrations [R] (Benzoic Acid in this case) = 20 200 2000 mgL

Quantum yield

UVH2O2 = 05 UVHOCl = 09 UVPersulfate = 07

UVTiO2 = 004 (light transmission efficiency = 04)

Chemical production energy

H2O2 = 49 kWhlb persulfate = 49 kWhlb HOCl = 51 kWhlb O3 = 5 kWhlb

Note TiO2 and electrodes production energies are not included in simulation

EAOPs assumptions amp parameters

J = 30 mAcm2 2D anode size A = 10 cm2 3D anode size A= 718 cm2 (80 meshed Ti gauze)

Sc = 2727 Sh = 194 Dl = 9times10-6 cm2s d = 1 cm

Note pumping energy is small compare to electricity and neglected in simulation

Q = 20 mLmin Re = 1851 kf = 235times10-6 ms

Q = 500 mLmin Re = 46296 kf = 688times10-6 ms

Q = 2000 mLmin Re = 203704 kf = 113times10-5 ms (Re lt 2100 in laminar flow)

Minimal

EEO

(kWhm3)

Optimal

OxidantCatalyst

Dosage

9072 [TiO2]=300 mgL

4022 [Persulfate]=16 gL

2718 [H2O2]=0612 gL

2442 [HOCl]=026 gL

679 [H2O2]=0028 mgL

Electrolyte

(Na2SO4)

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

0M3702

0001M 6466 2405

0005M 3781 2069

001M 2676 1552

01M 469 1294

AOPs Minimal

EEO

(kWhm3)

Optimal

OxidantCatalyst

Dosage

UVTiO2 1038 [TiO2]=300 mgL

UVPersulfate 128 [Persulfate]=117 gL

UV H2O2 090 [H2O2]=0204 gL

UVHOCl 367 [HOCl]=014 gL

H2O2O3 0015 [H2O2]=00206 mgL

[R]0 = 20 mgL

~16 mgL TOC

[R]0 = 200 mgL

~140 mgL TOC

Minimal

EEO

(kWhm3)

Optimal

OxidantCatalyst

Dosage

88271 [TiO2]=300 mgL

8208 [Persulfate]=581 gL

1768 [H2O2]=184 gL

8335 [HOCl]=0776 gL

17648 [H2O2]=0035 mgL

[R]0 = 2000 mgL

~1379 mgL TOC

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

3545

6015 2260

3559 1937

2504 1448

455 1207

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

3404

5634 2136

3367 1824

2357 1360

443 1132

Re = 1851 Re = 46296 Re = 203704

Conventional AOPs vs EAOPs Modeling 23

Mass Transfer Increase

Ion

Str

en

gth

In

crease

Conventional AOPs vs EAOPs Modeling 33

AOPs Minimal

EEO

(kWhm3)

Optimal

OxidantCatalyst

Dosage

UVTiO2 1038 [TiO2]=300 mgL

UVPersulfate 128 [Persulfate]=117 gL

UV H2O2 090 [H2O2]=0204 gL

UVHOCl 367 [HOCl]=014 gL

H2O2O3 0015 [H2O2]=00206 mgL

[R]0 = 20 mgL

~16 mgL TOC For low concentration treatment

objectives EAOPs may not be as good as

compared to conventional AOPs

Conventional UVH2O2 and H2O2O3 are

the best conventional AOPs for BA

Electrolyte

(Na2SO4)

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

0M3702

0001M 6466 2405

0005M 3781 2069

001M 2676 1552

01M 469 1294

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

3545

6015 2260

3559 1937

2504 1448

455 1207

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

3404

5634 2136

3367 1824

2357 1360

443 1132

Re = 1851 Re = 46296 Re = 203704Mass Transfer Increase

Ion

Str

en

gth

In

crease

Conventional AOPs vs EAOPs Modeling 33

Minimal

EEO

(kWhm3)

Optimal

OxidantCatalyst

Dosage

88271 [TiO2]=300 mgL

8208 [Persulfate]=581 gL

1768 [H2O2]=184 gL

8335 [HOCl]=0776 gL

17648 [H2O2]=0035 mgL

[R]0 = 2000 mgL

~1379 mgL TOC For high concentration treatment objectives

EAOPs are more energy efficient

3D-EAOP saves more energy than 2D because

it requires lower applied voltage

3D-EAOP works better than 2D in low ion

strength treatment

Electrolyte

(Na2SO4)

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

0M3702

0001M 6466 2405

0005M 3781 2069

001M 2676 1552

01M 469 1294

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

3545

6015 2260

3559 1937

2504 1448

455 1207

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

3404

5634 2136

3367 1824

2357 1360

443 1132

Re = 1851 Re = 46296 Re = 203704Mass Transfer Increase

Ion

Str

en

gth

In

crease

Limiting Current in Different Conditions

jlim = n times F times kf times Csalt

Electrolyte

Concentration Q Q Q

Na2SO4 mlmin mlmin mlmin

20 500 2000

Re Re Re

1852 46296 185185

kf kf kf

ms ms ms

235405E-06 688E-06 109E-05

jlim jlim jlim

molL mAcm2 mAcm2 mAcm2

0001 068 199 316

jlim jlim jlim

molL mAcm2 mAcm2 mAcm2

0005 341 996 1581

jlim jlim jlim

molL mAcm2 mAcm2 mAcm2

001 681 1992 3163

jlim jlim jlim

molL mAcm2 mAcm2 mAcm2

005 3407 9962 15814

jlim jlim jlim

molL mAcm2 mAcm2 mAcm2

01 6814 19924 31627

Parameters Symbol Units Value

Influent concentration C0 mgL 20

Effluent concentration Ce mgL 02

Flow rate Q m3day 1000

Pseudo first order rate constant k min 0042

Size of reactor VRequired m3 38 m3

Detention time τ min 548

Electrode spacing d cm 1

Fluid velocity u ms 0033

Electrolyte Na2SO4 Concentration M 005

Current density J mAcm2 30

Assuming a Plug Flow Reactor (PFR) to be Confirmed with CFD

Full Scale Reactor Design

Full Scale Reactor Design

Rough Design of Reactor (top view)

1 2 3 4 5 6 7 8 9 10

105 meters

long

10 meters

electrodes

10 meters

2 meters deep

Reactor Channel

1 meter

hellip

5 cm 95 cmInfluent Effluent

The total costs (capital costs + energy costs) as a function of different electrode spacing for different theoretical

reaction rate In here the treatment objective is 99 removal flow rate is 1000 m3day and the fluid velocity is 00116

ms The flow channel has eddy promoter and its electrode spacing and obstacle distance ratio is 13 The electricity

price is $00512kWh and the pumping power is 853 kW The electrode price is $300m2 and its lifetime is 2000 h

Capital Expenditure Operational Expenditure

CapEx vs OpEx

Cost Analysis for Preliminary Design

The total costs (capital costs + energy costs) as a function of different electrode spacing for different theoretical

reaction rate In here the treatment objective is 99 removal flow rate is 1000 m3day and the fluid velocity is 00116

ms The flow channel has eddy promoter and its electrode spacing and obstacle distance ratio is 13 The electricity

price is $00512kWh and the pumping power is 853 kW The electrode price is $300m2 and its lifetime is 2000 h

Currently we are at only Ω=0436

Computer-based First-Principles Kinetic Model

Reaction Pathway Generator

(Graph Theory)

Rate Constants Estimator

(Group Contribution Method

Free Energy Linear

Relationship

Genetic Algorithm)

Ordinary Differential

Equations

(ODEs) Generator and Solver

(Gearrsquos Algorithm or

Monte Carlo algorithm)

Kinetic Monte Carlo Solver can

solve 1 million ODEs on PC

within 30 minutes

Complexity of Reaction PathwayExample

General reaction mechanisms that HObull initiates based on past experimental studies

Stefan and Bolton 1998 1999 1999 Stefan et al 1996 2000 Cooper et al 2009 Li et al 2004 2007 von Sonntag and

Schuchmann 1984 Schuchmann and von Sonntag 1979

Type of mechanismNumber of

speciesNumber of reactions

Full mechanism 120 370

Reduced mechanism 41 89

The criterion for DRG method is 1

Reaction rate constants are obtained from group contribution method (Minakata et al 2009 ESampT 43 6220-6227) and literature includingNate et al 1990 J Phys Chem Ref Data 19 413-513Nate et al 1995 J Phys Chem Ref Data 25 709-1050Buxton et al 1988 J Phys Chem Ref Data 17 513-886von Sonntag et al 1991 Angeuz Chem Int Ed Engl 30 1229-1253Li et al 2009 ESampT 43 2831-2837Li et al 2007 ESampT 41 1696-1703

Initial concentration of TCE 108 mM

Initial concentration of O2 22 mM

Initial concentration of H2O2 104 mM

Initial pH 59

Wave length of UV 200~300 nm

Light intensity779times10-6

EinsteinLmiddots

Reactor typeCompletely mixed batch reactor

Reaction time 30 min

Comparison of concentration profiles of major species for experimental data (Li Stefan Crittenden 2007 ESampT 41 1696-1703) and simulation results

00

20

40

60

80

100

120

00

02

04

06

08

10

12

0 5 10 15 20 25 30[H

2O

2]

(mM

)

[Ma

jor

spec

ies]

(m

M)

Time(min)

TCE exp

formic acid exp

oxalic acid exp

20 times DCA exp

20 times MCA exp

TCE cal

formic acid cal

oxalic acid cal

20 times DCA cal

20 times MCA cal

H2O2 exp

H2O2 cal

The photolysis of TCE was added manually because it is not included in this version of the pathway generator

Predicted Concentration Profiles of

Trichloroethene (TCE) and Stable-byproducts in UVH2O2 AOP

Comparison of number averaged molecular

weight (MW) for experimental data

(Vijayalakshmi et al J Appl Polym Sci 2006

100 3997-4003) and on-the-fly KMC model

The KMC model used a population number of 108L to

represent a concentration of 1molL

0

02

04

06

08

1

12

14

16

18

0 25 50 75 100 125 150 175 200

Aver

aged

mole

cu

lar

wei

gh

t (1

05

gm

ol)

Time (min)

Experiment

On-the-fly KMC

0

02

04

06

08

1

12

0 25 50 75 100 125 150 175 200

Nu

mb

er o

f re

act

ion

s (1

06)

Time (min)

Time evolvement of the number of generated

reactions for the degradation of PAM during the

UVTiO2 process

Degradation of Polyacrylamide (PAM)

Simulation Results for PAM Degradation in UVTiO2 AOP

Guo X Minakata D and Crittenden J 2015 On-the-fly kinetic Monte Carlo simulation of aqueous phase advanced oxidation processes Environmental science amp technology 49(15) pp9230-9236

1 Crittenden John C Shumin Hu David W Hand and Sarah Green ldquoA Kinetic Model for H2O2UV Process in a Completely Mixed Batch Reactorrdquo Water Research 33(10) 2315-2328 (1999)

2 Li K Crittenden JC Computerized pathway elucidation for hydroxyl radical induced chain reaction mechanisms in aqueous phase AOPs Environmental Science amp Technology 2009 43(8) 2831-2837

3 Li K Stefan MI Crittenden JC Trichloroethene degradation by UVH2O2 advanced oxidation process product study and kinetic modeling Environmental Science amp Technology 2007 41 1696-1703

4 Li K M I Stefan and J C Crittenden ldquoUV Photolysis of Trichloroethylene (TCE) Product Study and Kinetic Modelingrdquo Environmental Science and Technology Vol 38 No 24 6685-6693 (2004)

5 Ke Li David R Hokanson John C Crittenden R Rhodes Trussell and Daisuke Minakata ldquoEvaluating UVH2O2 Processes for Methyl tert-Butyl Ether (MtBE) and tertiary Butyl Alcohol (TBA) Removal from

Drinking Water Source Effect of Pretreatment Options and Light Sourcesrdquo Water Research 2008 Volume 42 (20) 5045-5053

6 Minakata D Li K Westerhoff P Crittenden J Development of a group contribution method to predict aqueous phase hydroxyl radical reaction rate constants Environmental Science amp Technology 2009 43

6220-6227

7 Minakata D Crittenden J Linear Free Energy Relationships between the Aqueous Phase Hydroxyl Radical (HObull) Reaction Rate Constants and the Free Energy of Activation Environmental Science amp Technology

2011a 45 3479-3486

8 Minakata D Song W Crittenden J Reactivity of aqueous phase hydroxyl radical with halogenated carboxylate anions Experimental and theoretical studies Environmental Science amp Technology 2011 45 6057-

6065

9 Daisuke Minakata Stephen P Mezyk Jace W Jones Brittany R Daws John C Crittenden ldquoDevelopment of Linear Free Energy Relationships for Aqueous Phase Radical-Involved Chemical Reactionsrdquo

Environmental Science amp Technology 2014 48 (23) 13925-13932

10 Xin Guo Daisuke Minakata John C Crittenden ldquoOn-the-Fly Kinetic Monte Carlo Simulation of Aqueous Phase Advanced Oxidation Processesrdquo Environmental Science and Technology 2015 49 (15) 9230ndash9236

11 Guo X Minakata D Crittenden JC ldquoComputer-Based First-Principles Kinetic Monte Carlo Simulation of Polyethylene Glycol Degradation in Aqueous Phase UVH2O2 Advanced Oxidation Processrdquo

Environmental Science amp Technology 2014 48 10813minus10820

12 Xin Guo Daisuke Minakata Junfeng Niu John C Crittenden ldquoComputer-based First-principles Kinetic Modeling of Degradation Pathways and Byproduct Fates in Aqueous Phase Advanced Oxidation Processesrdquo

Environmental Science and Technology 2014 48 (10) pp 5718ndash5725

13 Yajie Qian Xin Guo Yalei Zhang Yue Peng Peizhe Sun Ching-Hua Huang Junfeng Niu Xuefei Zhou John C Crittenden ldquoPerfluorooctanoic Acid Degradation Using UVminusPersulfate Process Modeling of the

Degradation and Chlorate Formationrdquo 2015 Environmental Science and Technology 50 (2) 772ndash781

14 Ruzhen Xie Xiaoyang Meng Peizhe Sun Junfeng Niu Wenju JiangLawrence Bottomley Duo Li Yongsheng Chen John C CrittendenrdquoElectrochemical Oxidation of Ofloxacin Using a TiO2-based SnO2-

SbPolytetrafluoroethylene Resin-PbO2 Electrode Reaction Kinetics and Mass Transfer Impactrdquo 2016 Applied Catalysis B Environmental 203 (2017) 515ndash525

15 Westerhoff Paul Moon Hye Minakata Daisuke Crittenden John ldquoOxidation of Organics in Retentates from Reverse Osmosis Wastewater Reuse Facilitiesrdquo Water Research 43 (16) 3992-2998

16 Liu L Chen F Yang F Chen Y Crittenden J ldquoPhotocatalytic degradation of 24-dichlorophenol using nanoscale FeTiO2rdquo Chemical Engineering Journal 2012 181ndash182 (0)189-195

References

References

17 Ying Wang Jiasheng Fang John C Crittenden Chanchan Shen ldquoNovel RGO120572-FeOOH Supported Catalyst for Fenton Oxidation of Phenol at a Wide pH Range Using Solar-Light-Driven Irradiationrdquo 2017 Journal

of Hazardous Materials 329 321ndash329

18 Xiaodong Ma Mengying Zhao Qin Pang Meihua Zheng Hongwen Sun John C Crittenden Yanying Zhu Yongsheng Chen ldquoDevelopment of Novel CaCO3Fe2O3 Nanorods for Low Temperature 12-

Dichlorobenzene Oxidationrdquo 2017 Applied Catalysis A General 522 (2016) 70ndash79

19 Heacutector L Otaacutelvaro-Mariacuten Miguel Angel Mueses John C Crittenden Fiderman Machuca-Martinez ldquoSolar Photoreactor Design by the Photon Path Length and Optimization of the Radiant Field in a TiO2-based CPC

Reactorrdquo 2017 Chemical Engineering Journal 315 283ndash295

20 Qi Wang Naxin Zhu Enqin Liu Chenlu Zhang John C Crittenden Yi ZhangYanqing CongldquoFabrication of Visible-Light Active Fe2O3-GQDsNF-TiO2 Composite Film with Highly Enhanced

Photoelectrocatalytic Performancerdquo 2017 Applied Catalysis B Environmental 205 347ndash356

21 Junfeng Niu Lifeng Yin Yunrong Dai Yueping Bao John C Crittenden ldquoDesign of Visible Light Responsive Photocatalysts for Selective Reduction of Chlorinated Organic Compounds in Waterrdquo 2016 Applied

Catalysis A General 521 90ndash95

22 Chaojie Jiang Lifen Liu John C Crittenden ldquoAn Electrochemical Process that Uses an Fe0TiO2 Cathode to Degrade Typical Dyes and Antibiotics and a Bio-anode that Produces Electricityrdquo 2016 Frontiers of

Environmental Science amp Engineering 10(4) 15

23 Yijing Xia Qizhou Dai Mili Weng Yue Peng Jinming Luo Xiaoyang Meng Xubiao Luo Jianmeng Chen John C Crittenden ldquoFabrication and Electrochemical Treatment Application of an Al-Doped PbO2

Electrode with High Oxidation Capability Oxygen Evolution Potential and Reusabilityrdquo2015 Journal of The Electrochemical Society 162 (10) E258-E262

24 Feng Duan Yuping Li Hongbin Cao Yi Wang John C Crittenden Yi Zhang ldquoActivated Carbon Electrodes Electrochemical Oxidation Coupled with Desalination for Wastewater Treatmentrdquo 2015 Chemosphere

125 205-211

25 Xing Linlin Xie Yongbing Cao Hongbin Minakata Daisuke Zhang Yi Crittenden John C ldquoActivated carbon-enhanced ozonation of oxalate attributed to HObull oxidation in bulk solution and surface oxidation

Effects of the type and number of basic sitesrdquo Chemical Engineering Journal 2014 245 71-79

26 Yao H Sun P Minakata D Crittenden JC Huang C-H ldquoKinetics and Modeling of Degradation of Ionophore Antibiotics by UV and UVH2O2rdquo Environmental Science and Technology 2013 (47) 4581-

45892

26 Li Yang et al Synergistic photogeneration of reactive oxygen species by dissolved organic matter and C60 in aqueous phase Environmental science amp technology 492 (2015) 965-973

28 Niu Junfeng et al Photocatalytic reduction of triclosan on AundashCu 2 O nanowire arrays as plasmonic photocatalysts under visible light irradiation Physical Chemistry Chemical Physics 1726 (2015) 17421-17428

29 Niu Junfeng et al Design of visible light responsive photocatalysts for selective reduction of chlorinated organic compounds in water Applied Catalysis A General 521 (2016) 90-95

30 Tianyin Huang Jiabin Chen Zhongming Wang Xin Guo John C Crittenden ldquoExcellent Performance of Cobalt-Impregnated Activated Carbon in Peroxymonosulfate Activation for Acid Orange 7 Oxidationrdquo 2017

Environmental Science and Pollution Research Volume 24 (10) 9651ndash9661

References

31 Yang Li Junfeng Niu Enxiang Shang John C Crittenden ldquoPhotochemical Transformation and Photoinduced Toxicity Reduction of Silver Nanoparticles in the Presence of Perfluorocarboxylic Acids under UV

Irradiationrdquo Environmental Science and Technology 2014 48 (9) pp 4946ndash4953

32 Cao H Xing L Wu G Xie S Zhang SY Minakata D Crittenden JC ldquoPromoting effect of nitration modification on activated carbon in the catalytic ozonation of oxalic acidrdquo Applied Catalysis B

Environmental 2014 146 169-176

33 Konsowa A H Ossman M E Chen Y Crittenden J C ldquoDecolorization of industrial wastewater by ozonation followed by adsorption on activated carbonrdquo Journal of Hazardous Materials 176 (2010) 181-185

November 10 2009

34 Wipada Sanongraj Yongsheng Chen John Crittenden David Hand and David Perram ldquoDevelopment of Photocatalytic Oxidation Model Part I-Mathematical Model for Photocatalytic Destruction of Organic

Contaminants in Airrdquo Journal of the Air and Waste Management Association 571112ndash1122 September 2007

35 Chen Y JC Crittenden S Hackney L Sutter and DW Hand ldquoPreparation of a Novel TiO2-based p-n Junction Nanotube Photocatalystrdquo Environmental Science and Technology Vol 39 No 5 1201-1208 (2005)

36 Suri RPS J Liu JC Crittenden DW Hand and DL Perram Removal and Destruction of Organic Contaminants in Water Using Adsorption Steam Regeneration and Photocatalytic Oxidation A Pilot Scale

Studyrdquo Journal of Air and Waste Management Volume 49 (August 1999) 951 ndash 958

37 Burns RA JC Crittenden DW Hand VH Selzer LL Sutter SR Salman Effect of Inorganic Ions in the Heterogeneous Photocatalysis of Trichloroethene ASCE Journal of Environmental Engineering Vol

125 No 1 pp 77-85 (January 1999)

38 Liu J JC Crittenden DW Hand and DL Perram Regeneration of Adsorbents Using Heterogeneous Photocatalytic Oxidationrdquo Journal of Environmental Engineering Vol 122 No 8 pp 707-714 (1996)

39 Crittenden JC J Liu DW Hand and DL Perram Photocatalytic Oxidation of Chlorinated Hydrocarbons in Waterrdquo Water Research Vol31 No 3 pp 429-438 (1997)

40 Crittenden JC RPS Suri DL Perram and DW Hand Decontamination of Water Using Adsorption and Photocatalysisrdquo Water Research Vol 31 No 3 pp 411-418 (1997)

41 Crittenden JC Y Zhang DW Hand and DL Perram Destruction of Organic Compounds in Water Using Fixed-Bed Photocatalysts Journal of Solar Energy Engineering (ASME) Vol 118 No 5 pp 123 -129

(1996)

42 Crittenden JC Y Zhang DW Hand and DL Perram Solar Detoxification of Fuel-Contaminated Groundwater Using Fixed-Bed Photocatalystsrdquo Water Environment Research Vol 68 No 3 pp 270-278

(1996)

43 Zhang Y JC Crittenden and DW Hand The Solar Photocatalytic Decontamination of Waterrdquo Chemistry amp Industry Vol 18 pp 714-717 September (1994)

44 Mourand JT JC Crittenden DW Hand DL Perram and S Notthakun Regeneration of Spent Adsorbents Using Advanced Oxidationrdquo Water Environment Federation Vol 67 No 3 pp 355-363 (1995)

45 Hand DW DL Perram and JC Crittenden Destruction of DBP Precursors with Catalytic Oxidationrdquo American Water Works Association Journal Vol 87 No 6 pp 84-96 (1995)

46 Zhang Y JC Crittenden DW Hand and DL Perram Fixed-Bed Photo-catalysts for Solar Decontamination of Waterrdquo Environmental Science amp Technology Vol 28 No 3 pp 435-442 (1994)

47 Suri RPS J Liu DW Hand JC Crittenden DL Perram and ME Mullins Heterogeneous Photocatalytic Oxidation of Hazardous Organic Contaminants in Waterrdquo Water Environment Federation Vol 65 No

5 pp 665-673 (1993)

Page 19: The Application of Advanced Oxidation Processes (AOPs) and ...€¦ · We define the electron efficiency to be = 32 12 ·( J 4𝑥)· Where TOC in mg (c)/L and COD in mg ( 2)/L, n

120570 =119896119891 sdot 120579

119896119891 sdot 120579 + 119896119872119886119909 sdot 119889

Effectiveness factor in different fluid velocity and the best fitted model 1

anode surface area 10 cm2 electrode spacing 1 cm electrolyte 005 M

Na2SO4 solution current density 30 mAcm2 initial ofloxacin concentration

20 mgL voltage 63-64 v pH value 625 temperature 25

l

du

Plain channel

119878ℎ =119896119891 sdot 119889

119863119897= 33 sdot

119889

119897sdot Re sdot 119878119888

13

Re =120588 sdot 119906 sdot 119889

120583

119878119888 =120583

120588 sdot 119863119897

120570 =119903119900119887119904

119903max=

119896119900119887119904 119877

119896max 119877

Sherwood number

Reynolds number

Schmidt number

Ω = 0436 means more than

56 oxidation rate reduced

by mass transfer

Mass Transfer Impact Effectiveness Factor

Many AOP follow a pseudo-first order rate

EEO is useful because if EEO is 5kWhr-order then if

you supply 5 1

15 kWm3 then you will 90 99 999 destruction of

the parent compound

Note COD and TOC have a much slower rate

Byproducts are less toxic and more biodegradable

Figure of Merit Electrical Energy Used per

Order (EEO) of Parent Compound Destroyed

EEO in Conventional AOPs

Conventional AOP Example EEO in UVH2O2

119864119864119874 =119875 times 119905

119881 times log1198620119862

+11986211986721198742

times00022119897119887

119892times 11986411986721198742

log1198620119862

119864119864119874 =2303 times 119875 times 1198961 11986721198742 0 + 1198962 1198671198621198743

minus0 + 1198963 119873119874119872 0 + 1198964 119877 0 times ε11986721198742

11986721198742 0 + ε119877 119877 0 + ε119873119874119872 119873119874119872 0

119875119880119881 times 1198964 times ε1198672119874211986721198742 0 times 1 minus 10minus119860 times V

+ 34 gramL times 11986721198742 0 times 00022 119897119887119892119903119886119898 times 11986411986721198742 times 1000 Lm3

bull Target contaminant concentrations oxidant dosage NOM determine the EEO of

conventional AOPs

EEO in EAOPs

EEO in EAOPs

EEO =v times j times A times V times t

V times logC0C

=v times j times A times t

logC0C

EEO =v times j times A

0434 times 119896119878 times Ω

v voltage V

j current densitymA

cm2

A surface area per volumem2

m3

V volumem3

C concentrationmol

m3

ks surface reaction rate sminus1

kobs observed reaction rate sminus1

Ω effectiveness factor

Ω =119896119900119887119904

119896119878

bull Target contaminants concentration dose does not effect EEO in EAOPs

bull EEO is a constant under same operational conditions

01 1 10 100 1000 10000 100000

Ultrapure Water

Distilled Water

Tap Water

Potable Water In The US

Surface Water

Industrial Wastewater

Seawater

Conductivity microScm

Water Streams Conductivity Guide

2D vs 3D EEO Comparison

Degradation of 1 mmolL benzoic acid in a 470 mL differential column batch reactor pH controlled

~68 surface water used has a low conductivity 112 microscm controlled current density is 30 mAcm2

2D anode size is 10 cm2 3D used 80 meshed Ti gauze has surface area 718 cm210 cm2 DCBR

operated at Re 194 Sc 2727 Sh 194 kf 64times10-6 ms Dl 9times10-6 cm2s

2D Electrode

3D Electrode

EEO Analysis in EAOPs

Electrolyte

Concentration

BA

concentrati

on

Voltage Current

Density

EEO

molL mgL V mAcm2 kWhm3

Surface

Water+BA~00004

(113 microScm)

24

(02 mM) 60 105 1738Surface

Water+BA 00004122

(1 mM) 60 105 2003Industrial

Water+BA

01

(16210

microScm) 24 73 304 175Industrial

Water+BA 01 122 8 30 207

Voltage Current

Density

EEO

V mAcm2 kWhm3

152 105 868

3D System2D System

bull Ionic strength is important in EAOPs NOM is not

bull Initial concentration C0does not effect EEO (at least for the

concentrations we tested)

bull Accordingly the pseudo ndash first surface rate constant is same for

different influent concentrations and the same operational

conditions for the conditions we tested

bull We expect to see the reaction rate to decrease with high C0 because

at high concentrations all the reactions site on the anode will be

occupied preventing the oxidation rate from increasing (Langmuir-

Hinshelwood Hougen Watson kinetics confirmation needed)

53 304 290

Conventional AOPs vs EAOPs Modeling 13

A case study to compare EEOs for

UVH2O2 H2O2O3 UVHOCl UVPersulfate UVTiO2

EAOPs (two-dimensional and three-dimensional)

Simulation Conditions[HCO3

minus] = 3 mM [NOM] = 2 mgL [Cl-] = 0001 M

pH = 7 kBA = 59times10-9 L(molmiddotS)Same 22 W input energy gives UV light intensity = 164times10-6 Einstein s-1 L-1

Initial Concentrations [R] (Benzoic Acid in this case) = 20 200 2000 mgL

Quantum yield

UVH2O2 = 05 UVHOCl = 09 UVPersulfate = 07

UVTiO2 = 004 (light transmission efficiency = 04)

Chemical production energy

H2O2 = 49 kWhlb persulfate = 49 kWhlb HOCl = 51 kWhlb O3 = 5 kWhlb

Note TiO2 and electrodes production energies are not included in simulation

EAOPs assumptions amp parameters

J = 30 mAcm2 2D anode size A = 10 cm2 3D anode size A= 718 cm2 (80 meshed Ti gauze)

Sc = 2727 Sh = 194 Dl = 9times10-6 cm2s d = 1 cm

Note pumping energy is small compare to electricity and neglected in simulation

Q = 20 mLmin Re = 1851 kf = 235times10-6 ms

Q = 500 mLmin Re = 46296 kf = 688times10-6 ms

Q = 2000 mLmin Re = 203704 kf = 113times10-5 ms (Re lt 2100 in laminar flow)

Minimal

EEO

(kWhm3)

Optimal

OxidantCatalyst

Dosage

9072 [TiO2]=300 mgL

4022 [Persulfate]=16 gL

2718 [H2O2]=0612 gL

2442 [HOCl]=026 gL

679 [H2O2]=0028 mgL

Electrolyte

(Na2SO4)

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

0M3702

0001M 6466 2405

0005M 3781 2069

001M 2676 1552

01M 469 1294

AOPs Minimal

EEO

(kWhm3)

Optimal

OxidantCatalyst

Dosage

UVTiO2 1038 [TiO2]=300 mgL

UVPersulfate 128 [Persulfate]=117 gL

UV H2O2 090 [H2O2]=0204 gL

UVHOCl 367 [HOCl]=014 gL

H2O2O3 0015 [H2O2]=00206 mgL

[R]0 = 20 mgL

~16 mgL TOC

[R]0 = 200 mgL

~140 mgL TOC

Minimal

EEO

(kWhm3)

Optimal

OxidantCatalyst

Dosage

88271 [TiO2]=300 mgL

8208 [Persulfate]=581 gL

1768 [H2O2]=184 gL

8335 [HOCl]=0776 gL

17648 [H2O2]=0035 mgL

[R]0 = 2000 mgL

~1379 mgL TOC

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

3545

6015 2260

3559 1937

2504 1448

455 1207

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

3404

5634 2136

3367 1824

2357 1360

443 1132

Re = 1851 Re = 46296 Re = 203704

Conventional AOPs vs EAOPs Modeling 23

Mass Transfer Increase

Ion

Str

en

gth

In

crease

Conventional AOPs vs EAOPs Modeling 33

AOPs Minimal

EEO

(kWhm3)

Optimal

OxidantCatalyst

Dosage

UVTiO2 1038 [TiO2]=300 mgL

UVPersulfate 128 [Persulfate]=117 gL

UV H2O2 090 [H2O2]=0204 gL

UVHOCl 367 [HOCl]=014 gL

H2O2O3 0015 [H2O2]=00206 mgL

[R]0 = 20 mgL

~16 mgL TOC For low concentration treatment

objectives EAOPs may not be as good as

compared to conventional AOPs

Conventional UVH2O2 and H2O2O3 are

the best conventional AOPs for BA

Electrolyte

(Na2SO4)

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

0M3702

0001M 6466 2405

0005M 3781 2069

001M 2676 1552

01M 469 1294

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

3545

6015 2260

3559 1937

2504 1448

455 1207

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

3404

5634 2136

3367 1824

2357 1360

443 1132

Re = 1851 Re = 46296 Re = 203704Mass Transfer Increase

Ion

Str

en

gth

In

crease

Conventional AOPs vs EAOPs Modeling 33

Minimal

EEO

(kWhm3)

Optimal

OxidantCatalyst

Dosage

88271 [TiO2]=300 mgL

8208 [Persulfate]=581 gL

1768 [H2O2]=184 gL

8335 [HOCl]=0776 gL

17648 [H2O2]=0035 mgL

[R]0 = 2000 mgL

~1379 mgL TOC For high concentration treatment objectives

EAOPs are more energy efficient

3D-EAOP saves more energy than 2D because

it requires lower applied voltage

3D-EAOP works better than 2D in low ion

strength treatment

Electrolyte

(Na2SO4)

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

0M3702

0001M 6466 2405

0005M 3781 2069

001M 2676 1552

01M 469 1294

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

3545

6015 2260

3559 1937

2504 1448

455 1207

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

3404

5634 2136

3367 1824

2357 1360

443 1132

Re = 1851 Re = 46296 Re = 203704Mass Transfer Increase

Ion

Str

en

gth

In

crease

Limiting Current in Different Conditions

jlim = n times F times kf times Csalt

Electrolyte

Concentration Q Q Q

Na2SO4 mlmin mlmin mlmin

20 500 2000

Re Re Re

1852 46296 185185

kf kf kf

ms ms ms

235405E-06 688E-06 109E-05

jlim jlim jlim

molL mAcm2 mAcm2 mAcm2

0001 068 199 316

jlim jlim jlim

molL mAcm2 mAcm2 mAcm2

0005 341 996 1581

jlim jlim jlim

molL mAcm2 mAcm2 mAcm2

001 681 1992 3163

jlim jlim jlim

molL mAcm2 mAcm2 mAcm2

005 3407 9962 15814

jlim jlim jlim

molL mAcm2 mAcm2 mAcm2

01 6814 19924 31627

Parameters Symbol Units Value

Influent concentration C0 mgL 20

Effluent concentration Ce mgL 02

Flow rate Q m3day 1000

Pseudo first order rate constant k min 0042

Size of reactor VRequired m3 38 m3

Detention time τ min 548

Electrode spacing d cm 1

Fluid velocity u ms 0033

Electrolyte Na2SO4 Concentration M 005

Current density J mAcm2 30

Assuming a Plug Flow Reactor (PFR) to be Confirmed with CFD

Full Scale Reactor Design

Full Scale Reactor Design

Rough Design of Reactor (top view)

1 2 3 4 5 6 7 8 9 10

105 meters

long

10 meters

electrodes

10 meters

2 meters deep

Reactor Channel

1 meter

hellip

5 cm 95 cmInfluent Effluent

The total costs (capital costs + energy costs) as a function of different electrode spacing for different theoretical

reaction rate In here the treatment objective is 99 removal flow rate is 1000 m3day and the fluid velocity is 00116

ms The flow channel has eddy promoter and its electrode spacing and obstacle distance ratio is 13 The electricity

price is $00512kWh and the pumping power is 853 kW The electrode price is $300m2 and its lifetime is 2000 h

Capital Expenditure Operational Expenditure

CapEx vs OpEx

Cost Analysis for Preliminary Design

The total costs (capital costs + energy costs) as a function of different electrode spacing for different theoretical

reaction rate In here the treatment objective is 99 removal flow rate is 1000 m3day and the fluid velocity is 00116

ms The flow channel has eddy promoter and its electrode spacing and obstacle distance ratio is 13 The electricity

price is $00512kWh and the pumping power is 853 kW The electrode price is $300m2 and its lifetime is 2000 h

Currently we are at only Ω=0436

Computer-based First-Principles Kinetic Model

Reaction Pathway Generator

(Graph Theory)

Rate Constants Estimator

(Group Contribution Method

Free Energy Linear

Relationship

Genetic Algorithm)

Ordinary Differential

Equations

(ODEs) Generator and Solver

(Gearrsquos Algorithm or

Monte Carlo algorithm)

Kinetic Monte Carlo Solver can

solve 1 million ODEs on PC

within 30 minutes

Complexity of Reaction PathwayExample

General reaction mechanisms that HObull initiates based on past experimental studies

Stefan and Bolton 1998 1999 1999 Stefan et al 1996 2000 Cooper et al 2009 Li et al 2004 2007 von Sonntag and

Schuchmann 1984 Schuchmann and von Sonntag 1979

Type of mechanismNumber of

speciesNumber of reactions

Full mechanism 120 370

Reduced mechanism 41 89

The criterion for DRG method is 1

Reaction rate constants are obtained from group contribution method (Minakata et al 2009 ESampT 43 6220-6227) and literature includingNate et al 1990 J Phys Chem Ref Data 19 413-513Nate et al 1995 J Phys Chem Ref Data 25 709-1050Buxton et al 1988 J Phys Chem Ref Data 17 513-886von Sonntag et al 1991 Angeuz Chem Int Ed Engl 30 1229-1253Li et al 2009 ESampT 43 2831-2837Li et al 2007 ESampT 41 1696-1703

Initial concentration of TCE 108 mM

Initial concentration of O2 22 mM

Initial concentration of H2O2 104 mM

Initial pH 59

Wave length of UV 200~300 nm

Light intensity779times10-6

EinsteinLmiddots

Reactor typeCompletely mixed batch reactor

Reaction time 30 min

Comparison of concentration profiles of major species for experimental data (Li Stefan Crittenden 2007 ESampT 41 1696-1703) and simulation results

00

20

40

60

80

100

120

00

02

04

06

08

10

12

0 5 10 15 20 25 30[H

2O

2]

(mM

)

[Ma

jor

spec

ies]

(m

M)

Time(min)

TCE exp

formic acid exp

oxalic acid exp

20 times DCA exp

20 times MCA exp

TCE cal

formic acid cal

oxalic acid cal

20 times DCA cal

20 times MCA cal

H2O2 exp

H2O2 cal

The photolysis of TCE was added manually because it is not included in this version of the pathway generator

Predicted Concentration Profiles of

Trichloroethene (TCE) and Stable-byproducts in UVH2O2 AOP

Comparison of number averaged molecular

weight (MW) for experimental data

(Vijayalakshmi et al J Appl Polym Sci 2006

100 3997-4003) and on-the-fly KMC model

The KMC model used a population number of 108L to

represent a concentration of 1molL

0

02

04

06

08

1

12

14

16

18

0 25 50 75 100 125 150 175 200

Aver

aged

mole

cu

lar

wei

gh

t (1

05

gm

ol)

Time (min)

Experiment

On-the-fly KMC

0

02

04

06

08

1

12

0 25 50 75 100 125 150 175 200

Nu

mb

er o

f re

act

ion

s (1

06)

Time (min)

Time evolvement of the number of generated

reactions for the degradation of PAM during the

UVTiO2 process

Degradation of Polyacrylamide (PAM)

Simulation Results for PAM Degradation in UVTiO2 AOP

Guo X Minakata D and Crittenden J 2015 On-the-fly kinetic Monte Carlo simulation of aqueous phase advanced oxidation processes Environmental science amp technology 49(15) pp9230-9236

1 Crittenden John C Shumin Hu David W Hand and Sarah Green ldquoA Kinetic Model for H2O2UV Process in a Completely Mixed Batch Reactorrdquo Water Research 33(10) 2315-2328 (1999)

2 Li K Crittenden JC Computerized pathway elucidation for hydroxyl radical induced chain reaction mechanisms in aqueous phase AOPs Environmental Science amp Technology 2009 43(8) 2831-2837

3 Li K Stefan MI Crittenden JC Trichloroethene degradation by UVH2O2 advanced oxidation process product study and kinetic modeling Environmental Science amp Technology 2007 41 1696-1703

4 Li K M I Stefan and J C Crittenden ldquoUV Photolysis of Trichloroethylene (TCE) Product Study and Kinetic Modelingrdquo Environmental Science and Technology Vol 38 No 24 6685-6693 (2004)

5 Ke Li David R Hokanson John C Crittenden R Rhodes Trussell and Daisuke Minakata ldquoEvaluating UVH2O2 Processes for Methyl tert-Butyl Ether (MtBE) and tertiary Butyl Alcohol (TBA) Removal from

Drinking Water Source Effect of Pretreatment Options and Light Sourcesrdquo Water Research 2008 Volume 42 (20) 5045-5053

6 Minakata D Li K Westerhoff P Crittenden J Development of a group contribution method to predict aqueous phase hydroxyl radical reaction rate constants Environmental Science amp Technology 2009 43

6220-6227

7 Minakata D Crittenden J Linear Free Energy Relationships between the Aqueous Phase Hydroxyl Radical (HObull) Reaction Rate Constants and the Free Energy of Activation Environmental Science amp Technology

2011a 45 3479-3486

8 Minakata D Song W Crittenden J Reactivity of aqueous phase hydroxyl radical with halogenated carboxylate anions Experimental and theoretical studies Environmental Science amp Technology 2011 45 6057-

6065

9 Daisuke Minakata Stephen P Mezyk Jace W Jones Brittany R Daws John C Crittenden ldquoDevelopment of Linear Free Energy Relationships for Aqueous Phase Radical-Involved Chemical Reactionsrdquo

Environmental Science amp Technology 2014 48 (23) 13925-13932

10 Xin Guo Daisuke Minakata John C Crittenden ldquoOn-the-Fly Kinetic Monte Carlo Simulation of Aqueous Phase Advanced Oxidation Processesrdquo Environmental Science and Technology 2015 49 (15) 9230ndash9236

11 Guo X Minakata D Crittenden JC ldquoComputer-Based First-Principles Kinetic Monte Carlo Simulation of Polyethylene Glycol Degradation in Aqueous Phase UVH2O2 Advanced Oxidation Processrdquo

Environmental Science amp Technology 2014 48 10813minus10820

12 Xin Guo Daisuke Minakata Junfeng Niu John C Crittenden ldquoComputer-based First-principles Kinetic Modeling of Degradation Pathways and Byproduct Fates in Aqueous Phase Advanced Oxidation Processesrdquo

Environmental Science and Technology 2014 48 (10) pp 5718ndash5725

13 Yajie Qian Xin Guo Yalei Zhang Yue Peng Peizhe Sun Ching-Hua Huang Junfeng Niu Xuefei Zhou John C Crittenden ldquoPerfluorooctanoic Acid Degradation Using UVminusPersulfate Process Modeling of the

Degradation and Chlorate Formationrdquo 2015 Environmental Science and Technology 50 (2) 772ndash781

14 Ruzhen Xie Xiaoyang Meng Peizhe Sun Junfeng Niu Wenju JiangLawrence Bottomley Duo Li Yongsheng Chen John C CrittendenrdquoElectrochemical Oxidation of Ofloxacin Using a TiO2-based SnO2-

SbPolytetrafluoroethylene Resin-PbO2 Electrode Reaction Kinetics and Mass Transfer Impactrdquo 2016 Applied Catalysis B Environmental 203 (2017) 515ndash525

15 Westerhoff Paul Moon Hye Minakata Daisuke Crittenden John ldquoOxidation of Organics in Retentates from Reverse Osmosis Wastewater Reuse Facilitiesrdquo Water Research 43 (16) 3992-2998

16 Liu L Chen F Yang F Chen Y Crittenden J ldquoPhotocatalytic degradation of 24-dichlorophenol using nanoscale FeTiO2rdquo Chemical Engineering Journal 2012 181ndash182 (0)189-195

References

References

17 Ying Wang Jiasheng Fang John C Crittenden Chanchan Shen ldquoNovel RGO120572-FeOOH Supported Catalyst for Fenton Oxidation of Phenol at a Wide pH Range Using Solar-Light-Driven Irradiationrdquo 2017 Journal

of Hazardous Materials 329 321ndash329

18 Xiaodong Ma Mengying Zhao Qin Pang Meihua Zheng Hongwen Sun John C Crittenden Yanying Zhu Yongsheng Chen ldquoDevelopment of Novel CaCO3Fe2O3 Nanorods for Low Temperature 12-

Dichlorobenzene Oxidationrdquo 2017 Applied Catalysis A General 522 (2016) 70ndash79

19 Heacutector L Otaacutelvaro-Mariacuten Miguel Angel Mueses John C Crittenden Fiderman Machuca-Martinez ldquoSolar Photoreactor Design by the Photon Path Length and Optimization of the Radiant Field in a TiO2-based CPC

Reactorrdquo 2017 Chemical Engineering Journal 315 283ndash295

20 Qi Wang Naxin Zhu Enqin Liu Chenlu Zhang John C Crittenden Yi ZhangYanqing CongldquoFabrication of Visible-Light Active Fe2O3-GQDsNF-TiO2 Composite Film with Highly Enhanced

Photoelectrocatalytic Performancerdquo 2017 Applied Catalysis B Environmental 205 347ndash356

21 Junfeng Niu Lifeng Yin Yunrong Dai Yueping Bao John C Crittenden ldquoDesign of Visible Light Responsive Photocatalysts for Selective Reduction of Chlorinated Organic Compounds in Waterrdquo 2016 Applied

Catalysis A General 521 90ndash95

22 Chaojie Jiang Lifen Liu John C Crittenden ldquoAn Electrochemical Process that Uses an Fe0TiO2 Cathode to Degrade Typical Dyes and Antibiotics and a Bio-anode that Produces Electricityrdquo 2016 Frontiers of

Environmental Science amp Engineering 10(4) 15

23 Yijing Xia Qizhou Dai Mili Weng Yue Peng Jinming Luo Xiaoyang Meng Xubiao Luo Jianmeng Chen John C Crittenden ldquoFabrication and Electrochemical Treatment Application of an Al-Doped PbO2

Electrode with High Oxidation Capability Oxygen Evolution Potential and Reusabilityrdquo2015 Journal of The Electrochemical Society 162 (10) E258-E262

24 Feng Duan Yuping Li Hongbin Cao Yi Wang John C Crittenden Yi Zhang ldquoActivated Carbon Electrodes Electrochemical Oxidation Coupled with Desalination for Wastewater Treatmentrdquo 2015 Chemosphere

125 205-211

25 Xing Linlin Xie Yongbing Cao Hongbin Minakata Daisuke Zhang Yi Crittenden John C ldquoActivated carbon-enhanced ozonation of oxalate attributed to HObull oxidation in bulk solution and surface oxidation

Effects of the type and number of basic sitesrdquo Chemical Engineering Journal 2014 245 71-79

26 Yao H Sun P Minakata D Crittenden JC Huang C-H ldquoKinetics and Modeling of Degradation of Ionophore Antibiotics by UV and UVH2O2rdquo Environmental Science and Technology 2013 (47) 4581-

45892

26 Li Yang et al Synergistic photogeneration of reactive oxygen species by dissolved organic matter and C60 in aqueous phase Environmental science amp technology 492 (2015) 965-973

28 Niu Junfeng et al Photocatalytic reduction of triclosan on AundashCu 2 O nanowire arrays as plasmonic photocatalysts under visible light irradiation Physical Chemistry Chemical Physics 1726 (2015) 17421-17428

29 Niu Junfeng et al Design of visible light responsive photocatalysts for selective reduction of chlorinated organic compounds in water Applied Catalysis A General 521 (2016) 90-95

30 Tianyin Huang Jiabin Chen Zhongming Wang Xin Guo John C Crittenden ldquoExcellent Performance of Cobalt-Impregnated Activated Carbon in Peroxymonosulfate Activation for Acid Orange 7 Oxidationrdquo 2017

Environmental Science and Pollution Research Volume 24 (10) 9651ndash9661

References

31 Yang Li Junfeng Niu Enxiang Shang John C Crittenden ldquoPhotochemical Transformation and Photoinduced Toxicity Reduction of Silver Nanoparticles in the Presence of Perfluorocarboxylic Acids under UV

Irradiationrdquo Environmental Science and Technology 2014 48 (9) pp 4946ndash4953

32 Cao H Xing L Wu G Xie S Zhang SY Minakata D Crittenden JC ldquoPromoting effect of nitration modification on activated carbon in the catalytic ozonation of oxalic acidrdquo Applied Catalysis B

Environmental 2014 146 169-176

33 Konsowa A H Ossman M E Chen Y Crittenden J C ldquoDecolorization of industrial wastewater by ozonation followed by adsorption on activated carbonrdquo Journal of Hazardous Materials 176 (2010) 181-185

November 10 2009

34 Wipada Sanongraj Yongsheng Chen John Crittenden David Hand and David Perram ldquoDevelopment of Photocatalytic Oxidation Model Part I-Mathematical Model for Photocatalytic Destruction of Organic

Contaminants in Airrdquo Journal of the Air and Waste Management Association 571112ndash1122 September 2007

35 Chen Y JC Crittenden S Hackney L Sutter and DW Hand ldquoPreparation of a Novel TiO2-based p-n Junction Nanotube Photocatalystrdquo Environmental Science and Technology Vol 39 No 5 1201-1208 (2005)

36 Suri RPS J Liu JC Crittenden DW Hand and DL Perram Removal and Destruction of Organic Contaminants in Water Using Adsorption Steam Regeneration and Photocatalytic Oxidation A Pilot Scale

Studyrdquo Journal of Air and Waste Management Volume 49 (August 1999) 951 ndash 958

37 Burns RA JC Crittenden DW Hand VH Selzer LL Sutter SR Salman Effect of Inorganic Ions in the Heterogeneous Photocatalysis of Trichloroethene ASCE Journal of Environmental Engineering Vol

125 No 1 pp 77-85 (January 1999)

38 Liu J JC Crittenden DW Hand and DL Perram Regeneration of Adsorbents Using Heterogeneous Photocatalytic Oxidationrdquo Journal of Environmental Engineering Vol 122 No 8 pp 707-714 (1996)

39 Crittenden JC J Liu DW Hand and DL Perram Photocatalytic Oxidation of Chlorinated Hydrocarbons in Waterrdquo Water Research Vol31 No 3 pp 429-438 (1997)

40 Crittenden JC RPS Suri DL Perram and DW Hand Decontamination of Water Using Adsorption and Photocatalysisrdquo Water Research Vol 31 No 3 pp 411-418 (1997)

41 Crittenden JC Y Zhang DW Hand and DL Perram Destruction of Organic Compounds in Water Using Fixed-Bed Photocatalysts Journal of Solar Energy Engineering (ASME) Vol 118 No 5 pp 123 -129

(1996)

42 Crittenden JC Y Zhang DW Hand and DL Perram Solar Detoxification of Fuel-Contaminated Groundwater Using Fixed-Bed Photocatalystsrdquo Water Environment Research Vol 68 No 3 pp 270-278

(1996)

43 Zhang Y JC Crittenden and DW Hand The Solar Photocatalytic Decontamination of Waterrdquo Chemistry amp Industry Vol 18 pp 714-717 September (1994)

44 Mourand JT JC Crittenden DW Hand DL Perram and S Notthakun Regeneration of Spent Adsorbents Using Advanced Oxidationrdquo Water Environment Federation Vol 67 No 3 pp 355-363 (1995)

45 Hand DW DL Perram and JC Crittenden Destruction of DBP Precursors with Catalytic Oxidationrdquo American Water Works Association Journal Vol 87 No 6 pp 84-96 (1995)

46 Zhang Y JC Crittenden DW Hand and DL Perram Fixed-Bed Photo-catalysts for Solar Decontamination of Waterrdquo Environmental Science amp Technology Vol 28 No 3 pp 435-442 (1994)

47 Suri RPS J Liu DW Hand JC Crittenden DL Perram and ME Mullins Heterogeneous Photocatalytic Oxidation of Hazardous Organic Contaminants in Waterrdquo Water Environment Federation Vol 65 No

5 pp 665-673 (1993)

Page 20: The Application of Advanced Oxidation Processes (AOPs) and ...€¦ · We define the electron efficiency to be = 32 12 ·( J 4𝑥)· Where TOC in mg (c)/L and COD in mg ( 2)/L, n

Many AOP follow a pseudo-first order rate

EEO is useful because if EEO is 5kWhr-order then if

you supply 5 1

15 kWm3 then you will 90 99 999 destruction of

the parent compound

Note COD and TOC have a much slower rate

Byproducts are less toxic and more biodegradable

Figure of Merit Electrical Energy Used per

Order (EEO) of Parent Compound Destroyed

EEO in Conventional AOPs

Conventional AOP Example EEO in UVH2O2

119864119864119874 =119875 times 119905

119881 times log1198620119862

+11986211986721198742

times00022119897119887

119892times 11986411986721198742

log1198620119862

119864119864119874 =2303 times 119875 times 1198961 11986721198742 0 + 1198962 1198671198621198743

minus0 + 1198963 119873119874119872 0 + 1198964 119877 0 times ε11986721198742

11986721198742 0 + ε119877 119877 0 + ε119873119874119872 119873119874119872 0

119875119880119881 times 1198964 times ε1198672119874211986721198742 0 times 1 minus 10minus119860 times V

+ 34 gramL times 11986721198742 0 times 00022 119897119887119892119903119886119898 times 11986411986721198742 times 1000 Lm3

bull Target contaminant concentrations oxidant dosage NOM determine the EEO of

conventional AOPs

EEO in EAOPs

EEO in EAOPs

EEO =v times j times A times V times t

V times logC0C

=v times j times A times t

logC0C

EEO =v times j times A

0434 times 119896119878 times Ω

v voltage V

j current densitymA

cm2

A surface area per volumem2

m3

V volumem3

C concentrationmol

m3

ks surface reaction rate sminus1

kobs observed reaction rate sminus1

Ω effectiveness factor

Ω =119896119900119887119904

119896119878

bull Target contaminants concentration dose does not effect EEO in EAOPs

bull EEO is a constant under same operational conditions

01 1 10 100 1000 10000 100000

Ultrapure Water

Distilled Water

Tap Water

Potable Water In The US

Surface Water

Industrial Wastewater

Seawater

Conductivity microScm

Water Streams Conductivity Guide

2D vs 3D EEO Comparison

Degradation of 1 mmolL benzoic acid in a 470 mL differential column batch reactor pH controlled

~68 surface water used has a low conductivity 112 microscm controlled current density is 30 mAcm2

2D anode size is 10 cm2 3D used 80 meshed Ti gauze has surface area 718 cm210 cm2 DCBR

operated at Re 194 Sc 2727 Sh 194 kf 64times10-6 ms Dl 9times10-6 cm2s

2D Electrode

3D Electrode

EEO Analysis in EAOPs

Electrolyte

Concentration

BA

concentrati

on

Voltage Current

Density

EEO

molL mgL V mAcm2 kWhm3

Surface

Water+BA~00004

(113 microScm)

24

(02 mM) 60 105 1738Surface

Water+BA 00004122

(1 mM) 60 105 2003Industrial

Water+BA

01

(16210

microScm) 24 73 304 175Industrial

Water+BA 01 122 8 30 207

Voltage Current

Density

EEO

V mAcm2 kWhm3

152 105 868

3D System2D System

bull Ionic strength is important in EAOPs NOM is not

bull Initial concentration C0does not effect EEO (at least for the

concentrations we tested)

bull Accordingly the pseudo ndash first surface rate constant is same for

different influent concentrations and the same operational

conditions for the conditions we tested

bull We expect to see the reaction rate to decrease with high C0 because

at high concentrations all the reactions site on the anode will be

occupied preventing the oxidation rate from increasing (Langmuir-

Hinshelwood Hougen Watson kinetics confirmation needed)

53 304 290

Conventional AOPs vs EAOPs Modeling 13

A case study to compare EEOs for

UVH2O2 H2O2O3 UVHOCl UVPersulfate UVTiO2

EAOPs (two-dimensional and three-dimensional)

Simulation Conditions[HCO3

minus] = 3 mM [NOM] = 2 mgL [Cl-] = 0001 M

pH = 7 kBA = 59times10-9 L(molmiddotS)Same 22 W input energy gives UV light intensity = 164times10-6 Einstein s-1 L-1

Initial Concentrations [R] (Benzoic Acid in this case) = 20 200 2000 mgL

Quantum yield

UVH2O2 = 05 UVHOCl = 09 UVPersulfate = 07

UVTiO2 = 004 (light transmission efficiency = 04)

Chemical production energy

H2O2 = 49 kWhlb persulfate = 49 kWhlb HOCl = 51 kWhlb O3 = 5 kWhlb

Note TiO2 and electrodes production energies are not included in simulation

EAOPs assumptions amp parameters

J = 30 mAcm2 2D anode size A = 10 cm2 3D anode size A= 718 cm2 (80 meshed Ti gauze)

Sc = 2727 Sh = 194 Dl = 9times10-6 cm2s d = 1 cm

Note pumping energy is small compare to electricity and neglected in simulation

Q = 20 mLmin Re = 1851 kf = 235times10-6 ms

Q = 500 mLmin Re = 46296 kf = 688times10-6 ms

Q = 2000 mLmin Re = 203704 kf = 113times10-5 ms (Re lt 2100 in laminar flow)

Minimal

EEO

(kWhm3)

Optimal

OxidantCatalyst

Dosage

9072 [TiO2]=300 mgL

4022 [Persulfate]=16 gL

2718 [H2O2]=0612 gL

2442 [HOCl]=026 gL

679 [H2O2]=0028 mgL

Electrolyte

(Na2SO4)

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

0M3702

0001M 6466 2405

0005M 3781 2069

001M 2676 1552

01M 469 1294

AOPs Minimal

EEO

(kWhm3)

Optimal

OxidantCatalyst

Dosage

UVTiO2 1038 [TiO2]=300 mgL

UVPersulfate 128 [Persulfate]=117 gL

UV H2O2 090 [H2O2]=0204 gL

UVHOCl 367 [HOCl]=014 gL

H2O2O3 0015 [H2O2]=00206 mgL

[R]0 = 20 mgL

~16 mgL TOC

[R]0 = 200 mgL

~140 mgL TOC

Minimal

EEO

(kWhm3)

Optimal

OxidantCatalyst

Dosage

88271 [TiO2]=300 mgL

8208 [Persulfate]=581 gL

1768 [H2O2]=184 gL

8335 [HOCl]=0776 gL

17648 [H2O2]=0035 mgL

[R]0 = 2000 mgL

~1379 mgL TOC

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

3545

6015 2260

3559 1937

2504 1448

455 1207

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

3404

5634 2136

3367 1824

2357 1360

443 1132

Re = 1851 Re = 46296 Re = 203704

Conventional AOPs vs EAOPs Modeling 23

Mass Transfer Increase

Ion

Str

en

gth

In

crease

Conventional AOPs vs EAOPs Modeling 33

AOPs Minimal

EEO

(kWhm3)

Optimal

OxidantCatalyst

Dosage

UVTiO2 1038 [TiO2]=300 mgL

UVPersulfate 128 [Persulfate]=117 gL

UV H2O2 090 [H2O2]=0204 gL

UVHOCl 367 [HOCl]=014 gL

H2O2O3 0015 [H2O2]=00206 mgL

[R]0 = 20 mgL

~16 mgL TOC For low concentration treatment

objectives EAOPs may not be as good as

compared to conventional AOPs

Conventional UVH2O2 and H2O2O3 are

the best conventional AOPs for BA

Electrolyte

(Na2SO4)

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

0M3702

0001M 6466 2405

0005M 3781 2069

001M 2676 1552

01M 469 1294

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

3545

6015 2260

3559 1937

2504 1448

455 1207

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

3404

5634 2136

3367 1824

2357 1360

443 1132

Re = 1851 Re = 46296 Re = 203704Mass Transfer Increase

Ion

Str

en

gth

In

crease

Conventional AOPs vs EAOPs Modeling 33

Minimal

EEO

(kWhm3)

Optimal

OxidantCatalyst

Dosage

88271 [TiO2]=300 mgL

8208 [Persulfate]=581 gL

1768 [H2O2]=184 gL

8335 [HOCl]=0776 gL

17648 [H2O2]=0035 mgL

[R]0 = 2000 mgL

~1379 mgL TOC For high concentration treatment objectives

EAOPs are more energy efficient

3D-EAOP saves more energy than 2D because

it requires lower applied voltage

3D-EAOP works better than 2D in low ion

strength treatment

Electrolyte

(Na2SO4)

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

0M3702

0001M 6466 2405

0005M 3781 2069

001M 2676 1552

01M 469 1294

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

3545

6015 2260

3559 1937

2504 1448

455 1207

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

3404

5634 2136

3367 1824

2357 1360

443 1132

Re = 1851 Re = 46296 Re = 203704Mass Transfer Increase

Ion

Str

en

gth

In

crease

Limiting Current in Different Conditions

jlim = n times F times kf times Csalt

Electrolyte

Concentration Q Q Q

Na2SO4 mlmin mlmin mlmin

20 500 2000

Re Re Re

1852 46296 185185

kf kf kf

ms ms ms

235405E-06 688E-06 109E-05

jlim jlim jlim

molL mAcm2 mAcm2 mAcm2

0001 068 199 316

jlim jlim jlim

molL mAcm2 mAcm2 mAcm2

0005 341 996 1581

jlim jlim jlim

molL mAcm2 mAcm2 mAcm2

001 681 1992 3163

jlim jlim jlim

molL mAcm2 mAcm2 mAcm2

005 3407 9962 15814

jlim jlim jlim

molL mAcm2 mAcm2 mAcm2

01 6814 19924 31627

Parameters Symbol Units Value

Influent concentration C0 mgL 20

Effluent concentration Ce mgL 02

Flow rate Q m3day 1000

Pseudo first order rate constant k min 0042

Size of reactor VRequired m3 38 m3

Detention time τ min 548

Electrode spacing d cm 1

Fluid velocity u ms 0033

Electrolyte Na2SO4 Concentration M 005

Current density J mAcm2 30

Assuming a Plug Flow Reactor (PFR) to be Confirmed with CFD

Full Scale Reactor Design

Full Scale Reactor Design

Rough Design of Reactor (top view)

1 2 3 4 5 6 7 8 9 10

105 meters

long

10 meters

electrodes

10 meters

2 meters deep

Reactor Channel

1 meter

hellip

5 cm 95 cmInfluent Effluent

The total costs (capital costs + energy costs) as a function of different electrode spacing for different theoretical

reaction rate In here the treatment objective is 99 removal flow rate is 1000 m3day and the fluid velocity is 00116

ms The flow channel has eddy promoter and its electrode spacing and obstacle distance ratio is 13 The electricity

price is $00512kWh and the pumping power is 853 kW The electrode price is $300m2 and its lifetime is 2000 h

Capital Expenditure Operational Expenditure

CapEx vs OpEx

Cost Analysis for Preliminary Design

The total costs (capital costs + energy costs) as a function of different electrode spacing for different theoretical

reaction rate In here the treatment objective is 99 removal flow rate is 1000 m3day and the fluid velocity is 00116

ms The flow channel has eddy promoter and its electrode spacing and obstacle distance ratio is 13 The electricity

price is $00512kWh and the pumping power is 853 kW The electrode price is $300m2 and its lifetime is 2000 h

Currently we are at only Ω=0436

Computer-based First-Principles Kinetic Model

Reaction Pathway Generator

(Graph Theory)

Rate Constants Estimator

(Group Contribution Method

Free Energy Linear

Relationship

Genetic Algorithm)

Ordinary Differential

Equations

(ODEs) Generator and Solver

(Gearrsquos Algorithm or

Monte Carlo algorithm)

Kinetic Monte Carlo Solver can

solve 1 million ODEs on PC

within 30 minutes

Complexity of Reaction PathwayExample

General reaction mechanisms that HObull initiates based on past experimental studies

Stefan and Bolton 1998 1999 1999 Stefan et al 1996 2000 Cooper et al 2009 Li et al 2004 2007 von Sonntag and

Schuchmann 1984 Schuchmann and von Sonntag 1979

Type of mechanismNumber of

speciesNumber of reactions

Full mechanism 120 370

Reduced mechanism 41 89

The criterion for DRG method is 1

Reaction rate constants are obtained from group contribution method (Minakata et al 2009 ESampT 43 6220-6227) and literature includingNate et al 1990 J Phys Chem Ref Data 19 413-513Nate et al 1995 J Phys Chem Ref Data 25 709-1050Buxton et al 1988 J Phys Chem Ref Data 17 513-886von Sonntag et al 1991 Angeuz Chem Int Ed Engl 30 1229-1253Li et al 2009 ESampT 43 2831-2837Li et al 2007 ESampT 41 1696-1703

Initial concentration of TCE 108 mM

Initial concentration of O2 22 mM

Initial concentration of H2O2 104 mM

Initial pH 59

Wave length of UV 200~300 nm

Light intensity779times10-6

EinsteinLmiddots

Reactor typeCompletely mixed batch reactor

Reaction time 30 min

Comparison of concentration profiles of major species for experimental data (Li Stefan Crittenden 2007 ESampT 41 1696-1703) and simulation results

00

20

40

60

80

100

120

00

02

04

06

08

10

12

0 5 10 15 20 25 30[H

2O

2]

(mM

)

[Ma

jor

spec

ies]

(m

M)

Time(min)

TCE exp

formic acid exp

oxalic acid exp

20 times DCA exp

20 times MCA exp

TCE cal

formic acid cal

oxalic acid cal

20 times DCA cal

20 times MCA cal

H2O2 exp

H2O2 cal

The photolysis of TCE was added manually because it is not included in this version of the pathway generator

Predicted Concentration Profiles of

Trichloroethene (TCE) and Stable-byproducts in UVH2O2 AOP

Comparison of number averaged molecular

weight (MW) for experimental data

(Vijayalakshmi et al J Appl Polym Sci 2006

100 3997-4003) and on-the-fly KMC model

The KMC model used a population number of 108L to

represent a concentration of 1molL

0

02

04

06

08

1

12

14

16

18

0 25 50 75 100 125 150 175 200

Aver

aged

mole

cu

lar

wei

gh

t (1

05

gm

ol)

Time (min)

Experiment

On-the-fly KMC

0

02

04

06

08

1

12

0 25 50 75 100 125 150 175 200

Nu

mb

er o

f re

act

ion

s (1

06)

Time (min)

Time evolvement of the number of generated

reactions for the degradation of PAM during the

UVTiO2 process

Degradation of Polyacrylamide (PAM)

Simulation Results for PAM Degradation in UVTiO2 AOP

Guo X Minakata D and Crittenden J 2015 On-the-fly kinetic Monte Carlo simulation of aqueous phase advanced oxidation processes Environmental science amp technology 49(15) pp9230-9236

1 Crittenden John C Shumin Hu David W Hand and Sarah Green ldquoA Kinetic Model for H2O2UV Process in a Completely Mixed Batch Reactorrdquo Water Research 33(10) 2315-2328 (1999)

2 Li K Crittenden JC Computerized pathway elucidation for hydroxyl radical induced chain reaction mechanisms in aqueous phase AOPs Environmental Science amp Technology 2009 43(8) 2831-2837

3 Li K Stefan MI Crittenden JC Trichloroethene degradation by UVH2O2 advanced oxidation process product study and kinetic modeling Environmental Science amp Technology 2007 41 1696-1703

4 Li K M I Stefan and J C Crittenden ldquoUV Photolysis of Trichloroethylene (TCE) Product Study and Kinetic Modelingrdquo Environmental Science and Technology Vol 38 No 24 6685-6693 (2004)

5 Ke Li David R Hokanson John C Crittenden R Rhodes Trussell and Daisuke Minakata ldquoEvaluating UVH2O2 Processes for Methyl tert-Butyl Ether (MtBE) and tertiary Butyl Alcohol (TBA) Removal from

Drinking Water Source Effect of Pretreatment Options and Light Sourcesrdquo Water Research 2008 Volume 42 (20) 5045-5053

6 Minakata D Li K Westerhoff P Crittenden J Development of a group contribution method to predict aqueous phase hydroxyl radical reaction rate constants Environmental Science amp Technology 2009 43

6220-6227

7 Minakata D Crittenden J Linear Free Energy Relationships between the Aqueous Phase Hydroxyl Radical (HObull) Reaction Rate Constants and the Free Energy of Activation Environmental Science amp Technology

2011a 45 3479-3486

8 Minakata D Song W Crittenden J Reactivity of aqueous phase hydroxyl radical with halogenated carboxylate anions Experimental and theoretical studies Environmental Science amp Technology 2011 45 6057-

6065

9 Daisuke Minakata Stephen P Mezyk Jace W Jones Brittany R Daws John C Crittenden ldquoDevelopment of Linear Free Energy Relationships for Aqueous Phase Radical-Involved Chemical Reactionsrdquo

Environmental Science amp Technology 2014 48 (23) 13925-13932

10 Xin Guo Daisuke Minakata John C Crittenden ldquoOn-the-Fly Kinetic Monte Carlo Simulation of Aqueous Phase Advanced Oxidation Processesrdquo Environmental Science and Technology 2015 49 (15) 9230ndash9236

11 Guo X Minakata D Crittenden JC ldquoComputer-Based First-Principles Kinetic Monte Carlo Simulation of Polyethylene Glycol Degradation in Aqueous Phase UVH2O2 Advanced Oxidation Processrdquo

Environmental Science amp Technology 2014 48 10813minus10820

12 Xin Guo Daisuke Minakata Junfeng Niu John C Crittenden ldquoComputer-based First-principles Kinetic Modeling of Degradation Pathways and Byproduct Fates in Aqueous Phase Advanced Oxidation Processesrdquo

Environmental Science and Technology 2014 48 (10) pp 5718ndash5725

13 Yajie Qian Xin Guo Yalei Zhang Yue Peng Peizhe Sun Ching-Hua Huang Junfeng Niu Xuefei Zhou John C Crittenden ldquoPerfluorooctanoic Acid Degradation Using UVminusPersulfate Process Modeling of the

Degradation and Chlorate Formationrdquo 2015 Environmental Science and Technology 50 (2) 772ndash781

14 Ruzhen Xie Xiaoyang Meng Peizhe Sun Junfeng Niu Wenju JiangLawrence Bottomley Duo Li Yongsheng Chen John C CrittendenrdquoElectrochemical Oxidation of Ofloxacin Using a TiO2-based SnO2-

SbPolytetrafluoroethylene Resin-PbO2 Electrode Reaction Kinetics and Mass Transfer Impactrdquo 2016 Applied Catalysis B Environmental 203 (2017) 515ndash525

15 Westerhoff Paul Moon Hye Minakata Daisuke Crittenden John ldquoOxidation of Organics in Retentates from Reverse Osmosis Wastewater Reuse Facilitiesrdquo Water Research 43 (16) 3992-2998

16 Liu L Chen F Yang F Chen Y Crittenden J ldquoPhotocatalytic degradation of 24-dichlorophenol using nanoscale FeTiO2rdquo Chemical Engineering Journal 2012 181ndash182 (0)189-195

References

References

17 Ying Wang Jiasheng Fang John C Crittenden Chanchan Shen ldquoNovel RGO120572-FeOOH Supported Catalyst for Fenton Oxidation of Phenol at a Wide pH Range Using Solar-Light-Driven Irradiationrdquo 2017 Journal

of Hazardous Materials 329 321ndash329

18 Xiaodong Ma Mengying Zhao Qin Pang Meihua Zheng Hongwen Sun John C Crittenden Yanying Zhu Yongsheng Chen ldquoDevelopment of Novel CaCO3Fe2O3 Nanorods for Low Temperature 12-

Dichlorobenzene Oxidationrdquo 2017 Applied Catalysis A General 522 (2016) 70ndash79

19 Heacutector L Otaacutelvaro-Mariacuten Miguel Angel Mueses John C Crittenden Fiderman Machuca-Martinez ldquoSolar Photoreactor Design by the Photon Path Length and Optimization of the Radiant Field in a TiO2-based CPC

Reactorrdquo 2017 Chemical Engineering Journal 315 283ndash295

20 Qi Wang Naxin Zhu Enqin Liu Chenlu Zhang John C Crittenden Yi ZhangYanqing CongldquoFabrication of Visible-Light Active Fe2O3-GQDsNF-TiO2 Composite Film with Highly Enhanced

Photoelectrocatalytic Performancerdquo 2017 Applied Catalysis B Environmental 205 347ndash356

21 Junfeng Niu Lifeng Yin Yunrong Dai Yueping Bao John C Crittenden ldquoDesign of Visible Light Responsive Photocatalysts for Selective Reduction of Chlorinated Organic Compounds in Waterrdquo 2016 Applied

Catalysis A General 521 90ndash95

22 Chaojie Jiang Lifen Liu John C Crittenden ldquoAn Electrochemical Process that Uses an Fe0TiO2 Cathode to Degrade Typical Dyes and Antibiotics and a Bio-anode that Produces Electricityrdquo 2016 Frontiers of

Environmental Science amp Engineering 10(4) 15

23 Yijing Xia Qizhou Dai Mili Weng Yue Peng Jinming Luo Xiaoyang Meng Xubiao Luo Jianmeng Chen John C Crittenden ldquoFabrication and Electrochemical Treatment Application of an Al-Doped PbO2

Electrode with High Oxidation Capability Oxygen Evolution Potential and Reusabilityrdquo2015 Journal of The Electrochemical Society 162 (10) E258-E262

24 Feng Duan Yuping Li Hongbin Cao Yi Wang John C Crittenden Yi Zhang ldquoActivated Carbon Electrodes Electrochemical Oxidation Coupled with Desalination for Wastewater Treatmentrdquo 2015 Chemosphere

125 205-211

25 Xing Linlin Xie Yongbing Cao Hongbin Minakata Daisuke Zhang Yi Crittenden John C ldquoActivated carbon-enhanced ozonation of oxalate attributed to HObull oxidation in bulk solution and surface oxidation

Effects of the type and number of basic sitesrdquo Chemical Engineering Journal 2014 245 71-79

26 Yao H Sun P Minakata D Crittenden JC Huang C-H ldquoKinetics and Modeling of Degradation of Ionophore Antibiotics by UV and UVH2O2rdquo Environmental Science and Technology 2013 (47) 4581-

45892

26 Li Yang et al Synergistic photogeneration of reactive oxygen species by dissolved organic matter and C60 in aqueous phase Environmental science amp technology 492 (2015) 965-973

28 Niu Junfeng et al Photocatalytic reduction of triclosan on AundashCu 2 O nanowire arrays as plasmonic photocatalysts under visible light irradiation Physical Chemistry Chemical Physics 1726 (2015) 17421-17428

29 Niu Junfeng et al Design of visible light responsive photocatalysts for selective reduction of chlorinated organic compounds in water Applied Catalysis A General 521 (2016) 90-95

30 Tianyin Huang Jiabin Chen Zhongming Wang Xin Guo John C Crittenden ldquoExcellent Performance of Cobalt-Impregnated Activated Carbon in Peroxymonosulfate Activation for Acid Orange 7 Oxidationrdquo 2017

Environmental Science and Pollution Research Volume 24 (10) 9651ndash9661

References

31 Yang Li Junfeng Niu Enxiang Shang John C Crittenden ldquoPhotochemical Transformation and Photoinduced Toxicity Reduction of Silver Nanoparticles in the Presence of Perfluorocarboxylic Acids under UV

Irradiationrdquo Environmental Science and Technology 2014 48 (9) pp 4946ndash4953

32 Cao H Xing L Wu G Xie S Zhang SY Minakata D Crittenden JC ldquoPromoting effect of nitration modification on activated carbon in the catalytic ozonation of oxalic acidrdquo Applied Catalysis B

Environmental 2014 146 169-176

33 Konsowa A H Ossman M E Chen Y Crittenden J C ldquoDecolorization of industrial wastewater by ozonation followed by adsorption on activated carbonrdquo Journal of Hazardous Materials 176 (2010) 181-185

November 10 2009

34 Wipada Sanongraj Yongsheng Chen John Crittenden David Hand and David Perram ldquoDevelopment of Photocatalytic Oxidation Model Part I-Mathematical Model for Photocatalytic Destruction of Organic

Contaminants in Airrdquo Journal of the Air and Waste Management Association 571112ndash1122 September 2007

35 Chen Y JC Crittenden S Hackney L Sutter and DW Hand ldquoPreparation of a Novel TiO2-based p-n Junction Nanotube Photocatalystrdquo Environmental Science and Technology Vol 39 No 5 1201-1208 (2005)

36 Suri RPS J Liu JC Crittenden DW Hand and DL Perram Removal and Destruction of Organic Contaminants in Water Using Adsorption Steam Regeneration and Photocatalytic Oxidation A Pilot Scale

Studyrdquo Journal of Air and Waste Management Volume 49 (August 1999) 951 ndash 958

37 Burns RA JC Crittenden DW Hand VH Selzer LL Sutter SR Salman Effect of Inorganic Ions in the Heterogeneous Photocatalysis of Trichloroethene ASCE Journal of Environmental Engineering Vol

125 No 1 pp 77-85 (January 1999)

38 Liu J JC Crittenden DW Hand and DL Perram Regeneration of Adsorbents Using Heterogeneous Photocatalytic Oxidationrdquo Journal of Environmental Engineering Vol 122 No 8 pp 707-714 (1996)

39 Crittenden JC J Liu DW Hand and DL Perram Photocatalytic Oxidation of Chlorinated Hydrocarbons in Waterrdquo Water Research Vol31 No 3 pp 429-438 (1997)

40 Crittenden JC RPS Suri DL Perram and DW Hand Decontamination of Water Using Adsorption and Photocatalysisrdquo Water Research Vol 31 No 3 pp 411-418 (1997)

41 Crittenden JC Y Zhang DW Hand and DL Perram Destruction of Organic Compounds in Water Using Fixed-Bed Photocatalysts Journal of Solar Energy Engineering (ASME) Vol 118 No 5 pp 123 -129

(1996)

42 Crittenden JC Y Zhang DW Hand and DL Perram Solar Detoxification of Fuel-Contaminated Groundwater Using Fixed-Bed Photocatalystsrdquo Water Environment Research Vol 68 No 3 pp 270-278

(1996)

43 Zhang Y JC Crittenden and DW Hand The Solar Photocatalytic Decontamination of Waterrdquo Chemistry amp Industry Vol 18 pp 714-717 September (1994)

44 Mourand JT JC Crittenden DW Hand DL Perram and S Notthakun Regeneration of Spent Adsorbents Using Advanced Oxidationrdquo Water Environment Federation Vol 67 No 3 pp 355-363 (1995)

45 Hand DW DL Perram and JC Crittenden Destruction of DBP Precursors with Catalytic Oxidationrdquo American Water Works Association Journal Vol 87 No 6 pp 84-96 (1995)

46 Zhang Y JC Crittenden DW Hand and DL Perram Fixed-Bed Photo-catalysts for Solar Decontamination of Waterrdquo Environmental Science amp Technology Vol 28 No 3 pp 435-442 (1994)

47 Suri RPS J Liu DW Hand JC Crittenden DL Perram and ME Mullins Heterogeneous Photocatalytic Oxidation of Hazardous Organic Contaminants in Waterrdquo Water Environment Federation Vol 65 No

5 pp 665-673 (1993)

Page 21: The Application of Advanced Oxidation Processes (AOPs) and ...€¦ · We define the electron efficiency to be = 32 12 ·( J 4𝑥)· Where TOC in mg (c)/L and COD in mg ( 2)/L, n

EEO in Conventional AOPs

Conventional AOP Example EEO in UVH2O2

119864119864119874 =119875 times 119905

119881 times log1198620119862

+11986211986721198742

times00022119897119887

119892times 11986411986721198742

log1198620119862

119864119864119874 =2303 times 119875 times 1198961 11986721198742 0 + 1198962 1198671198621198743

minus0 + 1198963 119873119874119872 0 + 1198964 119877 0 times ε11986721198742

11986721198742 0 + ε119877 119877 0 + ε119873119874119872 119873119874119872 0

119875119880119881 times 1198964 times ε1198672119874211986721198742 0 times 1 minus 10minus119860 times V

+ 34 gramL times 11986721198742 0 times 00022 119897119887119892119903119886119898 times 11986411986721198742 times 1000 Lm3

bull Target contaminant concentrations oxidant dosage NOM determine the EEO of

conventional AOPs

EEO in EAOPs

EEO in EAOPs

EEO =v times j times A times V times t

V times logC0C

=v times j times A times t

logC0C

EEO =v times j times A

0434 times 119896119878 times Ω

v voltage V

j current densitymA

cm2

A surface area per volumem2

m3

V volumem3

C concentrationmol

m3

ks surface reaction rate sminus1

kobs observed reaction rate sminus1

Ω effectiveness factor

Ω =119896119900119887119904

119896119878

bull Target contaminants concentration dose does not effect EEO in EAOPs

bull EEO is a constant under same operational conditions

01 1 10 100 1000 10000 100000

Ultrapure Water

Distilled Water

Tap Water

Potable Water In The US

Surface Water

Industrial Wastewater

Seawater

Conductivity microScm

Water Streams Conductivity Guide

2D vs 3D EEO Comparison

Degradation of 1 mmolL benzoic acid in a 470 mL differential column batch reactor pH controlled

~68 surface water used has a low conductivity 112 microscm controlled current density is 30 mAcm2

2D anode size is 10 cm2 3D used 80 meshed Ti gauze has surface area 718 cm210 cm2 DCBR

operated at Re 194 Sc 2727 Sh 194 kf 64times10-6 ms Dl 9times10-6 cm2s

2D Electrode

3D Electrode

EEO Analysis in EAOPs

Electrolyte

Concentration

BA

concentrati

on

Voltage Current

Density

EEO

molL mgL V mAcm2 kWhm3

Surface

Water+BA~00004

(113 microScm)

24

(02 mM) 60 105 1738Surface

Water+BA 00004122

(1 mM) 60 105 2003Industrial

Water+BA

01

(16210

microScm) 24 73 304 175Industrial

Water+BA 01 122 8 30 207

Voltage Current

Density

EEO

V mAcm2 kWhm3

152 105 868

3D System2D System

bull Ionic strength is important in EAOPs NOM is not

bull Initial concentration C0does not effect EEO (at least for the

concentrations we tested)

bull Accordingly the pseudo ndash first surface rate constant is same for

different influent concentrations and the same operational

conditions for the conditions we tested

bull We expect to see the reaction rate to decrease with high C0 because

at high concentrations all the reactions site on the anode will be

occupied preventing the oxidation rate from increasing (Langmuir-

Hinshelwood Hougen Watson kinetics confirmation needed)

53 304 290

Conventional AOPs vs EAOPs Modeling 13

A case study to compare EEOs for

UVH2O2 H2O2O3 UVHOCl UVPersulfate UVTiO2

EAOPs (two-dimensional and three-dimensional)

Simulation Conditions[HCO3

minus] = 3 mM [NOM] = 2 mgL [Cl-] = 0001 M

pH = 7 kBA = 59times10-9 L(molmiddotS)Same 22 W input energy gives UV light intensity = 164times10-6 Einstein s-1 L-1

Initial Concentrations [R] (Benzoic Acid in this case) = 20 200 2000 mgL

Quantum yield

UVH2O2 = 05 UVHOCl = 09 UVPersulfate = 07

UVTiO2 = 004 (light transmission efficiency = 04)

Chemical production energy

H2O2 = 49 kWhlb persulfate = 49 kWhlb HOCl = 51 kWhlb O3 = 5 kWhlb

Note TiO2 and electrodes production energies are not included in simulation

EAOPs assumptions amp parameters

J = 30 mAcm2 2D anode size A = 10 cm2 3D anode size A= 718 cm2 (80 meshed Ti gauze)

Sc = 2727 Sh = 194 Dl = 9times10-6 cm2s d = 1 cm

Note pumping energy is small compare to electricity and neglected in simulation

Q = 20 mLmin Re = 1851 kf = 235times10-6 ms

Q = 500 mLmin Re = 46296 kf = 688times10-6 ms

Q = 2000 mLmin Re = 203704 kf = 113times10-5 ms (Re lt 2100 in laminar flow)

Minimal

EEO

(kWhm3)

Optimal

OxidantCatalyst

Dosage

9072 [TiO2]=300 mgL

4022 [Persulfate]=16 gL

2718 [H2O2]=0612 gL

2442 [HOCl]=026 gL

679 [H2O2]=0028 mgL

Electrolyte

(Na2SO4)

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

0M3702

0001M 6466 2405

0005M 3781 2069

001M 2676 1552

01M 469 1294

AOPs Minimal

EEO

(kWhm3)

Optimal

OxidantCatalyst

Dosage

UVTiO2 1038 [TiO2]=300 mgL

UVPersulfate 128 [Persulfate]=117 gL

UV H2O2 090 [H2O2]=0204 gL

UVHOCl 367 [HOCl]=014 gL

H2O2O3 0015 [H2O2]=00206 mgL

[R]0 = 20 mgL

~16 mgL TOC

[R]0 = 200 mgL

~140 mgL TOC

Minimal

EEO

(kWhm3)

Optimal

OxidantCatalyst

Dosage

88271 [TiO2]=300 mgL

8208 [Persulfate]=581 gL

1768 [H2O2]=184 gL

8335 [HOCl]=0776 gL

17648 [H2O2]=0035 mgL

[R]0 = 2000 mgL

~1379 mgL TOC

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

3545

6015 2260

3559 1937

2504 1448

455 1207

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

3404

5634 2136

3367 1824

2357 1360

443 1132

Re = 1851 Re = 46296 Re = 203704

Conventional AOPs vs EAOPs Modeling 23

Mass Transfer Increase

Ion

Str

en

gth

In

crease

Conventional AOPs vs EAOPs Modeling 33

AOPs Minimal

EEO

(kWhm3)

Optimal

OxidantCatalyst

Dosage

UVTiO2 1038 [TiO2]=300 mgL

UVPersulfate 128 [Persulfate]=117 gL

UV H2O2 090 [H2O2]=0204 gL

UVHOCl 367 [HOCl]=014 gL

H2O2O3 0015 [H2O2]=00206 mgL

[R]0 = 20 mgL

~16 mgL TOC For low concentration treatment

objectives EAOPs may not be as good as

compared to conventional AOPs

Conventional UVH2O2 and H2O2O3 are

the best conventional AOPs for BA

Electrolyte

(Na2SO4)

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

0M3702

0001M 6466 2405

0005M 3781 2069

001M 2676 1552

01M 469 1294

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

3545

6015 2260

3559 1937

2504 1448

455 1207

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

3404

5634 2136

3367 1824

2357 1360

443 1132

Re = 1851 Re = 46296 Re = 203704Mass Transfer Increase

Ion

Str

en

gth

In

crease

Conventional AOPs vs EAOPs Modeling 33

Minimal

EEO

(kWhm3)

Optimal

OxidantCatalyst

Dosage

88271 [TiO2]=300 mgL

8208 [Persulfate]=581 gL

1768 [H2O2]=184 gL

8335 [HOCl]=0776 gL

17648 [H2O2]=0035 mgL

[R]0 = 2000 mgL

~1379 mgL TOC For high concentration treatment objectives

EAOPs are more energy efficient

3D-EAOP saves more energy than 2D because

it requires lower applied voltage

3D-EAOP works better than 2D in low ion

strength treatment

Electrolyte

(Na2SO4)

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

0M3702

0001M 6466 2405

0005M 3781 2069

001M 2676 1552

01M 469 1294

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

3545

6015 2260

3559 1937

2504 1448

455 1207

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

3404

5634 2136

3367 1824

2357 1360

443 1132

Re = 1851 Re = 46296 Re = 203704Mass Transfer Increase

Ion

Str

en

gth

In

crease

Limiting Current in Different Conditions

jlim = n times F times kf times Csalt

Electrolyte

Concentration Q Q Q

Na2SO4 mlmin mlmin mlmin

20 500 2000

Re Re Re

1852 46296 185185

kf kf kf

ms ms ms

235405E-06 688E-06 109E-05

jlim jlim jlim

molL mAcm2 mAcm2 mAcm2

0001 068 199 316

jlim jlim jlim

molL mAcm2 mAcm2 mAcm2

0005 341 996 1581

jlim jlim jlim

molL mAcm2 mAcm2 mAcm2

001 681 1992 3163

jlim jlim jlim

molL mAcm2 mAcm2 mAcm2

005 3407 9962 15814

jlim jlim jlim

molL mAcm2 mAcm2 mAcm2

01 6814 19924 31627

Parameters Symbol Units Value

Influent concentration C0 mgL 20

Effluent concentration Ce mgL 02

Flow rate Q m3day 1000

Pseudo first order rate constant k min 0042

Size of reactor VRequired m3 38 m3

Detention time τ min 548

Electrode spacing d cm 1

Fluid velocity u ms 0033

Electrolyte Na2SO4 Concentration M 005

Current density J mAcm2 30

Assuming a Plug Flow Reactor (PFR) to be Confirmed with CFD

Full Scale Reactor Design

Full Scale Reactor Design

Rough Design of Reactor (top view)

1 2 3 4 5 6 7 8 9 10

105 meters

long

10 meters

electrodes

10 meters

2 meters deep

Reactor Channel

1 meter

hellip

5 cm 95 cmInfluent Effluent

The total costs (capital costs + energy costs) as a function of different electrode spacing for different theoretical

reaction rate In here the treatment objective is 99 removal flow rate is 1000 m3day and the fluid velocity is 00116

ms The flow channel has eddy promoter and its electrode spacing and obstacle distance ratio is 13 The electricity

price is $00512kWh and the pumping power is 853 kW The electrode price is $300m2 and its lifetime is 2000 h

Capital Expenditure Operational Expenditure

CapEx vs OpEx

Cost Analysis for Preliminary Design

The total costs (capital costs + energy costs) as a function of different electrode spacing for different theoretical

reaction rate In here the treatment objective is 99 removal flow rate is 1000 m3day and the fluid velocity is 00116

ms The flow channel has eddy promoter and its electrode spacing and obstacle distance ratio is 13 The electricity

price is $00512kWh and the pumping power is 853 kW The electrode price is $300m2 and its lifetime is 2000 h

Currently we are at only Ω=0436

Computer-based First-Principles Kinetic Model

Reaction Pathway Generator

(Graph Theory)

Rate Constants Estimator

(Group Contribution Method

Free Energy Linear

Relationship

Genetic Algorithm)

Ordinary Differential

Equations

(ODEs) Generator and Solver

(Gearrsquos Algorithm or

Monte Carlo algorithm)

Kinetic Monte Carlo Solver can

solve 1 million ODEs on PC

within 30 minutes

Complexity of Reaction PathwayExample

General reaction mechanisms that HObull initiates based on past experimental studies

Stefan and Bolton 1998 1999 1999 Stefan et al 1996 2000 Cooper et al 2009 Li et al 2004 2007 von Sonntag and

Schuchmann 1984 Schuchmann and von Sonntag 1979

Type of mechanismNumber of

speciesNumber of reactions

Full mechanism 120 370

Reduced mechanism 41 89

The criterion for DRG method is 1

Reaction rate constants are obtained from group contribution method (Minakata et al 2009 ESampT 43 6220-6227) and literature includingNate et al 1990 J Phys Chem Ref Data 19 413-513Nate et al 1995 J Phys Chem Ref Data 25 709-1050Buxton et al 1988 J Phys Chem Ref Data 17 513-886von Sonntag et al 1991 Angeuz Chem Int Ed Engl 30 1229-1253Li et al 2009 ESampT 43 2831-2837Li et al 2007 ESampT 41 1696-1703

Initial concentration of TCE 108 mM

Initial concentration of O2 22 mM

Initial concentration of H2O2 104 mM

Initial pH 59

Wave length of UV 200~300 nm

Light intensity779times10-6

EinsteinLmiddots

Reactor typeCompletely mixed batch reactor

Reaction time 30 min

Comparison of concentration profiles of major species for experimental data (Li Stefan Crittenden 2007 ESampT 41 1696-1703) and simulation results

00

20

40

60

80

100

120

00

02

04

06

08

10

12

0 5 10 15 20 25 30[H

2O

2]

(mM

)

[Ma

jor

spec

ies]

(m

M)

Time(min)

TCE exp

formic acid exp

oxalic acid exp

20 times DCA exp

20 times MCA exp

TCE cal

formic acid cal

oxalic acid cal

20 times DCA cal

20 times MCA cal

H2O2 exp

H2O2 cal

The photolysis of TCE was added manually because it is not included in this version of the pathway generator

Predicted Concentration Profiles of

Trichloroethene (TCE) and Stable-byproducts in UVH2O2 AOP

Comparison of number averaged molecular

weight (MW) for experimental data

(Vijayalakshmi et al J Appl Polym Sci 2006

100 3997-4003) and on-the-fly KMC model

The KMC model used a population number of 108L to

represent a concentration of 1molL

0

02

04

06

08

1

12

14

16

18

0 25 50 75 100 125 150 175 200

Aver

aged

mole

cu

lar

wei

gh

t (1

05

gm

ol)

Time (min)

Experiment

On-the-fly KMC

0

02

04

06

08

1

12

0 25 50 75 100 125 150 175 200

Nu

mb

er o

f re

act

ion

s (1

06)

Time (min)

Time evolvement of the number of generated

reactions for the degradation of PAM during the

UVTiO2 process

Degradation of Polyacrylamide (PAM)

Simulation Results for PAM Degradation in UVTiO2 AOP

Guo X Minakata D and Crittenden J 2015 On-the-fly kinetic Monte Carlo simulation of aqueous phase advanced oxidation processes Environmental science amp technology 49(15) pp9230-9236

1 Crittenden John C Shumin Hu David W Hand and Sarah Green ldquoA Kinetic Model for H2O2UV Process in a Completely Mixed Batch Reactorrdquo Water Research 33(10) 2315-2328 (1999)

2 Li K Crittenden JC Computerized pathway elucidation for hydroxyl radical induced chain reaction mechanisms in aqueous phase AOPs Environmental Science amp Technology 2009 43(8) 2831-2837

3 Li K Stefan MI Crittenden JC Trichloroethene degradation by UVH2O2 advanced oxidation process product study and kinetic modeling Environmental Science amp Technology 2007 41 1696-1703

4 Li K M I Stefan and J C Crittenden ldquoUV Photolysis of Trichloroethylene (TCE) Product Study and Kinetic Modelingrdquo Environmental Science and Technology Vol 38 No 24 6685-6693 (2004)

5 Ke Li David R Hokanson John C Crittenden R Rhodes Trussell and Daisuke Minakata ldquoEvaluating UVH2O2 Processes for Methyl tert-Butyl Ether (MtBE) and tertiary Butyl Alcohol (TBA) Removal from

Drinking Water Source Effect of Pretreatment Options and Light Sourcesrdquo Water Research 2008 Volume 42 (20) 5045-5053

6 Minakata D Li K Westerhoff P Crittenden J Development of a group contribution method to predict aqueous phase hydroxyl radical reaction rate constants Environmental Science amp Technology 2009 43

6220-6227

7 Minakata D Crittenden J Linear Free Energy Relationships between the Aqueous Phase Hydroxyl Radical (HObull) Reaction Rate Constants and the Free Energy of Activation Environmental Science amp Technology

2011a 45 3479-3486

8 Minakata D Song W Crittenden J Reactivity of aqueous phase hydroxyl radical with halogenated carboxylate anions Experimental and theoretical studies Environmental Science amp Technology 2011 45 6057-

6065

9 Daisuke Minakata Stephen P Mezyk Jace W Jones Brittany R Daws John C Crittenden ldquoDevelopment of Linear Free Energy Relationships for Aqueous Phase Radical-Involved Chemical Reactionsrdquo

Environmental Science amp Technology 2014 48 (23) 13925-13932

10 Xin Guo Daisuke Minakata John C Crittenden ldquoOn-the-Fly Kinetic Monte Carlo Simulation of Aqueous Phase Advanced Oxidation Processesrdquo Environmental Science and Technology 2015 49 (15) 9230ndash9236

11 Guo X Minakata D Crittenden JC ldquoComputer-Based First-Principles Kinetic Monte Carlo Simulation of Polyethylene Glycol Degradation in Aqueous Phase UVH2O2 Advanced Oxidation Processrdquo

Environmental Science amp Technology 2014 48 10813minus10820

12 Xin Guo Daisuke Minakata Junfeng Niu John C Crittenden ldquoComputer-based First-principles Kinetic Modeling of Degradation Pathways and Byproduct Fates in Aqueous Phase Advanced Oxidation Processesrdquo

Environmental Science and Technology 2014 48 (10) pp 5718ndash5725

13 Yajie Qian Xin Guo Yalei Zhang Yue Peng Peizhe Sun Ching-Hua Huang Junfeng Niu Xuefei Zhou John C Crittenden ldquoPerfluorooctanoic Acid Degradation Using UVminusPersulfate Process Modeling of the

Degradation and Chlorate Formationrdquo 2015 Environmental Science and Technology 50 (2) 772ndash781

14 Ruzhen Xie Xiaoyang Meng Peizhe Sun Junfeng Niu Wenju JiangLawrence Bottomley Duo Li Yongsheng Chen John C CrittendenrdquoElectrochemical Oxidation of Ofloxacin Using a TiO2-based SnO2-

SbPolytetrafluoroethylene Resin-PbO2 Electrode Reaction Kinetics and Mass Transfer Impactrdquo 2016 Applied Catalysis B Environmental 203 (2017) 515ndash525

15 Westerhoff Paul Moon Hye Minakata Daisuke Crittenden John ldquoOxidation of Organics in Retentates from Reverse Osmosis Wastewater Reuse Facilitiesrdquo Water Research 43 (16) 3992-2998

16 Liu L Chen F Yang F Chen Y Crittenden J ldquoPhotocatalytic degradation of 24-dichlorophenol using nanoscale FeTiO2rdquo Chemical Engineering Journal 2012 181ndash182 (0)189-195

References

References

17 Ying Wang Jiasheng Fang John C Crittenden Chanchan Shen ldquoNovel RGO120572-FeOOH Supported Catalyst for Fenton Oxidation of Phenol at a Wide pH Range Using Solar-Light-Driven Irradiationrdquo 2017 Journal

of Hazardous Materials 329 321ndash329

18 Xiaodong Ma Mengying Zhao Qin Pang Meihua Zheng Hongwen Sun John C Crittenden Yanying Zhu Yongsheng Chen ldquoDevelopment of Novel CaCO3Fe2O3 Nanorods for Low Temperature 12-

Dichlorobenzene Oxidationrdquo 2017 Applied Catalysis A General 522 (2016) 70ndash79

19 Heacutector L Otaacutelvaro-Mariacuten Miguel Angel Mueses John C Crittenden Fiderman Machuca-Martinez ldquoSolar Photoreactor Design by the Photon Path Length and Optimization of the Radiant Field in a TiO2-based CPC

Reactorrdquo 2017 Chemical Engineering Journal 315 283ndash295

20 Qi Wang Naxin Zhu Enqin Liu Chenlu Zhang John C Crittenden Yi ZhangYanqing CongldquoFabrication of Visible-Light Active Fe2O3-GQDsNF-TiO2 Composite Film with Highly Enhanced

Photoelectrocatalytic Performancerdquo 2017 Applied Catalysis B Environmental 205 347ndash356

21 Junfeng Niu Lifeng Yin Yunrong Dai Yueping Bao John C Crittenden ldquoDesign of Visible Light Responsive Photocatalysts for Selective Reduction of Chlorinated Organic Compounds in Waterrdquo 2016 Applied

Catalysis A General 521 90ndash95

22 Chaojie Jiang Lifen Liu John C Crittenden ldquoAn Electrochemical Process that Uses an Fe0TiO2 Cathode to Degrade Typical Dyes and Antibiotics and a Bio-anode that Produces Electricityrdquo 2016 Frontiers of

Environmental Science amp Engineering 10(4) 15

23 Yijing Xia Qizhou Dai Mili Weng Yue Peng Jinming Luo Xiaoyang Meng Xubiao Luo Jianmeng Chen John C Crittenden ldquoFabrication and Electrochemical Treatment Application of an Al-Doped PbO2

Electrode with High Oxidation Capability Oxygen Evolution Potential and Reusabilityrdquo2015 Journal of The Electrochemical Society 162 (10) E258-E262

24 Feng Duan Yuping Li Hongbin Cao Yi Wang John C Crittenden Yi Zhang ldquoActivated Carbon Electrodes Electrochemical Oxidation Coupled with Desalination for Wastewater Treatmentrdquo 2015 Chemosphere

125 205-211

25 Xing Linlin Xie Yongbing Cao Hongbin Minakata Daisuke Zhang Yi Crittenden John C ldquoActivated carbon-enhanced ozonation of oxalate attributed to HObull oxidation in bulk solution and surface oxidation

Effects of the type and number of basic sitesrdquo Chemical Engineering Journal 2014 245 71-79

26 Yao H Sun P Minakata D Crittenden JC Huang C-H ldquoKinetics and Modeling of Degradation of Ionophore Antibiotics by UV and UVH2O2rdquo Environmental Science and Technology 2013 (47) 4581-

45892

26 Li Yang et al Synergistic photogeneration of reactive oxygen species by dissolved organic matter and C60 in aqueous phase Environmental science amp technology 492 (2015) 965-973

28 Niu Junfeng et al Photocatalytic reduction of triclosan on AundashCu 2 O nanowire arrays as plasmonic photocatalysts under visible light irradiation Physical Chemistry Chemical Physics 1726 (2015) 17421-17428

29 Niu Junfeng et al Design of visible light responsive photocatalysts for selective reduction of chlorinated organic compounds in water Applied Catalysis A General 521 (2016) 90-95

30 Tianyin Huang Jiabin Chen Zhongming Wang Xin Guo John C Crittenden ldquoExcellent Performance of Cobalt-Impregnated Activated Carbon in Peroxymonosulfate Activation for Acid Orange 7 Oxidationrdquo 2017

Environmental Science and Pollution Research Volume 24 (10) 9651ndash9661

References

31 Yang Li Junfeng Niu Enxiang Shang John C Crittenden ldquoPhotochemical Transformation and Photoinduced Toxicity Reduction of Silver Nanoparticles in the Presence of Perfluorocarboxylic Acids under UV

Irradiationrdquo Environmental Science and Technology 2014 48 (9) pp 4946ndash4953

32 Cao H Xing L Wu G Xie S Zhang SY Minakata D Crittenden JC ldquoPromoting effect of nitration modification on activated carbon in the catalytic ozonation of oxalic acidrdquo Applied Catalysis B

Environmental 2014 146 169-176

33 Konsowa A H Ossman M E Chen Y Crittenden J C ldquoDecolorization of industrial wastewater by ozonation followed by adsorption on activated carbonrdquo Journal of Hazardous Materials 176 (2010) 181-185

November 10 2009

34 Wipada Sanongraj Yongsheng Chen John Crittenden David Hand and David Perram ldquoDevelopment of Photocatalytic Oxidation Model Part I-Mathematical Model for Photocatalytic Destruction of Organic

Contaminants in Airrdquo Journal of the Air and Waste Management Association 571112ndash1122 September 2007

35 Chen Y JC Crittenden S Hackney L Sutter and DW Hand ldquoPreparation of a Novel TiO2-based p-n Junction Nanotube Photocatalystrdquo Environmental Science and Technology Vol 39 No 5 1201-1208 (2005)

36 Suri RPS J Liu JC Crittenden DW Hand and DL Perram Removal and Destruction of Organic Contaminants in Water Using Adsorption Steam Regeneration and Photocatalytic Oxidation A Pilot Scale

Studyrdquo Journal of Air and Waste Management Volume 49 (August 1999) 951 ndash 958

37 Burns RA JC Crittenden DW Hand VH Selzer LL Sutter SR Salman Effect of Inorganic Ions in the Heterogeneous Photocatalysis of Trichloroethene ASCE Journal of Environmental Engineering Vol

125 No 1 pp 77-85 (January 1999)

38 Liu J JC Crittenden DW Hand and DL Perram Regeneration of Adsorbents Using Heterogeneous Photocatalytic Oxidationrdquo Journal of Environmental Engineering Vol 122 No 8 pp 707-714 (1996)

39 Crittenden JC J Liu DW Hand and DL Perram Photocatalytic Oxidation of Chlorinated Hydrocarbons in Waterrdquo Water Research Vol31 No 3 pp 429-438 (1997)

40 Crittenden JC RPS Suri DL Perram and DW Hand Decontamination of Water Using Adsorption and Photocatalysisrdquo Water Research Vol 31 No 3 pp 411-418 (1997)

41 Crittenden JC Y Zhang DW Hand and DL Perram Destruction of Organic Compounds in Water Using Fixed-Bed Photocatalysts Journal of Solar Energy Engineering (ASME) Vol 118 No 5 pp 123 -129

(1996)

42 Crittenden JC Y Zhang DW Hand and DL Perram Solar Detoxification of Fuel-Contaminated Groundwater Using Fixed-Bed Photocatalystsrdquo Water Environment Research Vol 68 No 3 pp 270-278

(1996)

43 Zhang Y JC Crittenden and DW Hand The Solar Photocatalytic Decontamination of Waterrdquo Chemistry amp Industry Vol 18 pp 714-717 September (1994)

44 Mourand JT JC Crittenden DW Hand DL Perram and S Notthakun Regeneration of Spent Adsorbents Using Advanced Oxidationrdquo Water Environment Federation Vol 67 No 3 pp 355-363 (1995)

45 Hand DW DL Perram and JC Crittenden Destruction of DBP Precursors with Catalytic Oxidationrdquo American Water Works Association Journal Vol 87 No 6 pp 84-96 (1995)

46 Zhang Y JC Crittenden DW Hand and DL Perram Fixed-Bed Photo-catalysts for Solar Decontamination of Waterrdquo Environmental Science amp Technology Vol 28 No 3 pp 435-442 (1994)

47 Suri RPS J Liu DW Hand JC Crittenden DL Perram and ME Mullins Heterogeneous Photocatalytic Oxidation of Hazardous Organic Contaminants in Waterrdquo Water Environment Federation Vol 65 No

5 pp 665-673 (1993)

Page 22: The Application of Advanced Oxidation Processes (AOPs) and ...€¦ · We define the electron efficiency to be = 32 12 ·( J 4𝑥)· Where TOC in mg (c)/L and COD in mg ( 2)/L, n

EEO in EAOPs

EEO in EAOPs

EEO =v times j times A times V times t

V times logC0C

=v times j times A times t

logC0C

EEO =v times j times A

0434 times 119896119878 times Ω

v voltage V

j current densitymA

cm2

A surface area per volumem2

m3

V volumem3

C concentrationmol

m3

ks surface reaction rate sminus1

kobs observed reaction rate sminus1

Ω effectiveness factor

Ω =119896119900119887119904

119896119878

bull Target contaminants concentration dose does not effect EEO in EAOPs

bull EEO is a constant under same operational conditions

01 1 10 100 1000 10000 100000

Ultrapure Water

Distilled Water

Tap Water

Potable Water In The US

Surface Water

Industrial Wastewater

Seawater

Conductivity microScm

Water Streams Conductivity Guide

2D vs 3D EEO Comparison

Degradation of 1 mmolL benzoic acid in a 470 mL differential column batch reactor pH controlled

~68 surface water used has a low conductivity 112 microscm controlled current density is 30 mAcm2

2D anode size is 10 cm2 3D used 80 meshed Ti gauze has surface area 718 cm210 cm2 DCBR

operated at Re 194 Sc 2727 Sh 194 kf 64times10-6 ms Dl 9times10-6 cm2s

2D Electrode

3D Electrode

EEO Analysis in EAOPs

Electrolyte

Concentration

BA

concentrati

on

Voltage Current

Density

EEO

molL mgL V mAcm2 kWhm3

Surface

Water+BA~00004

(113 microScm)

24

(02 mM) 60 105 1738Surface

Water+BA 00004122

(1 mM) 60 105 2003Industrial

Water+BA

01

(16210

microScm) 24 73 304 175Industrial

Water+BA 01 122 8 30 207

Voltage Current

Density

EEO

V mAcm2 kWhm3

152 105 868

3D System2D System

bull Ionic strength is important in EAOPs NOM is not

bull Initial concentration C0does not effect EEO (at least for the

concentrations we tested)

bull Accordingly the pseudo ndash first surface rate constant is same for

different influent concentrations and the same operational

conditions for the conditions we tested

bull We expect to see the reaction rate to decrease with high C0 because

at high concentrations all the reactions site on the anode will be

occupied preventing the oxidation rate from increasing (Langmuir-

Hinshelwood Hougen Watson kinetics confirmation needed)

53 304 290

Conventional AOPs vs EAOPs Modeling 13

A case study to compare EEOs for

UVH2O2 H2O2O3 UVHOCl UVPersulfate UVTiO2

EAOPs (two-dimensional and three-dimensional)

Simulation Conditions[HCO3

minus] = 3 mM [NOM] = 2 mgL [Cl-] = 0001 M

pH = 7 kBA = 59times10-9 L(molmiddotS)Same 22 W input energy gives UV light intensity = 164times10-6 Einstein s-1 L-1

Initial Concentrations [R] (Benzoic Acid in this case) = 20 200 2000 mgL

Quantum yield

UVH2O2 = 05 UVHOCl = 09 UVPersulfate = 07

UVTiO2 = 004 (light transmission efficiency = 04)

Chemical production energy

H2O2 = 49 kWhlb persulfate = 49 kWhlb HOCl = 51 kWhlb O3 = 5 kWhlb

Note TiO2 and electrodes production energies are not included in simulation

EAOPs assumptions amp parameters

J = 30 mAcm2 2D anode size A = 10 cm2 3D anode size A= 718 cm2 (80 meshed Ti gauze)

Sc = 2727 Sh = 194 Dl = 9times10-6 cm2s d = 1 cm

Note pumping energy is small compare to electricity and neglected in simulation

Q = 20 mLmin Re = 1851 kf = 235times10-6 ms

Q = 500 mLmin Re = 46296 kf = 688times10-6 ms

Q = 2000 mLmin Re = 203704 kf = 113times10-5 ms (Re lt 2100 in laminar flow)

Minimal

EEO

(kWhm3)

Optimal

OxidantCatalyst

Dosage

9072 [TiO2]=300 mgL

4022 [Persulfate]=16 gL

2718 [H2O2]=0612 gL

2442 [HOCl]=026 gL

679 [H2O2]=0028 mgL

Electrolyte

(Na2SO4)

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

0M3702

0001M 6466 2405

0005M 3781 2069

001M 2676 1552

01M 469 1294

AOPs Minimal

EEO

(kWhm3)

Optimal

OxidantCatalyst

Dosage

UVTiO2 1038 [TiO2]=300 mgL

UVPersulfate 128 [Persulfate]=117 gL

UV H2O2 090 [H2O2]=0204 gL

UVHOCl 367 [HOCl]=014 gL

H2O2O3 0015 [H2O2]=00206 mgL

[R]0 = 20 mgL

~16 mgL TOC

[R]0 = 200 mgL

~140 mgL TOC

Minimal

EEO

(kWhm3)

Optimal

OxidantCatalyst

Dosage

88271 [TiO2]=300 mgL

8208 [Persulfate]=581 gL

1768 [H2O2]=184 gL

8335 [HOCl]=0776 gL

17648 [H2O2]=0035 mgL

[R]0 = 2000 mgL

~1379 mgL TOC

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

3545

6015 2260

3559 1937

2504 1448

455 1207

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

3404

5634 2136

3367 1824

2357 1360

443 1132

Re = 1851 Re = 46296 Re = 203704

Conventional AOPs vs EAOPs Modeling 23

Mass Transfer Increase

Ion

Str

en

gth

In

crease

Conventional AOPs vs EAOPs Modeling 33

AOPs Minimal

EEO

(kWhm3)

Optimal

OxidantCatalyst

Dosage

UVTiO2 1038 [TiO2]=300 mgL

UVPersulfate 128 [Persulfate]=117 gL

UV H2O2 090 [H2O2]=0204 gL

UVHOCl 367 [HOCl]=014 gL

H2O2O3 0015 [H2O2]=00206 mgL

[R]0 = 20 mgL

~16 mgL TOC For low concentration treatment

objectives EAOPs may not be as good as

compared to conventional AOPs

Conventional UVH2O2 and H2O2O3 are

the best conventional AOPs for BA

Electrolyte

(Na2SO4)

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

0M3702

0001M 6466 2405

0005M 3781 2069

001M 2676 1552

01M 469 1294

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

3545

6015 2260

3559 1937

2504 1448

455 1207

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

3404

5634 2136

3367 1824

2357 1360

443 1132

Re = 1851 Re = 46296 Re = 203704Mass Transfer Increase

Ion

Str

en

gth

In

crease

Conventional AOPs vs EAOPs Modeling 33

Minimal

EEO

(kWhm3)

Optimal

OxidantCatalyst

Dosage

88271 [TiO2]=300 mgL

8208 [Persulfate]=581 gL

1768 [H2O2]=184 gL

8335 [HOCl]=0776 gL

17648 [H2O2]=0035 mgL

[R]0 = 2000 mgL

~1379 mgL TOC For high concentration treatment objectives

EAOPs are more energy efficient

3D-EAOP saves more energy than 2D because

it requires lower applied voltage

3D-EAOP works better than 2D in low ion

strength treatment

Electrolyte

(Na2SO4)

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

0M3702

0001M 6466 2405

0005M 3781 2069

001M 2676 1552

01M 469 1294

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

3545

6015 2260

3559 1937

2504 1448

455 1207

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

3404

5634 2136

3367 1824

2357 1360

443 1132

Re = 1851 Re = 46296 Re = 203704Mass Transfer Increase

Ion

Str

en

gth

In

crease

Limiting Current in Different Conditions

jlim = n times F times kf times Csalt

Electrolyte

Concentration Q Q Q

Na2SO4 mlmin mlmin mlmin

20 500 2000

Re Re Re

1852 46296 185185

kf kf kf

ms ms ms

235405E-06 688E-06 109E-05

jlim jlim jlim

molL mAcm2 mAcm2 mAcm2

0001 068 199 316

jlim jlim jlim

molL mAcm2 mAcm2 mAcm2

0005 341 996 1581

jlim jlim jlim

molL mAcm2 mAcm2 mAcm2

001 681 1992 3163

jlim jlim jlim

molL mAcm2 mAcm2 mAcm2

005 3407 9962 15814

jlim jlim jlim

molL mAcm2 mAcm2 mAcm2

01 6814 19924 31627

Parameters Symbol Units Value

Influent concentration C0 mgL 20

Effluent concentration Ce mgL 02

Flow rate Q m3day 1000

Pseudo first order rate constant k min 0042

Size of reactor VRequired m3 38 m3

Detention time τ min 548

Electrode spacing d cm 1

Fluid velocity u ms 0033

Electrolyte Na2SO4 Concentration M 005

Current density J mAcm2 30

Assuming a Plug Flow Reactor (PFR) to be Confirmed with CFD

Full Scale Reactor Design

Full Scale Reactor Design

Rough Design of Reactor (top view)

1 2 3 4 5 6 7 8 9 10

105 meters

long

10 meters

electrodes

10 meters

2 meters deep

Reactor Channel

1 meter

hellip

5 cm 95 cmInfluent Effluent

The total costs (capital costs + energy costs) as a function of different electrode spacing for different theoretical

reaction rate In here the treatment objective is 99 removal flow rate is 1000 m3day and the fluid velocity is 00116

ms The flow channel has eddy promoter and its electrode spacing and obstacle distance ratio is 13 The electricity

price is $00512kWh and the pumping power is 853 kW The electrode price is $300m2 and its lifetime is 2000 h

Capital Expenditure Operational Expenditure

CapEx vs OpEx

Cost Analysis for Preliminary Design

The total costs (capital costs + energy costs) as a function of different electrode spacing for different theoretical

reaction rate In here the treatment objective is 99 removal flow rate is 1000 m3day and the fluid velocity is 00116

ms The flow channel has eddy promoter and its electrode spacing and obstacle distance ratio is 13 The electricity

price is $00512kWh and the pumping power is 853 kW The electrode price is $300m2 and its lifetime is 2000 h

Currently we are at only Ω=0436

Computer-based First-Principles Kinetic Model

Reaction Pathway Generator

(Graph Theory)

Rate Constants Estimator

(Group Contribution Method

Free Energy Linear

Relationship

Genetic Algorithm)

Ordinary Differential

Equations

(ODEs) Generator and Solver

(Gearrsquos Algorithm or

Monte Carlo algorithm)

Kinetic Monte Carlo Solver can

solve 1 million ODEs on PC

within 30 minutes

Complexity of Reaction PathwayExample

General reaction mechanisms that HObull initiates based on past experimental studies

Stefan and Bolton 1998 1999 1999 Stefan et al 1996 2000 Cooper et al 2009 Li et al 2004 2007 von Sonntag and

Schuchmann 1984 Schuchmann and von Sonntag 1979

Type of mechanismNumber of

speciesNumber of reactions

Full mechanism 120 370

Reduced mechanism 41 89

The criterion for DRG method is 1

Reaction rate constants are obtained from group contribution method (Minakata et al 2009 ESampT 43 6220-6227) and literature includingNate et al 1990 J Phys Chem Ref Data 19 413-513Nate et al 1995 J Phys Chem Ref Data 25 709-1050Buxton et al 1988 J Phys Chem Ref Data 17 513-886von Sonntag et al 1991 Angeuz Chem Int Ed Engl 30 1229-1253Li et al 2009 ESampT 43 2831-2837Li et al 2007 ESampT 41 1696-1703

Initial concentration of TCE 108 mM

Initial concentration of O2 22 mM

Initial concentration of H2O2 104 mM

Initial pH 59

Wave length of UV 200~300 nm

Light intensity779times10-6

EinsteinLmiddots

Reactor typeCompletely mixed batch reactor

Reaction time 30 min

Comparison of concentration profiles of major species for experimental data (Li Stefan Crittenden 2007 ESampT 41 1696-1703) and simulation results

00

20

40

60

80

100

120

00

02

04

06

08

10

12

0 5 10 15 20 25 30[H

2O

2]

(mM

)

[Ma

jor

spec

ies]

(m

M)

Time(min)

TCE exp

formic acid exp

oxalic acid exp

20 times DCA exp

20 times MCA exp

TCE cal

formic acid cal

oxalic acid cal

20 times DCA cal

20 times MCA cal

H2O2 exp

H2O2 cal

The photolysis of TCE was added manually because it is not included in this version of the pathway generator

Predicted Concentration Profiles of

Trichloroethene (TCE) and Stable-byproducts in UVH2O2 AOP

Comparison of number averaged molecular

weight (MW) for experimental data

(Vijayalakshmi et al J Appl Polym Sci 2006

100 3997-4003) and on-the-fly KMC model

The KMC model used a population number of 108L to

represent a concentration of 1molL

0

02

04

06

08

1

12

14

16

18

0 25 50 75 100 125 150 175 200

Aver

aged

mole

cu

lar

wei

gh

t (1

05

gm

ol)

Time (min)

Experiment

On-the-fly KMC

0

02

04

06

08

1

12

0 25 50 75 100 125 150 175 200

Nu

mb

er o

f re

act

ion

s (1

06)

Time (min)

Time evolvement of the number of generated

reactions for the degradation of PAM during the

UVTiO2 process

Degradation of Polyacrylamide (PAM)

Simulation Results for PAM Degradation in UVTiO2 AOP

Guo X Minakata D and Crittenden J 2015 On-the-fly kinetic Monte Carlo simulation of aqueous phase advanced oxidation processes Environmental science amp technology 49(15) pp9230-9236

1 Crittenden John C Shumin Hu David W Hand and Sarah Green ldquoA Kinetic Model for H2O2UV Process in a Completely Mixed Batch Reactorrdquo Water Research 33(10) 2315-2328 (1999)

2 Li K Crittenden JC Computerized pathway elucidation for hydroxyl radical induced chain reaction mechanisms in aqueous phase AOPs Environmental Science amp Technology 2009 43(8) 2831-2837

3 Li K Stefan MI Crittenden JC Trichloroethene degradation by UVH2O2 advanced oxidation process product study and kinetic modeling Environmental Science amp Technology 2007 41 1696-1703

4 Li K M I Stefan and J C Crittenden ldquoUV Photolysis of Trichloroethylene (TCE) Product Study and Kinetic Modelingrdquo Environmental Science and Technology Vol 38 No 24 6685-6693 (2004)

5 Ke Li David R Hokanson John C Crittenden R Rhodes Trussell and Daisuke Minakata ldquoEvaluating UVH2O2 Processes for Methyl tert-Butyl Ether (MtBE) and tertiary Butyl Alcohol (TBA) Removal from

Drinking Water Source Effect of Pretreatment Options and Light Sourcesrdquo Water Research 2008 Volume 42 (20) 5045-5053

6 Minakata D Li K Westerhoff P Crittenden J Development of a group contribution method to predict aqueous phase hydroxyl radical reaction rate constants Environmental Science amp Technology 2009 43

6220-6227

7 Minakata D Crittenden J Linear Free Energy Relationships between the Aqueous Phase Hydroxyl Radical (HObull) Reaction Rate Constants and the Free Energy of Activation Environmental Science amp Technology

2011a 45 3479-3486

8 Minakata D Song W Crittenden J Reactivity of aqueous phase hydroxyl radical with halogenated carboxylate anions Experimental and theoretical studies Environmental Science amp Technology 2011 45 6057-

6065

9 Daisuke Minakata Stephen P Mezyk Jace W Jones Brittany R Daws John C Crittenden ldquoDevelopment of Linear Free Energy Relationships for Aqueous Phase Radical-Involved Chemical Reactionsrdquo

Environmental Science amp Technology 2014 48 (23) 13925-13932

10 Xin Guo Daisuke Minakata John C Crittenden ldquoOn-the-Fly Kinetic Monte Carlo Simulation of Aqueous Phase Advanced Oxidation Processesrdquo Environmental Science and Technology 2015 49 (15) 9230ndash9236

11 Guo X Minakata D Crittenden JC ldquoComputer-Based First-Principles Kinetic Monte Carlo Simulation of Polyethylene Glycol Degradation in Aqueous Phase UVH2O2 Advanced Oxidation Processrdquo

Environmental Science amp Technology 2014 48 10813minus10820

12 Xin Guo Daisuke Minakata Junfeng Niu John C Crittenden ldquoComputer-based First-principles Kinetic Modeling of Degradation Pathways and Byproduct Fates in Aqueous Phase Advanced Oxidation Processesrdquo

Environmental Science and Technology 2014 48 (10) pp 5718ndash5725

13 Yajie Qian Xin Guo Yalei Zhang Yue Peng Peizhe Sun Ching-Hua Huang Junfeng Niu Xuefei Zhou John C Crittenden ldquoPerfluorooctanoic Acid Degradation Using UVminusPersulfate Process Modeling of the

Degradation and Chlorate Formationrdquo 2015 Environmental Science and Technology 50 (2) 772ndash781

14 Ruzhen Xie Xiaoyang Meng Peizhe Sun Junfeng Niu Wenju JiangLawrence Bottomley Duo Li Yongsheng Chen John C CrittendenrdquoElectrochemical Oxidation of Ofloxacin Using a TiO2-based SnO2-

SbPolytetrafluoroethylene Resin-PbO2 Electrode Reaction Kinetics and Mass Transfer Impactrdquo 2016 Applied Catalysis B Environmental 203 (2017) 515ndash525

15 Westerhoff Paul Moon Hye Minakata Daisuke Crittenden John ldquoOxidation of Organics in Retentates from Reverse Osmosis Wastewater Reuse Facilitiesrdquo Water Research 43 (16) 3992-2998

16 Liu L Chen F Yang F Chen Y Crittenden J ldquoPhotocatalytic degradation of 24-dichlorophenol using nanoscale FeTiO2rdquo Chemical Engineering Journal 2012 181ndash182 (0)189-195

References

References

17 Ying Wang Jiasheng Fang John C Crittenden Chanchan Shen ldquoNovel RGO120572-FeOOH Supported Catalyst for Fenton Oxidation of Phenol at a Wide pH Range Using Solar-Light-Driven Irradiationrdquo 2017 Journal

of Hazardous Materials 329 321ndash329

18 Xiaodong Ma Mengying Zhao Qin Pang Meihua Zheng Hongwen Sun John C Crittenden Yanying Zhu Yongsheng Chen ldquoDevelopment of Novel CaCO3Fe2O3 Nanorods for Low Temperature 12-

Dichlorobenzene Oxidationrdquo 2017 Applied Catalysis A General 522 (2016) 70ndash79

19 Heacutector L Otaacutelvaro-Mariacuten Miguel Angel Mueses John C Crittenden Fiderman Machuca-Martinez ldquoSolar Photoreactor Design by the Photon Path Length and Optimization of the Radiant Field in a TiO2-based CPC

Reactorrdquo 2017 Chemical Engineering Journal 315 283ndash295

20 Qi Wang Naxin Zhu Enqin Liu Chenlu Zhang John C Crittenden Yi ZhangYanqing CongldquoFabrication of Visible-Light Active Fe2O3-GQDsNF-TiO2 Composite Film with Highly Enhanced

Photoelectrocatalytic Performancerdquo 2017 Applied Catalysis B Environmental 205 347ndash356

21 Junfeng Niu Lifeng Yin Yunrong Dai Yueping Bao John C Crittenden ldquoDesign of Visible Light Responsive Photocatalysts for Selective Reduction of Chlorinated Organic Compounds in Waterrdquo 2016 Applied

Catalysis A General 521 90ndash95

22 Chaojie Jiang Lifen Liu John C Crittenden ldquoAn Electrochemical Process that Uses an Fe0TiO2 Cathode to Degrade Typical Dyes and Antibiotics and a Bio-anode that Produces Electricityrdquo 2016 Frontiers of

Environmental Science amp Engineering 10(4) 15

23 Yijing Xia Qizhou Dai Mili Weng Yue Peng Jinming Luo Xiaoyang Meng Xubiao Luo Jianmeng Chen John C Crittenden ldquoFabrication and Electrochemical Treatment Application of an Al-Doped PbO2

Electrode with High Oxidation Capability Oxygen Evolution Potential and Reusabilityrdquo2015 Journal of The Electrochemical Society 162 (10) E258-E262

24 Feng Duan Yuping Li Hongbin Cao Yi Wang John C Crittenden Yi Zhang ldquoActivated Carbon Electrodes Electrochemical Oxidation Coupled with Desalination for Wastewater Treatmentrdquo 2015 Chemosphere

125 205-211

25 Xing Linlin Xie Yongbing Cao Hongbin Minakata Daisuke Zhang Yi Crittenden John C ldquoActivated carbon-enhanced ozonation of oxalate attributed to HObull oxidation in bulk solution and surface oxidation

Effects of the type and number of basic sitesrdquo Chemical Engineering Journal 2014 245 71-79

26 Yao H Sun P Minakata D Crittenden JC Huang C-H ldquoKinetics and Modeling of Degradation of Ionophore Antibiotics by UV and UVH2O2rdquo Environmental Science and Technology 2013 (47) 4581-

45892

26 Li Yang et al Synergistic photogeneration of reactive oxygen species by dissolved organic matter and C60 in aqueous phase Environmental science amp technology 492 (2015) 965-973

28 Niu Junfeng et al Photocatalytic reduction of triclosan on AundashCu 2 O nanowire arrays as plasmonic photocatalysts under visible light irradiation Physical Chemistry Chemical Physics 1726 (2015) 17421-17428

29 Niu Junfeng et al Design of visible light responsive photocatalysts for selective reduction of chlorinated organic compounds in water Applied Catalysis A General 521 (2016) 90-95

30 Tianyin Huang Jiabin Chen Zhongming Wang Xin Guo John C Crittenden ldquoExcellent Performance of Cobalt-Impregnated Activated Carbon in Peroxymonosulfate Activation for Acid Orange 7 Oxidationrdquo 2017

Environmental Science and Pollution Research Volume 24 (10) 9651ndash9661

References

31 Yang Li Junfeng Niu Enxiang Shang John C Crittenden ldquoPhotochemical Transformation and Photoinduced Toxicity Reduction of Silver Nanoparticles in the Presence of Perfluorocarboxylic Acids under UV

Irradiationrdquo Environmental Science and Technology 2014 48 (9) pp 4946ndash4953

32 Cao H Xing L Wu G Xie S Zhang SY Minakata D Crittenden JC ldquoPromoting effect of nitration modification on activated carbon in the catalytic ozonation of oxalic acidrdquo Applied Catalysis B

Environmental 2014 146 169-176

33 Konsowa A H Ossman M E Chen Y Crittenden J C ldquoDecolorization of industrial wastewater by ozonation followed by adsorption on activated carbonrdquo Journal of Hazardous Materials 176 (2010) 181-185

November 10 2009

34 Wipada Sanongraj Yongsheng Chen John Crittenden David Hand and David Perram ldquoDevelopment of Photocatalytic Oxidation Model Part I-Mathematical Model for Photocatalytic Destruction of Organic

Contaminants in Airrdquo Journal of the Air and Waste Management Association 571112ndash1122 September 2007

35 Chen Y JC Crittenden S Hackney L Sutter and DW Hand ldquoPreparation of a Novel TiO2-based p-n Junction Nanotube Photocatalystrdquo Environmental Science and Technology Vol 39 No 5 1201-1208 (2005)

36 Suri RPS J Liu JC Crittenden DW Hand and DL Perram Removal and Destruction of Organic Contaminants in Water Using Adsorption Steam Regeneration and Photocatalytic Oxidation A Pilot Scale

Studyrdquo Journal of Air and Waste Management Volume 49 (August 1999) 951 ndash 958

37 Burns RA JC Crittenden DW Hand VH Selzer LL Sutter SR Salman Effect of Inorganic Ions in the Heterogeneous Photocatalysis of Trichloroethene ASCE Journal of Environmental Engineering Vol

125 No 1 pp 77-85 (January 1999)

38 Liu J JC Crittenden DW Hand and DL Perram Regeneration of Adsorbents Using Heterogeneous Photocatalytic Oxidationrdquo Journal of Environmental Engineering Vol 122 No 8 pp 707-714 (1996)

39 Crittenden JC J Liu DW Hand and DL Perram Photocatalytic Oxidation of Chlorinated Hydrocarbons in Waterrdquo Water Research Vol31 No 3 pp 429-438 (1997)

40 Crittenden JC RPS Suri DL Perram and DW Hand Decontamination of Water Using Adsorption and Photocatalysisrdquo Water Research Vol 31 No 3 pp 411-418 (1997)

41 Crittenden JC Y Zhang DW Hand and DL Perram Destruction of Organic Compounds in Water Using Fixed-Bed Photocatalysts Journal of Solar Energy Engineering (ASME) Vol 118 No 5 pp 123 -129

(1996)

42 Crittenden JC Y Zhang DW Hand and DL Perram Solar Detoxification of Fuel-Contaminated Groundwater Using Fixed-Bed Photocatalystsrdquo Water Environment Research Vol 68 No 3 pp 270-278

(1996)

43 Zhang Y JC Crittenden and DW Hand The Solar Photocatalytic Decontamination of Waterrdquo Chemistry amp Industry Vol 18 pp 714-717 September (1994)

44 Mourand JT JC Crittenden DW Hand DL Perram and S Notthakun Regeneration of Spent Adsorbents Using Advanced Oxidationrdquo Water Environment Federation Vol 67 No 3 pp 355-363 (1995)

45 Hand DW DL Perram and JC Crittenden Destruction of DBP Precursors with Catalytic Oxidationrdquo American Water Works Association Journal Vol 87 No 6 pp 84-96 (1995)

46 Zhang Y JC Crittenden DW Hand and DL Perram Fixed-Bed Photo-catalysts for Solar Decontamination of Waterrdquo Environmental Science amp Technology Vol 28 No 3 pp 435-442 (1994)

47 Suri RPS J Liu DW Hand JC Crittenden DL Perram and ME Mullins Heterogeneous Photocatalytic Oxidation of Hazardous Organic Contaminants in Waterrdquo Water Environment Federation Vol 65 No

5 pp 665-673 (1993)

Page 23: The Application of Advanced Oxidation Processes (AOPs) and ...€¦ · We define the electron efficiency to be = 32 12 ·( J 4𝑥)· Where TOC in mg (c)/L and COD in mg ( 2)/L, n

01 1 10 100 1000 10000 100000

Ultrapure Water

Distilled Water

Tap Water

Potable Water In The US

Surface Water

Industrial Wastewater

Seawater

Conductivity microScm

Water Streams Conductivity Guide

2D vs 3D EEO Comparison

Degradation of 1 mmolL benzoic acid in a 470 mL differential column batch reactor pH controlled

~68 surface water used has a low conductivity 112 microscm controlled current density is 30 mAcm2

2D anode size is 10 cm2 3D used 80 meshed Ti gauze has surface area 718 cm210 cm2 DCBR

operated at Re 194 Sc 2727 Sh 194 kf 64times10-6 ms Dl 9times10-6 cm2s

2D Electrode

3D Electrode

EEO Analysis in EAOPs

Electrolyte

Concentration

BA

concentrati

on

Voltage Current

Density

EEO

molL mgL V mAcm2 kWhm3

Surface

Water+BA~00004

(113 microScm)

24

(02 mM) 60 105 1738Surface

Water+BA 00004122

(1 mM) 60 105 2003Industrial

Water+BA

01

(16210

microScm) 24 73 304 175Industrial

Water+BA 01 122 8 30 207

Voltage Current

Density

EEO

V mAcm2 kWhm3

152 105 868

3D System2D System

bull Ionic strength is important in EAOPs NOM is not

bull Initial concentration C0does not effect EEO (at least for the

concentrations we tested)

bull Accordingly the pseudo ndash first surface rate constant is same for

different influent concentrations and the same operational

conditions for the conditions we tested

bull We expect to see the reaction rate to decrease with high C0 because

at high concentrations all the reactions site on the anode will be

occupied preventing the oxidation rate from increasing (Langmuir-

Hinshelwood Hougen Watson kinetics confirmation needed)

53 304 290

Conventional AOPs vs EAOPs Modeling 13

A case study to compare EEOs for

UVH2O2 H2O2O3 UVHOCl UVPersulfate UVTiO2

EAOPs (two-dimensional and three-dimensional)

Simulation Conditions[HCO3

minus] = 3 mM [NOM] = 2 mgL [Cl-] = 0001 M

pH = 7 kBA = 59times10-9 L(molmiddotS)Same 22 W input energy gives UV light intensity = 164times10-6 Einstein s-1 L-1

Initial Concentrations [R] (Benzoic Acid in this case) = 20 200 2000 mgL

Quantum yield

UVH2O2 = 05 UVHOCl = 09 UVPersulfate = 07

UVTiO2 = 004 (light transmission efficiency = 04)

Chemical production energy

H2O2 = 49 kWhlb persulfate = 49 kWhlb HOCl = 51 kWhlb O3 = 5 kWhlb

Note TiO2 and electrodes production energies are not included in simulation

EAOPs assumptions amp parameters

J = 30 mAcm2 2D anode size A = 10 cm2 3D anode size A= 718 cm2 (80 meshed Ti gauze)

Sc = 2727 Sh = 194 Dl = 9times10-6 cm2s d = 1 cm

Note pumping energy is small compare to electricity and neglected in simulation

Q = 20 mLmin Re = 1851 kf = 235times10-6 ms

Q = 500 mLmin Re = 46296 kf = 688times10-6 ms

Q = 2000 mLmin Re = 203704 kf = 113times10-5 ms (Re lt 2100 in laminar flow)

Minimal

EEO

(kWhm3)

Optimal

OxidantCatalyst

Dosage

9072 [TiO2]=300 mgL

4022 [Persulfate]=16 gL

2718 [H2O2]=0612 gL

2442 [HOCl]=026 gL

679 [H2O2]=0028 mgL

Electrolyte

(Na2SO4)

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

0M3702

0001M 6466 2405

0005M 3781 2069

001M 2676 1552

01M 469 1294

AOPs Minimal

EEO

(kWhm3)

Optimal

OxidantCatalyst

Dosage

UVTiO2 1038 [TiO2]=300 mgL

UVPersulfate 128 [Persulfate]=117 gL

UV H2O2 090 [H2O2]=0204 gL

UVHOCl 367 [HOCl]=014 gL

H2O2O3 0015 [H2O2]=00206 mgL

[R]0 = 20 mgL

~16 mgL TOC

[R]0 = 200 mgL

~140 mgL TOC

Minimal

EEO

(kWhm3)

Optimal

OxidantCatalyst

Dosage

88271 [TiO2]=300 mgL

8208 [Persulfate]=581 gL

1768 [H2O2]=184 gL

8335 [HOCl]=0776 gL

17648 [H2O2]=0035 mgL

[R]0 = 2000 mgL

~1379 mgL TOC

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

3545

6015 2260

3559 1937

2504 1448

455 1207

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

3404

5634 2136

3367 1824

2357 1360

443 1132

Re = 1851 Re = 46296 Re = 203704

Conventional AOPs vs EAOPs Modeling 23

Mass Transfer Increase

Ion

Str

en

gth

In

crease

Conventional AOPs vs EAOPs Modeling 33

AOPs Minimal

EEO

(kWhm3)

Optimal

OxidantCatalyst

Dosage

UVTiO2 1038 [TiO2]=300 mgL

UVPersulfate 128 [Persulfate]=117 gL

UV H2O2 090 [H2O2]=0204 gL

UVHOCl 367 [HOCl]=014 gL

H2O2O3 0015 [H2O2]=00206 mgL

[R]0 = 20 mgL

~16 mgL TOC For low concentration treatment

objectives EAOPs may not be as good as

compared to conventional AOPs

Conventional UVH2O2 and H2O2O3 are

the best conventional AOPs for BA

Electrolyte

(Na2SO4)

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

0M3702

0001M 6466 2405

0005M 3781 2069

001M 2676 1552

01M 469 1294

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

3545

6015 2260

3559 1937

2504 1448

455 1207

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

3404

5634 2136

3367 1824

2357 1360

443 1132

Re = 1851 Re = 46296 Re = 203704Mass Transfer Increase

Ion

Str

en

gth

In

crease

Conventional AOPs vs EAOPs Modeling 33

Minimal

EEO

(kWhm3)

Optimal

OxidantCatalyst

Dosage

88271 [TiO2]=300 mgL

8208 [Persulfate]=581 gL

1768 [H2O2]=184 gL

8335 [HOCl]=0776 gL

17648 [H2O2]=0035 mgL

[R]0 = 2000 mgL

~1379 mgL TOC For high concentration treatment objectives

EAOPs are more energy efficient

3D-EAOP saves more energy than 2D because

it requires lower applied voltage

3D-EAOP works better than 2D in low ion

strength treatment

Electrolyte

(Na2SO4)

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

0M3702

0001M 6466 2405

0005M 3781 2069

001M 2676 1552

01M 469 1294

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

3545

6015 2260

3559 1937

2504 1448

455 1207

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

3404

5634 2136

3367 1824

2357 1360

443 1132

Re = 1851 Re = 46296 Re = 203704Mass Transfer Increase

Ion

Str

en

gth

In

crease

Limiting Current in Different Conditions

jlim = n times F times kf times Csalt

Electrolyte

Concentration Q Q Q

Na2SO4 mlmin mlmin mlmin

20 500 2000

Re Re Re

1852 46296 185185

kf kf kf

ms ms ms

235405E-06 688E-06 109E-05

jlim jlim jlim

molL mAcm2 mAcm2 mAcm2

0001 068 199 316

jlim jlim jlim

molL mAcm2 mAcm2 mAcm2

0005 341 996 1581

jlim jlim jlim

molL mAcm2 mAcm2 mAcm2

001 681 1992 3163

jlim jlim jlim

molL mAcm2 mAcm2 mAcm2

005 3407 9962 15814

jlim jlim jlim

molL mAcm2 mAcm2 mAcm2

01 6814 19924 31627

Parameters Symbol Units Value

Influent concentration C0 mgL 20

Effluent concentration Ce mgL 02

Flow rate Q m3day 1000

Pseudo first order rate constant k min 0042

Size of reactor VRequired m3 38 m3

Detention time τ min 548

Electrode spacing d cm 1

Fluid velocity u ms 0033

Electrolyte Na2SO4 Concentration M 005

Current density J mAcm2 30

Assuming a Plug Flow Reactor (PFR) to be Confirmed with CFD

Full Scale Reactor Design

Full Scale Reactor Design

Rough Design of Reactor (top view)

1 2 3 4 5 6 7 8 9 10

105 meters

long

10 meters

electrodes

10 meters

2 meters deep

Reactor Channel

1 meter

hellip

5 cm 95 cmInfluent Effluent

The total costs (capital costs + energy costs) as a function of different electrode spacing for different theoretical

reaction rate In here the treatment objective is 99 removal flow rate is 1000 m3day and the fluid velocity is 00116

ms The flow channel has eddy promoter and its electrode spacing and obstacle distance ratio is 13 The electricity

price is $00512kWh and the pumping power is 853 kW The electrode price is $300m2 and its lifetime is 2000 h

Capital Expenditure Operational Expenditure

CapEx vs OpEx

Cost Analysis for Preliminary Design

The total costs (capital costs + energy costs) as a function of different electrode spacing for different theoretical

reaction rate In here the treatment objective is 99 removal flow rate is 1000 m3day and the fluid velocity is 00116

ms The flow channel has eddy promoter and its electrode spacing and obstacle distance ratio is 13 The electricity

price is $00512kWh and the pumping power is 853 kW The electrode price is $300m2 and its lifetime is 2000 h

Currently we are at only Ω=0436

Computer-based First-Principles Kinetic Model

Reaction Pathway Generator

(Graph Theory)

Rate Constants Estimator

(Group Contribution Method

Free Energy Linear

Relationship

Genetic Algorithm)

Ordinary Differential

Equations

(ODEs) Generator and Solver

(Gearrsquos Algorithm or

Monte Carlo algorithm)

Kinetic Monte Carlo Solver can

solve 1 million ODEs on PC

within 30 minutes

Complexity of Reaction PathwayExample

General reaction mechanisms that HObull initiates based on past experimental studies

Stefan and Bolton 1998 1999 1999 Stefan et al 1996 2000 Cooper et al 2009 Li et al 2004 2007 von Sonntag and

Schuchmann 1984 Schuchmann and von Sonntag 1979

Type of mechanismNumber of

speciesNumber of reactions

Full mechanism 120 370

Reduced mechanism 41 89

The criterion for DRG method is 1

Reaction rate constants are obtained from group contribution method (Minakata et al 2009 ESampT 43 6220-6227) and literature includingNate et al 1990 J Phys Chem Ref Data 19 413-513Nate et al 1995 J Phys Chem Ref Data 25 709-1050Buxton et al 1988 J Phys Chem Ref Data 17 513-886von Sonntag et al 1991 Angeuz Chem Int Ed Engl 30 1229-1253Li et al 2009 ESampT 43 2831-2837Li et al 2007 ESampT 41 1696-1703

Initial concentration of TCE 108 mM

Initial concentration of O2 22 mM

Initial concentration of H2O2 104 mM

Initial pH 59

Wave length of UV 200~300 nm

Light intensity779times10-6

EinsteinLmiddots

Reactor typeCompletely mixed batch reactor

Reaction time 30 min

Comparison of concentration profiles of major species for experimental data (Li Stefan Crittenden 2007 ESampT 41 1696-1703) and simulation results

00

20

40

60

80

100

120

00

02

04

06

08

10

12

0 5 10 15 20 25 30[H

2O

2]

(mM

)

[Ma

jor

spec

ies]

(m

M)

Time(min)

TCE exp

formic acid exp

oxalic acid exp

20 times DCA exp

20 times MCA exp

TCE cal

formic acid cal

oxalic acid cal

20 times DCA cal

20 times MCA cal

H2O2 exp

H2O2 cal

The photolysis of TCE was added manually because it is not included in this version of the pathway generator

Predicted Concentration Profiles of

Trichloroethene (TCE) and Stable-byproducts in UVH2O2 AOP

Comparison of number averaged molecular

weight (MW) for experimental data

(Vijayalakshmi et al J Appl Polym Sci 2006

100 3997-4003) and on-the-fly KMC model

The KMC model used a population number of 108L to

represent a concentration of 1molL

0

02

04

06

08

1

12

14

16

18

0 25 50 75 100 125 150 175 200

Aver

aged

mole

cu

lar

wei

gh

t (1

05

gm

ol)

Time (min)

Experiment

On-the-fly KMC

0

02

04

06

08

1

12

0 25 50 75 100 125 150 175 200

Nu

mb

er o

f re

act

ion

s (1

06)

Time (min)

Time evolvement of the number of generated

reactions for the degradation of PAM during the

UVTiO2 process

Degradation of Polyacrylamide (PAM)

Simulation Results for PAM Degradation in UVTiO2 AOP

Guo X Minakata D and Crittenden J 2015 On-the-fly kinetic Monte Carlo simulation of aqueous phase advanced oxidation processes Environmental science amp technology 49(15) pp9230-9236

1 Crittenden John C Shumin Hu David W Hand and Sarah Green ldquoA Kinetic Model for H2O2UV Process in a Completely Mixed Batch Reactorrdquo Water Research 33(10) 2315-2328 (1999)

2 Li K Crittenden JC Computerized pathway elucidation for hydroxyl radical induced chain reaction mechanisms in aqueous phase AOPs Environmental Science amp Technology 2009 43(8) 2831-2837

3 Li K Stefan MI Crittenden JC Trichloroethene degradation by UVH2O2 advanced oxidation process product study and kinetic modeling Environmental Science amp Technology 2007 41 1696-1703

4 Li K M I Stefan and J C Crittenden ldquoUV Photolysis of Trichloroethylene (TCE) Product Study and Kinetic Modelingrdquo Environmental Science and Technology Vol 38 No 24 6685-6693 (2004)

5 Ke Li David R Hokanson John C Crittenden R Rhodes Trussell and Daisuke Minakata ldquoEvaluating UVH2O2 Processes for Methyl tert-Butyl Ether (MtBE) and tertiary Butyl Alcohol (TBA) Removal from

Drinking Water Source Effect of Pretreatment Options and Light Sourcesrdquo Water Research 2008 Volume 42 (20) 5045-5053

6 Minakata D Li K Westerhoff P Crittenden J Development of a group contribution method to predict aqueous phase hydroxyl radical reaction rate constants Environmental Science amp Technology 2009 43

6220-6227

7 Minakata D Crittenden J Linear Free Energy Relationships between the Aqueous Phase Hydroxyl Radical (HObull) Reaction Rate Constants and the Free Energy of Activation Environmental Science amp Technology

2011a 45 3479-3486

8 Minakata D Song W Crittenden J Reactivity of aqueous phase hydroxyl radical with halogenated carboxylate anions Experimental and theoretical studies Environmental Science amp Technology 2011 45 6057-

6065

9 Daisuke Minakata Stephen P Mezyk Jace W Jones Brittany R Daws John C Crittenden ldquoDevelopment of Linear Free Energy Relationships for Aqueous Phase Radical-Involved Chemical Reactionsrdquo

Environmental Science amp Technology 2014 48 (23) 13925-13932

10 Xin Guo Daisuke Minakata John C Crittenden ldquoOn-the-Fly Kinetic Monte Carlo Simulation of Aqueous Phase Advanced Oxidation Processesrdquo Environmental Science and Technology 2015 49 (15) 9230ndash9236

11 Guo X Minakata D Crittenden JC ldquoComputer-Based First-Principles Kinetic Monte Carlo Simulation of Polyethylene Glycol Degradation in Aqueous Phase UVH2O2 Advanced Oxidation Processrdquo

Environmental Science amp Technology 2014 48 10813minus10820

12 Xin Guo Daisuke Minakata Junfeng Niu John C Crittenden ldquoComputer-based First-principles Kinetic Modeling of Degradation Pathways and Byproduct Fates in Aqueous Phase Advanced Oxidation Processesrdquo

Environmental Science and Technology 2014 48 (10) pp 5718ndash5725

13 Yajie Qian Xin Guo Yalei Zhang Yue Peng Peizhe Sun Ching-Hua Huang Junfeng Niu Xuefei Zhou John C Crittenden ldquoPerfluorooctanoic Acid Degradation Using UVminusPersulfate Process Modeling of the

Degradation and Chlorate Formationrdquo 2015 Environmental Science and Technology 50 (2) 772ndash781

14 Ruzhen Xie Xiaoyang Meng Peizhe Sun Junfeng Niu Wenju JiangLawrence Bottomley Duo Li Yongsheng Chen John C CrittendenrdquoElectrochemical Oxidation of Ofloxacin Using a TiO2-based SnO2-

SbPolytetrafluoroethylene Resin-PbO2 Electrode Reaction Kinetics and Mass Transfer Impactrdquo 2016 Applied Catalysis B Environmental 203 (2017) 515ndash525

15 Westerhoff Paul Moon Hye Minakata Daisuke Crittenden John ldquoOxidation of Organics in Retentates from Reverse Osmosis Wastewater Reuse Facilitiesrdquo Water Research 43 (16) 3992-2998

16 Liu L Chen F Yang F Chen Y Crittenden J ldquoPhotocatalytic degradation of 24-dichlorophenol using nanoscale FeTiO2rdquo Chemical Engineering Journal 2012 181ndash182 (0)189-195

References

References

17 Ying Wang Jiasheng Fang John C Crittenden Chanchan Shen ldquoNovel RGO120572-FeOOH Supported Catalyst for Fenton Oxidation of Phenol at a Wide pH Range Using Solar-Light-Driven Irradiationrdquo 2017 Journal

of Hazardous Materials 329 321ndash329

18 Xiaodong Ma Mengying Zhao Qin Pang Meihua Zheng Hongwen Sun John C Crittenden Yanying Zhu Yongsheng Chen ldquoDevelopment of Novel CaCO3Fe2O3 Nanorods for Low Temperature 12-

Dichlorobenzene Oxidationrdquo 2017 Applied Catalysis A General 522 (2016) 70ndash79

19 Heacutector L Otaacutelvaro-Mariacuten Miguel Angel Mueses John C Crittenden Fiderman Machuca-Martinez ldquoSolar Photoreactor Design by the Photon Path Length and Optimization of the Radiant Field in a TiO2-based CPC

Reactorrdquo 2017 Chemical Engineering Journal 315 283ndash295

20 Qi Wang Naxin Zhu Enqin Liu Chenlu Zhang John C Crittenden Yi ZhangYanqing CongldquoFabrication of Visible-Light Active Fe2O3-GQDsNF-TiO2 Composite Film with Highly Enhanced

Photoelectrocatalytic Performancerdquo 2017 Applied Catalysis B Environmental 205 347ndash356

21 Junfeng Niu Lifeng Yin Yunrong Dai Yueping Bao John C Crittenden ldquoDesign of Visible Light Responsive Photocatalysts for Selective Reduction of Chlorinated Organic Compounds in Waterrdquo 2016 Applied

Catalysis A General 521 90ndash95

22 Chaojie Jiang Lifen Liu John C Crittenden ldquoAn Electrochemical Process that Uses an Fe0TiO2 Cathode to Degrade Typical Dyes and Antibiotics and a Bio-anode that Produces Electricityrdquo 2016 Frontiers of

Environmental Science amp Engineering 10(4) 15

23 Yijing Xia Qizhou Dai Mili Weng Yue Peng Jinming Luo Xiaoyang Meng Xubiao Luo Jianmeng Chen John C Crittenden ldquoFabrication and Electrochemical Treatment Application of an Al-Doped PbO2

Electrode with High Oxidation Capability Oxygen Evolution Potential and Reusabilityrdquo2015 Journal of The Electrochemical Society 162 (10) E258-E262

24 Feng Duan Yuping Li Hongbin Cao Yi Wang John C Crittenden Yi Zhang ldquoActivated Carbon Electrodes Electrochemical Oxidation Coupled with Desalination for Wastewater Treatmentrdquo 2015 Chemosphere

125 205-211

25 Xing Linlin Xie Yongbing Cao Hongbin Minakata Daisuke Zhang Yi Crittenden John C ldquoActivated carbon-enhanced ozonation of oxalate attributed to HObull oxidation in bulk solution and surface oxidation

Effects of the type and number of basic sitesrdquo Chemical Engineering Journal 2014 245 71-79

26 Yao H Sun P Minakata D Crittenden JC Huang C-H ldquoKinetics and Modeling of Degradation of Ionophore Antibiotics by UV and UVH2O2rdquo Environmental Science and Technology 2013 (47) 4581-

45892

26 Li Yang et al Synergistic photogeneration of reactive oxygen species by dissolved organic matter and C60 in aqueous phase Environmental science amp technology 492 (2015) 965-973

28 Niu Junfeng et al Photocatalytic reduction of triclosan on AundashCu 2 O nanowire arrays as plasmonic photocatalysts under visible light irradiation Physical Chemistry Chemical Physics 1726 (2015) 17421-17428

29 Niu Junfeng et al Design of visible light responsive photocatalysts for selective reduction of chlorinated organic compounds in water Applied Catalysis A General 521 (2016) 90-95

30 Tianyin Huang Jiabin Chen Zhongming Wang Xin Guo John C Crittenden ldquoExcellent Performance of Cobalt-Impregnated Activated Carbon in Peroxymonosulfate Activation for Acid Orange 7 Oxidationrdquo 2017

Environmental Science and Pollution Research Volume 24 (10) 9651ndash9661

References

31 Yang Li Junfeng Niu Enxiang Shang John C Crittenden ldquoPhotochemical Transformation and Photoinduced Toxicity Reduction of Silver Nanoparticles in the Presence of Perfluorocarboxylic Acids under UV

Irradiationrdquo Environmental Science and Technology 2014 48 (9) pp 4946ndash4953

32 Cao H Xing L Wu G Xie S Zhang SY Minakata D Crittenden JC ldquoPromoting effect of nitration modification on activated carbon in the catalytic ozonation of oxalic acidrdquo Applied Catalysis B

Environmental 2014 146 169-176

33 Konsowa A H Ossman M E Chen Y Crittenden J C ldquoDecolorization of industrial wastewater by ozonation followed by adsorption on activated carbonrdquo Journal of Hazardous Materials 176 (2010) 181-185

November 10 2009

34 Wipada Sanongraj Yongsheng Chen John Crittenden David Hand and David Perram ldquoDevelopment of Photocatalytic Oxidation Model Part I-Mathematical Model for Photocatalytic Destruction of Organic

Contaminants in Airrdquo Journal of the Air and Waste Management Association 571112ndash1122 September 2007

35 Chen Y JC Crittenden S Hackney L Sutter and DW Hand ldquoPreparation of a Novel TiO2-based p-n Junction Nanotube Photocatalystrdquo Environmental Science and Technology Vol 39 No 5 1201-1208 (2005)

36 Suri RPS J Liu JC Crittenden DW Hand and DL Perram Removal and Destruction of Organic Contaminants in Water Using Adsorption Steam Regeneration and Photocatalytic Oxidation A Pilot Scale

Studyrdquo Journal of Air and Waste Management Volume 49 (August 1999) 951 ndash 958

37 Burns RA JC Crittenden DW Hand VH Selzer LL Sutter SR Salman Effect of Inorganic Ions in the Heterogeneous Photocatalysis of Trichloroethene ASCE Journal of Environmental Engineering Vol

125 No 1 pp 77-85 (January 1999)

38 Liu J JC Crittenden DW Hand and DL Perram Regeneration of Adsorbents Using Heterogeneous Photocatalytic Oxidationrdquo Journal of Environmental Engineering Vol 122 No 8 pp 707-714 (1996)

39 Crittenden JC J Liu DW Hand and DL Perram Photocatalytic Oxidation of Chlorinated Hydrocarbons in Waterrdquo Water Research Vol31 No 3 pp 429-438 (1997)

40 Crittenden JC RPS Suri DL Perram and DW Hand Decontamination of Water Using Adsorption and Photocatalysisrdquo Water Research Vol 31 No 3 pp 411-418 (1997)

41 Crittenden JC Y Zhang DW Hand and DL Perram Destruction of Organic Compounds in Water Using Fixed-Bed Photocatalysts Journal of Solar Energy Engineering (ASME) Vol 118 No 5 pp 123 -129

(1996)

42 Crittenden JC Y Zhang DW Hand and DL Perram Solar Detoxification of Fuel-Contaminated Groundwater Using Fixed-Bed Photocatalystsrdquo Water Environment Research Vol 68 No 3 pp 270-278

(1996)

43 Zhang Y JC Crittenden and DW Hand The Solar Photocatalytic Decontamination of Waterrdquo Chemistry amp Industry Vol 18 pp 714-717 September (1994)

44 Mourand JT JC Crittenden DW Hand DL Perram and S Notthakun Regeneration of Spent Adsorbents Using Advanced Oxidationrdquo Water Environment Federation Vol 67 No 3 pp 355-363 (1995)

45 Hand DW DL Perram and JC Crittenden Destruction of DBP Precursors with Catalytic Oxidationrdquo American Water Works Association Journal Vol 87 No 6 pp 84-96 (1995)

46 Zhang Y JC Crittenden DW Hand and DL Perram Fixed-Bed Photo-catalysts for Solar Decontamination of Waterrdquo Environmental Science amp Technology Vol 28 No 3 pp 435-442 (1994)

47 Suri RPS J Liu DW Hand JC Crittenden DL Perram and ME Mullins Heterogeneous Photocatalytic Oxidation of Hazardous Organic Contaminants in Waterrdquo Water Environment Federation Vol 65 No

5 pp 665-673 (1993)

Page 24: The Application of Advanced Oxidation Processes (AOPs) and ...€¦ · We define the electron efficiency to be = 32 12 ·( J 4𝑥)· Where TOC in mg (c)/L and COD in mg ( 2)/L, n

2D vs 3D EEO Comparison

Degradation of 1 mmolL benzoic acid in a 470 mL differential column batch reactor pH controlled

~68 surface water used has a low conductivity 112 microscm controlled current density is 30 mAcm2

2D anode size is 10 cm2 3D used 80 meshed Ti gauze has surface area 718 cm210 cm2 DCBR

operated at Re 194 Sc 2727 Sh 194 kf 64times10-6 ms Dl 9times10-6 cm2s

2D Electrode

3D Electrode

EEO Analysis in EAOPs

Electrolyte

Concentration

BA

concentrati

on

Voltage Current

Density

EEO

molL mgL V mAcm2 kWhm3

Surface

Water+BA~00004

(113 microScm)

24

(02 mM) 60 105 1738Surface

Water+BA 00004122

(1 mM) 60 105 2003Industrial

Water+BA

01

(16210

microScm) 24 73 304 175Industrial

Water+BA 01 122 8 30 207

Voltage Current

Density

EEO

V mAcm2 kWhm3

152 105 868

3D System2D System

bull Ionic strength is important in EAOPs NOM is not

bull Initial concentration C0does not effect EEO (at least for the

concentrations we tested)

bull Accordingly the pseudo ndash first surface rate constant is same for

different influent concentrations and the same operational

conditions for the conditions we tested

bull We expect to see the reaction rate to decrease with high C0 because

at high concentrations all the reactions site on the anode will be

occupied preventing the oxidation rate from increasing (Langmuir-

Hinshelwood Hougen Watson kinetics confirmation needed)

53 304 290

Conventional AOPs vs EAOPs Modeling 13

A case study to compare EEOs for

UVH2O2 H2O2O3 UVHOCl UVPersulfate UVTiO2

EAOPs (two-dimensional and three-dimensional)

Simulation Conditions[HCO3

minus] = 3 mM [NOM] = 2 mgL [Cl-] = 0001 M

pH = 7 kBA = 59times10-9 L(molmiddotS)Same 22 W input energy gives UV light intensity = 164times10-6 Einstein s-1 L-1

Initial Concentrations [R] (Benzoic Acid in this case) = 20 200 2000 mgL

Quantum yield

UVH2O2 = 05 UVHOCl = 09 UVPersulfate = 07

UVTiO2 = 004 (light transmission efficiency = 04)

Chemical production energy

H2O2 = 49 kWhlb persulfate = 49 kWhlb HOCl = 51 kWhlb O3 = 5 kWhlb

Note TiO2 and electrodes production energies are not included in simulation

EAOPs assumptions amp parameters

J = 30 mAcm2 2D anode size A = 10 cm2 3D anode size A= 718 cm2 (80 meshed Ti gauze)

Sc = 2727 Sh = 194 Dl = 9times10-6 cm2s d = 1 cm

Note pumping energy is small compare to electricity and neglected in simulation

Q = 20 mLmin Re = 1851 kf = 235times10-6 ms

Q = 500 mLmin Re = 46296 kf = 688times10-6 ms

Q = 2000 mLmin Re = 203704 kf = 113times10-5 ms (Re lt 2100 in laminar flow)

Minimal

EEO

(kWhm3)

Optimal

OxidantCatalyst

Dosage

9072 [TiO2]=300 mgL

4022 [Persulfate]=16 gL

2718 [H2O2]=0612 gL

2442 [HOCl]=026 gL

679 [H2O2]=0028 mgL

Electrolyte

(Na2SO4)

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

0M3702

0001M 6466 2405

0005M 3781 2069

001M 2676 1552

01M 469 1294

AOPs Minimal

EEO

(kWhm3)

Optimal

OxidantCatalyst

Dosage

UVTiO2 1038 [TiO2]=300 mgL

UVPersulfate 128 [Persulfate]=117 gL

UV H2O2 090 [H2O2]=0204 gL

UVHOCl 367 [HOCl]=014 gL

H2O2O3 0015 [H2O2]=00206 mgL

[R]0 = 20 mgL

~16 mgL TOC

[R]0 = 200 mgL

~140 mgL TOC

Minimal

EEO

(kWhm3)

Optimal

OxidantCatalyst

Dosage

88271 [TiO2]=300 mgL

8208 [Persulfate]=581 gL

1768 [H2O2]=184 gL

8335 [HOCl]=0776 gL

17648 [H2O2]=0035 mgL

[R]0 = 2000 mgL

~1379 mgL TOC

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

3545

6015 2260

3559 1937

2504 1448

455 1207

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

3404

5634 2136

3367 1824

2357 1360

443 1132

Re = 1851 Re = 46296 Re = 203704

Conventional AOPs vs EAOPs Modeling 23

Mass Transfer Increase

Ion

Str

en

gth

In

crease

Conventional AOPs vs EAOPs Modeling 33

AOPs Minimal

EEO

(kWhm3)

Optimal

OxidantCatalyst

Dosage

UVTiO2 1038 [TiO2]=300 mgL

UVPersulfate 128 [Persulfate]=117 gL

UV H2O2 090 [H2O2]=0204 gL

UVHOCl 367 [HOCl]=014 gL

H2O2O3 0015 [H2O2]=00206 mgL

[R]0 = 20 mgL

~16 mgL TOC For low concentration treatment

objectives EAOPs may not be as good as

compared to conventional AOPs

Conventional UVH2O2 and H2O2O3 are

the best conventional AOPs for BA

Electrolyte

(Na2SO4)

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

0M3702

0001M 6466 2405

0005M 3781 2069

001M 2676 1552

01M 469 1294

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

3545

6015 2260

3559 1937

2504 1448

455 1207

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

3404

5634 2136

3367 1824

2357 1360

443 1132

Re = 1851 Re = 46296 Re = 203704Mass Transfer Increase

Ion

Str

en

gth

In

crease

Conventional AOPs vs EAOPs Modeling 33

Minimal

EEO

(kWhm3)

Optimal

OxidantCatalyst

Dosage

88271 [TiO2]=300 mgL

8208 [Persulfate]=581 gL

1768 [H2O2]=184 gL

8335 [HOCl]=0776 gL

17648 [H2O2]=0035 mgL

[R]0 = 2000 mgL

~1379 mgL TOC For high concentration treatment objectives

EAOPs are more energy efficient

3D-EAOP saves more energy than 2D because

it requires lower applied voltage

3D-EAOP works better than 2D in low ion

strength treatment

Electrolyte

(Na2SO4)

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

0M3702

0001M 6466 2405

0005M 3781 2069

001M 2676 1552

01M 469 1294

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

3545

6015 2260

3559 1937

2504 1448

455 1207

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

3404

5634 2136

3367 1824

2357 1360

443 1132

Re = 1851 Re = 46296 Re = 203704Mass Transfer Increase

Ion

Str

en

gth

In

crease

Limiting Current in Different Conditions

jlim = n times F times kf times Csalt

Electrolyte

Concentration Q Q Q

Na2SO4 mlmin mlmin mlmin

20 500 2000

Re Re Re

1852 46296 185185

kf kf kf

ms ms ms

235405E-06 688E-06 109E-05

jlim jlim jlim

molL mAcm2 mAcm2 mAcm2

0001 068 199 316

jlim jlim jlim

molL mAcm2 mAcm2 mAcm2

0005 341 996 1581

jlim jlim jlim

molL mAcm2 mAcm2 mAcm2

001 681 1992 3163

jlim jlim jlim

molL mAcm2 mAcm2 mAcm2

005 3407 9962 15814

jlim jlim jlim

molL mAcm2 mAcm2 mAcm2

01 6814 19924 31627

Parameters Symbol Units Value

Influent concentration C0 mgL 20

Effluent concentration Ce mgL 02

Flow rate Q m3day 1000

Pseudo first order rate constant k min 0042

Size of reactor VRequired m3 38 m3

Detention time τ min 548

Electrode spacing d cm 1

Fluid velocity u ms 0033

Electrolyte Na2SO4 Concentration M 005

Current density J mAcm2 30

Assuming a Plug Flow Reactor (PFR) to be Confirmed with CFD

Full Scale Reactor Design

Full Scale Reactor Design

Rough Design of Reactor (top view)

1 2 3 4 5 6 7 8 9 10

105 meters

long

10 meters

electrodes

10 meters

2 meters deep

Reactor Channel

1 meter

hellip

5 cm 95 cmInfluent Effluent

The total costs (capital costs + energy costs) as a function of different electrode spacing for different theoretical

reaction rate In here the treatment objective is 99 removal flow rate is 1000 m3day and the fluid velocity is 00116

ms The flow channel has eddy promoter and its electrode spacing and obstacle distance ratio is 13 The electricity

price is $00512kWh and the pumping power is 853 kW The electrode price is $300m2 and its lifetime is 2000 h

Capital Expenditure Operational Expenditure

CapEx vs OpEx

Cost Analysis for Preliminary Design

The total costs (capital costs + energy costs) as a function of different electrode spacing for different theoretical

reaction rate In here the treatment objective is 99 removal flow rate is 1000 m3day and the fluid velocity is 00116

ms The flow channel has eddy promoter and its electrode spacing and obstacle distance ratio is 13 The electricity

price is $00512kWh and the pumping power is 853 kW The electrode price is $300m2 and its lifetime is 2000 h

Currently we are at only Ω=0436

Computer-based First-Principles Kinetic Model

Reaction Pathway Generator

(Graph Theory)

Rate Constants Estimator

(Group Contribution Method

Free Energy Linear

Relationship

Genetic Algorithm)

Ordinary Differential

Equations

(ODEs) Generator and Solver

(Gearrsquos Algorithm or

Monte Carlo algorithm)

Kinetic Monte Carlo Solver can

solve 1 million ODEs on PC

within 30 minutes

Complexity of Reaction PathwayExample

General reaction mechanisms that HObull initiates based on past experimental studies

Stefan and Bolton 1998 1999 1999 Stefan et al 1996 2000 Cooper et al 2009 Li et al 2004 2007 von Sonntag and

Schuchmann 1984 Schuchmann and von Sonntag 1979

Type of mechanismNumber of

speciesNumber of reactions

Full mechanism 120 370

Reduced mechanism 41 89

The criterion for DRG method is 1

Reaction rate constants are obtained from group contribution method (Minakata et al 2009 ESampT 43 6220-6227) and literature includingNate et al 1990 J Phys Chem Ref Data 19 413-513Nate et al 1995 J Phys Chem Ref Data 25 709-1050Buxton et al 1988 J Phys Chem Ref Data 17 513-886von Sonntag et al 1991 Angeuz Chem Int Ed Engl 30 1229-1253Li et al 2009 ESampT 43 2831-2837Li et al 2007 ESampT 41 1696-1703

Initial concentration of TCE 108 mM

Initial concentration of O2 22 mM

Initial concentration of H2O2 104 mM

Initial pH 59

Wave length of UV 200~300 nm

Light intensity779times10-6

EinsteinLmiddots

Reactor typeCompletely mixed batch reactor

Reaction time 30 min

Comparison of concentration profiles of major species for experimental data (Li Stefan Crittenden 2007 ESampT 41 1696-1703) and simulation results

00

20

40

60

80

100

120

00

02

04

06

08

10

12

0 5 10 15 20 25 30[H

2O

2]

(mM

)

[Ma

jor

spec

ies]

(m

M)

Time(min)

TCE exp

formic acid exp

oxalic acid exp

20 times DCA exp

20 times MCA exp

TCE cal

formic acid cal

oxalic acid cal

20 times DCA cal

20 times MCA cal

H2O2 exp

H2O2 cal

The photolysis of TCE was added manually because it is not included in this version of the pathway generator

Predicted Concentration Profiles of

Trichloroethene (TCE) and Stable-byproducts in UVH2O2 AOP

Comparison of number averaged molecular

weight (MW) for experimental data

(Vijayalakshmi et al J Appl Polym Sci 2006

100 3997-4003) and on-the-fly KMC model

The KMC model used a population number of 108L to

represent a concentration of 1molL

0

02

04

06

08

1

12

14

16

18

0 25 50 75 100 125 150 175 200

Aver

aged

mole

cu

lar

wei

gh

t (1

05

gm

ol)

Time (min)

Experiment

On-the-fly KMC

0

02

04

06

08

1

12

0 25 50 75 100 125 150 175 200

Nu

mb

er o

f re

act

ion

s (1

06)

Time (min)

Time evolvement of the number of generated

reactions for the degradation of PAM during the

UVTiO2 process

Degradation of Polyacrylamide (PAM)

Simulation Results for PAM Degradation in UVTiO2 AOP

Guo X Minakata D and Crittenden J 2015 On-the-fly kinetic Monte Carlo simulation of aqueous phase advanced oxidation processes Environmental science amp technology 49(15) pp9230-9236

1 Crittenden John C Shumin Hu David W Hand and Sarah Green ldquoA Kinetic Model for H2O2UV Process in a Completely Mixed Batch Reactorrdquo Water Research 33(10) 2315-2328 (1999)

2 Li K Crittenden JC Computerized pathway elucidation for hydroxyl radical induced chain reaction mechanisms in aqueous phase AOPs Environmental Science amp Technology 2009 43(8) 2831-2837

3 Li K Stefan MI Crittenden JC Trichloroethene degradation by UVH2O2 advanced oxidation process product study and kinetic modeling Environmental Science amp Technology 2007 41 1696-1703

4 Li K M I Stefan and J C Crittenden ldquoUV Photolysis of Trichloroethylene (TCE) Product Study and Kinetic Modelingrdquo Environmental Science and Technology Vol 38 No 24 6685-6693 (2004)

5 Ke Li David R Hokanson John C Crittenden R Rhodes Trussell and Daisuke Minakata ldquoEvaluating UVH2O2 Processes for Methyl tert-Butyl Ether (MtBE) and tertiary Butyl Alcohol (TBA) Removal from

Drinking Water Source Effect of Pretreatment Options and Light Sourcesrdquo Water Research 2008 Volume 42 (20) 5045-5053

6 Minakata D Li K Westerhoff P Crittenden J Development of a group contribution method to predict aqueous phase hydroxyl radical reaction rate constants Environmental Science amp Technology 2009 43

6220-6227

7 Minakata D Crittenden J Linear Free Energy Relationships between the Aqueous Phase Hydroxyl Radical (HObull) Reaction Rate Constants and the Free Energy of Activation Environmental Science amp Technology

2011a 45 3479-3486

8 Minakata D Song W Crittenden J Reactivity of aqueous phase hydroxyl radical with halogenated carboxylate anions Experimental and theoretical studies Environmental Science amp Technology 2011 45 6057-

6065

9 Daisuke Minakata Stephen P Mezyk Jace W Jones Brittany R Daws John C Crittenden ldquoDevelopment of Linear Free Energy Relationships for Aqueous Phase Radical-Involved Chemical Reactionsrdquo

Environmental Science amp Technology 2014 48 (23) 13925-13932

10 Xin Guo Daisuke Minakata John C Crittenden ldquoOn-the-Fly Kinetic Monte Carlo Simulation of Aqueous Phase Advanced Oxidation Processesrdquo Environmental Science and Technology 2015 49 (15) 9230ndash9236

11 Guo X Minakata D Crittenden JC ldquoComputer-Based First-Principles Kinetic Monte Carlo Simulation of Polyethylene Glycol Degradation in Aqueous Phase UVH2O2 Advanced Oxidation Processrdquo

Environmental Science amp Technology 2014 48 10813minus10820

12 Xin Guo Daisuke Minakata Junfeng Niu John C Crittenden ldquoComputer-based First-principles Kinetic Modeling of Degradation Pathways and Byproduct Fates in Aqueous Phase Advanced Oxidation Processesrdquo

Environmental Science and Technology 2014 48 (10) pp 5718ndash5725

13 Yajie Qian Xin Guo Yalei Zhang Yue Peng Peizhe Sun Ching-Hua Huang Junfeng Niu Xuefei Zhou John C Crittenden ldquoPerfluorooctanoic Acid Degradation Using UVminusPersulfate Process Modeling of the

Degradation and Chlorate Formationrdquo 2015 Environmental Science and Technology 50 (2) 772ndash781

14 Ruzhen Xie Xiaoyang Meng Peizhe Sun Junfeng Niu Wenju JiangLawrence Bottomley Duo Li Yongsheng Chen John C CrittendenrdquoElectrochemical Oxidation of Ofloxacin Using a TiO2-based SnO2-

SbPolytetrafluoroethylene Resin-PbO2 Electrode Reaction Kinetics and Mass Transfer Impactrdquo 2016 Applied Catalysis B Environmental 203 (2017) 515ndash525

15 Westerhoff Paul Moon Hye Minakata Daisuke Crittenden John ldquoOxidation of Organics in Retentates from Reverse Osmosis Wastewater Reuse Facilitiesrdquo Water Research 43 (16) 3992-2998

16 Liu L Chen F Yang F Chen Y Crittenden J ldquoPhotocatalytic degradation of 24-dichlorophenol using nanoscale FeTiO2rdquo Chemical Engineering Journal 2012 181ndash182 (0)189-195

References

References

17 Ying Wang Jiasheng Fang John C Crittenden Chanchan Shen ldquoNovel RGO120572-FeOOH Supported Catalyst for Fenton Oxidation of Phenol at a Wide pH Range Using Solar-Light-Driven Irradiationrdquo 2017 Journal

of Hazardous Materials 329 321ndash329

18 Xiaodong Ma Mengying Zhao Qin Pang Meihua Zheng Hongwen Sun John C Crittenden Yanying Zhu Yongsheng Chen ldquoDevelopment of Novel CaCO3Fe2O3 Nanorods for Low Temperature 12-

Dichlorobenzene Oxidationrdquo 2017 Applied Catalysis A General 522 (2016) 70ndash79

19 Heacutector L Otaacutelvaro-Mariacuten Miguel Angel Mueses John C Crittenden Fiderman Machuca-Martinez ldquoSolar Photoreactor Design by the Photon Path Length and Optimization of the Radiant Field in a TiO2-based CPC

Reactorrdquo 2017 Chemical Engineering Journal 315 283ndash295

20 Qi Wang Naxin Zhu Enqin Liu Chenlu Zhang John C Crittenden Yi ZhangYanqing CongldquoFabrication of Visible-Light Active Fe2O3-GQDsNF-TiO2 Composite Film with Highly Enhanced

Photoelectrocatalytic Performancerdquo 2017 Applied Catalysis B Environmental 205 347ndash356

21 Junfeng Niu Lifeng Yin Yunrong Dai Yueping Bao John C Crittenden ldquoDesign of Visible Light Responsive Photocatalysts for Selective Reduction of Chlorinated Organic Compounds in Waterrdquo 2016 Applied

Catalysis A General 521 90ndash95

22 Chaojie Jiang Lifen Liu John C Crittenden ldquoAn Electrochemical Process that Uses an Fe0TiO2 Cathode to Degrade Typical Dyes and Antibiotics and a Bio-anode that Produces Electricityrdquo 2016 Frontiers of

Environmental Science amp Engineering 10(4) 15

23 Yijing Xia Qizhou Dai Mili Weng Yue Peng Jinming Luo Xiaoyang Meng Xubiao Luo Jianmeng Chen John C Crittenden ldquoFabrication and Electrochemical Treatment Application of an Al-Doped PbO2

Electrode with High Oxidation Capability Oxygen Evolution Potential and Reusabilityrdquo2015 Journal of The Electrochemical Society 162 (10) E258-E262

24 Feng Duan Yuping Li Hongbin Cao Yi Wang John C Crittenden Yi Zhang ldquoActivated Carbon Electrodes Electrochemical Oxidation Coupled with Desalination for Wastewater Treatmentrdquo 2015 Chemosphere

125 205-211

25 Xing Linlin Xie Yongbing Cao Hongbin Minakata Daisuke Zhang Yi Crittenden John C ldquoActivated carbon-enhanced ozonation of oxalate attributed to HObull oxidation in bulk solution and surface oxidation

Effects of the type and number of basic sitesrdquo Chemical Engineering Journal 2014 245 71-79

26 Yao H Sun P Minakata D Crittenden JC Huang C-H ldquoKinetics and Modeling of Degradation of Ionophore Antibiotics by UV and UVH2O2rdquo Environmental Science and Technology 2013 (47) 4581-

45892

26 Li Yang et al Synergistic photogeneration of reactive oxygen species by dissolved organic matter and C60 in aqueous phase Environmental science amp technology 492 (2015) 965-973

28 Niu Junfeng et al Photocatalytic reduction of triclosan on AundashCu 2 O nanowire arrays as plasmonic photocatalysts under visible light irradiation Physical Chemistry Chemical Physics 1726 (2015) 17421-17428

29 Niu Junfeng et al Design of visible light responsive photocatalysts for selective reduction of chlorinated organic compounds in water Applied Catalysis A General 521 (2016) 90-95

30 Tianyin Huang Jiabin Chen Zhongming Wang Xin Guo John C Crittenden ldquoExcellent Performance of Cobalt-Impregnated Activated Carbon in Peroxymonosulfate Activation for Acid Orange 7 Oxidationrdquo 2017

Environmental Science and Pollution Research Volume 24 (10) 9651ndash9661

References

31 Yang Li Junfeng Niu Enxiang Shang John C Crittenden ldquoPhotochemical Transformation and Photoinduced Toxicity Reduction of Silver Nanoparticles in the Presence of Perfluorocarboxylic Acids under UV

Irradiationrdquo Environmental Science and Technology 2014 48 (9) pp 4946ndash4953

32 Cao H Xing L Wu G Xie S Zhang SY Minakata D Crittenden JC ldquoPromoting effect of nitration modification on activated carbon in the catalytic ozonation of oxalic acidrdquo Applied Catalysis B

Environmental 2014 146 169-176

33 Konsowa A H Ossman M E Chen Y Crittenden J C ldquoDecolorization of industrial wastewater by ozonation followed by adsorption on activated carbonrdquo Journal of Hazardous Materials 176 (2010) 181-185

November 10 2009

34 Wipada Sanongraj Yongsheng Chen John Crittenden David Hand and David Perram ldquoDevelopment of Photocatalytic Oxidation Model Part I-Mathematical Model for Photocatalytic Destruction of Organic

Contaminants in Airrdquo Journal of the Air and Waste Management Association 571112ndash1122 September 2007

35 Chen Y JC Crittenden S Hackney L Sutter and DW Hand ldquoPreparation of a Novel TiO2-based p-n Junction Nanotube Photocatalystrdquo Environmental Science and Technology Vol 39 No 5 1201-1208 (2005)

36 Suri RPS J Liu JC Crittenden DW Hand and DL Perram Removal and Destruction of Organic Contaminants in Water Using Adsorption Steam Regeneration and Photocatalytic Oxidation A Pilot Scale

Studyrdquo Journal of Air and Waste Management Volume 49 (August 1999) 951 ndash 958

37 Burns RA JC Crittenden DW Hand VH Selzer LL Sutter SR Salman Effect of Inorganic Ions in the Heterogeneous Photocatalysis of Trichloroethene ASCE Journal of Environmental Engineering Vol

125 No 1 pp 77-85 (January 1999)

38 Liu J JC Crittenden DW Hand and DL Perram Regeneration of Adsorbents Using Heterogeneous Photocatalytic Oxidationrdquo Journal of Environmental Engineering Vol 122 No 8 pp 707-714 (1996)

39 Crittenden JC J Liu DW Hand and DL Perram Photocatalytic Oxidation of Chlorinated Hydrocarbons in Waterrdquo Water Research Vol31 No 3 pp 429-438 (1997)

40 Crittenden JC RPS Suri DL Perram and DW Hand Decontamination of Water Using Adsorption and Photocatalysisrdquo Water Research Vol 31 No 3 pp 411-418 (1997)

41 Crittenden JC Y Zhang DW Hand and DL Perram Destruction of Organic Compounds in Water Using Fixed-Bed Photocatalysts Journal of Solar Energy Engineering (ASME) Vol 118 No 5 pp 123 -129

(1996)

42 Crittenden JC Y Zhang DW Hand and DL Perram Solar Detoxification of Fuel-Contaminated Groundwater Using Fixed-Bed Photocatalystsrdquo Water Environment Research Vol 68 No 3 pp 270-278

(1996)

43 Zhang Y JC Crittenden and DW Hand The Solar Photocatalytic Decontamination of Waterrdquo Chemistry amp Industry Vol 18 pp 714-717 September (1994)

44 Mourand JT JC Crittenden DW Hand DL Perram and S Notthakun Regeneration of Spent Adsorbents Using Advanced Oxidationrdquo Water Environment Federation Vol 67 No 3 pp 355-363 (1995)

45 Hand DW DL Perram and JC Crittenden Destruction of DBP Precursors with Catalytic Oxidationrdquo American Water Works Association Journal Vol 87 No 6 pp 84-96 (1995)

46 Zhang Y JC Crittenden DW Hand and DL Perram Fixed-Bed Photo-catalysts for Solar Decontamination of Waterrdquo Environmental Science amp Technology Vol 28 No 3 pp 435-442 (1994)

47 Suri RPS J Liu DW Hand JC Crittenden DL Perram and ME Mullins Heterogeneous Photocatalytic Oxidation of Hazardous Organic Contaminants in Waterrdquo Water Environment Federation Vol 65 No

5 pp 665-673 (1993)

Page 25: The Application of Advanced Oxidation Processes (AOPs) and ...€¦ · We define the electron efficiency to be = 32 12 ·( J 4𝑥)· Where TOC in mg (c)/L and COD in mg ( 2)/L, n

EEO Analysis in EAOPs

Electrolyte

Concentration

BA

concentrati

on

Voltage Current

Density

EEO

molL mgL V mAcm2 kWhm3

Surface

Water+BA~00004

(113 microScm)

24

(02 mM) 60 105 1738Surface

Water+BA 00004122

(1 mM) 60 105 2003Industrial

Water+BA

01

(16210

microScm) 24 73 304 175Industrial

Water+BA 01 122 8 30 207

Voltage Current

Density

EEO

V mAcm2 kWhm3

152 105 868

3D System2D System

bull Ionic strength is important in EAOPs NOM is not

bull Initial concentration C0does not effect EEO (at least for the

concentrations we tested)

bull Accordingly the pseudo ndash first surface rate constant is same for

different influent concentrations and the same operational

conditions for the conditions we tested

bull We expect to see the reaction rate to decrease with high C0 because

at high concentrations all the reactions site on the anode will be

occupied preventing the oxidation rate from increasing (Langmuir-

Hinshelwood Hougen Watson kinetics confirmation needed)

53 304 290

Conventional AOPs vs EAOPs Modeling 13

A case study to compare EEOs for

UVH2O2 H2O2O3 UVHOCl UVPersulfate UVTiO2

EAOPs (two-dimensional and three-dimensional)

Simulation Conditions[HCO3

minus] = 3 mM [NOM] = 2 mgL [Cl-] = 0001 M

pH = 7 kBA = 59times10-9 L(molmiddotS)Same 22 W input energy gives UV light intensity = 164times10-6 Einstein s-1 L-1

Initial Concentrations [R] (Benzoic Acid in this case) = 20 200 2000 mgL

Quantum yield

UVH2O2 = 05 UVHOCl = 09 UVPersulfate = 07

UVTiO2 = 004 (light transmission efficiency = 04)

Chemical production energy

H2O2 = 49 kWhlb persulfate = 49 kWhlb HOCl = 51 kWhlb O3 = 5 kWhlb

Note TiO2 and electrodes production energies are not included in simulation

EAOPs assumptions amp parameters

J = 30 mAcm2 2D anode size A = 10 cm2 3D anode size A= 718 cm2 (80 meshed Ti gauze)

Sc = 2727 Sh = 194 Dl = 9times10-6 cm2s d = 1 cm

Note pumping energy is small compare to electricity and neglected in simulation

Q = 20 mLmin Re = 1851 kf = 235times10-6 ms

Q = 500 mLmin Re = 46296 kf = 688times10-6 ms

Q = 2000 mLmin Re = 203704 kf = 113times10-5 ms (Re lt 2100 in laminar flow)

Minimal

EEO

(kWhm3)

Optimal

OxidantCatalyst

Dosage

9072 [TiO2]=300 mgL

4022 [Persulfate]=16 gL

2718 [H2O2]=0612 gL

2442 [HOCl]=026 gL

679 [H2O2]=0028 mgL

Electrolyte

(Na2SO4)

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

0M3702

0001M 6466 2405

0005M 3781 2069

001M 2676 1552

01M 469 1294

AOPs Minimal

EEO

(kWhm3)

Optimal

OxidantCatalyst

Dosage

UVTiO2 1038 [TiO2]=300 mgL

UVPersulfate 128 [Persulfate]=117 gL

UV H2O2 090 [H2O2]=0204 gL

UVHOCl 367 [HOCl]=014 gL

H2O2O3 0015 [H2O2]=00206 mgL

[R]0 = 20 mgL

~16 mgL TOC

[R]0 = 200 mgL

~140 mgL TOC

Minimal

EEO

(kWhm3)

Optimal

OxidantCatalyst

Dosage

88271 [TiO2]=300 mgL

8208 [Persulfate]=581 gL

1768 [H2O2]=184 gL

8335 [HOCl]=0776 gL

17648 [H2O2]=0035 mgL

[R]0 = 2000 mgL

~1379 mgL TOC

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

3545

6015 2260

3559 1937

2504 1448

455 1207

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

3404

5634 2136

3367 1824

2357 1360

443 1132

Re = 1851 Re = 46296 Re = 203704

Conventional AOPs vs EAOPs Modeling 23

Mass Transfer Increase

Ion

Str

en

gth

In

crease

Conventional AOPs vs EAOPs Modeling 33

AOPs Minimal

EEO

(kWhm3)

Optimal

OxidantCatalyst

Dosage

UVTiO2 1038 [TiO2]=300 mgL

UVPersulfate 128 [Persulfate]=117 gL

UV H2O2 090 [H2O2]=0204 gL

UVHOCl 367 [HOCl]=014 gL

H2O2O3 0015 [H2O2]=00206 mgL

[R]0 = 20 mgL

~16 mgL TOC For low concentration treatment

objectives EAOPs may not be as good as

compared to conventional AOPs

Conventional UVH2O2 and H2O2O3 are

the best conventional AOPs for BA

Electrolyte

(Na2SO4)

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

0M3702

0001M 6466 2405

0005M 3781 2069

001M 2676 1552

01M 469 1294

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

3545

6015 2260

3559 1937

2504 1448

455 1207

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

3404

5634 2136

3367 1824

2357 1360

443 1132

Re = 1851 Re = 46296 Re = 203704Mass Transfer Increase

Ion

Str

en

gth

In

crease

Conventional AOPs vs EAOPs Modeling 33

Minimal

EEO

(kWhm3)

Optimal

OxidantCatalyst

Dosage

88271 [TiO2]=300 mgL

8208 [Persulfate]=581 gL

1768 [H2O2]=184 gL

8335 [HOCl]=0776 gL

17648 [H2O2]=0035 mgL

[R]0 = 2000 mgL

~1379 mgL TOC For high concentration treatment objectives

EAOPs are more energy efficient

3D-EAOP saves more energy than 2D because

it requires lower applied voltage

3D-EAOP works better than 2D in low ion

strength treatment

Electrolyte

(Na2SO4)

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

0M3702

0001M 6466 2405

0005M 3781 2069

001M 2676 1552

01M 469 1294

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

3545

6015 2260

3559 1937

2504 1448

455 1207

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

3404

5634 2136

3367 1824

2357 1360

443 1132

Re = 1851 Re = 46296 Re = 203704Mass Transfer Increase

Ion

Str

en

gth

In

crease

Limiting Current in Different Conditions

jlim = n times F times kf times Csalt

Electrolyte

Concentration Q Q Q

Na2SO4 mlmin mlmin mlmin

20 500 2000

Re Re Re

1852 46296 185185

kf kf kf

ms ms ms

235405E-06 688E-06 109E-05

jlim jlim jlim

molL mAcm2 mAcm2 mAcm2

0001 068 199 316

jlim jlim jlim

molL mAcm2 mAcm2 mAcm2

0005 341 996 1581

jlim jlim jlim

molL mAcm2 mAcm2 mAcm2

001 681 1992 3163

jlim jlim jlim

molL mAcm2 mAcm2 mAcm2

005 3407 9962 15814

jlim jlim jlim

molL mAcm2 mAcm2 mAcm2

01 6814 19924 31627

Parameters Symbol Units Value

Influent concentration C0 mgL 20

Effluent concentration Ce mgL 02

Flow rate Q m3day 1000

Pseudo first order rate constant k min 0042

Size of reactor VRequired m3 38 m3

Detention time τ min 548

Electrode spacing d cm 1

Fluid velocity u ms 0033

Electrolyte Na2SO4 Concentration M 005

Current density J mAcm2 30

Assuming a Plug Flow Reactor (PFR) to be Confirmed with CFD

Full Scale Reactor Design

Full Scale Reactor Design

Rough Design of Reactor (top view)

1 2 3 4 5 6 7 8 9 10

105 meters

long

10 meters

electrodes

10 meters

2 meters deep

Reactor Channel

1 meter

hellip

5 cm 95 cmInfluent Effluent

The total costs (capital costs + energy costs) as a function of different electrode spacing for different theoretical

reaction rate In here the treatment objective is 99 removal flow rate is 1000 m3day and the fluid velocity is 00116

ms The flow channel has eddy promoter and its electrode spacing and obstacle distance ratio is 13 The electricity

price is $00512kWh and the pumping power is 853 kW The electrode price is $300m2 and its lifetime is 2000 h

Capital Expenditure Operational Expenditure

CapEx vs OpEx

Cost Analysis for Preliminary Design

The total costs (capital costs + energy costs) as a function of different electrode spacing for different theoretical

reaction rate In here the treatment objective is 99 removal flow rate is 1000 m3day and the fluid velocity is 00116

ms The flow channel has eddy promoter and its electrode spacing and obstacle distance ratio is 13 The electricity

price is $00512kWh and the pumping power is 853 kW The electrode price is $300m2 and its lifetime is 2000 h

Currently we are at only Ω=0436

Computer-based First-Principles Kinetic Model

Reaction Pathway Generator

(Graph Theory)

Rate Constants Estimator

(Group Contribution Method

Free Energy Linear

Relationship

Genetic Algorithm)

Ordinary Differential

Equations

(ODEs) Generator and Solver

(Gearrsquos Algorithm or

Monte Carlo algorithm)

Kinetic Monte Carlo Solver can

solve 1 million ODEs on PC

within 30 minutes

Complexity of Reaction PathwayExample

General reaction mechanisms that HObull initiates based on past experimental studies

Stefan and Bolton 1998 1999 1999 Stefan et al 1996 2000 Cooper et al 2009 Li et al 2004 2007 von Sonntag and

Schuchmann 1984 Schuchmann and von Sonntag 1979

Type of mechanismNumber of

speciesNumber of reactions

Full mechanism 120 370

Reduced mechanism 41 89

The criterion for DRG method is 1

Reaction rate constants are obtained from group contribution method (Minakata et al 2009 ESampT 43 6220-6227) and literature includingNate et al 1990 J Phys Chem Ref Data 19 413-513Nate et al 1995 J Phys Chem Ref Data 25 709-1050Buxton et al 1988 J Phys Chem Ref Data 17 513-886von Sonntag et al 1991 Angeuz Chem Int Ed Engl 30 1229-1253Li et al 2009 ESampT 43 2831-2837Li et al 2007 ESampT 41 1696-1703

Initial concentration of TCE 108 mM

Initial concentration of O2 22 mM

Initial concentration of H2O2 104 mM

Initial pH 59

Wave length of UV 200~300 nm

Light intensity779times10-6

EinsteinLmiddots

Reactor typeCompletely mixed batch reactor

Reaction time 30 min

Comparison of concentration profiles of major species for experimental data (Li Stefan Crittenden 2007 ESampT 41 1696-1703) and simulation results

00

20

40

60

80

100

120

00

02

04

06

08

10

12

0 5 10 15 20 25 30[H

2O

2]

(mM

)

[Ma

jor

spec

ies]

(m

M)

Time(min)

TCE exp

formic acid exp

oxalic acid exp

20 times DCA exp

20 times MCA exp

TCE cal

formic acid cal

oxalic acid cal

20 times DCA cal

20 times MCA cal

H2O2 exp

H2O2 cal

The photolysis of TCE was added manually because it is not included in this version of the pathway generator

Predicted Concentration Profiles of

Trichloroethene (TCE) and Stable-byproducts in UVH2O2 AOP

Comparison of number averaged molecular

weight (MW) for experimental data

(Vijayalakshmi et al J Appl Polym Sci 2006

100 3997-4003) and on-the-fly KMC model

The KMC model used a population number of 108L to

represent a concentration of 1molL

0

02

04

06

08

1

12

14

16

18

0 25 50 75 100 125 150 175 200

Aver

aged

mole

cu

lar

wei

gh

t (1

05

gm

ol)

Time (min)

Experiment

On-the-fly KMC

0

02

04

06

08

1

12

0 25 50 75 100 125 150 175 200

Nu

mb

er o

f re

act

ion

s (1

06)

Time (min)

Time evolvement of the number of generated

reactions for the degradation of PAM during the

UVTiO2 process

Degradation of Polyacrylamide (PAM)

Simulation Results for PAM Degradation in UVTiO2 AOP

Guo X Minakata D and Crittenden J 2015 On-the-fly kinetic Monte Carlo simulation of aqueous phase advanced oxidation processes Environmental science amp technology 49(15) pp9230-9236

1 Crittenden John C Shumin Hu David W Hand and Sarah Green ldquoA Kinetic Model for H2O2UV Process in a Completely Mixed Batch Reactorrdquo Water Research 33(10) 2315-2328 (1999)

2 Li K Crittenden JC Computerized pathway elucidation for hydroxyl radical induced chain reaction mechanisms in aqueous phase AOPs Environmental Science amp Technology 2009 43(8) 2831-2837

3 Li K Stefan MI Crittenden JC Trichloroethene degradation by UVH2O2 advanced oxidation process product study and kinetic modeling Environmental Science amp Technology 2007 41 1696-1703

4 Li K M I Stefan and J C Crittenden ldquoUV Photolysis of Trichloroethylene (TCE) Product Study and Kinetic Modelingrdquo Environmental Science and Technology Vol 38 No 24 6685-6693 (2004)

5 Ke Li David R Hokanson John C Crittenden R Rhodes Trussell and Daisuke Minakata ldquoEvaluating UVH2O2 Processes for Methyl tert-Butyl Ether (MtBE) and tertiary Butyl Alcohol (TBA) Removal from

Drinking Water Source Effect of Pretreatment Options and Light Sourcesrdquo Water Research 2008 Volume 42 (20) 5045-5053

6 Minakata D Li K Westerhoff P Crittenden J Development of a group contribution method to predict aqueous phase hydroxyl radical reaction rate constants Environmental Science amp Technology 2009 43

6220-6227

7 Minakata D Crittenden J Linear Free Energy Relationships between the Aqueous Phase Hydroxyl Radical (HObull) Reaction Rate Constants and the Free Energy of Activation Environmental Science amp Technology

2011a 45 3479-3486

8 Minakata D Song W Crittenden J Reactivity of aqueous phase hydroxyl radical with halogenated carboxylate anions Experimental and theoretical studies Environmental Science amp Technology 2011 45 6057-

6065

9 Daisuke Minakata Stephen P Mezyk Jace W Jones Brittany R Daws John C Crittenden ldquoDevelopment of Linear Free Energy Relationships for Aqueous Phase Radical-Involved Chemical Reactionsrdquo

Environmental Science amp Technology 2014 48 (23) 13925-13932

10 Xin Guo Daisuke Minakata John C Crittenden ldquoOn-the-Fly Kinetic Monte Carlo Simulation of Aqueous Phase Advanced Oxidation Processesrdquo Environmental Science and Technology 2015 49 (15) 9230ndash9236

11 Guo X Minakata D Crittenden JC ldquoComputer-Based First-Principles Kinetic Monte Carlo Simulation of Polyethylene Glycol Degradation in Aqueous Phase UVH2O2 Advanced Oxidation Processrdquo

Environmental Science amp Technology 2014 48 10813minus10820

12 Xin Guo Daisuke Minakata Junfeng Niu John C Crittenden ldquoComputer-based First-principles Kinetic Modeling of Degradation Pathways and Byproduct Fates in Aqueous Phase Advanced Oxidation Processesrdquo

Environmental Science and Technology 2014 48 (10) pp 5718ndash5725

13 Yajie Qian Xin Guo Yalei Zhang Yue Peng Peizhe Sun Ching-Hua Huang Junfeng Niu Xuefei Zhou John C Crittenden ldquoPerfluorooctanoic Acid Degradation Using UVminusPersulfate Process Modeling of the

Degradation and Chlorate Formationrdquo 2015 Environmental Science and Technology 50 (2) 772ndash781

14 Ruzhen Xie Xiaoyang Meng Peizhe Sun Junfeng Niu Wenju JiangLawrence Bottomley Duo Li Yongsheng Chen John C CrittendenrdquoElectrochemical Oxidation of Ofloxacin Using a TiO2-based SnO2-

SbPolytetrafluoroethylene Resin-PbO2 Electrode Reaction Kinetics and Mass Transfer Impactrdquo 2016 Applied Catalysis B Environmental 203 (2017) 515ndash525

15 Westerhoff Paul Moon Hye Minakata Daisuke Crittenden John ldquoOxidation of Organics in Retentates from Reverse Osmosis Wastewater Reuse Facilitiesrdquo Water Research 43 (16) 3992-2998

16 Liu L Chen F Yang F Chen Y Crittenden J ldquoPhotocatalytic degradation of 24-dichlorophenol using nanoscale FeTiO2rdquo Chemical Engineering Journal 2012 181ndash182 (0)189-195

References

References

17 Ying Wang Jiasheng Fang John C Crittenden Chanchan Shen ldquoNovel RGO120572-FeOOH Supported Catalyst for Fenton Oxidation of Phenol at a Wide pH Range Using Solar-Light-Driven Irradiationrdquo 2017 Journal

of Hazardous Materials 329 321ndash329

18 Xiaodong Ma Mengying Zhao Qin Pang Meihua Zheng Hongwen Sun John C Crittenden Yanying Zhu Yongsheng Chen ldquoDevelopment of Novel CaCO3Fe2O3 Nanorods for Low Temperature 12-

Dichlorobenzene Oxidationrdquo 2017 Applied Catalysis A General 522 (2016) 70ndash79

19 Heacutector L Otaacutelvaro-Mariacuten Miguel Angel Mueses John C Crittenden Fiderman Machuca-Martinez ldquoSolar Photoreactor Design by the Photon Path Length and Optimization of the Radiant Field in a TiO2-based CPC

Reactorrdquo 2017 Chemical Engineering Journal 315 283ndash295

20 Qi Wang Naxin Zhu Enqin Liu Chenlu Zhang John C Crittenden Yi ZhangYanqing CongldquoFabrication of Visible-Light Active Fe2O3-GQDsNF-TiO2 Composite Film with Highly Enhanced

Photoelectrocatalytic Performancerdquo 2017 Applied Catalysis B Environmental 205 347ndash356

21 Junfeng Niu Lifeng Yin Yunrong Dai Yueping Bao John C Crittenden ldquoDesign of Visible Light Responsive Photocatalysts for Selective Reduction of Chlorinated Organic Compounds in Waterrdquo 2016 Applied

Catalysis A General 521 90ndash95

22 Chaojie Jiang Lifen Liu John C Crittenden ldquoAn Electrochemical Process that Uses an Fe0TiO2 Cathode to Degrade Typical Dyes and Antibiotics and a Bio-anode that Produces Electricityrdquo 2016 Frontiers of

Environmental Science amp Engineering 10(4) 15

23 Yijing Xia Qizhou Dai Mili Weng Yue Peng Jinming Luo Xiaoyang Meng Xubiao Luo Jianmeng Chen John C Crittenden ldquoFabrication and Electrochemical Treatment Application of an Al-Doped PbO2

Electrode with High Oxidation Capability Oxygen Evolution Potential and Reusabilityrdquo2015 Journal of The Electrochemical Society 162 (10) E258-E262

24 Feng Duan Yuping Li Hongbin Cao Yi Wang John C Crittenden Yi Zhang ldquoActivated Carbon Electrodes Electrochemical Oxidation Coupled with Desalination for Wastewater Treatmentrdquo 2015 Chemosphere

125 205-211

25 Xing Linlin Xie Yongbing Cao Hongbin Minakata Daisuke Zhang Yi Crittenden John C ldquoActivated carbon-enhanced ozonation of oxalate attributed to HObull oxidation in bulk solution and surface oxidation

Effects of the type and number of basic sitesrdquo Chemical Engineering Journal 2014 245 71-79

26 Yao H Sun P Minakata D Crittenden JC Huang C-H ldquoKinetics and Modeling of Degradation of Ionophore Antibiotics by UV and UVH2O2rdquo Environmental Science and Technology 2013 (47) 4581-

45892

26 Li Yang et al Synergistic photogeneration of reactive oxygen species by dissolved organic matter and C60 in aqueous phase Environmental science amp technology 492 (2015) 965-973

28 Niu Junfeng et al Photocatalytic reduction of triclosan on AundashCu 2 O nanowire arrays as plasmonic photocatalysts under visible light irradiation Physical Chemistry Chemical Physics 1726 (2015) 17421-17428

29 Niu Junfeng et al Design of visible light responsive photocatalysts for selective reduction of chlorinated organic compounds in water Applied Catalysis A General 521 (2016) 90-95

30 Tianyin Huang Jiabin Chen Zhongming Wang Xin Guo John C Crittenden ldquoExcellent Performance of Cobalt-Impregnated Activated Carbon in Peroxymonosulfate Activation for Acid Orange 7 Oxidationrdquo 2017

Environmental Science and Pollution Research Volume 24 (10) 9651ndash9661

References

31 Yang Li Junfeng Niu Enxiang Shang John C Crittenden ldquoPhotochemical Transformation and Photoinduced Toxicity Reduction of Silver Nanoparticles in the Presence of Perfluorocarboxylic Acids under UV

Irradiationrdquo Environmental Science and Technology 2014 48 (9) pp 4946ndash4953

32 Cao H Xing L Wu G Xie S Zhang SY Minakata D Crittenden JC ldquoPromoting effect of nitration modification on activated carbon in the catalytic ozonation of oxalic acidrdquo Applied Catalysis B

Environmental 2014 146 169-176

33 Konsowa A H Ossman M E Chen Y Crittenden J C ldquoDecolorization of industrial wastewater by ozonation followed by adsorption on activated carbonrdquo Journal of Hazardous Materials 176 (2010) 181-185

November 10 2009

34 Wipada Sanongraj Yongsheng Chen John Crittenden David Hand and David Perram ldquoDevelopment of Photocatalytic Oxidation Model Part I-Mathematical Model for Photocatalytic Destruction of Organic

Contaminants in Airrdquo Journal of the Air and Waste Management Association 571112ndash1122 September 2007

35 Chen Y JC Crittenden S Hackney L Sutter and DW Hand ldquoPreparation of a Novel TiO2-based p-n Junction Nanotube Photocatalystrdquo Environmental Science and Technology Vol 39 No 5 1201-1208 (2005)

36 Suri RPS J Liu JC Crittenden DW Hand and DL Perram Removal and Destruction of Organic Contaminants in Water Using Adsorption Steam Regeneration and Photocatalytic Oxidation A Pilot Scale

Studyrdquo Journal of Air and Waste Management Volume 49 (August 1999) 951 ndash 958

37 Burns RA JC Crittenden DW Hand VH Selzer LL Sutter SR Salman Effect of Inorganic Ions in the Heterogeneous Photocatalysis of Trichloroethene ASCE Journal of Environmental Engineering Vol

125 No 1 pp 77-85 (January 1999)

38 Liu J JC Crittenden DW Hand and DL Perram Regeneration of Adsorbents Using Heterogeneous Photocatalytic Oxidationrdquo Journal of Environmental Engineering Vol 122 No 8 pp 707-714 (1996)

39 Crittenden JC J Liu DW Hand and DL Perram Photocatalytic Oxidation of Chlorinated Hydrocarbons in Waterrdquo Water Research Vol31 No 3 pp 429-438 (1997)

40 Crittenden JC RPS Suri DL Perram and DW Hand Decontamination of Water Using Adsorption and Photocatalysisrdquo Water Research Vol 31 No 3 pp 411-418 (1997)

41 Crittenden JC Y Zhang DW Hand and DL Perram Destruction of Organic Compounds in Water Using Fixed-Bed Photocatalysts Journal of Solar Energy Engineering (ASME) Vol 118 No 5 pp 123 -129

(1996)

42 Crittenden JC Y Zhang DW Hand and DL Perram Solar Detoxification of Fuel-Contaminated Groundwater Using Fixed-Bed Photocatalystsrdquo Water Environment Research Vol 68 No 3 pp 270-278

(1996)

43 Zhang Y JC Crittenden and DW Hand The Solar Photocatalytic Decontamination of Waterrdquo Chemistry amp Industry Vol 18 pp 714-717 September (1994)

44 Mourand JT JC Crittenden DW Hand DL Perram and S Notthakun Regeneration of Spent Adsorbents Using Advanced Oxidationrdquo Water Environment Federation Vol 67 No 3 pp 355-363 (1995)

45 Hand DW DL Perram and JC Crittenden Destruction of DBP Precursors with Catalytic Oxidationrdquo American Water Works Association Journal Vol 87 No 6 pp 84-96 (1995)

46 Zhang Y JC Crittenden DW Hand and DL Perram Fixed-Bed Photo-catalysts for Solar Decontamination of Waterrdquo Environmental Science amp Technology Vol 28 No 3 pp 435-442 (1994)

47 Suri RPS J Liu DW Hand JC Crittenden DL Perram and ME Mullins Heterogeneous Photocatalytic Oxidation of Hazardous Organic Contaminants in Waterrdquo Water Environment Federation Vol 65 No

5 pp 665-673 (1993)

Page 26: The Application of Advanced Oxidation Processes (AOPs) and ...€¦ · We define the electron efficiency to be = 32 12 ·( J 4𝑥)· Where TOC in mg (c)/L and COD in mg ( 2)/L, n

Conventional AOPs vs EAOPs Modeling 13

A case study to compare EEOs for

UVH2O2 H2O2O3 UVHOCl UVPersulfate UVTiO2

EAOPs (two-dimensional and three-dimensional)

Simulation Conditions[HCO3

minus] = 3 mM [NOM] = 2 mgL [Cl-] = 0001 M

pH = 7 kBA = 59times10-9 L(molmiddotS)Same 22 W input energy gives UV light intensity = 164times10-6 Einstein s-1 L-1

Initial Concentrations [R] (Benzoic Acid in this case) = 20 200 2000 mgL

Quantum yield

UVH2O2 = 05 UVHOCl = 09 UVPersulfate = 07

UVTiO2 = 004 (light transmission efficiency = 04)

Chemical production energy

H2O2 = 49 kWhlb persulfate = 49 kWhlb HOCl = 51 kWhlb O3 = 5 kWhlb

Note TiO2 and electrodes production energies are not included in simulation

EAOPs assumptions amp parameters

J = 30 mAcm2 2D anode size A = 10 cm2 3D anode size A= 718 cm2 (80 meshed Ti gauze)

Sc = 2727 Sh = 194 Dl = 9times10-6 cm2s d = 1 cm

Note pumping energy is small compare to electricity and neglected in simulation

Q = 20 mLmin Re = 1851 kf = 235times10-6 ms

Q = 500 mLmin Re = 46296 kf = 688times10-6 ms

Q = 2000 mLmin Re = 203704 kf = 113times10-5 ms (Re lt 2100 in laminar flow)

Minimal

EEO

(kWhm3)

Optimal

OxidantCatalyst

Dosage

9072 [TiO2]=300 mgL

4022 [Persulfate]=16 gL

2718 [H2O2]=0612 gL

2442 [HOCl]=026 gL

679 [H2O2]=0028 mgL

Electrolyte

(Na2SO4)

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

0M3702

0001M 6466 2405

0005M 3781 2069

001M 2676 1552

01M 469 1294

AOPs Minimal

EEO

(kWhm3)

Optimal

OxidantCatalyst

Dosage

UVTiO2 1038 [TiO2]=300 mgL

UVPersulfate 128 [Persulfate]=117 gL

UV H2O2 090 [H2O2]=0204 gL

UVHOCl 367 [HOCl]=014 gL

H2O2O3 0015 [H2O2]=00206 mgL

[R]0 = 20 mgL

~16 mgL TOC

[R]0 = 200 mgL

~140 mgL TOC

Minimal

EEO

(kWhm3)

Optimal

OxidantCatalyst

Dosage

88271 [TiO2]=300 mgL

8208 [Persulfate]=581 gL

1768 [H2O2]=184 gL

8335 [HOCl]=0776 gL

17648 [H2O2]=0035 mgL

[R]0 = 2000 mgL

~1379 mgL TOC

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

3545

6015 2260

3559 1937

2504 1448

455 1207

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

3404

5634 2136

3367 1824

2357 1360

443 1132

Re = 1851 Re = 46296 Re = 203704

Conventional AOPs vs EAOPs Modeling 23

Mass Transfer Increase

Ion

Str

en

gth

In

crease

Conventional AOPs vs EAOPs Modeling 33

AOPs Minimal

EEO

(kWhm3)

Optimal

OxidantCatalyst

Dosage

UVTiO2 1038 [TiO2]=300 mgL

UVPersulfate 128 [Persulfate]=117 gL

UV H2O2 090 [H2O2]=0204 gL

UVHOCl 367 [HOCl]=014 gL

H2O2O3 0015 [H2O2]=00206 mgL

[R]0 = 20 mgL

~16 mgL TOC For low concentration treatment

objectives EAOPs may not be as good as

compared to conventional AOPs

Conventional UVH2O2 and H2O2O3 are

the best conventional AOPs for BA

Electrolyte

(Na2SO4)

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

0M3702

0001M 6466 2405

0005M 3781 2069

001M 2676 1552

01M 469 1294

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

3545

6015 2260

3559 1937

2504 1448

455 1207

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

3404

5634 2136

3367 1824

2357 1360

443 1132

Re = 1851 Re = 46296 Re = 203704Mass Transfer Increase

Ion

Str

en

gth

In

crease

Conventional AOPs vs EAOPs Modeling 33

Minimal

EEO

(kWhm3)

Optimal

OxidantCatalyst

Dosage

88271 [TiO2]=300 mgL

8208 [Persulfate]=581 gL

1768 [H2O2]=184 gL

8335 [HOCl]=0776 gL

17648 [H2O2]=0035 mgL

[R]0 = 2000 mgL

~1379 mgL TOC For high concentration treatment objectives

EAOPs are more energy efficient

3D-EAOP saves more energy than 2D because

it requires lower applied voltage

3D-EAOP works better than 2D in low ion

strength treatment

Electrolyte

(Na2SO4)

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

0M3702

0001M 6466 2405

0005M 3781 2069

001M 2676 1552

01M 469 1294

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

3545

6015 2260

3559 1937

2504 1448

455 1207

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

3404

5634 2136

3367 1824

2357 1360

443 1132

Re = 1851 Re = 46296 Re = 203704Mass Transfer Increase

Ion

Str

en

gth

In

crease

Limiting Current in Different Conditions

jlim = n times F times kf times Csalt

Electrolyte

Concentration Q Q Q

Na2SO4 mlmin mlmin mlmin

20 500 2000

Re Re Re

1852 46296 185185

kf kf kf

ms ms ms

235405E-06 688E-06 109E-05

jlim jlim jlim

molL mAcm2 mAcm2 mAcm2

0001 068 199 316

jlim jlim jlim

molL mAcm2 mAcm2 mAcm2

0005 341 996 1581

jlim jlim jlim

molL mAcm2 mAcm2 mAcm2

001 681 1992 3163

jlim jlim jlim

molL mAcm2 mAcm2 mAcm2

005 3407 9962 15814

jlim jlim jlim

molL mAcm2 mAcm2 mAcm2

01 6814 19924 31627

Parameters Symbol Units Value

Influent concentration C0 mgL 20

Effluent concentration Ce mgL 02

Flow rate Q m3day 1000

Pseudo first order rate constant k min 0042

Size of reactor VRequired m3 38 m3

Detention time τ min 548

Electrode spacing d cm 1

Fluid velocity u ms 0033

Electrolyte Na2SO4 Concentration M 005

Current density J mAcm2 30

Assuming a Plug Flow Reactor (PFR) to be Confirmed with CFD

Full Scale Reactor Design

Full Scale Reactor Design

Rough Design of Reactor (top view)

1 2 3 4 5 6 7 8 9 10

105 meters

long

10 meters

electrodes

10 meters

2 meters deep

Reactor Channel

1 meter

hellip

5 cm 95 cmInfluent Effluent

The total costs (capital costs + energy costs) as a function of different electrode spacing for different theoretical

reaction rate In here the treatment objective is 99 removal flow rate is 1000 m3day and the fluid velocity is 00116

ms The flow channel has eddy promoter and its electrode spacing and obstacle distance ratio is 13 The electricity

price is $00512kWh and the pumping power is 853 kW The electrode price is $300m2 and its lifetime is 2000 h

Capital Expenditure Operational Expenditure

CapEx vs OpEx

Cost Analysis for Preliminary Design

The total costs (capital costs + energy costs) as a function of different electrode spacing for different theoretical

reaction rate In here the treatment objective is 99 removal flow rate is 1000 m3day and the fluid velocity is 00116

ms The flow channel has eddy promoter and its electrode spacing and obstacle distance ratio is 13 The electricity

price is $00512kWh and the pumping power is 853 kW The electrode price is $300m2 and its lifetime is 2000 h

Currently we are at only Ω=0436

Computer-based First-Principles Kinetic Model

Reaction Pathway Generator

(Graph Theory)

Rate Constants Estimator

(Group Contribution Method

Free Energy Linear

Relationship

Genetic Algorithm)

Ordinary Differential

Equations

(ODEs) Generator and Solver

(Gearrsquos Algorithm or

Monte Carlo algorithm)

Kinetic Monte Carlo Solver can

solve 1 million ODEs on PC

within 30 minutes

Complexity of Reaction PathwayExample

General reaction mechanisms that HObull initiates based on past experimental studies

Stefan and Bolton 1998 1999 1999 Stefan et al 1996 2000 Cooper et al 2009 Li et al 2004 2007 von Sonntag and

Schuchmann 1984 Schuchmann and von Sonntag 1979

Type of mechanismNumber of

speciesNumber of reactions

Full mechanism 120 370

Reduced mechanism 41 89

The criterion for DRG method is 1

Reaction rate constants are obtained from group contribution method (Minakata et al 2009 ESampT 43 6220-6227) and literature includingNate et al 1990 J Phys Chem Ref Data 19 413-513Nate et al 1995 J Phys Chem Ref Data 25 709-1050Buxton et al 1988 J Phys Chem Ref Data 17 513-886von Sonntag et al 1991 Angeuz Chem Int Ed Engl 30 1229-1253Li et al 2009 ESampT 43 2831-2837Li et al 2007 ESampT 41 1696-1703

Initial concentration of TCE 108 mM

Initial concentration of O2 22 mM

Initial concentration of H2O2 104 mM

Initial pH 59

Wave length of UV 200~300 nm

Light intensity779times10-6

EinsteinLmiddots

Reactor typeCompletely mixed batch reactor

Reaction time 30 min

Comparison of concentration profiles of major species for experimental data (Li Stefan Crittenden 2007 ESampT 41 1696-1703) and simulation results

00

20

40

60

80

100

120

00

02

04

06

08

10

12

0 5 10 15 20 25 30[H

2O

2]

(mM

)

[Ma

jor

spec

ies]

(m

M)

Time(min)

TCE exp

formic acid exp

oxalic acid exp

20 times DCA exp

20 times MCA exp

TCE cal

formic acid cal

oxalic acid cal

20 times DCA cal

20 times MCA cal

H2O2 exp

H2O2 cal

The photolysis of TCE was added manually because it is not included in this version of the pathway generator

Predicted Concentration Profiles of

Trichloroethene (TCE) and Stable-byproducts in UVH2O2 AOP

Comparison of number averaged molecular

weight (MW) for experimental data

(Vijayalakshmi et al J Appl Polym Sci 2006

100 3997-4003) and on-the-fly KMC model

The KMC model used a population number of 108L to

represent a concentration of 1molL

0

02

04

06

08

1

12

14

16

18

0 25 50 75 100 125 150 175 200

Aver

aged

mole

cu

lar

wei

gh

t (1

05

gm

ol)

Time (min)

Experiment

On-the-fly KMC

0

02

04

06

08

1

12

0 25 50 75 100 125 150 175 200

Nu

mb

er o

f re

act

ion

s (1

06)

Time (min)

Time evolvement of the number of generated

reactions for the degradation of PAM during the

UVTiO2 process

Degradation of Polyacrylamide (PAM)

Simulation Results for PAM Degradation in UVTiO2 AOP

Guo X Minakata D and Crittenden J 2015 On-the-fly kinetic Monte Carlo simulation of aqueous phase advanced oxidation processes Environmental science amp technology 49(15) pp9230-9236

1 Crittenden John C Shumin Hu David W Hand and Sarah Green ldquoA Kinetic Model for H2O2UV Process in a Completely Mixed Batch Reactorrdquo Water Research 33(10) 2315-2328 (1999)

2 Li K Crittenden JC Computerized pathway elucidation for hydroxyl radical induced chain reaction mechanisms in aqueous phase AOPs Environmental Science amp Technology 2009 43(8) 2831-2837

3 Li K Stefan MI Crittenden JC Trichloroethene degradation by UVH2O2 advanced oxidation process product study and kinetic modeling Environmental Science amp Technology 2007 41 1696-1703

4 Li K M I Stefan and J C Crittenden ldquoUV Photolysis of Trichloroethylene (TCE) Product Study and Kinetic Modelingrdquo Environmental Science and Technology Vol 38 No 24 6685-6693 (2004)

5 Ke Li David R Hokanson John C Crittenden R Rhodes Trussell and Daisuke Minakata ldquoEvaluating UVH2O2 Processes for Methyl tert-Butyl Ether (MtBE) and tertiary Butyl Alcohol (TBA) Removal from

Drinking Water Source Effect of Pretreatment Options and Light Sourcesrdquo Water Research 2008 Volume 42 (20) 5045-5053

6 Minakata D Li K Westerhoff P Crittenden J Development of a group contribution method to predict aqueous phase hydroxyl radical reaction rate constants Environmental Science amp Technology 2009 43

6220-6227

7 Minakata D Crittenden J Linear Free Energy Relationships between the Aqueous Phase Hydroxyl Radical (HObull) Reaction Rate Constants and the Free Energy of Activation Environmental Science amp Technology

2011a 45 3479-3486

8 Minakata D Song W Crittenden J Reactivity of aqueous phase hydroxyl radical with halogenated carboxylate anions Experimental and theoretical studies Environmental Science amp Technology 2011 45 6057-

6065

9 Daisuke Minakata Stephen P Mezyk Jace W Jones Brittany R Daws John C Crittenden ldquoDevelopment of Linear Free Energy Relationships for Aqueous Phase Radical-Involved Chemical Reactionsrdquo

Environmental Science amp Technology 2014 48 (23) 13925-13932

10 Xin Guo Daisuke Minakata John C Crittenden ldquoOn-the-Fly Kinetic Monte Carlo Simulation of Aqueous Phase Advanced Oxidation Processesrdquo Environmental Science and Technology 2015 49 (15) 9230ndash9236

11 Guo X Minakata D Crittenden JC ldquoComputer-Based First-Principles Kinetic Monte Carlo Simulation of Polyethylene Glycol Degradation in Aqueous Phase UVH2O2 Advanced Oxidation Processrdquo

Environmental Science amp Technology 2014 48 10813minus10820

12 Xin Guo Daisuke Minakata Junfeng Niu John C Crittenden ldquoComputer-based First-principles Kinetic Modeling of Degradation Pathways and Byproduct Fates in Aqueous Phase Advanced Oxidation Processesrdquo

Environmental Science and Technology 2014 48 (10) pp 5718ndash5725

13 Yajie Qian Xin Guo Yalei Zhang Yue Peng Peizhe Sun Ching-Hua Huang Junfeng Niu Xuefei Zhou John C Crittenden ldquoPerfluorooctanoic Acid Degradation Using UVminusPersulfate Process Modeling of the

Degradation and Chlorate Formationrdquo 2015 Environmental Science and Technology 50 (2) 772ndash781

14 Ruzhen Xie Xiaoyang Meng Peizhe Sun Junfeng Niu Wenju JiangLawrence Bottomley Duo Li Yongsheng Chen John C CrittendenrdquoElectrochemical Oxidation of Ofloxacin Using a TiO2-based SnO2-

SbPolytetrafluoroethylene Resin-PbO2 Electrode Reaction Kinetics and Mass Transfer Impactrdquo 2016 Applied Catalysis B Environmental 203 (2017) 515ndash525

15 Westerhoff Paul Moon Hye Minakata Daisuke Crittenden John ldquoOxidation of Organics in Retentates from Reverse Osmosis Wastewater Reuse Facilitiesrdquo Water Research 43 (16) 3992-2998

16 Liu L Chen F Yang F Chen Y Crittenden J ldquoPhotocatalytic degradation of 24-dichlorophenol using nanoscale FeTiO2rdquo Chemical Engineering Journal 2012 181ndash182 (0)189-195

References

References

17 Ying Wang Jiasheng Fang John C Crittenden Chanchan Shen ldquoNovel RGO120572-FeOOH Supported Catalyst for Fenton Oxidation of Phenol at a Wide pH Range Using Solar-Light-Driven Irradiationrdquo 2017 Journal

of Hazardous Materials 329 321ndash329

18 Xiaodong Ma Mengying Zhao Qin Pang Meihua Zheng Hongwen Sun John C Crittenden Yanying Zhu Yongsheng Chen ldquoDevelopment of Novel CaCO3Fe2O3 Nanorods for Low Temperature 12-

Dichlorobenzene Oxidationrdquo 2017 Applied Catalysis A General 522 (2016) 70ndash79

19 Heacutector L Otaacutelvaro-Mariacuten Miguel Angel Mueses John C Crittenden Fiderman Machuca-Martinez ldquoSolar Photoreactor Design by the Photon Path Length and Optimization of the Radiant Field in a TiO2-based CPC

Reactorrdquo 2017 Chemical Engineering Journal 315 283ndash295

20 Qi Wang Naxin Zhu Enqin Liu Chenlu Zhang John C Crittenden Yi ZhangYanqing CongldquoFabrication of Visible-Light Active Fe2O3-GQDsNF-TiO2 Composite Film with Highly Enhanced

Photoelectrocatalytic Performancerdquo 2017 Applied Catalysis B Environmental 205 347ndash356

21 Junfeng Niu Lifeng Yin Yunrong Dai Yueping Bao John C Crittenden ldquoDesign of Visible Light Responsive Photocatalysts for Selective Reduction of Chlorinated Organic Compounds in Waterrdquo 2016 Applied

Catalysis A General 521 90ndash95

22 Chaojie Jiang Lifen Liu John C Crittenden ldquoAn Electrochemical Process that Uses an Fe0TiO2 Cathode to Degrade Typical Dyes and Antibiotics and a Bio-anode that Produces Electricityrdquo 2016 Frontiers of

Environmental Science amp Engineering 10(4) 15

23 Yijing Xia Qizhou Dai Mili Weng Yue Peng Jinming Luo Xiaoyang Meng Xubiao Luo Jianmeng Chen John C Crittenden ldquoFabrication and Electrochemical Treatment Application of an Al-Doped PbO2

Electrode with High Oxidation Capability Oxygen Evolution Potential and Reusabilityrdquo2015 Journal of The Electrochemical Society 162 (10) E258-E262

24 Feng Duan Yuping Li Hongbin Cao Yi Wang John C Crittenden Yi Zhang ldquoActivated Carbon Electrodes Electrochemical Oxidation Coupled with Desalination for Wastewater Treatmentrdquo 2015 Chemosphere

125 205-211

25 Xing Linlin Xie Yongbing Cao Hongbin Minakata Daisuke Zhang Yi Crittenden John C ldquoActivated carbon-enhanced ozonation of oxalate attributed to HObull oxidation in bulk solution and surface oxidation

Effects of the type and number of basic sitesrdquo Chemical Engineering Journal 2014 245 71-79

26 Yao H Sun P Minakata D Crittenden JC Huang C-H ldquoKinetics and Modeling of Degradation of Ionophore Antibiotics by UV and UVH2O2rdquo Environmental Science and Technology 2013 (47) 4581-

45892

26 Li Yang et al Synergistic photogeneration of reactive oxygen species by dissolved organic matter and C60 in aqueous phase Environmental science amp technology 492 (2015) 965-973

28 Niu Junfeng et al Photocatalytic reduction of triclosan on AundashCu 2 O nanowire arrays as plasmonic photocatalysts under visible light irradiation Physical Chemistry Chemical Physics 1726 (2015) 17421-17428

29 Niu Junfeng et al Design of visible light responsive photocatalysts for selective reduction of chlorinated organic compounds in water Applied Catalysis A General 521 (2016) 90-95

30 Tianyin Huang Jiabin Chen Zhongming Wang Xin Guo John C Crittenden ldquoExcellent Performance of Cobalt-Impregnated Activated Carbon in Peroxymonosulfate Activation for Acid Orange 7 Oxidationrdquo 2017

Environmental Science and Pollution Research Volume 24 (10) 9651ndash9661

References

31 Yang Li Junfeng Niu Enxiang Shang John C Crittenden ldquoPhotochemical Transformation and Photoinduced Toxicity Reduction of Silver Nanoparticles in the Presence of Perfluorocarboxylic Acids under UV

Irradiationrdquo Environmental Science and Technology 2014 48 (9) pp 4946ndash4953

32 Cao H Xing L Wu G Xie S Zhang SY Minakata D Crittenden JC ldquoPromoting effect of nitration modification on activated carbon in the catalytic ozonation of oxalic acidrdquo Applied Catalysis B

Environmental 2014 146 169-176

33 Konsowa A H Ossman M E Chen Y Crittenden J C ldquoDecolorization of industrial wastewater by ozonation followed by adsorption on activated carbonrdquo Journal of Hazardous Materials 176 (2010) 181-185

November 10 2009

34 Wipada Sanongraj Yongsheng Chen John Crittenden David Hand and David Perram ldquoDevelopment of Photocatalytic Oxidation Model Part I-Mathematical Model for Photocatalytic Destruction of Organic

Contaminants in Airrdquo Journal of the Air and Waste Management Association 571112ndash1122 September 2007

35 Chen Y JC Crittenden S Hackney L Sutter and DW Hand ldquoPreparation of a Novel TiO2-based p-n Junction Nanotube Photocatalystrdquo Environmental Science and Technology Vol 39 No 5 1201-1208 (2005)

36 Suri RPS J Liu JC Crittenden DW Hand and DL Perram Removal and Destruction of Organic Contaminants in Water Using Adsorption Steam Regeneration and Photocatalytic Oxidation A Pilot Scale

Studyrdquo Journal of Air and Waste Management Volume 49 (August 1999) 951 ndash 958

37 Burns RA JC Crittenden DW Hand VH Selzer LL Sutter SR Salman Effect of Inorganic Ions in the Heterogeneous Photocatalysis of Trichloroethene ASCE Journal of Environmental Engineering Vol

125 No 1 pp 77-85 (January 1999)

38 Liu J JC Crittenden DW Hand and DL Perram Regeneration of Adsorbents Using Heterogeneous Photocatalytic Oxidationrdquo Journal of Environmental Engineering Vol 122 No 8 pp 707-714 (1996)

39 Crittenden JC J Liu DW Hand and DL Perram Photocatalytic Oxidation of Chlorinated Hydrocarbons in Waterrdquo Water Research Vol31 No 3 pp 429-438 (1997)

40 Crittenden JC RPS Suri DL Perram and DW Hand Decontamination of Water Using Adsorption and Photocatalysisrdquo Water Research Vol 31 No 3 pp 411-418 (1997)

41 Crittenden JC Y Zhang DW Hand and DL Perram Destruction of Organic Compounds in Water Using Fixed-Bed Photocatalysts Journal of Solar Energy Engineering (ASME) Vol 118 No 5 pp 123 -129

(1996)

42 Crittenden JC Y Zhang DW Hand and DL Perram Solar Detoxification of Fuel-Contaminated Groundwater Using Fixed-Bed Photocatalystsrdquo Water Environment Research Vol 68 No 3 pp 270-278

(1996)

43 Zhang Y JC Crittenden and DW Hand The Solar Photocatalytic Decontamination of Waterrdquo Chemistry amp Industry Vol 18 pp 714-717 September (1994)

44 Mourand JT JC Crittenden DW Hand DL Perram and S Notthakun Regeneration of Spent Adsorbents Using Advanced Oxidationrdquo Water Environment Federation Vol 67 No 3 pp 355-363 (1995)

45 Hand DW DL Perram and JC Crittenden Destruction of DBP Precursors with Catalytic Oxidationrdquo American Water Works Association Journal Vol 87 No 6 pp 84-96 (1995)

46 Zhang Y JC Crittenden DW Hand and DL Perram Fixed-Bed Photo-catalysts for Solar Decontamination of Waterrdquo Environmental Science amp Technology Vol 28 No 3 pp 435-442 (1994)

47 Suri RPS J Liu DW Hand JC Crittenden DL Perram and ME Mullins Heterogeneous Photocatalytic Oxidation of Hazardous Organic Contaminants in Waterrdquo Water Environment Federation Vol 65 No

5 pp 665-673 (1993)

Page 27: The Application of Advanced Oxidation Processes (AOPs) and ...€¦ · We define the electron efficiency to be = 32 12 ·( J 4𝑥)· Where TOC in mg (c)/L and COD in mg ( 2)/L, n

Minimal

EEO

(kWhm3)

Optimal

OxidantCatalyst

Dosage

9072 [TiO2]=300 mgL

4022 [Persulfate]=16 gL

2718 [H2O2]=0612 gL

2442 [HOCl]=026 gL

679 [H2O2]=0028 mgL

Electrolyte

(Na2SO4)

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

0M3702

0001M 6466 2405

0005M 3781 2069

001M 2676 1552

01M 469 1294

AOPs Minimal

EEO

(kWhm3)

Optimal

OxidantCatalyst

Dosage

UVTiO2 1038 [TiO2]=300 mgL

UVPersulfate 128 [Persulfate]=117 gL

UV H2O2 090 [H2O2]=0204 gL

UVHOCl 367 [HOCl]=014 gL

H2O2O3 0015 [H2O2]=00206 mgL

[R]0 = 20 mgL

~16 mgL TOC

[R]0 = 200 mgL

~140 mgL TOC

Minimal

EEO

(kWhm3)

Optimal

OxidantCatalyst

Dosage

88271 [TiO2]=300 mgL

8208 [Persulfate]=581 gL

1768 [H2O2]=184 gL

8335 [HOCl]=0776 gL

17648 [H2O2]=0035 mgL

[R]0 = 2000 mgL

~1379 mgL TOC

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

3545

6015 2260

3559 1937

2504 1448

455 1207

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

3404

5634 2136

3367 1824

2357 1360

443 1132

Re = 1851 Re = 46296 Re = 203704

Conventional AOPs vs EAOPs Modeling 23

Mass Transfer Increase

Ion

Str

en

gth

In

crease

Conventional AOPs vs EAOPs Modeling 33

AOPs Minimal

EEO

(kWhm3)

Optimal

OxidantCatalyst

Dosage

UVTiO2 1038 [TiO2]=300 mgL

UVPersulfate 128 [Persulfate]=117 gL

UV H2O2 090 [H2O2]=0204 gL

UVHOCl 367 [HOCl]=014 gL

H2O2O3 0015 [H2O2]=00206 mgL

[R]0 = 20 mgL

~16 mgL TOC For low concentration treatment

objectives EAOPs may not be as good as

compared to conventional AOPs

Conventional UVH2O2 and H2O2O3 are

the best conventional AOPs for BA

Electrolyte

(Na2SO4)

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

0M3702

0001M 6466 2405

0005M 3781 2069

001M 2676 1552

01M 469 1294

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

3545

6015 2260

3559 1937

2504 1448

455 1207

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

3404

5634 2136

3367 1824

2357 1360

443 1132

Re = 1851 Re = 46296 Re = 203704Mass Transfer Increase

Ion

Str

en

gth

In

crease

Conventional AOPs vs EAOPs Modeling 33

Minimal

EEO

(kWhm3)

Optimal

OxidantCatalyst

Dosage

88271 [TiO2]=300 mgL

8208 [Persulfate]=581 gL

1768 [H2O2]=184 gL

8335 [HOCl]=0776 gL

17648 [H2O2]=0035 mgL

[R]0 = 2000 mgL

~1379 mgL TOC For high concentration treatment objectives

EAOPs are more energy efficient

3D-EAOP saves more energy than 2D because

it requires lower applied voltage

3D-EAOP works better than 2D in low ion

strength treatment

Electrolyte

(Na2SO4)

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

0M3702

0001M 6466 2405

0005M 3781 2069

001M 2676 1552

01M 469 1294

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

3545

6015 2260

3559 1937

2504 1448

455 1207

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

3404

5634 2136

3367 1824

2357 1360

443 1132

Re = 1851 Re = 46296 Re = 203704Mass Transfer Increase

Ion

Str

en

gth

In

crease

Limiting Current in Different Conditions

jlim = n times F times kf times Csalt

Electrolyte

Concentration Q Q Q

Na2SO4 mlmin mlmin mlmin

20 500 2000

Re Re Re

1852 46296 185185

kf kf kf

ms ms ms

235405E-06 688E-06 109E-05

jlim jlim jlim

molL mAcm2 mAcm2 mAcm2

0001 068 199 316

jlim jlim jlim

molL mAcm2 mAcm2 mAcm2

0005 341 996 1581

jlim jlim jlim

molL mAcm2 mAcm2 mAcm2

001 681 1992 3163

jlim jlim jlim

molL mAcm2 mAcm2 mAcm2

005 3407 9962 15814

jlim jlim jlim

molL mAcm2 mAcm2 mAcm2

01 6814 19924 31627

Parameters Symbol Units Value

Influent concentration C0 mgL 20

Effluent concentration Ce mgL 02

Flow rate Q m3day 1000

Pseudo first order rate constant k min 0042

Size of reactor VRequired m3 38 m3

Detention time τ min 548

Electrode spacing d cm 1

Fluid velocity u ms 0033

Electrolyte Na2SO4 Concentration M 005

Current density J mAcm2 30

Assuming a Plug Flow Reactor (PFR) to be Confirmed with CFD

Full Scale Reactor Design

Full Scale Reactor Design

Rough Design of Reactor (top view)

1 2 3 4 5 6 7 8 9 10

105 meters

long

10 meters

electrodes

10 meters

2 meters deep

Reactor Channel

1 meter

hellip

5 cm 95 cmInfluent Effluent

The total costs (capital costs + energy costs) as a function of different electrode spacing for different theoretical

reaction rate In here the treatment objective is 99 removal flow rate is 1000 m3day and the fluid velocity is 00116

ms The flow channel has eddy promoter and its electrode spacing and obstacle distance ratio is 13 The electricity

price is $00512kWh and the pumping power is 853 kW The electrode price is $300m2 and its lifetime is 2000 h

Capital Expenditure Operational Expenditure

CapEx vs OpEx

Cost Analysis for Preliminary Design

The total costs (capital costs + energy costs) as a function of different electrode spacing for different theoretical

reaction rate In here the treatment objective is 99 removal flow rate is 1000 m3day and the fluid velocity is 00116

ms The flow channel has eddy promoter and its electrode spacing and obstacle distance ratio is 13 The electricity

price is $00512kWh and the pumping power is 853 kW The electrode price is $300m2 and its lifetime is 2000 h

Currently we are at only Ω=0436

Computer-based First-Principles Kinetic Model

Reaction Pathway Generator

(Graph Theory)

Rate Constants Estimator

(Group Contribution Method

Free Energy Linear

Relationship

Genetic Algorithm)

Ordinary Differential

Equations

(ODEs) Generator and Solver

(Gearrsquos Algorithm or

Monte Carlo algorithm)

Kinetic Monte Carlo Solver can

solve 1 million ODEs on PC

within 30 minutes

Complexity of Reaction PathwayExample

General reaction mechanisms that HObull initiates based on past experimental studies

Stefan and Bolton 1998 1999 1999 Stefan et al 1996 2000 Cooper et al 2009 Li et al 2004 2007 von Sonntag and

Schuchmann 1984 Schuchmann and von Sonntag 1979

Type of mechanismNumber of

speciesNumber of reactions

Full mechanism 120 370

Reduced mechanism 41 89

The criterion for DRG method is 1

Reaction rate constants are obtained from group contribution method (Minakata et al 2009 ESampT 43 6220-6227) and literature includingNate et al 1990 J Phys Chem Ref Data 19 413-513Nate et al 1995 J Phys Chem Ref Data 25 709-1050Buxton et al 1988 J Phys Chem Ref Data 17 513-886von Sonntag et al 1991 Angeuz Chem Int Ed Engl 30 1229-1253Li et al 2009 ESampT 43 2831-2837Li et al 2007 ESampT 41 1696-1703

Initial concentration of TCE 108 mM

Initial concentration of O2 22 mM

Initial concentration of H2O2 104 mM

Initial pH 59

Wave length of UV 200~300 nm

Light intensity779times10-6

EinsteinLmiddots

Reactor typeCompletely mixed batch reactor

Reaction time 30 min

Comparison of concentration profiles of major species for experimental data (Li Stefan Crittenden 2007 ESampT 41 1696-1703) and simulation results

00

20

40

60

80

100

120

00

02

04

06

08

10

12

0 5 10 15 20 25 30[H

2O

2]

(mM

)

[Ma

jor

spec

ies]

(m

M)

Time(min)

TCE exp

formic acid exp

oxalic acid exp

20 times DCA exp

20 times MCA exp

TCE cal

formic acid cal

oxalic acid cal

20 times DCA cal

20 times MCA cal

H2O2 exp

H2O2 cal

The photolysis of TCE was added manually because it is not included in this version of the pathway generator

Predicted Concentration Profiles of

Trichloroethene (TCE) and Stable-byproducts in UVH2O2 AOP

Comparison of number averaged molecular

weight (MW) for experimental data

(Vijayalakshmi et al J Appl Polym Sci 2006

100 3997-4003) and on-the-fly KMC model

The KMC model used a population number of 108L to

represent a concentration of 1molL

0

02

04

06

08

1

12

14

16

18

0 25 50 75 100 125 150 175 200

Aver

aged

mole

cu

lar

wei

gh

t (1

05

gm

ol)

Time (min)

Experiment

On-the-fly KMC

0

02

04

06

08

1

12

0 25 50 75 100 125 150 175 200

Nu

mb

er o

f re

act

ion

s (1

06)

Time (min)

Time evolvement of the number of generated

reactions for the degradation of PAM during the

UVTiO2 process

Degradation of Polyacrylamide (PAM)

Simulation Results for PAM Degradation in UVTiO2 AOP

Guo X Minakata D and Crittenden J 2015 On-the-fly kinetic Monte Carlo simulation of aqueous phase advanced oxidation processes Environmental science amp technology 49(15) pp9230-9236

1 Crittenden John C Shumin Hu David W Hand and Sarah Green ldquoA Kinetic Model for H2O2UV Process in a Completely Mixed Batch Reactorrdquo Water Research 33(10) 2315-2328 (1999)

2 Li K Crittenden JC Computerized pathway elucidation for hydroxyl radical induced chain reaction mechanisms in aqueous phase AOPs Environmental Science amp Technology 2009 43(8) 2831-2837

3 Li K Stefan MI Crittenden JC Trichloroethene degradation by UVH2O2 advanced oxidation process product study and kinetic modeling Environmental Science amp Technology 2007 41 1696-1703

4 Li K M I Stefan and J C Crittenden ldquoUV Photolysis of Trichloroethylene (TCE) Product Study and Kinetic Modelingrdquo Environmental Science and Technology Vol 38 No 24 6685-6693 (2004)

5 Ke Li David R Hokanson John C Crittenden R Rhodes Trussell and Daisuke Minakata ldquoEvaluating UVH2O2 Processes for Methyl tert-Butyl Ether (MtBE) and tertiary Butyl Alcohol (TBA) Removal from

Drinking Water Source Effect of Pretreatment Options and Light Sourcesrdquo Water Research 2008 Volume 42 (20) 5045-5053

6 Minakata D Li K Westerhoff P Crittenden J Development of a group contribution method to predict aqueous phase hydroxyl radical reaction rate constants Environmental Science amp Technology 2009 43

6220-6227

7 Minakata D Crittenden J Linear Free Energy Relationships between the Aqueous Phase Hydroxyl Radical (HObull) Reaction Rate Constants and the Free Energy of Activation Environmental Science amp Technology

2011a 45 3479-3486

8 Minakata D Song W Crittenden J Reactivity of aqueous phase hydroxyl radical with halogenated carboxylate anions Experimental and theoretical studies Environmental Science amp Technology 2011 45 6057-

6065

9 Daisuke Minakata Stephen P Mezyk Jace W Jones Brittany R Daws John C Crittenden ldquoDevelopment of Linear Free Energy Relationships for Aqueous Phase Radical-Involved Chemical Reactionsrdquo

Environmental Science amp Technology 2014 48 (23) 13925-13932

10 Xin Guo Daisuke Minakata John C Crittenden ldquoOn-the-Fly Kinetic Monte Carlo Simulation of Aqueous Phase Advanced Oxidation Processesrdquo Environmental Science and Technology 2015 49 (15) 9230ndash9236

11 Guo X Minakata D Crittenden JC ldquoComputer-Based First-Principles Kinetic Monte Carlo Simulation of Polyethylene Glycol Degradation in Aqueous Phase UVH2O2 Advanced Oxidation Processrdquo

Environmental Science amp Technology 2014 48 10813minus10820

12 Xin Guo Daisuke Minakata Junfeng Niu John C Crittenden ldquoComputer-based First-principles Kinetic Modeling of Degradation Pathways and Byproduct Fates in Aqueous Phase Advanced Oxidation Processesrdquo

Environmental Science and Technology 2014 48 (10) pp 5718ndash5725

13 Yajie Qian Xin Guo Yalei Zhang Yue Peng Peizhe Sun Ching-Hua Huang Junfeng Niu Xuefei Zhou John C Crittenden ldquoPerfluorooctanoic Acid Degradation Using UVminusPersulfate Process Modeling of the

Degradation and Chlorate Formationrdquo 2015 Environmental Science and Technology 50 (2) 772ndash781

14 Ruzhen Xie Xiaoyang Meng Peizhe Sun Junfeng Niu Wenju JiangLawrence Bottomley Duo Li Yongsheng Chen John C CrittendenrdquoElectrochemical Oxidation of Ofloxacin Using a TiO2-based SnO2-

SbPolytetrafluoroethylene Resin-PbO2 Electrode Reaction Kinetics and Mass Transfer Impactrdquo 2016 Applied Catalysis B Environmental 203 (2017) 515ndash525

15 Westerhoff Paul Moon Hye Minakata Daisuke Crittenden John ldquoOxidation of Organics in Retentates from Reverse Osmosis Wastewater Reuse Facilitiesrdquo Water Research 43 (16) 3992-2998

16 Liu L Chen F Yang F Chen Y Crittenden J ldquoPhotocatalytic degradation of 24-dichlorophenol using nanoscale FeTiO2rdquo Chemical Engineering Journal 2012 181ndash182 (0)189-195

References

References

17 Ying Wang Jiasheng Fang John C Crittenden Chanchan Shen ldquoNovel RGO120572-FeOOH Supported Catalyst for Fenton Oxidation of Phenol at a Wide pH Range Using Solar-Light-Driven Irradiationrdquo 2017 Journal

of Hazardous Materials 329 321ndash329

18 Xiaodong Ma Mengying Zhao Qin Pang Meihua Zheng Hongwen Sun John C Crittenden Yanying Zhu Yongsheng Chen ldquoDevelopment of Novel CaCO3Fe2O3 Nanorods for Low Temperature 12-

Dichlorobenzene Oxidationrdquo 2017 Applied Catalysis A General 522 (2016) 70ndash79

19 Heacutector L Otaacutelvaro-Mariacuten Miguel Angel Mueses John C Crittenden Fiderman Machuca-Martinez ldquoSolar Photoreactor Design by the Photon Path Length and Optimization of the Radiant Field in a TiO2-based CPC

Reactorrdquo 2017 Chemical Engineering Journal 315 283ndash295

20 Qi Wang Naxin Zhu Enqin Liu Chenlu Zhang John C Crittenden Yi ZhangYanqing CongldquoFabrication of Visible-Light Active Fe2O3-GQDsNF-TiO2 Composite Film with Highly Enhanced

Photoelectrocatalytic Performancerdquo 2017 Applied Catalysis B Environmental 205 347ndash356

21 Junfeng Niu Lifeng Yin Yunrong Dai Yueping Bao John C Crittenden ldquoDesign of Visible Light Responsive Photocatalysts for Selective Reduction of Chlorinated Organic Compounds in Waterrdquo 2016 Applied

Catalysis A General 521 90ndash95

22 Chaojie Jiang Lifen Liu John C Crittenden ldquoAn Electrochemical Process that Uses an Fe0TiO2 Cathode to Degrade Typical Dyes and Antibiotics and a Bio-anode that Produces Electricityrdquo 2016 Frontiers of

Environmental Science amp Engineering 10(4) 15

23 Yijing Xia Qizhou Dai Mili Weng Yue Peng Jinming Luo Xiaoyang Meng Xubiao Luo Jianmeng Chen John C Crittenden ldquoFabrication and Electrochemical Treatment Application of an Al-Doped PbO2

Electrode with High Oxidation Capability Oxygen Evolution Potential and Reusabilityrdquo2015 Journal of The Electrochemical Society 162 (10) E258-E262

24 Feng Duan Yuping Li Hongbin Cao Yi Wang John C Crittenden Yi Zhang ldquoActivated Carbon Electrodes Electrochemical Oxidation Coupled with Desalination for Wastewater Treatmentrdquo 2015 Chemosphere

125 205-211

25 Xing Linlin Xie Yongbing Cao Hongbin Minakata Daisuke Zhang Yi Crittenden John C ldquoActivated carbon-enhanced ozonation of oxalate attributed to HObull oxidation in bulk solution and surface oxidation

Effects of the type and number of basic sitesrdquo Chemical Engineering Journal 2014 245 71-79

26 Yao H Sun P Minakata D Crittenden JC Huang C-H ldquoKinetics and Modeling of Degradation of Ionophore Antibiotics by UV and UVH2O2rdquo Environmental Science and Technology 2013 (47) 4581-

45892

26 Li Yang et al Synergistic photogeneration of reactive oxygen species by dissolved organic matter and C60 in aqueous phase Environmental science amp technology 492 (2015) 965-973

28 Niu Junfeng et al Photocatalytic reduction of triclosan on AundashCu 2 O nanowire arrays as plasmonic photocatalysts under visible light irradiation Physical Chemistry Chemical Physics 1726 (2015) 17421-17428

29 Niu Junfeng et al Design of visible light responsive photocatalysts for selective reduction of chlorinated organic compounds in water Applied Catalysis A General 521 (2016) 90-95

30 Tianyin Huang Jiabin Chen Zhongming Wang Xin Guo John C Crittenden ldquoExcellent Performance of Cobalt-Impregnated Activated Carbon in Peroxymonosulfate Activation for Acid Orange 7 Oxidationrdquo 2017

Environmental Science and Pollution Research Volume 24 (10) 9651ndash9661

References

31 Yang Li Junfeng Niu Enxiang Shang John C Crittenden ldquoPhotochemical Transformation and Photoinduced Toxicity Reduction of Silver Nanoparticles in the Presence of Perfluorocarboxylic Acids under UV

Irradiationrdquo Environmental Science and Technology 2014 48 (9) pp 4946ndash4953

32 Cao H Xing L Wu G Xie S Zhang SY Minakata D Crittenden JC ldquoPromoting effect of nitration modification on activated carbon in the catalytic ozonation of oxalic acidrdquo Applied Catalysis B

Environmental 2014 146 169-176

33 Konsowa A H Ossman M E Chen Y Crittenden J C ldquoDecolorization of industrial wastewater by ozonation followed by adsorption on activated carbonrdquo Journal of Hazardous Materials 176 (2010) 181-185

November 10 2009

34 Wipada Sanongraj Yongsheng Chen John Crittenden David Hand and David Perram ldquoDevelopment of Photocatalytic Oxidation Model Part I-Mathematical Model for Photocatalytic Destruction of Organic

Contaminants in Airrdquo Journal of the Air and Waste Management Association 571112ndash1122 September 2007

35 Chen Y JC Crittenden S Hackney L Sutter and DW Hand ldquoPreparation of a Novel TiO2-based p-n Junction Nanotube Photocatalystrdquo Environmental Science and Technology Vol 39 No 5 1201-1208 (2005)

36 Suri RPS J Liu JC Crittenden DW Hand and DL Perram Removal and Destruction of Organic Contaminants in Water Using Adsorption Steam Regeneration and Photocatalytic Oxidation A Pilot Scale

Studyrdquo Journal of Air and Waste Management Volume 49 (August 1999) 951 ndash 958

37 Burns RA JC Crittenden DW Hand VH Selzer LL Sutter SR Salman Effect of Inorganic Ions in the Heterogeneous Photocatalysis of Trichloroethene ASCE Journal of Environmental Engineering Vol

125 No 1 pp 77-85 (January 1999)

38 Liu J JC Crittenden DW Hand and DL Perram Regeneration of Adsorbents Using Heterogeneous Photocatalytic Oxidationrdquo Journal of Environmental Engineering Vol 122 No 8 pp 707-714 (1996)

39 Crittenden JC J Liu DW Hand and DL Perram Photocatalytic Oxidation of Chlorinated Hydrocarbons in Waterrdquo Water Research Vol31 No 3 pp 429-438 (1997)

40 Crittenden JC RPS Suri DL Perram and DW Hand Decontamination of Water Using Adsorption and Photocatalysisrdquo Water Research Vol 31 No 3 pp 411-418 (1997)

41 Crittenden JC Y Zhang DW Hand and DL Perram Destruction of Organic Compounds in Water Using Fixed-Bed Photocatalysts Journal of Solar Energy Engineering (ASME) Vol 118 No 5 pp 123 -129

(1996)

42 Crittenden JC Y Zhang DW Hand and DL Perram Solar Detoxification of Fuel-Contaminated Groundwater Using Fixed-Bed Photocatalystsrdquo Water Environment Research Vol 68 No 3 pp 270-278

(1996)

43 Zhang Y JC Crittenden and DW Hand The Solar Photocatalytic Decontamination of Waterrdquo Chemistry amp Industry Vol 18 pp 714-717 September (1994)

44 Mourand JT JC Crittenden DW Hand DL Perram and S Notthakun Regeneration of Spent Adsorbents Using Advanced Oxidationrdquo Water Environment Federation Vol 67 No 3 pp 355-363 (1995)

45 Hand DW DL Perram and JC Crittenden Destruction of DBP Precursors with Catalytic Oxidationrdquo American Water Works Association Journal Vol 87 No 6 pp 84-96 (1995)

46 Zhang Y JC Crittenden DW Hand and DL Perram Fixed-Bed Photo-catalysts for Solar Decontamination of Waterrdquo Environmental Science amp Technology Vol 28 No 3 pp 435-442 (1994)

47 Suri RPS J Liu DW Hand JC Crittenden DL Perram and ME Mullins Heterogeneous Photocatalytic Oxidation of Hazardous Organic Contaminants in Waterrdquo Water Environment Federation Vol 65 No

5 pp 665-673 (1993)

Page 28: The Application of Advanced Oxidation Processes (AOPs) and ...€¦ · We define the electron efficiency to be = 32 12 ·( J 4𝑥)· Where TOC in mg (c)/L and COD in mg ( 2)/L, n

Conventional AOPs vs EAOPs Modeling 33

AOPs Minimal

EEO

(kWhm3)

Optimal

OxidantCatalyst

Dosage

UVTiO2 1038 [TiO2]=300 mgL

UVPersulfate 128 [Persulfate]=117 gL

UV H2O2 090 [H2O2]=0204 gL

UVHOCl 367 [HOCl]=014 gL

H2O2O3 0015 [H2O2]=00206 mgL

[R]0 = 20 mgL

~16 mgL TOC For low concentration treatment

objectives EAOPs may not be as good as

compared to conventional AOPs

Conventional UVH2O2 and H2O2O3 are

the best conventional AOPs for BA

Electrolyte

(Na2SO4)

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

0M3702

0001M 6466 2405

0005M 3781 2069

001M 2676 1552

01M 469 1294

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

3545

6015 2260

3559 1937

2504 1448

455 1207

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

3404

5634 2136

3367 1824

2357 1360

443 1132

Re = 1851 Re = 46296 Re = 203704Mass Transfer Increase

Ion

Str

en

gth

In

crease

Conventional AOPs vs EAOPs Modeling 33

Minimal

EEO

(kWhm3)

Optimal

OxidantCatalyst

Dosage

88271 [TiO2]=300 mgL

8208 [Persulfate]=581 gL

1768 [H2O2]=184 gL

8335 [HOCl]=0776 gL

17648 [H2O2]=0035 mgL

[R]0 = 2000 mgL

~1379 mgL TOC For high concentration treatment objectives

EAOPs are more energy efficient

3D-EAOP saves more energy than 2D because

it requires lower applied voltage

3D-EAOP works better than 2D in low ion

strength treatment

Electrolyte

(Na2SO4)

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

0M3702

0001M 6466 2405

0005M 3781 2069

001M 2676 1552

01M 469 1294

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

3545

6015 2260

3559 1937

2504 1448

455 1207

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

3404

5634 2136

3367 1824

2357 1360

443 1132

Re = 1851 Re = 46296 Re = 203704Mass Transfer Increase

Ion

Str

en

gth

In

crease

Limiting Current in Different Conditions

jlim = n times F times kf times Csalt

Electrolyte

Concentration Q Q Q

Na2SO4 mlmin mlmin mlmin

20 500 2000

Re Re Re

1852 46296 185185

kf kf kf

ms ms ms

235405E-06 688E-06 109E-05

jlim jlim jlim

molL mAcm2 mAcm2 mAcm2

0001 068 199 316

jlim jlim jlim

molL mAcm2 mAcm2 mAcm2

0005 341 996 1581

jlim jlim jlim

molL mAcm2 mAcm2 mAcm2

001 681 1992 3163

jlim jlim jlim

molL mAcm2 mAcm2 mAcm2

005 3407 9962 15814

jlim jlim jlim

molL mAcm2 mAcm2 mAcm2

01 6814 19924 31627

Parameters Symbol Units Value

Influent concentration C0 mgL 20

Effluent concentration Ce mgL 02

Flow rate Q m3day 1000

Pseudo first order rate constant k min 0042

Size of reactor VRequired m3 38 m3

Detention time τ min 548

Electrode spacing d cm 1

Fluid velocity u ms 0033

Electrolyte Na2SO4 Concentration M 005

Current density J mAcm2 30

Assuming a Plug Flow Reactor (PFR) to be Confirmed with CFD

Full Scale Reactor Design

Full Scale Reactor Design

Rough Design of Reactor (top view)

1 2 3 4 5 6 7 8 9 10

105 meters

long

10 meters

electrodes

10 meters

2 meters deep

Reactor Channel

1 meter

hellip

5 cm 95 cmInfluent Effluent

The total costs (capital costs + energy costs) as a function of different electrode spacing for different theoretical

reaction rate In here the treatment objective is 99 removal flow rate is 1000 m3day and the fluid velocity is 00116

ms The flow channel has eddy promoter and its electrode spacing and obstacle distance ratio is 13 The electricity

price is $00512kWh and the pumping power is 853 kW The electrode price is $300m2 and its lifetime is 2000 h

Capital Expenditure Operational Expenditure

CapEx vs OpEx

Cost Analysis for Preliminary Design

The total costs (capital costs + energy costs) as a function of different electrode spacing for different theoretical

reaction rate In here the treatment objective is 99 removal flow rate is 1000 m3day and the fluid velocity is 00116

ms The flow channel has eddy promoter and its electrode spacing and obstacle distance ratio is 13 The electricity

price is $00512kWh and the pumping power is 853 kW The electrode price is $300m2 and its lifetime is 2000 h

Currently we are at only Ω=0436

Computer-based First-Principles Kinetic Model

Reaction Pathway Generator

(Graph Theory)

Rate Constants Estimator

(Group Contribution Method

Free Energy Linear

Relationship

Genetic Algorithm)

Ordinary Differential

Equations

(ODEs) Generator and Solver

(Gearrsquos Algorithm or

Monte Carlo algorithm)

Kinetic Monte Carlo Solver can

solve 1 million ODEs on PC

within 30 minutes

Complexity of Reaction PathwayExample

General reaction mechanisms that HObull initiates based on past experimental studies

Stefan and Bolton 1998 1999 1999 Stefan et al 1996 2000 Cooper et al 2009 Li et al 2004 2007 von Sonntag and

Schuchmann 1984 Schuchmann and von Sonntag 1979

Type of mechanismNumber of

speciesNumber of reactions

Full mechanism 120 370

Reduced mechanism 41 89

The criterion for DRG method is 1

Reaction rate constants are obtained from group contribution method (Minakata et al 2009 ESampT 43 6220-6227) and literature includingNate et al 1990 J Phys Chem Ref Data 19 413-513Nate et al 1995 J Phys Chem Ref Data 25 709-1050Buxton et al 1988 J Phys Chem Ref Data 17 513-886von Sonntag et al 1991 Angeuz Chem Int Ed Engl 30 1229-1253Li et al 2009 ESampT 43 2831-2837Li et al 2007 ESampT 41 1696-1703

Initial concentration of TCE 108 mM

Initial concentration of O2 22 mM

Initial concentration of H2O2 104 mM

Initial pH 59

Wave length of UV 200~300 nm

Light intensity779times10-6

EinsteinLmiddots

Reactor typeCompletely mixed batch reactor

Reaction time 30 min

Comparison of concentration profiles of major species for experimental data (Li Stefan Crittenden 2007 ESampT 41 1696-1703) and simulation results

00

20

40

60

80

100

120

00

02

04

06

08

10

12

0 5 10 15 20 25 30[H

2O

2]

(mM

)

[Ma

jor

spec

ies]

(m

M)

Time(min)

TCE exp

formic acid exp

oxalic acid exp

20 times DCA exp

20 times MCA exp

TCE cal

formic acid cal

oxalic acid cal

20 times DCA cal

20 times MCA cal

H2O2 exp

H2O2 cal

The photolysis of TCE was added manually because it is not included in this version of the pathway generator

Predicted Concentration Profiles of

Trichloroethene (TCE) and Stable-byproducts in UVH2O2 AOP

Comparison of number averaged molecular

weight (MW) for experimental data

(Vijayalakshmi et al J Appl Polym Sci 2006

100 3997-4003) and on-the-fly KMC model

The KMC model used a population number of 108L to

represent a concentration of 1molL

0

02

04

06

08

1

12

14

16

18

0 25 50 75 100 125 150 175 200

Aver

aged

mole

cu

lar

wei

gh

t (1

05

gm

ol)

Time (min)

Experiment

On-the-fly KMC

0

02

04

06

08

1

12

0 25 50 75 100 125 150 175 200

Nu

mb

er o

f re

act

ion

s (1

06)

Time (min)

Time evolvement of the number of generated

reactions for the degradation of PAM during the

UVTiO2 process

Degradation of Polyacrylamide (PAM)

Simulation Results for PAM Degradation in UVTiO2 AOP

Guo X Minakata D and Crittenden J 2015 On-the-fly kinetic Monte Carlo simulation of aqueous phase advanced oxidation processes Environmental science amp technology 49(15) pp9230-9236

1 Crittenden John C Shumin Hu David W Hand and Sarah Green ldquoA Kinetic Model for H2O2UV Process in a Completely Mixed Batch Reactorrdquo Water Research 33(10) 2315-2328 (1999)

2 Li K Crittenden JC Computerized pathway elucidation for hydroxyl radical induced chain reaction mechanisms in aqueous phase AOPs Environmental Science amp Technology 2009 43(8) 2831-2837

3 Li K Stefan MI Crittenden JC Trichloroethene degradation by UVH2O2 advanced oxidation process product study and kinetic modeling Environmental Science amp Technology 2007 41 1696-1703

4 Li K M I Stefan and J C Crittenden ldquoUV Photolysis of Trichloroethylene (TCE) Product Study and Kinetic Modelingrdquo Environmental Science and Technology Vol 38 No 24 6685-6693 (2004)

5 Ke Li David R Hokanson John C Crittenden R Rhodes Trussell and Daisuke Minakata ldquoEvaluating UVH2O2 Processes for Methyl tert-Butyl Ether (MtBE) and tertiary Butyl Alcohol (TBA) Removal from

Drinking Water Source Effect of Pretreatment Options and Light Sourcesrdquo Water Research 2008 Volume 42 (20) 5045-5053

6 Minakata D Li K Westerhoff P Crittenden J Development of a group contribution method to predict aqueous phase hydroxyl radical reaction rate constants Environmental Science amp Technology 2009 43

6220-6227

7 Minakata D Crittenden J Linear Free Energy Relationships between the Aqueous Phase Hydroxyl Radical (HObull) Reaction Rate Constants and the Free Energy of Activation Environmental Science amp Technology

2011a 45 3479-3486

8 Minakata D Song W Crittenden J Reactivity of aqueous phase hydroxyl radical with halogenated carboxylate anions Experimental and theoretical studies Environmental Science amp Technology 2011 45 6057-

6065

9 Daisuke Minakata Stephen P Mezyk Jace W Jones Brittany R Daws John C Crittenden ldquoDevelopment of Linear Free Energy Relationships for Aqueous Phase Radical-Involved Chemical Reactionsrdquo

Environmental Science amp Technology 2014 48 (23) 13925-13932

10 Xin Guo Daisuke Minakata John C Crittenden ldquoOn-the-Fly Kinetic Monte Carlo Simulation of Aqueous Phase Advanced Oxidation Processesrdquo Environmental Science and Technology 2015 49 (15) 9230ndash9236

11 Guo X Minakata D Crittenden JC ldquoComputer-Based First-Principles Kinetic Monte Carlo Simulation of Polyethylene Glycol Degradation in Aqueous Phase UVH2O2 Advanced Oxidation Processrdquo

Environmental Science amp Technology 2014 48 10813minus10820

12 Xin Guo Daisuke Minakata Junfeng Niu John C Crittenden ldquoComputer-based First-principles Kinetic Modeling of Degradation Pathways and Byproduct Fates in Aqueous Phase Advanced Oxidation Processesrdquo

Environmental Science and Technology 2014 48 (10) pp 5718ndash5725

13 Yajie Qian Xin Guo Yalei Zhang Yue Peng Peizhe Sun Ching-Hua Huang Junfeng Niu Xuefei Zhou John C Crittenden ldquoPerfluorooctanoic Acid Degradation Using UVminusPersulfate Process Modeling of the

Degradation and Chlorate Formationrdquo 2015 Environmental Science and Technology 50 (2) 772ndash781

14 Ruzhen Xie Xiaoyang Meng Peizhe Sun Junfeng Niu Wenju JiangLawrence Bottomley Duo Li Yongsheng Chen John C CrittendenrdquoElectrochemical Oxidation of Ofloxacin Using a TiO2-based SnO2-

SbPolytetrafluoroethylene Resin-PbO2 Electrode Reaction Kinetics and Mass Transfer Impactrdquo 2016 Applied Catalysis B Environmental 203 (2017) 515ndash525

15 Westerhoff Paul Moon Hye Minakata Daisuke Crittenden John ldquoOxidation of Organics in Retentates from Reverse Osmosis Wastewater Reuse Facilitiesrdquo Water Research 43 (16) 3992-2998

16 Liu L Chen F Yang F Chen Y Crittenden J ldquoPhotocatalytic degradation of 24-dichlorophenol using nanoscale FeTiO2rdquo Chemical Engineering Journal 2012 181ndash182 (0)189-195

References

References

17 Ying Wang Jiasheng Fang John C Crittenden Chanchan Shen ldquoNovel RGO120572-FeOOH Supported Catalyst for Fenton Oxidation of Phenol at a Wide pH Range Using Solar-Light-Driven Irradiationrdquo 2017 Journal

of Hazardous Materials 329 321ndash329

18 Xiaodong Ma Mengying Zhao Qin Pang Meihua Zheng Hongwen Sun John C Crittenden Yanying Zhu Yongsheng Chen ldquoDevelopment of Novel CaCO3Fe2O3 Nanorods for Low Temperature 12-

Dichlorobenzene Oxidationrdquo 2017 Applied Catalysis A General 522 (2016) 70ndash79

19 Heacutector L Otaacutelvaro-Mariacuten Miguel Angel Mueses John C Crittenden Fiderman Machuca-Martinez ldquoSolar Photoreactor Design by the Photon Path Length and Optimization of the Radiant Field in a TiO2-based CPC

Reactorrdquo 2017 Chemical Engineering Journal 315 283ndash295

20 Qi Wang Naxin Zhu Enqin Liu Chenlu Zhang John C Crittenden Yi ZhangYanqing CongldquoFabrication of Visible-Light Active Fe2O3-GQDsNF-TiO2 Composite Film with Highly Enhanced

Photoelectrocatalytic Performancerdquo 2017 Applied Catalysis B Environmental 205 347ndash356

21 Junfeng Niu Lifeng Yin Yunrong Dai Yueping Bao John C Crittenden ldquoDesign of Visible Light Responsive Photocatalysts for Selective Reduction of Chlorinated Organic Compounds in Waterrdquo 2016 Applied

Catalysis A General 521 90ndash95

22 Chaojie Jiang Lifen Liu John C Crittenden ldquoAn Electrochemical Process that Uses an Fe0TiO2 Cathode to Degrade Typical Dyes and Antibiotics and a Bio-anode that Produces Electricityrdquo 2016 Frontiers of

Environmental Science amp Engineering 10(4) 15

23 Yijing Xia Qizhou Dai Mili Weng Yue Peng Jinming Luo Xiaoyang Meng Xubiao Luo Jianmeng Chen John C Crittenden ldquoFabrication and Electrochemical Treatment Application of an Al-Doped PbO2

Electrode with High Oxidation Capability Oxygen Evolution Potential and Reusabilityrdquo2015 Journal of The Electrochemical Society 162 (10) E258-E262

24 Feng Duan Yuping Li Hongbin Cao Yi Wang John C Crittenden Yi Zhang ldquoActivated Carbon Electrodes Electrochemical Oxidation Coupled with Desalination for Wastewater Treatmentrdquo 2015 Chemosphere

125 205-211

25 Xing Linlin Xie Yongbing Cao Hongbin Minakata Daisuke Zhang Yi Crittenden John C ldquoActivated carbon-enhanced ozonation of oxalate attributed to HObull oxidation in bulk solution and surface oxidation

Effects of the type and number of basic sitesrdquo Chemical Engineering Journal 2014 245 71-79

26 Yao H Sun P Minakata D Crittenden JC Huang C-H ldquoKinetics and Modeling of Degradation of Ionophore Antibiotics by UV and UVH2O2rdquo Environmental Science and Technology 2013 (47) 4581-

45892

26 Li Yang et al Synergistic photogeneration of reactive oxygen species by dissolved organic matter and C60 in aqueous phase Environmental science amp technology 492 (2015) 965-973

28 Niu Junfeng et al Photocatalytic reduction of triclosan on AundashCu 2 O nanowire arrays as plasmonic photocatalysts under visible light irradiation Physical Chemistry Chemical Physics 1726 (2015) 17421-17428

29 Niu Junfeng et al Design of visible light responsive photocatalysts for selective reduction of chlorinated organic compounds in water Applied Catalysis A General 521 (2016) 90-95

30 Tianyin Huang Jiabin Chen Zhongming Wang Xin Guo John C Crittenden ldquoExcellent Performance of Cobalt-Impregnated Activated Carbon in Peroxymonosulfate Activation for Acid Orange 7 Oxidationrdquo 2017

Environmental Science and Pollution Research Volume 24 (10) 9651ndash9661

References

31 Yang Li Junfeng Niu Enxiang Shang John C Crittenden ldquoPhotochemical Transformation and Photoinduced Toxicity Reduction of Silver Nanoparticles in the Presence of Perfluorocarboxylic Acids under UV

Irradiationrdquo Environmental Science and Technology 2014 48 (9) pp 4946ndash4953

32 Cao H Xing L Wu G Xie S Zhang SY Minakata D Crittenden JC ldquoPromoting effect of nitration modification on activated carbon in the catalytic ozonation of oxalic acidrdquo Applied Catalysis B

Environmental 2014 146 169-176

33 Konsowa A H Ossman M E Chen Y Crittenden J C ldquoDecolorization of industrial wastewater by ozonation followed by adsorption on activated carbonrdquo Journal of Hazardous Materials 176 (2010) 181-185

November 10 2009

34 Wipada Sanongraj Yongsheng Chen John Crittenden David Hand and David Perram ldquoDevelopment of Photocatalytic Oxidation Model Part I-Mathematical Model for Photocatalytic Destruction of Organic

Contaminants in Airrdquo Journal of the Air and Waste Management Association 571112ndash1122 September 2007

35 Chen Y JC Crittenden S Hackney L Sutter and DW Hand ldquoPreparation of a Novel TiO2-based p-n Junction Nanotube Photocatalystrdquo Environmental Science and Technology Vol 39 No 5 1201-1208 (2005)

36 Suri RPS J Liu JC Crittenden DW Hand and DL Perram Removal and Destruction of Organic Contaminants in Water Using Adsorption Steam Regeneration and Photocatalytic Oxidation A Pilot Scale

Studyrdquo Journal of Air and Waste Management Volume 49 (August 1999) 951 ndash 958

37 Burns RA JC Crittenden DW Hand VH Selzer LL Sutter SR Salman Effect of Inorganic Ions in the Heterogeneous Photocatalysis of Trichloroethene ASCE Journal of Environmental Engineering Vol

125 No 1 pp 77-85 (January 1999)

38 Liu J JC Crittenden DW Hand and DL Perram Regeneration of Adsorbents Using Heterogeneous Photocatalytic Oxidationrdquo Journal of Environmental Engineering Vol 122 No 8 pp 707-714 (1996)

39 Crittenden JC J Liu DW Hand and DL Perram Photocatalytic Oxidation of Chlorinated Hydrocarbons in Waterrdquo Water Research Vol31 No 3 pp 429-438 (1997)

40 Crittenden JC RPS Suri DL Perram and DW Hand Decontamination of Water Using Adsorption and Photocatalysisrdquo Water Research Vol 31 No 3 pp 411-418 (1997)

41 Crittenden JC Y Zhang DW Hand and DL Perram Destruction of Organic Compounds in Water Using Fixed-Bed Photocatalysts Journal of Solar Energy Engineering (ASME) Vol 118 No 5 pp 123 -129

(1996)

42 Crittenden JC Y Zhang DW Hand and DL Perram Solar Detoxification of Fuel-Contaminated Groundwater Using Fixed-Bed Photocatalystsrdquo Water Environment Research Vol 68 No 3 pp 270-278

(1996)

43 Zhang Y JC Crittenden and DW Hand The Solar Photocatalytic Decontamination of Waterrdquo Chemistry amp Industry Vol 18 pp 714-717 September (1994)

44 Mourand JT JC Crittenden DW Hand DL Perram and S Notthakun Regeneration of Spent Adsorbents Using Advanced Oxidationrdquo Water Environment Federation Vol 67 No 3 pp 355-363 (1995)

45 Hand DW DL Perram and JC Crittenden Destruction of DBP Precursors with Catalytic Oxidationrdquo American Water Works Association Journal Vol 87 No 6 pp 84-96 (1995)

46 Zhang Y JC Crittenden DW Hand and DL Perram Fixed-Bed Photo-catalysts for Solar Decontamination of Waterrdquo Environmental Science amp Technology Vol 28 No 3 pp 435-442 (1994)

47 Suri RPS J Liu DW Hand JC Crittenden DL Perram and ME Mullins Heterogeneous Photocatalytic Oxidation of Hazardous Organic Contaminants in Waterrdquo Water Environment Federation Vol 65 No

5 pp 665-673 (1993)

Page 29: The Application of Advanced Oxidation Processes (AOPs) and ...€¦ · We define the electron efficiency to be = 32 12 ·( J 4𝑥)· Where TOC in mg (c)/L and COD in mg ( 2)/L, n

Conventional AOPs vs EAOPs Modeling 33

Minimal

EEO

(kWhm3)

Optimal

OxidantCatalyst

Dosage

88271 [TiO2]=300 mgL

8208 [Persulfate]=581 gL

1768 [H2O2]=184 gL

8335 [HOCl]=0776 gL

17648 [H2O2]=0035 mgL

[R]0 = 2000 mgL

~1379 mgL TOC For high concentration treatment objectives

EAOPs are more energy efficient

3D-EAOP saves more energy than 2D because

it requires lower applied voltage

3D-EAOP works better than 2D in low ion

strength treatment

Electrolyte

(Na2SO4)

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

0M3702

0001M 6466 2405

0005M 3781 2069

001M 2676 1552

01M 469 1294

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

3545

6015 2260

3559 1937

2504 1448

455 1207

2D-EAOP

EEO

(kWhm3)

3D-EAOP

EEO

(kWhm3)

3404

5634 2136

3367 1824

2357 1360

443 1132

Re = 1851 Re = 46296 Re = 203704Mass Transfer Increase

Ion

Str

en

gth

In

crease

Limiting Current in Different Conditions

jlim = n times F times kf times Csalt

Electrolyte

Concentration Q Q Q

Na2SO4 mlmin mlmin mlmin

20 500 2000

Re Re Re

1852 46296 185185

kf kf kf

ms ms ms

235405E-06 688E-06 109E-05

jlim jlim jlim

molL mAcm2 mAcm2 mAcm2

0001 068 199 316

jlim jlim jlim

molL mAcm2 mAcm2 mAcm2

0005 341 996 1581

jlim jlim jlim

molL mAcm2 mAcm2 mAcm2

001 681 1992 3163

jlim jlim jlim

molL mAcm2 mAcm2 mAcm2

005 3407 9962 15814

jlim jlim jlim

molL mAcm2 mAcm2 mAcm2

01 6814 19924 31627

Parameters Symbol Units Value

Influent concentration C0 mgL 20

Effluent concentration Ce mgL 02

Flow rate Q m3day 1000

Pseudo first order rate constant k min 0042

Size of reactor VRequired m3 38 m3

Detention time τ min 548

Electrode spacing d cm 1

Fluid velocity u ms 0033

Electrolyte Na2SO4 Concentration M 005

Current density J mAcm2 30

Assuming a Plug Flow Reactor (PFR) to be Confirmed with CFD

Full Scale Reactor Design

Full Scale Reactor Design

Rough Design of Reactor (top view)

1 2 3 4 5 6 7 8 9 10

105 meters

long

10 meters

electrodes

10 meters

2 meters deep

Reactor Channel

1 meter

hellip

5 cm 95 cmInfluent Effluent

The total costs (capital costs + energy costs) as a function of different electrode spacing for different theoretical

reaction rate In here the treatment objective is 99 removal flow rate is 1000 m3day and the fluid velocity is 00116

ms The flow channel has eddy promoter and its electrode spacing and obstacle distance ratio is 13 The electricity

price is $00512kWh and the pumping power is 853 kW The electrode price is $300m2 and its lifetime is 2000 h

Capital Expenditure Operational Expenditure

CapEx vs OpEx

Cost Analysis for Preliminary Design

The total costs (capital costs + energy costs) as a function of different electrode spacing for different theoretical

reaction rate In here the treatment objective is 99 removal flow rate is 1000 m3day and the fluid velocity is 00116

ms The flow channel has eddy promoter and its electrode spacing and obstacle distance ratio is 13 The electricity

price is $00512kWh and the pumping power is 853 kW The electrode price is $300m2 and its lifetime is 2000 h

Currently we are at only Ω=0436

Computer-based First-Principles Kinetic Model

Reaction Pathway Generator

(Graph Theory)

Rate Constants Estimator

(Group Contribution Method

Free Energy Linear

Relationship

Genetic Algorithm)

Ordinary Differential

Equations

(ODEs) Generator and Solver

(Gearrsquos Algorithm or

Monte Carlo algorithm)

Kinetic Monte Carlo Solver can

solve 1 million ODEs on PC

within 30 minutes

Complexity of Reaction PathwayExample

General reaction mechanisms that HObull initiates based on past experimental studies

Stefan and Bolton 1998 1999 1999 Stefan et al 1996 2000 Cooper et al 2009 Li et al 2004 2007 von Sonntag and

Schuchmann 1984 Schuchmann and von Sonntag 1979

Type of mechanismNumber of

speciesNumber of reactions

Full mechanism 120 370

Reduced mechanism 41 89

The criterion for DRG method is 1

Reaction rate constants are obtained from group contribution method (Minakata et al 2009 ESampT 43 6220-6227) and literature includingNate et al 1990 J Phys Chem Ref Data 19 413-513Nate et al 1995 J Phys Chem Ref Data 25 709-1050Buxton et al 1988 J Phys Chem Ref Data 17 513-886von Sonntag et al 1991 Angeuz Chem Int Ed Engl 30 1229-1253Li et al 2009 ESampT 43 2831-2837Li et al 2007 ESampT 41 1696-1703

Initial concentration of TCE 108 mM

Initial concentration of O2 22 mM

Initial concentration of H2O2 104 mM

Initial pH 59

Wave length of UV 200~300 nm

Light intensity779times10-6

EinsteinLmiddots

Reactor typeCompletely mixed batch reactor

Reaction time 30 min

Comparison of concentration profiles of major species for experimental data (Li Stefan Crittenden 2007 ESampT 41 1696-1703) and simulation results

00

20

40

60

80

100

120

00

02

04

06

08

10

12

0 5 10 15 20 25 30[H

2O

2]

(mM

)

[Ma

jor

spec

ies]

(m

M)

Time(min)

TCE exp

formic acid exp

oxalic acid exp

20 times DCA exp

20 times MCA exp

TCE cal

formic acid cal

oxalic acid cal

20 times DCA cal

20 times MCA cal

H2O2 exp

H2O2 cal

The photolysis of TCE was added manually because it is not included in this version of the pathway generator

Predicted Concentration Profiles of

Trichloroethene (TCE) and Stable-byproducts in UVH2O2 AOP

Comparison of number averaged molecular

weight (MW) for experimental data

(Vijayalakshmi et al J Appl Polym Sci 2006

100 3997-4003) and on-the-fly KMC model

The KMC model used a population number of 108L to

represent a concentration of 1molL

0

02

04

06

08

1

12

14

16

18

0 25 50 75 100 125 150 175 200

Aver

aged

mole

cu

lar

wei

gh

t (1

05

gm

ol)

Time (min)

Experiment

On-the-fly KMC

0

02

04

06

08

1

12

0 25 50 75 100 125 150 175 200

Nu

mb

er o

f re

act

ion

s (1

06)

Time (min)

Time evolvement of the number of generated

reactions for the degradation of PAM during the

UVTiO2 process

Degradation of Polyacrylamide (PAM)

Simulation Results for PAM Degradation in UVTiO2 AOP

Guo X Minakata D and Crittenden J 2015 On-the-fly kinetic Monte Carlo simulation of aqueous phase advanced oxidation processes Environmental science amp technology 49(15) pp9230-9236

1 Crittenden John C Shumin Hu David W Hand and Sarah Green ldquoA Kinetic Model for H2O2UV Process in a Completely Mixed Batch Reactorrdquo Water Research 33(10) 2315-2328 (1999)

2 Li K Crittenden JC Computerized pathway elucidation for hydroxyl radical induced chain reaction mechanisms in aqueous phase AOPs Environmental Science amp Technology 2009 43(8) 2831-2837

3 Li K Stefan MI Crittenden JC Trichloroethene degradation by UVH2O2 advanced oxidation process product study and kinetic modeling Environmental Science amp Technology 2007 41 1696-1703

4 Li K M I Stefan and J C Crittenden ldquoUV Photolysis of Trichloroethylene (TCE) Product Study and Kinetic Modelingrdquo Environmental Science and Technology Vol 38 No 24 6685-6693 (2004)

5 Ke Li David R Hokanson John C Crittenden R Rhodes Trussell and Daisuke Minakata ldquoEvaluating UVH2O2 Processes for Methyl tert-Butyl Ether (MtBE) and tertiary Butyl Alcohol (TBA) Removal from

Drinking Water Source Effect of Pretreatment Options and Light Sourcesrdquo Water Research 2008 Volume 42 (20) 5045-5053

6 Minakata D Li K Westerhoff P Crittenden J Development of a group contribution method to predict aqueous phase hydroxyl radical reaction rate constants Environmental Science amp Technology 2009 43

6220-6227

7 Minakata D Crittenden J Linear Free Energy Relationships between the Aqueous Phase Hydroxyl Radical (HObull) Reaction Rate Constants and the Free Energy of Activation Environmental Science amp Technology

2011a 45 3479-3486

8 Minakata D Song W Crittenden J Reactivity of aqueous phase hydroxyl radical with halogenated carboxylate anions Experimental and theoretical studies Environmental Science amp Technology 2011 45 6057-

6065

9 Daisuke Minakata Stephen P Mezyk Jace W Jones Brittany R Daws John C Crittenden ldquoDevelopment of Linear Free Energy Relationships for Aqueous Phase Radical-Involved Chemical Reactionsrdquo

Environmental Science amp Technology 2014 48 (23) 13925-13932

10 Xin Guo Daisuke Minakata John C Crittenden ldquoOn-the-Fly Kinetic Monte Carlo Simulation of Aqueous Phase Advanced Oxidation Processesrdquo Environmental Science and Technology 2015 49 (15) 9230ndash9236

11 Guo X Minakata D Crittenden JC ldquoComputer-Based First-Principles Kinetic Monte Carlo Simulation of Polyethylene Glycol Degradation in Aqueous Phase UVH2O2 Advanced Oxidation Processrdquo

Environmental Science amp Technology 2014 48 10813minus10820

12 Xin Guo Daisuke Minakata Junfeng Niu John C Crittenden ldquoComputer-based First-principles Kinetic Modeling of Degradation Pathways and Byproduct Fates in Aqueous Phase Advanced Oxidation Processesrdquo

Environmental Science and Technology 2014 48 (10) pp 5718ndash5725

13 Yajie Qian Xin Guo Yalei Zhang Yue Peng Peizhe Sun Ching-Hua Huang Junfeng Niu Xuefei Zhou John C Crittenden ldquoPerfluorooctanoic Acid Degradation Using UVminusPersulfate Process Modeling of the

Degradation and Chlorate Formationrdquo 2015 Environmental Science and Technology 50 (2) 772ndash781

14 Ruzhen Xie Xiaoyang Meng Peizhe Sun Junfeng Niu Wenju JiangLawrence Bottomley Duo Li Yongsheng Chen John C CrittendenrdquoElectrochemical Oxidation of Ofloxacin Using a TiO2-based SnO2-

SbPolytetrafluoroethylene Resin-PbO2 Electrode Reaction Kinetics and Mass Transfer Impactrdquo 2016 Applied Catalysis B Environmental 203 (2017) 515ndash525

15 Westerhoff Paul Moon Hye Minakata Daisuke Crittenden John ldquoOxidation of Organics in Retentates from Reverse Osmosis Wastewater Reuse Facilitiesrdquo Water Research 43 (16) 3992-2998

16 Liu L Chen F Yang F Chen Y Crittenden J ldquoPhotocatalytic degradation of 24-dichlorophenol using nanoscale FeTiO2rdquo Chemical Engineering Journal 2012 181ndash182 (0)189-195

References

References

17 Ying Wang Jiasheng Fang John C Crittenden Chanchan Shen ldquoNovel RGO120572-FeOOH Supported Catalyst for Fenton Oxidation of Phenol at a Wide pH Range Using Solar-Light-Driven Irradiationrdquo 2017 Journal

of Hazardous Materials 329 321ndash329

18 Xiaodong Ma Mengying Zhao Qin Pang Meihua Zheng Hongwen Sun John C Crittenden Yanying Zhu Yongsheng Chen ldquoDevelopment of Novel CaCO3Fe2O3 Nanorods for Low Temperature 12-

Dichlorobenzene Oxidationrdquo 2017 Applied Catalysis A General 522 (2016) 70ndash79

19 Heacutector L Otaacutelvaro-Mariacuten Miguel Angel Mueses John C Crittenden Fiderman Machuca-Martinez ldquoSolar Photoreactor Design by the Photon Path Length and Optimization of the Radiant Field in a TiO2-based CPC

Reactorrdquo 2017 Chemical Engineering Journal 315 283ndash295

20 Qi Wang Naxin Zhu Enqin Liu Chenlu Zhang John C Crittenden Yi ZhangYanqing CongldquoFabrication of Visible-Light Active Fe2O3-GQDsNF-TiO2 Composite Film with Highly Enhanced

Photoelectrocatalytic Performancerdquo 2017 Applied Catalysis B Environmental 205 347ndash356

21 Junfeng Niu Lifeng Yin Yunrong Dai Yueping Bao John C Crittenden ldquoDesign of Visible Light Responsive Photocatalysts for Selective Reduction of Chlorinated Organic Compounds in Waterrdquo 2016 Applied

Catalysis A General 521 90ndash95

22 Chaojie Jiang Lifen Liu John C Crittenden ldquoAn Electrochemical Process that Uses an Fe0TiO2 Cathode to Degrade Typical Dyes and Antibiotics and a Bio-anode that Produces Electricityrdquo 2016 Frontiers of

Environmental Science amp Engineering 10(4) 15

23 Yijing Xia Qizhou Dai Mili Weng Yue Peng Jinming Luo Xiaoyang Meng Xubiao Luo Jianmeng Chen John C Crittenden ldquoFabrication and Electrochemical Treatment Application of an Al-Doped PbO2

Electrode with High Oxidation Capability Oxygen Evolution Potential and Reusabilityrdquo2015 Journal of The Electrochemical Society 162 (10) E258-E262

24 Feng Duan Yuping Li Hongbin Cao Yi Wang John C Crittenden Yi Zhang ldquoActivated Carbon Electrodes Electrochemical Oxidation Coupled with Desalination for Wastewater Treatmentrdquo 2015 Chemosphere

125 205-211

25 Xing Linlin Xie Yongbing Cao Hongbin Minakata Daisuke Zhang Yi Crittenden John C ldquoActivated carbon-enhanced ozonation of oxalate attributed to HObull oxidation in bulk solution and surface oxidation

Effects of the type and number of basic sitesrdquo Chemical Engineering Journal 2014 245 71-79

26 Yao H Sun P Minakata D Crittenden JC Huang C-H ldquoKinetics and Modeling of Degradation of Ionophore Antibiotics by UV and UVH2O2rdquo Environmental Science and Technology 2013 (47) 4581-

45892

26 Li Yang et al Synergistic photogeneration of reactive oxygen species by dissolved organic matter and C60 in aqueous phase Environmental science amp technology 492 (2015) 965-973

28 Niu Junfeng et al Photocatalytic reduction of triclosan on AundashCu 2 O nanowire arrays as plasmonic photocatalysts under visible light irradiation Physical Chemistry Chemical Physics 1726 (2015) 17421-17428

29 Niu Junfeng et al Design of visible light responsive photocatalysts for selective reduction of chlorinated organic compounds in water Applied Catalysis A General 521 (2016) 90-95

30 Tianyin Huang Jiabin Chen Zhongming Wang Xin Guo John C Crittenden ldquoExcellent Performance of Cobalt-Impregnated Activated Carbon in Peroxymonosulfate Activation for Acid Orange 7 Oxidationrdquo 2017

Environmental Science and Pollution Research Volume 24 (10) 9651ndash9661

References

31 Yang Li Junfeng Niu Enxiang Shang John C Crittenden ldquoPhotochemical Transformation and Photoinduced Toxicity Reduction of Silver Nanoparticles in the Presence of Perfluorocarboxylic Acids under UV

Irradiationrdquo Environmental Science and Technology 2014 48 (9) pp 4946ndash4953

32 Cao H Xing L Wu G Xie S Zhang SY Minakata D Crittenden JC ldquoPromoting effect of nitration modification on activated carbon in the catalytic ozonation of oxalic acidrdquo Applied Catalysis B

Environmental 2014 146 169-176

33 Konsowa A H Ossman M E Chen Y Crittenden J C ldquoDecolorization of industrial wastewater by ozonation followed by adsorption on activated carbonrdquo Journal of Hazardous Materials 176 (2010) 181-185

November 10 2009

34 Wipada Sanongraj Yongsheng Chen John Crittenden David Hand and David Perram ldquoDevelopment of Photocatalytic Oxidation Model Part I-Mathematical Model for Photocatalytic Destruction of Organic

Contaminants in Airrdquo Journal of the Air and Waste Management Association 571112ndash1122 September 2007

35 Chen Y JC Crittenden S Hackney L Sutter and DW Hand ldquoPreparation of a Novel TiO2-based p-n Junction Nanotube Photocatalystrdquo Environmental Science and Technology Vol 39 No 5 1201-1208 (2005)

36 Suri RPS J Liu JC Crittenden DW Hand and DL Perram Removal and Destruction of Organic Contaminants in Water Using Adsorption Steam Regeneration and Photocatalytic Oxidation A Pilot Scale

Studyrdquo Journal of Air and Waste Management Volume 49 (August 1999) 951 ndash 958

37 Burns RA JC Crittenden DW Hand VH Selzer LL Sutter SR Salman Effect of Inorganic Ions in the Heterogeneous Photocatalysis of Trichloroethene ASCE Journal of Environmental Engineering Vol

125 No 1 pp 77-85 (January 1999)

38 Liu J JC Crittenden DW Hand and DL Perram Regeneration of Adsorbents Using Heterogeneous Photocatalytic Oxidationrdquo Journal of Environmental Engineering Vol 122 No 8 pp 707-714 (1996)

39 Crittenden JC J Liu DW Hand and DL Perram Photocatalytic Oxidation of Chlorinated Hydrocarbons in Waterrdquo Water Research Vol31 No 3 pp 429-438 (1997)

40 Crittenden JC RPS Suri DL Perram and DW Hand Decontamination of Water Using Adsorption and Photocatalysisrdquo Water Research Vol 31 No 3 pp 411-418 (1997)

41 Crittenden JC Y Zhang DW Hand and DL Perram Destruction of Organic Compounds in Water Using Fixed-Bed Photocatalysts Journal of Solar Energy Engineering (ASME) Vol 118 No 5 pp 123 -129

(1996)

42 Crittenden JC Y Zhang DW Hand and DL Perram Solar Detoxification of Fuel-Contaminated Groundwater Using Fixed-Bed Photocatalystsrdquo Water Environment Research Vol 68 No 3 pp 270-278

(1996)

43 Zhang Y JC Crittenden and DW Hand The Solar Photocatalytic Decontamination of Waterrdquo Chemistry amp Industry Vol 18 pp 714-717 September (1994)

44 Mourand JT JC Crittenden DW Hand DL Perram and S Notthakun Regeneration of Spent Adsorbents Using Advanced Oxidationrdquo Water Environment Federation Vol 67 No 3 pp 355-363 (1995)

45 Hand DW DL Perram and JC Crittenden Destruction of DBP Precursors with Catalytic Oxidationrdquo American Water Works Association Journal Vol 87 No 6 pp 84-96 (1995)

46 Zhang Y JC Crittenden DW Hand and DL Perram Fixed-Bed Photo-catalysts for Solar Decontamination of Waterrdquo Environmental Science amp Technology Vol 28 No 3 pp 435-442 (1994)

47 Suri RPS J Liu DW Hand JC Crittenden DL Perram and ME Mullins Heterogeneous Photocatalytic Oxidation of Hazardous Organic Contaminants in Waterrdquo Water Environment Federation Vol 65 No

5 pp 665-673 (1993)

Page 30: The Application of Advanced Oxidation Processes (AOPs) and ...€¦ · We define the electron efficiency to be = 32 12 ·( J 4𝑥)· Where TOC in mg (c)/L and COD in mg ( 2)/L, n

Limiting Current in Different Conditions

jlim = n times F times kf times Csalt

Electrolyte

Concentration Q Q Q

Na2SO4 mlmin mlmin mlmin

20 500 2000

Re Re Re

1852 46296 185185

kf kf kf

ms ms ms

235405E-06 688E-06 109E-05

jlim jlim jlim

molL mAcm2 mAcm2 mAcm2

0001 068 199 316

jlim jlim jlim

molL mAcm2 mAcm2 mAcm2

0005 341 996 1581

jlim jlim jlim

molL mAcm2 mAcm2 mAcm2

001 681 1992 3163

jlim jlim jlim

molL mAcm2 mAcm2 mAcm2

005 3407 9962 15814

jlim jlim jlim

molL mAcm2 mAcm2 mAcm2

01 6814 19924 31627

Parameters Symbol Units Value

Influent concentration C0 mgL 20

Effluent concentration Ce mgL 02

Flow rate Q m3day 1000

Pseudo first order rate constant k min 0042

Size of reactor VRequired m3 38 m3

Detention time τ min 548

Electrode spacing d cm 1

Fluid velocity u ms 0033

Electrolyte Na2SO4 Concentration M 005

Current density J mAcm2 30

Assuming a Plug Flow Reactor (PFR) to be Confirmed with CFD

Full Scale Reactor Design

Full Scale Reactor Design

Rough Design of Reactor (top view)

1 2 3 4 5 6 7 8 9 10

105 meters

long

10 meters

electrodes

10 meters

2 meters deep

Reactor Channel

1 meter

hellip

5 cm 95 cmInfluent Effluent

The total costs (capital costs + energy costs) as a function of different electrode spacing for different theoretical

reaction rate In here the treatment objective is 99 removal flow rate is 1000 m3day and the fluid velocity is 00116

ms The flow channel has eddy promoter and its electrode spacing and obstacle distance ratio is 13 The electricity

price is $00512kWh and the pumping power is 853 kW The electrode price is $300m2 and its lifetime is 2000 h

Capital Expenditure Operational Expenditure

CapEx vs OpEx

Cost Analysis for Preliminary Design

The total costs (capital costs + energy costs) as a function of different electrode spacing for different theoretical

reaction rate In here the treatment objective is 99 removal flow rate is 1000 m3day and the fluid velocity is 00116

ms The flow channel has eddy promoter and its electrode spacing and obstacle distance ratio is 13 The electricity

price is $00512kWh and the pumping power is 853 kW The electrode price is $300m2 and its lifetime is 2000 h

Currently we are at only Ω=0436

Computer-based First-Principles Kinetic Model

Reaction Pathway Generator

(Graph Theory)

Rate Constants Estimator

(Group Contribution Method

Free Energy Linear

Relationship

Genetic Algorithm)

Ordinary Differential

Equations

(ODEs) Generator and Solver

(Gearrsquos Algorithm or

Monte Carlo algorithm)

Kinetic Monte Carlo Solver can

solve 1 million ODEs on PC

within 30 minutes

Complexity of Reaction PathwayExample

General reaction mechanisms that HObull initiates based on past experimental studies

Stefan and Bolton 1998 1999 1999 Stefan et al 1996 2000 Cooper et al 2009 Li et al 2004 2007 von Sonntag and

Schuchmann 1984 Schuchmann and von Sonntag 1979

Type of mechanismNumber of

speciesNumber of reactions

Full mechanism 120 370

Reduced mechanism 41 89

The criterion for DRG method is 1

Reaction rate constants are obtained from group contribution method (Minakata et al 2009 ESampT 43 6220-6227) and literature includingNate et al 1990 J Phys Chem Ref Data 19 413-513Nate et al 1995 J Phys Chem Ref Data 25 709-1050Buxton et al 1988 J Phys Chem Ref Data 17 513-886von Sonntag et al 1991 Angeuz Chem Int Ed Engl 30 1229-1253Li et al 2009 ESampT 43 2831-2837Li et al 2007 ESampT 41 1696-1703

Initial concentration of TCE 108 mM

Initial concentration of O2 22 mM

Initial concentration of H2O2 104 mM

Initial pH 59

Wave length of UV 200~300 nm

Light intensity779times10-6

EinsteinLmiddots

Reactor typeCompletely mixed batch reactor

Reaction time 30 min

Comparison of concentration profiles of major species for experimental data (Li Stefan Crittenden 2007 ESampT 41 1696-1703) and simulation results

00

20

40

60

80

100

120

00

02

04

06

08

10

12

0 5 10 15 20 25 30[H

2O

2]

(mM

)

[Ma

jor

spec

ies]

(m

M)

Time(min)

TCE exp

formic acid exp

oxalic acid exp

20 times DCA exp

20 times MCA exp

TCE cal

formic acid cal

oxalic acid cal

20 times DCA cal

20 times MCA cal

H2O2 exp

H2O2 cal

The photolysis of TCE was added manually because it is not included in this version of the pathway generator

Predicted Concentration Profiles of

Trichloroethene (TCE) and Stable-byproducts in UVH2O2 AOP

Comparison of number averaged molecular

weight (MW) for experimental data

(Vijayalakshmi et al J Appl Polym Sci 2006

100 3997-4003) and on-the-fly KMC model

The KMC model used a population number of 108L to

represent a concentration of 1molL

0

02

04

06

08

1

12

14

16

18

0 25 50 75 100 125 150 175 200

Aver

aged

mole

cu

lar

wei

gh

t (1

05

gm

ol)

Time (min)

Experiment

On-the-fly KMC

0

02

04

06

08

1

12

0 25 50 75 100 125 150 175 200

Nu

mb

er o

f re

act

ion

s (1

06)

Time (min)

Time evolvement of the number of generated

reactions for the degradation of PAM during the

UVTiO2 process

Degradation of Polyacrylamide (PAM)

Simulation Results for PAM Degradation in UVTiO2 AOP

Guo X Minakata D and Crittenden J 2015 On-the-fly kinetic Monte Carlo simulation of aqueous phase advanced oxidation processes Environmental science amp technology 49(15) pp9230-9236

1 Crittenden John C Shumin Hu David W Hand and Sarah Green ldquoA Kinetic Model for H2O2UV Process in a Completely Mixed Batch Reactorrdquo Water Research 33(10) 2315-2328 (1999)

2 Li K Crittenden JC Computerized pathway elucidation for hydroxyl radical induced chain reaction mechanisms in aqueous phase AOPs Environmental Science amp Technology 2009 43(8) 2831-2837

3 Li K Stefan MI Crittenden JC Trichloroethene degradation by UVH2O2 advanced oxidation process product study and kinetic modeling Environmental Science amp Technology 2007 41 1696-1703

4 Li K M I Stefan and J C Crittenden ldquoUV Photolysis of Trichloroethylene (TCE) Product Study and Kinetic Modelingrdquo Environmental Science and Technology Vol 38 No 24 6685-6693 (2004)

5 Ke Li David R Hokanson John C Crittenden R Rhodes Trussell and Daisuke Minakata ldquoEvaluating UVH2O2 Processes for Methyl tert-Butyl Ether (MtBE) and tertiary Butyl Alcohol (TBA) Removal from

Drinking Water Source Effect of Pretreatment Options and Light Sourcesrdquo Water Research 2008 Volume 42 (20) 5045-5053

6 Minakata D Li K Westerhoff P Crittenden J Development of a group contribution method to predict aqueous phase hydroxyl radical reaction rate constants Environmental Science amp Technology 2009 43

6220-6227

7 Minakata D Crittenden J Linear Free Energy Relationships between the Aqueous Phase Hydroxyl Radical (HObull) Reaction Rate Constants and the Free Energy of Activation Environmental Science amp Technology

2011a 45 3479-3486

8 Minakata D Song W Crittenden J Reactivity of aqueous phase hydroxyl radical with halogenated carboxylate anions Experimental and theoretical studies Environmental Science amp Technology 2011 45 6057-

6065

9 Daisuke Minakata Stephen P Mezyk Jace W Jones Brittany R Daws John C Crittenden ldquoDevelopment of Linear Free Energy Relationships for Aqueous Phase Radical-Involved Chemical Reactionsrdquo

Environmental Science amp Technology 2014 48 (23) 13925-13932

10 Xin Guo Daisuke Minakata John C Crittenden ldquoOn-the-Fly Kinetic Monte Carlo Simulation of Aqueous Phase Advanced Oxidation Processesrdquo Environmental Science and Technology 2015 49 (15) 9230ndash9236

11 Guo X Minakata D Crittenden JC ldquoComputer-Based First-Principles Kinetic Monte Carlo Simulation of Polyethylene Glycol Degradation in Aqueous Phase UVH2O2 Advanced Oxidation Processrdquo

Environmental Science amp Technology 2014 48 10813minus10820

12 Xin Guo Daisuke Minakata Junfeng Niu John C Crittenden ldquoComputer-based First-principles Kinetic Modeling of Degradation Pathways and Byproduct Fates in Aqueous Phase Advanced Oxidation Processesrdquo

Environmental Science and Technology 2014 48 (10) pp 5718ndash5725

13 Yajie Qian Xin Guo Yalei Zhang Yue Peng Peizhe Sun Ching-Hua Huang Junfeng Niu Xuefei Zhou John C Crittenden ldquoPerfluorooctanoic Acid Degradation Using UVminusPersulfate Process Modeling of the

Degradation and Chlorate Formationrdquo 2015 Environmental Science and Technology 50 (2) 772ndash781

14 Ruzhen Xie Xiaoyang Meng Peizhe Sun Junfeng Niu Wenju JiangLawrence Bottomley Duo Li Yongsheng Chen John C CrittendenrdquoElectrochemical Oxidation of Ofloxacin Using a TiO2-based SnO2-

SbPolytetrafluoroethylene Resin-PbO2 Electrode Reaction Kinetics and Mass Transfer Impactrdquo 2016 Applied Catalysis B Environmental 203 (2017) 515ndash525

15 Westerhoff Paul Moon Hye Minakata Daisuke Crittenden John ldquoOxidation of Organics in Retentates from Reverse Osmosis Wastewater Reuse Facilitiesrdquo Water Research 43 (16) 3992-2998

16 Liu L Chen F Yang F Chen Y Crittenden J ldquoPhotocatalytic degradation of 24-dichlorophenol using nanoscale FeTiO2rdquo Chemical Engineering Journal 2012 181ndash182 (0)189-195

References

References

17 Ying Wang Jiasheng Fang John C Crittenden Chanchan Shen ldquoNovel RGO120572-FeOOH Supported Catalyst for Fenton Oxidation of Phenol at a Wide pH Range Using Solar-Light-Driven Irradiationrdquo 2017 Journal

of Hazardous Materials 329 321ndash329

18 Xiaodong Ma Mengying Zhao Qin Pang Meihua Zheng Hongwen Sun John C Crittenden Yanying Zhu Yongsheng Chen ldquoDevelopment of Novel CaCO3Fe2O3 Nanorods for Low Temperature 12-

Dichlorobenzene Oxidationrdquo 2017 Applied Catalysis A General 522 (2016) 70ndash79

19 Heacutector L Otaacutelvaro-Mariacuten Miguel Angel Mueses John C Crittenden Fiderman Machuca-Martinez ldquoSolar Photoreactor Design by the Photon Path Length and Optimization of the Radiant Field in a TiO2-based CPC

Reactorrdquo 2017 Chemical Engineering Journal 315 283ndash295

20 Qi Wang Naxin Zhu Enqin Liu Chenlu Zhang John C Crittenden Yi ZhangYanqing CongldquoFabrication of Visible-Light Active Fe2O3-GQDsNF-TiO2 Composite Film with Highly Enhanced

Photoelectrocatalytic Performancerdquo 2017 Applied Catalysis B Environmental 205 347ndash356

21 Junfeng Niu Lifeng Yin Yunrong Dai Yueping Bao John C Crittenden ldquoDesign of Visible Light Responsive Photocatalysts for Selective Reduction of Chlorinated Organic Compounds in Waterrdquo 2016 Applied

Catalysis A General 521 90ndash95

22 Chaojie Jiang Lifen Liu John C Crittenden ldquoAn Electrochemical Process that Uses an Fe0TiO2 Cathode to Degrade Typical Dyes and Antibiotics and a Bio-anode that Produces Electricityrdquo 2016 Frontiers of

Environmental Science amp Engineering 10(4) 15

23 Yijing Xia Qizhou Dai Mili Weng Yue Peng Jinming Luo Xiaoyang Meng Xubiao Luo Jianmeng Chen John C Crittenden ldquoFabrication and Electrochemical Treatment Application of an Al-Doped PbO2

Electrode with High Oxidation Capability Oxygen Evolution Potential and Reusabilityrdquo2015 Journal of The Electrochemical Society 162 (10) E258-E262

24 Feng Duan Yuping Li Hongbin Cao Yi Wang John C Crittenden Yi Zhang ldquoActivated Carbon Electrodes Electrochemical Oxidation Coupled with Desalination for Wastewater Treatmentrdquo 2015 Chemosphere

125 205-211

25 Xing Linlin Xie Yongbing Cao Hongbin Minakata Daisuke Zhang Yi Crittenden John C ldquoActivated carbon-enhanced ozonation of oxalate attributed to HObull oxidation in bulk solution and surface oxidation

Effects of the type and number of basic sitesrdquo Chemical Engineering Journal 2014 245 71-79

26 Yao H Sun P Minakata D Crittenden JC Huang C-H ldquoKinetics and Modeling of Degradation of Ionophore Antibiotics by UV and UVH2O2rdquo Environmental Science and Technology 2013 (47) 4581-

45892

26 Li Yang et al Synergistic photogeneration of reactive oxygen species by dissolved organic matter and C60 in aqueous phase Environmental science amp technology 492 (2015) 965-973

28 Niu Junfeng et al Photocatalytic reduction of triclosan on AundashCu 2 O nanowire arrays as plasmonic photocatalysts under visible light irradiation Physical Chemistry Chemical Physics 1726 (2015) 17421-17428

29 Niu Junfeng et al Design of visible light responsive photocatalysts for selective reduction of chlorinated organic compounds in water Applied Catalysis A General 521 (2016) 90-95

30 Tianyin Huang Jiabin Chen Zhongming Wang Xin Guo John C Crittenden ldquoExcellent Performance of Cobalt-Impregnated Activated Carbon in Peroxymonosulfate Activation for Acid Orange 7 Oxidationrdquo 2017

Environmental Science and Pollution Research Volume 24 (10) 9651ndash9661

References

31 Yang Li Junfeng Niu Enxiang Shang John C Crittenden ldquoPhotochemical Transformation and Photoinduced Toxicity Reduction of Silver Nanoparticles in the Presence of Perfluorocarboxylic Acids under UV

Irradiationrdquo Environmental Science and Technology 2014 48 (9) pp 4946ndash4953

32 Cao H Xing L Wu G Xie S Zhang SY Minakata D Crittenden JC ldquoPromoting effect of nitration modification on activated carbon in the catalytic ozonation of oxalic acidrdquo Applied Catalysis B

Environmental 2014 146 169-176

33 Konsowa A H Ossman M E Chen Y Crittenden J C ldquoDecolorization of industrial wastewater by ozonation followed by adsorption on activated carbonrdquo Journal of Hazardous Materials 176 (2010) 181-185

November 10 2009

34 Wipada Sanongraj Yongsheng Chen John Crittenden David Hand and David Perram ldquoDevelopment of Photocatalytic Oxidation Model Part I-Mathematical Model for Photocatalytic Destruction of Organic

Contaminants in Airrdquo Journal of the Air and Waste Management Association 571112ndash1122 September 2007

35 Chen Y JC Crittenden S Hackney L Sutter and DW Hand ldquoPreparation of a Novel TiO2-based p-n Junction Nanotube Photocatalystrdquo Environmental Science and Technology Vol 39 No 5 1201-1208 (2005)

36 Suri RPS J Liu JC Crittenden DW Hand and DL Perram Removal and Destruction of Organic Contaminants in Water Using Adsorption Steam Regeneration and Photocatalytic Oxidation A Pilot Scale

Studyrdquo Journal of Air and Waste Management Volume 49 (August 1999) 951 ndash 958

37 Burns RA JC Crittenden DW Hand VH Selzer LL Sutter SR Salman Effect of Inorganic Ions in the Heterogeneous Photocatalysis of Trichloroethene ASCE Journal of Environmental Engineering Vol

125 No 1 pp 77-85 (January 1999)

38 Liu J JC Crittenden DW Hand and DL Perram Regeneration of Adsorbents Using Heterogeneous Photocatalytic Oxidationrdquo Journal of Environmental Engineering Vol 122 No 8 pp 707-714 (1996)

39 Crittenden JC J Liu DW Hand and DL Perram Photocatalytic Oxidation of Chlorinated Hydrocarbons in Waterrdquo Water Research Vol31 No 3 pp 429-438 (1997)

40 Crittenden JC RPS Suri DL Perram and DW Hand Decontamination of Water Using Adsorption and Photocatalysisrdquo Water Research Vol 31 No 3 pp 411-418 (1997)

41 Crittenden JC Y Zhang DW Hand and DL Perram Destruction of Organic Compounds in Water Using Fixed-Bed Photocatalysts Journal of Solar Energy Engineering (ASME) Vol 118 No 5 pp 123 -129

(1996)

42 Crittenden JC Y Zhang DW Hand and DL Perram Solar Detoxification of Fuel-Contaminated Groundwater Using Fixed-Bed Photocatalystsrdquo Water Environment Research Vol 68 No 3 pp 270-278

(1996)

43 Zhang Y JC Crittenden and DW Hand The Solar Photocatalytic Decontamination of Waterrdquo Chemistry amp Industry Vol 18 pp 714-717 September (1994)

44 Mourand JT JC Crittenden DW Hand DL Perram and S Notthakun Regeneration of Spent Adsorbents Using Advanced Oxidationrdquo Water Environment Federation Vol 67 No 3 pp 355-363 (1995)

45 Hand DW DL Perram and JC Crittenden Destruction of DBP Precursors with Catalytic Oxidationrdquo American Water Works Association Journal Vol 87 No 6 pp 84-96 (1995)

46 Zhang Y JC Crittenden DW Hand and DL Perram Fixed-Bed Photo-catalysts for Solar Decontamination of Waterrdquo Environmental Science amp Technology Vol 28 No 3 pp 435-442 (1994)

47 Suri RPS J Liu DW Hand JC Crittenden DL Perram and ME Mullins Heterogeneous Photocatalytic Oxidation of Hazardous Organic Contaminants in Waterrdquo Water Environment Federation Vol 65 No

5 pp 665-673 (1993)

Page 31: The Application of Advanced Oxidation Processes (AOPs) and ...€¦ · We define the electron efficiency to be = 32 12 ·( J 4𝑥)· Where TOC in mg (c)/L and COD in mg ( 2)/L, n

Parameters Symbol Units Value

Influent concentration C0 mgL 20

Effluent concentration Ce mgL 02

Flow rate Q m3day 1000

Pseudo first order rate constant k min 0042

Size of reactor VRequired m3 38 m3

Detention time τ min 548

Electrode spacing d cm 1

Fluid velocity u ms 0033

Electrolyte Na2SO4 Concentration M 005

Current density J mAcm2 30

Assuming a Plug Flow Reactor (PFR) to be Confirmed with CFD

Full Scale Reactor Design

Full Scale Reactor Design

Rough Design of Reactor (top view)

1 2 3 4 5 6 7 8 9 10

105 meters

long

10 meters

electrodes

10 meters

2 meters deep

Reactor Channel

1 meter

hellip

5 cm 95 cmInfluent Effluent

The total costs (capital costs + energy costs) as a function of different electrode spacing for different theoretical

reaction rate In here the treatment objective is 99 removal flow rate is 1000 m3day and the fluid velocity is 00116

ms The flow channel has eddy promoter and its electrode spacing and obstacle distance ratio is 13 The electricity

price is $00512kWh and the pumping power is 853 kW The electrode price is $300m2 and its lifetime is 2000 h

Capital Expenditure Operational Expenditure

CapEx vs OpEx

Cost Analysis for Preliminary Design

The total costs (capital costs + energy costs) as a function of different electrode spacing for different theoretical

reaction rate In here the treatment objective is 99 removal flow rate is 1000 m3day and the fluid velocity is 00116

ms The flow channel has eddy promoter and its electrode spacing and obstacle distance ratio is 13 The electricity

price is $00512kWh and the pumping power is 853 kW The electrode price is $300m2 and its lifetime is 2000 h

Currently we are at only Ω=0436

Computer-based First-Principles Kinetic Model

Reaction Pathway Generator

(Graph Theory)

Rate Constants Estimator

(Group Contribution Method

Free Energy Linear

Relationship

Genetic Algorithm)

Ordinary Differential

Equations

(ODEs) Generator and Solver

(Gearrsquos Algorithm or

Monte Carlo algorithm)

Kinetic Monte Carlo Solver can

solve 1 million ODEs on PC

within 30 minutes

Complexity of Reaction PathwayExample

General reaction mechanisms that HObull initiates based on past experimental studies

Stefan and Bolton 1998 1999 1999 Stefan et al 1996 2000 Cooper et al 2009 Li et al 2004 2007 von Sonntag and

Schuchmann 1984 Schuchmann and von Sonntag 1979

Type of mechanismNumber of

speciesNumber of reactions

Full mechanism 120 370

Reduced mechanism 41 89

The criterion for DRG method is 1

Reaction rate constants are obtained from group contribution method (Minakata et al 2009 ESampT 43 6220-6227) and literature includingNate et al 1990 J Phys Chem Ref Data 19 413-513Nate et al 1995 J Phys Chem Ref Data 25 709-1050Buxton et al 1988 J Phys Chem Ref Data 17 513-886von Sonntag et al 1991 Angeuz Chem Int Ed Engl 30 1229-1253Li et al 2009 ESampT 43 2831-2837Li et al 2007 ESampT 41 1696-1703

Initial concentration of TCE 108 mM

Initial concentration of O2 22 mM

Initial concentration of H2O2 104 mM

Initial pH 59

Wave length of UV 200~300 nm

Light intensity779times10-6

EinsteinLmiddots

Reactor typeCompletely mixed batch reactor

Reaction time 30 min

Comparison of concentration profiles of major species for experimental data (Li Stefan Crittenden 2007 ESampT 41 1696-1703) and simulation results

00

20

40

60

80

100

120

00

02

04

06

08

10

12

0 5 10 15 20 25 30[H

2O

2]

(mM

)

[Ma

jor

spec

ies]

(m

M)

Time(min)

TCE exp

formic acid exp

oxalic acid exp

20 times DCA exp

20 times MCA exp

TCE cal

formic acid cal

oxalic acid cal

20 times DCA cal

20 times MCA cal

H2O2 exp

H2O2 cal

The photolysis of TCE was added manually because it is not included in this version of the pathway generator

Predicted Concentration Profiles of

Trichloroethene (TCE) and Stable-byproducts in UVH2O2 AOP

Comparison of number averaged molecular

weight (MW) for experimental data

(Vijayalakshmi et al J Appl Polym Sci 2006

100 3997-4003) and on-the-fly KMC model

The KMC model used a population number of 108L to

represent a concentration of 1molL

0

02

04

06

08

1

12

14

16

18

0 25 50 75 100 125 150 175 200

Aver

aged

mole

cu

lar

wei

gh

t (1

05

gm

ol)

Time (min)

Experiment

On-the-fly KMC

0

02

04

06

08

1

12

0 25 50 75 100 125 150 175 200

Nu

mb

er o

f re

act

ion

s (1

06)

Time (min)

Time evolvement of the number of generated

reactions for the degradation of PAM during the

UVTiO2 process

Degradation of Polyacrylamide (PAM)

Simulation Results for PAM Degradation in UVTiO2 AOP

Guo X Minakata D and Crittenden J 2015 On-the-fly kinetic Monte Carlo simulation of aqueous phase advanced oxidation processes Environmental science amp technology 49(15) pp9230-9236

1 Crittenden John C Shumin Hu David W Hand and Sarah Green ldquoA Kinetic Model for H2O2UV Process in a Completely Mixed Batch Reactorrdquo Water Research 33(10) 2315-2328 (1999)

2 Li K Crittenden JC Computerized pathway elucidation for hydroxyl radical induced chain reaction mechanisms in aqueous phase AOPs Environmental Science amp Technology 2009 43(8) 2831-2837

3 Li K Stefan MI Crittenden JC Trichloroethene degradation by UVH2O2 advanced oxidation process product study and kinetic modeling Environmental Science amp Technology 2007 41 1696-1703

4 Li K M I Stefan and J C Crittenden ldquoUV Photolysis of Trichloroethylene (TCE) Product Study and Kinetic Modelingrdquo Environmental Science and Technology Vol 38 No 24 6685-6693 (2004)

5 Ke Li David R Hokanson John C Crittenden R Rhodes Trussell and Daisuke Minakata ldquoEvaluating UVH2O2 Processes for Methyl tert-Butyl Ether (MtBE) and tertiary Butyl Alcohol (TBA) Removal from

Drinking Water Source Effect of Pretreatment Options and Light Sourcesrdquo Water Research 2008 Volume 42 (20) 5045-5053

6 Minakata D Li K Westerhoff P Crittenden J Development of a group contribution method to predict aqueous phase hydroxyl radical reaction rate constants Environmental Science amp Technology 2009 43

6220-6227

7 Minakata D Crittenden J Linear Free Energy Relationships between the Aqueous Phase Hydroxyl Radical (HObull) Reaction Rate Constants and the Free Energy of Activation Environmental Science amp Technology

2011a 45 3479-3486

8 Minakata D Song W Crittenden J Reactivity of aqueous phase hydroxyl radical with halogenated carboxylate anions Experimental and theoretical studies Environmental Science amp Technology 2011 45 6057-

6065

9 Daisuke Minakata Stephen P Mezyk Jace W Jones Brittany R Daws John C Crittenden ldquoDevelopment of Linear Free Energy Relationships for Aqueous Phase Radical-Involved Chemical Reactionsrdquo

Environmental Science amp Technology 2014 48 (23) 13925-13932

10 Xin Guo Daisuke Minakata John C Crittenden ldquoOn-the-Fly Kinetic Monte Carlo Simulation of Aqueous Phase Advanced Oxidation Processesrdquo Environmental Science and Technology 2015 49 (15) 9230ndash9236

11 Guo X Minakata D Crittenden JC ldquoComputer-Based First-Principles Kinetic Monte Carlo Simulation of Polyethylene Glycol Degradation in Aqueous Phase UVH2O2 Advanced Oxidation Processrdquo

Environmental Science amp Technology 2014 48 10813minus10820

12 Xin Guo Daisuke Minakata Junfeng Niu John C Crittenden ldquoComputer-based First-principles Kinetic Modeling of Degradation Pathways and Byproduct Fates in Aqueous Phase Advanced Oxidation Processesrdquo

Environmental Science and Technology 2014 48 (10) pp 5718ndash5725

13 Yajie Qian Xin Guo Yalei Zhang Yue Peng Peizhe Sun Ching-Hua Huang Junfeng Niu Xuefei Zhou John C Crittenden ldquoPerfluorooctanoic Acid Degradation Using UVminusPersulfate Process Modeling of the

Degradation and Chlorate Formationrdquo 2015 Environmental Science and Technology 50 (2) 772ndash781

14 Ruzhen Xie Xiaoyang Meng Peizhe Sun Junfeng Niu Wenju JiangLawrence Bottomley Duo Li Yongsheng Chen John C CrittendenrdquoElectrochemical Oxidation of Ofloxacin Using a TiO2-based SnO2-

SbPolytetrafluoroethylene Resin-PbO2 Electrode Reaction Kinetics and Mass Transfer Impactrdquo 2016 Applied Catalysis B Environmental 203 (2017) 515ndash525

15 Westerhoff Paul Moon Hye Minakata Daisuke Crittenden John ldquoOxidation of Organics in Retentates from Reverse Osmosis Wastewater Reuse Facilitiesrdquo Water Research 43 (16) 3992-2998

16 Liu L Chen F Yang F Chen Y Crittenden J ldquoPhotocatalytic degradation of 24-dichlorophenol using nanoscale FeTiO2rdquo Chemical Engineering Journal 2012 181ndash182 (0)189-195

References

References

17 Ying Wang Jiasheng Fang John C Crittenden Chanchan Shen ldquoNovel RGO120572-FeOOH Supported Catalyst for Fenton Oxidation of Phenol at a Wide pH Range Using Solar-Light-Driven Irradiationrdquo 2017 Journal

of Hazardous Materials 329 321ndash329

18 Xiaodong Ma Mengying Zhao Qin Pang Meihua Zheng Hongwen Sun John C Crittenden Yanying Zhu Yongsheng Chen ldquoDevelopment of Novel CaCO3Fe2O3 Nanorods for Low Temperature 12-

Dichlorobenzene Oxidationrdquo 2017 Applied Catalysis A General 522 (2016) 70ndash79

19 Heacutector L Otaacutelvaro-Mariacuten Miguel Angel Mueses John C Crittenden Fiderman Machuca-Martinez ldquoSolar Photoreactor Design by the Photon Path Length and Optimization of the Radiant Field in a TiO2-based CPC

Reactorrdquo 2017 Chemical Engineering Journal 315 283ndash295

20 Qi Wang Naxin Zhu Enqin Liu Chenlu Zhang John C Crittenden Yi ZhangYanqing CongldquoFabrication of Visible-Light Active Fe2O3-GQDsNF-TiO2 Composite Film with Highly Enhanced

Photoelectrocatalytic Performancerdquo 2017 Applied Catalysis B Environmental 205 347ndash356

21 Junfeng Niu Lifeng Yin Yunrong Dai Yueping Bao John C Crittenden ldquoDesign of Visible Light Responsive Photocatalysts for Selective Reduction of Chlorinated Organic Compounds in Waterrdquo 2016 Applied

Catalysis A General 521 90ndash95

22 Chaojie Jiang Lifen Liu John C Crittenden ldquoAn Electrochemical Process that Uses an Fe0TiO2 Cathode to Degrade Typical Dyes and Antibiotics and a Bio-anode that Produces Electricityrdquo 2016 Frontiers of

Environmental Science amp Engineering 10(4) 15

23 Yijing Xia Qizhou Dai Mili Weng Yue Peng Jinming Luo Xiaoyang Meng Xubiao Luo Jianmeng Chen John C Crittenden ldquoFabrication and Electrochemical Treatment Application of an Al-Doped PbO2

Electrode with High Oxidation Capability Oxygen Evolution Potential and Reusabilityrdquo2015 Journal of The Electrochemical Society 162 (10) E258-E262

24 Feng Duan Yuping Li Hongbin Cao Yi Wang John C Crittenden Yi Zhang ldquoActivated Carbon Electrodes Electrochemical Oxidation Coupled with Desalination for Wastewater Treatmentrdquo 2015 Chemosphere

125 205-211

25 Xing Linlin Xie Yongbing Cao Hongbin Minakata Daisuke Zhang Yi Crittenden John C ldquoActivated carbon-enhanced ozonation of oxalate attributed to HObull oxidation in bulk solution and surface oxidation

Effects of the type and number of basic sitesrdquo Chemical Engineering Journal 2014 245 71-79

26 Yao H Sun P Minakata D Crittenden JC Huang C-H ldquoKinetics and Modeling of Degradation of Ionophore Antibiotics by UV and UVH2O2rdquo Environmental Science and Technology 2013 (47) 4581-

45892

26 Li Yang et al Synergistic photogeneration of reactive oxygen species by dissolved organic matter and C60 in aqueous phase Environmental science amp technology 492 (2015) 965-973

28 Niu Junfeng et al Photocatalytic reduction of triclosan on AundashCu 2 O nanowire arrays as plasmonic photocatalysts under visible light irradiation Physical Chemistry Chemical Physics 1726 (2015) 17421-17428

29 Niu Junfeng et al Design of visible light responsive photocatalysts for selective reduction of chlorinated organic compounds in water Applied Catalysis A General 521 (2016) 90-95

30 Tianyin Huang Jiabin Chen Zhongming Wang Xin Guo John C Crittenden ldquoExcellent Performance of Cobalt-Impregnated Activated Carbon in Peroxymonosulfate Activation for Acid Orange 7 Oxidationrdquo 2017

Environmental Science and Pollution Research Volume 24 (10) 9651ndash9661

References

31 Yang Li Junfeng Niu Enxiang Shang John C Crittenden ldquoPhotochemical Transformation and Photoinduced Toxicity Reduction of Silver Nanoparticles in the Presence of Perfluorocarboxylic Acids under UV

Irradiationrdquo Environmental Science and Technology 2014 48 (9) pp 4946ndash4953

32 Cao H Xing L Wu G Xie S Zhang SY Minakata D Crittenden JC ldquoPromoting effect of nitration modification on activated carbon in the catalytic ozonation of oxalic acidrdquo Applied Catalysis B

Environmental 2014 146 169-176

33 Konsowa A H Ossman M E Chen Y Crittenden J C ldquoDecolorization of industrial wastewater by ozonation followed by adsorption on activated carbonrdquo Journal of Hazardous Materials 176 (2010) 181-185

November 10 2009

34 Wipada Sanongraj Yongsheng Chen John Crittenden David Hand and David Perram ldquoDevelopment of Photocatalytic Oxidation Model Part I-Mathematical Model for Photocatalytic Destruction of Organic

Contaminants in Airrdquo Journal of the Air and Waste Management Association 571112ndash1122 September 2007

35 Chen Y JC Crittenden S Hackney L Sutter and DW Hand ldquoPreparation of a Novel TiO2-based p-n Junction Nanotube Photocatalystrdquo Environmental Science and Technology Vol 39 No 5 1201-1208 (2005)

36 Suri RPS J Liu JC Crittenden DW Hand and DL Perram Removal and Destruction of Organic Contaminants in Water Using Adsorption Steam Regeneration and Photocatalytic Oxidation A Pilot Scale

Studyrdquo Journal of Air and Waste Management Volume 49 (August 1999) 951 ndash 958

37 Burns RA JC Crittenden DW Hand VH Selzer LL Sutter SR Salman Effect of Inorganic Ions in the Heterogeneous Photocatalysis of Trichloroethene ASCE Journal of Environmental Engineering Vol

125 No 1 pp 77-85 (January 1999)

38 Liu J JC Crittenden DW Hand and DL Perram Regeneration of Adsorbents Using Heterogeneous Photocatalytic Oxidationrdquo Journal of Environmental Engineering Vol 122 No 8 pp 707-714 (1996)

39 Crittenden JC J Liu DW Hand and DL Perram Photocatalytic Oxidation of Chlorinated Hydrocarbons in Waterrdquo Water Research Vol31 No 3 pp 429-438 (1997)

40 Crittenden JC RPS Suri DL Perram and DW Hand Decontamination of Water Using Adsorption and Photocatalysisrdquo Water Research Vol 31 No 3 pp 411-418 (1997)

41 Crittenden JC Y Zhang DW Hand and DL Perram Destruction of Organic Compounds in Water Using Fixed-Bed Photocatalysts Journal of Solar Energy Engineering (ASME) Vol 118 No 5 pp 123 -129

(1996)

42 Crittenden JC Y Zhang DW Hand and DL Perram Solar Detoxification of Fuel-Contaminated Groundwater Using Fixed-Bed Photocatalystsrdquo Water Environment Research Vol 68 No 3 pp 270-278

(1996)

43 Zhang Y JC Crittenden and DW Hand The Solar Photocatalytic Decontamination of Waterrdquo Chemistry amp Industry Vol 18 pp 714-717 September (1994)

44 Mourand JT JC Crittenden DW Hand DL Perram and S Notthakun Regeneration of Spent Adsorbents Using Advanced Oxidationrdquo Water Environment Federation Vol 67 No 3 pp 355-363 (1995)

45 Hand DW DL Perram and JC Crittenden Destruction of DBP Precursors with Catalytic Oxidationrdquo American Water Works Association Journal Vol 87 No 6 pp 84-96 (1995)

46 Zhang Y JC Crittenden DW Hand and DL Perram Fixed-Bed Photo-catalysts for Solar Decontamination of Waterrdquo Environmental Science amp Technology Vol 28 No 3 pp 435-442 (1994)

47 Suri RPS J Liu DW Hand JC Crittenden DL Perram and ME Mullins Heterogeneous Photocatalytic Oxidation of Hazardous Organic Contaminants in Waterrdquo Water Environment Federation Vol 65 No

5 pp 665-673 (1993)

Page 32: The Application of Advanced Oxidation Processes (AOPs) and ...€¦ · We define the electron efficiency to be = 32 12 ·( J 4𝑥)· Where TOC in mg (c)/L and COD in mg ( 2)/L, n

Full Scale Reactor Design

Rough Design of Reactor (top view)

1 2 3 4 5 6 7 8 9 10

105 meters

long

10 meters

electrodes

10 meters

2 meters deep

Reactor Channel

1 meter

hellip

5 cm 95 cmInfluent Effluent

The total costs (capital costs + energy costs) as a function of different electrode spacing for different theoretical

reaction rate In here the treatment objective is 99 removal flow rate is 1000 m3day and the fluid velocity is 00116

ms The flow channel has eddy promoter and its electrode spacing and obstacle distance ratio is 13 The electricity

price is $00512kWh and the pumping power is 853 kW The electrode price is $300m2 and its lifetime is 2000 h

Capital Expenditure Operational Expenditure

CapEx vs OpEx

Cost Analysis for Preliminary Design

The total costs (capital costs + energy costs) as a function of different electrode spacing for different theoretical

reaction rate In here the treatment objective is 99 removal flow rate is 1000 m3day and the fluid velocity is 00116

ms The flow channel has eddy promoter and its electrode spacing and obstacle distance ratio is 13 The electricity

price is $00512kWh and the pumping power is 853 kW The electrode price is $300m2 and its lifetime is 2000 h

Currently we are at only Ω=0436

Computer-based First-Principles Kinetic Model

Reaction Pathway Generator

(Graph Theory)

Rate Constants Estimator

(Group Contribution Method

Free Energy Linear

Relationship

Genetic Algorithm)

Ordinary Differential

Equations

(ODEs) Generator and Solver

(Gearrsquos Algorithm or

Monte Carlo algorithm)

Kinetic Monte Carlo Solver can

solve 1 million ODEs on PC

within 30 minutes

Complexity of Reaction PathwayExample

General reaction mechanisms that HObull initiates based on past experimental studies

Stefan and Bolton 1998 1999 1999 Stefan et al 1996 2000 Cooper et al 2009 Li et al 2004 2007 von Sonntag and

Schuchmann 1984 Schuchmann and von Sonntag 1979

Type of mechanismNumber of

speciesNumber of reactions

Full mechanism 120 370

Reduced mechanism 41 89

The criterion for DRG method is 1

Reaction rate constants are obtained from group contribution method (Minakata et al 2009 ESampT 43 6220-6227) and literature includingNate et al 1990 J Phys Chem Ref Data 19 413-513Nate et al 1995 J Phys Chem Ref Data 25 709-1050Buxton et al 1988 J Phys Chem Ref Data 17 513-886von Sonntag et al 1991 Angeuz Chem Int Ed Engl 30 1229-1253Li et al 2009 ESampT 43 2831-2837Li et al 2007 ESampT 41 1696-1703

Initial concentration of TCE 108 mM

Initial concentration of O2 22 mM

Initial concentration of H2O2 104 mM

Initial pH 59

Wave length of UV 200~300 nm

Light intensity779times10-6

EinsteinLmiddots

Reactor typeCompletely mixed batch reactor

Reaction time 30 min

Comparison of concentration profiles of major species for experimental data (Li Stefan Crittenden 2007 ESampT 41 1696-1703) and simulation results

00

20

40

60

80

100

120

00

02

04

06

08

10

12

0 5 10 15 20 25 30[H

2O

2]

(mM

)

[Ma

jor

spec

ies]

(m

M)

Time(min)

TCE exp

formic acid exp

oxalic acid exp

20 times DCA exp

20 times MCA exp

TCE cal

formic acid cal

oxalic acid cal

20 times DCA cal

20 times MCA cal

H2O2 exp

H2O2 cal

The photolysis of TCE was added manually because it is not included in this version of the pathway generator

Predicted Concentration Profiles of

Trichloroethene (TCE) and Stable-byproducts in UVH2O2 AOP

Comparison of number averaged molecular

weight (MW) for experimental data

(Vijayalakshmi et al J Appl Polym Sci 2006

100 3997-4003) and on-the-fly KMC model

The KMC model used a population number of 108L to

represent a concentration of 1molL

0

02

04

06

08

1

12

14

16

18

0 25 50 75 100 125 150 175 200

Aver

aged

mole

cu

lar

wei

gh

t (1

05

gm

ol)

Time (min)

Experiment

On-the-fly KMC

0

02

04

06

08

1

12

0 25 50 75 100 125 150 175 200

Nu

mb

er o

f re

act

ion

s (1

06)

Time (min)

Time evolvement of the number of generated

reactions for the degradation of PAM during the

UVTiO2 process

Degradation of Polyacrylamide (PAM)

Simulation Results for PAM Degradation in UVTiO2 AOP

Guo X Minakata D and Crittenden J 2015 On-the-fly kinetic Monte Carlo simulation of aqueous phase advanced oxidation processes Environmental science amp technology 49(15) pp9230-9236

1 Crittenden John C Shumin Hu David W Hand and Sarah Green ldquoA Kinetic Model for H2O2UV Process in a Completely Mixed Batch Reactorrdquo Water Research 33(10) 2315-2328 (1999)

2 Li K Crittenden JC Computerized pathway elucidation for hydroxyl radical induced chain reaction mechanisms in aqueous phase AOPs Environmental Science amp Technology 2009 43(8) 2831-2837

3 Li K Stefan MI Crittenden JC Trichloroethene degradation by UVH2O2 advanced oxidation process product study and kinetic modeling Environmental Science amp Technology 2007 41 1696-1703

4 Li K M I Stefan and J C Crittenden ldquoUV Photolysis of Trichloroethylene (TCE) Product Study and Kinetic Modelingrdquo Environmental Science and Technology Vol 38 No 24 6685-6693 (2004)

5 Ke Li David R Hokanson John C Crittenden R Rhodes Trussell and Daisuke Minakata ldquoEvaluating UVH2O2 Processes for Methyl tert-Butyl Ether (MtBE) and tertiary Butyl Alcohol (TBA) Removal from

Drinking Water Source Effect of Pretreatment Options and Light Sourcesrdquo Water Research 2008 Volume 42 (20) 5045-5053

6 Minakata D Li K Westerhoff P Crittenden J Development of a group contribution method to predict aqueous phase hydroxyl radical reaction rate constants Environmental Science amp Technology 2009 43

6220-6227

7 Minakata D Crittenden J Linear Free Energy Relationships between the Aqueous Phase Hydroxyl Radical (HObull) Reaction Rate Constants and the Free Energy of Activation Environmental Science amp Technology

2011a 45 3479-3486

8 Minakata D Song W Crittenden J Reactivity of aqueous phase hydroxyl radical with halogenated carboxylate anions Experimental and theoretical studies Environmental Science amp Technology 2011 45 6057-

6065

9 Daisuke Minakata Stephen P Mezyk Jace W Jones Brittany R Daws John C Crittenden ldquoDevelopment of Linear Free Energy Relationships for Aqueous Phase Radical-Involved Chemical Reactionsrdquo

Environmental Science amp Technology 2014 48 (23) 13925-13932

10 Xin Guo Daisuke Minakata John C Crittenden ldquoOn-the-Fly Kinetic Monte Carlo Simulation of Aqueous Phase Advanced Oxidation Processesrdquo Environmental Science and Technology 2015 49 (15) 9230ndash9236

11 Guo X Minakata D Crittenden JC ldquoComputer-Based First-Principles Kinetic Monte Carlo Simulation of Polyethylene Glycol Degradation in Aqueous Phase UVH2O2 Advanced Oxidation Processrdquo

Environmental Science amp Technology 2014 48 10813minus10820

12 Xin Guo Daisuke Minakata Junfeng Niu John C Crittenden ldquoComputer-based First-principles Kinetic Modeling of Degradation Pathways and Byproduct Fates in Aqueous Phase Advanced Oxidation Processesrdquo

Environmental Science and Technology 2014 48 (10) pp 5718ndash5725

13 Yajie Qian Xin Guo Yalei Zhang Yue Peng Peizhe Sun Ching-Hua Huang Junfeng Niu Xuefei Zhou John C Crittenden ldquoPerfluorooctanoic Acid Degradation Using UVminusPersulfate Process Modeling of the

Degradation and Chlorate Formationrdquo 2015 Environmental Science and Technology 50 (2) 772ndash781

14 Ruzhen Xie Xiaoyang Meng Peizhe Sun Junfeng Niu Wenju JiangLawrence Bottomley Duo Li Yongsheng Chen John C CrittendenrdquoElectrochemical Oxidation of Ofloxacin Using a TiO2-based SnO2-

SbPolytetrafluoroethylene Resin-PbO2 Electrode Reaction Kinetics and Mass Transfer Impactrdquo 2016 Applied Catalysis B Environmental 203 (2017) 515ndash525

15 Westerhoff Paul Moon Hye Minakata Daisuke Crittenden John ldquoOxidation of Organics in Retentates from Reverse Osmosis Wastewater Reuse Facilitiesrdquo Water Research 43 (16) 3992-2998

16 Liu L Chen F Yang F Chen Y Crittenden J ldquoPhotocatalytic degradation of 24-dichlorophenol using nanoscale FeTiO2rdquo Chemical Engineering Journal 2012 181ndash182 (0)189-195

References

References

17 Ying Wang Jiasheng Fang John C Crittenden Chanchan Shen ldquoNovel RGO120572-FeOOH Supported Catalyst for Fenton Oxidation of Phenol at a Wide pH Range Using Solar-Light-Driven Irradiationrdquo 2017 Journal

of Hazardous Materials 329 321ndash329

18 Xiaodong Ma Mengying Zhao Qin Pang Meihua Zheng Hongwen Sun John C Crittenden Yanying Zhu Yongsheng Chen ldquoDevelopment of Novel CaCO3Fe2O3 Nanorods for Low Temperature 12-

Dichlorobenzene Oxidationrdquo 2017 Applied Catalysis A General 522 (2016) 70ndash79

19 Heacutector L Otaacutelvaro-Mariacuten Miguel Angel Mueses John C Crittenden Fiderman Machuca-Martinez ldquoSolar Photoreactor Design by the Photon Path Length and Optimization of the Radiant Field in a TiO2-based CPC

Reactorrdquo 2017 Chemical Engineering Journal 315 283ndash295

20 Qi Wang Naxin Zhu Enqin Liu Chenlu Zhang John C Crittenden Yi ZhangYanqing CongldquoFabrication of Visible-Light Active Fe2O3-GQDsNF-TiO2 Composite Film with Highly Enhanced

Photoelectrocatalytic Performancerdquo 2017 Applied Catalysis B Environmental 205 347ndash356

21 Junfeng Niu Lifeng Yin Yunrong Dai Yueping Bao John C Crittenden ldquoDesign of Visible Light Responsive Photocatalysts for Selective Reduction of Chlorinated Organic Compounds in Waterrdquo 2016 Applied

Catalysis A General 521 90ndash95

22 Chaojie Jiang Lifen Liu John C Crittenden ldquoAn Electrochemical Process that Uses an Fe0TiO2 Cathode to Degrade Typical Dyes and Antibiotics and a Bio-anode that Produces Electricityrdquo 2016 Frontiers of

Environmental Science amp Engineering 10(4) 15

23 Yijing Xia Qizhou Dai Mili Weng Yue Peng Jinming Luo Xiaoyang Meng Xubiao Luo Jianmeng Chen John C Crittenden ldquoFabrication and Electrochemical Treatment Application of an Al-Doped PbO2

Electrode with High Oxidation Capability Oxygen Evolution Potential and Reusabilityrdquo2015 Journal of The Electrochemical Society 162 (10) E258-E262

24 Feng Duan Yuping Li Hongbin Cao Yi Wang John C Crittenden Yi Zhang ldquoActivated Carbon Electrodes Electrochemical Oxidation Coupled with Desalination for Wastewater Treatmentrdquo 2015 Chemosphere

125 205-211

25 Xing Linlin Xie Yongbing Cao Hongbin Minakata Daisuke Zhang Yi Crittenden John C ldquoActivated carbon-enhanced ozonation of oxalate attributed to HObull oxidation in bulk solution and surface oxidation

Effects of the type and number of basic sitesrdquo Chemical Engineering Journal 2014 245 71-79

26 Yao H Sun P Minakata D Crittenden JC Huang C-H ldquoKinetics and Modeling of Degradation of Ionophore Antibiotics by UV and UVH2O2rdquo Environmental Science and Technology 2013 (47) 4581-

45892

26 Li Yang et al Synergistic photogeneration of reactive oxygen species by dissolved organic matter and C60 in aqueous phase Environmental science amp technology 492 (2015) 965-973

28 Niu Junfeng et al Photocatalytic reduction of triclosan on AundashCu 2 O nanowire arrays as plasmonic photocatalysts under visible light irradiation Physical Chemistry Chemical Physics 1726 (2015) 17421-17428

29 Niu Junfeng et al Design of visible light responsive photocatalysts for selective reduction of chlorinated organic compounds in water Applied Catalysis A General 521 (2016) 90-95

30 Tianyin Huang Jiabin Chen Zhongming Wang Xin Guo John C Crittenden ldquoExcellent Performance of Cobalt-Impregnated Activated Carbon in Peroxymonosulfate Activation for Acid Orange 7 Oxidationrdquo 2017

Environmental Science and Pollution Research Volume 24 (10) 9651ndash9661

References

31 Yang Li Junfeng Niu Enxiang Shang John C Crittenden ldquoPhotochemical Transformation and Photoinduced Toxicity Reduction of Silver Nanoparticles in the Presence of Perfluorocarboxylic Acids under UV

Irradiationrdquo Environmental Science and Technology 2014 48 (9) pp 4946ndash4953

32 Cao H Xing L Wu G Xie S Zhang SY Minakata D Crittenden JC ldquoPromoting effect of nitration modification on activated carbon in the catalytic ozonation of oxalic acidrdquo Applied Catalysis B

Environmental 2014 146 169-176

33 Konsowa A H Ossman M E Chen Y Crittenden J C ldquoDecolorization of industrial wastewater by ozonation followed by adsorption on activated carbonrdquo Journal of Hazardous Materials 176 (2010) 181-185

November 10 2009

34 Wipada Sanongraj Yongsheng Chen John Crittenden David Hand and David Perram ldquoDevelopment of Photocatalytic Oxidation Model Part I-Mathematical Model for Photocatalytic Destruction of Organic

Contaminants in Airrdquo Journal of the Air and Waste Management Association 571112ndash1122 September 2007

35 Chen Y JC Crittenden S Hackney L Sutter and DW Hand ldquoPreparation of a Novel TiO2-based p-n Junction Nanotube Photocatalystrdquo Environmental Science and Technology Vol 39 No 5 1201-1208 (2005)

36 Suri RPS J Liu JC Crittenden DW Hand and DL Perram Removal and Destruction of Organic Contaminants in Water Using Adsorption Steam Regeneration and Photocatalytic Oxidation A Pilot Scale

Studyrdquo Journal of Air and Waste Management Volume 49 (August 1999) 951 ndash 958

37 Burns RA JC Crittenden DW Hand VH Selzer LL Sutter SR Salman Effect of Inorganic Ions in the Heterogeneous Photocatalysis of Trichloroethene ASCE Journal of Environmental Engineering Vol

125 No 1 pp 77-85 (January 1999)

38 Liu J JC Crittenden DW Hand and DL Perram Regeneration of Adsorbents Using Heterogeneous Photocatalytic Oxidationrdquo Journal of Environmental Engineering Vol 122 No 8 pp 707-714 (1996)

39 Crittenden JC J Liu DW Hand and DL Perram Photocatalytic Oxidation of Chlorinated Hydrocarbons in Waterrdquo Water Research Vol31 No 3 pp 429-438 (1997)

40 Crittenden JC RPS Suri DL Perram and DW Hand Decontamination of Water Using Adsorption and Photocatalysisrdquo Water Research Vol 31 No 3 pp 411-418 (1997)

41 Crittenden JC Y Zhang DW Hand and DL Perram Destruction of Organic Compounds in Water Using Fixed-Bed Photocatalysts Journal of Solar Energy Engineering (ASME) Vol 118 No 5 pp 123 -129

(1996)

42 Crittenden JC Y Zhang DW Hand and DL Perram Solar Detoxification of Fuel-Contaminated Groundwater Using Fixed-Bed Photocatalystsrdquo Water Environment Research Vol 68 No 3 pp 270-278

(1996)

43 Zhang Y JC Crittenden and DW Hand The Solar Photocatalytic Decontamination of Waterrdquo Chemistry amp Industry Vol 18 pp 714-717 September (1994)

44 Mourand JT JC Crittenden DW Hand DL Perram and S Notthakun Regeneration of Spent Adsorbents Using Advanced Oxidationrdquo Water Environment Federation Vol 67 No 3 pp 355-363 (1995)

45 Hand DW DL Perram and JC Crittenden Destruction of DBP Precursors with Catalytic Oxidationrdquo American Water Works Association Journal Vol 87 No 6 pp 84-96 (1995)

46 Zhang Y JC Crittenden DW Hand and DL Perram Fixed-Bed Photo-catalysts for Solar Decontamination of Waterrdquo Environmental Science amp Technology Vol 28 No 3 pp 435-442 (1994)

47 Suri RPS J Liu DW Hand JC Crittenden DL Perram and ME Mullins Heterogeneous Photocatalytic Oxidation of Hazardous Organic Contaminants in Waterrdquo Water Environment Federation Vol 65 No

5 pp 665-673 (1993)

Page 33: The Application of Advanced Oxidation Processes (AOPs) and ...€¦ · We define the electron efficiency to be = 32 12 ·( J 4𝑥)· Where TOC in mg (c)/L and COD in mg ( 2)/L, n

The total costs (capital costs + energy costs) as a function of different electrode spacing for different theoretical

reaction rate In here the treatment objective is 99 removal flow rate is 1000 m3day and the fluid velocity is 00116

ms The flow channel has eddy promoter and its electrode spacing and obstacle distance ratio is 13 The electricity

price is $00512kWh and the pumping power is 853 kW The electrode price is $300m2 and its lifetime is 2000 h

Capital Expenditure Operational Expenditure

CapEx vs OpEx

Cost Analysis for Preliminary Design

The total costs (capital costs + energy costs) as a function of different electrode spacing for different theoretical

reaction rate In here the treatment objective is 99 removal flow rate is 1000 m3day and the fluid velocity is 00116

ms The flow channel has eddy promoter and its electrode spacing and obstacle distance ratio is 13 The electricity

price is $00512kWh and the pumping power is 853 kW The electrode price is $300m2 and its lifetime is 2000 h

Currently we are at only Ω=0436

Computer-based First-Principles Kinetic Model

Reaction Pathway Generator

(Graph Theory)

Rate Constants Estimator

(Group Contribution Method

Free Energy Linear

Relationship

Genetic Algorithm)

Ordinary Differential

Equations

(ODEs) Generator and Solver

(Gearrsquos Algorithm or

Monte Carlo algorithm)

Kinetic Monte Carlo Solver can

solve 1 million ODEs on PC

within 30 minutes

Complexity of Reaction PathwayExample

General reaction mechanisms that HObull initiates based on past experimental studies

Stefan and Bolton 1998 1999 1999 Stefan et al 1996 2000 Cooper et al 2009 Li et al 2004 2007 von Sonntag and

Schuchmann 1984 Schuchmann and von Sonntag 1979

Type of mechanismNumber of

speciesNumber of reactions

Full mechanism 120 370

Reduced mechanism 41 89

The criterion for DRG method is 1

Reaction rate constants are obtained from group contribution method (Minakata et al 2009 ESampT 43 6220-6227) and literature includingNate et al 1990 J Phys Chem Ref Data 19 413-513Nate et al 1995 J Phys Chem Ref Data 25 709-1050Buxton et al 1988 J Phys Chem Ref Data 17 513-886von Sonntag et al 1991 Angeuz Chem Int Ed Engl 30 1229-1253Li et al 2009 ESampT 43 2831-2837Li et al 2007 ESampT 41 1696-1703

Initial concentration of TCE 108 mM

Initial concentration of O2 22 mM

Initial concentration of H2O2 104 mM

Initial pH 59

Wave length of UV 200~300 nm

Light intensity779times10-6

EinsteinLmiddots

Reactor typeCompletely mixed batch reactor

Reaction time 30 min

Comparison of concentration profiles of major species for experimental data (Li Stefan Crittenden 2007 ESampT 41 1696-1703) and simulation results

00

20

40

60

80

100

120

00

02

04

06

08

10

12

0 5 10 15 20 25 30[H

2O

2]

(mM

)

[Ma

jor

spec

ies]

(m

M)

Time(min)

TCE exp

formic acid exp

oxalic acid exp

20 times DCA exp

20 times MCA exp

TCE cal

formic acid cal

oxalic acid cal

20 times DCA cal

20 times MCA cal

H2O2 exp

H2O2 cal

The photolysis of TCE was added manually because it is not included in this version of the pathway generator

Predicted Concentration Profiles of

Trichloroethene (TCE) and Stable-byproducts in UVH2O2 AOP

Comparison of number averaged molecular

weight (MW) for experimental data

(Vijayalakshmi et al J Appl Polym Sci 2006

100 3997-4003) and on-the-fly KMC model

The KMC model used a population number of 108L to

represent a concentration of 1molL

0

02

04

06

08

1

12

14

16

18

0 25 50 75 100 125 150 175 200

Aver

aged

mole

cu

lar

wei

gh

t (1

05

gm

ol)

Time (min)

Experiment

On-the-fly KMC

0

02

04

06

08

1

12

0 25 50 75 100 125 150 175 200

Nu

mb

er o

f re

act

ion

s (1

06)

Time (min)

Time evolvement of the number of generated

reactions for the degradation of PAM during the

UVTiO2 process

Degradation of Polyacrylamide (PAM)

Simulation Results for PAM Degradation in UVTiO2 AOP

Guo X Minakata D and Crittenden J 2015 On-the-fly kinetic Monte Carlo simulation of aqueous phase advanced oxidation processes Environmental science amp technology 49(15) pp9230-9236

1 Crittenden John C Shumin Hu David W Hand and Sarah Green ldquoA Kinetic Model for H2O2UV Process in a Completely Mixed Batch Reactorrdquo Water Research 33(10) 2315-2328 (1999)

2 Li K Crittenden JC Computerized pathway elucidation for hydroxyl radical induced chain reaction mechanisms in aqueous phase AOPs Environmental Science amp Technology 2009 43(8) 2831-2837

3 Li K Stefan MI Crittenden JC Trichloroethene degradation by UVH2O2 advanced oxidation process product study and kinetic modeling Environmental Science amp Technology 2007 41 1696-1703

4 Li K M I Stefan and J C Crittenden ldquoUV Photolysis of Trichloroethylene (TCE) Product Study and Kinetic Modelingrdquo Environmental Science and Technology Vol 38 No 24 6685-6693 (2004)

5 Ke Li David R Hokanson John C Crittenden R Rhodes Trussell and Daisuke Minakata ldquoEvaluating UVH2O2 Processes for Methyl tert-Butyl Ether (MtBE) and tertiary Butyl Alcohol (TBA) Removal from

Drinking Water Source Effect of Pretreatment Options and Light Sourcesrdquo Water Research 2008 Volume 42 (20) 5045-5053

6 Minakata D Li K Westerhoff P Crittenden J Development of a group contribution method to predict aqueous phase hydroxyl radical reaction rate constants Environmental Science amp Technology 2009 43

6220-6227

7 Minakata D Crittenden J Linear Free Energy Relationships between the Aqueous Phase Hydroxyl Radical (HObull) Reaction Rate Constants and the Free Energy of Activation Environmental Science amp Technology

2011a 45 3479-3486

8 Minakata D Song W Crittenden J Reactivity of aqueous phase hydroxyl radical with halogenated carboxylate anions Experimental and theoretical studies Environmental Science amp Technology 2011 45 6057-

6065

9 Daisuke Minakata Stephen P Mezyk Jace W Jones Brittany R Daws John C Crittenden ldquoDevelopment of Linear Free Energy Relationships for Aqueous Phase Radical-Involved Chemical Reactionsrdquo

Environmental Science amp Technology 2014 48 (23) 13925-13932

10 Xin Guo Daisuke Minakata John C Crittenden ldquoOn-the-Fly Kinetic Monte Carlo Simulation of Aqueous Phase Advanced Oxidation Processesrdquo Environmental Science and Technology 2015 49 (15) 9230ndash9236

11 Guo X Minakata D Crittenden JC ldquoComputer-Based First-Principles Kinetic Monte Carlo Simulation of Polyethylene Glycol Degradation in Aqueous Phase UVH2O2 Advanced Oxidation Processrdquo

Environmental Science amp Technology 2014 48 10813minus10820

12 Xin Guo Daisuke Minakata Junfeng Niu John C Crittenden ldquoComputer-based First-principles Kinetic Modeling of Degradation Pathways and Byproduct Fates in Aqueous Phase Advanced Oxidation Processesrdquo

Environmental Science and Technology 2014 48 (10) pp 5718ndash5725

13 Yajie Qian Xin Guo Yalei Zhang Yue Peng Peizhe Sun Ching-Hua Huang Junfeng Niu Xuefei Zhou John C Crittenden ldquoPerfluorooctanoic Acid Degradation Using UVminusPersulfate Process Modeling of the

Degradation and Chlorate Formationrdquo 2015 Environmental Science and Technology 50 (2) 772ndash781

14 Ruzhen Xie Xiaoyang Meng Peizhe Sun Junfeng Niu Wenju JiangLawrence Bottomley Duo Li Yongsheng Chen John C CrittendenrdquoElectrochemical Oxidation of Ofloxacin Using a TiO2-based SnO2-

SbPolytetrafluoroethylene Resin-PbO2 Electrode Reaction Kinetics and Mass Transfer Impactrdquo 2016 Applied Catalysis B Environmental 203 (2017) 515ndash525

15 Westerhoff Paul Moon Hye Minakata Daisuke Crittenden John ldquoOxidation of Organics in Retentates from Reverse Osmosis Wastewater Reuse Facilitiesrdquo Water Research 43 (16) 3992-2998

16 Liu L Chen F Yang F Chen Y Crittenden J ldquoPhotocatalytic degradation of 24-dichlorophenol using nanoscale FeTiO2rdquo Chemical Engineering Journal 2012 181ndash182 (0)189-195

References

References

17 Ying Wang Jiasheng Fang John C Crittenden Chanchan Shen ldquoNovel RGO120572-FeOOH Supported Catalyst for Fenton Oxidation of Phenol at a Wide pH Range Using Solar-Light-Driven Irradiationrdquo 2017 Journal

of Hazardous Materials 329 321ndash329

18 Xiaodong Ma Mengying Zhao Qin Pang Meihua Zheng Hongwen Sun John C Crittenden Yanying Zhu Yongsheng Chen ldquoDevelopment of Novel CaCO3Fe2O3 Nanorods for Low Temperature 12-

Dichlorobenzene Oxidationrdquo 2017 Applied Catalysis A General 522 (2016) 70ndash79

19 Heacutector L Otaacutelvaro-Mariacuten Miguel Angel Mueses John C Crittenden Fiderman Machuca-Martinez ldquoSolar Photoreactor Design by the Photon Path Length and Optimization of the Radiant Field in a TiO2-based CPC

Reactorrdquo 2017 Chemical Engineering Journal 315 283ndash295

20 Qi Wang Naxin Zhu Enqin Liu Chenlu Zhang John C Crittenden Yi ZhangYanqing CongldquoFabrication of Visible-Light Active Fe2O3-GQDsNF-TiO2 Composite Film with Highly Enhanced

Photoelectrocatalytic Performancerdquo 2017 Applied Catalysis B Environmental 205 347ndash356

21 Junfeng Niu Lifeng Yin Yunrong Dai Yueping Bao John C Crittenden ldquoDesign of Visible Light Responsive Photocatalysts for Selective Reduction of Chlorinated Organic Compounds in Waterrdquo 2016 Applied

Catalysis A General 521 90ndash95

22 Chaojie Jiang Lifen Liu John C Crittenden ldquoAn Electrochemical Process that Uses an Fe0TiO2 Cathode to Degrade Typical Dyes and Antibiotics and a Bio-anode that Produces Electricityrdquo 2016 Frontiers of

Environmental Science amp Engineering 10(4) 15

23 Yijing Xia Qizhou Dai Mili Weng Yue Peng Jinming Luo Xiaoyang Meng Xubiao Luo Jianmeng Chen John C Crittenden ldquoFabrication and Electrochemical Treatment Application of an Al-Doped PbO2

Electrode with High Oxidation Capability Oxygen Evolution Potential and Reusabilityrdquo2015 Journal of The Electrochemical Society 162 (10) E258-E262

24 Feng Duan Yuping Li Hongbin Cao Yi Wang John C Crittenden Yi Zhang ldquoActivated Carbon Electrodes Electrochemical Oxidation Coupled with Desalination for Wastewater Treatmentrdquo 2015 Chemosphere

125 205-211

25 Xing Linlin Xie Yongbing Cao Hongbin Minakata Daisuke Zhang Yi Crittenden John C ldquoActivated carbon-enhanced ozonation of oxalate attributed to HObull oxidation in bulk solution and surface oxidation

Effects of the type and number of basic sitesrdquo Chemical Engineering Journal 2014 245 71-79

26 Yao H Sun P Minakata D Crittenden JC Huang C-H ldquoKinetics and Modeling of Degradation of Ionophore Antibiotics by UV and UVH2O2rdquo Environmental Science and Technology 2013 (47) 4581-

45892

26 Li Yang et al Synergistic photogeneration of reactive oxygen species by dissolved organic matter and C60 in aqueous phase Environmental science amp technology 492 (2015) 965-973

28 Niu Junfeng et al Photocatalytic reduction of triclosan on AundashCu 2 O nanowire arrays as plasmonic photocatalysts under visible light irradiation Physical Chemistry Chemical Physics 1726 (2015) 17421-17428

29 Niu Junfeng et al Design of visible light responsive photocatalysts for selective reduction of chlorinated organic compounds in water Applied Catalysis A General 521 (2016) 90-95

30 Tianyin Huang Jiabin Chen Zhongming Wang Xin Guo John C Crittenden ldquoExcellent Performance of Cobalt-Impregnated Activated Carbon in Peroxymonosulfate Activation for Acid Orange 7 Oxidationrdquo 2017

Environmental Science and Pollution Research Volume 24 (10) 9651ndash9661

References

31 Yang Li Junfeng Niu Enxiang Shang John C Crittenden ldquoPhotochemical Transformation and Photoinduced Toxicity Reduction of Silver Nanoparticles in the Presence of Perfluorocarboxylic Acids under UV

Irradiationrdquo Environmental Science and Technology 2014 48 (9) pp 4946ndash4953

32 Cao H Xing L Wu G Xie S Zhang SY Minakata D Crittenden JC ldquoPromoting effect of nitration modification on activated carbon in the catalytic ozonation of oxalic acidrdquo Applied Catalysis B

Environmental 2014 146 169-176

33 Konsowa A H Ossman M E Chen Y Crittenden J C ldquoDecolorization of industrial wastewater by ozonation followed by adsorption on activated carbonrdquo Journal of Hazardous Materials 176 (2010) 181-185

November 10 2009

34 Wipada Sanongraj Yongsheng Chen John Crittenden David Hand and David Perram ldquoDevelopment of Photocatalytic Oxidation Model Part I-Mathematical Model for Photocatalytic Destruction of Organic

Contaminants in Airrdquo Journal of the Air and Waste Management Association 571112ndash1122 September 2007

35 Chen Y JC Crittenden S Hackney L Sutter and DW Hand ldquoPreparation of a Novel TiO2-based p-n Junction Nanotube Photocatalystrdquo Environmental Science and Technology Vol 39 No 5 1201-1208 (2005)

36 Suri RPS J Liu JC Crittenden DW Hand and DL Perram Removal and Destruction of Organic Contaminants in Water Using Adsorption Steam Regeneration and Photocatalytic Oxidation A Pilot Scale

Studyrdquo Journal of Air and Waste Management Volume 49 (August 1999) 951 ndash 958

37 Burns RA JC Crittenden DW Hand VH Selzer LL Sutter SR Salman Effect of Inorganic Ions in the Heterogeneous Photocatalysis of Trichloroethene ASCE Journal of Environmental Engineering Vol

125 No 1 pp 77-85 (January 1999)

38 Liu J JC Crittenden DW Hand and DL Perram Regeneration of Adsorbents Using Heterogeneous Photocatalytic Oxidationrdquo Journal of Environmental Engineering Vol 122 No 8 pp 707-714 (1996)

39 Crittenden JC J Liu DW Hand and DL Perram Photocatalytic Oxidation of Chlorinated Hydrocarbons in Waterrdquo Water Research Vol31 No 3 pp 429-438 (1997)

40 Crittenden JC RPS Suri DL Perram and DW Hand Decontamination of Water Using Adsorption and Photocatalysisrdquo Water Research Vol 31 No 3 pp 411-418 (1997)

41 Crittenden JC Y Zhang DW Hand and DL Perram Destruction of Organic Compounds in Water Using Fixed-Bed Photocatalysts Journal of Solar Energy Engineering (ASME) Vol 118 No 5 pp 123 -129

(1996)

42 Crittenden JC Y Zhang DW Hand and DL Perram Solar Detoxification of Fuel-Contaminated Groundwater Using Fixed-Bed Photocatalystsrdquo Water Environment Research Vol 68 No 3 pp 270-278

(1996)

43 Zhang Y JC Crittenden and DW Hand The Solar Photocatalytic Decontamination of Waterrdquo Chemistry amp Industry Vol 18 pp 714-717 September (1994)

44 Mourand JT JC Crittenden DW Hand DL Perram and S Notthakun Regeneration of Spent Adsorbents Using Advanced Oxidationrdquo Water Environment Federation Vol 67 No 3 pp 355-363 (1995)

45 Hand DW DL Perram and JC Crittenden Destruction of DBP Precursors with Catalytic Oxidationrdquo American Water Works Association Journal Vol 87 No 6 pp 84-96 (1995)

46 Zhang Y JC Crittenden DW Hand and DL Perram Fixed-Bed Photo-catalysts for Solar Decontamination of Waterrdquo Environmental Science amp Technology Vol 28 No 3 pp 435-442 (1994)

47 Suri RPS J Liu DW Hand JC Crittenden DL Perram and ME Mullins Heterogeneous Photocatalytic Oxidation of Hazardous Organic Contaminants in Waterrdquo Water Environment Federation Vol 65 No

5 pp 665-673 (1993)

Page 34: The Application of Advanced Oxidation Processes (AOPs) and ...€¦ · We define the electron efficiency to be = 32 12 ·( J 4𝑥)· Where TOC in mg (c)/L and COD in mg ( 2)/L, n

Cost Analysis for Preliminary Design

The total costs (capital costs + energy costs) as a function of different electrode spacing for different theoretical

reaction rate In here the treatment objective is 99 removal flow rate is 1000 m3day and the fluid velocity is 00116

ms The flow channel has eddy promoter and its electrode spacing and obstacle distance ratio is 13 The electricity

price is $00512kWh and the pumping power is 853 kW The electrode price is $300m2 and its lifetime is 2000 h

Currently we are at only Ω=0436

Computer-based First-Principles Kinetic Model

Reaction Pathway Generator

(Graph Theory)

Rate Constants Estimator

(Group Contribution Method

Free Energy Linear

Relationship

Genetic Algorithm)

Ordinary Differential

Equations

(ODEs) Generator and Solver

(Gearrsquos Algorithm or

Monte Carlo algorithm)

Kinetic Monte Carlo Solver can

solve 1 million ODEs on PC

within 30 minutes

Complexity of Reaction PathwayExample

General reaction mechanisms that HObull initiates based on past experimental studies

Stefan and Bolton 1998 1999 1999 Stefan et al 1996 2000 Cooper et al 2009 Li et al 2004 2007 von Sonntag and

Schuchmann 1984 Schuchmann and von Sonntag 1979

Type of mechanismNumber of

speciesNumber of reactions

Full mechanism 120 370

Reduced mechanism 41 89

The criterion for DRG method is 1

Reaction rate constants are obtained from group contribution method (Minakata et al 2009 ESampT 43 6220-6227) and literature includingNate et al 1990 J Phys Chem Ref Data 19 413-513Nate et al 1995 J Phys Chem Ref Data 25 709-1050Buxton et al 1988 J Phys Chem Ref Data 17 513-886von Sonntag et al 1991 Angeuz Chem Int Ed Engl 30 1229-1253Li et al 2009 ESampT 43 2831-2837Li et al 2007 ESampT 41 1696-1703

Initial concentration of TCE 108 mM

Initial concentration of O2 22 mM

Initial concentration of H2O2 104 mM

Initial pH 59

Wave length of UV 200~300 nm

Light intensity779times10-6

EinsteinLmiddots

Reactor typeCompletely mixed batch reactor

Reaction time 30 min

Comparison of concentration profiles of major species for experimental data (Li Stefan Crittenden 2007 ESampT 41 1696-1703) and simulation results

00

20

40

60

80

100

120

00

02

04

06

08

10

12

0 5 10 15 20 25 30[H

2O

2]

(mM

)

[Ma

jor

spec

ies]

(m

M)

Time(min)

TCE exp

formic acid exp

oxalic acid exp

20 times DCA exp

20 times MCA exp

TCE cal

formic acid cal

oxalic acid cal

20 times DCA cal

20 times MCA cal

H2O2 exp

H2O2 cal

The photolysis of TCE was added manually because it is not included in this version of the pathway generator

Predicted Concentration Profiles of

Trichloroethene (TCE) and Stable-byproducts in UVH2O2 AOP

Comparison of number averaged molecular

weight (MW) for experimental data

(Vijayalakshmi et al J Appl Polym Sci 2006

100 3997-4003) and on-the-fly KMC model

The KMC model used a population number of 108L to

represent a concentration of 1molL

0

02

04

06

08

1

12

14

16

18

0 25 50 75 100 125 150 175 200

Aver

aged

mole

cu

lar

wei

gh

t (1

05

gm

ol)

Time (min)

Experiment

On-the-fly KMC

0

02

04

06

08

1

12

0 25 50 75 100 125 150 175 200

Nu

mb

er o

f re

act

ion

s (1

06)

Time (min)

Time evolvement of the number of generated

reactions for the degradation of PAM during the

UVTiO2 process

Degradation of Polyacrylamide (PAM)

Simulation Results for PAM Degradation in UVTiO2 AOP

Guo X Minakata D and Crittenden J 2015 On-the-fly kinetic Monte Carlo simulation of aqueous phase advanced oxidation processes Environmental science amp technology 49(15) pp9230-9236

1 Crittenden John C Shumin Hu David W Hand and Sarah Green ldquoA Kinetic Model for H2O2UV Process in a Completely Mixed Batch Reactorrdquo Water Research 33(10) 2315-2328 (1999)

2 Li K Crittenden JC Computerized pathway elucidation for hydroxyl radical induced chain reaction mechanisms in aqueous phase AOPs Environmental Science amp Technology 2009 43(8) 2831-2837

3 Li K Stefan MI Crittenden JC Trichloroethene degradation by UVH2O2 advanced oxidation process product study and kinetic modeling Environmental Science amp Technology 2007 41 1696-1703

4 Li K M I Stefan and J C Crittenden ldquoUV Photolysis of Trichloroethylene (TCE) Product Study and Kinetic Modelingrdquo Environmental Science and Technology Vol 38 No 24 6685-6693 (2004)

5 Ke Li David R Hokanson John C Crittenden R Rhodes Trussell and Daisuke Minakata ldquoEvaluating UVH2O2 Processes for Methyl tert-Butyl Ether (MtBE) and tertiary Butyl Alcohol (TBA) Removal from

Drinking Water Source Effect of Pretreatment Options and Light Sourcesrdquo Water Research 2008 Volume 42 (20) 5045-5053

6 Minakata D Li K Westerhoff P Crittenden J Development of a group contribution method to predict aqueous phase hydroxyl radical reaction rate constants Environmental Science amp Technology 2009 43

6220-6227

7 Minakata D Crittenden J Linear Free Energy Relationships between the Aqueous Phase Hydroxyl Radical (HObull) Reaction Rate Constants and the Free Energy of Activation Environmental Science amp Technology

2011a 45 3479-3486

8 Minakata D Song W Crittenden J Reactivity of aqueous phase hydroxyl radical with halogenated carboxylate anions Experimental and theoretical studies Environmental Science amp Technology 2011 45 6057-

6065

9 Daisuke Minakata Stephen P Mezyk Jace W Jones Brittany R Daws John C Crittenden ldquoDevelopment of Linear Free Energy Relationships for Aqueous Phase Radical-Involved Chemical Reactionsrdquo

Environmental Science amp Technology 2014 48 (23) 13925-13932

10 Xin Guo Daisuke Minakata John C Crittenden ldquoOn-the-Fly Kinetic Monte Carlo Simulation of Aqueous Phase Advanced Oxidation Processesrdquo Environmental Science and Technology 2015 49 (15) 9230ndash9236

11 Guo X Minakata D Crittenden JC ldquoComputer-Based First-Principles Kinetic Monte Carlo Simulation of Polyethylene Glycol Degradation in Aqueous Phase UVH2O2 Advanced Oxidation Processrdquo

Environmental Science amp Technology 2014 48 10813minus10820

12 Xin Guo Daisuke Minakata Junfeng Niu John C Crittenden ldquoComputer-based First-principles Kinetic Modeling of Degradation Pathways and Byproduct Fates in Aqueous Phase Advanced Oxidation Processesrdquo

Environmental Science and Technology 2014 48 (10) pp 5718ndash5725

13 Yajie Qian Xin Guo Yalei Zhang Yue Peng Peizhe Sun Ching-Hua Huang Junfeng Niu Xuefei Zhou John C Crittenden ldquoPerfluorooctanoic Acid Degradation Using UVminusPersulfate Process Modeling of the

Degradation and Chlorate Formationrdquo 2015 Environmental Science and Technology 50 (2) 772ndash781

14 Ruzhen Xie Xiaoyang Meng Peizhe Sun Junfeng Niu Wenju JiangLawrence Bottomley Duo Li Yongsheng Chen John C CrittendenrdquoElectrochemical Oxidation of Ofloxacin Using a TiO2-based SnO2-

SbPolytetrafluoroethylene Resin-PbO2 Electrode Reaction Kinetics and Mass Transfer Impactrdquo 2016 Applied Catalysis B Environmental 203 (2017) 515ndash525

15 Westerhoff Paul Moon Hye Minakata Daisuke Crittenden John ldquoOxidation of Organics in Retentates from Reverse Osmosis Wastewater Reuse Facilitiesrdquo Water Research 43 (16) 3992-2998

16 Liu L Chen F Yang F Chen Y Crittenden J ldquoPhotocatalytic degradation of 24-dichlorophenol using nanoscale FeTiO2rdquo Chemical Engineering Journal 2012 181ndash182 (0)189-195

References

References

17 Ying Wang Jiasheng Fang John C Crittenden Chanchan Shen ldquoNovel RGO120572-FeOOH Supported Catalyst for Fenton Oxidation of Phenol at a Wide pH Range Using Solar-Light-Driven Irradiationrdquo 2017 Journal

of Hazardous Materials 329 321ndash329

18 Xiaodong Ma Mengying Zhao Qin Pang Meihua Zheng Hongwen Sun John C Crittenden Yanying Zhu Yongsheng Chen ldquoDevelopment of Novel CaCO3Fe2O3 Nanorods for Low Temperature 12-

Dichlorobenzene Oxidationrdquo 2017 Applied Catalysis A General 522 (2016) 70ndash79

19 Heacutector L Otaacutelvaro-Mariacuten Miguel Angel Mueses John C Crittenden Fiderman Machuca-Martinez ldquoSolar Photoreactor Design by the Photon Path Length and Optimization of the Radiant Field in a TiO2-based CPC

Reactorrdquo 2017 Chemical Engineering Journal 315 283ndash295

20 Qi Wang Naxin Zhu Enqin Liu Chenlu Zhang John C Crittenden Yi ZhangYanqing CongldquoFabrication of Visible-Light Active Fe2O3-GQDsNF-TiO2 Composite Film with Highly Enhanced

Photoelectrocatalytic Performancerdquo 2017 Applied Catalysis B Environmental 205 347ndash356

21 Junfeng Niu Lifeng Yin Yunrong Dai Yueping Bao John C Crittenden ldquoDesign of Visible Light Responsive Photocatalysts for Selective Reduction of Chlorinated Organic Compounds in Waterrdquo 2016 Applied

Catalysis A General 521 90ndash95

22 Chaojie Jiang Lifen Liu John C Crittenden ldquoAn Electrochemical Process that Uses an Fe0TiO2 Cathode to Degrade Typical Dyes and Antibiotics and a Bio-anode that Produces Electricityrdquo 2016 Frontiers of

Environmental Science amp Engineering 10(4) 15

23 Yijing Xia Qizhou Dai Mili Weng Yue Peng Jinming Luo Xiaoyang Meng Xubiao Luo Jianmeng Chen John C Crittenden ldquoFabrication and Electrochemical Treatment Application of an Al-Doped PbO2

Electrode with High Oxidation Capability Oxygen Evolution Potential and Reusabilityrdquo2015 Journal of The Electrochemical Society 162 (10) E258-E262

24 Feng Duan Yuping Li Hongbin Cao Yi Wang John C Crittenden Yi Zhang ldquoActivated Carbon Electrodes Electrochemical Oxidation Coupled with Desalination for Wastewater Treatmentrdquo 2015 Chemosphere

125 205-211

25 Xing Linlin Xie Yongbing Cao Hongbin Minakata Daisuke Zhang Yi Crittenden John C ldquoActivated carbon-enhanced ozonation of oxalate attributed to HObull oxidation in bulk solution and surface oxidation

Effects of the type and number of basic sitesrdquo Chemical Engineering Journal 2014 245 71-79

26 Yao H Sun P Minakata D Crittenden JC Huang C-H ldquoKinetics and Modeling of Degradation of Ionophore Antibiotics by UV and UVH2O2rdquo Environmental Science and Technology 2013 (47) 4581-

45892

26 Li Yang et al Synergistic photogeneration of reactive oxygen species by dissolved organic matter and C60 in aqueous phase Environmental science amp technology 492 (2015) 965-973

28 Niu Junfeng et al Photocatalytic reduction of triclosan on AundashCu 2 O nanowire arrays as plasmonic photocatalysts under visible light irradiation Physical Chemistry Chemical Physics 1726 (2015) 17421-17428

29 Niu Junfeng et al Design of visible light responsive photocatalysts for selective reduction of chlorinated organic compounds in water Applied Catalysis A General 521 (2016) 90-95

30 Tianyin Huang Jiabin Chen Zhongming Wang Xin Guo John C Crittenden ldquoExcellent Performance of Cobalt-Impregnated Activated Carbon in Peroxymonosulfate Activation for Acid Orange 7 Oxidationrdquo 2017

Environmental Science and Pollution Research Volume 24 (10) 9651ndash9661

References

31 Yang Li Junfeng Niu Enxiang Shang John C Crittenden ldquoPhotochemical Transformation and Photoinduced Toxicity Reduction of Silver Nanoparticles in the Presence of Perfluorocarboxylic Acids under UV

Irradiationrdquo Environmental Science and Technology 2014 48 (9) pp 4946ndash4953

32 Cao H Xing L Wu G Xie S Zhang SY Minakata D Crittenden JC ldquoPromoting effect of nitration modification on activated carbon in the catalytic ozonation of oxalic acidrdquo Applied Catalysis B

Environmental 2014 146 169-176

33 Konsowa A H Ossman M E Chen Y Crittenden J C ldquoDecolorization of industrial wastewater by ozonation followed by adsorption on activated carbonrdquo Journal of Hazardous Materials 176 (2010) 181-185

November 10 2009

34 Wipada Sanongraj Yongsheng Chen John Crittenden David Hand and David Perram ldquoDevelopment of Photocatalytic Oxidation Model Part I-Mathematical Model for Photocatalytic Destruction of Organic

Contaminants in Airrdquo Journal of the Air and Waste Management Association 571112ndash1122 September 2007

35 Chen Y JC Crittenden S Hackney L Sutter and DW Hand ldquoPreparation of a Novel TiO2-based p-n Junction Nanotube Photocatalystrdquo Environmental Science and Technology Vol 39 No 5 1201-1208 (2005)

36 Suri RPS J Liu JC Crittenden DW Hand and DL Perram Removal and Destruction of Organic Contaminants in Water Using Adsorption Steam Regeneration and Photocatalytic Oxidation A Pilot Scale

Studyrdquo Journal of Air and Waste Management Volume 49 (August 1999) 951 ndash 958

37 Burns RA JC Crittenden DW Hand VH Selzer LL Sutter SR Salman Effect of Inorganic Ions in the Heterogeneous Photocatalysis of Trichloroethene ASCE Journal of Environmental Engineering Vol

125 No 1 pp 77-85 (January 1999)

38 Liu J JC Crittenden DW Hand and DL Perram Regeneration of Adsorbents Using Heterogeneous Photocatalytic Oxidationrdquo Journal of Environmental Engineering Vol 122 No 8 pp 707-714 (1996)

39 Crittenden JC J Liu DW Hand and DL Perram Photocatalytic Oxidation of Chlorinated Hydrocarbons in Waterrdquo Water Research Vol31 No 3 pp 429-438 (1997)

40 Crittenden JC RPS Suri DL Perram and DW Hand Decontamination of Water Using Adsorption and Photocatalysisrdquo Water Research Vol 31 No 3 pp 411-418 (1997)

41 Crittenden JC Y Zhang DW Hand and DL Perram Destruction of Organic Compounds in Water Using Fixed-Bed Photocatalysts Journal of Solar Energy Engineering (ASME) Vol 118 No 5 pp 123 -129

(1996)

42 Crittenden JC Y Zhang DW Hand and DL Perram Solar Detoxification of Fuel-Contaminated Groundwater Using Fixed-Bed Photocatalystsrdquo Water Environment Research Vol 68 No 3 pp 270-278

(1996)

43 Zhang Y JC Crittenden and DW Hand The Solar Photocatalytic Decontamination of Waterrdquo Chemistry amp Industry Vol 18 pp 714-717 September (1994)

44 Mourand JT JC Crittenden DW Hand DL Perram and S Notthakun Regeneration of Spent Adsorbents Using Advanced Oxidationrdquo Water Environment Federation Vol 67 No 3 pp 355-363 (1995)

45 Hand DW DL Perram and JC Crittenden Destruction of DBP Precursors with Catalytic Oxidationrdquo American Water Works Association Journal Vol 87 No 6 pp 84-96 (1995)

46 Zhang Y JC Crittenden DW Hand and DL Perram Fixed-Bed Photo-catalysts for Solar Decontamination of Waterrdquo Environmental Science amp Technology Vol 28 No 3 pp 435-442 (1994)

47 Suri RPS J Liu DW Hand JC Crittenden DL Perram and ME Mullins Heterogeneous Photocatalytic Oxidation of Hazardous Organic Contaminants in Waterrdquo Water Environment Federation Vol 65 No

5 pp 665-673 (1993)

Page 35: The Application of Advanced Oxidation Processes (AOPs) and ...€¦ · We define the electron efficiency to be = 32 12 ·( J 4𝑥)· Where TOC in mg (c)/L and COD in mg ( 2)/L, n

Computer-based First-Principles Kinetic Model

Reaction Pathway Generator

(Graph Theory)

Rate Constants Estimator

(Group Contribution Method

Free Energy Linear

Relationship

Genetic Algorithm)

Ordinary Differential

Equations

(ODEs) Generator and Solver

(Gearrsquos Algorithm or

Monte Carlo algorithm)

Kinetic Monte Carlo Solver can

solve 1 million ODEs on PC

within 30 minutes

Complexity of Reaction PathwayExample

General reaction mechanisms that HObull initiates based on past experimental studies

Stefan and Bolton 1998 1999 1999 Stefan et al 1996 2000 Cooper et al 2009 Li et al 2004 2007 von Sonntag and

Schuchmann 1984 Schuchmann and von Sonntag 1979

Type of mechanismNumber of

speciesNumber of reactions

Full mechanism 120 370

Reduced mechanism 41 89

The criterion for DRG method is 1

Reaction rate constants are obtained from group contribution method (Minakata et al 2009 ESampT 43 6220-6227) and literature includingNate et al 1990 J Phys Chem Ref Data 19 413-513Nate et al 1995 J Phys Chem Ref Data 25 709-1050Buxton et al 1988 J Phys Chem Ref Data 17 513-886von Sonntag et al 1991 Angeuz Chem Int Ed Engl 30 1229-1253Li et al 2009 ESampT 43 2831-2837Li et al 2007 ESampT 41 1696-1703

Initial concentration of TCE 108 mM

Initial concentration of O2 22 mM

Initial concentration of H2O2 104 mM

Initial pH 59

Wave length of UV 200~300 nm

Light intensity779times10-6

EinsteinLmiddots

Reactor typeCompletely mixed batch reactor

Reaction time 30 min

Comparison of concentration profiles of major species for experimental data (Li Stefan Crittenden 2007 ESampT 41 1696-1703) and simulation results

00

20

40

60

80

100

120

00

02

04

06

08

10

12

0 5 10 15 20 25 30[H

2O

2]

(mM

)

[Ma

jor

spec

ies]

(m

M)

Time(min)

TCE exp

formic acid exp

oxalic acid exp

20 times DCA exp

20 times MCA exp

TCE cal

formic acid cal

oxalic acid cal

20 times DCA cal

20 times MCA cal

H2O2 exp

H2O2 cal

The photolysis of TCE was added manually because it is not included in this version of the pathway generator

Predicted Concentration Profiles of

Trichloroethene (TCE) and Stable-byproducts in UVH2O2 AOP

Comparison of number averaged molecular

weight (MW) for experimental data

(Vijayalakshmi et al J Appl Polym Sci 2006

100 3997-4003) and on-the-fly KMC model

The KMC model used a population number of 108L to

represent a concentration of 1molL

0

02

04

06

08

1

12

14

16

18

0 25 50 75 100 125 150 175 200

Aver

aged

mole

cu

lar

wei

gh

t (1

05

gm

ol)

Time (min)

Experiment

On-the-fly KMC

0

02

04

06

08

1

12

0 25 50 75 100 125 150 175 200

Nu

mb

er o

f re

act

ion

s (1

06)

Time (min)

Time evolvement of the number of generated

reactions for the degradation of PAM during the

UVTiO2 process

Degradation of Polyacrylamide (PAM)

Simulation Results for PAM Degradation in UVTiO2 AOP

Guo X Minakata D and Crittenden J 2015 On-the-fly kinetic Monte Carlo simulation of aqueous phase advanced oxidation processes Environmental science amp technology 49(15) pp9230-9236

1 Crittenden John C Shumin Hu David W Hand and Sarah Green ldquoA Kinetic Model for H2O2UV Process in a Completely Mixed Batch Reactorrdquo Water Research 33(10) 2315-2328 (1999)

2 Li K Crittenden JC Computerized pathway elucidation for hydroxyl radical induced chain reaction mechanisms in aqueous phase AOPs Environmental Science amp Technology 2009 43(8) 2831-2837

3 Li K Stefan MI Crittenden JC Trichloroethene degradation by UVH2O2 advanced oxidation process product study and kinetic modeling Environmental Science amp Technology 2007 41 1696-1703

4 Li K M I Stefan and J C Crittenden ldquoUV Photolysis of Trichloroethylene (TCE) Product Study and Kinetic Modelingrdquo Environmental Science and Technology Vol 38 No 24 6685-6693 (2004)

5 Ke Li David R Hokanson John C Crittenden R Rhodes Trussell and Daisuke Minakata ldquoEvaluating UVH2O2 Processes for Methyl tert-Butyl Ether (MtBE) and tertiary Butyl Alcohol (TBA) Removal from

Drinking Water Source Effect of Pretreatment Options and Light Sourcesrdquo Water Research 2008 Volume 42 (20) 5045-5053

6 Minakata D Li K Westerhoff P Crittenden J Development of a group contribution method to predict aqueous phase hydroxyl radical reaction rate constants Environmental Science amp Technology 2009 43

6220-6227

7 Minakata D Crittenden J Linear Free Energy Relationships between the Aqueous Phase Hydroxyl Radical (HObull) Reaction Rate Constants and the Free Energy of Activation Environmental Science amp Technology

2011a 45 3479-3486

8 Minakata D Song W Crittenden J Reactivity of aqueous phase hydroxyl radical with halogenated carboxylate anions Experimental and theoretical studies Environmental Science amp Technology 2011 45 6057-

6065

9 Daisuke Minakata Stephen P Mezyk Jace W Jones Brittany R Daws John C Crittenden ldquoDevelopment of Linear Free Energy Relationships for Aqueous Phase Radical-Involved Chemical Reactionsrdquo

Environmental Science amp Technology 2014 48 (23) 13925-13932

10 Xin Guo Daisuke Minakata John C Crittenden ldquoOn-the-Fly Kinetic Monte Carlo Simulation of Aqueous Phase Advanced Oxidation Processesrdquo Environmental Science and Technology 2015 49 (15) 9230ndash9236

11 Guo X Minakata D Crittenden JC ldquoComputer-Based First-Principles Kinetic Monte Carlo Simulation of Polyethylene Glycol Degradation in Aqueous Phase UVH2O2 Advanced Oxidation Processrdquo

Environmental Science amp Technology 2014 48 10813minus10820

12 Xin Guo Daisuke Minakata Junfeng Niu John C Crittenden ldquoComputer-based First-principles Kinetic Modeling of Degradation Pathways and Byproduct Fates in Aqueous Phase Advanced Oxidation Processesrdquo

Environmental Science and Technology 2014 48 (10) pp 5718ndash5725

13 Yajie Qian Xin Guo Yalei Zhang Yue Peng Peizhe Sun Ching-Hua Huang Junfeng Niu Xuefei Zhou John C Crittenden ldquoPerfluorooctanoic Acid Degradation Using UVminusPersulfate Process Modeling of the

Degradation and Chlorate Formationrdquo 2015 Environmental Science and Technology 50 (2) 772ndash781

14 Ruzhen Xie Xiaoyang Meng Peizhe Sun Junfeng Niu Wenju JiangLawrence Bottomley Duo Li Yongsheng Chen John C CrittendenrdquoElectrochemical Oxidation of Ofloxacin Using a TiO2-based SnO2-

SbPolytetrafluoroethylene Resin-PbO2 Electrode Reaction Kinetics and Mass Transfer Impactrdquo 2016 Applied Catalysis B Environmental 203 (2017) 515ndash525

15 Westerhoff Paul Moon Hye Minakata Daisuke Crittenden John ldquoOxidation of Organics in Retentates from Reverse Osmosis Wastewater Reuse Facilitiesrdquo Water Research 43 (16) 3992-2998

16 Liu L Chen F Yang F Chen Y Crittenden J ldquoPhotocatalytic degradation of 24-dichlorophenol using nanoscale FeTiO2rdquo Chemical Engineering Journal 2012 181ndash182 (0)189-195

References

References

17 Ying Wang Jiasheng Fang John C Crittenden Chanchan Shen ldquoNovel RGO120572-FeOOH Supported Catalyst for Fenton Oxidation of Phenol at a Wide pH Range Using Solar-Light-Driven Irradiationrdquo 2017 Journal

of Hazardous Materials 329 321ndash329

18 Xiaodong Ma Mengying Zhao Qin Pang Meihua Zheng Hongwen Sun John C Crittenden Yanying Zhu Yongsheng Chen ldquoDevelopment of Novel CaCO3Fe2O3 Nanorods for Low Temperature 12-

Dichlorobenzene Oxidationrdquo 2017 Applied Catalysis A General 522 (2016) 70ndash79

19 Heacutector L Otaacutelvaro-Mariacuten Miguel Angel Mueses John C Crittenden Fiderman Machuca-Martinez ldquoSolar Photoreactor Design by the Photon Path Length and Optimization of the Radiant Field in a TiO2-based CPC

Reactorrdquo 2017 Chemical Engineering Journal 315 283ndash295

20 Qi Wang Naxin Zhu Enqin Liu Chenlu Zhang John C Crittenden Yi ZhangYanqing CongldquoFabrication of Visible-Light Active Fe2O3-GQDsNF-TiO2 Composite Film with Highly Enhanced

Photoelectrocatalytic Performancerdquo 2017 Applied Catalysis B Environmental 205 347ndash356

21 Junfeng Niu Lifeng Yin Yunrong Dai Yueping Bao John C Crittenden ldquoDesign of Visible Light Responsive Photocatalysts for Selective Reduction of Chlorinated Organic Compounds in Waterrdquo 2016 Applied

Catalysis A General 521 90ndash95

22 Chaojie Jiang Lifen Liu John C Crittenden ldquoAn Electrochemical Process that Uses an Fe0TiO2 Cathode to Degrade Typical Dyes and Antibiotics and a Bio-anode that Produces Electricityrdquo 2016 Frontiers of

Environmental Science amp Engineering 10(4) 15

23 Yijing Xia Qizhou Dai Mili Weng Yue Peng Jinming Luo Xiaoyang Meng Xubiao Luo Jianmeng Chen John C Crittenden ldquoFabrication and Electrochemical Treatment Application of an Al-Doped PbO2

Electrode with High Oxidation Capability Oxygen Evolution Potential and Reusabilityrdquo2015 Journal of The Electrochemical Society 162 (10) E258-E262

24 Feng Duan Yuping Li Hongbin Cao Yi Wang John C Crittenden Yi Zhang ldquoActivated Carbon Electrodes Electrochemical Oxidation Coupled with Desalination for Wastewater Treatmentrdquo 2015 Chemosphere

125 205-211

25 Xing Linlin Xie Yongbing Cao Hongbin Minakata Daisuke Zhang Yi Crittenden John C ldquoActivated carbon-enhanced ozonation of oxalate attributed to HObull oxidation in bulk solution and surface oxidation

Effects of the type and number of basic sitesrdquo Chemical Engineering Journal 2014 245 71-79

26 Yao H Sun P Minakata D Crittenden JC Huang C-H ldquoKinetics and Modeling of Degradation of Ionophore Antibiotics by UV and UVH2O2rdquo Environmental Science and Technology 2013 (47) 4581-

45892

26 Li Yang et al Synergistic photogeneration of reactive oxygen species by dissolved organic matter and C60 in aqueous phase Environmental science amp technology 492 (2015) 965-973

28 Niu Junfeng et al Photocatalytic reduction of triclosan on AundashCu 2 O nanowire arrays as plasmonic photocatalysts under visible light irradiation Physical Chemistry Chemical Physics 1726 (2015) 17421-17428

29 Niu Junfeng et al Design of visible light responsive photocatalysts for selective reduction of chlorinated organic compounds in water Applied Catalysis A General 521 (2016) 90-95

30 Tianyin Huang Jiabin Chen Zhongming Wang Xin Guo John C Crittenden ldquoExcellent Performance of Cobalt-Impregnated Activated Carbon in Peroxymonosulfate Activation for Acid Orange 7 Oxidationrdquo 2017

Environmental Science and Pollution Research Volume 24 (10) 9651ndash9661

References

31 Yang Li Junfeng Niu Enxiang Shang John C Crittenden ldquoPhotochemical Transformation and Photoinduced Toxicity Reduction of Silver Nanoparticles in the Presence of Perfluorocarboxylic Acids under UV

Irradiationrdquo Environmental Science and Technology 2014 48 (9) pp 4946ndash4953

32 Cao H Xing L Wu G Xie S Zhang SY Minakata D Crittenden JC ldquoPromoting effect of nitration modification on activated carbon in the catalytic ozonation of oxalic acidrdquo Applied Catalysis B

Environmental 2014 146 169-176

33 Konsowa A H Ossman M E Chen Y Crittenden J C ldquoDecolorization of industrial wastewater by ozonation followed by adsorption on activated carbonrdquo Journal of Hazardous Materials 176 (2010) 181-185

November 10 2009

34 Wipada Sanongraj Yongsheng Chen John Crittenden David Hand and David Perram ldquoDevelopment of Photocatalytic Oxidation Model Part I-Mathematical Model for Photocatalytic Destruction of Organic

Contaminants in Airrdquo Journal of the Air and Waste Management Association 571112ndash1122 September 2007

35 Chen Y JC Crittenden S Hackney L Sutter and DW Hand ldquoPreparation of a Novel TiO2-based p-n Junction Nanotube Photocatalystrdquo Environmental Science and Technology Vol 39 No 5 1201-1208 (2005)

36 Suri RPS J Liu JC Crittenden DW Hand and DL Perram Removal and Destruction of Organic Contaminants in Water Using Adsorption Steam Regeneration and Photocatalytic Oxidation A Pilot Scale

Studyrdquo Journal of Air and Waste Management Volume 49 (August 1999) 951 ndash 958

37 Burns RA JC Crittenden DW Hand VH Selzer LL Sutter SR Salman Effect of Inorganic Ions in the Heterogeneous Photocatalysis of Trichloroethene ASCE Journal of Environmental Engineering Vol

125 No 1 pp 77-85 (January 1999)

38 Liu J JC Crittenden DW Hand and DL Perram Regeneration of Adsorbents Using Heterogeneous Photocatalytic Oxidationrdquo Journal of Environmental Engineering Vol 122 No 8 pp 707-714 (1996)

39 Crittenden JC J Liu DW Hand and DL Perram Photocatalytic Oxidation of Chlorinated Hydrocarbons in Waterrdquo Water Research Vol31 No 3 pp 429-438 (1997)

40 Crittenden JC RPS Suri DL Perram and DW Hand Decontamination of Water Using Adsorption and Photocatalysisrdquo Water Research Vol 31 No 3 pp 411-418 (1997)

41 Crittenden JC Y Zhang DW Hand and DL Perram Destruction of Organic Compounds in Water Using Fixed-Bed Photocatalysts Journal of Solar Energy Engineering (ASME) Vol 118 No 5 pp 123 -129

(1996)

42 Crittenden JC Y Zhang DW Hand and DL Perram Solar Detoxification of Fuel-Contaminated Groundwater Using Fixed-Bed Photocatalystsrdquo Water Environment Research Vol 68 No 3 pp 270-278

(1996)

43 Zhang Y JC Crittenden and DW Hand The Solar Photocatalytic Decontamination of Waterrdquo Chemistry amp Industry Vol 18 pp 714-717 September (1994)

44 Mourand JT JC Crittenden DW Hand DL Perram and S Notthakun Regeneration of Spent Adsorbents Using Advanced Oxidationrdquo Water Environment Federation Vol 67 No 3 pp 355-363 (1995)

45 Hand DW DL Perram and JC Crittenden Destruction of DBP Precursors with Catalytic Oxidationrdquo American Water Works Association Journal Vol 87 No 6 pp 84-96 (1995)

46 Zhang Y JC Crittenden DW Hand and DL Perram Fixed-Bed Photo-catalysts for Solar Decontamination of Waterrdquo Environmental Science amp Technology Vol 28 No 3 pp 435-442 (1994)

47 Suri RPS J Liu DW Hand JC Crittenden DL Perram and ME Mullins Heterogeneous Photocatalytic Oxidation of Hazardous Organic Contaminants in Waterrdquo Water Environment Federation Vol 65 No

5 pp 665-673 (1993)

Page 36: The Application of Advanced Oxidation Processes (AOPs) and ...€¦ · We define the electron efficiency to be = 32 12 ·( J 4𝑥)· Where TOC in mg (c)/L and COD in mg ( 2)/L, n

Complexity of Reaction PathwayExample

General reaction mechanisms that HObull initiates based on past experimental studies

Stefan and Bolton 1998 1999 1999 Stefan et al 1996 2000 Cooper et al 2009 Li et al 2004 2007 von Sonntag and

Schuchmann 1984 Schuchmann and von Sonntag 1979

Type of mechanismNumber of

speciesNumber of reactions

Full mechanism 120 370

Reduced mechanism 41 89

The criterion for DRG method is 1

Reaction rate constants are obtained from group contribution method (Minakata et al 2009 ESampT 43 6220-6227) and literature includingNate et al 1990 J Phys Chem Ref Data 19 413-513Nate et al 1995 J Phys Chem Ref Data 25 709-1050Buxton et al 1988 J Phys Chem Ref Data 17 513-886von Sonntag et al 1991 Angeuz Chem Int Ed Engl 30 1229-1253Li et al 2009 ESampT 43 2831-2837Li et al 2007 ESampT 41 1696-1703

Initial concentration of TCE 108 mM

Initial concentration of O2 22 mM

Initial concentration of H2O2 104 mM

Initial pH 59

Wave length of UV 200~300 nm

Light intensity779times10-6

EinsteinLmiddots

Reactor typeCompletely mixed batch reactor

Reaction time 30 min

Comparison of concentration profiles of major species for experimental data (Li Stefan Crittenden 2007 ESampT 41 1696-1703) and simulation results

00

20

40

60

80

100

120

00

02

04

06

08

10

12

0 5 10 15 20 25 30[H

2O

2]

(mM

)

[Ma

jor

spec

ies]

(m

M)

Time(min)

TCE exp

formic acid exp

oxalic acid exp

20 times DCA exp

20 times MCA exp

TCE cal

formic acid cal

oxalic acid cal

20 times DCA cal

20 times MCA cal

H2O2 exp

H2O2 cal

The photolysis of TCE was added manually because it is not included in this version of the pathway generator

Predicted Concentration Profiles of

Trichloroethene (TCE) and Stable-byproducts in UVH2O2 AOP

Comparison of number averaged molecular

weight (MW) for experimental data

(Vijayalakshmi et al J Appl Polym Sci 2006

100 3997-4003) and on-the-fly KMC model

The KMC model used a population number of 108L to

represent a concentration of 1molL

0

02

04

06

08

1

12

14

16

18

0 25 50 75 100 125 150 175 200

Aver

aged

mole

cu

lar

wei

gh

t (1

05

gm

ol)

Time (min)

Experiment

On-the-fly KMC

0

02

04

06

08

1

12

0 25 50 75 100 125 150 175 200

Nu

mb

er o

f re

act

ion

s (1

06)

Time (min)

Time evolvement of the number of generated

reactions for the degradation of PAM during the

UVTiO2 process

Degradation of Polyacrylamide (PAM)

Simulation Results for PAM Degradation in UVTiO2 AOP

Guo X Minakata D and Crittenden J 2015 On-the-fly kinetic Monte Carlo simulation of aqueous phase advanced oxidation processes Environmental science amp technology 49(15) pp9230-9236

1 Crittenden John C Shumin Hu David W Hand and Sarah Green ldquoA Kinetic Model for H2O2UV Process in a Completely Mixed Batch Reactorrdquo Water Research 33(10) 2315-2328 (1999)

2 Li K Crittenden JC Computerized pathway elucidation for hydroxyl radical induced chain reaction mechanisms in aqueous phase AOPs Environmental Science amp Technology 2009 43(8) 2831-2837

3 Li K Stefan MI Crittenden JC Trichloroethene degradation by UVH2O2 advanced oxidation process product study and kinetic modeling Environmental Science amp Technology 2007 41 1696-1703

4 Li K M I Stefan and J C Crittenden ldquoUV Photolysis of Trichloroethylene (TCE) Product Study and Kinetic Modelingrdquo Environmental Science and Technology Vol 38 No 24 6685-6693 (2004)

5 Ke Li David R Hokanson John C Crittenden R Rhodes Trussell and Daisuke Minakata ldquoEvaluating UVH2O2 Processes for Methyl tert-Butyl Ether (MtBE) and tertiary Butyl Alcohol (TBA) Removal from

Drinking Water Source Effect of Pretreatment Options and Light Sourcesrdquo Water Research 2008 Volume 42 (20) 5045-5053

6 Minakata D Li K Westerhoff P Crittenden J Development of a group contribution method to predict aqueous phase hydroxyl radical reaction rate constants Environmental Science amp Technology 2009 43

6220-6227

7 Minakata D Crittenden J Linear Free Energy Relationships between the Aqueous Phase Hydroxyl Radical (HObull) Reaction Rate Constants and the Free Energy of Activation Environmental Science amp Technology

2011a 45 3479-3486

8 Minakata D Song W Crittenden J Reactivity of aqueous phase hydroxyl radical with halogenated carboxylate anions Experimental and theoretical studies Environmental Science amp Technology 2011 45 6057-

6065

9 Daisuke Minakata Stephen P Mezyk Jace W Jones Brittany R Daws John C Crittenden ldquoDevelopment of Linear Free Energy Relationships for Aqueous Phase Radical-Involved Chemical Reactionsrdquo

Environmental Science amp Technology 2014 48 (23) 13925-13932

10 Xin Guo Daisuke Minakata John C Crittenden ldquoOn-the-Fly Kinetic Monte Carlo Simulation of Aqueous Phase Advanced Oxidation Processesrdquo Environmental Science and Technology 2015 49 (15) 9230ndash9236

11 Guo X Minakata D Crittenden JC ldquoComputer-Based First-Principles Kinetic Monte Carlo Simulation of Polyethylene Glycol Degradation in Aqueous Phase UVH2O2 Advanced Oxidation Processrdquo

Environmental Science amp Technology 2014 48 10813minus10820

12 Xin Guo Daisuke Minakata Junfeng Niu John C Crittenden ldquoComputer-based First-principles Kinetic Modeling of Degradation Pathways and Byproduct Fates in Aqueous Phase Advanced Oxidation Processesrdquo

Environmental Science and Technology 2014 48 (10) pp 5718ndash5725

13 Yajie Qian Xin Guo Yalei Zhang Yue Peng Peizhe Sun Ching-Hua Huang Junfeng Niu Xuefei Zhou John C Crittenden ldquoPerfluorooctanoic Acid Degradation Using UVminusPersulfate Process Modeling of the

Degradation and Chlorate Formationrdquo 2015 Environmental Science and Technology 50 (2) 772ndash781

14 Ruzhen Xie Xiaoyang Meng Peizhe Sun Junfeng Niu Wenju JiangLawrence Bottomley Duo Li Yongsheng Chen John C CrittendenrdquoElectrochemical Oxidation of Ofloxacin Using a TiO2-based SnO2-

SbPolytetrafluoroethylene Resin-PbO2 Electrode Reaction Kinetics and Mass Transfer Impactrdquo 2016 Applied Catalysis B Environmental 203 (2017) 515ndash525

15 Westerhoff Paul Moon Hye Minakata Daisuke Crittenden John ldquoOxidation of Organics in Retentates from Reverse Osmosis Wastewater Reuse Facilitiesrdquo Water Research 43 (16) 3992-2998

16 Liu L Chen F Yang F Chen Y Crittenden J ldquoPhotocatalytic degradation of 24-dichlorophenol using nanoscale FeTiO2rdquo Chemical Engineering Journal 2012 181ndash182 (0)189-195

References

References

17 Ying Wang Jiasheng Fang John C Crittenden Chanchan Shen ldquoNovel RGO120572-FeOOH Supported Catalyst for Fenton Oxidation of Phenol at a Wide pH Range Using Solar-Light-Driven Irradiationrdquo 2017 Journal

of Hazardous Materials 329 321ndash329

18 Xiaodong Ma Mengying Zhao Qin Pang Meihua Zheng Hongwen Sun John C Crittenden Yanying Zhu Yongsheng Chen ldquoDevelopment of Novel CaCO3Fe2O3 Nanorods for Low Temperature 12-

Dichlorobenzene Oxidationrdquo 2017 Applied Catalysis A General 522 (2016) 70ndash79

19 Heacutector L Otaacutelvaro-Mariacuten Miguel Angel Mueses John C Crittenden Fiderman Machuca-Martinez ldquoSolar Photoreactor Design by the Photon Path Length and Optimization of the Radiant Field in a TiO2-based CPC

Reactorrdquo 2017 Chemical Engineering Journal 315 283ndash295

20 Qi Wang Naxin Zhu Enqin Liu Chenlu Zhang John C Crittenden Yi ZhangYanqing CongldquoFabrication of Visible-Light Active Fe2O3-GQDsNF-TiO2 Composite Film with Highly Enhanced

Photoelectrocatalytic Performancerdquo 2017 Applied Catalysis B Environmental 205 347ndash356

21 Junfeng Niu Lifeng Yin Yunrong Dai Yueping Bao John C Crittenden ldquoDesign of Visible Light Responsive Photocatalysts for Selective Reduction of Chlorinated Organic Compounds in Waterrdquo 2016 Applied

Catalysis A General 521 90ndash95

22 Chaojie Jiang Lifen Liu John C Crittenden ldquoAn Electrochemical Process that Uses an Fe0TiO2 Cathode to Degrade Typical Dyes and Antibiotics and a Bio-anode that Produces Electricityrdquo 2016 Frontiers of

Environmental Science amp Engineering 10(4) 15

23 Yijing Xia Qizhou Dai Mili Weng Yue Peng Jinming Luo Xiaoyang Meng Xubiao Luo Jianmeng Chen John C Crittenden ldquoFabrication and Electrochemical Treatment Application of an Al-Doped PbO2

Electrode with High Oxidation Capability Oxygen Evolution Potential and Reusabilityrdquo2015 Journal of The Electrochemical Society 162 (10) E258-E262

24 Feng Duan Yuping Li Hongbin Cao Yi Wang John C Crittenden Yi Zhang ldquoActivated Carbon Electrodes Electrochemical Oxidation Coupled with Desalination for Wastewater Treatmentrdquo 2015 Chemosphere

125 205-211

25 Xing Linlin Xie Yongbing Cao Hongbin Minakata Daisuke Zhang Yi Crittenden John C ldquoActivated carbon-enhanced ozonation of oxalate attributed to HObull oxidation in bulk solution and surface oxidation

Effects of the type and number of basic sitesrdquo Chemical Engineering Journal 2014 245 71-79

26 Yao H Sun P Minakata D Crittenden JC Huang C-H ldquoKinetics and Modeling of Degradation of Ionophore Antibiotics by UV and UVH2O2rdquo Environmental Science and Technology 2013 (47) 4581-

45892

26 Li Yang et al Synergistic photogeneration of reactive oxygen species by dissolved organic matter and C60 in aqueous phase Environmental science amp technology 492 (2015) 965-973

28 Niu Junfeng et al Photocatalytic reduction of triclosan on AundashCu 2 O nanowire arrays as plasmonic photocatalysts under visible light irradiation Physical Chemistry Chemical Physics 1726 (2015) 17421-17428

29 Niu Junfeng et al Design of visible light responsive photocatalysts for selective reduction of chlorinated organic compounds in water Applied Catalysis A General 521 (2016) 90-95

30 Tianyin Huang Jiabin Chen Zhongming Wang Xin Guo John C Crittenden ldquoExcellent Performance of Cobalt-Impregnated Activated Carbon in Peroxymonosulfate Activation for Acid Orange 7 Oxidationrdquo 2017

Environmental Science and Pollution Research Volume 24 (10) 9651ndash9661

References

31 Yang Li Junfeng Niu Enxiang Shang John C Crittenden ldquoPhotochemical Transformation and Photoinduced Toxicity Reduction of Silver Nanoparticles in the Presence of Perfluorocarboxylic Acids under UV

Irradiationrdquo Environmental Science and Technology 2014 48 (9) pp 4946ndash4953

32 Cao H Xing L Wu G Xie S Zhang SY Minakata D Crittenden JC ldquoPromoting effect of nitration modification on activated carbon in the catalytic ozonation of oxalic acidrdquo Applied Catalysis B

Environmental 2014 146 169-176

33 Konsowa A H Ossman M E Chen Y Crittenden J C ldquoDecolorization of industrial wastewater by ozonation followed by adsorption on activated carbonrdquo Journal of Hazardous Materials 176 (2010) 181-185

November 10 2009

34 Wipada Sanongraj Yongsheng Chen John Crittenden David Hand and David Perram ldquoDevelopment of Photocatalytic Oxidation Model Part I-Mathematical Model for Photocatalytic Destruction of Organic

Contaminants in Airrdquo Journal of the Air and Waste Management Association 571112ndash1122 September 2007

35 Chen Y JC Crittenden S Hackney L Sutter and DW Hand ldquoPreparation of a Novel TiO2-based p-n Junction Nanotube Photocatalystrdquo Environmental Science and Technology Vol 39 No 5 1201-1208 (2005)

36 Suri RPS J Liu JC Crittenden DW Hand and DL Perram Removal and Destruction of Organic Contaminants in Water Using Adsorption Steam Regeneration and Photocatalytic Oxidation A Pilot Scale

Studyrdquo Journal of Air and Waste Management Volume 49 (August 1999) 951 ndash 958

37 Burns RA JC Crittenden DW Hand VH Selzer LL Sutter SR Salman Effect of Inorganic Ions in the Heterogeneous Photocatalysis of Trichloroethene ASCE Journal of Environmental Engineering Vol

125 No 1 pp 77-85 (January 1999)

38 Liu J JC Crittenden DW Hand and DL Perram Regeneration of Adsorbents Using Heterogeneous Photocatalytic Oxidationrdquo Journal of Environmental Engineering Vol 122 No 8 pp 707-714 (1996)

39 Crittenden JC J Liu DW Hand and DL Perram Photocatalytic Oxidation of Chlorinated Hydrocarbons in Waterrdquo Water Research Vol31 No 3 pp 429-438 (1997)

40 Crittenden JC RPS Suri DL Perram and DW Hand Decontamination of Water Using Adsorption and Photocatalysisrdquo Water Research Vol 31 No 3 pp 411-418 (1997)

41 Crittenden JC Y Zhang DW Hand and DL Perram Destruction of Organic Compounds in Water Using Fixed-Bed Photocatalysts Journal of Solar Energy Engineering (ASME) Vol 118 No 5 pp 123 -129

(1996)

42 Crittenden JC Y Zhang DW Hand and DL Perram Solar Detoxification of Fuel-Contaminated Groundwater Using Fixed-Bed Photocatalystsrdquo Water Environment Research Vol 68 No 3 pp 270-278

(1996)

43 Zhang Y JC Crittenden and DW Hand The Solar Photocatalytic Decontamination of Waterrdquo Chemistry amp Industry Vol 18 pp 714-717 September (1994)

44 Mourand JT JC Crittenden DW Hand DL Perram and S Notthakun Regeneration of Spent Adsorbents Using Advanced Oxidationrdquo Water Environment Federation Vol 67 No 3 pp 355-363 (1995)

45 Hand DW DL Perram and JC Crittenden Destruction of DBP Precursors with Catalytic Oxidationrdquo American Water Works Association Journal Vol 87 No 6 pp 84-96 (1995)

46 Zhang Y JC Crittenden DW Hand and DL Perram Fixed-Bed Photo-catalysts for Solar Decontamination of Waterrdquo Environmental Science amp Technology Vol 28 No 3 pp 435-442 (1994)

47 Suri RPS J Liu DW Hand JC Crittenden DL Perram and ME Mullins Heterogeneous Photocatalytic Oxidation of Hazardous Organic Contaminants in Waterrdquo Water Environment Federation Vol 65 No

5 pp 665-673 (1993)

Page 37: The Application of Advanced Oxidation Processes (AOPs) and ...€¦ · We define the electron efficiency to be = 32 12 ·( J 4𝑥)· Where TOC in mg (c)/L and COD in mg ( 2)/L, n

Type of mechanismNumber of

speciesNumber of reactions

Full mechanism 120 370

Reduced mechanism 41 89

The criterion for DRG method is 1

Reaction rate constants are obtained from group contribution method (Minakata et al 2009 ESampT 43 6220-6227) and literature includingNate et al 1990 J Phys Chem Ref Data 19 413-513Nate et al 1995 J Phys Chem Ref Data 25 709-1050Buxton et al 1988 J Phys Chem Ref Data 17 513-886von Sonntag et al 1991 Angeuz Chem Int Ed Engl 30 1229-1253Li et al 2009 ESampT 43 2831-2837Li et al 2007 ESampT 41 1696-1703

Initial concentration of TCE 108 mM

Initial concentration of O2 22 mM

Initial concentration of H2O2 104 mM

Initial pH 59

Wave length of UV 200~300 nm

Light intensity779times10-6

EinsteinLmiddots

Reactor typeCompletely mixed batch reactor

Reaction time 30 min

Comparison of concentration profiles of major species for experimental data (Li Stefan Crittenden 2007 ESampT 41 1696-1703) and simulation results

00

20

40

60

80

100

120

00

02

04

06

08

10

12

0 5 10 15 20 25 30[H

2O

2]

(mM

)

[Ma

jor

spec

ies]

(m

M)

Time(min)

TCE exp

formic acid exp

oxalic acid exp

20 times DCA exp

20 times MCA exp

TCE cal

formic acid cal

oxalic acid cal

20 times DCA cal

20 times MCA cal

H2O2 exp

H2O2 cal

The photolysis of TCE was added manually because it is not included in this version of the pathway generator

Predicted Concentration Profiles of

Trichloroethene (TCE) and Stable-byproducts in UVH2O2 AOP

Comparison of number averaged molecular

weight (MW) for experimental data

(Vijayalakshmi et al J Appl Polym Sci 2006

100 3997-4003) and on-the-fly KMC model

The KMC model used a population number of 108L to

represent a concentration of 1molL

0

02

04

06

08

1

12

14

16

18

0 25 50 75 100 125 150 175 200

Aver

aged

mole

cu

lar

wei

gh

t (1

05

gm

ol)

Time (min)

Experiment

On-the-fly KMC

0

02

04

06

08

1

12

0 25 50 75 100 125 150 175 200

Nu

mb

er o

f re

act

ion

s (1

06)

Time (min)

Time evolvement of the number of generated

reactions for the degradation of PAM during the

UVTiO2 process

Degradation of Polyacrylamide (PAM)

Simulation Results for PAM Degradation in UVTiO2 AOP

Guo X Minakata D and Crittenden J 2015 On-the-fly kinetic Monte Carlo simulation of aqueous phase advanced oxidation processes Environmental science amp technology 49(15) pp9230-9236

1 Crittenden John C Shumin Hu David W Hand and Sarah Green ldquoA Kinetic Model for H2O2UV Process in a Completely Mixed Batch Reactorrdquo Water Research 33(10) 2315-2328 (1999)

2 Li K Crittenden JC Computerized pathway elucidation for hydroxyl radical induced chain reaction mechanisms in aqueous phase AOPs Environmental Science amp Technology 2009 43(8) 2831-2837

3 Li K Stefan MI Crittenden JC Trichloroethene degradation by UVH2O2 advanced oxidation process product study and kinetic modeling Environmental Science amp Technology 2007 41 1696-1703

4 Li K M I Stefan and J C Crittenden ldquoUV Photolysis of Trichloroethylene (TCE) Product Study and Kinetic Modelingrdquo Environmental Science and Technology Vol 38 No 24 6685-6693 (2004)

5 Ke Li David R Hokanson John C Crittenden R Rhodes Trussell and Daisuke Minakata ldquoEvaluating UVH2O2 Processes for Methyl tert-Butyl Ether (MtBE) and tertiary Butyl Alcohol (TBA) Removal from

Drinking Water Source Effect of Pretreatment Options and Light Sourcesrdquo Water Research 2008 Volume 42 (20) 5045-5053

6 Minakata D Li K Westerhoff P Crittenden J Development of a group contribution method to predict aqueous phase hydroxyl radical reaction rate constants Environmental Science amp Technology 2009 43

6220-6227

7 Minakata D Crittenden J Linear Free Energy Relationships between the Aqueous Phase Hydroxyl Radical (HObull) Reaction Rate Constants and the Free Energy of Activation Environmental Science amp Technology

2011a 45 3479-3486

8 Minakata D Song W Crittenden J Reactivity of aqueous phase hydroxyl radical with halogenated carboxylate anions Experimental and theoretical studies Environmental Science amp Technology 2011 45 6057-

6065

9 Daisuke Minakata Stephen P Mezyk Jace W Jones Brittany R Daws John C Crittenden ldquoDevelopment of Linear Free Energy Relationships for Aqueous Phase Radical-Involved Chemical Reactionsrdquo

Environmental Science amp Technology 2014 48 (23) 13925-13932

10 Xin Guo Daisuke Minakata John C Crittenden ldquoOn-the-Fly Kinetic Monte Carlo Simulation of Aqueous Phase Advanced Oxidation Processesrdquo Environmental Science and Technology 2015 49 (15) 9230ndash9236

11 Guo X Minakata D Crittenden JC ldquoComputer-Based First-Principles Kinetic Monte Carlo Simulation of Polyethylene Glycol Degradation in Aqueous Phase UVH2O2 Advanced Oxidation Processrdquo

Environmental Science amp Technology 2014 48 10813minus10820

12 Xin Guo Daisuke Minakata Junfeng Niu John C Crittenden ldquoComputer-based First-principles Kinetic Modeling of Degradation Pathways and Byproduct Fates in Aqueous Phase Advanced Oxidation Processesrdquo

Environmental Science and Technology 2014 48 (10) pp 5718ndash5725

13 Yajie Qian Xin Guo Yalei Zhang Yue Peng Peizhe Sun Ching-Hua Huang Junfeng Niu Xuefei Zhou John C Crittenden ldquoPerfluorooctanoic Acid Degradation Using UVminusPersulfate Process Modeling of the

Degradation and Chlorate Formationrdquo 2015 Environmental Science and Technology 50 (2) 772ndash781

14 Ruzhen Xie Xiaoyang Meng Peizhe Sun Junfeng Niu Wenju JiangLawrence Bottomley Duo Li Yongsheng Chen John C CrittendenrdquoElectrochemical Oxidation of Ofloxacin Using a TiO2-based SnO2-

SbPolytetrafluoroethylene Resin-PbO2 Electrode Reaction Kinetics and Mass Transfer Impactrdquo 2016 Applied Catalysis B Environmental 203 (2017) 515ndash525

15 Westerhoff Paul Moon Hye Minakata Daisuke Crittenden John ldquoOxidation of Organics in Retentates from Reverse Osmosis Wastewater Reuse Facilitiesrdquo Water Research 43 (16) 3992-2998

16 Liu L Chen F Yang F Chen Y Crittenden J ldquoPhotocatalytic degradation of 24-dichlorophenol using nanoscale FeTiO2rdquo Chemical Engineering Journal 2012 181ndash182 (0)189-195

References

References

17 Ying Wang Jiasheng Fang John C Crittenden Chanchan Shen ldquoNovel RGO120572-FeOOH Supported Catalyst for Fenton Oxidation of Phenol at a Wide pH Range Using Solar-Light-Driven Irradiationrdquo 2017 Journal

of Hazardous Materials 329 321ndash329

18 Xiaodong Ma Mengying Zhao Qin Pang Meihua Zheng Hongwen Sun John C Crittenden Yanying Zhu Yongsheng Chen ldquoDevelopment of Novel CaCO3Fe2O3 Nanorods for Low Temperature 12-

Dichlorobenzene Oxidationrdquo 2017 Applied Catalysis A General 522 (2016) 70ndash79

19 Heacutector L Otaacutelvaro-Mariacuten Miguel Angel Mueses John C Crittenden Fiderman Machuca-Martinez ldquoSolar Photoreactor Design by the Photon Path Length and Optimization of the Radiant Field in a TiO2-based CPC

Reactorrdquo 2017 Chemical Engineering Journal 315 283ndash295

20 Qi Wang Naxin Zhu Enqin Liu Chenlu Zhang John C Crittenden Yi ZhangYanqing CongldquoFabrication of Visible-Light Active Fe2O3-GQDsNF-TiO2 Composite Film with Highly Enhanced

Photoelectrocatalytic Performancerdquo 2017 Applied Catalysis B Environmental 205 347ndash356

21 Junfeng Niu Lifeng Yin Yunrong Dai Yueping Bao John C Crittenden ldquoDesign of Visible Light Responsive Photocatalysts for Selective Reduction of Chlorinated Organic Compounds in Waterrdquo 2016 Applied

Catalysis A General 521 90ndash95

22 Chaojie Jiang Lifen Liu John C Crittenden ldquoAn Electrochemical Process that Uses an Fe0TiO2 Cathode to Degrade Typical Dyes and Antibiotics and a Bio-anode that Produces Electricityrdquo 2016 Frontiers of

Environmental Science amp Engineering 10(4) 15

23 Yijing Xia Qizhou Dai Mili Weng Yue Peng Jinming Luo Xiaoyang Meng Xubiao Luo Jianmeng Chen John C Crittenden ldquoFabrication and Electrochemical Treatment Application of an Al-Doped PbO2

Electrode with High Oxidation Capability Oxygen Evolution Potential and Reusabilityrdquo2015 Journal of The Electrochemical Society 162 (10) E258-E262

24 Feng Duan Yuping Li Hongbin Cao Yi Wang John C Crittenden Yi Zhang ldquoActivated Carbon Electrodes Electrochemical Oxidation Coupled with Desalination for Wastewater Treatmentrdquo 2015 Chemosphere

125 205-211

25 Xing Linlin Xie Yongbing Cao Hongbin Minakata Daisuke Zhang Yi Crittenden John C ldquoActivated carbon-enhanced ozonation of oxalate attributed to HObull oxidation in bulk solution and surface oxidation

Effects of the type and number of basic sitesrdquo Chemical Engineering Journal 2014 245 71-79

26 Yao H Sun P Minakata D Crittenden JC Huang C-H ldquoKinetics and Modeling of Degradation of Ionophore Antibiotics by UV and UVH2O2rdquo Environmental Science and Technology 2013 (47) 4581-

45892

26 Li Yang et al Synergistic photogeneration of reactive oxygen species by dissolved organic matter and C60 in aqueous phase Environmental science amp technology 492 (2015) 965-973

28 Niu Junfeng et al Photocatalytic reduction of triclosan on AundashCu 2 O nanowire arrays as plasmonic photocatalysts under visible light irradiation Physical Chemistry Chemical Physics 1726 (2015) 17421-17428

29 Niu Junfeng et al Design of visible light responsive photocatalysts for selective reduction of chlorinated organic compounds in water Applied Catalysis A General 521 (2016) 90-95

30 Tianyin Huang Jiabin Chen Zhongming Wang Xin Guo John C Crittenden ldquoExcellent Performance of Cobalt-Impregnated Activated Carbon in Peroxymonosulfate Activation for Acid Orange 7 Oxidationrdquo 2017

Environmental Science and Pollution Research Volume 24 (10) 9651ndash9661

References

31 Yang Li Junfeng Niu Enxiang Shang John C Crittenden ldquoPhotochemical Transformation and Photoinduced Toxicity Reduction of Silver Nanoparticles in the Presence of Perfluorocarboxylic Acids under UV

Irradiationrdquo Environmental Science and Technology 2014 48 (9) pp 4946ndash4953

32 Cao H Xing L Wu G Xie S Zhang SY Minakata D Crittenden JC ldquoPromoting effect of nitration modification on activated carbon in the catalytic ozonation of oxalic acidrdquo Applied Catalysis B

Environmental 2014 146 169-176

33 Konsowa A H Ossman M E Chen Y Crittenden J C ldquoDecolorization of industrial wastewater by ozonation followed by adsorption on activated carbonrdquo Journal of Hazardous Materials 176 (2010) 181-185

November 10 2009

34 Wipada Sanongraj Yongsheng Chen John Crittenden David Hand and David Perram ldquoDevelopment of Photocatalytic Oxidation Model Part I-Mathematical Model for Photocatalytic Destruction of Organic

Contaminants in Airrdquo Journal of the Air and Waste Management Association 571112ndash1122 September 2007

35 Chen Y JC Crittenden S Hackney L Sutter and DW Hand ldquoPreparation of a Novel TiO2-based p-n Junction Nanotube Photocatalystrdquo Environmental Science and Technology Vol 39 No 5 1201-1208 (2005)

36 Suri RPS J Liu JC Crittenden DW Hand and DL Perram Removal and Destruction of Organic Contaminants in Water Using Adsorption Steam Regeneration and Photocatalytic Oxidation A Pilot Scale

Studyrdquo Journal of Air and Waste Management Volume 49 (August 1999) 951 ndash 958

37 Burns RA JC Crittenden DW Hand VH Selzer LL Sutter SR Salman Effect of Inorganic Ions in the Heterogeneous Photocatalysis of Trichloroethene ASCE Journal of Environmental Engineering Vol

125 No 1 pp 77-85 (January 1999)

38 Liu J JC Crittenden DW Hand and DL Perram Regeneration of Adsorbents Using Heterogeneous Photocatalytic Oxidationrdquo Journal of Environmental Engineering Vol 122 No 8 pp 707-714 (1996)

39 Crittenden JC J Liu DW Hand and DL Perram Photocatalytic Oxidation of Chlorinated Hydrocarbons in Waterrdquo Water Research Vol31 No 3 pp 429-438 (1997)

40 Crittenden JC RPS Suri DL Perram and DW Hand Decontamination of Water Using Adsorption and Photocatalysisrdquo Water Research Vol 31 No 3 pp 411-418 (1997)

41 Crittenden JC Y Zhang DW Hand and DL Perram Destruction of Organic Compounds in Water Using Fixed-Bed Photocatalysts Journal of Solar Energy Engineering (ASME) Vol 118 No 5 pp 123 -129

(1996)

42 Crittenden JC Y Zhang DW Hand and DL Perram Solar Detoxification of Fuel-Contaminated Groundwater Using Fixed-Bed Photocatalystsrdquo Water Environment Research Vol 68 No 3 pp 270-278

(1996)

43 Zhang Y JC Crittenden and DW Hand The Solar Photocatalytic Decontamination of Waterrdquo Chemistry amp Industry Vol 18 pp 714-717 September (1994)

44 Mourand JT JC Crittenden DW Hand DL Perram and S Notthakun Regeneration of Spent Adsorbents Using Advanced Oxidationrdquo Water Environment Federation Vol 67 No 3 pp 355-363 (1995)

45 Hand DW DL Perram and JC Crittenden Destruction of DBP Precursors with Catalytic Oxidationrdquo American Water Works Association Journal Vol 87 No 6 pp 84-96 (1995)

46 Zhang Y JC Crittenden DW Hand and DL Perram Fixed-Bed Photo-catalysts for Solar Decontamination of Waterrdquo Environmental Science amp Technology Vol 28 No 3 pp 435-442 (1994)

47 Suri RPS J Liu DW Hand JC Crittenden DL Perram and ME Mullins Heterogeneous Photocatalytic Oxidation of Hazardous Organic Contaminants in Waterrdquo Water Environment Federation Vol 65 No

5 pp 665-673 (1993)

Page 38: The Application of Advanced Oxidation Processes (AOPs) and ...€¦ · We define the electron efficiency to be = 32 12 ·( J 4𝑥)· Where TOC in mg (c)/L and COD in mg ( 2)/L, n

Comparison of number averaged molecular

weight (MW) for experimental data

(Vijayalakshmi et al J Appl Polym Sci 2006

100 3997-4003) and on-the-fly KMC model

The KMC model used a population number of 108L to

represent a concentration of 1molL

0

02

04

06

08

1

12

14

16

18

0 25 50 75 100 125 150 175 200

Aver

aged

mole

cu

lar

wei

gh

t (1

05

gm

ol)

Time (min)

Experiment

On-the-fly KMC

0

02

04

06

08

1

12

0 25 50 75 100 125 150 175 200

Nu

mb

er o

f re

act

ion

s (1

06)

Time (min)

Time evolvement of the number of generated

reactions for the degradation of PAM during the

UVTiO2 process

Degradation of Polyacrylamide (PAM)

Simulation Results for PAM Degradation in UVTiO2 AOP

Guo X Minakata D and Crittenden J 2015 On-the-fly kinetic Monte Carlo simulation of aqueous phase advanced oxidation processes Environmental science amp technology 49(15) pp9230-9236

1 Crittenden John C Shumin Hu David W Hand and Sarah Green ldquoA Kinetic Model for H2O2UV Process in a Completely Mixed Batch Reactorrdquo Water Research 33(10) 2315-2328 (1999)

2 Li K Crittenden JC Computerized pathway elucidation for hydroxyl radical induced chain reaction mechanisms in aqueous phase AOPs Environmental Science amp Technology 2009 43(8) 2831-2837

3 Li K Stefan MI Crittenden JC Trichloroethene degradation by UVH2O2 advanced oxidation process product study and kinetic modeling Environmental Science amp Technology 2007 41 1696-1703

4 Li K M I Stefan and J C Crittenden ldquoUV Photolysis of Trichloroethylene (TCE) Product Study and Kinetic Modelingrdquo Environmental Science and Technology Vol 38 No 24 6685-6693 (2004)

5 Ke Li David R Hokanson John C Crittenden R Rhodes Trussell and Daisuke Minakata ldquoEvaluating UVH2O2 Processes for Methyl tert-Butyl Ether (MtBE) and tertiary Butyl Alcohol (TBA) Removal from

Drinking Water Source Effect of Pretreatment Options and Light Sourcesrdquo Water Research 2008 Volume 42 (20) 5045-5053

6 Minakata D Li K Westerhoff P Crittenden J Development of a group contribution method to predict aqueous phase hydroxyl radical reaction rate constants Environmental Science amp Technology 2009 43

6220-6227

7 Minakata D Crittenden J Linear Free Energy Relationships between the Aqueous Phase Hydroxyl Radical (HObull) Reaction Rate Constants and the Free Energy of Activation Environmental Science amp Technology

2011a 45 3479-3486

8 Minakata D Song W Crittenden J Reactivity of aqueous phase hydroxyl radical with halogenated carboxylate anions Experimental and theoretical studies Environmental Science amp Technology 2011 45 6057-

6065

9 Daisuke Minakata Stephen P Mezyk Jace W Jones Brittany R Daws John C Crittenden ldquoDevelopment of Linear Free Energy Relationships for Aqueous Phase Radical-Involved Chemical Reactionsrdquo

Environmental Science amp Technology 2014 48 (23) 13925-13932

10 Xin Guo Daisuke Minakata John C Crittenden ldquoOn-the-Fly Kinetic Monte Carlo Simulation of Aqueous Phase Advanced Oxidation Processesrdquo Environmental Science and Technology 2015 49 (15) 9230ndash9236

11 Guo X Minakata D Crittenden JC ldquoComputer-Based First-Principles Kinetic Monte Carlo Simulation of Polyethylene Glycol Degradation in Aqueous Phase UVH2O2 Advanced Oxidation Processrdquo

Environmental Science amp Technology 2014 48 10813minus10820

12 Xin Guo Daisuke Minakata Junfeng Niu John C Crittenden ldquoComputer-based First-principles Kinetic Modeling of Degradation Pathways and Byproduct Fates in Aqueous Phase Advanced Oxidation Processesrdquo

Environmental Science and Technology 2014 48 (10) pp 5718ndash5725

13 Yajie Qian Xin Guo Yalei Zhang Yue Peng Peizhe Sun Ching-Hua Huang Junfeng Niu Xuefei Zhou John C Crittenden ldquoPerfluorooctanoic Acid Degradation Using UVminusPersulfate Process Modeling of the

Degradation and Chlorate Formationrdquo 2015 Environmental Science and Technology 50 (2) 772ndash781

14 Ruzhen Xie Xiaoyang Meng Peizhe Sun Junfeng Niu Wenju JiangLawrence Bottomley Duo Li Yongsheng Chen John C CrittendenrdquoElectrochemical Oxidation of Ofloxacin Using a TiO2-based SnO2-

SbPolytetrafluoroethylene Resin-PbO2 Electrode Reaction Kinetics and Mass Transfer Impactrdquo 2016 Applied Catalysis B Environmental 203 (2017) 515ndash525

15 Westerhoff Paul Moon Hye Minakata Daisuke Crittenden John ldquoOxidation of Organics in Retentates from Reverse Osmosis Wastewater Reuse Facilitiesrdquo Water Research 43 (16) 3992-2998

16 Liu L Chen F Yang F Chen Y Crittenden J ldquoPhotocatalytic degradation of 24-dichlorophenol using nanoscale FeTiO2rdquo Chemical Engineering Journal 2012 181ndash182 (0)189-195

References

References

17 Ying Wang Jiasheng Fang John C Crittenden Chanchan Shen ldquoNovel RGO120572-FeOOH Supported Catalyst for Fenton Oxidation of Phenol at a Wide pH Range Using Solar-Light-Driven Irradiationrdquo 2017 Journal

of Hazardous Materials 329 321ndash329

18 Xiaodong Ma Mengying Zhao Qin Pang Meihua Zheng Hongwen Sun John C Crittenden Yanying Zhu Yongsheng Chen ldquoDevelopment of Novel CaCO3Fe2O3 Nanorods for Low Temperature 12-

Dichlorobenzene Oxidationrdquo 2017 Applied Catalysis A General 522 (2016) 70ndash79

19 Heacutector L Otaacutelvaro-Mariacuten Miguel Angel Mueses John C Crittenden Fiderman Machuca-Martinez ldquoSolar Photoreactor Design by the Photon Path Length and Optimization of the Radiant Field in a TiO2-based CPC

Reactorrdquo 2017 Chemical Engineering Journal 315 283ndash295

20 Qi Wang Naxin Zhu Enqin Liu Chenlu Zhang John C Crittenden Yi ZhangYanqing CongldquoFabrication of Visible-Light Active Fe2O3-GQDsNF-TiO2 Composite Film with Highly Enhanced

Photoelectrocatalytic Performancerdquo 2017 Applied Catalysis B Environmental 205 347ndash356

21 Junfeng Niu Lifeng Yin Yunrong Dai Yueping Bao John C Crittenden ldquoDesign of Visible Light Responsive Photocatalysts for Selective Reduction of Chlorinated Organic Compounds in Waterrdquo 2016 Applied

Catalysis A General 521 90ndash95

22 Chaojie Jiang Lifen Liu John C Crittenden ldquoAn Electrochemical Process that Uses an Fe0TiO2 Cathode to Degrade Typical Dyes and Antibiotics and a Bio-anode that Produces Electricityrdquo 2016 Frontiers of

Environmental Science amp Engineering 10(4) 15

23 Yijing Xia Qizhou Dai Mili Weng Yue Peng Jinming Luo Xiaoyang Meng Xubiao Luo Jianmeng Chen John C Crittenden ldquoFabrication and Electrochemical Treatment Application of an Al-Doped PbO2

Electrode with High Oxidation Capability Oxygen Evolution Potential and Reusabilityrdquo2015 Journal of The Electrochemical Society 162 (10) E258-E262

24 Feng Duan Yuping Li Hongbin Cao Yi Wang John C Crittenden Yi Zhang ldquoActivated Carbon Electrodes Electrochemical Oxidation Coupled with Desalination for Wastewater Treatmentrdquo 2015 Chemosphere

125 205-211

25 Xing Linlin Xie Yongbing Cao Hongbin Minakata Daisuke Zhang Yi Crittenden John C ldquoActivated carbon-enhanced ozonation of oxalate attributed to HObull oxidation in bulk solution and surface oxidation

Effects of the type and number of basic sitesrdquo Chemical Engineering Journal 2014 245 71-79

26 Yao H Sun P Minakata D Crittenden JC Huang C-H ldquoKinetics and Modeling of Degradation of Ionophore Antibiotics by UV and UVH2O2rdquo Environmental Science and Technology 2013 (47) 4581-

45892

26 Li Yang et al Synergistic photogeneration of reactive oxygen species by dissolved organic matter and C60 in aqueous phase Environmental science amp technology 492 (2015) 965-973

28 Niu Junfeng et al Photocatalytic reduction of triclosan on AundashCu 2 O nanowire arrays as plasmonic photocatalysts under visible light irradiation Physical Chemistry Chemical Physics 1726 (2015) 17421-17428

29 Niu Junfeng et al Design of visible light responsive photocatalysts for selective reduction of chlorinated organic compounds in water Applied Catalysis A General 521 (2016) 90-95

30 Tianyin Huang Jiabin Chen Zhongming Wang Xin Guo John C Crittenden ldquoExcellent Performance of Cobalt-Impregnated Activated Carbon in Peroxymonosulfate Activation for Acid Orange 7 Oxidationrdquo 2017

Environmental Science and Pollution Research Volume 24 (10) 9651ndash9661

References

31 Yang Li Junfeng Niu Enxiang Shang John C Crittenden ldquoPhotochemical Transformation and Photoinduced Toxicity Reduction of Silver Nanoparticles in the Presence of Perfluorocarboxylic Acids under UV

Irradiationrdquo Environmental Science and Technology 2014 48 (9) pp 4946ndash4953

32 Cao H Xing L Wu G Xie S Zhang SY Minakata D Crittenden JC ldquoPromoting effect of nitration modification on activated carbon in the catalytic ozonation of oxalic acidrdquo Applied Catalysis B

Environmental 2014 146 169-176

33 Konsowa A H Ossman M E Chen Y Crittenden J C ldquoDecolorization of industrial wastewater by ozonation followed by adsorption on activated carbonrdquo Journal of Hazardous Materials 176 (2010) 181-185

November 10 2009

34 Wipada Sanongraj Yongsheng Chen John Crittenden David Hand and David Perram ldquoDevelopment of Photocatalytic Oxidation Model Part I-Mathematical Model for Photocatalytic Destruction of Organic

Contaminants in Airrdquo Journal of the Air and Waste Management Association 571112ndash1122 September 2007

35 Chen Y JC Crittenden S Hackney L Sutter and DW Hand ldquoPreparation of a Novel TiO2-based p-n Junction Nanotube Photocatalystrdquo Environmental Science and Technology Vol 39 No 5 1201-1208 (2005)

36 Suri RPS J Liu JC Crittenden DW Hand and DL Perram Removal and Destruction of Organic Contaminants in Water Using Adsorption Steam Regeneration and Photocatalytic Oxidation A Pilot Scale

Studyrdquo Journal of Air and Waste Management Volume 49 (August 1999) 951 ndash 958

37 Burns RA JC Crittenden DW Hand VH Selzer LL Sutter SR Salman Effect of Inorganic Ions in the Heterogeneous Photocatalysis of Trichloroethene ASCE Journal of Environmental Engineering Vol

125 No 1 pp 77-85 (January 1999)

38 Liu J JC Crittenden DW Hand and DL Perram Regeneration of Adsorbents Using Heterogeneous Photocatalytic Oxidationrdquo Journal of Environmental Engineering Vol 122 No 8 pp 707-714 (1996)

39 Crittenden JC J Liu DW Hand and DL Perram Photocatalytic Oxidation of Chlorinated Hydrocarbons in Waterrdquo Water Research Vol31 No 3 pp 429-438 (1997)

40 Crittenden JC RPS Suri DL Perram and DW Hand Decontamination of Water Using Adsorption and Photocatalysisrdquo Water Research Vol 31 No 3 pp 411-418 (1997)

41 Crittenden JC Y Zhang DW Hand and DL Perram Destruction of Organic Compounds in Water Using Fixed-Bed Photocatalysts Journal of Solar Energy Engineering (ASME) Vol 118 No 5 pp 123 -129

(1996)

42 Crittenden JC Y Zhang DW Hand and DL Perram Solar Detoxification of Fuel-Contaminated Groundwater Using Fixed-Bed Photocatalystsrdquo Water Environment Research Vol 68 No 3 pp 270-278

(1996)

43 Zhang Y JC Crittenden and DW Hand The Solar Photocatalytic Decontamination of Waterrdquo Chemistry amp Industry Vol 18 pp 714-717 September (1994)

44 Mourand JT JC Crittenden DW Hand DL Perram and S Notthakun Regeneration of Spent Adsorbents Using Advanced Oxidationrdquo Water Environment Federation Vol 67 No 3 pp 355-363 (1995)

45 Hand DW DL Perram and JC Crittenden Destruction of DBP Precursors with Catalytic Oxidationrdquo American Water Works Association Journal Vol 87 No 6 pp 84-96 (1995)

46 Zhang Y JC Crittenden DW Hand and DL Perram Fixed-Bed Photo-catalysts for Solar Decontamination of Waterrdquo Environmental Science amp Technology Vol 28 No 3 pp 435-442 (1994)

47 Suri RPS J Liu DW Hand JC Crittenden DL Perram and ME Mullins Heterogeneous Photocatalytic Oxidation of Hazardous Organic Contaminants in Waterrdquo Water Environment Federation Vol 65 No

5 pp 665-673 (1993)

Page 39: The Application of Advanced Oxidation Processes (AOPs) and ...€¦ · We define the electron efficiency to be = 32 12 ·( J 4𝑥)· Where TOC in mg (c)/L and COD in mg ( 2)/L, n

1 Crittenden John C Shumin Hu David W Hand and Sarah Green ldquoA Kinetic Model for H2O2UV Process in a Completely Mixed Batch Reactorrdquo Water Research 33(10) 2315-2328 (1999)

2 Li K Crittenden JC Computerized pathway elucidation for hydroxyl radical induced chain reaction mechanisms in aqueous phase AOPs Environmental Science amp Technology 2009 43(8) 2831-2837

3 Li K Stefan MI Crittenden JC Trichloroethene degradation by UVH2O2 advanced oxidation process product study and kinetic modeling Environmental Science amp Technology 2007 41 1696-1703

4 Li K M I Stefan and J C Crittenden ldquoUV Photolysis of Trichloroethylene (TCE) Product Study and Kinetic Modelingrdquo Environmental Science and Technology Vol 38 No 24 6685-6693 (2004)

5 Ke Li David R Hokanson John C Crittenden R Rhodes Trussell and Daisuke Minakata ldquoEvaluating UVH2O2 Processes for Methyl tert-Butyl Ether (MtBE) and tertiary Butyl Alcohol (TBA) Removal from

Drinking Water Source Effect of Pretreatment Options and Light Sourcesrdquo Water Research 2008 Volume 42 (20) 5045-5053

6 Minakata D Li K Westerhoff P Crittenden J Development of a group contribution method to predict aqueous phase hydroxyl radical reaction rate constants Environmental Science amp Technology 2009 43

6220-6227

7 Minakata D Crittenden J Linear Free Energy Relationships between the Aqueous Phase Hydroxyl Radical (HObull) Reaction Rate Constants and the Free Energy of Activation Environmental Science amp Technology

2011a 45 3479-3486

8 Minakata D Song W Crittenden J Reactivity of aqueous phase hydroxyl radical with halogenated carboxylate anions Experimental and theoretical studies Environmental Science amp Technology 2011 45 6057-

6065

9 Daisuke Minakata Stephen P Mezyk Jace W Jones Brittany R Daws John C Crittenden ldquoDevelopment of Linear Free Energy Relationships for Aqueous Phase Radical-Involved Chemical Reactionsrdquo

Environmental Science amp Technology 2014 48 (23) 13925-13932

10 Xin Guo Daisuke Minakata John C Crittenden ldquoOn-the-Fly Kinetic Monte Carlo Simulation of Aqueous Phase Advanced Oxidation Processesrdquo Environmental Science and Technology 2015 49 (15) 9230ndash9236

11 Guo X Minakata D Crittenden JC ldquoComputer-Based First-Principles Kinetic Monte Carlo Simulation of Polyethylene Glycol Degradation in Aqueous Phase UVH2O2 Advanced Oxidation Processrdquo

Environmental Science amp Technology 2014 48 10813minus10820

12 Xin Guo Daisuke Minakata Junfeng Niu John C Crittenden ldquoComputer-based First-principles Kinetic Modeling of Degradation Pathways and Byproduct Fates in Aqueous Phase Advanced Oxidation Processesrdquo

Environmental Science and Technology 2014 48 (10) pp 5718ndash5725

13 Yajie Qian Xin Guo Yalei Zhang Yue Peng Peizhe Sun Ching-Hua Huang Junfeng Niu Xuefei Zhou John C Crittenden ldquoPerfluorooctanoic Acid Degradation Using UVminusPersulfate Process Modeling of the

Degradation and Chlorate Formationrdquo 2015 Environmental Science and Technology 50 (2) 772ndash781

14 Ruzhen Xie Xiaoyang Meng Peizhe Sun Junfeng Niu Wenju JiangLawrence Bottomley Duo Li Yongsheng Chen John C CrittendenrdquoElectrochemical Oxidation of Ofloxacin Using a TiO2-based SnO2-

SbPolytetrafluoroethylene Resin-PbO2 Electrode Reaction Kinetics and Mass Transfer Impactrdquo 2016 Applied Catalysis B Environmental 203 (2017) 515ndash525

15 Westerhoff Paul Moon Hye Minakata Daisuke Crittenden John ldquoOxidation of Organics in Retentates from Reverse Osmosis Wastewater Reuse Facilitiesrdquo Water Research 43 (16) 3992-2998

16 Liu L Chen F Yang F Chen Y Crittenden J ldquoPhotocatalytic degradation of 24-dichlorophenol using nanoscale FeTiO2rdquo Chemical Engineering Journal 2012 181ndash182 (0)189-195

References

References

17 Ying Wang Jiasheng Fang John C Crittenden Chanchan Shen ldquoNovel RGO120572-FeOOH Supported Catalyst for Fenton Oxidation of Phenol at a Wide pH Range Using Solar-Light-Driven Irradiationrdquo 2017 Journal

of Hazardous Materials 329 321ndash329

18 Xiaodong Ma Mengying Zhao Qin Pang Meihua Zheng Hongwen Sun John C Crittenden Yanying Zhu Yongsheng Chen ldquoDevelopment of Novel CaCO3Fe2O3 Nanorods for Low Temperature 12-

Dichlorobenzene Oxidationrdquo 2017 Applied Catalysis A General 522 (2016) 70ndash79

19 Heacutector L Otaacutelvaro-Mariacuten Miguel Angel Mueses John C Crittenden Fiderman Machuca-Martinez ldquoSolar Photoreactor Design by the Photon Path Length and Optimization of the Radiant Field in a TiO2-based CPC

Reactorrdquo 2017 Chemical Engineering Journal 315 283ndash295

20 Qi Wang Naxin Zhu Enqin Liu Chenlu Zhang John C Crittenden Yi ZhangYanqing CongldquoFabrication of Visible-Light Active Fe2O3-GQDsNF-TiO2 Composite Film with Highly Enhanced

Photoelectrocatalytic Performancerdquo 2017 Applied Catalysis B Environmental 205 347ndash356

21 Junfeng Niu Lifeng Yin Yunrong Dai Yueping Bao John C Crittenden ldquoDesign of Visible Light Responsive Photocatalysts for Selective Reduction of Chlorinated Organic Compounds in Waterrdquo 2016 Applied

Catalysis A General 521 90ndash95

22 Chaojie Jiang Lifen Liu John C Crittenden ldquoAn Electrochemical Process that Uses an Fe0TiO2 Cathode to Degrade Typical Dyes and Antibiotics and a Bio-anode that Produces Electricityrdquo 2016 Frontiers of

Environmental Science amp Engineering 10(4) 15

23 Yijing Xia Qizhou Dai Mili Weng Yue Peng Jinming Luo Xiaoyang Meng Xubiao Luo Jianmeng Chen John C Crittenden ldquoFabrication and Electrochemical Treatment Application of an Al-Doped PbO2

Electrode with High Oxidation Capability Oxygen Evolution Potential and Reusabilityrdquo2015 Journal of The Electrochemical Society 162 (10) E258-E262

24 Feng Duan Yuping Li Hongbin Cao Yi Wang John C Crittenden Yi Zhang ldquoActivated Carbon Electrodes Electrochemical Oxidation Coupled with Desalination for Wastewater Treatmentrdquo 2015 Chemosphere

125 205-211

25 Xing Linlin Xie Yongbing Cao Hongbin Minakata Daisuke Zhang Yi Crittenden John C ldquoActivated carbon-enhanced ozonation of oxalate attributed to HObull oxidation in bulk solution and surface oxidation

Effects of the type and number of basic sitesrdquo Chemical Engineering Journal 2014 245 71-79

26 Yao H Sun P Minakata D Crittenden JC Huang C-H ldquoKinetics and Modeling of Degradation of Ionophore Antibiotics by UV and UVH2O2rdquo Environmental Science and Technology 2013 (47) 4581-

45892

26 Li Yang et al Synergistic photogeneration of reactive oxygen species by dissolved organic matter and C60 in aqueous phase Environmental science amp technology 492 (2015) 965-973

28 Niu Junfeng et al Photocatalytic reduction of triclosan on AundashCu 2 O nanowire arrays as plasmonic photocatalysts under visible light irradiation Physical Chemistry Chemical Physics 1726 (2015) 17421-17428

29 Niu Junfeng et al Design of visible light responsive photocatalysts for selective reduction of chlorinated organic compounds in water Applied Catalysis A General 521 (2016) 90-95

30 Tianyin Huang Jiabin Chen Zhongming Wang Xin Guo John C Crittenden ldquoExcellent Performance of Cobalt-Impregnated Activated Carbon in Peroxymonosulfate Activation for Acid Orange 7 Oxidationrdquo 2017

Environmental Science and Pollution Research Volume 24 (10) 9651ndash9661

References

31 Yang Li Junfeng Niu Enxiang Shang John C Crittenden ldquoPhotochemical Transformation and Photoinduced Toxicity Reduction of Silver Nanoparticles in the Presence of Perfluorocarboxylic Acids under UV

Irradiationrdquo Environmental Science and Technology 2014 48 (9) pp 4946ndash4953

32 Cao H Xing L Wu G Xie S Zhang SY Minakata D Crittenden JC ldquoPromoting effect of nitration modification on activated carbon in the catalytic ozonation of oxalic acidrdquo Applied Catalysis B

Environmental 2014 146 169-176

33 Konsowa A H Ossman M E Chen Y Crittenden J C ldquoDecolorization of industrial wastewater by ozonation followed by adsorption on activated carbonrdquo Journal of Hazardous Materials 176 (2010) 181-185

November 10 2009

34 Wipada Sanongraj Yongsheng Chen John Crittenden David Hand and David Perram ldquoDevelopment of Photocatalytic Oxidation Model Part I-Mathematical Model for Photocatalytic Destruction of Organic

Contaminants in Airrdquo Journal of the Air and Waste Management Association 571112ndash1122 September 2007

35 Chen Y JC Crittenden S Hackney L Sutter and DW Hand ldquoPreparation of a Novel TiO2-based p-n Junction Nanotube Photocatalystrdquo Environmental Science and Technology Vol 39 No 5 1201-1208 (2005)

36 Suri RPS J Liu JC Crittenden DW Hand and DL Perram Removal and Destruction of Organic Contaminants in Water Using Adsorption Steam Regeneration and Photocatalytic Oxidation A Pilot Scale

Studyrdquo Journal of Air and Waste Management Volume 49 (August 1999) 951 ndash 958

37 Burns RA JC Crittenden DW Hand VH Selzer LL Sutter SR Salman Effect of Inorganic Ions in the Heterogeneous Photocatalysis of Trichloroethene ASCE Journal of Environmental Engineering Vol

125 No 1 pp 77-85 (January 1999)

38 Liu J JC Crittenden DW Hand and DL Perram Regeneration of Adsorbents Using Heterogeneous Photocatalytic Oxidationrdquo Journal of Environmental Engineering Vol 122 No 8 pp 707-714 (1996)

39 Crittenden JC J Liu DW Hand and DL Perram Photocatalytic Oxidation of Chlorinated Hydrocarbons in Waterrdquo Water Research Vol31 No 3 pp 429-438 (1997)

40 Crittenden JC RPS Suri DL Perram and DW Hand Decontamination of Water Using Adsorption and Photocatalysisrdquo Water Research Vol 31 No 3 pp 411-418 (1997)

41 Crittenden JC Y Zhang DW Hand and DL Perram Destruction of Organic Compounds in Water Using Fixed-Bed Photocatalysts Journal of Solar Energy Engineering (ASME) Vol 118 No 5 pp 123 -129

(1996)

42 Crittenden JC Y Zhang DW Hand and DL Perram Solar Detoxification of Fuel-Contaminated Groundwater Using Fixed-Bed Photocatalystsrdquo Water Environment Research Vol 68 No 3 pp 270-278

(1996)

43 Zhang Y JC Crittenden and DW Hand The Solar Photocatalytic Decontamination of Waterrdquo Chemistry amp Industry Vol 18 pp 714-717 September (1994)

44 Mourand JT JC Crittenden DW Hand DL Perram and S Notthakun Regeneration of Spent Adsorbents Using Advanced Oxidationrdquo Water Environment Federation Vol 67 No 3 pp 355-363 (1995)

45 Hand DW DL Perram and JC Crittenden Destruction of DBP Precursors with Catalytic Oxidationrdquo American Water Works Association Journal Vol 87 No 6 pp 84-96 (1995)

46 Zhang Y JC Crittenden DW Hand and DL Perram Fixed-Bed Photo-catalysts for Solar Decontamination of Waterrdquo Environmental Science amp Technology Vol 28 No 3 pp 435-442 (1994)

47 Suri RPS J Liu DW Hand JC Crittenden DL Perram and ME Mullins Heterogeneous Photocatalytic Oxidation of Hazardous Organic Contaminants in Waterrdquo Water Environment Federation Vol 65 No

5 pp 665-673 (1993)

Page 40: The Application of Advanced Oxidation Processes (AOPs) and ...€¦ · We define the electron efficiency to be = 32 12 ·( J 4𝑥)· Where TOC in mg (c)/L and COD in mg ( 2)/L, n

References

17 Ying Wang Jiasheng Fang John C Crittenden Chanchan Shen ldquoNovel RGO120572-FeOOH Supported Catalyst for Fenton Oxidation of Phenol at a Wide pH Range Using Solar-Light-Driven Irradiationrdquo 2017 Journal

of Hazardous Materials 329 321ndash329

18 Xiaodong Ma Mengying Zhao Qin Pang Meihua Zheng Hongwen Sun John C Crittenden Yanying Zhu Yongsheng Chen ldquoDevelopment of Novel CaCO3Fe2O3 Nanorods for Low Temperature 12-

Dichlorobenzene Oxidationrdquo 2017 Applied Catalysis A General 522 (2016) 70ndash79

19 Heacutector L Otaacutelvaro-Mariacuten Miguel Angel Mueses John C Crittenden Fiderman Machuca-Martinez ldquoSolar Photoreactor Design by the Photon Path Length and Optimization of the Radiant Field in a TiO2-based CPC

Reactorrdquo 2017 Chemical Engineering Journal 315 283ndash295

20 Qi Wang Naxin Zhu Enqin Liu Chenlu Zhang John C Crittenden Yi ZhangYanqing CongldquoFabrication of Visible-Light Active Fe2O3-GQDsNF-TiO2 Composite Film with Highly Enhanced

Photoelectrocatalytic Performancerdquo 2017 Applied Catalysis B Environmental 205 347ndash356

21 Junfeng Niu Lifeng Yin Yunrong Dai Yueping Bao John C Crittenden ldquoDesign of Visible Light Responsive Photocatalysts for Selective Reduction of Chlorinated Organic Compounds in Waterrdquo 2016 Applied

Catalysis A General 521 90ndash95

22 Chaojie Jiang Lifen Liu John C Crittenden ldquoAn Electrochemical Process that Uses an Fe0TiO2 Cathode to Degrade Typical Dyes and Antibiotics and a Bio-anode that Produces Electricityrdquo 2016 Frontiers of

Environmental Science amp Engineering 10(4) 15

23 Yijing Xia Qizhou Dai Mili Weng Yue Peng Jinming Luo Xiaoyang Meng Xubiao Luo Jianmeng Chen John C Crittenden ldquoFabrication and Electrochemical Treatment Application of an Al-Doped PbO2

Electrode with High Oxidation Capability Oxygen Evolution Potential and Reusabilityrdquo2015 Journal of The Electrochemical Society 162 (10) E258-E262

24 Feng Duan Yuping Li Hongbin Cao Yi Wang John C Crittenden Yi Zhang ldquoActivated Carbon Electrodes Electrochemical Oxidation Coupled with Desalination for Wastewater Treatmentrdquo 2015 Chemosphere

125 205-211

25 Xing Linlin Xie Yongbing Cao Hongbin Minakata Daisuke Zhang Yi Crittenden John C ldquoActivated carbon-enhanced ozonation of oxalate attributed to HObull oxidation in bulk solution and surface oxidation

Effects of the type and number of basic sitesrdquo Chemical Engineering Journal 2014 245 71-79

26 Yao H Sun P Minakata D Crittenden JC Huang C-H ldquoKinetics and Modeling of Degradation of Ionophore Antibiotics by UV and UVH2O2rdquo Environmental Science and Technology 2013 (47) 4581-

45892

26 Li Yang et al Synergistic photogeneration of reactive oxygen species by dissolved organic matter and C60 in aqueous phase Environmental science amp technology 492 (2015) 965-973

28 Niu Junfeng et al Photocatalytic reduction of triclosan on AundashCu 2 O nanowire arrays as plasmonic photocatalysts under visible light irradiation Physical Chemistry Chemical Physics 1726 (2015) 17421-17428

29 Niu Junfeng et al Design of visible light responsive photocatalysts for selective reduction of chlorinated organic compounds in water Applied Catalysis A General 521 (2016) 90-95

30 Tianyin Huang Jiabin Chen Zhongming Wang Xin Guo John C Crittenden ldquoExcellent Performance of Cobalt-Impregnated Activated Carbon in Peroxymonosulfate Activation for Acid Orange 7 Oxidationrdquo 2017

Environmental Science and Pollution Research Volume 24 (10) 9651ndash9661

References

31 Yang Li Junfeng Niu Enxiang Shang John C Crittenden ldquoPhotochemical Transformation and Photoinduced Toxicity Reduction of Silver Nanoparticles in the Presence of Perfluorocarboxylic Acids under UV

Irradiationrdquo Environmental Science and Technology 2014 48 (9) pp 4946ndash4953

32 Cao H Xing L Wu G Xie S Zhang SY Minakata D Crittenden JC ldquoPromoting effect of nitration modification on activated carbon in the catalytic ozonation of oxalic acidrdquo Applied Catalysis B

Environmental 2014 146 169-176

33 Konsowa A H Ossman M E Chen Y Crittenden J C ldquoDecolorization of industrial wastewater by ozonation followed by adsorption on activated carbonrdquo Journal of Hazardous Materials 176 (2010) 181-185

November 10 2009

34 Wipada Sanongraj Yongsheng Chen John Crittenden David Hand and David Perram ldquoDevelopment of Photocatalytic Oxidation Model Part I-Mathematical Model for Photocatalytic Destruction of Organic

Contaminants in Airrdquo Journal of the Air and Waste Management Association 571112ndash1122 September 2007

35 Chen Y JC Crittenden S Hackney L Sutter and DW Hand ldquoPreparation of a Novel TiO2-based p-n Junction Nanotube Photocatalystrdquo Environmental Science and Technology Vol 39 No 5 1201-1208 (2005)

36 Suri RPS J Liu JC Crittenden DW Hand and DL Perram Removal and Destruction of Organic Contaminants in Water Using Adsorption Steam Regeneration and Photocatalytic Oxidation A Pilot Scale

Studyrdquo Journal of Air and Waste Management Volume 49 (August 1999) 951 ndash 958

37 Burns RA JC Crittenden DW Hand VH Selzer LL Sutter SR Salman Effect of Inorganic Ions in the Heterogeneous Photocatalysis of Trichloroethene ASCE Journal of Environmental Engineering Vol

125 No 1 pp 77-85 (January 1999)

38 Liu J JC Crittenden DW Hand and DL Perram Regeneration of Adsorbents Using Heterogeneous Photocatalytic Oxidationrdquo Journal of Environmental Engineering Vol 122 No 8 pp 707-714 (1996)

39 Crittenden JC J Liu DW Hand and DL Perram Photocatalytic Oxidation of Chlorinated Hydrocarbons in Waterrdquo Water Research Vol31 No 3 pp 429-438 (1997)

40 Crittenden JC RPS Suri DL Perram and DW Hand Decontamination of Water Using Adsorption and Photocatalysisrdquo Water Research Vol 31 No 3 pp 411-418 (1997)

41 Crittenden JC Y Zhang DW Hand and DL Perram Destruction of Organic Compounds in Water Using Fixed-Bed Photocatalysts Journal of Solar Energy Engineering (ASME) Vol 118 No 5 pp 123 -129

(1996)

42 Crittenden JC Y Zhang DW Hand and DL Perram Solar Detoxification of Fuel-Contaminated Groundwater Using Fixed-Bed Photocatalystsrdquo Water Environment Research Vol 68 No 3 pp 270-278

(1996)

43 Zhang Y JC Crittenden and DW Hand The Solar Photocatalytic Decontamination of Waterrdquo Chemistry amp Industry Vol 18 pp 714-717 September (1994)

44 Mourand JT JC Crittenden DW Hand DL Perram and S Notthakun Regeneration of Spent Adsorbents Using Advanced Oxidationrdquo Water Environment Federation Vol 67 No 3 pp 355-363 (1995)

45 Hand DW DL Perram and JC Crittenden Destruction of DBP Precursors with Catalytic Oxidationrdquo American Water Works Association Journal Vol 87 No 6 pp 84-96 (1995)

46 Zhang Y JC Crittenden DW Hand and DL Perram Fixed-Bed Photo-catalysts for Solar Decontamination of Waterrdquo Environmental Science amp Technology Vol 28 No 3 pp 435-442 (1994)

47 Suri RPS J Liu DW Hand JC Crittenden DL Perram and ME Mullins Heterogeneous Photocatalytic Oxidation of Hazardous Organic Contaminants in Waterrdquo Water Environment Federation Vol 65 No

5 pp 665-673 (1993)

Page 41: The Application of Advanced Oxidation Processes (AOPs) and ...€¦ · We define the electron efficiency to be = 32 12 ·( J 4𝑥)· Where TOC in mg (c)/L and COD in mg ( 2)/L, n

References

31 Yang Li Junfeng Niu Enxiang Shang John C Crittenden ldquoPhotochemical Transformation and Photoinduced Toxicity Reduction of Silver Nanoparticles in the Presence of Perfluorocarboxylic Acids under UV

Irradiationrdquo Environmental Science and Technology 2014 48 (9) pp 4946ndash4953

32 Cao H Xing L Wu G Xie S Zhang SY Minakata D Crittenden JC ldquoPromoting effect of nitration modification on activated carbon in the catalytic ozonation of oxalic acidrdquo Applied Catalysis B

Environmental 2014 146 169-176

33 Konsowa A H Ossman M E Chen Y Crittenden J C ldquoDecolorization of industrial wastewater by ozonation followed by adsorption on activated carbonrdquo Journal of Hazardous Materials 176 (2010) 181-185

November 10 2009

34 Wipada Sanongraj Yongsheng Chen John Crittenden David Hand and David Perram ldquoDevelopment of Photocatalytic Oxidation Model Part I-Mathematical Model for Photocatalytic Destruction of Organic

Contaminants in Airrdquo Journal of the Air and Waste Management Association 571112ndash1122 September 2007

35 Chen Y JC Crittenden S Hackney L Sutter and DW Hand ldquoPreparation of a Novel TiO2-based p-n Junction Nanotube Photocatalystrdquo Environmental Science and Technology Vol 39 No 5 1201-1208 (2005)

36 Suri RPS J Liu JC Crittenden DW Hand and DL Perram Removal and Destruction of Organic Contaminants in Water Using Adsorption Steam Regeneration and Photocatalytic Oxidation A Pilot Scale

Studyrdquo Journal of Air and Waste Management Volume 49 (August 1999) 951 ndash 958

37 Burns RA JC Crittenden DW Hand VH Selzer LL Sutter SR Salman Effect of Inorganic Ions in the Heterogeneous Photocatalysis of Trichloroethene ASCE Journal of Environmental Engineering Vol

125 No 1 pp 77-85 (January 1999)

38 Liu J JC Crittenden DW Hand and DL Perram Regeneration of Adsorbents Using Heterogeneous Photocatalytic Oxidationrdquo Journal of Environmental Engineering Vol 122 No 8 pp 707-714 (1996)

39 Crittenden JC J Liu DW Hand and DL Perram Photocatalytic Oxidation of Chlorinated Hydrocarbons in Waterrdquo Water Research Vol31 No 3 pp 429-438 (1997)

40 Crittenden JC RPS Suri DL Perram and DW Hand Decontamination of Water Using Adsorption and Photocatalysisrdquo Water Research Vol 31 No 3 pp 411-418 (1997)

41 Crittenden JC Y Zhang DW Hand and DL Perram Destruction of Organic Compounds in Water Using Fixed-Bed Photocatalysts Journal of Solar Energy Engineering (ASME) Vol 118 No 5 pp 123 -129

(1996)

42 Crittenden JC Y Zhang DW Hand and DL Perram Solar Detoxification of Fuel-Contaminated Groundwater Using Fixed-Bed Photocatalystsrdquo Water Environment Research Vol 68 No 3 pp 270-278

(1996)

43 Zhang Y JC Crittenden and DW Hand The Solar Photocatalytic Decontamination of Waterrdquo Chemistry amp Industry Vol 18 pp 714-717 September (1994)

44 Mourand JT JC Crittenden DW Hand DL Perram and S Notthakun Regeneration of Spent Adsorbents Using Advanced Oxidationrdquo Water Environment Federation Vol 67 No 3 pp 355-363 (1995)

45 Hand DW DL Perram and JC Crittenden Destruction of DBP Precursors with Catalytic Oxidationrdquo American Water Works Association Journal Vol 87 No 6 pp 84-96 (1995)

46 Zhang Y JC Crittenden DW Hand and DL Perram Fixed-Bed Photo-catalysts for Solar Decontamination of Waterrdquo Environmental Science amp Technology Vol 28 No 3 pp 435-442 (1994)

47 Suri RPS J Liu DW Hand JC Crittenden DL Perram and ME Mullins Heterogeneous Photocatalytic Oxidation of Hazardous Organic Contaminants in Waterrdquo Water Environment Federation Vol 65 No

5 pp 665-673 (1993)