24
Page 1 THE ADVANTAGES OF CONTINUOUS MONITORING OF POWER LINE CARRIER (PLC) CHANNELS APPLIED TO PROTECTION SYSTEMS Roger Ray, Alan Jayson & Ray Fella, PowerComm Solutions, LLC, Jeffrey E Brown, Georgia Transmission; Neil Stone & Robert Baldwin, Southern California Edison INTRODUCTION The critical nature of the power transmission system today makes it imperative that utilities keep up with the demand of routine maintenance of the protection system, as well as, monitoring the health of the system. In this manner, the reliability of the system can be assured. This paper will describe methods by which the system can be monitored and how the data can be used to predict the need for maintenance before system failure occurs. Today the protection system is made up of microprocessor relays, which can monitor their health and alarm if there are problems with the system. Many of these protection systems employ the use of Power-Line-Carrier (PLC) equipment to aid in the simultaneous detection of the fault at all line terminals to clear the fault. Many of these PLC systems do not can monitor all aspects of their health. Also, we have not had the ability of being able to have an independent device (such as what a Digital Fault Recorder (DFR) does for the power frequency equipment) that can monitor transient responses of the RF portion of the PLC system. If this type of equipment were available, any abnormal transient behavior of the terminal equipment as well as the communications path can be monitored and problems can be detected before they become an issue affecting the reliability of the protection system. In addition, when unexpected system events occur, data will be available for in depth analysis of the communication path that can be synchronized and compared to other devices on the system. This data can be used to assist in analyzing what is occurring on the RF path when a PLC issue (e.g. carrier holes) has occurred. PRC-005-002 Power System Maintenance Standard [4] now requires utilities to perform maintenance on their Protection Systems at specific maximum intervals based on the level of monitoring that exists. Complying with this relatively new standard can potentially be very costly to a utility. A DFR type of continuous monitoring system for the PLC system could drastically reduce the cost of the periodic maintenance. Information such as reflected power, levels, margins, and even system noise at carrier frequency could be maintained. When a maintenance cycle approaches real time data from the monitoring system would be captured and compared to archived data to determine what maintenance, if any, is needed. This real-time monitoring will reduce system down time while minimizing human interaction with live systems that sometimes lead to unexpected operational incidents. FUNCTIONS IMPORTANT TO A PLC MONITORING SYSTEM Standing Wave Ratio (%RFLP)/ % Reflected Power %RFLP Monitoring Monitoring %RFLP/% Reflected Power provides valuable information to a Power Line Carrier protection user. The %RFLP of a PLC system is affected by changes in Impedance terminating the transmitter. When changes occur on the Power Line Carrier system they are typically a combination of the resistive, capacitive and inductive components. Knowing the Impedance and Phase Angle of the %RFLP is critical to the diagnosis of these changes. Having a device that is

THE ADVANTAGES OF CONTINUOUS MONITORING OF POWER LINE ...prorelay.tamu.edu/wp-content/uploads/sites/3/2017/04/THE... · Page 1 THE ADVANTAGES OF CONTINUOUS MONITORING OF POWER LINE

Embed Size (px)

Citation preview

Page1

THEADVANTAGESOFCONTINUOUSMONITORINGOFPOWERLINECARRIER(PLC)CHANNELSAPPLIEDTOPROTECTIONSYSTEMS

RogerRay,AlanJayson&RayFella,PowerCommSolutions,LLC,JeffreyEBrown,Georgia

Transmission;NeilStone&RobertBaldwin,SouthernCaliforniaEdison

INTRODUCTION

Thecriticalnatureofthepowertransmissionsystemtodaymakesitimperativethatutilitieskeepupwiththedemandofroutinemaintenanceoftheprotectionsystem,aswellas,monitoringthehealthofthesystem.Inthismanner,thereliabilityofthesystemcanbeassured.Thispaperwilldescribemethodsbywhichthesystemcanbemonitoredandhowthedatacanbeusedtopredicttheneedformaintenancebeforesystemfailureoccurs.

Todaytheprotectionsystemismadeupofmicroprocessorrelays,whichcanmonitortheirhealthandalarmifthereareproblemswiththesystem.ManyoftheseprotectionsystemsemploytheuseofPower-Line-Carrier(PLC)equipmenttoaidinthesimultaneousdetectionofthefaultatalllineterminalstoclearthefault.ManyofthesePLCsystemsdonotcanmonitorallaspectsoftheirhealth.Also,wehavenothadtheabilityofbeingabletohaveanindependentdevice(suchaswhataDigitalFaultRecorder(DFR)doesforthepowerfrequencyequipment)thatcanmonitortransientresponsesoftheRFportionofthePLCsystem.Ifthistypeofequipmentwereavailable,anyabnormaltransientbehavioroftheterminalequipmentaswellasthecommunicationspathcanbemonitoredandproblemscanbedetectedbeforetheybecomeanissueaffectingthereliabilityoftheprotectionsystem.Inaddition,whenunexpectedsystemeventsoccur,datawillbeavailableforindepthanalysisofthecommunicationpaththatcanbesynchronizedandcomparedtootherdevicesonthesystem.ThisdatacanbeusedtoassistinanalyzingwhatisoccurringontheRFpathwhenaPLCissue(e.g.carrierholes)hasoccurred.

PRC-005-002PowerSystemMaintenanceStandard[4]nowrequiresutilitiestoperformmaintenanceontheirProtectionSystemsatspecificmaximumintervalsbasedonthelevelofmonitoringthatexists.Complyingwiththisrelativelynewstandardcanpotentiallybeverycostlytoautility.ADFRtypeofcontinuousmonitoringsystemforthePLCsystemcoulddrasticallyreducethecostoftheperiodicmaintenance.Informationsuchasreflectedpower,levels,margins,andevensystemnoiseatcarrierfrequencycouldbemaintained.Whenamaintenancecycleapproachesrealtimedatafromthemonitoringsystemwouldbecapturedandcomparedtoarchiveddatatodeterminewhatmaintenance,ifany,isneeded.Thisreal-timemonitoringwillreducesystemdowntimewhileminimizinghumaninteractionwithlivesystemsthatsometimesleadtounexpectedoperationalincidents.

FUNCTIONSIMPORTANTTOAPLCMONITORINGSYSTEM

StandingWaveRatio(%RFLP)/%ReflectedPower%RFLPMonitoring

Monitoring%RFLP/%ReflectedPowerprovidesvaluableinformationtoaPowerLineCarrierprotectionuser.The%RFLPofaPLCsystemisaffectedbychangesinImpedanceterminatingthetransmitter.WhenchangesoccuronthePowerLineCarriersystemtheyaretypicallyacombinationoftheresistive,capacitiveandinductivecomponents.KnowingtheImpedanceandPhaseAngleofthe%RFLPiscriticaltothediagnosisofthesechanges.Havingadevicethatis

Page2

capableofmeasuringboththeimpedanceandphaseanglewiththe%RFLPmeasurementisimportantfortroubleshootingthechange.Anychangesintheseelementsprovidescluestowhatmayhavecausedthechangeinthereflectedpowerreading.Forexample,aPowerLineCarrierMonitoring(PCM)devicelocatedperFigure11withazero%reflectedpowerreadingshouldmeasureanimpedanceof50𝛀withazero-degreephaseangle.

AnincreaseintheimpedanceofthemeasurementmeansthattherewasanincreaseintheimpedanceoftheentirePLCsystem.Anegativephasetellstheuserthattherehasbeenachangethathascausedthesystemtobecomemorecapacitivetothatfrequencyoriftheangleispositivetheimpedancehasbecomeinductive.Someexamplesofwhatthesedetailedmeasurementscanindicatearelinetrapfailures,linetunerproblems,overalllineimpedancechangesforvariationreasons.

Ifonlythemagnitudeorpercentreflectedpowerisknown,thereisnowaytoknowwhatismismatchedorwhatmayhavechangedontheoverallPLCsystem.

Table1showsexamplesthatallrepresenta10%reflectedpowerreading.Notethateachhavesignificantlydifferentresistive,capacitiveandinductivecomponents.Havingtheimpedanceandanglemeasurementsnowprovidesaclearerpathtowhathaschangedintheoverallsystem.

Table1-ImpedancesResulting

ina10%ReflectedPower

Z FAngle

80.75𝛀 +23.95o63.59𝛀 -32.71o39.37𝛀 +32.75o36.68𝛀 -30.94o

PLCReceiverTypeMeasurements

HavingamonitordevicethatreplicatesthecharacteristicsofaPowerLineCarrierreceivernotonlyprovidesasecondwaytodetectproblems,butthisindependentdeviceisnotrestrainedbytheextraprotectionsandtimersneededtomeetthedesiredsecurityanddependability.Anindependentreceiver/monitoringdevicecanbesetmoresensitivetocaptureactualrawmeasurements.Thisiscriticalinformationthattheregularreceivermaysee,butdoesnotreactto,basedonitsschemeand/orindividualprotectivesettings.Amoresensitivedevicecanprovidevaluableearlydetectiontopotentialfutureproblemsbeforetheyoccur.Addinglongtermtrending(hourly/dailymeasurements)forLevelorReflectedpowerenhancestheopportunitytoavoidpossiblemis-operationsinthefuture.TrendingcanalsoprovideinsighttoshorttermeventsthatnegativelyimpacttheCarriersystem,likeadverseweatherconditions.TimeSynchronizationoftheeventrecorderisalsovaluablewhencomparingeventlogsbetweenvariousprotectivedevicesinthesystems.

SpectrumAnalysisUsingFastFourierTransform(FFT)

UsingFFT’s:Withtimedomainviewing(Oscilloscope)itisnotpossibletoseetheindividualsignalyouareinterestedinbecauseitshowsacompositeofallthesignalspresent,includingnoise.Toviewmultiplesignalsatthesametime,usingfrequencydomain(FFT’s)isthebestway.

Page3

Withatime-domaindisplayoneisviewingamplitudeontheYaxisandtimeontheXaxis).WithafrequencydomaindisplayoneisviewingamplitudeontheYaxisandfrequencyontheXaxis.

Thesignalissampled“N”times(totalsamples),atafrequencyhighenoughtoproduceallfrequenciesineachband,andstoredinabuffer.AnFFTisrunonthestoredsamplesandanamplitude/frequencyplotisproduced.AnexampleofatimedomainplotvsafrequencydomainplotisshowninFigure1below.

Figure1-Timedomainvsfrequencydomainplots

EventDrivenFFT’s:

EventdrivenFFT’SprovideanopportunitytoseewhathasoccurredontheRFpathduringaspecificevent.Examplesofsomeoftheseeventsarelossofsignal,receivedguardortrip,%RFLPoutofrange,etc.Thecapturedspectralanalysisprovidesmoreinsighttowhatmayhavehappenedwhenoneofthesespecificeventsisrecorded.Forexample,somelossofguardeventsrecordedbyPLCreceivers,canbecausedbyvariousevents,notjustbythelossoftheactualsignal(Guard).Atransientnoiseeventcancausethesignaltonoiseratiotodecreasesignificantlywhichcouldcausethereceivertoindicatealossofguardeventhoughtheguardfrequencyisstillpresent.

Figure2showsanFFTcaptureofasingleFSKtransmitterinitsnormalstate.Figure3showsacaptureofatransientnoiseeventonthesamelinewiththeguardfrequencystillpresent.NotetheGuardfrequencyisstillpresent,althoughthesignal-to-noiseratioisvisiblyworse.Insomecases,thistypeofeventcancauseareceivertoclamp(notpermitguardortrip),whichcanberecordedbythePLCReceiverorprotectiverelayitstiedasalossofguardevent.AnFFTcaptureofthiseventhelpstheuseridentifythatthetransmitterandreceiverseemtobeoperatingasexpectedandthussavessignificanttimebyeliminatingthetransmitterandreceiverasthecauseoftheproblem.

Page4

Figure2-ExampleofaTransmitterinitsNormalState

Figure3-ExampleofaNoiseEvent

SpectralAnalysisCapturewithOverlay

WhencommissioningaPCMdevice,theabilitytocapturearealtimeSpectralAnalysisoftheChannelcanbeanincrediblyusefultoolinanalyzingchangesorintrusionstotheknownfrequenciesontheline.Areal-timecapturepermitstheusertheabilitytoidentifyallfrequencies,levelsandnoisepresentatthetimeofcommissioningandverifythattheyareknownentitiesandacceptablelevels.Ifthis“commissioning”oracceptablestateSpectralAnalysiscanbesavedasareferenceorbaseline,theusernowhasaninvaluabletoolforfuturesystemanalysisor

Page5

troubleshooting.WhentheuseraccessesthePCMdeviceonalaterdateandcapturesanewSpectralAnalysisofthesameChannelandthenimportstheoriginalcaptureasanoverlay,theycanseeanychangesthatmayhaveoccurred.Figure4showsaninitialRealTimeCaptureofaChannelwith3frequenciespresent.

Figure4-InitialRealTimeCapture

Figure5-InitialCaptureOverlaidwithaLaterCapture

Figure5showsapresentSpectralAnalysisCapturewithanoriginalcaptureoverlaid.Thegreencapturerepresentstheoriginalcaptureandtheyellowrepresentsthepresentcapture.Notethatthenewcapturehasa4thfrequencythatdidnotexistattimeoftheoriginalcapture.

Thisoverlaytoolcanbeusedtoassistandidentifymanypotentialissuesbeforetheybecomeactualproblemsormisoperations.Forexample,whenanymaintenanceornewinstallsareperformedonlyafewbussesawayfromasitebeingmonitored,oftentimefrequenciescanbleedthroughandshowupathighenoughlevelstopotentiallyinterferewithanexistingprotectionchannel.Usingtheoverlayprocessatanytimecaneasilyhelpidentifypotentialproblemsquickly.Thereisalsothepossibilityofdetectinglinetrapfailuressimplybecauseanewfrequencyhasappearedinthepresentrealtimespectralanalysiscapturethatoncedidnotexist.Knowingthatunexpected

Page6

frequencyvaluepermitsausertheabilitytoidentifywhereintheirsystemthatfrequencymaybecomingfrom.

LongTermMonitoring–MaintenanceExtension–AssistwithNERCCompliance

APCMinstalledpermanentlyprovidestheutilityamechanismthatcanbeusedtomoreeasilycomplywithPRC-005-002maintenancecycles,butcanalsoreducecosts.Inaddition,onceinstalled,thePCMcanbeaccessedatanytimeeitherremotelyorlocallytoreviewmeasurementswithouttheneedforaPLCsystemoutage.ApermanentlyinstalledPCMdeviceislikehavingmultipleinstrumentsinthesystemalways.ThePCMcanbeusedtorecord“AsLeftData”atcommissioningoratanyfuturetime.This“AsLeft”datarepresentsthepresentmeasurementsofthePLCchannelsandwhenconnectedtoasatelliteclockcanrepresentamaintenancetest.ThisAsLeftreadingcannotonlybeusedformaintenancetesting,butalsobecomesapermanentelectronichistoryofallmaintenancemeasurementsperformedwithtimeanddatestamp.

APPLICATIONOFAMONITORTOTHEPLCSYSTEM

HowLocationofthereflectedPowerMeasurementAffectstheResults

BeforeadiscussionabouttheapplicationofamonitortoaPLCsystem,itisimportanttoknowhowthelocationwherethe%RFLPismeasuredwillaffectthereading.Itiswidelyacceptedthatthebestlocationtoperform%RFLPmeasurementsisattheRFinputofthelinetuner.Whenadditionalcomponentslikehybridsareinsertedintothepathbetweenthe%RFLPmeasurementandthetuner,thereadingswillnotbethesame.Commonlocationsfor%RFLPmeasurementscanbeseeninFigure6&Figure7.

Figure6-%RFLPVariationBetweenLocation1&2

Figure7--%RFLPVariationBetweenLocation1&3

Figure8shows%RFLPmeasurementsmadeatbothlocations1&2,withtheImpedanceconstantat50𝛀andavariablephaseangle.

Page7

Figure8-%RFLPDifferencesBetweenLocations1&2:

ImpedanceFixedat50𝛀:VariableAngle

Priortothehavingtheabilitytomeasurethephaseanglecomponentofa%RFLPmeasurement,itwasnotpossibletoknowhowacapacitiveorinductivechangetotheCarriersystemwouldaffectreadingsatdifferentlocationsinthecircuit.ForthemeasurementscenariosshowninFigure6&Figure7,twodifferentmeasurementtestswereperformedforeachfigureshown.ThefirsttestkeptthePhaseAngleconstantatZeroDegreesandvariedtheImpedance.ThesecondtestkepttheImpedanceconstantatapproximately50𝛀andvariedthePhaseAngle.ForFigure6(0⁰PhaseAngle,VariableZ),thereadingsatLocations1&2areessentiallythesame,sonochartwasnecessarytoshowthedifferences.Thatisnotthecasewhenthephaseanglechanges.PerFigure8,measurementsatlocation2arenoticeablyaffectedwhentheImpedancestaysconstantatapproximately50𝛀,butthephasevaries.Notethatwhenthephaseangleisnegative,measurementsatlocation2havedifficultydetectinganychangeinthereflectedpowerreading,althoughmeasurementsatLocation1stillseetheexpectedchangesoccurringonthepath.Inaddition,thistestingalsoidentifiedthatchangingthefrequencyofthe%RFLPmeasurementwillalsoaffecthowdifferentthereadingwillbebetweenthetwolocations.Pertheseresults,sincedifferencesinthereadingsarenotlinear,applyingacorrectionfactortoadevicemeasuringatlocation2wouldnotprovideanyconfidencethatthereadingwouldcorrelatewithreadingsatlocation1.

Thismeasurementdifferencebecomesevenmoresignificantwhenaresistivehybridisplacedinthecircuitalongwithaskewedhybrid(SeeFigure7).Inaddition,whenchangesoccurtoeithertheimpedanceorphaseangle,the%RFLPmeasurementsaresignificantlyaffectedbetweenmeasurementsmadeatlocations1and3.Figure9shows%RFLPmeasurementsmadeatbothlocations1&3,withtheImpedanceconstantat50𝛀andavariablephaseangle.

Figure9-%RFLPDifferencesBetweenLocations1&3:ImpedanceFixedat50𝛀:VariableAngle

0

2

4

6

8

10

12

14

16

18

-50 -40 -30 -20 -10 0 10 20 30 40 50

%REFLECTEDPOWER

Location1

Location2

02468101214161820

-50 -40 -30 -20 -10 0 10 20 30 40 50

%ReflectedPow

er

Location1

Location3

Page8

Figure10-%RFLPDifferencesBetweenLocations1&3:0Degrees&VariableImpedance

Figure10shows%RFLPmeasurementsmadeatbothlocations1&3,withthephaseangleconstantatzerodegreesandavariableimpedance.Notethedramaticdifferencesbetweenmeasurementsmadeatlocations1&3whenbothaskewedandresistivehybridareinthecircuit.Inaddition,thereisoneveryimportantmeasurementcomparisonthatisnotshowninFigure10,butiscriticaltoknow.Whenthereisno-loadinthecircuitofFigure7atthetuner,thereisdramaticdifferencebetweenthe%Reflectedpoweratlocations1&3.Anexampleofano-loadconditiononaPLCsystemcouldbeabrokenordisconnectedcoaxialcableinthepath.Asexpected,themeasurementreadingstakenatlocation1are100%reflectedpower.Duetotheinherentimpedancecharacteristicsofatypicalresistivehybrid,themeasurementatlocation3onlyreads16.6%reflectedpower,eventhoughthecableisdisconnectedatthetuner.

Thistestingandresultingdataclearlyidentifiesthattheoptimalplacetomonitor%RFLPisatlocation1only.Measurementsmadeatlocations2or3cannotreturnthesameresultsduetotheaffectsthathybridsintroduceintothecomplexcircuitwhichisaPowerLineCarriersystem.

CommonCouplingSchemes

Sincewearetalkingaboutadevicethatwilldorealtimemonitoringofboththesteady-stateconditionsofthepower-line-carriersystemandcapturingthetransientconditions,wewouldexpecttoseethedeviceappliedsomewhereinthepowerlinecarrierchain.Ifthedeviceisamulti-channelmonitorandbasedonthediscussionintheprevioussection,thenthebestplaceforittobelocatedisinthecoaxjustbeforeitleavesthecontrolhousetogotothelinetuner.ReferenceFigure11.

Figure11-GeneralpreferredlocationforaPCM

ThereareseveralreasonswhythislocationisthebestplaceforthePCM.First,likeaDigitalFaultorTransientrecorderthemonitorshouldbeplacedinalocationwhereitseestheoriginalsignalsentering&leavingthesystem.Second,ifitisamulti-channeldeviceitmustbeatalocationsothat

0

2

4

6

8

10

12

20 30 40 50 60 70 80 90 100

%ReflectedPow

er Location1

Location3

Page9

itcanmonitorallthedesiredfrequenciesinthesystem.Also,athird,oneofthemostusefulquantitiestobemonitoredisthereflectedpowerfromthelinetuner.Thisquantityismostimportanttowatchsinceitwilltelltheuserthestatusandhealthofthelinetuningsystem.Therefore,asshowninthepreviousdiscussion,thebestplacetoobservereflectedpowerisrightbeforethecoaxcableleavesthecontrolhouse.Atthislocation,thereflectedpowerhasn’tbeenchangedbyanyhybridsinthecouplingchainandthecorrectphaseangleoftheimpedancecanbemeasured.

TheaboveFigure11willsufficeforallapplicationsthatinvolveasinglecoaxleavingthecontrolhousetotheswitchyard.Thereisoneexceptiontothesinglecoaxapproachwhichwillbediscussedlater.

However,whatcanbedonewithapplicationsthatinvolvemulti-phasecoupling.Theseapplicationscangetabitmoreinvolved.First,let’slookatthemostcommonphase-to-phasecouplingscheme.ThisisshowinFigure12.

Figure12-PCMLocationforPhase-to-PhaseCoupling

Atfirstglance,itappearsthattheruleofhavingthePCMinthecoaxialcablerightbeforetheleavingthecontrolhouseisviolated.Inthiscase,iftheterminationonthesplitteroutputsistheclosetoidenticaltheeffectsonanycharacteristicofthesignalbeingmonitoredisveryminimal.Thisincludesthereflectedpower.Let’sdigressandlookatthesplitterschematicinFigure13.

Figure13-GeneralCircuitforaSplitter

Withbothoutputsterminatedthesamethenthereisnocurrentinthe25𝛀resistorandthusthereisnolossesandtheinputsees50𝛀.Thepowerattheoutputofthetransformerisequaltothepowerintothetransformer.Thus,eachoutputseesonehalfoftheinputpowerandthecurrentoneachoutput(referencedtoground)isoutofphasewhichiswhatonewantsinphase-to-phasecoupling.

AsfarasmonitoringtransmittersgoingoutthepoweroutseenbythePCMwillequalthesumofthepoweronthecombinedphases.So,thetransmittermonitoringwillbecorrect.Ifthevoltageis

Page10

receivedfromtheotherendisequaland180ooutofphase,thentherearenoextralossescominginandthevoltageacrosstheinputsideofthetransformerisequaltothesumofthetwophasevoltagesdividedbythesquarerootof2(turnsratioofthetransformer).Eventhoughthisvoltageisdifferentthanthesumofthetwo-phasevoltages,thevoltagethereceiverwillsee(lessthelossesinanyhybrids).Thissameargumentalsoappliestothecurrents,andtheanglebetweenthecurrentsandvoltagesreceivedisnotchangedpassingthroughthesplitter.

Ifthesplitterdoesn’tremainbalanced,thenlosseswillbeincurredthroughitinbothdirections(transmit&receive).Ifthetwophasesdon’tterminateinthesameimpedance,thenlossesoccurduetocurrentinthe25𝛀resistor.Thisisokfromthemonitoringofvoltageandcurrentmagnitudesaswellasangleiftheterminationsareresistive.

Theonlyquantitythathasn’tbeendiscussedisthesplitterseffectonthemonitoredreflectedpower.Again,asabove,thereisnoaffectifthetwophasesterminatethesignalinthesameimpedance.Let’slookatanexample.IfIterminateeachphasein25𝛀andwemeasurethereflectedpowerineachofthephasestheybothwillread46%.Sincetheterminationisthesameforeachphasethenthereisnocurrentthe25𝛀balancingresistoranditisnotseeninthecircuit.Thus,itappearsthatthetransformerisconnectedtotwo25𝛀resistorsinseriesor50𝛀.The50𝛀translatesacrossthetransformerto25𝛀ontheprimary.IfwenowmeasurethereflectedpoweratthePCMlocation,itwillread46%(thesameasoneachphase).

Whathappenstothereflectedpoweriftheterminationsarenotthesame?Whatmightweconsidertobetheworst-casesituation?Let’sconsiderasingle-line-to-groundfaultnearthecouplingcapacitor.Theassumptiontomakehereisthatthefaultwillappearasashortcircuitacrossoneoutputofthesplitter.SeetoFigure14.

Figure14-CircuitforaSplitterwithOneOutputShorted

Onehalfofthetransformeristerminatedwith25𝛀fromoutput1toCTandtheotherhalfwillbeterminatedin75𝛀fromoutput2toCT.Therewillalsobeaninter-actionofcurrentsfrombothoutputsprovidingcurrentinthe25𝛀resistor.Ratherthanattempttosimulatetheresultsinacircuitanalysisprogramitwasdecidedtojustmeasureit.Thereflectedpower,ifmeasuredatoutput1is100%andifmeasuredonoutput2is0%.Theimpedanceattheinputtothesplitterismeasuredat17𝛀ata7.5oangle,whichrepresentsareflectedpowerofabout24%.

Nowifontheotherhand,theoutput1wereanopencircuit,thenthemeasuredimpedanceattheinputtothesplitteris144𝛀ata2.3oangle.NowthemeasuredreflectedpowerattheoutputofthePCMwouldreadabout23%.IneitherofthesecasesthemagnitudeofthereflectedpowermeasuredattheoutputofaPCMlocatedasinFigure12issuchthatanalarmforreflectedpowerinthePCMcouldbesetatabout18%andalarmforeitherofthesecases.Thealarmisnotsensitiveenoughtoalarmforamismatchofsay25𝛀onoutput1and50𝛀onoutput2.InthiscasethereflectedpowerattheoutputofthePCMisonlyabout3%whenthereflectedpowermeasuredatoutput1willbeabout11%.

Page11

TheconclusiontotakeawayfromthisconversationisthattheapplicationshowinFigure12isacceptableformanycarrierconfigurations.Itcanalarmforsevereconditionsononeoftheoutputsofthesplittertransformeranditwillcorrectlymeasurereflectedpowerontheoutputofthephasesonthelineifbothoutputsareterminatedinnearlythesameimpedance.However,iftheuser’srequirementsarecriticalanditisrequiredtohaveanaccuraterepresentationofreflectedpoweronbothphasesthecircuitasshowninFigure15shouldbeused.

Figure15-PCMConfigurationtoMonitorEachPhaseofaPhase-to-PhaseSystem

AMode1couplingschemecangetabitmorecomplicatedtomonitorsinceyouarecouplingtoallthreephases.BecauseoftheaddedSplitterthatisrequiredtodoMode1coupling,IwouldsuggestthattheclearestinformationisobtainedbyusingthreePCMsandputtingoneineachphasepriortothelinetuner.Figure16showsthisconfiguration.

Figure16-PCMConfigurationforMode1Coupling

ApplicationforFullyRedundantCouplingSchemes

Whenapplyingpower-linecarriertoEHVthatarepartofthebulktransmissionsystems,itisoftenconsideredthattworedundantpilotprotectionsystemsbeapplied.Therearemanymethodsbywhichthiscanbeaccomplished.Theissuetobeconsideredhereisthecasewherebothpilotsystemsareonpower-linecarrierandcoupledtothesameline.Couplingschemesthatarefullyredundant(ie,nosinglecomponentfailurewillbutbothsystemsoutofservice)mayberequired.Thisrequirementmakesforamuchmorecomplicatedcouplingsystem.RefertoReference3)formoreinformationonthissubject.

Forthisrequirement,asingle-linetogroundcouplingschemewillnotbediscussedsincethatsystemdoesnotprovideanyredundancyatall.Phase-to-phaseandmode1couplingwillbediscussed.Let’sconsiderphase-to-phasecouplingfirst.Figure17wouldbeadesignthatwouldbeconsideredafullyredundantcouplingsystem.However,thesameshortcomingsapplyhereas

Page12

discussedinthenon-redundantphase-to-phasecouplingabovewiththePCMbehindthebalancetransformer.Inthiscase,thereflectedpowermeasurementwillsuffersincethemonitorpointisbehindacombinationofasplitterandacombiner(hybrid)theerrorbecomesfargreaterthaninFigure12.

Figure17-Phase-to-PhaseFullyRedundantMonitoringSystem

Ifforsomereasononeisnotgoingtomeasurereflectedpower,Figure17wouldbethecorrectwaytodesignthesystem.ThereasonthiswouldbecorrectisthatonePCMismonitoringsystemAandtheotherismonitoringsystemB.Ifontheotherhand,onewantstomonitorreflectedpowerandobtainacorrectreadingyoumustchangethepositionofthemonitoringlocationtothatshowninFigure18.

Figure18-AlmostFullyRedundantMonitoringforPhase-to-PhaseCoupling

Page13

Eventhoughwecan’tcallthisschemeinFigure18fullyredundant,itisasredundantasanysystemsincethelinetuner,couplingcapacitorandlinetrapthePCMsareconnectedisnomoreredundant.Afailureofanyoneofthosecomponentswillcompromisebothsystemssomewhat,butinmostcases,willnotcauseatotalfailureofeitherprotectionsystem.

TheinputtooutputcoaxconnectorinthePCMwillonlyhaveacurrenttransformerinserieswiththecenterconductorandavoltagetransformeracrossthecoaxcentertoshield.Afailureofeitheroftheseunitsaretheonlycomponentsinthemonitoringboxthatcancompromisethesystem.Thesetransformers,beingveryrobustandpassivecomponents,addverylittleprobablyoffailuretotheoverallprobablyoffailureofthelinetuner,couplingcapacitorandlinetrapcombination.So,theeffectofhavingthePCMinthelocationshowninFigure18intermsoffailureprobablyisverysmall.

Figure19-AlmostFullyRedundantMonitoringofMode1Coupling

Figure19aboveshowshowyouwouldarrangethemonitoringforamode1couplingscheme.ThesamecommentsasstatedabovefortheredundancyinFigure18alsoapplytothemode1coupling.RefertoReference3)foradetailedschemeshowingtransformerpolaritiesandconnectionsfortheschemeonFigure19

FIELDTESTINGOFCONCEPTUALDESIGNPCMapplicationTrialforPeriodicMaintenance&meetingNERCrequirementsatGeorgiaTransmissionCo.

Inthepast,periodictestingofpilotsystemshasbeenleftuptotheutilities.Thishasallowedthepilotsystemstobeinvariousstagesofworkingorder.Someutilitieswentoverboardandwereperformingtoomuchmaintenanceandotherswereneglectingtheirsystemsalltogether.Intoday’sregulatorycomplianceledworldthisisnolongeracceptable.Whilesomeminimumrequirementshavebeensetbytheregulations,muchoftheupkeephasstillbeenlefttotheutilities(seeReference[4]).Onlynow,whateveryourmaintenanceprogram,thegovernmentwillaudittheutilitiestoprovethatyourstatedmaintenanceprogramisbeingimplemented.

ThemaintenanceprocesswilltypicallyinvolvetestingoftherelayandPLCsystemtovalidatetheschemeisworkingcorrectly.Thisinvolvesensuringthecorrectsettingsareappliedandthe

Page14

inputs/outputsarefunctioning.Also,thismeanstakingtheschemesoutofservice,havingpeopleatbothendsoftheline,andtakingvariouschannelchecksandreadinglevels.Oncethisinformationhasbeengatheredandevaluated,thedecisionwillbemadewhethertodofurthercalibrationonyourtrapsandtuners.Maintenanceonyourtrapsrequirecrews,manliftsandsystemoutages.Inall,theutilitywillhaveengineers/techniciansandcrewspossiblytiedupfordaysatatimedependingonthesizeofthestationthatisduemaintenance.

WithaPowerLineCarrierMonitoringSystem,periodicmaintenanceofyourpilotschemeswillbecomestreamlinedandmoreefficient.

Let’stakeforexamplearoutinemaintenanceatahypotheticalSpringsubstation(seeonelinediagraminFigure20)equippedwithPCM’s.

2017RoutineatSpringSubstation

Figure20-OneLineDiagramofSpringSubstation

ThreeofthefourtransmissionlineshavePowerLineCarrier.

Spring–KingSt115kvLinehasaDCBscheme.

Spring–LukeWay115kvLinehasaDCUBscheme.

Spring–PeacockAve115kvLinehasaDCUBandTTRxScheme.

Spring–StDillard115kvLineisnon-pilotandprotectedbyZoneProtection.

AllpilotschemesconsistofthelatestPLCequipmentandmicroprocessorrelayswithremoteaccess.

EachpilotschemeisequippedwithaPCM.

Forthisdiscussion,themaintenancewillbebrokenintotwosections.

1. TheControlHouse-ThismaintenancewillconsistofthechecksontherelaysandPLCequipment.ThisinvolvesreadinglevelsandsettingmarginstoensurethePLCsareinworkingorder.Also,theinputs/outputsbetweentherelayandPLCsaretestedtobefunctioningcorrectly.

2. TheFieldEquipment-Thismaintenancewillconsistwiththegatheringofourchannelqualitychecks,specifically,ReflectedPower.Itwillalsoinvolveswappingsignalswiththeremoteterminal.Thistypeofinformationwillbeusedtodetermineifyourtunerortrapneedsattention.

TheControlHouse

Page15

Spring–KingSt115kvLineDCBScheme

DCBSchemesusingON-OFFPLCequemptarerequiredtohaveaperiodiccheckbacktest.ThistestisdonetoverifythePLCsetandthechannelareinbasicworkingorder.AsuccessfultestverifiesthePLCsetiscapableofkeying/receivingablocksignalwhichprovesthatthechannelbetweenthetwostationsisintact.

WithaPCM,onecansimplyremoteintotheboxandgatheryourfirstimportantpieceofinformation.AscanbeseenfromFigure21&Figure22,thePLCsethassuccessfullyshiftedfromOFFtoONstateforthetransmitterandthenaplaybackwasreceivedtoverifytheremoteend.

Figure21-SpectralAnalysisofTransmitterintheOFFState&ONState

Figure22-TheCorrespondingReceiveSignals

Spring–PeacockAve115kvLineDCUBSchemeDCUBschemeshaveanormally“On”GuardSignal.WiththePCMonecanseethesystemshiftingfromGuardtoTrip.RefertoFigure23,Figure24&Figure25.

Page16

Figure23-DCUBinGuard

Figure24-ShiftingtoDCUBTrip

Figure25-DCUBinTrip

Thisspectralanalysiswastakenfromasystemevent.TheDCUBTransmitterisputtingoutasolid10wattsata138.75kHzguardfrequency.

Asatestisinitiated,theradioisstartingtheshiftfromguardtotrip.Informationabouttheschemecanbegleamedfromthisevent.Forexample,inthepilotrelay,theactualrelayoutputisexercisedtothecarrierset,wheretheactualinputonthesetisenergizedcausingittokey.Essentially,theoutputsandinputsassociatedwiththecorrectfunctioningoftheschemeisverifiedbythespectralanalysis.

Heretheradiocompletesitsshiftfromguardtotripensuringusthatlocalendisfunctioningcorrectly.Dependingonthetypeofevent,theremaybeacompanionreceiveeventtogowiththistransmitevent.SimilartotheDCBscheme,anexternalcheckbacksystemappliedintheprogrammablelogicofyourpilotrelaycouldbeusedtoperiodicallycheckyourinputandoutputsbothlocallyandremotely.

Page17

Spring–LukeWay115kvLineDCUB/TTRxSchemeDCUBSchemeshaveanormallyonGuardSignalfortransmitandreceive.TheTransferTripReceivershavegoodGuardSignalsaswell.

Figure26-SpectralAnalysisSpring–LukeWay115kvLine

ThisspectralanalysisinFigure26capturesthecompletepicture.ItshowusthecompleteDCUBsystemandthetwoTransferTriprecivers.Theselevelscanbearchivedandusedforfutureschemeevaluations.

ControlHouseConclusion

Fromactualeventstocheckbacktests,theschemescanbedeterminedtohaveoperatedcorrectly.Theinputsandoutputsarevalidated.Thespectralanalysesshowthecarriersetisshiftingandreturningtonormal.Levelsarecapturedandarchived.Ifdataisgatheredandmaintained,someofyourrelayandradiomaintenancecanbeavoided.

TheChannel

Spring–KingSt115kvLineDCBSchemeSomeofthebasicreadingsandinitialvaluesweregatheredfromourControlHousereadings.Tocompleteourchecksofthepilotsysteminvolvestakingreflectedpowerreadings.Inthepast,wesubmittedworkrequeststodisabletheschemestoinsertourtestequipmenttotakeareading.NowwesimplyremoteintothePCMandtakeactualin-servicereadings.ADCBschemeisnormallyoffanditmustbekeyedtotakeareflected

1 2 34

Page18

powerreading.ThePCMcankeytheradiobypulsingitsoutput.Itthencancaptureareflectivepowerreading.

Figure27-In-servicereadings

Figure28-“AsLeft”ReadingsfromPastTesting

Asyoucanseefromtheabovereadings,thePCMcantakeanin-servicereadingthatcanbecomparedtoapast“AsLeft”reading.If,forexample,thereflectedpowerchangesbyonlyapercentortwo,itcanbeconcludedthatnothingsignificanthaschangedonyourline,inyourtuner,orwithyourlinetrap.IfyourinitialequipmentcalibrationsaredocumentedcorrectlyandthePCMisutilized,yourmaintenancefortheabovecanbeconsideredmuteandunnecessary.

PeriodicMaintenanceConclusion

TakingreadingsfromaPCMtakesamomentcomparedtothetypicalprocessofanengineerwithatestset.Onesuchmaintenanceintervalforasinglepilotschemecansaveyourcompanythousandsofdollars.

So,inconclusion,aPowerLineCarrierMaintenancedevice,ifproperlyinstalledandmaintained,cansignificantlyreducemaintenancecostsandschemedowntimes.Operationsonyoursystemwillbeeasilyidentifiableandinvestigated.Proper“AsLeft”datacanbeusedonanyequipmenttroubletohelpdocumentandtrendequipmentissues.PropertrendingwithyourspectralanalysiscouldhelputilitiesidentifyPLCissuesthatareathecauseforsystemincorrectoperations.TheusesofaPCMwillbeonlylimitedbyyourimagination.

Page19

PCMApplicationtrialatSouthernCaliforniaEdisonforTroubleShootingPLC

Overview:

SouthernCaliforniaEdison’s(SCE)TechnicalSupportandStrategy(TS&S)grouphasperformedacostbenefitanalysisofpermanentlyinstallingPCM’sasameansofreducingthecostsnormallyassociatedwiththemaintenance,operationandtroubleshootingofourPowerLineCarrier(PLC)schemes.SCEhasdeterminedthatthecostsrelatedwithmaintainingandtroubleshootingtheirPLCschemeshavebeenincreasing,largelyduetotheattritionrateofqualifiedtechnicianswhohavethenecessarybackgroundandexperiencerequiredtoworkonPLCsystems.They’vealsodeterminedthatwhentheirhigh-speedPLCprotectionsystemsareoutofservice,especiallyforextendedperiodsoftime,thereareincreasedrisksofclearingfaultswiththeback-upprotectionsystems.

SCErecentlyappliedaPCMtooneofitsPLCsystems,toexplorewaystobegintoreducethecostsofmaintainingitsPLCsystems,andtoprovidecontinuousmonitoringofthehealthofitsPLCsystems.TheywereintriguedbytheabilityofaPCMtoprovideapassive,non-evasive,methodofcapturingthecarriersignal’sspectraldata.Further,theywantedtoevaluateifapplyingaPCMwouldallowthemtoconsidertheirPLCsystemstofully-monitored,asameansofextendingthemaintenanceintervalsfortheirPLCsystems.

EvaluationofaPCM:

SCE’sTechnicalSupportandStrategygroupfirstevaluatedthesetupandoperationofaPCMintheirlaboratory,locatedinPomona,CA.WhiletheycoulddemonstratesomeofthebasicfunctionalityofaPCMintheirlaboratory,itsoonbecameapparentthattheirlaboratoryenvironmentdidnotcontainallthenecessary,realworldcomponentsofatruePLCsystem(linetuners,linetraps,transformerhybrids,skewedhybrids,etc.).Theysoondeterminedthatitwastimetotakethenextstep,andapplyaPCMononeoftheirPLCsystems.TheyalsofeltthatevenmoreidealwouldbetoapplyaPCMtooneoftheirPLCsystemsthathadahistoryofreliabilityissues.

Asluck,wouldhaveit,SCE’sSubstationTestgrouphadbeenhavingissuesintroubleshootingapowerlinecarrierdirecttransfertrip(PLC-DTT)protectionsystemappliedtoitsAntelope–Whirlwind500kVtransmissionline.RefertoFigure29forthePLCconnections.ThePLC-DTTsystemhadbeenproducingspuriousTripReceivedsignalsfromoneofitstwotransmitter-receiversets.ThesespuriousTripReceivedsignalswerebeingreceivedatjustoneofthelineterminals,specificallyatAntelope.Unfortunately,therehavebeencaseswhenthisPLC-DTTsystemhasincorrectlyoperated,trippingopentheAntelope–Whirlwind500kVlineatbothends,whenspuriousTripReceivedsignalswerereceivedatAntelopefrombothofthisPLC-DTT’receiver.

Interestingly,ineachcasewhenthespuriousTripReceivedsignalshadbeenreceivedatAntelope,therewerenoindicationsofthecorrespondingTripSentsignalbeingsentfromtheoppositeWhirlwindlineterminal.ThisspuriousTripReceivedsignalissuehadbeengoingonforwellovertwo(2)years,andduringthattime,manydifferentTestcrewshadspenttimeonsite,troubleshootingthisissue.ThisspuriousTripReceivedsignalatAntelopehasresultedinthisPLC-DTTbeingremovedfromserviceforovertwoyears,now.Fortunately,inaccordancewithSCE’sstandards,there’saseconddirecttransfertripsystemappliedtothissame500kVtransmissionline,whichutilizesdigital

Page20

Figure29-SCE’sAntelope-Whirlwind500kVPLC-DTTSystemConnections

microwavecommunications,commonlyreferredtoasMW-DTTatSCE.Thus,eventhoughthis500kVline’sPLC-DTTsystemhasbeenout-of-serviceformorethantwoyears,thissameline’sMW-DTTsystemhasremainedin-service,providingthedirecttransfertripcapabilitiesforthisline.

Asalast-ditcheffort,SCEsentthetransmitter/receiverunitsfromthisAntelope–Whirlwind500kV’sPLC-DTTsystembacktothevendor,withthehopesthattheycouldfindsometypeofissuewiththeirtransmitter/receiverunits.Unfortunately,theyfoundnoissueswiththesetransmitter/receiverunits,andtheyreturnedtheseunitsbacktoSCE.ThisAntelope-Whirlwind500kVPLC-DTTsystemhasbeenout-of-serviceforovertwoyears

Consideringtheabove,SCE’sTS&SgroupfeltthatthisAntelope–Whirlwind500kVPLC-DTTsystemwouldbeanidealcandidatetoevaluateaPCM.TheunreliabilityofthisPLC-DTTsystemhascostSCEmanyman-hoursoftroubleshooting,operationsswitchingcost,andthelossofoneoftheprotectionschemesonanin-service500kVtransmissionline.ItwasfeltthatapplyingaPCMtothisPLC-DTTsystemwouldprovidebenefitsbecauseofthereal-timedatacapture,andmightevenhelpSCE’sTestcrewstoresolvetheunreliabilityissueswiththisPLC-DTTsystem.

PilotApplicationofaPCM:

Inearly2016,SCE’sTS&SgroupbegantheirpilotevaluationofaPCM,astheyworkedtogetherwithfieldTestcrewstoinstallaPCMateachendoftheAntelope–Whirlwind500kVline’sPLC-DTTsystem.Figure29showsthatatbothAntelopeandWhirlwind,aPCMwasinstalledinserieswiththetri-axialcableconnectedbetweenthehybridcombinerunitandthelinetuner.

Page21

LookingbackattheeventrecordsfromthisPLC-DTTsystem,itsoonbecameapparentthattherewasnoparticulartimeofdaythattheTripReceivedsignalswerebeingreceivedatAntelope.InordertoprovideanaccuratetimestampofthedatatoberecordedbythesePCM’s,aGPSreceiver’sIRIG-BtimesynchronizationwasconnectedtoeachPCM.

ItwashopedthatthePCMswouldprovidetheabilitytoobservesomeofcharacteristicsofthepowerlinecarriersignal,suchastransmittedpower,receivedpower,andreflectedpower.OncethesePCMswereinstalledandpoweredup,itwasnotedthatthesetheythecapabilitytomonitorthesethree(3)characteristicsofapowerlinecarriersignal,alongwithmanyothercharacteristics(refertoFigure27).

Capturingthesepowerlinecharacteristicsovertimeallowsdetailedanalysistobeperformed,whichmayhelptodeterminethecauseoferroneoustripswhichoccurduetospuriousnoise,intermittentlossofsignal,etc.Further,theabilitytostorethesepowerlinecharacteristics,astheyoccurovera24-hourtimeperiodthroughouttheyear,canbeveryhelpfulintheefforttomaintainthereliabilityofthesepowerlinecarriersystems.

DataCollectionandAnalysis:

SCE’sTS&SgrouphasbeentakingadvantageofthestoragecapabilitiesofthesePCMs,inorder,tocaptureeventrecordsstoredwithinthesetwo(2)PCM’s.

"ID","Date","Time","FFT","Channel","Description""20","04/15/2016","16:46:27:267","0","0","RFVoltageinRange""19","04/15/2016","16:46:26:519","0","0","RFVoltageOverload""18","04/15/2016","16:44:58:887","0","0","ConfigurationAccess""17","04/15/2016","16:44:58:615","0","0","AccountLoginadmin""16","04/15/2016","16:00:31:457","0","5","85-3FSKDTTRXLowFreq:GUARD""15","04/15/2016","16:00:30:783","1","5","85-3FSKDTTRXHiFreq:TRIP""14","04/15/2016","15:51:33:048","1","3","85-2FSKDTTRXHiFreq:GUARD""13","04/15/2016","15:51:32:349","0","3","85-2FSKDTTRXLowFreq:TRIP""12","04/15/2016","15:32:19:109","0","1","85-2FSKDTTTXReflectedOK""11","04/15/2016","15:32:18:900","0","5","85-3FSKDTTRXLowFreq:GUARD""10","04/15/2016","15:32:18:900","1","3","85-2FSKDTTRXHiFreq:GUARD""9","04/15/2016","15:27:46:509","1","1","85-2FSKDTTTXReflectedO/R""8","04/15/2016","15:27:46:309","1","5","85-3FSKDTTRXSignalO/R:Low""7","04/15/2016","15:27:46:309","1","3","85-2FSKDTTRXSignalO/R:Low""6","04/15/2016","13:09:46:452","0","0","TimedAccountLogoff:admin""5","04/15/2016","12:41:59:102","0","0","IRIG-BSynch""4","04/15/2016","12:40:31:709","0","0","ConfigurationChange""3","04/15/2016","12:40:30:239","1","3","85-2FSKDTTRXHiFreq:GUARD""2","04/15/2016","12:40:30:237","1","2","85-3FSKDTTTXLowFreq:GUARD""1","04/15/2016","12:38:56:021","0","0","IRIG-BUnsynch""0","04/15/2016","12:36:59:567","0","0","AuditLogCleared"

Figure30-ExampleEventRecordsofafromSCE’sAntelopeSubstation

TheeventrecordstypicallycapturedbyaPCM(Figure30)haveallowedtheend-usertoobservetime-taggedoperationalcharacteristicsoftheirrespectivePLCsystem,inthiscase,forSCE’sAntelope–Whirlwind500kVline’sPLC-DTTsystem.FortheAntelope–Whirlwind500kVline’sPLC-DTTsystembeingmonitoredbytwo(2)PCM’s,theresultshavebeenverytypicalforthirty-sixhundred(3,600)individualeventrecordstoberecordedoveraforty(40)dayperiod.

Page22

InadditiontotheabilityofaPCMtocaptureandstorethesetypeofeventrecords,aPCMalsohasthecapabilitytocaptureandstoreFastFourierTransform(FFT)displaysofthepower-line-carriersignalbeingmonitored.Figure23,Figure24&Figure25showsomeexamplesofthesetypesofFFTdisplays,andthissetofthree(3)displaysshowstheshiftofoneofthetransmitterswithinSCE’sPLT-DTTsystemfromguardtoitsrespectivetripfrequency.

PreliminaryanalysisofboththeeventandFFTdatacapturedbythetwo(2)PCM’sinstalledonSCE’sAntelope–Whirlwind500kVline’sPLC-TTsystemhasshownaverydistinctpossibilityofflashoversoccurringacrossthedraincoil’ssparkgapsappliedonthisPLC-DTT’ssystem.ThedatacapturedbythesePCM’sshowanintermittentlossofguardsignaloccurringattheAntelopelineterminal.TheadditionoftheGPSreceiver’sIRIG-Bsignaltothesetwo(2)PCM’shasproventobeextremelyvaluable,sincetheseeventshavebeenshowntobeveryfrequentandunrelatedtoweather.FurtherdetailedanalysisoftheeventrecordsandFFTdisplaysfromthesePCM’shaveshownthatthelikelysourceoftheseeventsisaresultofpowerlinenoise,whichisaresultoftheswitchingofpower-factorcorrectioncapacitorbanksappliedtothesolarandwindpowergenerationinstallations,whichareinstalledveryclosetotheright-of-wayofSCE’sAntelope–Whirlwind500kVtransmissionline.

SCEispresentlyworkingtogetherwiththevendorofthetransmitter/receiverequipmentappliedtoitsAntelope–Whirlwind500kVline’sPLC-DTTsystem,toexplorewaystomodifysomeoftheoperatingcharacteristicsoftheirtransmitter/receiverunits,tomakethisPLC-DTTsystemmoreresilienttotheabovesourcesofpowerlinenoise.ThedecisiontoinstallaPCMatbothendsoftheirAntelope–Whirlwind500kVline’sPLC-DTTsystemhasprovidedSCE’sTS&SgroupwiththetechnicaldatatheyneededtodeterminethecausebehindthereliabilityissuestheyhadbeenhavingwiththisPLC-DTTsystem.

CONCLUSIONSAPCMtypedeviceprovidestheuseranewtooltomonitor,maintainandtroubleshootapower-line-carriersystemusedforsystemprotection.ThecombinationofextendingmaintenancecyclesandmonitoringthesystemforunexpectedchangestypicallyrecoversthecostofthedeviceinarelativelyshorttimeandhelpstheuserbettercomplywithNERCstandardPRC-005-002[4].Theeventlogs/alarms,trendingandeventdrivenspectralanalysisprovidelongtermmonitoringofthesystemforyearsandameansforavoidingand/orevaluatingmisoperationsthatmayoccurinthefuture.Thisindependentmonitoringdeviceprovidestheuseraddedconfidencethatvaluableinformationwillbeavailable(withouttheneedforlineoutages)whenneededtoprovidedirectiontoapossiblesolutionandcauseoftheproblem.

REFERENCES1) IEEEStd643-2004,“IEEEGuideforPower-LineCarrierApplications”,2005

2) MiriamSanders&RogerRay,“Power Line Carrier Channel & Application Considerations For Transmission Line Relaying”, Ametek Power Publication #C045-P0597, 1997

3) IEEEPSRCWorkingGroupReport,“RedundancyinCouplingPowerLineCarrierChannelstothePowerLine”,WG15,2011

4) NERCStandard,PRC-00502,“ProtectionSystemMaintenance”

Page23

AUTHORBIOGRAPHY’SRobertBaldwin

RobertreceivedaB.S.E.E.fromCaliforniaStateUniversity,LongBeachin1982,andanM.S.E.E.fromCaliforniaStateUniversity,LosAngelesin2007.He’sspentover32yearsatSouthernCaliforniaEdison(SCE),holdingpositionsofSubstationElectrician,TestTechnician,ShopEngineer,ProtectionEngineer,OperationsTrainer,TestSchoolSupervisor,andmostrecently.SeniorTechnicalSpecialistintheirRelay/Testgroup.DuringhistenureatSCE,hisprimaryfocushasbeenwiththeapplication,settingandtestingofprotectiverelays,powerlinecarriersystems,anddigitalfaultrecorders.RobertisapastChairoftheGeorgiaTechTransientRecorderUser’sCouncil.

JeffreyBrown

Graduated1997withaBachelorofScienceinEngineeringfromGeorgiaTechUniversity.Aftergraduation,heworkedforGeorgiaPowerfor25yearsandfinishedasTeamLeaderforPowerLineCarriercoveringtheStateofGeorgia.HepresentlyworksforGeorgiaTransmissionCorporationasPrincipalEngineerTransmissionandPowerLineCarrierSupport.HeistheauthorofPowerLineCarriers:Simplified.

RayFella

RayreceivedhisBachelorofScienceinElectricalEngineeringin1987fromRutgersUniversityinNewBrunswick,NJ.Hehasspenthis30-yearcareersupportingtheElectricUtilitySystemProtectionCommunicationsindustry.In2001,hejoinedPowerCommSolutions,LLCasBusinessDevelopmentDirectorwherehereceivedhisfirstpatent.PriortoPowerCommSolutions,heworkedforSignalcraftersandstartedhiscareerwithINIVEN.Heisa28yearmemberofIEEE,amemberofthePowerandEngineeringSociety,aswellasnumberofworkinggroups.

AlanJayson

Alanhasspentthelast31yearsdesigningvariousaudiotoneandpowerlinecarriercommunicationandinstrumentationproductsfortheElectricUtilitysystemprotectionindustry.Hestartedhiscareerin1986withINIVEN,wherehelpeddesignprotectioncommunicationsystemsthatarestillinusetoday.In2012hejoinedPowerCommSolutionsasleaddesignengineerandpriortothatworkedforSignalcraftersfor14years.Heisalsoapatentholder.

RogerRay

RogerreceivedaBSinElectricalEngineeringatthePennsylvaniaStateUniversityin1964andanMSdegreeattheNewJerseyInstituteofTechnologyin1976.

HeisamemberoftheIEEEandamemberofthePower&EnergySocietyandtheCommunicationsTechnologySociety.HeispastChairmanof(whatwasthen)theIEEEPowerSystemCommunicationsCommitteeandispresentlyChairmanofthePowerLineCarrierSubcommitteeofthePSCC.HeisalsoamemberofthePowerSystemRelaying&ControlCommittee.Intheyear2000,hewasalsoelectedasaFellowintheIEEE.

HeisanauthoroftwochaptersintheWestinghouseAppliedProtectiveRelayingBook.Heauthoredseveralpapersinhismajorfieldsofpilotrelaysystemsandpowersystemcommunications.ThesepapershavebeenpresentedatmajorrelayconferencesaroundthecountryaswellasconferencesoutsidetheUS.He,alongwithco-authorShanSun,receivedtheIEEEPowerEngineeringSocietyPrizePaperAwardfor1983andheholdsfivepatentsintheUSonsubjectscoveringphasecomparisonrelaying,powerlinecarrier,andfiberoptics.

Page24

NeilStone

NeilreceivedhisBSEE-ITTTechnicalInstitute,SanDiego1998andPMPCertification–UniversityOfIrvineCa,2010.HeisalsoanIEEEMember.Neil’sworkexperienceincludesthefollowing:SonyCorp,applicationsengineer,RFCDMAdeploymentwithQualcomm(3years),PentadynePower,applicationsengineer,commercialflywheelUPSsystems(4years),ABB-PowerOne,fieldengineer,commissioncommercialUPSsystems(4years),SouthernCaliforniaEdison–NuclearTest(3years),NuclearStartupEngineer(2years),NuclearMaintenanceGeneralForeman(3years),SouthernCaliforniaEdison–TechnicalSpecialist/ScientistforTransmission&Distribution,StartupEngineer(3years)andiscurrentlyworkingwithSouthernCaliforniaEdisonasTechnicalManagerforTransmission&Distribution,RelayTestandTechnicalSupport(2years).