238
Textbook for Vocational Training - Formulas and Tables Metal

Textbook for Vocational Training - Formulas and Tables Metal

  • Upload
    vohanh

  • View
    247

  • Download
    12

Embed Size (px)

Citation preview

Page 1: Textbook for Vocational Training - Formulas and Tables Metal

Textbook for Vocational Training − Formulas and Tables Metal

Page 2: Textbook for Vocational Training - Formulas and Tables Metal
Page 3: Textbook for Vocational Training - Formulas and Tables Metal

Table of ContentsTextbook for Vocational Training − Formulas and Tables Metal..................................................................1

Preface...................................................................................................................................................11. Mathematics.......................................................................................................................................1

1.1. Mathematical symbols...............................................................................................................21.2. Greek alphabet..........................................................................................................................31.3. Rounding off numbers...............................................................................................................41.4. Basic arithmetical operations....................................................................................................51.5. Calculation of plane faces.........................................................................................................81.6. Calculation of bodies...............................................................................................................111.7. Preferred numbers..................................................................................................................13

2. Physics, mechanics..........................................................................................................................142.1. Physico−technical quantities...................................................................................................142.2. Quantities and their admissible units......................................................................................152.3. Transformation of forces.........................................................................................................222.4. Translation and rotation..........................................................................................................262.5. Friction coefficients.................................................................................................................272.6. Mass moments of inertia.........................................................................................................272.7. Stress and strain.....................................................................................................................272.8. Deformation in the case of bending stress..............................................................................302.9. Areal moments of inertia, moments of resistance...................................................................312.10. Moduli of elasticity.................................................................................................................332.11. Admissible strains (reference values)...................................................................................34

3. Technical drawing.............................................................................................................................343.1. Types of drawing.....................................................................................................................343.2. Sizes of drawings....................................................................................................................363.3. Subdivision of the sheet..........................................................................................................363.4. Lines........................................................................................................................................363.5. Lettering..................................................................................................................................383.6. Scales.....................................................................................................................................393.7. Rectangular project ion...........................................................................................................403.8. Figuring...................................................................................................................................423.9. Working and material characteristics......................................................................................483.10. Sectional view.......................................................................................................................493.11. Partial and interrupted representation...................................................................................523.12. Representation of thread.......................................................................................................533.13. Simplified representation of holes and counterbores............................................................543.14. Simplified representation of disconnectable connections.....................................................55

4. Metal materials.................................................................................................................................584.1. Characteristics........................................................................................................................584.2. Subdivision..............................................................................................................................584.3. Properties and use of important metals..................................................................................594.4. Ferrous materials....................................................................................................................654.5. Alloys of non−ferrous metals...................................................................................................754.6. Hard metals.............................................................................................................................79

5. Plastics.............................................................................................................................................806. Semi−finished products of steel........................................................................................................81

6.1. Bars, strips, sheets..................................................................................................................816.2. Standard sections...................................................................................................................856.3. Steel pipes for water and gas lines.........................................................................................91

7. Semi−finished products of aluminium and aluminium alloys............................................................927.1. Square bars.............................................................................................................................927.2. Hexagon bars..........................................................................................................................927.3. Round bars..............................................................................................................................93

8. Semi−finished products of copper and copper alloys.......................................................................948.1. Square bars.............................................................................................................................948.2. Hexagon bars..........................................................................................................................958.3. Round bars..............................................................................................................................96

9. Semi−finished products of hard metal..............................................................................................979.1. Blanks of sintered metal carbide.............................................................................................989.2. Cutting ceramics.....................................................................................................................98

i

Page 4: Textbook for Vocational Training - Formulas and Tables Metal

Table of ContentsTextbook for Vocational Training − Formulas and Tables Metal

10. Semi−finished products of rigid polyvinyl chloride..........................................................................9810.1. Thin sheets of rigid PVC.......................................................................................................9810.2. Panels of rigid PVC, standard types.....................................................................................99

11. Semi−finished products of moulded laminate...............................................................................10011.1. Laminated paper sheets......................................................................................................10011.2. Laminated fabric sheets......................................................................................................100

12. Plates and sheets of different materials........................................................................................10013. Wire of different materials.............................................................................................................101

13.1. Steel wire............................................................................................................................10113.2. Copper or brass wire...........................................................................................................102

14. Types and functions......................................................................................................................10315. Connecting elements....................................................................................................................103

15.1. Bolts....................................................................................................................................10315.2. Screws................................................................................................................................10615.3. Nuts.....................................................................................................................................10715.4. Washers..............................................................................................................................10815.5. Securing devices for screws...............................................................................................10815.6. Pins.....................................................................................................................................10915.7. Keys....................................................................................................................................11015.8. Springs................................................................................................................................11215.9. Rivets..................................................................................................................................115

16. Load−carrying elements...............................................................................................................11616.1. Elastic springs.....................................................................................................................11616.2. Bearings..............................................................................................................................117

17. Transmission elements.................................................................................................................12317.1. Shafts..................................................................................................................................12317.2. Toothed gears.....................................................................................................................129

18. Subdivision of test procedures......................................................................................................13318.1. Non−dimensional testing.....................................................................................................13318.2. Dimensional testing.............................................................................................................135

19. Fitting systems..............................................................................................................................14519.1. Types of fits.........................................................................................................................14519.2. Systems of fits, basic hole, basic shaft...............................................................................14619.3. Examples of fits...................................................................................................................148

20. Scribing.........................................................................................................................................15220.1. Types of scribing.................................................................................................................15220.2. Notes on scribing................................................................................................................155

21. Fundamental forming by casting...................................................................................................15721.1. Shrinkage measures...........................................................................................................15721.2. Machining allowances for castings......................................................................................158

22. Forming.........................................................................................................................................15922.1. Mechanical bevelling...........................................................................................................15922.2. Bending...............................................................................................................................16022.3. Forging................................................................................................................................161

23. Separating....................................................................................................................................16223.1. Chiseling.............................................................................................................................16223.2. Shearing..............................................................................................................................16623.3. Sawing................................................................................................................................16823.4. Filing....................................................................................................................................17023.5. Flame cutting.......................................................................................................................17123.6. Drilling.................................................................................................................................17223.7. Countersinking....................................................................................................................17523.8. Reaming..............................................................................................................................17923.9. Thread cutting.....................................................................................................................18023.10. Turning..............................................................................................................................18323.11. Milling................................................................................................................................18823.12. Planing, slotting.................................................................................................................19223.13. Broaching..........................................................................................................................19623.14. Grinding.............................................................................................................................196

ii

Page 5: Textbook for Vocational Training - Formulas and Tables Metal

Table of ContentsTextbook for Vocational Training − Formulas and Tables Metal

23.15. General data on cutting.....................................................................................................20024. Joining..........................................................................................................................................203

24.1. Screw joints.........................................................................................................................20324.2. Welded joints.......................................................................................................................21024.3. Riveted joints.......................................................................................................................21524.4. Soldered joints....................................................................................................................221

25. Changing of material properties....................................................................................................22425.1. Annealing of steel................................................................................................................22425.2. Hardening of steel...............................................................................................................22625.3. Tempering and hardening with subsequent drawing of steel..............................................230

iii

Page 6: Textbook for Vocational Training - Formulas and Tables Metal

iv

Page 7: Textbook for Vocational Training - Formulas and Tables Metal

Textbook for Vocational Training − Formulas and Tables Metal

CRYSTAL

Lehr− und Lernmittel,Informationen Beratung

Educational AidsLiterature, Consulting

Moyens didactiques,Informations, Service−conseil

Material didáctico,Informaciones, Asesoría

Feedback: IBE e.V.90−34−0101/2

Deutsche Gesellschaft fürTechnische Zusammenarbeit (GTZ) GmbH

Institut für berufliche Entwicklung e.V.Berlin

Original title:“Formeln und Tabellen − Metall”

Authors: Ingo Womer

Horst Thulke

Second edition © IBE

Institut für berufliche Entwicklung e.V.Parkstraße 2313187 Berlin

Order No.: 90−34−0101/2

Preface

This book of tables concentrates on the fields of the metal−working industry and the metal trade. The book isintended as a proper reference book, both for trainees and as an aid to practical work by craftsmen. Importantmathematical, physical and technical fundamentals and essential specific technical concepts, work tables,work rules, etc., are given in the clear and concise manner characteristic of a book of tables.

This book has been elaborated on the basis of advanced knowledge and findings contained in the vocationaltraining.

The subject−matter has been suitably compiled in main sections.

1. Mathematics

1

Page 8: Textbook for Vocational Training - Formulas and Tables Metal

1.1. Mathematical symbols

Symbol Explanation

... to

e.g.: k = 1, 2, ..., n

= equal to

identically equal to

e.g.: f(x) 0. The function f has the valueof zero at any point.

? not equal to, unequal

not identically equal to

~ proportional, similar

? approximate, almost equal, about

(The last figure is determined by means ofthe rounding rule. For rounding off, seeSection 1.3.)

corresponds to

< smaller than

> greater than

? smaller than or equal to, equal at most

? greater than or equal to, equal at least

small as against of another order

great as against of magnitude

+ plus

− minus

.,x times

−,/,: by, divided, by, to

% percent, of a hundred (10−2)

‰ per mille, of a thousand (10−3)

|| parallel

not parallel

‘‘ parallel in the same direction

‘? parallel in the opposite direction

at right angles to, perpendicular on

triangle

E congruent

angle

2

Page 9: Textbook for Vocational Training - Formulas and Tables Metal

line AB

arc AB

z amount of z

arc z arc z

n! factorial n

n above p binominal coefficient

? sum

? product

square root; nth root of

? Pi of this circle, ? = 3.14159...

f(x) f of x

value of the function f at point x

? infinite

loga logarithm to base a

lg logarithm to base ten lg x = log10x

lb logarithm to base two lb x = log2x

ln natural logarithm ln x = logex

sin sine trigonometric

cos cosine functions

tan tangent or

cot cotangent functions of angles

arc sin inverse sine arc functions,

arc cos arc cosine inverse functions of

arc tan arc inverse tangent the trigonometric

arc cot arc inverse cotangent functions

1.2. Greek alphabet

Letter capital small Designation Representation in roman type

A ? Alpha A, a

B ? Beta B, b

? ? Gamma G, g

? ? Delta D, d

E ? Epsilon E, e

Z ? Zeta Z, z

H ? Eta E, e

3

Page 10: Textbook for Vocational Training - Formulas and Tables Metal

? ? Theta Th, th

I ? Jota I, i

K ? Kappa K, k

? ? Lambda L, l

M ? My M, m

N ? Ny N, n

? ? Xi X, x

O ? Omikron O, o

? ? Pi P, p

P ? Rho R(h), r(h)

? ? Sigma S, s

T ? Tau T, t

Y ? Ypsilon Y, y

? ? Phi Ph, ph

X ? Chi Ch, ch

? ? Psi Ps, ps

? ? Omega O, o

In technology, letters of the Greek Alphabet are frequently used as symbols of physical quantities; e.g. ?, ?, ?for angle quantities; ? for efficiency; ? as the unit symbol for electrical resistance. (See Section 2.1.).

1.3. Rounding off numbers

When rounding off numbers, one or more figures at the end of a number are substituted by zeros. The figureimmediately to the left is either retained (rounding down) or increased by 1 (rounding up).

Roundingoff

Rule Example

Roundingdown

The last figure to be given is retained when followed by a 0, 1, 2, 3 or 4 3.01234

? 3.0123

? 3.012

? 3.01

? 3.0 ? 3

Rounding up The number to be indicated is increased by 1 when followed by a 6, 7, 8 or 9. 4.6789

? 4.679

? 4.68

? 4.7 ? 5

Rounding off5

If the last figure to be given is followed by at least one number which differsfrom 0 after a 5, the last figure is increased by 1.If the last figure to be given is followed by a 5 which is known to have beenobtained by rounding off,

5.153 ?5.2

4

Page 11: Textbook for Vocational Training - Formulas and Tables Metal

rounding down is done if the 5 was rounded up and 7.4149

? 7.415

? 7.41

rounding up is done if the 5 was founded down. ? 8.4752

? 8.475

? 8.48

Rule of even number

If the last number to be indicated is followed by a 5 and then by zeros only,

rounding down is done if this number is even and 0.1250

? 0.12

rounding up is done if this number is odd. 0.3750

? 0.38

1.4. Basic arithmetical operations

1.4.1. Designations

Designation Definition Example

Addition Summand plus summand a + b = c

add equals sum 4 + 3 = 7

Subtraction Minuend minus subtrahend c − b = a

subtract equals difference 7 − 3 = 4

(inversion of addition) c − b = c + (−b)

Multiplication Factor times factor a · b = c

multiply equals product 4 · 3 = 12

Division Dividend divided by divisor c: b = a (b ? 0)

divide equals quotient 12: 3 = 4

(Inversion of multiplication)

1.4.2. Basic arithmetical operations with zero and one (b ? 0)

Designation Operation

Addition and subtraction a + 0 = a;

a − 0 = a; 0 − a = −a

Multiplication and division a · 0 = 0; a · 1 = a;

a: 0 (not explained);

a: 1 = a; 0: a = 0

5

Page 12: Textbook for Vocational Training - Formulas and Tables Metal

1.4.3. Laws of addition and multiplication

Addition Multiplication

Commutation laws

a + b = b + a a · b = b · a

13 + 3 = 3 + 13 13 · 3 = 3 · 13

Association laws

a + (b + c) = (a + b) + c a · (b · c) = (a · b) · c

3 + (5 + 2) = (3 + 5) + 2 3 · (5 · 2) = (3 · 5) · 2

3 + 7 = 8 + 2 3 · 10 = 15 · 2

Distribution law

a · (b + c) = ab + ac

3 · (5 + 2) = 3 · 5 + 3 · 2

3 · 7 = 15 + 6

1.4.4. Arithmetic with expressions in brackets (a, b, c, d arbitrary numbers)

Operation Rule

Addition a + (b + c) = a + b + c;

a + (b − c) = a + b − c

Subtraction a − (b + c) = a − b − c;

a − (b − c) = a − b + c

Multiplication a(b + c) = ab + ac; a(b − c) = ab − ac

(a + b)(c + d) = ac + ad + bc + bd;

(a + b)(c − d) = ac − ad + bc − bd

(a − b)(c + d) = ac + ad − bc − bd;

(a − b)(c − d) = ac − ad − bc + bd

Binomial formulae

(a ± b)2 = a2 ± 2ab + b2;

(a + b) (a − b) = a2 − b2

Division

1.4.5. Arithmetic with powers, roots, logarithms

Powers with integral exponents

Definition

Base with raised exponent equals power:

6

Page 13: Textbook for Vocational Training - Formulas and Tables Metal

an = c (a ? 0)

In the case of natural exponents, raising to a power can be explained as the repeated multiplication of thesame factors:

Laws

(m, n integral; a · b ? 0; a, b arbitrarily real)

a

1

= a; a

0

= 1; (a ? 0); (a ? 0)

am · an = am+n; am · bm = (ab)m

; (a

m

)

n

= a

m · n

Roots

(Extraction of a root, 1st inversion of raising to a power)

Definition

The nth root from radicand b is equal to that non−negative value a which results in b when raised to the powern:

(b ? 0; n natural)

(n index of root; b radicand; a value of root)

Laws

(m, n natural; a ? 0; b > 0)

(n natural); (n natural)

(not explained)

;

;

Logarithms

(Taking the logarithm of a number; 2nd inversion of raising to a power)

Definition

7

Page 14: Textbook for Vocational Training - Formulas and Tables Metal

The logarithm of b to base a is the number c which must be used for raising to a power in order to obtain b:

c = loga b (a, b positive; a ? 1); a logab = b

(b inverse logarithm; a base; c logarithm)

Laws

(equal bases; b, b1, b2 > 0; a > 0; a ? 1; n arbitrarily real)

loga 1 ? 0 (a ? 1; positive)

log1 a not explained

loga (b1 · b2 = loga b1 + loga b2;

;

loga bn = n · loga b

;

1.5. Calculation of plane faces

Surface area A, circumference of face u

General triangle

Equilateral triangle

u = a + b + c

Right−angled triangle

Altitude theorem: h2 = p · q;Euclidean theorem: a2 = p · c;b2 = q · cPythagoras theorem; a2 + b2

= c2

8

Page 15: Textbook for Vocational Training - Formulas and Tables Metal

Square

A = a2

u = 4a

Rectangle

A = a · bu = 2a + 2b

Parallelogram

A = g · hu = 2g + 2a

Trapezoid

u = a + b + c + d

9

Page 16: Textbook for Vocational Training - Formulas and Tables Metal

Circle

u = 2? · r = ? · d

Circular ring

Sector of a circle (circular sector)

u = b + 2r

Ellipse

10

Page 17: Textbook for Vocational Training - Formulas and Tables Metal

1.6. Calculation of bodies

Volume of body V; surface of body A0

Cube

V = a3

A0 = 6a2

Cuboid

V = a · b · cA0 = 2 · (ab + ac + bc)

Pyramid

11

Page 18: Textbook for Vocational Training - Formulas and Tables Metal

Cylinder

Hollow cylinder

V = ? · h · (R2 − r2)

Cone

A0 = ? · r · (r + s)

12

Page 19: Textbook for Vocational Training - Formulas and Tables Metal

Sphere

A0 = 4? · r2 = ? · d2

1.7. Preferred numbers

Basic series Basic series

R 5 R 10 R 20 R 40 R 5 R 10 R 20 R40

1.00 1.00 1.00 1.00 4.00 4.00 4.00 4.00

1.06 4.25

1.12 1.12 4.50 4.50

1.18 4.75

1.25 1.25 1.25 5.00 5.00 5.00

1.32 5.30

1.40 1.40 5.60 5.60

1.50 6.00

1.60 1.60 1.60 1.60 6.30 6.30 6.30 6.30

1.70 6.70

1.80 1.80 7.10 7.10

1.90 7.50

2.00 2.00 2.00 8.00 8.00 8.00

2.12 8.50

2.24 2.24 9.00 9.00

2.36 9.50

2.50 2.50 2.50 2.50

2.65

2.80 2.80

3.00

3.15 3.15 3.15

3.35

3.55 3.55

3.75

13

Page 20: Textbook for Vocational Training - Formulas and Tables Metal

2. Physics, mechanics

2.1. Physico−technical quantities

Physico−technical quantities (known as quantities) are measurable characteristics of objects, processes orconditions. With regard to quality, they are clearly defined and can be quantitatively determined (measured).

Example:

Numerical value × unit =quantity

3.500 · mm = 1

2.1.1. Units of physico−technical quantities

Type of unit Explanation Example

Basic units of SI Basic units are defined units which are chosen independently ofone another and form the basis of the international system of units(Système International d’Unités, abbreviated “SI” in all languages)

Metre for lengthKilogramme forweightSecond for time;Ampère forcurrent intensity;Kelvin fortemperature;Mol for amount ofsubstance;Candela forluminous intensity

Derived SI units Derived SI units are all units formed as a power product with thenumerical factor 1 from the basic of the SI

1 N = 1m · kg · s−2

1 Pa = 1N · m−2

Supplementary SIunits

The supplementary SI units should be used like basic units of theSI if physical circumstances require it

Radian for planeangle;Steradian for solidangle;

Units extraneousto SI

Units extraneous to SI do not belong to the SI and are units whoserelation to the SI units contains a numerical factor which differsfrom one.

Units extraneousto the SI

These are admissible units which are extraneous to the SI:

− SI units with SI prefixes 1 mm = 10−3 m

− Generally accepted units; 1 min = 60 s

− Units valid in special fields 1 ha = 104 m2

hectare for landand real estate

− Valid units for relative quantities 1 % = 1 · 10−2

2.1.2. SI prefixes

SI prefixes are used for forming decimal multiples and parts of SI units and units extraneous to the SI (if notexpressly omitted).

(See Section 1.4.5.)

14

Page 21: Textbook for Vocational Training - Formulas and Tables Metal

Examples: 1 mm = 10−3 m

1 MN = 106 N

Prefix Prefix sign Meaning

Tera T 1,000,000,000,000 (1012)

Giga G 1,000,000,000 (109)

Mega M 1,000,000 (106)

Kilo k 1,000 (103)

Hecto h 100 (102)

Deca da 10 (101)

Deci d 0.1 (10−1)

Centi c 0.01 (10−2)

Milli m 0.001 (10−3)

Micro ? 0.000 001 (10−6)

Nano n 0.000 000 001 (10−9)

Pico p 0.000 000 000 001 (10−12)

2.2. Quantities and their admissible units

2.2.1. Space and time

Type of quantityEquation of quantity

Designation of unit(Symbol of unit)

Length lh heightb widthr radiusd diameters path

Basic unit of SIMetre mOther customary unitsCentimetre cm1 cm = 10−2 mMillimetre mm1 mm = 10−3 mMicrometre1 ?m = 10−6 m

Area AA = l2

SI unitSquare metre m2

1 m2 = 1 m · 1 mOther customary unitsSquare centimetre cm2

1 cm2 = 10−2 m · 10−2 m100,000 cm2 = 1 m2

Square millimetre1 mm2 = 10−3 m · 10−3 m1,000,000 mm2 = 1 m2

10,000 mm2 = 1 cm2

Volume VV = l3

SI unitCubic metre m3

1 m3 = 1 m · 1 m · 1 mOther customary unitsCubic millimetre mm3

15

Page 22: Textbook for Vocational Training - Formulas and Tables Metal

1 mm3 = 10−3 m · 10−3 m · 10−3 m1,000,000,000 mm3 = 1 m3

Millilitre ml1 ml = 10−9 m3

1 ml = 1 mm3

Litre l1 l = 10−3 m3

1 l = 1,000 mlHectolitre hl1 hl = 10−1 m3

1 hl = 100 l

Plane angle SI unitRadian rad

Other customary units without SI prefixesDegree °

1° = 60’ = 3600”Minute ‘60’ = 1°Second “60” = 1’

Solid angle ? SI unitSteradian sr

Time t Base unit of the SISecond sOther customary units without SI prefixesMinute min1 min = 60 sHour h1 h = 60 min = 3600 sDay d1 d = 24 h = 86,400 s

Frequency f SI unitHertz Hz1 Hz = 1/s = 1 s−1

Other customary unitsKilohertz kHz1 kHz = 103 HzMegahertz MHz1 MHz = 106 Hz

Speed n

(Frequency of revolutions)

Other customary units without SI prefixesRevolutions per second1/s = 1 s−1

Revolutions per minute1/min = 1 min−1

Velocity v

Cutting speedv = ? · d · n

SI unitMetre per second m/sOther customary unitsKilometre per hour km/h1 km/h = 0.2778 m/sMetre per minute m/min1 m/min = 1.667 · 10−2 m/s

16

Page 23: Textbook for Vocational Training - Formulas and Tables Metal

Acceleration a SI unitMetre per square second m/s2

Angular velocity

? = 2? · n

SI unitRadian per second rad/sOther customary unitsDegree per second °/s

Angular acceleration SI unitRadian per square second rad/s2

Other customary unitsDegree per square second °/s2

Volumetric rate of flow (volume flow, volume throughput)SI unitCubic metre per second m3/sOther customary unitsCubic metre per hour m3/hLitre per minute l/min

Weight m Basic unit of the SIKilogramme kgOther customary unitsGramme g 1 g = 10−3 kgMilligramme mg1 mg = 10−3 g = 10−6 kg

2.2.2. Mechanics

Type of quantityEquation of quantity

Designation of unitSymbol of unit

Megagramme Mg1 Mg = 106 g = 103 kgDecitonne dt 1 dt = 102 kgTonne t 1 t = 103 kgMegatonne Mt 1 Mt = 109 kg

Density ? SI unitKilogramme per cubic metre kg/m3

Other customary unitsKilogramme per cubic decimetre kg/dm3

1 kg/dm3 = 103 kg/m3

Gramme per cubic centimetre g/cm3

1 g/cm3 = 103 kg/m3

Force FMechanical F = m · aWeight forceF = m · gElectricalF = E · Q

SI unitNewton N 1 N = 1 m · kg · 3−2

Other customary unitsKilonewton kN 1 kN = 103 NMeganewton MN 1 MN = 106 N

Moment of force M(turning moment, bending moment)M = F · l

SI unitNewton metre Nm1 Nm = 1 m2 · kg · s−2

Other customary unitsNewton centimetre Ncm1 Ncm = 10−2 NmKilonewton metre kNm1 kNm = 103 Nm

17

Page 24: Textbook for Vocational Training - Formulas and Tables Metal

Pressure

Mechanical stress

SI unitPascal Pa1 Pa = 1 N/m2 = 1 m−1 · kg · s−2

Other customary unitsKilopascal kPa 1 kPa = 103 PaMegapascal MPa 1 MPa = 106 PaBar bar 1 bar = 105 PaMillibar mbar 1 mbar = 102 PaKilobar kbar 1 kbar = 108 Pa

Work W, AMechanical work

W = F · sElectrical workW = I · U · t

SI unitJoule JWatt second Ws1 J = 1 W · s = 1 N · mOther customary unitsKilojoule kJ 1 kJ = 103 JMegajoule MJ 1 MJ = 106 JGigajoule GJ 1 GJ = 109 JTerajoule TJ 1 TJ = 1012 J

Energy W, EPotential energyW = m · g · hKinetic energy

Heat quantity W, RQ = m · c · ?T

Watt hour Wh1 Wh = 3,6 · 103 WsKilowatt hour kWh1 kWh = 3,6 · 106 WsMegawatt hour MWh1 MWh = 3,6 · 109 Ws

Power PMechanical power

Electrical power

Heat output

SI unitWatt W1 W = 1 J/sOther customary unitsMilliwatt mW 1 mW = 10−3 WKilowatt kW 1 kW = 103 WMegawatt MW 1 MW = 106 W

Mass moment of inertia I

Mass flow (mass throughput)

SI unitKilogramme square metre kgm2

SI unitKilogramme per second kg/s1 kg/s = 1 kg · s−1

Other customary unitsKilogramme per hour kg/h1 kg/h = 0,2778 · 10−3 kg/s

2.2.3. Electricity and magnetism

Type of quantityEquation of quantity

Designation of unitSymbol of unit

Current intensity I Basic unit of the SIAmpère AOther customary unitsMilliampère mA1 mA = 10−3 A

18

Page 25: Textbook for Vocational Training - Formulas and Tables Metal

Kiloampère kA1 kA = 103 A

Quantity of electricity Q(electric charge)Q = I · t

SI unitCoulomb C1 C = 1 s · AOther customary unitsMillicoulomb mC 1 mC = 10−3 CKilocoulomb kC 1 kC = 103 CAmpère hour Ah1 Ah = 3600 C = 3,6 kC

Electric power P

Active powerP = I · U · cos ?Reactive powerQ = I · U · sin ?Apparent powerS = I · U

SI unitWatt W1 W = 1 J/sOther customary unitsMilliwatt mW 1 mW = 10−3 WKilowatt kw 1 kw = 103 WMegawatt MW 1 MW = 106 W

Voltage U SI unitVolt V 1 V = 1 W/AOther customary unitsMillivolt mV 1 mV = 10−3 VKilovolt kV 1 kV = 103 VMegavolt MV 1 MV = 106 V

Electric field strengthE

SI unitVolt per metre V/m1 V/m · 1m · kg · s−3 · A−1

Other customary unitsKilovolt per metre kV/m1 kV/m = 103 V/mVolt per centimetre V/cm1 V/cm = 102 V/m

Electric capacity C SI unitFarad F 1 F = 1 C/VOther customary unitsPicofarad pF 1 pF = 10−12 FNanofarad nF 1 nF = 10−9 FMicrofarad ?F 1 ?F = 10−6 F

Electric resistance R SI unitOhm ? 1 ? = 1 V/AOther customary unitsMilliohm m? 1 m? = 10−3 ?Kiloohm k? 1 k? = 103 ?Megaohm M? 1 M? = 106 ?

Specific electric resistance SI unitOhmmeter ?m

Type of electric conductor G SI unitSiemens S 1 S = 1/?Other customary unitsMillisiemens mS 1 mS = 10−3 SKilosiemens kS 1 kS = 103 S

19

Page 26: Textbook for Vocational Training - Formulas and Tables Metal

Electric conductivity SI unitSiemens per metre S/m1 S/m = 1/(? · m)

Magnetic flux ?? = B · A

SI unitWeber Wb1 Wb = 1 V · s

Magnetic induction B SI unitTesla T 1 T = 1 Wb/m2

Magnetic field strength H SI unitAmpère per metre A/m1 A/m = 1 m−1 · AOther customary unitsAmpère per millimetre A/mm1 A/mm = 103 A/mAmpère per centimetre1 A/cm = 102 A/m

Inductance H SI unitHenry H 1 H = 1 Wb/AOther customary unitsPicohenry pH 1 pH = 10−12 HNanohenry nH 1 nH = 10−9 HMillihenry mH 1 mH = 10−3 H

Magnetic permeability ?

Field constant ?0?0 = 12.566 · 10−7 H/m

SI unitHenry per metre H/m1 H/m = 1 m

2.2.4. Heat

Type of quantityEquation of quantity

Designation of unitSymbol of unit

Temperature T(thermodynamic)Celsius temperature ÑÑ = T − 273,15

Basic unit of the SIKelvin KIndication of temperature differential in KelvinOther customary unitDegree Celsius °C

Heat quantity Q SI unitJoule J 1 J = 1 W · s

Calorific capacity C SI unitJoule per Kelvin J/K

2.2.5. Physical chemistry

Type of quantityEquation of quantity

Designation of unitSymbol of unit

Amount of substance n Basic unit of the SIMol molOther customary units

20

Page 27: Textbook for Vocational Training - Formulas and Tables Metal

Micromol ?mol1 ?mol = 10−6 molMillimol mmol1 mmol = 10−3 molKilomol kmol1 kmol = 103 mol

Molar mass MM SI unitKilogram per mol kg/mol1 kg/mol = 1 kg · mol−1

Other customary unitsGramme per mol g/mol1 g/mol = 10−3 kg/molGramme per kilomol g/mol1 g/kmol = 10−6 kg/mol

Molar volume Vm SI unitCubic metre per mol m3/molOther customary unitsCubic metre per kilomol m3/kmol1 m3/kmol = 10−3 m3/molLitre per mol l/mol1 l/mol = 10−3 m3/mol

Molal concentration(molarity)

SI unitMol per cubic metre mol/m3

Other customary unitsKilomol per cubic metre kmol/m3

1 kmol/m3 = 103 mol/m3

Mol per litre mol/l1 mol/l = 103 mol/m3

2.2.6. Optical radiation

Type of quantityEquation of quantity

Designation of unitSymbol of unit

Luminous intensity IV Basic unit of the SICandela cdOther customary unitsMillicandela mcd1 mcd = 10−3 cdKilocandela kcd1 kcd = 103 cd

Luminance LV SI unitCandela per square metre cd/m2

Other customary unitsCandela per square centimetre cd/cm2

1 cd/cm2 = 104 cd/m2

Luminous flux SI unitLumen lm 1 lm = 1 cd · srOther customary unitsMillilumen mlm1 mlm = 10−3 lmKilolumen klm1 klm = 103 lm

Illumination EV SI unitLux lx 1 lx = 1 lm/m2

Other customary unitsMillilux mlx 1 mlx = 10−3 lx

21

Page 28: Textbook for Vocational Training - Formulas and Tables Metal

Kilolux klx 1 klx = 103 lx

Light quantity QQ = ?v l t

SI unitLumen second lms1 lms = 1 s · cd · sr

2.3. Transformation of forces

Designation Equilibrium

Parallelogram of forces

F has the same effect as F1 and F2 jointly

Lever (theorem of moments)

F1 · l1 = F2 · l2

FH = FG. sin ?FN = FG. cos ?FH · l = FG · hFN · l = FG · gFH = force at the slopeFN = normal forceFG = weight

22

Page 29: Textbook for Vocational Training - Formulas and Tables Metal

Inclined plane

Two−sided wedge−shape

F1,2 forces at the facesFE driving−in force

ME driving−in momentFSp interior force in the coreFH force at the lever (e.g. hand force)FE driving−in forcel vertical distance from the axis of the threadr2 flank radiusp pitch

23

Page 30: Textbook for Vocational Training - Formulas and Tables Metal

Thread with vertical flanks

Fixed pulley

F1 = F2s1 = s2F1 · S1 = F2 · S2

Loose pulley

s1 = 2 · s2

24

Page 31: Textbook for Vocational Training - Formulas and Tables Metal

Shaft with pulleys

Pulley block

s1 = n · s2n Number of carrying cables

Belt drive

Fu1 = Fu2; Vu1 = Vu2

; Fu Peripheral forceVu Peripheral velocity

25

Page 32: Textbook for Vocational Training - Formulas and Tables Metal

Hydraulic systems

A piston areap pressure in the medium

2.4. Translation and rotation

Translation Rotation

Uniform movementVelocityv = constant

Angular velocity? = constant; n = constant

Peripheral velocityvu = ? · r = 2 · ? · r · n

Uniformly accelerated movementAccelerationa = constant

Path

Free fall

(g = 9.81 m/s2)

Angular acceleration? = constant

Angle

Tangential accelerationat = ? · rRadial acceleration

Total acceleration

ForceF = m · aWorkW = F · sPower

Turning momentM = F · r = Ñ · ?W = M · ?

26

Page 33: Textbook for Vocational Training - Formulas and Tables Metal

Kinetic energy

2.5. Friction coefficients

Material combinations Static friction ?0 Sliding friction?

d1) l2) d1) l2)

Steel on steel 0.15 ... 0.33 0.1 0.15 0.01 ...0.05

Steel on bronze − − 0.18 0.07

Steel on grey iron 0.2 0.1 0.18 0.01

Leather belt on grey iron − 0.22 − 0.2 ...0.7

Leather packing on metal 0.6 0.2 0.2 0.12

Brake lining on steel − − 0.55 0.4

1) dry, 2) lubricated

2.6. Mass moments of inertia

Body Equation

Cylinder

I = axis of rotation

Hollow cylinder

I = axis of rotation

2.7. Stress and strain

Stress for Strain

27

Page 34: Textbook for Vocational Training - Formulas and Tables Metal

Tension

1 bar axis

Pressure

1 bar axis

Unit pressure − plane areas of contact

28

Page 35: Textbook for Vocational Training - Formulas and Tables Metal

− curved areas of contact (intensity of bearing pressure)

A = d · l

Bending

Mb bending momentJa axial areal moment of intertiaY distance from the neutral layerWa axial moment of resistance1 line of cut, 2 pressure, 3 tension, 4neutral layer

Mt torsional momentJp polar areal moment of inertia? distance from the centre of thecross−sectional areaWp polar moment of resistance

29

Page 36: Textbook for Vocational Training - Formulas and Tables Metal

Torsion (distortion)

1 line of cut

Shear

1 plane of shear

Deformation in the case of tensile stress

Hooke’s law? = E · ?

? = elastic strainE = modulus of elasticityl1 = length before loadingl2 = length after loading

2.8. Deformation in the case of bending stress

Stress

30

Page 37: Textbook for Vocational Training - Formulas and Tables Metal

Bearing reactions

Bending moment (max.)

Deflection

2.9. Areal moments of inertia, moments of resistance

Figure Axial areal moment of resistance Moment of resistance

31

Page 38: Textbook for Vocational Training - Formulas and Tables Metal

Figure Polar areal moment of resistance Moment of resistance

32

Page 39: Textbook for Vocational Training - Formulas and Tables Metal

2.10. Moduli of elasticity

Material Modulus of elasticity in GPa Material Modulus of elasticity in GPa

Al alloys 65...75 Red brass 90

33

Page 40: Textbook for Vocational Training - Formulas and Tables Metal

Lead 15...18 Silver 70...80

Copper 125 Steel 200...220

Grey iron 75...105 Cast steel 210

Brass 80...100 Tungsten 350...400

Nickel 200...220 Zinc 110...130

2.11. Admissible strains (reference values)

Material Load condition Admissible load in MPa when stressed for

Pressure Tension Thrust Shear deformation

General structural steel I 70 70 60 70

II 50 50 40 50

III − 40 30 40

Cast iron I 90 30 30 −

II 55 13 18 −

III − 18 15 −

Nickel steel I − 75 75 80

II 65 60 60 60

III − 45 45 45

Wrought steel I 90 90 75 90

II 60 60 50 60

III − 30 25 30

Cast steel I 120 90 72 95

II 75 50 45 55

III − 40 35 47

Special steels I 180 180 120 180

II 150 150 100 150

Spring steel III 100 100 65 100

Tool steel

I dead; II increasing; III varying

3. Technical drawing

3.1. Types of drawing

Type Content Example

34

Page 41: Textbook for Vocational Training - Formulas and Tables Metal

Total drawing Assembly, machine,building, plant readyfor operation

Installation plan for turning lathes

Assembly drawing Several assembledparts (often in thesequence ofassembly)

used for mounting the assemblies

Detail drawing Single part with dataon manufacture

Erlenmeyer flask; the letters show that it can be manufactured in different sizes

35

Page 42: Textbook for Vocational Training - Formulas and Tables Metal

3.2. Sizes of drawings

Size Dimensions in mm Size Dimensions in mm

A 0 1189 × 841 A 3 420 × 297

A 1 341 × 594 A 4 297 × 210

A 2 594 × 420 A 5 210 × 148

3.3. Subdivision of the sheet

A3, broadside A4, upright A5, broadside

1 protective margin, 2 parts list, 3 space for text, 4 stitching margin, 5 drawing area

3.4. Lines

3.4.1. Groups of lines

Group of lines1.2

Group of lines0.5

36

Page 43: Textbook for Vocational Training - Formulas and Tables Metal

Broad solid line

Narrow solid line

Dashed line

Broad dot−dash line

Narrow dot−dash line

Freehand drawn line

Dash−dot−dot−line

The group of lines with the bradest lines which are practical with regard to size, type and purpose of thedrawing should be used on a drawing. The breadths of lines specified for the individual types of lines within agroup should be observed as far as possible.

The different breadths of lines within a group of lines facilitate reading of the drawing.

3.4.2. Types of lines

Type of line Use

1 broad solid line(e.g. 0.5 mm)

visible edges of bodies characteristic lines of internal threads

2 narrow solid line(e.g. 0.2 mm)

dimension lines, hatchings

3 dashed line(e.g. 0.3 mm)

hidden edges of bodies

4 narrow dot−dash line(e.g. 0.2 mm)

centre lines, pitch circlesof toothed gears break lines

5 freehand drawn line(e.g. 0.2 mm)

Example

37

Page 44: Textbook for Vocational Training - Formulas and Tables Metal

3.5. Lettering

For lettering technical drawings, standardized vertical medium−spaced lettering is being used increasingly.

3.5.1. Main dimensions of vertical medium−spaced lettering

Height of letters h 2.5 3.5 5.0 7.0 10.0 14.0 20.0

Breadth of letters s 0.25 0.35 0.5 0.7 1.0 1.4 2.0

3.5.2. Vertical medium−spaced lettering

38

Page 45: Textbook for Vocational Training - Formulas and Tables Metal

3.6. Scales

Scaling up 50:1 10n:1 −

5:1 10:1 20:1

− − 2:1

Natural size 1:1

Scaling down 1:2 − −

1:20 1:10 1:5

1:200 1:100 1:50

1:(2×10n) 1:10n 1:(5×10n)

39

Page 46: Textbook for Vocational Training - Formulas and Tables Metal

Diagram for selected scales

I Picture sizeII Natural size

3.7. Rectangular project ion

40

Page 47: Textbook for Vocational Training - Formulas and Tables Metal

Perspective representation

1 Front view2 Left−hand view3 Right−hand view4 Top plan view5 Bottom view6 Rear−side view

Arrangement of the views

front views, top−plan views and lateral views are most frequently shown.

41

Page 48: Textbook for Vocational Training - Formulas and Tables Metal

3.8. Figuring

3.8.1. Basic principles

Depending on its purpose, the drawing contains the figuring corresponding to the final state valid for theworkpiece. The following are used for figuring: dimension lines, reference lines, arrowheads, dimensionfigures. The following aspects in particular are decisive for figuring:

− The drawing should contain all dimensions required for the manufacturing of the workpiece

− Dimensions indicate the final condition of the workpiece

− Each dimension occurs only once

− Dimensions should be entered according to function and manufacture

− Function dimensions are tolerated

− Dimensions must be capable to being checked by workshop test equipment

− Dimensions resulting from manufacture are not entered

− Dimensions which are checked particularly well by the customer should be marked

− Figuring is done in millimetres, otherwiese the units should be entered after the dimensionfigure

3.8.2. Elements of figuring

Elements of figuring

M1 dimension figureM2 dimension lineM3 arrowheadM4 reference line

The dimension figures must be able to be read from below or from the right.

42

Page 49: Textbook for Vocational Training - Formulas and Tables Metal

Arrangement of dimension figures and arrowheads

Figuring between

− two body edges− two reference lines− reference line and body edge

3.8.3. Special symbols

Diameter symbol

43

Page 50: Textbook for Vocational Training - Formulas and Tables Metal

Symbol for circular crosssections entered before thedimension figure

Square symbol

Diagonal cross

Symbol for square crosssections, entered before thedimension figure.The diagonal cross marksquadrilateral plane areas

Radius symbol R

44

Page 51: Textbook for Vocational Training - Formulas and Tables Metal

Symbol for roundings, enteredbefore the dimension figure

Sphere symbol, sphere

In the case of spherical shapesthe word sphere must beentered ahead of the diametersymbol

3.8.4. Notes on figuring

Dimensional reference system

Area − areaAxis − area

Two areas at right angles to each other are decisive forfunction

for symmetrical parts supported on one surface

Dimensional reference system

45

Page 52: Textbook for Vocational Training - Formulas and Tables Metal

Axis − axis

for parts with which bores are principally decisive for function, no bearing surfaces existing (castings)

Shoulders and bores

To be dimensioned starting from the reference surfaces

46

Page 53: Textbook for Vocational Training - Formulas and Tables Metal

Symmetrical parts

to be dimensioned starting from the bearing surface and axis of symmetry

3.8.5. Indication of tolerances

Dimension without tolerances

Degree of accuracy Admissible tolerance in mmwith nominal range of

dimensions in mm

>6...30 > 30...100 >100...300

Fine ± 0.1 ± 0.15 ± 0.2

Medium ± 0.2 ± 0.3 ± 0.5

Rough ± 0.5 ± 0.8 ± 1.2

Very rough ± 1 ± 1.5 ± 2

Dimensions with tolerances

External dimension

47

Page 54: Textbook for Vocational Training - Formulas and Tables Metal

Internal dimension

Spacing dimension

Angular dimension

3.9. Working and material characteristics

3.9.1. Surface characteristics

Symbol Explanation Manufacturing process

Optional manufacturing process casting, pressing, milling

Separation specified turning, filing, grinding

Operating process excluding separation forging, rolling

48

Page 55: Textbook for Vocational Training - Formulas and Tables Metal

Example of figuring

3.9.2. Surface roughness

Medium roughness Rz inmm

Function Manufacturing process

160, 80 External surfaces which are not stressed chill casting

40 resting bearing surfaces precision pressing,milling

20 resting connecting and sliding surfaces (lowspeed)

finish drilling, finishmilling

10 sliding surfaces (medium speed) precision grinding

3.9.3. Material characteristics

Material Sectioning Material Sectioning

Metal (steel, cast steel, grey iron, copper) Wood

Non−metal (felt, fibre, rubber, leather, plastic) Sintered metal

Electric windings Brickwork

Transparent and translucent matter (glass, celluloid) Plain concrete

Liquids Earth

3.10. Sectional view

Use Representation

49

Page 56: Textbook for Vocational Training - Formulas and Tables Metal

Full section

The internal shape of theworkpiece should bevisible over the wholecross section1 Drawing plane2 Section plane

Half section

The internal and externalshapes of the workpieceshould be visible overthe whole cross section;for symmetricalworkpieces only;the lower or the right halfof the workpiece shouldbe shown in section

50

Page 57: Textbook for Vocational Training - Formulas and Tables Metal

Part section

The internal shape of alimited part of thework−piece should bevisible; limitation of thepart section by afreehand drawn solid lineor by a solid zigzag line

51

Page 58: Textbook for Vocational Training - Formulas and Tables Metal

3.11. Partial and interrupted representation

Type Examples

Partial representation

− with limitation by a narrowsolid zigzag line

− with limitation by a narrowfreehand drawn solid line

52

Page 59: Textbook for Vocational Training - Formulas and Tables Metal

Partial representation

− Without limiting line (withcut surfaces)

Interrupted representation

− With limitation by twoparallel narrow solid zigzaglines

− with limitation by twonarrow freehand drawnsolid lines

− without limiting lines (withcut surfaces)

3.12. Representation of thread

Type of thread Representation

External thread1 Thread symbol line

53

Page 60: Textbook for Vocational Training - Formulas and Tables Metal

Internal thread1 Thread symbol line

3.13. Simplified representation of holes and counterbores

Type Representation

Round through hole(hole diameter isindicated)

Tapped throughhole (thread symboland numericalvalue are indicated)

Round blind holeand threaded blindhole (Dimensionaldata aresupplemented bythe cylindrical depthof the hole and theeffective length ofthread,respectively)

Holes withtolerances(Tolerances to beindicated after thedimension)

54

Page 61: Textbook for Vocational Training - Formulas and Tables Metal

Counterbores;conical orcylindrical(Diameter andangle of cone ordiameter and depthto be indicated afterthe dimension)

3.14. Simplified representation of disconnectable connections

3.14.1. Connecting elements

Connecting element Representation simplified symbol

Screw with hexagonhead and trunnion,thread not up to thehead

Cross−slotted screwwith fillister head

Screw with cylinderhead and transverseslot

Screw withcountersunk fillisterhead and transverseslot

55

Page 62: Textbook for Vocational Training - Formulas and Tables Metal

Plain pin

Taper pin

Hexagon nut

Washer

Spring washer

3.14.2. Screw joints

Type of joint Representation simplified symbol

Screw joint with hexagon−head screw,washer and nut

56

Page 63: Textbook for Vocational Training - Formulas and Tables Metal

Screw joint with cheese−head screw

Screw joint with countersunk screw

57

Page 64: Textbook for Vocational Training - Formulas and Tables Metal

4. Metal materials

4.1. Characteristics

Characteristics of metals

Crystalline structure;

Metallic lustre;

Strength, formability (chipless),

Work−hardenability (highly temperature−dependent);

Good electric and thermal conductivity;

Decomposition in acids with the generation of salts;

Cations in aqueous metallic salt solutions;

Solid (crystalline) state at room temperature and normal pressures (with the exception of mercury)

4.2. Subdivision

Aspect Subdivision (examples)

General ferrous materialspure ironsteel (alloyed or unalloyed)cast iron

non−ferrousmaterials

According to density light metals(? < 5 g/cm3)aluminiummagnesium (or the corresponding alloys)

heavy metals(? > 5 g/cm3)ironcoppergold

Aspect Subdivision (examples)

58

Page 65: Textbook for Vocational Training - Formulas and Tables Metal

according to melting point low melting(ts 900°C)lithiumtinlead

high−melting(ts 900...2000°C)silvercopperiron

very high−melting(ts 2000 °C)molybdenumtantalumtungsten

according to production melt−metallurgical(reguline metals

electrolytic power−metallurgical sinteredmetals, heavy base metalsexcept iron

according to colour ferrous metalsiron and its alloys

non−ferrous metalsleadzincnickel

according to chemicalproperties

precious metalsgoldsilverplatinum

base metalsaluminiumiron

4.3. Properties and use of important metals

Metal Symbol Density in103 kg/m3

Melting pointin °C

Aluminium Al 2.7 660

General (technological) properties

Whitish; a protective oxide film is formed on freshshoulders of cut which increases its resistance towear; relatively resistant to acids; lyes attack Alseriously; formed by drawing, spinning, pressuredeep−drawing, deep−drawing, forging, rolling; canbe welded, soldered or glued; metal−removingprocesses possible under certain circumstances(“lubrication”)

Use

Winding or cable wire, condenser foil in electricalengineering; foil for food packing; alumino−thermicwelding; with the addition of alloys in aircraft andvehicle construction.

Antimony Sb 6.68 630

General (technological) properties

Silver white, bright, very brittle, easily pulverizable;increases the hardness of alloys; toxic, resistant tohydrochloric acid and diluted sulphuric acid

Use

Only as alloying metal for babbitt bearings, hardlead, batteries, die cast products

Cadmium Cd 8.64 320.9

General (technological) properties

59

Page 66: Textbook for Vocational Training - Formulas and Tables Metal

Bright, white; easily soluble in nitric acid, vapoursand soluble salts are toxic; soft, well formed byhammering, rolling, drawing

Use

For cadmium−plating; for the production oflow−melting alloys, fusible hard solder, batteries,bearing metals

Chromium Cr 7.19 1903

General (technological) properties

Silver white; very toxic, resistant to nitric acid, notresistant to diluted sulphuric acid; very hard andbrittle

Use

Alloying metal for iron materials (cutting metals andheavy−duty engineering components); coating metalfor surface protection

Cobalt Co 8.83 1495

General (technological) properties

Steel grey, bright; soluble in diluted oxidizing acids;great toughness and hardness, forgeable, magnetic

Use

Almost exclusively as alloying metal for hard metalsand tool steels; radioactive isotope for materialtesting

Copper Cu 8.93 1083

General (technological) properties

Light red; soluble in oxidizing acids, soluble coppercompounds are toxic; best electrical conductivityapart from silver, very soft, but tough and veryductile, properly formable without chip,metal−removal forming difficult (lubricant); can bebrazed, soldered and welded

Use

Wiring material in electrical engineering; material forboilers, heating tubes, cooling coils in the chemicalindustry; for galvanic cells; alloyed with zinc (brass),alloyed with tin (bronze)

Gold Au 19.28 1063

General (technological) properties

Yellow−red, bright, polishable, precious metal,extremely resistant to chemicals, not resistant tohalogens, calcium cyanide and aqua regia only; soft,greatest ductility of all metals, very well formed by

60

Page 67: Textbook for Vocational Training - Formulas and Tables Metal

rolling, drawing, forging, hammering

Use

Alloyed with Ag, Cu, Pt, Pb and Ni for jewellery,dental material, precision−mechanical and opticalparts, electrical contacts, spinnerets

Iron Fe 7.87 1536

General (technological) properties

Bluish−white, polishable, easily magnetized; notresistant to humidity or water (formation of rust),soluble in diluted acids; high strength, corrosionresistance and resistance to scale by the addition ofalloying metals

Use

Wide field of application as steel, cast steel or castiron when adding alloying elements (e.g. carbon, Cr,Ni, Wo, Mo)

Lead Pb 11.34 327.4

General (technological) properties

Bluish−white fracture of silvery gloss,fine−grain; very toxic,resistant to sulphuric acid and hydrofluoric acid; verysoft easily cast, very well formed by rolling,hammering, pressing; cannot be drawn.

Use

Coating metal in tank construction (chemicalindustry); pipes and packing rings; lead paints, suchas white lead, red lead; radiation protection inmedicine; alloying metal for bearing materials; leadcable

Magnesium Mg 1.74 650

General (technological) properties

Silver white, bright; thin, dull−white oxide layer in theatmosphere, burns with a dazzling white flame (t 500°C), soluble in diluted acids, resistant to lyes;castable only with difficulty, easily worked when hot,well suited for forming by metal removal, (danger ofchip ignition!).

Use

Used in pyrotechnics; alloying element, especiallytogether with Al and Zn for vehicle construction andmechanical engineering.

Manganese Mn 7.21 1244

General (technological) properties

61

Page 68: Textbook for Vocational Training - Formulas and Tables Metal

Silver white, steel−grey if containing carbon; easilysoluble in diluted acids, has a deoxidizing effect insteel and casting melts; very hard, brittle

Use

Exclusively as alloying element and deoxidant ofsteel; manganese steel for rails; all types ofheavy−duty components

Mercury Hg 13.55 38.87

General (technological) properties

Silver−white bright precious metal; liquid at roomtemperature, high surface tension, vapours andsoluble compounds highly toxic; insoluble in dilutedsulphuric and hydrochloric acid

Use

In thermometers, gas pressure gauges, electricswitches, high−vacuum pumps, mercury−vapourrectifiers, mercury−vapour lamps; for moulds in theproduction of precision components

Molybdenum Mo 10.2 2625

General (technological) properties

Silver white; very resistant, very ductile, very strong,easily formed by embossing, hammering, rolling,drawing

Use

Worked into sheets, tubes, bars and wires forelectron tubes and incandescent lamps; importantalloying element of steel; alloys with otherhigh−melting metals (Wo, Ta, Ti)

Nickel Ni 8.9 1455

General (technological) properties

bright white; resistant to water, air, alkalis, dilutedacids (except nitric acid); polishable, tough,ferromagnetic, easily formed by rolling, forging,drawing, weldable

Use

Carrier of oxide cathodes in radio valves; alloyingelement of steel (Cr, Ni steel); surface protection bynickel−plating

Platinum Pt 21.45 1733

General (technological) properties

Grey−white, bright precious metal; high solubility forhydrogen, resistant to oxygen and acids; veryductile, easily formed by hammering, rolling, drawing

62

Page 69: Textbook for Vocational Training - Formulas and Tables Metal

Use

For the manufacture of laboratory equipment, wires,electrodes, galvanic cells, contacts in weak−currentengineering, catalyst in the chemical industry

Silicon Si 2.33 1412

General (technological) properties

Semi−metal; dark grey, bright or brown powder(depending on surface condition); easily soluble inlyes; very brittle, easily pulverizable

Use

Deoxidant; alloying element for steel (steels of highsilicon content with high resistance to acids), foraluminium and copper alloys

Silver Ag 10.5 960.8

General (technological) properties

White lustre, polishable, precious metal; easilysoluble in diluted nitric acid; very soft; the mostductile metal apart from gold, easily formed byhammering, forging, rolling, drawing; very goodconductor of heat and electric current

Use

Important mirror metal; for silver−plating andcladding; alloys for chemical equipment and surgicalinstruments

Tantalum Ta 16.67 2990

General (technological) properties

Grey, bright; soluble in a mixture of concentratednitric and hydrofluoric acid; very hard, extremelyductile, can be drawn to thin threads

Use

Chemical apparatuses, tantalum rectifiers andcapacitors, surgical auxiliary devices; alloyingelement for stainless steels and special steels;tantalum carbide for hard metal

Tin Sn 7.29 231.9

General (technological) properties

Silver white, bright; resistant to diluted organic acids;low hardness, high ductility, can be rolled, can bedrawn to wire at 100 °C; “tin cry” when bending a tinbar

Use

Coating metal; alloying element together with Pb and

63

Page 70: Textbook for Vocational Training - Formulas and Tables Metal

Cu; important tin alloys; tin solders, tin bearingmetals

Titanium Ti 4.5 1690

General (technological) properties

Silver white, similar to steel; resistant to theatmosphere, soluble in hydrofluoric acid, verycorrosion−resistant; hard and brittle, forgeable onlywith red heat, cold rollable, high strength but lowweight

Use

Material for chemical plants; in the form of alloys withAl, Cr and V it is an important construction materialfor rocket and jet propulsion systems; alloyingelement for steel; titanium carbide for hard metal

Tungsten W 19.3 3380

General (technological) properties

White, metallic lustre; soluble in a mixture ofconcentrated nitric and hydrofluoric acid; ductile byhammering, can be drawn to wires

Use

Alloying element for special steels; for the productionof electric−lamp filaments, incandescent lamps andelectron tubes; for hevy−duty electrical contacts

Vanadium V 5.98 1730

General (technological) properties

Bluish grey, bright, resistant to the atmosphere,soluble in oxidizing acids; very hard, can behammered and rolled in its purest state

Use

Filter for X−rays; alloying element for tool steels(increases hardness and stability)

Zinc Zn 7.14 419.4

General (technological) properties

Bluish−white, very bright; surface oxidation in humidatmosphere, soluble in aqueous hydrochloric acid(soldering fluid); brittle at room temperature, can beformed without chips at high temperatures (90...200°C), pulverizable, easily cast, soldered and welded

Use

Sheets, strips, foils; extruded cups for dry elements;for galvanizing; for zinc paints; alloying element(brass, nickel silver)

64

Page 71: Textbook for Vocational Training - Formulas and Tables Metal

4.4. Ferrous materials

4.4.1. Terms

Term Explanation

Steel ferrous materials meltedfrom pig iron, scrap andstabilizer for steelcarbon content 0.05 −2.06 % can be workedcold or hot

Unalloyed steel The iron admixtures donot exceed the followingmaximum values:

0.8 % Mn0.5 % Si0.25 % Cu0.1 % Al or Ti0.1 % P and S together

Alloy steel The iron admixturesexceed the maximumvalues of the unalloyedsteel, or othercomponents (alloyingelements) are added inorder to achieve certainproperties

Low−alloy steel

alloying elements< 5 %

High−alloy steel

alloying elements> 5 %

Ordinary Maximum values ofdetrimental ironadmixtures P and Stogether ? 0.1 %,ensurance ofmechanical propertiessuch as tensile strength,yield point, strain atfailure

High−grade steel High degree of purityfrom non−metallic ironadmixtures, P and S <0.04 % each, suitablefor heat treatmentprocesses

Stainless steel High uniformity ofproperties and verygood surface condition.P and S ? 0.040 % each

65

Page 72: Textbook for Vocational Training - Formulas and Tables Metal

Cast steel tough, forgeable, strongsteel for highly stressedcastings, cast intomoulds

Grey cast−iron Ferrous material frompig iron, cast iron scrapand scrap with thefollowing generalcomposition which iscast into moulds:

C = 2.8 − 3.5 %Si ? 3.8 %Mn ? 1.2 %P ? 1.0 %S ? 0.15 %not forgeable, greatrigidity and dampingproperty

Malleable cast−iron Material melted fromwhite pig iron whichbecomes forgeable byheat treatment(tempering) at 950 −1000 °C, duration oftreatment approx. 4 − 6days.

Chilled cast−iron hard and wear−resistantcast iron with thefollowing, generalcomposition:

C = 2.06 − 3 %Si = 0.4 − 1.2 %Mn = 0.8 − 1.3 %

White cast iron The casting is very hardthroughout

Chilled cast iron The casting is very hardon the surface only

4.4.2. Steel

Elements of symbols

Steel type or steel production

Symbol Meaning

C unalloyed high−grade and stainless steel

St unalloyed structural steel

W unalloyed tool steel (w at the end of the symbol)

X high−alloy steel

E electric steel

M open−hearth steel

66

Page 73: Textbook for Vocational Training - Formulas and Tables Metal

T Thomas steel

W steel produced in a special process (W at the beginning of the symbol)

1 Grade 1, type of melting according to the producer’s own judgement (exception: St 38 S isproduced according to the Thomas process)

2 Grade 2, type of melting either according to the open−hearth process, the Ld process orthe improved Bessemer process

3 Grade 3, Ld process or open−hearth process; the steels are to be cast as non−ageingstructural steels, especially killed (e.g. using Al)

u Cast unkilled, gas formation during casting results in voids in the material

hb Cast semi−killed

b Cast killed, gas formation is prevented by the addition of metals (e.g. aluminium)

Heat treatment condition

Symbol Meaning Symbol Meaning

U Untreated S stress−relief annealed

G Soft annealed V hardened and tempered

N Normalized K + V Cold drawn and hardened and tempered

VÖ Oil treated K + G Cold drawn and soft−annealed

VL Tempered in air A Tempered

AS Quenched H + A Hardened and blown

Alloying component of low−alloy steels

Factor Alloying element

4 Al, Cr, Co, Cu, Mn, Ni, Si, W

10 Be, Mo, Nb, Ta, Ti, V

100 C, Ce, N, P, S

Scope of guarantee in the case of cast steel

Symbol Meaning

. 1 Yield point

. 2 Yield point and transverse bending test

. 3 Yield point and notched−bar impact strength

. 5 Yield point, notched−bar impact strength and transverse bending test

. 9 Magnetic induction

Examples of designation

Unalloyed structural steel:

Examples:

St 38 u − 2MSt 42 − 3

67

Page 74: Textbook for Vocational Training - Formulas and Tables Metal

Meaning:

St 38 u − 2

General structural steel Minimum tensile strength 380 Mpa unkilled Grade 2

M St 42 − 3

Open−hearth Steel structural steel minimum tensile strength 420 MPa Grade 3

Unalloyed high−grade steel or stainless steel

Examples:

C 45 V 90C 115 W 1

Meaning:

C 45 V 90

Unalloyed high−grade steel or stainless steel; 0.45 %C

hardened and tempered minimum tensile strength900 MPa

C 115 W 1

Unalloyed high−grade steel 1.15 % C tool steel Grade 1

Low−alloy steel

Examples:

13 Cr Mo 4.4M 37 Mn Si 5 V

High−alloy steel

Examples:

X 97 W Mo 3.3X 125 W V 12.4

68

Page 75: Textbook for Vocational Training - Formulas and Tables Metal

Cast steel

Examples:

GS − 40.2GS − 22 Cr Mo 5.4GS − X 10 Cr 13

Meaning:

Properties and use of steel brands

General structural steels

Unalloyed steels of high toughness, marked yield point and guaranteed minimum tensile strength; frequentlyused in mechanical engineering and steel construction

Steel brand of grade Tensilestrength in

MPa

Yield point in MPaat a thickness in

mm of

Strain atfailure in %

Rolling and forgingtemperature in °C

1 2 3 ?20

20 to40

40 to100

(l0 = 5d0)

St 33 ? 330 − − − 22 1200...900

St 34 St 34u−2

St34−3

340...420 220 210 200 30

St 34hb−2

St 34b−2

St 38 380...470 240 230 220 25

69

Page 76: Textbook for Vocational Training - Formulas and Tables Metal

St 38u−2

St38−3

St385

St 38hb−2

St 38b−2

St 42 St 42u−2

St42−3

420...520 260 250 240 23 1150...850

St 42hb−2

St 42b−2

St 50−2 − 500...620 300 290 280 19

St52−3

520...620 360 350 340 22

(...) 600...720 340 330 320 14 1100...850

700...850 370 360 350 10

Case−hardening steels

Unalloyed and alloyed structural steels in which the external zone is enriched with carbon after forming(possibly at the same time with nitrogen) and subsequently hardened

Steelbrand

Tensile strength(case−hardened inthe core) in MPa

Hardness(normalized)

(HB30)

Heat treatment Examples ofuse

Normalizingin °C

Hardeningin °C

Temperingin °C

C 10 420...550 140 890...920 890...920 150...180 Wearing parts ofsmalldimensions:pressed partsand punchedparts, rollers,levers

15 Cr 3 600...900 202 870...900 870...900 150...180 Bolts, spindles,measuring tools

16 MnCr 5

800...1100 229 850...880 850...880 170...210 Camshafts,toothed gears,worms, pressingdies for artificialresin

15 CrN 16

900...1200 − − 840...870 170...210 Toothed gears,shafts, axlesreadjustingscrews

20 MoCr 5

800...1100 229 850...880 870...900 180...280 Shafts, axles,toothed gears,Pressing diesfor artificial resin

70

Page 77: Textbook for Vocational Training - Formulas and Tables Metal

18 CrMn Ti5

950...1200 245 850...880 870...900 170...210 Toothed gears,shafts, axles

Quenched and subsequently tempered steels

Unalloyed and alloyed structural steels, whose toughness, tensile strength and yield point can be adapted tothe purpose of use by hardening (800 − 900 C) and subsequent tempering (530 − 670 °C)

Steelbrand

Hardened and tempered Tensilestrength in MPa at a diameter in

mm of

Minimumyield point

Softannealedhardness

Examples of use

16...40 40...100 100...160 in MPa in HB

C 60 750...900 700...850 − 450 229 Small parts of high tensilestrength: gear parts, shafts,lock components

30 Mn5

800...950 700...850 − 450 217 Low−stressed components:shafts, bolts, nuts, screws

37 MnSi 5

900...1100 800...950 700...850 450 229 Crankshafts, gear wheels,bolts, Cardan shafts

34 Cr 4 900...1100 800...950 700...850 450 197 Medium−stressedcomponents; gearcomponents

50 CrV4

1100...1300 900...1100 800...950 550 235 High−stressedcomponents; pinions,connecting rods

30 Cr 1250...1450 1100...1300 950...1150 700 248 High−stressed componentsof larger cross−sections

Steels resistant to pressurized hydrogen

heat−treatable steels whose resistance to pressurized hydrogen at operating temperature is ensured by theaddition of Cr, Mo, W, or V

Steel brand Tensile strength in MPa Resistance topressurized hydrogen

Examples of use

Pü in MPa t in °C

10 Cr Mo 9.10 450...600 32.5 400 Petroleum refining

16 Cr Mo 9.3 550...650 32.5 375 Welded high−pressurehollow bodies

24 Cr Mo 9 650...800 32.5 350 Regenerators, furnaceshells

17 Cr Mo W 11 650...800 32.5 480 High−pressure pipes,shaped parts

Unalloyed tool steels

High−purity steels with uniform hardening behaviour;mainly used for cold working tools (high surface quality and tough core)

Grade Steelbrand

Hardening inwaterin ° C

temperature inoil

in ° C

Examples of use

71

Page 78: Textbook for Vocational Training - Formulas and Tables Metal

1 C 100 W1

760 to 790 to Milling cutters, reamers, cutting dies,thread cutting tools, cutting dies

C 110 W1

790 820

2 C 70 W 2 780 to 800 to Clamping screws and adjusting screws,embossing dies, milling cutters

C 90 W 2 810 830

3 C 60 W 3 780 to 800 to Hot dies, hot rolling, vice jaws andmachine jaws

C 75 W 3 810 830

− 780 to

810

Steels for specialpurposes

C 55 WS 800 to 830 − Hand saws, mill saws and circularsaws, anvils, axes

C 85 WS 780 to 810 790 to 820

Alloyed cold working steels

Tool steels for chipless or metal−removing shaping of materials, mainly when cold (room temperature)

Steel brand (example) Application group

125 Cr 1, 130 Cr 2, 140 Cr 2 Files

90 Mn V 8, 105 W Cr 6, 115 Cr V 3, 100 Cr 6 Thread cutting tools

37 W Cr V 7, 80 Cr V 3, X 90 Cr Mo V 18, 80 W Cr V 8 Mechanical cuttingblades

100 Cr 6, 110 Mo V5, 120 WV 4, 115 Cr V3, 115 W 8 Metal saws

35 W Cr V7, 45 Cr Si V6, 105 Mn Cr 4, 55 W Cr V7 Dies, punchers

140 Cr 2, 142 W Cr V 13, X 210 Cr 12 Drawing tools

90 Mn V8, 100 Cr 6, 145 Cr V 6, 105 Mn Cr 4 Measuring tools

Hot working steels

Tool steels for chipless or metal−removing forming of materials, mainly when hot (> 300 °C); the workingsurfaces are subject to great heat and frequent temperature change.

Steel brand Hardness whensoft−annealed

HB

Hardeningtemperature

in °C

Hardeningmedium

Examples of use

28 Cr Mo11.28

225 1030...1060 oil Extruding andspinning tools forheavy and lightmetals

37 Cr Mo WV20.15

225 980...1050 oil Extruding and hotupsetting tools

1000...1050 air

40 Ni Cr Mo15

265 820...850 oil Hot pressing dies forlight metals and Cu

72

Page 79: Textbook for Vocational Training - Formulas and Tables Metal

alloys

850...870 air

45 Cr Mo V6.7

225 930...970 oil Die casting tools forlight metals

High−speed steels

High−alloy tool steels with a high wear resistance and special suitability for metal−removing tools for highcutting speeds at great thermal stress (? 600 °C)

Steel brand High−speed steelclass

Hardeningtemperature

in °C

Temperingtemperature

in °C

Examples of use

X 97 W Mo3.3

ABC III 1190...1210 530...550 Spiral drills, millingcutters, reamers (formaterials up to ?B = 850MPa)

X 74 WV18.1

B 18 1230...1260 550...570 tools of difficult shapewhich are sensitive togrinding

X 82 W Mo6.5

DM 05 1190...1230 540...560 high−quality spiral drillsand milling cutters

X 125 WV12.4

EV 4 1210...1240 550...570 smoothing tools forautomatic operation

X 133 W Co12.5

EV 4 Co 1120...1250 560...580 tools for difficult roughingoperations

X 79 W Co18.5

E 18 Co 5 1250...1280 560...580 turning tools, planingtools and slotting tools

Corrosion and acid−resistant steels

High−alloy steels with a chromium content ? 12 %, highly resistant to atmospheric attack, and to numerousorganic and inorganic acids, lyes and salt solutions

Steel brand Tensilestrengthin MPa

Maximum hardnessHB

Examples of use

X 10 Cr 13 600...750 210 Valves, pipes, turbine blades

X 20 Cr No 13 750...900 260 Steam turbine blades, moulds for die casting

X 12 Cr Mo S17

650...850 235 fittings, screws (easily machinable)

X 35 Cr Mo 17 800...950 275 shafts, spindles, valves, high−temperatureresistant parts

X 90 Cr Mo V18

? 900 260 cutlery, antifriction bearings

X 12 Cr Ni17.7

700...900 210 springs, sheets, high−strength strips

Heat and scale−resistant steels

High−alloy steels which form protective layers at temperatures above 600 °C and for this reason have anincreased resistance to scale in air, fuel gases and other chemical substances

73

Page 80: Textbook for Vocational Training - Formulas and Tables Metal

Steel brand Tensilestrengthin MPa

HardnessHB

Usable in air upto °C

Examples of use

X 10 Cr Al 7 450...600 140...185 800 for moderate mechanical stress,annealing and hardening boxes,pipes

X 10 Cr Al 24 500...650 170...215 1200

X 8 Cr Ni Ti18,10

500...750 130...190 800 for higher mechanical stress;

X 15 Cr Ni Si25,20

600...750 145...190 1200 see above

Unalloyed cast steel

Steel cast into metal or non−metal moulds (free of graphite and ledeburite) with guaranteed mechanicalproperties at temperatures from 10 − 250 °C; no particular specifications

Grade Tensile strengthin MPa

Yield pointin MPa

Strain at failurein % (l0 = 5d0)

GS − 40 400 − 20

GS − 40.5 400 200 25

GS − 45 450 − 17

GS − 45.3 450 230 22

GS − 50.2 500 260 20

GS − 60.1 600 320 15

Corrosion and acid−resistant cast steel

Cast steel with a Cr content of ? 12 %, highly resistant to atmospheric influences, to numerous organic andinorganic acids, lyes and salt solutions; high resistance to corrosion and strength owing to the addition of Ni,No, Ti and Nb

Grade Examples of use

GS − X 10 Cr 13 Turbine blades, valves for hydraulic presses, cracking plants

GS − X 60 Cr 29 Components for the food and chemical industries

GS − X 120 Cr Mo 29.2 Highly corrosion−resistant castings for the chemical industry

GS − X 12 Cr Ni 18.9 Pumps, valves in the chemical industry (heat−treatment required afterwelding)

High−temperature resistant cast steel

Cast steel with favourable strength values (in particular a relatively high yield point), usable in the temperaturerange of 250 − 540 °C

Grade Tensile strengthin MPa

Yield point in MPa attemperatures in °C of

Strain at failure in %(l0 = 5d0)

20 200 300 350 400

GS − C 25 450...600 250 220 170 150 130 22

GS − 22 Mo 4 450...600 250 240 210 190 170 22

74

Page 81: Textbook for Vocational Training - Formulas and Tables Metal

GS − 22 Cr Mo 5.4 530...700 300 290 280 260 240 20

GS − 20 Mo V 8.4 600...800 340 350 320 310 290 15

4.4.3. Cast iron

Elements of symbols

Symbol Meaning

GGL Cast iron with lamellar graphite

GGG Cast iron with spheroidal graphite

− X High−alloy cast iron

GH White cast iron

GHK Chilled cast iron

GT Malleable cast iron (white or black)

GTW White malleable cast iron) ) previous

GTS Black malleable cast iron) ) symbols

GTP Pearlitic malleable cast iron) )

Properties and use of the cast iron grades

Gradeq

Tensile strength(min.)in MPa

Hardness (max.)HB

Examples of use

GGL − 00 − − Bench, gearing, columns

GGL − 25 250 245 Castings for mechanical engineering

GGG − 40 400 190 Couplings, housings, crankshafts, toothedgears

GGG − 50 500 240

GH − 200 − 300 Upper dies, lower dies, balls for mills

GH − 300 − ? 300

GHK − 400 − −

GT − 35 350 190 Spanners, keys, levers,

GT − 35E 350 220 Clamps differential casings rear axlehousings, gear−boxes, pressure levers

GT − 40E 400 220

GT − 45 450 200

GT − 65 650 250

4.5. Alloys of non−ferrous metals

4.5.1. Terms

Term Explanation

75

Page 82: Textbook for Vocational Training - Formulas and Tables Metal

Wroughtalloy

Alloy which is to be further formed without chips after casting into ingot moulds, pig or ingotslab moulds (e.g. to pressed parts, bars, sections, sheets or strips)

Cast alloy Alloy which, in most cases, is cast into moulds (by sand casting, pressure casting or diecasting) and, as a rule, is finished by metal removal only

4.5.2. Elements of symbols

Symbol Meaning Symbol Meaning

G sand casting Kb cablemetal

GD pressure casting L solderingmetal

GK die casting Lg bearingmetal

GZ centrifugal casting R pipe metal

4.5.3. Properties and use of grades of alloys

Material Grade Tensilestrength

(min.)in MPa

HardnessHB

Technologicalproperties Use

Aluminium wrought alloys

Al Mg alloys AlMg1 100...160 30...50 Corrosion−resistant andsea−waterproof, nothardenable linings inshipbuilding and vehicleconstruction;foodstuffs industry

AlMg5 240...320 55...80

Al Mg Si alloys AlMgSi1 200...320 60...95 Hardenable when coldor hot at 140−160 °C in12 − 4 hours, resistantto chemicals; Structuralparts in shipbuilding andvehicle construction,constructionengineering, foodstuffsindustry

Al Cu Mg alloys AlCuMg1 370...400 90...100 Hardenable when cold,susceptible to corrosion;mechanicallyhighly−stressed parts invehicle construction,aircraft manufacture andmechanical engineering

AlCuMg2 390...440 105...110

Aluminium casting alloys

G − Al Si Cu Ni alloys − − − Hardenable when hot(at 185 °C in 15 hours),good strength

76

Page 83: Textbook for Vocational Training - Formulas and Tables Metal

properties;pistons of combustionengines

G − Al − Si alloys G−AlSi12 − − Very easily castable,hardenable when hot orcold by a small additionof Mg;complicated thin−walledcastings (resistant tochemicals, resistant togreat mechanicalstress)

Lead casting alloys (bearing metals)

Babbitt 5 LgPbSn5 − 22 Can be soldered onalloys(Cu−Zn−Sn−basis),steel, cast steel;Bearings of generalmechanical engineering(P stat ? 25 MPa)

Babbitt 10 free of copper LgPbSn10 − 23 Loadable andsolderable as above;bearings coming intocontact with mediacontaining ammonia

Babbitt 80 LgSn80 − 28 Optimum solderabilityand castability, loadableup to P stat ? 30 MPa

Babbitt 80 containingcadmium

LgSn80Cd − 35 Optimum solderabilityand castability; bearingsfor diesel engines

Copper wrought alloys

Brass (Cu−Zn) CuZn40Pb2CuZn40CuZn39Pb

370...680 90...170 Very easily formed bymetal removal, slightlychipless forming whencold; screws, rotatingparts; formable whenhot or cold; Hotcastings, screws,rotating parts

CuZn37 300...550 70...160 Main alloy for coldforming

CuZn37Pb1 300...550 70...160 Screws, pipes, radiatorstrips

CuZn30 280...530 70...155 Very easily formablewhen cold pipes,sleeves

CuZn20 270...500 65...150 Pipes, sleeves, nettingwires, wiring parts

Special brass CuZn29Al 370...650 75...170 Corrosion resistant,anti−fatigue; leafsprings and spiral

77

Page 84: Textbook for Vocational Training - Formulas and Tables Metal

springs

(Cu−Zn−...) CuZn21Al2 330...350 80...95 Sea−waterproof;condenser tubes,machine parts

Tin bronze CuSn2 260...370 55...100 Formable, slightlychipless;

(Cu−Sn) CuSn8 400...700 90...200 springs, screws

Multi−component tinbronze

CuSn4Zn4Pb4

320 70 Membranes, heatexchanger tubes,Bourdon tubes forpressure gauges

CuSn6Zn6 400...750 100...215

Nickel brass CuNi12Zn30Pb

500...600 150...175 Medical and precisioninstruments,table−plates

(Cu−Ni−Zn) CuNi18 520...620 155...180

Zn19Pb

Aluminium bronze(Cu−Al)

CuAl5 320...450 75...125 Acid−resistant,equipment for thechemical industry

Copper casting alloys

Cast tin bronze (Cu−Sn) G−CuSn10 − − Good sliding properties,resistant to alkalis, heatresistant up to 180 °C

Cast multi−component G−CuSn10Zn5

− − Tenacious,wear−resistant, averagesliding properties

tin bronze and G−CuSn6 − − Heat resistant up to 200°C, high wearresistance

red brass Zn7Pb4

(Cu−Sn−Zn...) G−CuZn33Pb2

− − Fittings, housings,construction parts

Cast multi−componentaluminium bronze(Cu−Al−...)

G−CuAl10Fe3Mn2

− − High corrosionresistance and wearresistance

Cast multi−componentaluminium bronze(Cu−Al−...)

G−CuAl9Ni4Fe4Mu2

− − Bearings for highestrequirements on slidingproperties and surfacepressures (compositecasting with protectivesteel skin)

G−CuPb22Sn5 − − Good sliding andantifrictional properties;Bearings with maximumsurface pressures andlow running speeds

Zinc casting alloys

78

Page 85: Textbook for Vocational Training - Formulas and Tables Metal

G−ZnAl4 250 70 Components with highrequirements ondimensional stability

G−ZnAl6 180 80 Castings which aredifficult to cast

GK−Zn 220 80

Al6Cu1

Tin alloys

Soft solders (Sn − Pb − b) LSn25 − − Solder for flamesoldering

LSn30 − − surfacer soldering

LSn50 − − general solderingpurposes

LSn60 − − Tin−plating of wire inelectrical engineering

4.6. Hard metals

4.6.1. Term

Hard metals contain tungsten, titanium and vanadium carbide and cobalt, nickel and molybdenum as bindingagents; they are presintered (pressing with subsequent heat treatment), worked to shape and then finallysintered (at 1500 − 1900° C); used as cutting tools and for drawing tools, wire drawing dies and mining tools;cutting tips are brazed on basic bodies of low−alloy steel.

4.6.2. Properties and use of hard metals

Properties

Grade Densityin g/cm3

HardnessHRC

Identification colour Cutting conditions, properties of thehard metal

HS 01 6.1 − 6.4 91.5 − 93.0 blue increasing cutting speed feed possible

HS 02 9.9 − 10.2 91.5 − 93.0

HS 10 11.1 − 11.4 90.8 − 92.3

HS 20 11.2 − 11.5 90.0 − 91.5

HS 30 13.2 − 13.5 89.3 − 90.8

HS 40 13.1 − 13.4 88.6 − 90.1

HS 50 12.8 − 13.1 87.8 − 89.3

HU 10 12.6 − 12.9 90.8 − 92.7 yellow ?‘ ?‘

HU 30 12.8 − 13.1 90.0 − 91.5

HU 40 13.6 − 13.4 87.5 − 89.0

HG 01 14.9 − 15.2 91.5 − 93.0 red

HG 10 14.6 − 14.9 90.5 − 92.0

HG 15 14.9 − 15.2 90.5 − 91.5

79

Page 86: Textbook for Vocational Training - Formulas and Tables Metal

HG 20 14.6 − 14.9 89.0 − 90.5

HZ 10 15.6 − 15.9 91.5 − 93.0

HZ 20 14.9 − 15.2 90.5 − 90.0 increasing resistance to

HZ 30 14.3 − 14.7 88.5 − 90.0 wear toughness

HZ 40 13.8 − 14.2 87.0 − 88.5

Use

Grade Type offorming

Chip formation orapplication

Examples

HS 01HS 02

metal−removing long chips Smoothing, finish−machining of steel and cast steel; highcutting speed

HS 10HS 20HS 30

Roughing, smoothing of steel, cast steel, malleable castiron, manganese hard casting; medium to low cuttingspeed

HS 40HS 50

Roughing of steel and cast steel with casting (forging)crust; low cutting speed

HU 10HU 30

long or short chips Roughing, smoothing of steel, cast steel, grey iron,malleable cast iron, hard castings (hardness = 5000 MPa),copper alloys

HU 40 Roughing, smoothing of free cutting steel

HG 01 short chips Turning, fine hole drilling of grey iron, chilled cast iron,Al−Si alloys, plastics

HG 10HG 20HG 30HG 40

Roughing, smoothing of grey iron, non−ferrous alloys,plastics, glass, porcelain, stones (turning, planing, milling)wood, laminated wood

HG 15 chippless wearing parts Guide bushes, sand blasting nozzle sets, centres,measuring gauges, liners

HZ 10toHZ 40

forming technology Drawing tools for wire (especially wet−drawing ofnon−ferrous metals)

5. Plastics

Survey of some important plastics

Designation Examples of use

Modified natural products

Vulcanized fibre Electrical engineering, luggage, automobile and machine−building industries

Cellulose acetate Photographic industry (safety films), packing, clothing and varnish industries

Polycondensation products (thermosetting plastics)

Phenolic resins Electrical engineering, optical industry, machine and vehicle construction,medical instruments, domestic appliances

Urea resins(aminoplastics)

Electrical engineering, foodstuffs, varnish and toy industry, commodities)

80

Page 87: Textbook for Vocational Training - Formulas and Tables Metal

Polymerization products (thermoplastics)

Polyvinyl chloride (PVC)

soft PVC Almost all branches of industry, chemical industry, building and packingindustries

rigid PVC Almost all branches of industry, chemical and consumer goods industry,electrical engineering

Polyethylene (PE) Chemical industry, packing industry, toys, unbreakable commodities

Polyamide (PA) Clothing industry, high−strength technical parts, unbreakable commodities,

Polymethacrylate Vehicle and aircraft construction, measuring and drawing instruments, dressjewellery

Polystyrene (PS) Weak−current engineering, toys, fashion goods

Polyacrylonitrile (PAN) High−strength weather, light and chemical−resistant fabrics

Polyaddition products

Polyurethane Wear−resistant technical parts and commodities, e.g. varnish, cast resins, elasticrubber materials, foamed plastics, adhesives, compression moulding material

Poly−utilization products

Unsaturated polyesterresins (PU)

For casting purposes and adhesion with fillers for moulded bodies

Epoxy resins (EP) Casting resins, adhesive resins and resin binders (casting together with fillers)

6. Semi−finished products of steel

6.1. Bars, strips, sheets

6.1.1. Square bar steel

Designation

a lateral lengthA cross−sectional aream weight

81

Page 88: Textbook for Vocational Training - Formulas and Tables Metal

Weight of square bar steel in kilogrammes per metre

ain mm

Ain mm2

min kg

ain mm

Ain mm2

minkg

5 25 0.196 32 1024 8.04

6 36 0.283 36 1296 10.2

7 49 0.385 38 1444 11.2

8 64 0.502 40 1600 12.6

9 81 0.636 45 2025 15.9

10 100 0.785 50 2500 19.6

11 121 0.95 56 3136 24.6

12 144 1.13 60 3600 28.3

13 169 1.33 65 4225 33.2

14 196 1.54 70 4900 38.5

15 225 1.77 75 5625 44.2

16 256 2.01 80 6400 50.3

17 289 2.27 85 7225 56.7

18 324 2.54 90 8100 63.6

20 400 3.14 95 8025 70.9

22 484 3.80 100 10000 78.5

24 576 4.52 110 12100 95.0

25 625 4.91 120 14400 113

26 676 5.30 130 16900 133

28 784 6.15 140 19600 154

30 900 7.06 150 22500 177

6.1.2. Hexagon bar steel

Designations

SW width across flatsA cross−sectional area

82

Page 89: Textbook for Vocational Training - Formulas and Tables Metal

m weight

Weight of hexagon bar steel in kilogrammes per metre

SWin mm

Ain mm2

min kg

SWin mm

Ain mm2

minkg

8 55.4 0.435 21 382 3.00

9 70.2 0.551 22 419 3.29

10 86.6 0.680 24 499 3.92

11 105 0.823 26 585 4.59

12 125 0.979 27 631 4.96

13 146 1.15 28 679 5.33

14 170 1.33 30 779 6.12

15 195 1.53 32 887 6.96

16 222 1.74 36 1122 8.81

17 249 1.96 41 1466 11.5

18 281 2.20 46 1833 14.4

19 313 2.45 50 2164 17.0

6.1.3. Round bar steel

Designations

d diameterA cross−sectional aream weight

Weight of round bar steel in kilogrammes per metre

din mm

Ain mm2

min kg

din mm

Ain mm2

minkg

5 19.63 0.154 38 1134 8.90

6 28.27 0.222 40 1257 9.87

6.5 33.18 0.260 42 1385 10.9

83

Page 90: Textbook for Vocational Training - Formulas and Tables Metal

7 38.48 0.302 45 1590 12.5

8 50.24 0.395 48 1810 14.2

9 63.59 0.499 50 1964 15.4

10 78.54 0.617 53 2206 17.3

11 95.03 0.746 56 2463 19.3

12 113.1 0.888 60 2817 22.2

13 132.7 1.04 63 3117 24.5

14 153.9 1.21 65 3318 26.1

15 176.7 1.39 70 3848 30.2

16 201.1 1.58 75 4418 34.7

17 227.0 1.78 80 5027 39.5

18 254.5 2.0 85 5675 44.6

19 283.5 2.23 90 6362 49.9

20 314.2 2.47 95 7088 55.6

21 346.4 2.72 100 7854 61.7

22 380.1 2.98 105 8659 68.0

24 452.4 3.55 110 9503 74.6

25 490.9 3.85 120 11310 88.8

26 530.9 4.17 125 12270 96.3

28 615.8 4.83 130 13270 104

30 706.9 5.55 140 15390 121

32 804.2 6.31 150 17670 139

34 907.9 7.13 160 20110 158

36 1018 7.99 170 22700 178

6.1.4. Strip steel, flat steel, universal mill products and sheet steel

Designations

b widths thicknessm weight

84

Page 91: Textbook for Vocational Training - Formulas and Tables Metal

Weight of strip steel, flat steel, universal mill products and sheet steel in kilogrammes per metre

bin mm

s in mm0.75

1 2 3 4 5 6 7 8 9 10

m in kg

4 0.024 0.031 0.063 0.094 0.126 0.157 0.188 0.251 0.314 0.377 0.471

5 0.030 0.039 0.079 0.118 0.157 0.196 0.235 0.314 0.393 0.471 0.588

6 0.036 0.047 0.094 0.141 0.188 0.236 0.283 0.377 0.471 0.565 0.707

7 0.039 0.055 0.110 0.165 0.220 0.275 0.330 0.440 0.550 0.660 0.825

8 0.046 0.063 0.126 0.188 0.251 0.314 0.377 0.502 0.628 0.754 0.942

10 0.059 0.079 0.157 0.236 0.314 0.393 0.471 0.628 0.785 0.942 1.178

12 0.065 0.094 0.188 0.283 0.377 0.471 0.565 0.754 0.942 1.130 1.230

16 0.094 0.126 0.251 0.377 0.502 0.628 0.754 1.005 1.260 1.510 1.880

20 0.118 0.157 0.314 0.471 0.628 0.785 0.942 1.256 1.570 1.880 2.360

25 0.147 0.196 0.393 0.589 0.785 0.981 1.178 1.570 1.960 2.360 2.940

30 0.177 0.236 0.471 0.707 0.942 1.178 1.413 1.884 2.360 2.830 3.530

35 0.207 0.257 0.550 0.824 1.099 1.374 1.649 2.198 2.750 3.300 4.120

40 0.236 0.314 0.628 0.942 1.256 1.570 1.884 2.512 3.140 3.770 4.710

45 0.266 0.353 0.707 1.060 1.410 1.770 2.120 2.830 3.530 4.240 5.300

50 0.294 0.393 0.785 1.178 1.570 1.962 2.355 3.140 3.930 4.710 5.890

60 0.354 0.471 0.942 1.415 1.884 2.355 2.826 3.768 4.710 5.650 7.070

70 0.412 0.549 1.099 1.649 2.198 2.748 3.297 4.396 5.500 6.590 8.240

80 0.471 0.628 1.256 1.884 2.512 3.140 3.768 5.024 6.280 7.540 9.420

90 0.530 0.706 1.413 2.119 2.826 3.532 4.239 5.652 7.070 8.480 10.60

100 0.589 0.785 1.570 2.355 3.140 3.925 4.710 6.280 7.850 9.420 11.80

150 0.883 1.177 2.355 3.532 4.710 5.887 7.065 9.420 11.80 14.10 17.70

200 1.178 1.570 3.140 4.710 6.280 7.850 9.420 12.56 15.70 18.90 23.60

300 1.767 2.355 4.710 7.065 9.420 11.78 14.13 18.84 23.55 28.30 35.30

400 2.355 3.140 6.280 9.420 12.56 15.70 18.83 25.10 31.40 37.70 47.10

500 2.945 3.925 7.850 11.78 15.70 19.63 23.55 31.40 39.25 47.10 58.90

750 4.417 5.888 11.78 17.67 23.55 29.44 35.33 47.10 58.88 70.60 88.30

1000 5.887 7.850 15.70 23.55 31.40 39.25 47.10 62.80 78.50 94.20 118.0

6.2. Standard sections

6.2.1. − steel, equal−sided

85

Page 92: Textbook for Vocational Training - Formulas and Tables Metal

Designations

b widths of legss thickness of legsr radii of curvature of the legsA cross−sectional aream weight

Weight of angle steel in kilogrammes per metre

(a × b × s) rin mm

Ain cm2

minkg

20 × 20 × 4 3.5 1.45 1.14

25 × 25 × 5 3.5 2.26 1.77

30 × 30 × 5 5 2.78 2.18

40 × 40 × 4 6 3.08 2.42

40 × 40 × 6 6 4.48 3.52

50 × 50 × 5 7 4.80 3.77

60 × 60 × 6 8 6.91 5.42

60 × 60 × 10 10 11.1 8.68

80 × 80 × 8 10 12.3 9.66

80 × 80 × 12 10 17.9 14.1

100 × 100 × 10 12 19.2 15.1

100 × 100 × 16 12 29.6 23.2

120 × 120 × 11 13 25.4 19.9

120 × 120 × 17 13 38.1 29.9

160 × 160 × 15 17 46.1 36.2

160 × 160 × 19 17 57.5 45.1

200 × 200 × 16 18 61.8 48.5

200 × 200 × 20 18 76.4 59.5

86

Page 93: Textbook for Vocational Training - Formulas and Tables Metal

6.2.2. steel, unequal−sided

Designations

a width of the short legb width of the long legr radii of curvatureA cross−sectional aream weight

Weight of angle steel in kilogrammes per metre

(a × b × s) rin mm

Ain cm2

minkg

20 × 30 × 4 3.5 1.85 1.45

20 × 40 × 4 3.5 2.25 1.77

30 × 45 × 5 4.5 3.53 2.77

30 × 60 × 5 6.0 4.29 3.37

40 × 50 × 4 4.0 3.46 2.71

40 × 80 × 6 7.0 6.89 5.41

50 × 65 × 5 6.5 5.54 4.35

65 × 80 × 8 8 11.0 8.66

50 × 100 × 10 9.0 14.1 11.1

65 × 130 × 10 11 18.6 14.6

80 × 120 × 8 11 15.5 12.2

80 × 160 × 12 13 27.5 21.6

100 × 150 × 10 13 24.2 19.0

100 × 150 × 12 13 28.7 22.6

100 × 200 × 10 15 29.2 23.0

100 × 200 × 16 15 45.7 35.9

87

Page 94: Textbook for Vocational Training - Formulas and Tables Metal

6.2.3. T−steel

Designations

h height of sectionb width of base

s thickness of web at a spacing r1, r2, r3 radiiA cross−sectional aream weight

Weight of T−steel in kilogrammes per metre

(b = h)mm

(s = t)mm

Ain cm2

min kg

(b = h)mm

(s = t)mm

Ain cm2

minkg

20 3 1.12 0.88 50 6 5.66 4.44

25 3.5 1.64 1.29 60 7 7.94 6.23

30 4 2.26 1.77 70 8 10.6 8.32

35 4.5 2.97 2.33 80 9 13.6 10.7

40 5 3.77 2.96 100 11 20.9 16.4

6.2.4. bar and shaped steel

88

Page 95: Textbook for Vocational Training - Formulas and Tables Metal

Designations

h height of sectionb width of flanges thickness of web

t thickness of flange at a spacingr, r1 radiiA cross−sectional aream weight

Weight of −steel in kilogrammes per metre

− dimensions

hmm

bmm

smm

tmm

rmm

r1mm

Ain cm2

minkg

80 42 3.9 5.9 3.9 2.3 7.58 5.95

100 50 4.5 6.8 4.5 2.7 10.6 8.32

120 58 5.1 7.7 5.1 3.1 14.2 11.2

140 66 5.7 8.6 5.7 3.4 18.3 14.4

160 74 6.3 9.5 6.3 3.8 22.8 17.9

180 82 6.9 10.4 6.9 4.1 27.9 21.9

200 90 7.5 11.3 7.5 4.5 33.5 26.3

220 98 8.1 12.2 8.1 4.9 39.6 31.1

240 106 8.7 13.1 8.7 5.2 46.1 36.2

260 113 9.4 14.1 9.4 5.6 53.4 41.9

280 119 10.1 15.2 10.1 6.1 61.1 48.0

300 125 10.8 16.2 10.8 6.5 69.1 54.2

320 131 11.5 17.3 11.5 6.9 77.8 61.1

340 137 12.2 18.8 12.2 7.3 86.8 68.1

360 143 13.0 19.5 13.0 7.8 97.1 76.2

380 149 13.7 20.5 13.7 8.2 107 84.0

89

Page 96: Textbook for Vocational Training - Formulas and Tables Metal

400 155 14.4 21.6 14.4 8.6 118 92.6

425 163 15.3 23.0 15.3 9.2 132 104

475 178 17.1 25.6 17.1 10.3 163 128

500 185 18.0 27.0 18.0 10.8 180 141

550 200 19.0 30.0 19.0 11.9 213 167

600 215 21.6 32.4 21.6 13.0 354 199

6.2.5. −bar and −shaped steel

Designations

h height of sectionb width of flanges thickness of webt average thickness of flanger1 inside radius, r2 radius of curvatureA cross−sectional aream weight

Weight of −bar and −shaped steel in kilogrammes per metre

− dimensions

hmm

bmm

smm

r1tmm

r2mm

Ain cm2

minkg

30 33 5 7 3.5 5.44 4.27

40 35 5 7 3.5 6.21 4.87

50 38 5 7 3.5 7.12 5.59

80 45 6 8 4 11.0 8.64

100 50 6 8.5 4.5 13.5 10.6

120 55 7 9 4.5 17.0 13.4

160 65 7.5 10.5 5.5 24.0 18.8

200 75 8.5 11.5 6 32.2 25.3

90

Page 97: Textbook for Vocational Training - Formulas and Tables Metal

240 85 9.5 13 6.5 42.3 33.2

320 100 14 17.5 8.75 75.8 59.5

400 110 14 18 9 91.5 71.8

6.3. Steel pipes for water and gas lines

Designations

D outside diameters wall thicknessm weight

Weight of steel pipes for water and gas lines in kilogrammes per metre

Din mm

s in mm

1 1.5 2 2.5 3 3.5 4

m in kg

15 0.345 0.499 0.641 0.771 0.888 − −

16 0.370 0.536 0.690 0.832 0.962 1.08 1.16

18 0.419 0.610 0.789 0.956 1.11 1.25 1.38

20 0.469 0.684 0.888 1.08 1.26 1.42 1.58

22 0.518 0.758 0.962 1.20 1.41 − 1.77

25 0.592 0.869 1.13 1.39 1.63 1.86 2.07

28 0.666 0.980 1.28 1.57 1.85 2.11 2.37

30 0.715 1.05 1.38 1.70 2.00 2.29 2.56

32 0.764 1.13 1.48 1.82 2.15 2.46 2.76

35 0.838 1.24 1.63 2.00 2.37 2.72 3.06

38 − 1.35 1.78 2.19 2.59 2.98 3.35

40 0.962 1.42 1.87 2.31 2.74 − −

42 1.01 − 1.97 2.44 2.89 3.32 3.75

45 1.09 1.61 2.12 2.62 3.11 3.58 4.04

50 1.21 1.79 2.37 2.93 3.48 − 4.54

91

Page 98: Textbook for Vocational Training - Formulas and Tables Metal

7. Semi−finished products of aluminium and aluminium alloys

7.1. Square bars

Designations

a lateral lengthA cross−sectional aream weight

Weight of square bars in kilogrammes per metre

ain mm

Ain cm2

min kg

ain mm

Ain cm2

min kg

4 0.16 0.043 11 1.21 0.327

5 0.25 0.068 12 1.44 0.389

6 0.36 0.972 14 1.96 0.529

7 0.49 0.132 15 2.25 0.608

8 0.64 0.173 16 2.56 0.691

9 0.81 0.219 17 2.89 0.780

10 1.00 0.270 18 3.24 0.875

19 3.61 0.975 30 9.00 2.43

20 4.00 1.08 32 10.24 2.76

22 4.84 1.31 36 12.96 3.50

24 4.76 1.56 41 16.81 4.54

26 6.76 1.28 46 21.16 5.71

27 7.29 1.97 50 25.00 6.75

28 7.84 2.12

7.2. Hexagon bars

92

Page 99: Textbook for Vocational Training - Formulas and Tables Metal

Designations

SW width across flatsA cross−sectional aream weight

Weight of hexagon bars in kilogrammes per metre

SWin mm

Ain cm2

min kg

SWin mm

Ain cm2

min kg

4 0.14 0.037 19 3.13 0.844

5 0.22 0.059 22 4.19 1.13

6 0.31 0.084 24 4.99 1.35

7 0.42 0.115 27 6.31 1.70

8 0.55 0.150 30 7.79 2.10

9 0.70 0.189 32 8.87 2.39

10 0.87 0.234 36 11.22 3.03

11 1.05 0.283 41 14.56 3.93

12 1.25 0.337 46 18.33 4.95

14 1.70 0.459 50 21.65 5.85

17 2.50 0.676

7.3. Round bars

Designations

93

Page 100: Textbook for Vocational Training - Formulas and Tables Metal

d diameterA cross−sectional aream weight

Weight of round bars in kilogrammes per metre

din mm

Ain cm2

min kg

din mm

Ain cm2

min kg

2 0.031 0.008 18 2.55 0.687

2.5 0.049 0.013 19 2.84 0.766

3 0.071 0.019 20 3.14 0.848

3.5 0.096 0.026 21 3.46 0.935

4 0.126 0.034 22 3.80 1.03

5 0.196 0.053 24 4.52 1.22

5.5 0.238 0.064 25 4.91 1.33

6 0.283 0.076 26 5.13 1.43

6.5 0.332 0.090 27 5.73 1.55

7 0.385 0.104 28 6.15 1.66

7.5 0.442 0.119 29 6.61 1.78

8 0.503 0.136 30 7.07 1.91

8.5 0.586 0.153 32 8.04 2.17

9 0.636 0.172 33 8.55 2.31

9.5 0.701 0.191 34 9.08 2.45

10 0.785 0.212 35 9.62 2.60

12 1.13 0.305 38 11.34 3.06

13 1.33 0.358 40 12.57 3.39

14 1.54 0.416 42 13.85 3.7

15 1.77 0.477 45 15.90 4.2

16 2.01 0.543 48 18.1 4.8

17 2.27 0.613 50 19.6 5.3

8. Semi−finished products of copper and copper alloys

8.1. Square bars

94

Page 101: Textbook for Vocational Training - Formulas and Tables Metal

Designations

a lateral lengthA cross−sectional aream weight

Weight of square bars in kilogrammes per metre

ain mm

Ain mm2

min kg

ain mm

Ain mm2

min kg

4 16 0.135 10 100 0.850

4.5 20.3 0.171 11 121 1.03

5 25 0.211 12 144 1.22

5.5 30.3 0.256 14 196 1.66

6 36 0.304 15 225 1.91

7 49 0.417 16 256 2.17

8 64 0.541 18 324 2.75

9 81 0.688 20 400 3.40

22 484 4.11 35 1230 10.45

24 576 4.90 36 1296 11.02

25 625 5.31 41 1681 14.30

26 676 5.75 46 2116 17.99

27 729 6.20 50 2500 21.25

30 900 7.65 55 3025 25.71

32 1024 8.70 60 3600 30.60

8.2. Hexagon bars

95

Page 102: Textbook for Vocational Training - Formulas and Tables Metal

Designations

SW width across flatsA cross−sectional aream weight

Weight of hexagon bars in kilogrammes per metre

SWin mm

Ain mm2

min kg

SWin mm

Ain mm2

minkg

3 7.79 0.066 11 105 0.89

3.2 8.87 0.076 12 125 1.06

3.5 10.6 0.090 14 170 1.44

4 13.9 0.118 15 195 1.65

4.5 17.5 0.149 16 222 1.88

5 21.7 0.184 17 250 2.13

5.5 26.2 0.223 19 313 2.66

6 31.2 0.265 22 419 3.56

7 42.4 0.360 24 498 4.24

8 45.4 0.471 27 631 5.37

9 70.2 0.596 30 779 6.62

10 88.6 0.736 32 887 7.50

8.3. Round bars

96

Page 103: Textbook for Vocational Training - Formulas and Tables Metal

Designations

d diameterA cross−sectional aream weight

Weight of round bars in kilogrammes per metre

din mm

Ain cm2

min kg

din mm

Ain cm2

min kg

2 3.14 0.028 16 201 1.79

2.5 4.91 0.044 17 227 2.02

3 7.07 0.063 18 254 2.27

3.5 9.62 0.086 20 314 2.80

4 12.6 0.112 22 380 3.38

4.5 15.9 0.142 24 452 4.03

5 19.6 0.175 25 491 4.40

5.5 23.7 0.211 26 531 4.73

6 28.3 0.252 28 616 5.48

7 38.5 0.343 30 707 6.29

8 50.3 0.447 32 804 7.16

9 63.6 0.566 33 855 7.61

10 78.5 0.699 34 908 8.08

11 95.0 0.846 35 962 8.56

12 113 1.01 36 1017 9.06

13 133 1.18 40 1256 11.2

14 154 1.37 42 1385 13.1

15 177 1.57 45 1590 14.2

9. Semi−finished products of hard metal

97

Page 104: Textbook for Vocational Training - Formulas and Tables Metal

9.1. Blanks of sintered metal carbide

Nominal sizein mm

Tolerancein mm

Nominal sizein mm

Tolerancein mm

above up to above up to

4 0.3 45 50 1.6

4 6 0.4 50 55 1.8

6 8 0.5 55 60 2

8 10 0.6 60 70 2.4

10 13 0.7 70 80 2.8

13 16 0.8 80 90 3.2

16 20 0.9 90 100 3.6

20 25 1 100 110 4

25 30 1.1 110 125 4.4

30 35 1.2 125 140 5

35 40 1.3 140 155 5.6

40 45 1.4 155 170 6

9.2. Cutting ceramics

Cutting material Form as supplied Radius in mm Clearanceangle ?

Kawenit HC 20−M KA (KSQ 128) 0.5; −

1.2; 2

EV 10 HC 20−M KA (KSQ 168) 1.2; 2 −

Kawenit HC 20−M KB (KSR 128) 0.5;

1.2; 2 −

EV 10 HC 20−M KB (KSR 168) 1.2; 2

Kawenit HC 20−M KA (KSQ 128) 1.2 5°

Kawenit HC 20−M KB (KSR 128) 1.2 5°

10. Semi−finished products of rigid polyvinyl chloride

10.1. Thin sheets of rigid PVC

Mechanical characteristics

UncolouredQuality

ColouredQuality

1 2 1 2

Tensile strength in MPa longitudinally 50 45 47 42

98

Page 105: Textbook for Vocational Training - Formulas and Tables Metal

transversely 50 40 42 37

Elongation at break longitudinally 2.5 1.0 1.5 1.0

transversely 1.0 0.5 0.5 0.3

Dimensions

Thicknessin mm

Widthin mm

Max. interruptions per reel max. Weightin kg

0.04 1000 2 30

0.05 1000 2 30

0.06 1000 2 30

0.08 1000 2 30

0.10 1000 2 30

0.15 1000 2 30

10.2. Panels of rigid PVC, standard types

Mechanical characteristics

Types

H HS HA HL

Tensile strength in MPa 45 55 55 45

Strain at failure in % 15 10 10 10

Dimensional stability in °C 70 70 70 70

Dimensions

Thickness in mm Widthin mm

Lengthin mm

1.0 1.5 2.0 2.5 3.0 800 1500

4.0 5.0 6.0 8.0 800 1400

10.0 12.0 15.0 750 1400

18.0 20.0 700 1400

1.0 20.0 1000 2000

25.0 30.0 800 1800

Weight

Thicknessin mm

Weight per m2

in kgThickness

in mmWeight per m2

in kgThickness

in mmWeight per m2

in kg

1.0 1.5 4.0 6.0 12.0 18.0

1.5 2.3 5.0 7.5 15.0 22.5

2.0 3.0 6.0 9.0 20.0 30.0

2.5 3.8 8.0 12.0 25.0 37.5

3.0 4.5 10.0 15.0 30.0 45.0

99

Page 106: Textbook for Vocational Training - Formulas and Tables Metal

11. Semi−finished products of moulded laminate

11.1. Laminated paper sheets

Dimensions in mm Dimensions in mm

Width × length Thickness Width × length Thickness

Type HP 2061 Type HP 2061.9

1050 × 1950 0.2...60 720 × 950 0.1...1

950 × 1500 1...30 950 × 1200

970 × 970 0.3...60 1000 × 1200

970 × 1590 2...60 1000 × 1750

1050 × 1750 1...50

1050 × 1200 8...150

Type HP 2061.5 Type HP 2065.5

470 × 2500 3...25 1050 × 1050

720 × 1000 0.2...2 Type HP 2062.8

550 × 1050

970 × 2500

11.2. Laminated fabric sheets

Dimensions in mm Dimensions in mm

Width × length Thickness Width × length Thickness

Type HGw 2081 Type Hgw 2082

970 × 970 20...40 970 × 970 1.5...40

970 × 1590 20...150 970 × 1590 1.5...150

1030 × 1030 20...150 1030 × 1080 1...25

1030 × 1080 30...150 1020 × 1050 1...30

Type Hgw 2082 Type Hgw 2082.5

950 × 1200 1...150 1030 × 1030 1...100

1000 × 1000 1020 × 1050 1...30

720 × 1000 0.5...7 Type Hgw 2083

550 × 1050 0.5...10

12. Plates and sheets of different materials

Thicknessin mm

Weight per m2 in kg in the case of

Grey Mild steel, Copper, Brass Bronze Zinc Lead Aluminium Synthetic

100

Page 107: Textbook for Vocational Training - Formulas and Tables Metal

iron cast steel resin

1 7.25 7.85 8.9 8.5 8.6 7.2. 11.37 2.7 1.5

2 14.50 15.50 17.8 17.0 17.3 14.4 22.74 5.4 3.0

3 21.75 23.55 26.7 25.5 25.8 21.6 34.11 8.1 4.5

4 29.00 31.40 35.6 34.0 34.4 28.8 45.48 10.8 6.0

5 36.25 39.25 44.5 42.5 43.0 36.0 56.85 13.5 7.5

6 43.50 47.10 53.4 51.0 51.6 43.2 68.22 16.2 9.0

7 50.75 54.95 62.3 59.5 60.2 50.4 79.59 18.9 10.5

8 58.00 62.80 71.2 68.0 68.8 57.6 90.96 21.6 12.0

9 65.20 70.65 80.1 76.5 77.4 64.8 102.33 24.3 13.5

10 72.50 78.50 89.0 85.0 86.0 72.0 113.70 27.0 15.0

13. Wire of different materials

13.1. Steel wire

Diameterin mm

Weight per kmin kg

Diameterin mm

Weight per kmin kg

0.10 0.0617 1.3 10.4

0.12 0.0888 1.4 12.1

0.14 0.121 1.6 15.8

0.16 0.158 1.8 20.0

0.18 0.200 2.0 24.7

0.2 0.247 2.2 29.8

0.22 0.298 2.5 38.5

0.24 0.355 2.8 48.3

0.26 0.417 3.1 59.2

0.28 0.483 3.4 71.3

0.31 0.592 3.8 89.0

0.34 0.713 4.2 109.0

0.37 0.844 4.6 130.0

0.4 0.986 5.0 154.0

0.45 1.25 5.5 178.0

0.5 1.54 6.0 222.0

0.55 1.87 6.5 260.0

0.6 2.22 7.0 302.0

0.7 3.02 8.8 477.0

101

Page 108: Textbook for Vocational Training - Formulas and Tables Metal

0.8 3.95 9.4 545.0

0.9 4.99 10.0 617.0

1.0 6.17

1.1 7.46

1.2 8.88

13.2. Copper or brass wire

Diameterin mm

Weight per kmin kg

Diameterin mm

Weight per kmin kg

copper brass copper brass

0.1 0.070 − 1.1. 18.458 8.078

0.12 0.101 − 1.2 10.066 9.613

0.15 0.157 − 1.3 11.810 11.282

0.18 0.226 − 1.4 13.697 13.085

0.2 0.280 0.267 1.5 15.727 15.020

0.22 0.338 0.323 1.6 17.898 17.090

0.25 0.437 0.417 1.7 20.201 19.293

0.28 0.548 0.523 1.8 22.650 21.630

0.3 0.629 0.601 1.9 25.231 24.100

0.32 0.716 0.684 2 27.963 26.704

0.35 0.856 0.818 2.1 30.830 29.441

0.38 1.009 0.964 2.2 33.828 32.311

0.4 1.118 1.068 2.3 36.979 35.315

0.45 1.415 1.352 2.4 40.264 38.453

0.5 1.747 1.667 2.5 43.690 41.724

0.55 2.114 2.019 3 62.914 60.083

0.6 2.615 2.403 3.5 85.626 81.780

0.65 2.953 2.821 4 111.838 106.821

0.7 3.425 3.271 4.5 141.546 155.186

0.75 3.932 3.775 5 174.731 166.951

0.8 4.474 4.273 5.5 211.446 201.946

0.85 5.051 4.832 6 251.638 240.323

0.9 5.662 6.024 7 342.508 527.117

1 6.990 6.676 8 447.358 427.257

102

Page 109: Textbook for Vocational Training - Formulas and Tables Metal

14. Types and functions

Type Function Examples

Connectingelements

disconnectable and permanent connectionof structural members

bolts, screws, nuts washers, lockingscrews, pins, springs, keys, rivets

Supportingelements

supporting of structural members, receptionof forces

axles, sliding, antifriction bearings,frames, elastic springs

Transmittingelements

transmission, distribution, conversion ofmechanical energy

shafts, couplings, toothed gearings, beltdrives, trains of sprockets, crankmechanisms, worm gears, hydraulicgearings

Working elements Performance of the necessary workingmotions (rotating or straight−linereciprocating)

tools

Driving elements Provision of the required energy by energyconversion

electric motor, combustion engine

Control elements Control of energy and mass flow hand crank, hand wheel, switch

15. Connecting elements

15.1. Bolts

15.1.1. Bolts with heads

Representation Designation example

with split−pin hole

103

Page 110: Textbook for Vocational Training - Formulas and Tables Metal

without split−pin hole

15.1.2. Bolts without heads

Representation Designation example

with split−pin holes

104

Page 111: Textbook for Vocational Training - Formulas and Tables Metal

without split−pin holes

15.1.3. Bolts with threaded journals

Representation Designation example

105

Page 112: Textbook for Vocational Training - Formulas and Tables Metal

15.2. Screws

Figure DesignationDimensions

Figure DesignationDimensions

Hexagon head screw

Hexagonhead screwfor steelstructureM 10 − M 3030 − 175, m

Hexagonhead screwM3 − M4814 − 220, m,mg

Hexagonhead screwthreadalmost up tothe headM 5 − M 2415 − 80, g

Hexagonhead screwwith journalM6 − M4212 − 220, m,mg

Hexagonhead screwwith finescrew threadM12 x 1.5 toM24 x 230 − 220, m,mg

Hexagondowel boltM10 − M4830 − 200, m,mg

Countersunk screws, oval−head countersunk screws, oval−head screws

Countersunkscrew withcross slotM1 − M102 − 70, m

Oval−headscrew withlarge headM1 − M32 − 18, m

106

Page 113: Textbook for Vocational Training - Formulas and Tables Metal

Oval−headcountersunkscrew withcross slotM1 − M102 − 60, m

Oval−headscrew withshoulderM1.6 − M101 − 25, m

Other types of screws

Designation Dimensions

Fillister head screw with cross slot Shape A, B, C; M1−M10; 2 − 70, m

Square−head bolt with shoulder M5 − M16; 10 − 100, m

Knurled screw, high M2 − M10; 4 − 40, m

Fillister head sheet metal screw with cross slot d1 2.2 − 6.3; 9.5 − 50, m

Wing screw M6 − M12; 22 − 65, m

Threaded pin with cross slot and point M1 − M12; 2 − 45, m

Stud bolt threaded end approx. 1d; M3 − M48; 16 − 220, m

15.3. Nuts

Figure DesignationDimensions

Figure DesignationDimensions

Hexagon nuts

Hexagon nutM1.6 − M150× 2, m

Hexagon nut,flatM1.6 − M30,m

107

Page 114: Textbook for Vocational Training - Formulas and Tables Metal

Hexagon nutM5 − M42, g

Hexagonpipe nutWhitworthpipe threadR 1/8” − R 6”,mg

Other types of nuts

Square nutwith shoulderM8 − M24, m

Knurled nut,highM3 − M10, m

15.4. Washers

Figure Designation

Washers for fillister head screws and boltsHole diameter 1.1. − 81, mBolt diameter 1.1. − 80Fillister head screws M1 − M42

WashersHole diameter5,8 − 52, g

15.5. Securing devices for screws

Figure Designation Figure Designation

108

Page 115: Textbook for Vocational Training - Formulas and Tables Metal

Springwashersa) bent openb) smooth 2− 48, m

Lockingplates withinternal lugsd2 6−75da 16 − 95,m

Lockingplates withtangsd 3.2 − 50,m

Split pinsd 0,6 − 13l 4 − 180

15.6. Pins

15.6.1. Cylindrical pins

15.6.2. Taper pins

109

Page 116: Textbook for Vocational Training - Formulas and Tables Metal

Taper 1:50

Dimensions in mm

d1 h10 1 1.5 2 2.5 3 4 5 6 8 10

r 1 1.6 3 6 10

l 8 −160

15.6.3. Notched pins

Figure Designation Dimensions in mm

d l

Cylindrical notched pins 0.8 − 16; 1.2 4 − 125

Taper notched pins 1.5 − 16 4 − 125

Edged adjusting pins 1.5 − 16 6 − 125

Round−headed notched nails 2−81.4; 1.6

3 − 36

15.7. Keys

15.7.1. Sunk keys, drive−fitted keys

110

Page 117: Textbook for Vocational Training - Formulas and Tables Metal

A sunk key, B drive−fitted key; 1: 100 inclination

b width of key, bN width of keyway, d shaft diameter, h height of key, l length of key, t1 depth of shaft groove, t2depth of hub groove

Designation example

Dimensions in mm

b 2 3 4 5 6 8 10 12 16 20

h 2 3 4 5 6 7 8 8 10 12

l from 6 6 8 10 14 18 22 28 45 56

to 20 28 38 45 56 70 90 100 180 220

d from 5 7 10 14 18 24 30 36 48 65

to 7 10 14 18 24 30 36 42 55 75

t1 0.6 0.7 1.1 1.6 2.1 2.6 3 3 4.5 5.5

t2 1.1 2.0 2.5 3 3.5 4 4.5 4.5 5.0 6

15.7.2. Gib−head keys

111

Page 118: Textbook for Vocational Training - Formulas and Tables Metal

b Width of key, bn width of keyway, d shaft diameter, k height of key, h1 height of gib, length of key, t depth ofshaft groove, t2 depth of hub groove 1 fitted in

Designation example

Dimensions in mm

b 4 5 6 8 10 12 14 16 18 20

h 4 5 6 7 8 8 9 9 11 12

l from 14 14 14 18 22 28 36 45 50 56

to 36 45 56 70 90 110 140 180 200 220

d above 10 14 18 24 30 36 42 48 55 65

to 14 18 24 30 36 42 48 55 65 75

t1 2.5 3 3.5 4 4.5 4.5 5 5 5.5 6

t2 1.1 1.6 2.1 2.6 3 3 3.5 4.5 5 5.5

15.8. Springs

15.8.1. Disk springs

112

Page 119: Textbook for Vocational Training - Formulas and Tables Metal

Designation example

Version Use

A the whole torque is transmitted the

B position of the driving element is retained

Dimensions in mm

bh9

2 2.5 3 4

h 2.6 3.7 3.7 3.7 5 6.5 5 6.5 7.5

d1 7 10 10 10 13 16 13 16 19

l 6.8 9.7 9.7 9.7 12.6 15.7 12.6 15.7 18.6

d2A 7 10

above 5 to 7 10 14

B above 7 10 14

to 14 8 24

15.8.2. Feather keys

Version Round−ended Straight−ended

113

Page 120: Textbook for Vocational Training - Formulas and Tables Metal

withoutholdingscrew

Shape AShape B

withholdingscrew

Shape C

Shape D

with twoholdingscrewsandforcingscrews

Shape EShape F

Designation example

Dimensions in mm

b h9 2 3 4 5 6 8 10 12 16 20

114

Page 121: Textbook for Vocational Training - Formulas and Tables Metal

h f3 2 3 4 5 6 7 8 8 10 12

l1 from 6 6 8 10 14 18 22 28 45 56

to 25 36 45 56 70 90 110 140 180 220

d1 above 5 7 10 14 18 24 30 36 48 65

to 7 10 14 18 24 30 36 42 55 75

15.9. Rivets

Figure Designation Dimensions inmm

d l

Rivets with buttonheads 1−9 2−60

Rivets with buttonheads for steelstructures

10 −30

16 −200

Countersunk−head rivets 1−9 2−60

Countersunk−head rivets 10 −30

20 −150

115

Page 122: Textbook for Vocational Training - Formulas and Tables Metal

Belt rivets 3−5

16. Load−carrying elements

16.1. Elastic springs

Figure Designation, version

Wire diameter Coils Spring steelgrade

Compression springs

View 0.1 − 0.45 5.5 − 18.5 A, B, C

0.5 − 16 5.5 − 17.5 A, B, C

Symbol

Tension springs

View 0.1 − 0.45 6 − 60 C

0.5 − 60 10 − 60 A, B

Symbol

116

Page 123: Textbook for Vocational Training - Formulas and Tables Metal

Designation example

16.2. Bearings

16.2.1. Types of bearings

Classification aspect Designation Explanation

Direction of forceapplication

Radial or thrust bearing (journalbearing)

the bearing forces act transversely tothe bearing axis

Axial or side bearing (step bearing) the bearing forces act in the direction ofthe bearing axis

Radial−axial bearing (journal andstep bearing)

the bearing forces act transversely toand in the direction of the bearing axis

Friction Sliding bearing sliding friction becomes effective

Antifriction bearing rolling friction becomes effective

Design unsplit sliding bearings consist of bearing casing and bearingbush

split sliding bearings consist of bearing casing and bearingshells

Use of materials solid bearings made of one bearing metal throughout

composite bearings made of steel backing shells to whichbearing metal is applied

16.2.2. Sliding bearings

Shells

Shells without collars

Solid Composite for solid and compositebearings

117

Page 124: Textbook for Vocational Training - Formulas and Tables Metal

1 sliding layer, 2 supporting body, 3 marking

Shells with a collar

Solid Composite with butting face Composite without butting face

1 sliding layer, 2 supporting body, 3 undercut shape B, 4 marking

Dimensions in mm

d1 40, 45, 50, 56, 63, 70, 80, 90, 100,

110, 125, 140, 160, 180, 200, 220, 250

l 20 − 250

Bushes

118

Page 125: Textbook for Vocational Training - Formulas and Tables Metal

Bushes without collars

Type Material

Solid steel, grey cast iron, non−ferrous metal sinter metal moulded material

Composite Sliding layer of non−ferrous metal, supporting body of steel

Designation example

Dimensions in mm

d1 4, 8, 10, 14, 16, 18, 20, 22, 25, 28, 32,

36, 40, 45, 50, 55, 63, 70, 80, 90, 100

l 3 − 100

119

Page 126: Textbook for Vocational Training - Formulas and Tables Metal

Bushes with steel collars, cast iron, material other than metal

Dimensionsin mm

d1 20 − 100

l1 10 − 100

16.2.3. Antifriction bearings

Types of antifriction bearing

Group Designation Symbol

Axial bearing

Axial grooved ball bearings, acting on one side, single−row 51 100−51168

51 200 − 51252

51 305 − 51330

51 405 − 51440

120

Page 127: Textbook for Vocational Training - Formulas and Tables Metal

Axial grooved ball bearings, acting on two sides 52 202 − 52220

52 305 − 52314

52 408 − 52420

Radial bearings

Radial grooved ball bearings without loading slots, single−row 60 − 60/500

607 − 609

623 − 626

627, 629

634, 635

6200 − 6244

6300 − 6330

Self−aligning ball bearings, double−row 1200 − 1222

1204k −1222k

1300 − 1318

1340k −1318k

Cylindrical roller bearings with outside restraining flanges Nu 1005 − NU1020

121

Page 128: Textbook for Vocational Training - Formulas and Tables Metal

NU 204 − NU264

NU 304 − NU348

NJ 204 − NO264

NJ 304 − NJ348

Needle bearings with needles in cages NA 4900 − NA4928

Bearing symbols

1 Bearing symbol2 Year of manufacture3 Distinguishing mark4 Material5 Country of manufacture

Designation example

Bore characteristic(d = 44 × 5 = 220)

122

Page 129: Textbook for Vocational Training - Formulas and Tables Metal

Bore diameter in mm Bore characteristic Example

3 − 9 Bore diameter in mm 609

10 00 62 00

12 01 62 01

15 02 62 02

17 03 62 03

20 − 480 1/5 bore diameter 62 44

(d = 44 × 5= 220)

22, 28, 32 Bore diameter in mm

> 480 Separated by diagonal stroke from the symbol of the 60/500 bearingseries

17. Transmission elements

17.1. Shafts

17.1.1. Types of shafts

Classificationaspect

Designation Function Explanation

Longitudinalsection

Straight shafts simple transmission of rotary motions

Crankshafts conversion of rotary motions into straight−line motionsand vice versa

Mobility Rigid shafts, articulated shafts like straight shafts compensation of paralleldisplacement or angular displacement between thecentral axes of two shafts

123

Page 130: Textbook for Vocational Training - Formulas and Tables Metal

Flexible shafts drive of mechanical tools which must be freelyhandled, multiple deflection of rotary motion(tachometer)

Cross section Solid shafts in gears not requiring lightweight construction

Hollow shafts light−weight gears, spindles on machine tools forpassing material or tie bars

Profile shafts Transmission of the torque with longitudinaldisplacement (sliding gears, cardan shaft)

124

Page 131: Textbook for Vocational Training - Formulas and Tables Metal

17.1.2. Diameters of shafts (axle diameters)

Preferred dimensions, selection series

Ra5 Ra10 Ra20 R40 Ra5 Ra10 Ra20 R40

10 10 10 10 32 32 32

10.5 34

11 11 36 36

11.5 38

12 12 12 40 40 40 40

13 42

14 14 45 45

15 48

16 16 16 16 50 50 50

17 52

18 18 55 55

19 60

20 20 20 60 60 60 63

21 65

22 22 70 70

24 75

25 25 25 25 80 80 80

26 85

28 28 90 90

30 95

100 100 100 100 200 200 200

105 210

110 110 220 220

120 240

125

Page 132: Textbook for Vocational Training - Formulas and Tables Metal

125 125 125 250 250 250 250

130 260

140 140 280 280

150 300

160 160 160 160 320 320 320

170 340

180 180 360 360

190 380

17.1.3. Cylindrical shaft ends (axle ends)

Designation according to application offorce

Designation according to shape Explanation

Pivot (radial application of force)

End journal

easy tomanufacture andinstall

Neck collar journal

frequently splitbearing shellsrequired,time−consuminginstallation

Pivot journal (axial application of force)

Solid pivot journal

unfavourable,lubricatingconditions, sincethere is slowsliding speed atthe pivot point

126

Page 133: Textbook for Vocational Training - Formulas and Tables Metal

Pivot journal

Ring pivot

improvedlubricatingconditions 1 oilduct

Ball journal

changes inangles of axlesand shafts havenot influence onbearingconditions

17.1.4. Shaft packings

Designation Explanation

Felt ring

only suitable for greaselubrication (simple packing); oilpasses unhindered

127

Page 134: Textbook for Vocational Training - Formulas and Tables Metal

Radial packing

prevents oil leakage; contactforce is increased by springwasher (gear shafts)1 inner ring, 2 spring washer, 3casing, 4 gasket

Radial packing with dust−proof lip

prevents oil leakage andpenetration of dust (crankshafts)1 space to be sealed

Sealing grooves

turned−in grooves relievepressure stepwise to approx. 0(pistons, centrifugal compressors)1 pressure side, 2 pressure drop

oil is centrifuged by centrifugalforce and prevented from leaking

128

Page 135: Textbook for Vocational Training - Formulas and Tables Metal

Oil−thrower ring

17.2. Toothed gears

17.2.1. Quantities at the toothed gear

1 pitch circle2 outside circlet tooth pitch(T = m · ?)m moduled0 pitch circle diameterdk outside circle diameterz number of teeth

min mm

tin mm

min mm

tin mm

min mm

tin mm

0.3 0.942 2.75 8.639 9 28.274

0.4 1.257 3 9.425 10 31.416

0.5 1.571 3.25 10.210 11 34.558

0.6 1.885 3.5 10.996 12 37.699

0.7 2.199 3.75 11.781 13 40.841

129

Page 136: Textbook for Vocational Training - Formulas and Tables Metal

0.8 2.513 4 12.566 14 43.982

0.9 2.827 4.5 14.137 15 47.124

1 3.142 5 15.708 16 50.265

1.25 3.927 5.5 17.279 18 56.449

1.5 4.712 6 18.850 20 62.832

1.75 5.488 6.5 20.420 22 69.115

2 6.283 7 21.991 24 75.398

2.25 7.069 8 25.133 27 84.823

2.5 7.854

17.2.2. Types of toothed wheel gearings

Representation complete simplified symbol

Spur gears on parallel axes− Outside gears

1 spur gears, 2 helical gears− Inside gears

− Spur gear with rack

130

Page 137: Textbook for Vocational Training - Formulas and Tables Metal

1 straight teeth. 2 herringbone teeth

Helical gearscylindrical crossed helical gears, crossing angle ? 90°

Worm gearcylindrical worm

Bevel wheel trainShaft angle ?A = 90°

131

Page 138: Textbook for Vocational Training - Formulas and Tables Metal

17.2.3. Transmission ratios

Transmission ratio

Series i

R 10 1 1.25

R 20 1 1.12 1.25 1.40

R 40 1 1.06 1.12 1.18 1.25 1.32 1.40 1.50

R 10 1.60 2.00

R 20 1.60 1.80 2.00 2.24

R 40 1.60 1.70 1.80 1.90 2.00 2.12 2.24 2.36

R 10 2.50 3.15

R 20 2.50 2.80 3.15 3.55

R 40 2.50 2.65 2.80 3.00 3.15 3.35 3.55 3.75

132

Page 139: Textbook for Vocational Training - Formulas and Tables Metal

R 10 4.00 5.00

R 20 4.00 4.50 5.00 5.60

R 40 4.00 4.25 4.50 4.75 5.00 5.30 5.60 6.00

R 10 6.30 8.00

R 20 6.30 7.10 8.00 9.00

R 40 6.30 6.70 7.10 7.50 8.00 8.50 9.00 9.50

18. Subdivision of test procedures

Term Explanation

Testing Comparison of workpieces in the respective stage of manufacture with the technicalspecifications for dimensions, form, surface condition, hardness and strength

Non−dimensionaltesting

Comparison without auxiliary means, e.g. visual inspection, resonance test

Dimensional testing Comparison with technical auxiliaries (testing tools); the workpiece is not changedduring testing

Measuring Test procedure for determining the dimensions of lengths or angles

Gauging Testing whether dimensions vary from the required measures only by a permissiblequantity (observance of the specified tolerance band),e.g. limit gauging, formgauging.

18.1. Non−dimensional testing

18.1.1. Spark testing

Test

The test specimen and the reference bar (steel grade known) must be pressed gently onto a medium grained,hard grinding wheel (dia. = 250 mm; n = 1400 r.p.m)

Appearance of sparks

Carbon steel with

0.1 % C 0.4 % C 1.1 % C

133

Page 140: Textbook for Vocational Training - Formulas and Tables Metal

1 few spear−shaped lines, brightyellow

2 bunch of spears denser than in 1. brightyellow

3 bunch, thicker than in2, ramified, bright yellow

Alloyed tool steels with

1.5 % Si 2.0 % Mn 13 % Cr 2.0 % W

figure

figure

bright part shorter and brightertan in 3, yellowish−white

form as with 1−3, raybrighter, bright yellow

ray short, fine,ramified, orange

ray long, interrupteddark red lines

18.1.2. Bending test

Type of testspecimen

Test Explanation

Double foldingtest

The test specimen gives anindication of the toughness of theplate; cracks must not occur at theouter bend radius

Specimen forreverse bendtest

Number of bends up to rupture fromcentre position to a right angle andback indicate the toughness of theplate under bending stress

134

Page 141: Textbook for Vocational Training - Formulas and Tables Metal

Specimen forstrength test

Notch the specimen, clamp into vice and bend toand for until it ruptures

Case−hardened:fine grained barrier layer and fibrouscore;hardened steel:fine grained point of rupture ofvelvet−like appearance;unhardened steel:coarse fibrous point of rupture;workpiece cracked:old point of rupture dark, new pointof rupture light

18.1.3. Other material tests

Type of testspecimen

Test Explanation

Resonancetest

Strike rods; plates, hollow bodies,screwed and riveted joints with alight hammer

Cracks and loose joints are recognizable by aclinking sound; Structural steel: simple metal sound;Tool steel: pure, continuous metal sound

Oil test Dip the workpiece into thin fluid oil(100 − 180 °C); then clean anddust with talc powder

Cracks on the surface are recognizable bydark−coloured spots (oil is absorbed by the powder)

Magneticpowder testing

Place the workpiece into amagnetic field and suspend withfine iron dust

Cracks or slag inclusions below the surface changethe magnetic field; chips collect here in largernumbers

18.2. Dimensional testing

18.2.1. Measuring lengths

Steel ruler (1 mm)

Measuring range: 150 mm; 300 − 500 mmMeasuring accuracy: ± 0.5 mm

135

Page 142: Textbook for Vocational Training - Formulas and Tables Metal

Vernier caliper (0.1 mm)

1 fixed arm, 2 movable arm, 3 rule with main division, 4 vernier

Measuring range: 120 mm · 2000 mmMeasuring accuracy: ± 50 ?m

Used for external dimensions internal dimensions depth dimensions

External micrometer (0.01 mm)

136

Page 143: Textbook for Vocational Training - Formulas and Tables Metal

1 anvil, 2 measuring spindle, 3 clamping device, 4 1 mm reading, 5 graduated drum, 6 ratchetstop, 7 1/2 mm reading, 8 bow

Measuring range: 0 − 25 mm; 25 − 50 mm; 50 − 75 mm; up to 475 − 500 mmMeasuring accuracy: ±5 ?m

18.2.2. Measuring angles

Goniometer with pointer (1°)

When using a goniometer with pointer, the angle is measured on one side of the measuring leg and read onthe other side.

1 Measuring the angle on the workpiece, 2 reading the measured angle on the scale

Measuring range: 0 − 180°Measuring accuracy: ± 0.5°

If the workpiece with the angle to be measured is placed on the right of the measuring leg, the measuringvalue corresponds to the indicated value, measuring value = 79

137

Page 144: Textbook for Vocational Training - Formulas and Tables Metal

If the workpiece with the angle to be measured is on the left of the measuring leg, the indicated value does notcorrespond to the measuring value. The measuring value must be calculated by subtraction. 180° − 103°,measuring value = 77°

Universal bevel protractor (5’)

Main division and vernier of a universal bevel protractor 1 the main division is subdivided into 4 ranges of 90°each, one graduation mark corresponding to 1°, 2 the vernier is subdivided in two directions of 60’ each, onegraduation mark corresponding to 5’

138

Page 145: Textbook for Vocational Training - Formulas and Tables Metal

Measuring range: 0 − 180°Measuring accuracy: ±5’

Reading of the measuring value on the universal bevel protractor

a − measuring value 46°35’b − measuring value 3°30’

When reading the measuring value, starting from zero, the full degrees at the zero stroke of the vernier areread on the main division, and the minutes are read in the same direction at the graduation mark of the vernierwhich coincides with a graduation mark on the main division.

139

Page 146: Textbook for Vocational Training - Formulas and Tables Metal

18.2.3. Limit gauging

Limit gauge

Includes the maximum and minimum dimension; tolerances and dimensional variations are marked

• Limit gauge plug two test cylinders or plugs; cylinder diameter of the go end = minimum diameter, cylinderdiameter of the not−go end = maximum diameter

• Limit snap gauge two test gaps; width of gap of the go end = maximum diameter, width of gap of the not−goend = minimum diameter;

Not−go end is marked red

140

Page 147: Textbook for Vocational Training - Formulas and Tables Metal

• Use of limit gauges

Workpiece dimension between maximum andminimum dimension

Workpiece dimension greater than maximumdimension reworking

Workpiece dimension smaller than minimumdimension rejects

Feeler gauge

Dimensional testing of narrow distances, e.g. when adjusting valves or set screws; in steps of 0.1 mm or 0.05mm

Sheet−iron gauge

The widening at the end of the slot receives the burr of the sheet; steps according to commercial sheetthicknesses

141

Page 148: Textbook for Vocational Training - Formulas and Tables Metal

Hole gauge

Rapid determination of the diameter of twist drills or wires

Block gauges

Prismatic steel pieces, hardened throughout, with polished gauging surfaces; plane and faces which areparallel to each other embody a particular length; any dimensions can be achieved by joining thecorresponding gauge blocks

142

Page 149: Textbook for Vocational Training - Formulas and Tables Metal

18.2.4. Form gauging

Hairline gauge

Conically ground measuring faces the measuring edge is somewhat rounded;

Test patterns:

Uniformly fine light gap the measuring face is plane.Light gap is wider in the centre the measuring face is hollow.Light gap is wider at the sides the measuring face is convex.Light gap is irregular the measuring face is wavy

Squares

Design as solid steel squares (30°, 45°, 60°. 90°, 120°), try squares, bevelled edge steel squares

143

Page 150: Textbook for Vocational Training - Formulas and Tables Metal

Drill grinding gauge

Angle gauge for the drill bit

Roundness gauge

Measuring of internal and external roundnesses; measuring individually or joined to sets

Screw−pitch gauge

Measuring external or internal threads

144

Page 151: Textbook for Vocational Training - Formulas and Tables Metal

19. Fitting systems

19.1. Types of fits

Clearance fit

Sg maximum clearance,Sk minimum clearance

The minimum size of the hole is greater than the maximum size of the shaft. After assembly, there isclearance; it is possible to move the shaft in the bore.

Transition fit

Sg maximum clearance,Ug maximum allowance for fit

The tolerance zones are superposed.

After assembly, clearance or compression is possible.

Interference fit

145

Page 152: Textbook for Vocational Training - Formulas and Tables Metal

Ug maximum fit,Ub minimum allowance for fit

The maximum size of the hole is smaller than the minimum size of the shaft.

After assembly there is compression. Shaft and hole are securely connected to each other.

19.2. Systems of fits, basic hole, basic shaft

In the system of fits, 21 tolerance zones are marked by letters of the alphabet. Capital letters are used formarking the hole and small letters for marking the shaft.

Basic hole system

In the basic hole system a standard hole with uniform diameter is used.

Use: General mechanical engineering, tool manufacture

146

Page 153: Textbook for Vocational Training - Formulas and Tables Metal

1 clearance fit,2 transition fit,3 interference fit,4 clearance is increased,5 fit becomes tighter,6 nominal size,7 clearance,8 allowance for fit

The shafts a − g are below the 0−line. They are therefore smaller than the nominal size, thus havingclearance. The shafts h − n are below or above the 0−line. They are samller or greater than the nominal size,thus having either clearance or allowance for fit. The shafts p − z are above the 0−line. They are greater thanthe nominal size, thus having allowance for fit.

Basic shaft system

In the basic shaft system a standard shaft with uniform diameter is used.

Use: Office machines, textile machines, construction and agricultural machinery, lifting appliances andconveying plants.

147

Page 154: Textbook for Vocational Training - Formulas and Tables Metal

1 clearance fits,2 transition fits,3 interference fits,4 clearance is increased,5 fit becomes tighter,6 nominal size,7 clearance,8 allowance for fit

Holes A−G are above the 0−line. They are therefore greater than the nominal size, thus having clearance.The holes H−N are above and below the 0−line. They are greater or smaller than the nominal size, thushaving either clearance or allowance for fit. The holes P − Z are below the 0−line. They are smaller than thenominal size, thus having allowance for fit.

19.3. Examples of fits

Example: dia. 30H11

148

Page 155: Textbook for Vocational Training - Formulas and Tables Metal

Example: dia. 10r6

Nominal dimensional variations for holes (preferred series)

Range of nominaldimensions mm

D11 F9 F8 H12 H11 H10 H8 H7 J7 J6 K7 K6 N7

Nominal dimensions in ?m

over 1to 3

+ 80+ 20

+ 32+ 7

+ 21+ 7

+ 90+ 0

+ 600

+ 400

+140

+ 90

+ 3− 6

+ 3− 4

−−

−−

− 4−

13

over 3to 6

+105

+ 30

+ 40+ 10

+ 28+ 10

+120

0

+ 750

+ 480

+180

+120

+ 5− 7

+ 4− 4

−−

−−

− 4−

16

over 6to 10

+130

+ 40

+ 49+ 13

+ 35+ 13

+150

0

+ 900

+ 580

+220

+150

+ 8− 7

+ 5− 4

+ 5−

10

+ 2− 7

− 4−

19

over 10to 14

+160

+ 50

+ 59+ 16

+ 43+ 16

+180

0

+110

0

+ 700

+270

+180

+10

− 8

+ 6− 5

+ 6−

12

+ 2− 9

− 5−

23

over 14to 18

over 18to 24

+195

+ 65

+ 72+ 20

+ 53+ 20

+210

0

+130

0

+ 840

+330

+210

+12

− 9

+ 8− 5

+ 6−

15

+ 2−

11

− 7−

28

over 24to 30

over 30to 40

+240

+ 80

+ 87+ 25

+ 64+ 25

+250

0

+160

0

+100

0

+390

+250

+14+

11

+ 10− 6

+ 7−

18

+ 3−

13

− 0−

33

over 40to 50

over 50to 65

+290

+100

+104

+ 30

+ 76+ 30

+300+ 0

+190

0

+120

0

+460

+300

+18−

12

+ 13− 6

+ 9−

21

+ 4−

15

− 9−

39

over 65to 80

over 80to 100

+340

+120

+123

+ 36

+ 90+ 36

+350

0

+220

0

+140

0

+540

+350

+22−

13

+ 166

+10−

25

+ 4−

18

−10−

45

over 100to 120

149

Page 156: Textbook for Vocational Training - Formulas and Tables Metal

over 120to 140

over 140to 160

+395

+145

+143

+ 43

+106

+ 43

+400

0

+250

0

+160

0

+630

+400

+26−

14

+ 187

+12−

28

+ 4−

21

−12−

52

over 160to 180

over 180to 200

over 200to 225

+460

+170

+165

+ 50

+122

+ 50

+460

0

+290

0

+185

0

+720

+460

+30−

16

+ 22− 7

+13−

33

+ 5−

24

−14−

60

over 225to 250

over 250to 280 +

510+

186+

137+

520+

320+

210+

81+

52+

36+ 25 +

16+ 5 −

14

over 280to 315

+190

+ 56 + 56 0 0 0 0 0 −16

7 −36

−27

−66

over 315to 355 +

570+

202+

151+

570+

360+

230+

89+

57+

39+ 29 +

17+ 7 −

18

over 355to 400

+210

+ 62 + 62 0 0 0 0 0 −18

7 −40

−29

−73

over 400to 450 +

630+

223+

165+

630+

400+

250+

97+

63+

43+ 33 +

18+ 8 −

17

over 450to 500

+230

+ 68 + 68 0 0 0 0 0 −20

− 7 −45

−32

−80

Nominal dimensionsal variations for shafts (some preferred series)

Range of nominaldimensions mm

D11 D9 E8 F9 F7 H12 H11 H8 H7 H6 J6 K6 N6

Nominal dimensions in mm

over 1to 3

− 20− 80

− 20− 45

− 14− 28

7− 32

− 7− 16

0− 90

0− 60

0−

14

0− 9

0− 7

+ 6− 1

−−

+13

+ 6

over 3to 6

− 30−

105

− 30− 60

− 20− 38

− 10− 40

− 10− 22

0−

120

0− 75

0−

18

0−

12

0− 8

+ 7− 1

−−

+16

+ 8

over 6to 10

− 40−

130

− 40− 76

− 25− 47

− 13− 49

− 13− 28

0−

150

0− 90

0−

22

0−

15

0− 9

+ 7− 2

+10

+ 1

+19+

10

over 10to 14

− 50−

160

− 50− 93

− 32− 59

− 16− 59

− 16− 34

0−

180

0−

110

0−

27

0−

18

0−

11

+ 8− 3

+12

+ 1

+23+

150

Page 157: Textbook for Vocational Training - Formulas and Tables Metal

12

over 14to 18

over 18to 24

− 65−

195

− 65−

117

− 40− 73

− 20− 72

− 20− 41

0−

210

0−

130

0−

33

0−

21

0−

13

+ 9− 4

+15

+ 2

+28+

15

over 24to 30

over 30to 40

− 80−

240

− 80−

142

− 50− 89

− 25− 87

− 25− 50

0−

250

0−

160

0−

39

0−

25

0−

16

+11

− 5

+18

+ 2

+33+

17

over 40to 50

over 50to 65

−100

−290

−100

−174

− 60−

106

− 30−

104

− 30− 60

0−

300

0−

190

0−

46

0−

30

0−

19

+12

− 7

+21

+ 2

+39+

20

over 65to 80

over 80to 100

−120

−340

−120

−207

− 72−

123

− 36−

123

− 36− 71

0−

350

0−

220

0−

54

0−

35

0−

22

+13

− 9

+25

+ 3

+45+

23

over 100to 120

over 120to 140

−145

−395

−145

−245

− 85−

148

− 43−

143

− 43− 83

0−

400

0−

250

0−

63

0−

40

0−

25

+14−

11

+28

+ 3

+52+

27

over 140to 160

over 160to 180

over 180to 200

−170

−460

−170

−285

−100

−172

− 50−

165

− 50− 96

0−

460

0−

290

0−

72

0−

46

0−

29

+16−

13

+33

+ 4

+60+

31

over 200to 225

over 225to 250

over 250to 280

−190

−510

−190

−320

−110

−191

− 56−

186

− 56−

108

0−

520

0−

320

0−

81

0−

52

0−

32

+16−

16

+36

+ 4

+66+

34

over 280to 315

151

Page 158: Textbook for Vocational Training - Formulas and Tables Metal

over 315to 355

−210

−570

−210

−350

−125

−214

− 62−

202

− 62−

119

0−

570

0−

360

0−

89

0−

57

0−

36

+18−

18

+40

+ 4

+73+

37

over 355to 400

over 400to 450

−230

−630

−230

−385

−135

−232

− 68−

223

− 68−

131

0−

630

0−

400

0−

97

0−

63

0−

40

+20−

20

+45

+ 5

+80+

40

over 450to 500

20. Scribing

20.1. Types of scribing

Scribing according to reference edge

The reference edge is a well−prepared edge of the workpiece to which all dimensions are referred.

Scribing according to the reference line

152

Page 159: Textbook for Vocational Training - Formulas and Tables Metal

The reference line is a scribed line on the workpiece to which all dimensions are referred.

Scribing according to reference surface

The reference surface is a plane surface of the workpiece to which all dimensions are referred.

153

Page 160: Textbook for Vocational Training - Formulas and Tables Metal

Scribing with scribing block

Scribing with scratch gauge

Scribing according to template

154

Page 161: Textbook for Vocational Training - Formulas and Tables Metal

20.2. Notes on scribing

The material used for the scriber is important

Scriber Workpiece

Steel (hardened) rough or rough machined

Brass finish−machined

Graphite notch−sensitive, (surface−refined, light metal, plastic)

Guiding the scriber

155

Page 162: Textbook for Vocational Training - Formulas and Tables Metal

Making punch marks

Set the centre punch exactly on the scribed line straight scribed line − large distance between the punchmarks curbed scribed line − short distance between the punch marks

Scribing of spacings with the compass

156

Page 163: Textbook for Vocational Training - Formulas and Tables Metal

Do not punch until the last markings of the spacings coincide.

21. Fundamental forming by casting

21.1. Shrinkage measures

Shrinkage measurein %

Material

1.0 − 1.5 aluminium cast alloys (AlMg)

1.0 − 1.2 aluminium cast alloys (AlSi)

1.5 lead−bronze, lead−tin−bronze (CuPb)

0 nodular cast iron (GGG), ferritic annealed

0.3 nodular cast iron (GGG), ferritic−pearlitic annealed

0.8 − 1.0 nodular cast iron (GGG), in the cast state or pearlitic annealed

1.0 cast iron with laminated graphite (GGL)

1.85 cast copper

1.6 − 2.2 special brass (CuZn), aluminium bronze, multi−component aluminium bronze

2.0 − 2.5 cast steel, high−alloy (CrNi−, Mn cast steel)

2.0 cast steel, unalloyed, low−alloy

0.5 − 1.5 malleable cast iron, pearlitic (GTP)

0 − 1.0 blackhaert malleable cast iron (GTS)

1.0 − 2.0 whiteheart malleable cast iron (GTW)

1.5 tin−bronze (CuSn), red brass (CuSnZn), cast brass

157

Page 164: Textbook for Vocational Training - Formulas and Tables Metal

21.2. Machining allowances for castings

21.2.1. Cast steel, allowances for external surfaces

Nominalsize

in mm

Allowances per surface in mm

Maximumsize of thecasting (1,b, h or dia.)

hand moulded machine moulded

over to bottom side top bottom side top

− 160 4 4 6 3 4 6

160 250 5 5 7 4 4 7

250 400 6 6 8 5 5 8

400 630 7 7 9 6 6 9

630 1000 8 8 10 7 7 10

21.2.2. Cast steel, allowances for holes and openings

Nominalsizesin mm

Allowances per surface in mm

Lengths of the holes andopenings in mm

Max. insidediameter or

max. internaldimension

over

− 250 400 630 1000 1600

to

250 400 630 1000 1600 2000

over to

80 160 7 9 − − − −

160 250 8 10 12 14 16 −

250 400 9 11 13 15 17 19

400 630 10 12 14 16 18 20

630 1000 11 13 15 17 19 21

21.2.3. Grey cast iron and malleable cast iron, allowances

Nominalsizesin mm

Allowances per surface in mm

hand moulded machinemoulded

158

Page 165: Textbook for Vocational Training - Formulas and Tables Metal

over to bottom side top bottom side top

40 2 3 2 2

40 100 2 3 2 3

100 160 3 4 3 4

160 250 3 5 3 4

250 400 4 6 3 5

400 630 5 7 4 6

630 1000 6 9 5 7

21.2.4. Light metal cast alloys, allowances

Nominalsizesin mm

Allowances per surface in mm

hand moulded machinemoulded

over to bottom side top bottom side top chill casting

− 100 2 2 1.5 1.5 1.5

100 160 2.5 2.5 2 2 1.5

160 250 2.5 2.5 2 2.5 2

250 400 3 3 2.5 3 2.5

400 630 3.5 3.5 3 3.5 3

630 1000 4.5 3.5 3.5 4 3.5

22. Forming

22.1. Mechanical bevelling

Bend radiusin mm

Minimum length of leg in mmfor plate thickness in mm of

1 1.5 2.5 4 6 10 16

1 4 − − − − − −

1.2 4 6 − − − − −

1.6 4 6 − − − − −

2 6 6 − − − − −

2.5 6 6 8 − − − −

3 6 8 10 − − − −

4 8 8 10 12 − − −

5 8 8 10 14 − − −

6 8 10 12 14 18 − −

159

Page 166: Textbook for Vocational Training - Formulas and Tables Metal

8 10 12 14 16 22 − −

10 12 14 16 18 22 32 −

20 22 25 25 28 32 40 60

40 − − 45 50 55 60 80

50 − − − 60 60 80 90

22.2. Bending

22.2.1. Bend radii

Bend radius r in mm

1.0; 1.2; 1.6; 2.0; 2.5; 3.0; 4.0;

5.0; 6.0; 8.0; 10.0; 12.0; 16.0; 20.0;

25.0; 28.0; 32.0; 36.0; 40.0; 45.0; 50.0;

63.0; 80.0; 100.0; 110.0; 125.0; 140.0; 160.0;

180.0; 200.0;

In the roundness, the thickness is reduced by about 20 %.

22.2.2. Radius of the neutral layer

Figure Calculation

1. r > 5sneutral layer is in the centre of theworkpiece

1 neutral layerR radius of the neutral layerr bend radiuss thickness of the workpiece

2. r < 5sneutral layer is shifted to the inside of thebending point

22.2.3. Extended length

Figure Calculation (rule of thumb)

160

Page 167: Textbook for Vocational Training - Formulas and Tables Metal

r > 5sL = l1 + l2 + l3

22.2.4. Instruction for bending

− Before bending carry out a bending test with the material used; one lot of material may exhibit differentbehaviour to another.

− Before bending, always determine the extended length.

− The bending edge should not be in the direction of rolling; if this is unavoidable, larger bend radii should beused.

− Do not scribe the bending points with a steel scriber.

− Place the seams of welded pipes into the neutral layer.

22.3. Forging

22.3.1. Forging temperatures

Material Average forging temperatures

Structural steel 700 − 1200 °C

Tool steel 850 − 1000 °C

High−speed steel 1000 − 1200 °C

Aluminium 500 °C

Al−Cu−Mg−alloys 440 °C

Al−Mg−alloys 400 °C

Al−Mg−Si−alloys 450 °C

Copper 850 °C

Brass 750 °C

Mg alloys 380 °C

22.3.2. Annealing colours

Forging colour Forging temperaturein °C

Remarks

161

Page 168: Textbook for Vocational Training - Formulas and Tables Metal

Bluish black 250 − 300 danger of rupture

Bluish grey 350 − 425

Red (in the dark) 450 − 525 slight forming operations

Dark red 550 − 700

Dark cherry−red 700 − 780 forging and hardening of toolsteels

Cherry−red 780 − 825

Bright cherry−red 825 − 850

Bright red 875 structural steels

Yellowish red 950

Orange 1000 alloyed steels

Yellow 1200

White 1300 forge welding

White with over sparks 1400 steel burns

22.3.3. Temper colours

Temper colour Temperature in °C Example of use

Pale yellow 200 Measuring tools

Light yellow 220 tools (drills)

Dark yellow 240 thread taps, cutting tools,milling cutters

Yellowish brown 250 centre punches

Brownish red 260 cutting and shearing tools,hammers

Purple 270 chisels

Violet 290 springs

Cyaneous 300 wood−working tools, springs

Light blue 310 metal saws

Greyish blue 320 files

Grey 330 dies, riveting tools

The temper colours are reference values for the temperatures indicated since they depend on the materialand the rate of heating.

23. Separating

23.1. Chiseling

162

Page 169: Textbook for Vocational Training - Formulas and Tables Metal

23.1.1. Design and types of chisels

1 cutting edge2 head3 shank? = 30 − 70°

Chisels are made of unalloyed tool steel with a carbon content of 0.9 %; cutting edge forged, hardened,ground and tempered; Weight of hammer: weight of chisel = 2: 1

Types of chisels

Flat chisel Cross−cut chisel Gouge Slotting bit Separating chisel

23.1.2. Working techniques for chiseling

Separating with the chisel

163

Page 170: Textbook for Vocational Training - Formulas and Tables Metal

Chiseling off a sheet strip

Cutting out a bend

Cutting out a corner roundness

164

Page 171: Textbook for Vocational Training - Formulas and Tables Metal

Cutting out straps

Cutting with the chisel

Chiseling a groove

Chiseling a surface

165

Page 172: Textbook for Vocational Training - Formulas and Tables Metal

23.2. Shearing

23.2.1. Types and use of shears

Types of shears Use

Hand plate shears

for short cuts;suitable workpiecethicknesses:steel 0.5 − 1;brass 0.8;copper 1.2 − 2.5;zinc 1.6;

1 shear blade2 limit of lift

Punching shears

for curved cuts;for thickness ofworkpiece,see above

Through shears

for long straight cuts;for thickness ofworkpiece, see above

Plate shears

for plates, panels, bends

1 upper shear blade2 lower shear blade

166

Page 173: Textbook for Vocational Training - Formulas and Tables Metal

Hand lever shears

for steel plate up toabout 6 mm thick;cutting−wedge angle? = 75 − 85°;cutting gap angle:b = 0.05 s for softmaterialsb = 0.1 s for hardmaterials

1 hand lever,2 lever locking device,3 frame, 4 hold−down,5 shear blade

23.2.2. Shearing strength of materials

Material Shearing strength in MPa

Aluminium

soft 70 − 90

hard 130 − 160

Lead 20 − 30

Bronze

soft 220 − 400

hard 400 − 600

Artificialresin

25 − 30

Copper

soft 180 − 220

hard 250 − 300

Brass

soft 220 − 300

hard 350 − 400

Zinc 120 − 200

167

Page 174: Textbook for Vocational Training - Formulas and Tables Metal

Tin 30 − 40

23.3. Sawing

23.3.1. Hand sawing

Design of the hand hacksaw

1 handle,2 clamp dog.3 saw frame,4 wing nut for clamping? clearance angle? cutting−wedge angle? rake angle

Saw pitches for hand saw blades

Designation Number ofteeth on a

length of 25mm

Shape Use

Coarse 14 − 16 Soft steel, aluminium,copper, plastic, mouldedmaterial

Medium 22 Medium hard steel, hardlight metals, brass;sectional steel, sections,thick−walled pipes

Fine 32 Hard materials,Thin−walled pipes, weaksections

Instructions for sawing

− Clamp the saw blade so that the teeth point in the direction of sawing.

168

Page 175: Textbook for Vocational Training - Formulas and Tables Metal

− Assist the start of sawing by notching the rear edge of the workpiece with a triangular file.

− Select the correct number of strokes (50 − 60 double strokes per minute)

− Utilize the full length of the saw blades.

− Relieve the saw of load in the return stroke.

− Do not saw pipes straight through; turn them during sawing.

23.3.2. Mechanical sawing

Cutting speed when using a curcular saw

Material Strength in MPa ?B Cutting speed in m/min

Structural steel 340 − 420 26 − 28

over 420 − 550 24 − 26

over 500 − 600 22 − 24

over 600 − 700 18 − 20

over 700 − 850 14 − 16

Alloyed steel 750 − 800 14 − 16

over 800 − 850 12 − 15

over 900 − 950 10 − 14

over 950 − 1050 9 − 12

over 1050 −1200 8 − 10

Cast steel 400 − 500 18 − 20

over 500 − 600 14 − 16

over 600 8 − 10

Aluminium 300 − 500

Bronze 80 − 120

Grey cast iron 150 − 220 14 − 18

over 220 − 300 12 − 15

Copper 100 − 200

Zinc 150 − 300

Brass

Cutting speed when using a band saw

Material Strength in MPa ?B Cutting speed in m/min

Copper 100 − 200

Brass light metal 400 − 1200

Steel over 600 30 − 40

600 − 800 20 − 30

169

Page 176: Textbook for Vocational Training - Formulas and Tables Metal

800 − 1200 15 − 20

over 1200 10 − 15

Laminated plastic 300 − 900

23.4. Filing

23.4.1. Design of files

1 handle2 tang3 nominal length4 workpiece5 chip space6 chips

Files are made of carbon steel (0.9 − 1.5 % C) or alloyed steel (Mn, Si, Cu); cutting wedges are cut or milled.

23.4.2. Designation of files

Cut no. Designation Number of cutson a file lengthof 10 mm at a

nominal lengthin mm of

100 200 375

0 rough file 10 7.1 5

1 bastard file 14 10 7.1

2 rough−finishing file 22.4 16 11.2

3 smooth−cut file 31.5 22.4 16

170

Page 177: Textbook for Vocational Training - Formulas and Tables Metal

4 fine smooth−cut file 45 31.5 −

5 finest smooth−cut file 63 45 −

23.4.3. File cross−sections

Cross−section Designation Cut no. Nominal length in mm

knife−edge file 2 − 5 100 − 250

round file 0 − 5 100 − 450

half−round file 0 − 5 100 − 450

cant file 1 − 5 80 − 200

crossing file 1 − 5 80 − 200

flat file 0 − 5 100 − 450

square file 1 − 5 100 − 450

triangular file 1 − 5 100 − 450

23.4.4. Instructions for filing

− Carefully lay the files next to each other, as otherwise the hardened teeth can break out.

− Clamp the workpiece as short as possible.

− Do not file hardened workpieces.

− Degrease the workpieces for filing.

− Check that the file handle fits tightly on the tang

− Clean greased files with a brass plate at right angles to the direction of cut

− Hold the file correctly

23.5. Flame cutting

23.5.1. Cuttable materials

Material cuttable up to(alloying elements)

Preheating temperature

Chrome steel 1.5 % Cr cold cuttable

Carbon steel ? 2 % C

171

Page 178: Textbook for Vocational Training - Formulas and Tables Metal

Manganese steel 13 % Mn + 1.3 % C

Nickel steel 34 % Ni + 0.5 % Cu

Silicon steel 4 % Si + 0.2 % C

Coppered steel 0.7 % Cu

Titanium −

Titanium alloys −

Tungsten steel 10 % W + 55 % Cr + 0.2 % Ni + 0.8 % C

Chrome steel 1.5 − 10 % Cr hot cuttable

Carbon steel 2 − 2.5 % C above 200 °C

Tungsten steel 10 − 17 % W

23.5.2. Reference values for oxyacetylene cutting

Plate thicknessin mm

Cutting speedin mm/min

Nozzle elevationin mm

Nozzle sizes in mm

Cutting nozzle Heating nozzle

3 − 10 600 − 360 2 − 3 3 − 10 3 − 25

15 − 25 380 − 240 2 − 4 10 − 25

30 − 50 280 − 170 3 − 5 25 − 50 25 − 80

60 − 80 20 − 140 3 − 5 50 − 80

100 − 120 165 − 125 4 − 6 80 − 120 80 − 180

140 − 180 145 − 115 4 − 8 120 − 180

200 − 240 130 − 108 6 − 10 180 − 240 180 − 300

300 100 − 115 8 − 12 240 − 300

Plate thickness inmm

Oxygen pressurein MPa

consumption inl/m

Acetyleneconsumption in l/m

Hydrogenconsumption

in l/m

3 − 10 0.15 36 − 79 3.5 − 10 17 − 48

15 − 25 0.25 92 − 208 15 − 31 61 − 125

30 − 50 0.35 208 − 530 30 − 64 119 − 255

60 − 80 0.5 525 − 975 59 − 96 236 − 386

100 − 120 0.65 1310 − 1630 89 − 126 353 − 507

140 − 180 0.75 1640 − 2640 115 − 156 460 − 626

200 − 240 0.85 2590 − 3700 144 − 183 575 − 732

300 0.9 − 1.0 5000 − 4350 212 − 184 850 − 735

23.6. Drilling

172

Page 179: Textbook for Vocational Training - Formulas and Tables Metal

23.6.1. Types of drills

Type of drill (selection) Use

Twist drills suitable for most holes; special drills for specific work include deep−hole twistdrills or pin hole drills

Multi−cut stepped drills mainly for countersinking; drilling and countersinking are carried out in oneoperation

Single−lip drills (simpleD−bit)

for deep boring (there must already be low depth bores)

Centre drills for centering workpieces (the tool is a drill and countersink at the same time)

23.6.2. Design of twist drills

Design

1 shank, 2 margin, 3 helical groove, 4 main cutting edge, 5 chisel edge, d = 0.3 − 100 mm

Designation of angles

173

Page 180: Textbook for Vocational Training - Formulas and Tables Metal

? clearance angle,? cutting−wedge angle,? rake angle,? complementary angle of the chisel edge angle,? point angle

23.6.3. Point angles of twist drills

Workpiece material Point angle in°

Workpiece material Point angle in°

Hard rubber 40 Electron 130

Marble, slate 60 Copper, lead, brass 140

Compression moulding material, thermosettingplastic

90 Al alloy strong, toughsteel

150

Steel, cast steel 118 thin sheets 160

23.6.4. Speed and feed for drilling

Material Drill diameter in mm (high−speed steel)

1 3 5 8 10 12,5 15 20 25 30 40 50

Speed in 1/min

Feed in mm/revolution

174

Page 181: Textbook for Vocational Training - Formulas and Tables Metal

St34, St42 7100 2800 1800 1400 925 700 600 450 350 300 280 224

C15 manual 0,05 0,1 0,2 0,22 0,3 0,35 0,3 0,8 0,4 0,4 0,5

St60, C45 4500 1800 1400 900 710 400 380 355 280 224 180 180

manual 0,04 0,08 0,1 0,2 0,2 0,25 0,28 0,3 0,36 0,4 0,4

Mn and CrNi 3000 1800 1400 900 700 600 400 355 280 224 180 140

alloyed steels (?B =700 − 850 MPa)

manual 0,04 0,08 0,18 0,2 0,22 0,3 0,3 0,3 0,33 0,4

Grey cast 4500 1800 1400 900 710 500 400 355 224 180 140 120

iron Malleable castiron

manual 0,05 0,11 0,2 0,2 0,22 0,2 0,3 0,35 0,4 0,5 0,56

Brass 11200 4500 3550 2240 1800 1000 900 800 560 400 400 350

manual 0,05 0,11 0,2 0,22 0,3 0,3 0,3 0,4 0,4 0,5 0,56

Copper 11200 4500 3550 2200 1800 1400 1200 900 700 560 450 355

manual 0,04 0,08 0,1 0,2 0,25 0,28 0,2 0,3 0,3 0,4 0,4

Aluminium 14000 7100 5600 3550 2800 2000 1800 1400 1000 900 710 560

alloys manual 0,05 0,1 0,2 0,22 0,25 0,28 0,3 0,32 0,4 0,45 0,5

Magnesium 14000 9000 7100 5600 4500 3500 2800 2240 1800 1400 1120 900

alloys manual 0,09 0,1 0,3 0,4 0,5 0,6 0,6 0,7 0,7 0,8 0,9

Compression 5600 2240 1400 1120 900 750 550 450 380 280 224 180

moulding materialsand fabric reinforcedlaminates

manual 0,03 0,06 0,12 0,14 0,15 0,2 0,2 0,25 0,26 0,28 0,28

The speeds indicated here are maximum values; the feed applies to the next greater hole diameter in eachcase. The maximum possible speed should be adjusted for diameters from 1−3 mm. When using theindicated values, maximum conditions must be provided; if this cannot be achieved, the correspondingreductions should be made and the next lower speed selected. Casting, forging and rolling crusts are takeninto account by adjusting to the next lower speed.

23.6.5. Instructions for drilling

− Use the correct ground surface of the drill.

− Hold the drill tightly and check for unbalance.

− Clamp the workpiece, but do not deform it.

− Predrill holes with a large diameter with a smaller drill

− Always use a taper drift for loosening drills with a taper−shank.

− Ensure cooling when drilling holes (drilling fluid, compressed air, air); use short drills for short drill holes.

23.7. Countersinking

175

Page 182: Textbook for Vocational Training - Formulas and Tables Metal

23.7.1. Types of countersinks

Countersink

Flat countersink

Spiral countersink

176

Page 183: Textbook for Vocational Training - Formulas and Tables Metal

Head countersink

Form countersink

Combined drill and countersink

Figure Figure Figure Figure Figure

23.7.2. Instructions for countersinking

− Clamp the workpiece and tool tightly.

− Lubricate the pilot pin of the head countersinks and the countersinking tool with pilot.

− If chatter marks occur, adjust to the next lower speed.

177

Page 184: Textbook for Vocational Training - Formulas and Tables Metal

− When countersinking thin workpieces, “particularly observe the hole: countersink ratio.

− When operating with pin−guided countersinks, make the pilot hole with a diameter which is only 0.2 mmgreater; so not bore until it is necessary.

23.7.3. Cutting speed and feed for countersinking

Material of workpiece Type of countersink Cutting speedin m/min for

tools of

WS SS

Red brass Z 12 − 15 25 −30

Brass S 16 − 18 35 −40

Aluminium Z 6 − 8 8 −12

Grey cast iron S 6 − 10 12 −18

Steel Z 6 − 8 8 −12

Cast steel S 8 − 10 10 −20

Malleable cast iron

Hard bronze

S spiral countersink WS tool steel

Z countersinking tools with pilots SS high−speed steel

Explanation to the figure on page 206

Rake angle ? = 0° Clearance angle ? = 5 − 8°

Cutting angle ? = 90° Cutting−wedge angle ?

The surface quality and dimensional accuracy are improved by reaming (reamed holes as bearings, for thereception of fitting pins, etc.).

Type ofcountersink

Speed in mm/revolution for drilldiameters in mm

10 − 15 16 − 25 26 − 40 41 − 60

WS SS WS SS WS SS WS SS

Z 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2

Z 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2

S 0.2 0.25 0.25 0.3 0.3 0.4 0.4 0.5

S 0.2 0.25 0.25 0.3 0.3 0.4 0.4 0.5

Z 0.1 0.1 0.1 0.15 0.15 0.2 0.15 0.2

S

178

Page 185: Textbook for Vocational Training - Formulas and Tables Metal

0.1to

0.15

0.15to

0.25

0.15to

0.25

0.25to

0.35

0.25to

0.35

0.35to0.4

0.35to

0.45

0.45to

0.5

23.8. Reaming

23.8.1. Design of reamers

1 Cutting direction,2 margin,3 square,4 shank,5 chamfer

23.8.2. Cutting speed and feed for reaming

Material of workpiece Reamer of tool steel high−speed steel

V in m/min s in mm/rev. V in m/min s inmm/rev.

Bronze, soft 6 − 8 0.8 − 1.5 10 − 12 0.8 − 1.5

Bronze, hard 5 − 6 0.6 − 1 8 − 10 0.6 − 1

Cast brass 20 − 25 0.8 − 2 25 − 30 1 − 2.5

Basis brass 8 − 12 0.4 − 1.2 12 − 17 1 − 2.5

Steel

up to 500 MPa 4 − 5 0.3 − 0.8 5 − 6 0.3 − 0.8

500 − 750 MPa 3 − 4 0.3 − 0.8 4 − 5 0.3 − 0.8

Grey cast iron

120 − 180 MPa 4 − 5 0.5 − 3 6 0.5 − 3

180 − 300 MPa 3 − 4 0.5 − 3 5 − 6 0.5 − 3

179

Page 186: Textbook for Vocational Training - Formulas and Tables Metal

Malleable cast

iron

soft 4 − 5 0.5 − 3 6 0.5 − 3

hard 3 − 4 0.5 − 1 5 − 6 0.5 − 3

Cast steel

soft 3 − 4 0.5 − 1 5 − 6 0.5 − 1

rigid 3 0.5 − 0.8 5 0.5 − 0.8

V cutting speed, s feed

23.8.3. Instructions for reaming

− The hole made by other processes must be about 0.1 − 0.2 mm smaller than the reamed final size.

− Chatter marks (marks on the surface of the hole) can be avoided if reamers with an unequal number ofcutting edges are used.

− Choose a relatively low cutting speed and a great feed.

− Holes with a groove should be reamed with twisted reamers only.

− Never turn reamers opposite to the cutting direction (cutting edges break out).

− Keep the reamer only in its protective sheathing.

23.9. Thread cutting

23.9.1. Thread profiles

Metric ISO thread Whitworthpipe thread

Acme thread Knucklethread

Saw−tooth thread Flat thread

23.9.2. Thread cutting tools

Thread cutting tools Explanation

for internal thread

180

Page 187: Textbook for Vocational Training - Formulas and Tables Metal

Serial tap

two−piece or three−piece with differentdiameters and different lengths of bevellead; three−piece serial tap (entering tap,plug tap and third tap)

1 threaded part, 2 shank,3 designation of thread,4 chip grooves, 5 bevel lead

Tap wrenches− Single−hole tap wrenches− Adjustable tap wrench

used for clamping the taps

for external threads

Threading dies

can be used manually and mechanically;slotted threading dies can be adjustedand readjusted.

Thread die stock

mainly used for thread diameters of 12mm1 bolt die,2 holder

23.9.3. Diameters of screw taps and punches for tapping−size holes

Thread Drill diameter in mm Punch diameter in mm

M 1.7 1.3 1.35

181

Page 188: Textbook for Vocational Training - Formulas and Tables Metal

M 2.6 2.1 2.2

M 3 2.5 2.56

M 4 3.3 3.3

M 5 4.2 4.2

M 6 5 5

M 8 6.7 6.75

M 10 8.4 8.5

M 12 10 −

M 16 13.75 −

M 20 17.25 −

M 24 20.75 −

M 30 26 −

M 36 31.5 −

23.9.4. Cutting speed for cutting threads

Worked material Cutting speed in m/min for

tool steel High−speedsteel

Unalloyed steel

− up to 700 MPa 3 − 7 9 − 15

− over 700 MPa 2 − 3 5 − 8

Cast steel 2 − 3 5 − 7

Malleable cast iron 2 5 − 6

Grey cast iron

− hard 3 − 5 8 − 12

− soft 6 − 8 12 − 16

Alloyed steel

− 700 − 900 MPa 1 − 2 5 − 7

Aluminium alloys 12 − 20 20 − 30

Bronze 6 − 12 13 − 25

Magnesium 15 − 20 25 − 30

23.9.5. Instructions for cutting threads

Cutting internal threads

− Ensure proper starting of the thread tap by previous countersinking (approx. 60°, at least by one height ofpitch) of the tapping−size hole.

− Apply the thread tap vertically to the tapping−size hole.

182

Page 189: Textbook for Vocational Training - Formulas and Tables Metal

− Use coolants and refrigerants in accordance with the material.

− To remove the chips and feed the lubricant, turn the thread tap back in the direction of cutting for a shorttime, then forward again.

− When cutting threads in blind holes avoid contact between the thread tap and the bottom of the drilled hole.

Cutting external threads

− Chamfer the bolt end by about 60°.

− When starting the cut, place the threading die or the thread die−stock horizontally onto the bolt end.

− Start cutting the thread with a slight pressure in the direction of the bolt, then continue cutting withoutpressure.

− Use appropriate coolants and lubricants.

− To remove the chips and feed the lubricant, turn the thread cutting tool from time to time in the oppositedirection to cutting for a short period.

23.10. Turning

23.10.1. Operating process for turning

Operating process Explanation

Longitudinal turning

Turning cutting motion (1); the tool is fed in the radialdirection (3) by cutting depth a; feed in axial direction (2);circular cylindrical faces are formed

Facing

Turning cutting motion (1); the tool is fed in the axialdirection (3) by cutting depth a; feed in radial direction(2); plane faces are formed

183

Page 190: Textbook for Vocational Training - Formulas and Tables Metal

Recess turning

Turning cutting motion (1); cutting width a corresponds tothe width of the turning tool; feed in radial direction; planeand cylindrical faces are formed (Use: recessing annulargrooves, cutting−off workpieces)

23.10.2. Designation of turning tools

Example Explanation

Left−hand turning tool

Turning tools are mainly standardized (nationally and internationally). Thedesignation “left−hand” turning tool aplies when the primary cutting edgeis on the left; similarly, in the “right−hand” turning tool, the primari cuttingedge is on the right. The nose must face towards the viewer and the topface must point upward.

1 primary cutting edge,2 secondary cutting edge

23.10.3. Types of turning tools

Type Explanation Type Explanation

straight turning tool

for longitudinal turning,possibly facing, mainlyfor turning externaldiameters

bent turning tool

used like the straightturning tool; advantage:can be used for facingwithout resetting

184

Page 191: Textbook for Vocational Training - Formulas and Tables Metal

internal turning tool

for working internal faces(holes)

internal corner turningtool

for working internal planesurfaces

pointed turning tool

for finish−machiningexternal surfaces

Broad turning tool

for turning workpiecescylindrically along theoutside or recessing widegrooves

offset side−cuttingturning tool

for universal use(longitudinal turning,facing, corner turning); inparticular for turningcollars, shoulders

Cut−off turning tool

for cutting grooves,cutting off workpieces(with of tool = width ofgroove = infeed)

internal recessing turning

cutting grooves inhollow bodies, holes

simple tool for makingthreads, suitable forinternal and externalthreads

185

Page 192: Textbook for Vocational Training - Formulas and Tables Metal

tool

Single−point threadingtool

23.10.4. Tool angles for turning

Turning tools of high−speed steel

Material Anglesin °

Material Anglesin °

? ? ? ?

Aluminium alloy 12 14 Bronze 8 0

Cast iron 8 0 Red brass 8 0

Fabric reinforced Pure aluminium 12 30

laminate 12 14 St 34−70 8 14

Hard rubber 12 10 St 85 8 10

White cast iron 8 0 Cast steel

Copper 8 18 − 500 MPa 8 10

− 500 to 700 MPa 8 10

Alloyed steel Malleable cast iron

− 700 to 850 MPa 8 14 8 10

− 850 to 1000 MPa 8 10

−1000 to 1800 MPa 8 6 Tool steel 8 6

Magnesium alloy 8 6 Zinc alloy 12 10

Turning tools with hard metal

Material Strength inMPa or

hardness

Rough−machininghard metal grade

Angles in ° Finish−machininghard metal

Angles in°

? ? ? grade ? ? ?

Structuralsteel

? 500 HS20, HS40 6 10 − 5− −6

HS01, HS10 6 12 −4

Cast iron ? 200 HB HG20 6 − 6 HG20, 6 6

186

Page 193: Textbook for Vocational Training - Formulas and Tables Metal

0 −6

−4

> 200 HB HG10 6 0 −4

− 6 HG01, HG10 6 4 −4

White castiron

− HG10 6 0 − 6 HG10 6 0 −4

Copper − HG20 8 10−12

− 4 HG20 8 15 −4

Alloyedsteels

700 − 850 HS20, HS40 6 6 −8

− 5− −6

HS01, HS10 6 8 −4

850 − 1000 HS20, HS40 6 6 − 6− −8

HS01, HS10 6 6 −4

1000 − 1400 HS20, HS30 6 0 −4

− 8 HS01, HS10 6 4 −4

Purealuminium

− HG20 8 20 − 4 HG20 8 25 −4

Cast steel 500 − 700 HS20, HS40 6 2 −4

− 6 HS01, HS10 6 6 −4

Tool steel 1500 − 1800 HS20 6 0 − 6 HS01, HS10 6 2 −4

23.10.5. Cutting speed and feed for turning

Material to bemachined

Cutting speed in m/min for

High−speed steel Hard metal

Rough−machining Finish−machining Rough−machining Finish−machining

St 33, St 34, C 10, CK10

26 40 130 180

C 15, C 20, St 50, St 52,St 55

23 35 115 160

C 35, C 45, St 60, CK 45 20 30 100 140

C 45, C 55, C 60, St 70 17 25 90 120

Alloyed steels, tool steel 10 15 30 45

Grey cast iron 20 30 75 110

Malleable cast iron 15 22 50 75

White cast iron 10 15 20 40

Copper 50 75 250 350

Red brass 50 75 250 350

Brass 34 50 170 240

Bronze 26 40 130 180

187

Page 194: Textbook for Vocational Training - Formulas and Tables Metal

Aluminium 200 300 1000 1500

Aluminium alloys 400 600 1500 2000

Aluminium alloys, hard 100 200 200 500

Aluminium−silicon−alloys 75 150 200 300

Magnesium alloys 200 400 1000 2000

Fabric reinforcedlaminate

50 150 100 200

Artificial resins 100 300 200 400

The values for the cutting speed apply to feeds of 0.5 to 2 mm per revolution (rough−machining) and 0.1 − 0.5mm per revolution (finish−machining).

23.11. Milling

23.11.1. Operating process for milling

Operating process Explanation

Up−cut milling

Milling opposite to the direction of rotation. The chip is cutat the thinnest point; the tool slides on the workpiece(bright, wavy surface)

1 cutting speed, 2 feed motion

Down−cut milling

Milling in the direction of rotation. The chip is cut at thethickest point and then torn off (dull, rough surface); highlabour productivity owing to high cutting speed and feeds

23.11.2. Types of milling cutters

188

Page 195: Textbook for Vocational Training - Formulas and Tables Metal

Cylindrical cutter

End−milling cutters

End face mill

Side and face milling cutter

Angular mill

189

Page 196: Textbook for Vocational Training - Formulas and Tables Metal

End mill cutter for T−grooves

End mill cutter for grooves and oblong holes

Tooth milling cutter

Equal−angle cutter

190

Page 197: Textbook for Vocational Training - Formulas and Tables Metal

23.11.3. Cutting speed and feed for milling

Material Millingdepth in

mm

Cutting speed in m/min for

Cylindricalcutters

Endfacemills

End millcutters

Side and facemilling cutters

Formcutters

St 50, 1 24 − 30 22 − 26 20 − 24 18 − 24 18 − 22

C 35 5 22 − 28 18 − 24 18 − 22 16 − 20 16 − 20

8 18 − 22 14 − 18 14 − 18 12 − 16 12 − 16

St 70 1 20 − 22 18 − 20 18 − 20 18 − 20 −

C 60 5 16 − 20 14 − 18 16 − 18 14 − 18 14 − 18

8 14 − 16 12 − 14 14 − 16 12 − 14 13 − 14

20 Mn Cr 5 1 24 − 28 24 − 26 20 − 24 18 − 20 18 − 20

5 20 − 24 20 − 24 16 − 20 14 − 18 14 − 18

8 16 − 20 18 − 20 12 − 16 10 − 14 10 − 14

Feed in mm/ revolution 0.18 − 0.22 0.18 −0.2

0.05 −0.08

0.06 0.04

Cast steel 1 18 − 22 20 − 24 20 − 22 18 − 22 18 − 22

GS 45 5 14 − 18 14 − 22 16 − 20 14 − 18 14 − 16

8 10 − 14 12 − 14 14 − 16 10 − 14 10 − 14

Grey cast 1 18 − 22 20 − 22 20 − 22 18 − 22 16 − 20

iron 5 14 − 18 16 − 20 16 − 20 14 − 20 14 − 18

GG 18 8 10 − 14 14 − 16 14 − 16 10 − 14 10 − 14

Feed in mm/ revolution 0.2 0.18 0.06 0.08 0.05

Copper 1 45 − 60 45 − 55 45 − 55 45 − 60 45 − 60

5 30 − 50 40 − 50 30 − 50 30 − 50 25 − 40

8 25 − 35 30 − 40 24 − 30 25 − 30 20 − 25

Feed in mm/revolution 0.20 0.22 0.05 0.10 0.05

Brass 1 45 − 60 50 − 60 50 − 60 45 − 60 45 − 60

MS 72 5 30 − 50 35 − 55 35 − 55 30 − 50 30 − 60

8 25 − 35 30 − 35 30 − 35 25 − 35 25 − 30

Feed in mm/revolution 0.20 0.20 0.05 0.07 0.04

Bronze 1 45 − 55 45 − 55 50 − 60 45 − 55 40 − 45

G Cu Sn 14 5 30 − 45 35 − 50 35 − 55 30 − 45 40 − 45

8 20 − 30 30 − 35 30 − 35 20 − 30 20 − 25

Feed in mm/revolution 0.14 0.18 0.04 0.06 0.03

Pure aluminium 1 300 − 350 350 − 400 300 − 350 250 − 300

191

Page 198: Textbook for Vocational Training - Formulas and Tables Metal

350 −400

5 250 − 300 300 −350

300 − 350 250 − 300 200 − 250

8 200 − 250 250 −300

250 − 300 250 − 300 150 − 200

Feed in mm/revolution 0.16 0.18 0.05 0.07 0.04

Magnesium alloys 1 400 − 450 400 −450

400 − 450 400 − 450 400 − 450

5 300 − 400 300 −400

300 − 400 300 − 400 300 − 450

8 250 − 300 250 −300

250 − 300 250 − 300 250 − 300

Feed in mm/revolution 0.10 0.14 0.04 0.07 0.03

Special aluminiumalloys

1 350 − 400 400 −450

275 − 325 350 − 400 350 − 400

5 280 − 350 300 −400

250 − 300 280 − 350 280 − 350

8 240 − 280 250 −300

200 − 250 240 − 280 240 − 280

Feed in mm/revolution 0.05 0.06 0.03 0.06 0.03

Artificial resin, Kraftpaper, moulded material

1 45 − 60 50 − 60 45 − 55 45 − 55 45 − 55

5 30 − 50 35 − 55 30 − 50 30 − 50 30 − 50

8 25 − 35 30 − 35 25 − 30 25 − 30 25 − 30

Feed in mm/revolution 0.16 0.18 0.05 0.1 0.04

23.12. Planing, slotting

23.12.1. Operating process for planing and slotting

Operating process Explanation

Horizontal planing

Cutting motion (1) by workpiece, feedmotion (2) by tool; machining of long,narrow parts (e.g. guideways)

192

Page 199: Textbook for Vocational Training - Formulas and Tables Metal

Horizontal slotting

Cutting motion (1) by tool, feed motion(2) by workpiece; machining of individualparts, smaller workpieces

Vertical slotting

Cutting motion (1) by tool, feed motion(2) by workpiece; finishing of openingsand grooves when the hole alreadyexists

23.12.2. Types of planing tools

Straight and bent planing tool

193

Page 200: Textbook for Vocational Training - Formulas and Tables Metal

Side planeMachining vertical surfaces andsharp−edged shoulders

Cutting planeProduction of U−shaped grooves withlow requirements made on the surfacequality

Grooving planeProduction of T−shaped grooves with lowrequirements made on the surfacequality

194

Page 201: Textbook for Vocational Training - Formulas and Tables Metal

Angle planeMaking acute−angled corners, sharpshoulders and dovetail grooves

23.12.3. Cutting speed and feed for planing and slotting (high−speed tool steel)

Material Characteristics Cutting speed perdouble stroke in mm

in m/min when planing with feed

0.16 0.20 0.25 0.32 0.40 0.50 0.63 0.80 1.0 1.2 1.6 2.0

St 38. St42 ?60 42 39 36 34 32 30 27 25 24 22 21 19

C 15, C 22 ?120 33 31 29 27 25 23 22 20 19 18 17 16

St50, C35 ?60 32 30 27 26 24 22 21 19 18 17 16 14

?120 26 23 22 20 19 18 16 14 13 12 12 11

St60, C45 ?60 24 23 21 20 19 17 16 15 14 13 12 11

?120 20 19 18 16 15 14 13 13 12 11 10 9

St70, C60 ?60 21 19 18 17 16 15 14 13 12 11 10 9

?120 16 15 14 13 12 11 10 10 9 9 8 7

Cast steel ?60 33 31 28 26 24 23 21 19 18 17 16 15

GS−38 ?120 27 25 23 21 20 18 17 16 15 14 13 12

Cast steel ?60 26 24 22 21 19 18 17 15 14 13 12 11

GS−45 ?120 21 20 18 17 15 14 13 12 12 11 10 9

Cast steel ?60 20 19 18 16 15 14 13 12 11 10 9 8

GS−52 ?120 17 15 14 13 12 11 11 10 9 8 8 7

Grey cast ?60 44 40 36 32 28 25 22 20 18 16 15 13

iron GG−12 ?120 36 32 29 26 23 21 18 16 15 13 12 11

GG−14

GG−18 ?60 30 27 24 22 20 18 16 14 13 11 10 9

GG−22 ?120 25 23 20 18 16 15 13 12 11 10 9 8

?60 and ?120 are service lives of 60 minutes and 120 minutes, resp. Planing at ?60corresponds to slotting at ?30; planing at ?120 corresponds to slotting at ?60.

195

Page 202: Textbook for Vocational Training - Formulas and Tables Metal

23.13. Broaching

23.13.1. Broaching tools

Internal broach

1 shank, 2 roughing teeth, 3 finishing teeth, 4 burnishing part, 5 end piece

The design of the broaching tools depends

− on the workpiece (material, broaching length, space cross−section).

− on the machine used.

The tool (internal or external broach) is drawn or pressed through or over the workpiece horizontally orvertically.

23.13.2. Cutting speed for broaching

Material Cutting speed in m/min

Internal broaching External broaching

Al alloys 10 − 14 10 − 16

Cast iron 6−8 8−10

White cast iron 1 1

Brass 8−10 8−12

Steel, medium 4−8 6−10

tough 2−4 4−6

Malleable cast iron 4−8 8−10

23.14. Grinding

23.14.1. Operating process for grinding

Operating process Explanation

Cylindrical grinding Cylindrical grinding is used for rotationally symmetrical internaland external surfaces;1 cutting motion, 2 feed motion. 3 in−feed movement, 4movement of the workpiece

196

Page 203: Textbook for Vocational Training - Formulas and Tables Metal

Longitudinal grinding

Plunge−cut grinding

Flat grinding

Peripheral grinding

Flat grinding is used to grind plane surfaces, e.g.: internal andexternal guides, sliding and running surfaces, sealing surfaces,cutting edges of tools, toothed gears1 cutting speed, 2 feed motion, 3 in−feed movement

197

Page 204: Textbook for Vocational Training - Formulas and Tables Metal

Face grinding

Abrasive−belt grinding

Abrasive cutting−off Abrasive cutting−off is used for the rapid separation of hardmaterials (bar steels, ceramics, glass, rock).

23.14.2. Characteristics of grinding tools

Grain sizes for abrasives

Symbol Grain size Symbol Grain size

below ?m up to ?m below ?m up to ?m

Screened grains

315 3150 2500 40 400 315

250 2500 2000 32 315 250

200 2000 1600 25 250 200

160 1600 1250 20 200 160

125 1250 1000 16 160 125

100 1000 800 12 125 100

80 800 630 10 100 80

63 630 500 8 80 63

50 500 400 6 63 50

Powdery graind for abrasives

F40 40 28 F10 10 7

F28 28 20 F7 7 5

F20 20 14 F5 5 3.5

F14 14 10

23.14.3. Maximum circumferential velocity for grinding

Material Maximum circumferential velocity in m/s for

Externalgrinding

Internalgrinding

Flat grinding Tool grinding Abrasivecutting−off

198

Page 205: Textbook for Vocational Training - Formulas and Tables Metal

Grey cast iron 25 25 20 − 45 − 80

Hard metal 8 8 8 22 (manual) −

12 (mechanical) −

Non−ferrousmetals

35 20 25 − 45 − 80

Steel 30 25 25 25 45 − 80

Light metal 35 20 25 − −

23.14.4. Feed and cutting depth for cylindrical grinding

Material Lateral feed Cutting depth in mm

Rough−machining Finish−machining

Steel 2/3 − 3/4B 0.02 − 0.05 0.008 − 0.01

Grey cast iron 3/4 − 4/5B 0.08 − 0.15 0.02 − 0.05

Finish−grinding 1/4 − 1/3B 0.002 − 0.008

B width of grinding wheel

23.14.5. Reference values for the grinding of tools

Tool Grinding operation Abrasive Grainsize

Hardness

Twist drill

− large Manual grinding NK 40 medium

Mechanical grinding EK 40 soft

− small Manual grinding NK 32 medium

Mechanical grinding EK 32 soft

Manual pointing NK 32 medium

Mechanical pointing EK 40 soft

− with hard metal Face grinding SK 20 soft

Regrinding SK 32 − 10 soft

Turning and planing tools of WS, SS,HSS

− large manual grinding NK 50, 40 medium

− small Manual grinding NK 40, 32 medium

Mechanical grinding NK 40 medium

− with hard metal Manual pregrinding SK 40 soft

Manual finish−grinding SK 20 soft

Steps manually ground in theface of the tool

SK 10 medium

Shank material, manual NK 63, 80 medium

199

Page 206: Textbook for Vocational Training - Formulas and Tables Metal

mechanical NK 63, 80 soft

Milling cutters of WS, SS, HSS EK 32 soft

EK 32 soft

− with hard metal Pregrinding SK 32 soft

Finish−grinding SK 20 soft

Band saw blades EK 32 medium

Saw blades of metal circular saws EK 40,32 soft

Gauges and devices EK 32,20 soft

EK special fused alumina, NK standardcorundum, SK silicon carbide

Ceramic is used as a binding agent

23.14.6. Instructions for grinding

− Use soft abrasives for hard materials and hard abrasives for soft materials.

− Check the parameters of the abrasives (maximum circumferential velocity, binding agent, grade) beforeinstalling them in the machine.

− When mounting the grinding wheels, take care that compensating shims (of cardboard or leather) areplaced on both sides.

− With grinding wheels, use only the faces for grinding,

− When grinding, use an eye protection device or safety goggles.

− Allow rotating grinding wheels to come to rest; do not brake them manually.

23.15. General data on cutting

23.15.1. Angles, surfaces and cutting edges of tools

Angle, surface, cutting edge Explanation

Cutting−wedge angle ?. Dependson the material of the wedge ofthe cutting edge and of theworkpiece. Large cutting−wedgeangle for solid materials and poorheat conductors.Clearance angle ?. Ensurescutting effect, large clearanceangle − good cut but reducedstrength of the wedge of thecutting edge and poorer heatremoval.

200

Page 207: Textbook for Vocational Training - Formulas and Tables Metal

Rake angle ?. Depends on thework−piece and the process;influences chip formationExceptions:? = 0° form cutters? < 0° cut file toothCutting angle ?. Indicates theposition of the true rake inrelation to the shoulder of the cutformed.

True rake (1). Together with theback rake this forms the wedgeof the cutting edge. The chipflows over the true rake formed.Top rake (2). The side of thewedge of the cutting edge facingthe true rake of the workpiece. Itis frequently worked in grinding.Side rake (3). The side of thewedge of the cutting edge whichis limited by the secondarycutting edge and the side rake.

Secondary cutting edge (4). Doesnot face the direction of feed.Primary cutting edge (5). Edgebetween the true rake and thetop rake. It points to the feeddirection and is the decisivecomponent in stock removal.

23.15.2. Materials of cutting edges

Material of cuttingedges

Explanation

Tool steels unalloyed or alloyed (Cr, W, Mo); high−temperature resistant up to 300 °C

High−speed steels alloyed (Cr, W, Mo, V, Co) as SS or HSS; sometimes only soldered on or welded onas a tip; high−temperature resistant up to 600 °C

Hard metals cast or sintered metallic carbides with additions of Co, Ni, Nb, Ta; soldered on orclamped on as a tip; high−temperature resistant up to 1000 °C

Cutting ceramics Clamped on as reversible tips, suitable for high cutting speeds, sensitive to impact; donot cool!

Diamond extremely hard, expensive, for microfinishing only; high−temperature resistant up to800 °C.

201

Page 208: Textbook for Vocational Training - Formulas and Tables Metal

23.15.3. Cutting velocity, speed, diameter

Diameter in mm Cutting velocity in m/min (V = d . ? . n)

6 10 14 20 30 40 50 60 80 100 150 200

at speed in 1/min

2 640 1600 2200 3200 4800 6400 8000 9600 12700 15900 23900 31800

4 480 800 1100 1600 2400 3200 4000 4800 6400 8000 12000 15900

6 320 530 750 1060 1600 2100 2650 3180 4240 5300 8000 10600

8 240 400 560 800 1200 1600 2000 2390 3180 3980 6000 8000

10 190 320 450 640 950 1300 1600 1910 2550 3180 4800 6400

12 160 265 370 530 800 1100 1320 1590 2130 2660 4000 5300

14 135 230 320 450 680 900 1140 1370 1820 2280 3410 4600

16 120 200 280 400 600 800 1000 1190 1590 1990 2980 4000

18 106 180 250 350 530 710 880 1060 1420 1770 2660 3440

20 96 160 225 320 480 640 800 960 1270 1590 2390 3180

24 79 130 190 265 400 530 660 800 1060 1330 1990 2660

28 68 115 160 228 350 450 570 680 910 1140 1710 2280

32 60 100 140 200 300 400 500 600 800 1000 1490 2000

36 53 88 125 175 280 355 440 530 710 890 1330 1770

40 48 79 112 160 240 320 400 480 640 800 1200 1590

45 42 71 100 140 210 285 350 420 570 710 1060 1410

50 38 64 89 127 190 255 320 380 510 640 950 1270

55 34 58 81 115 180 230 290 350 460 580 870 1160

60 32 53 74 106 160 210 265 320 420 530 800 1060

65 30 49 70 98 145 195 245 290 390 490 740 980

70 27 46 64 91 135 180 230 270 360 450 680 910

75 26 42 60 85 128 170 210 260 340 430 640 850

80 24 40 56 80 120 160 200 240 320 400 600 800

90 21 35 50 71 105 140 177 215 285 355 530 710

100 19 32 45 64 96 125 159 190 255 320 480 640

115 17 28 39 55 84 110 139 165 220 275 415 550

125 15 25 36 51 76 100 127 155 200 255 380 510

140 14 23 32 45 69 91 113 137 180 228 340 460

150 13 21 30 42 64 86 106 125 170 215 320 425

160 12 20 28 40 60 80 100 120 160 200 300 400

180 10.5 17 25 35 53 71 88 105 140 175 265 355

200 9.6 16 22 32 48 64 80 96 125 160 240 320

202

Page 209: Textbook for Vocational Training - Formulas and Tables Metal

24. Joining

24.1. Screw joints

24.1.1. Designation of threads

Type of thread Symbol Dimension Example

Metric ISO coarse screw thread M nominal thread diameter in mm M 12

Metric thread nominal thread diameter in mm × pitch in mm M 80 × 6

Metric ISO fine screw thread

Whitworth thread − nominal thread diameter in inches 2”

Whitworth fine thread W nominal thread diameter in inches × pitch ininches

W 99 ×1/4”

Whitworth pipe thread R thread diameter = nominal width of pipe in inches R 3/4”

Acme thread Tr nominal thread diameter in mm × pitch in mm Tr 48 × 8

Knuckle thread Rd nominal thread diameter in mm × pitch in inches Rd 40 ×1/6”

Saw−tooth thread S nominal thread diameter in mm × pitch in mm S 70 × 10

Electric thread E nominal thread diameter in mm E 27

24.1.2. Dimensions of threads

Metric ISO coarse screw thread

1 nut, 2 bolt

Dimensions in mm

d = D P d2 = D2 d3 D1 h3 H1 Cross−sect ion of tap in mm2

0.25 0.07 0.201 0.158 0.169 0.046 0.041 0.02

0.3 0.08 0.248 0.202 0.213 0.049 0.043 0.032

203

Page 210: Textbook for Vocational Training - Formulas and Tables Metal

0.4 0.1 0.335 0.277 0.292 0.061 0.054 0.06

0.5 0.125 0.419 0.347 0.365 0.077 0.068 0.095

0.6 0.15 0.503 0.416 0.438 0.092 0.081 0.136

0.8 0.2 0.67 0.555 0.583 0.123 0.108 0.242

1 0.25 0.838 0.693 0.729 0.153 0.135 0.377

1.2 0.25 1.038 0.893 0.929 0.153 0.135 0.626

1.6 0.35 1.373 1.171 1.221 0.215 0.189 0.08

2 0.4 1.740 1.509 1.57 0.245 0.217 1.79

2.5 0.45 2.208 1.948 2.03 0.276 0.244 2.98

3 0.5 2.675 2.387 2.459 0.307 0.271 4.47

4 0.7 3.545 3.141 3.242 0.429 0.379 7.75

5 0.8 4.480 4.019 4.134 0.491 0.433 12.7

6 1. 5.350 4.773 4.917 0.613 0.541 17.9

8 1.25 7.188 6.466 6.647 0.767 0.677 32.8

10 1.5 9.026 8.160 8.376 0.920 0.812 52.3

12 1.75 10.863 9.853 10.106 1.074 0.947 76.2

16 2 14.701 13.546 13.835 1.227 1.083 144

20 2.5 18.376 16.933 17.294 1.534 1.353 255

24 3 22.051 20.319 20.752 1.840 1.624 324

30 3.5 27.727 25.706 26.211 2.147 1.894 519

36 4 33.402 31.093 31.670 2.454 2.165 759

42 4.5 39.077 36.479 37.129 2.760 2.436 1045

48 5 44.752 41.866 42.587 3.067 2.706 1377

56 5.5 52.428 49.252 50.046 3.374 2.977 1905

64 6 60.103 56.639 57.505 3.681 3.248 2520

Metric ISO fine screw thread

Dimensions in mm

d = D P d2 = D2 d3 D1 h3 H1 Cross−section of tap in mm2

1 0.2 0.870 0.755 0.783 0.123 0.108 0.448

1.6 1.470 1.355 1.383 1.44

2 0.25 1.838 1.693 1.729 0.153 0.135 2.25

2.5 0.35 2.273 2.071 2.121 0.215 0.189 3.37

4 0.5 3.675 3.387 3.459 0.307 0.271 9.01

6 5.675 5.387 5.459 22.8

10 9.675 9.387 9.459 69.2

16 15.675 15.387 15.459 186

204

Page 211: Textbook for Vocational Training - Formulas and Tables Metal

6 0.75 5.513 5.080 5.188 0.460 0.406 20.3

10 9.513 9.080 9.188 64.8

16 15.513 15.080 15.188 179

24 23.513 23.080 23.188 418

10 1 9.350 8.773 8.917 0.613 0.541 60.4

16 15.350 14.773 14.917 171

24 23.350 22.773 22.917 407

42 41.350 40.773 40.917 1306

64 63.350 62.773 62.917 3095

10 1.25 9.188 8.466 8.646 0.767 0.677 56.3

16 1.5 15.026 14.160 14.376 0.812 0.920 157

24 23.026 22.160 22.376 386

42 41.026 40.160 40.376 1267

64 63.026 62.160 62.376 3035

100 99.026 98.160 98.376 7568

24 2 22.701 21.546 21.835 1.083 1.227 365

42 40.701 39.546 39.835 1228

64 62.701 61.546 61.835 2975

100 98.701 97.546 97.835 7473

160 158.701 157.546 157.835 19494

42 3 40.051 38.319 38.742 1.624 1.840 1153

64 62.051 60.319 60.742 2858

100 98.051 96.319 96.742 7286

160 158.051 156.319 156.742 19192

250 248.051 246.319 246.742 47652

42 4 39.402 37.093 37.670 2.165 2.454 1081

64 61.402 59.093 59.670 2743

100 97.402 95.093 95.670 7102

160 157.402 155.093 155.670 18892

250 247.402 245.093 245.670 47179

400 397.402 395.093 395.670 122615

100 6 96.103 92.639 93.505 3.248 3.681 6740

160 156.103 152.639 153.505 18299

250 236.103 242.639 243.505 46240

400 396.103 292.639 293.505 121081

600 596.103 592.639 593.505 275848

205

Page 212: Textbook for Vocational Training - Formulas and Tables Metal

Whitworth pipe thread

cylindrical internal and external thread

1 internal thread, 2 external thread

Nominal width = threaddiameter in inches

Dimensions in mm

d = D d2 = D2 d1 = D1 P Number of courses ofthread per inch

t1

R 1/8 9.728 9.147 8.566 0.907 28 0.125

R 1/4 13.157 12.301 11.445 1.337 19 0.856

R 3/8 16.662 15.806 14.950

R 1/2 20.955 19.753 18.631 1.814 14 1.162

R 3/4 26.441 25.279 24.117

R 1 33.249 31.770 30.291 2.309 11 1.479

R 1 1/4 41.910 40.431 38.952

R 1 1/2 47.803 46.324 44.845

R 2 59.614 58.135 56.656

R 2 1/2 75.184 73.705 72.226

R 3 87.884 86,405 84.926

206

Page 213: Textbook for Vocational Training - Formulas and Tables Metal

Acme thread, single−start thread

Bolt (2):

minor diameter d1 = d − 2t1Flank diameter d2 = d − 0.5p

Nut (1):

external diameterb = d + 2aminor diameterD1 = d2 + 2bt11 = 02.5 P + a

Dimensions in mm

Nominal thread diameter of the bolt

fine medium coarse P t1 t2 a b T1

10 − 20 − − 2 1.25 0.75 0.25 0.5 1

22 − 62 10 − 12 − 3 1.75 1.25 0.25 0.5 1.5

65 − 110 14 − 20 − 4 2.25 1.75 0.25 0.5 2

− 22 − 28 − 5 2.75 2 0.25 0.75 2.25

115 − 175 30 − 36 − 6 3.25 2.5 0.25 0.75 2.75

− 38 − 44 − 7 3.75 3 0.25 0.75 3.25

180 − 240 46 − 52 22 − 28 8 4.25 3.5 0.25 0.75 3.75

− 55 − 62 − 9 4.75 4 0.25 0.75 4.25

− 65 − 82 30 − 38 10 5.25 4.5 0.25 0.75 4.75

207

Page 214: Textbook for Vocational Training - Formulas and Tables Metal

250 − 400 85 − 110 40 − 52 12 6.25 5.5 0.25 0.75 5.75

− 115 − 145 55 − 62 14 7.5 6 0.5 1.5 6.5

− 150 − 175 65 − 82 16 8.5 7 0.5 1.5 7.5

420 − 500 180 − 200 85 − 98 18 9.5 8 0.5 1.5 8.5

− 210 − 230 100 − 110 20 10.5 9 0.5 1.5 9.5

− 240 − 260 115 − 130 22 11.5 10 0.5 1.5 10.5

520 − 640 270 − 290 135 − 155 24 12.5 11 0.5 1.5 11.5

− 300 − 26 13.5 12 0.5 1.5 12.5

− − 160 − 180 28 14.5 13 0.5 1.5 13.5

− − 185 − 200 32 16.5 15 0.5 1.5 15.5

− − 210 − 240 36 18.5 17 0.5 1.5 17.5

− − 250 − 280 40 20.5 19 0.5 1.5 19.5

− − 290 − 340 44 22.5 21 0.5 1.5 21.5

− − 360 − 400 48 24.5 23 0.5 1.5 23.5

Multiple threads are provided with the corresponding multiple pitch with the thread profile belonging to thesingle−start thread.

Knuckle thread

1 nut, 2 boltr = 0.23851 PR1 = 0.22105 P� = diameter

Dimensions in mm

Nominal diameterof thread d

Number of courses ofthread per inch

Pitch Depth ofthread t1

Bearingdepth t2

Roundings ofnuts R

8 − 12 10 2.54 1.270 0.212 0.650

14 − 38 8 3.17 1.588 0.265 0.813

208

Page 215: Textbook for Vocational Training - Formulas and Tables Metal

40 − 100 6 4.2 2.117 0.353 1.084

105 − 200 4 6.3 3.175 0.530 1.625

Dimensions of the nut in mm

Thread diameter D Minor diameter D1 Thread diameter D Minor diameter D1

8.245 5.714 44.423 40.190

9.254 6.714 48.423 44.190

10.254 7.714 52.423 48.190

11.254 8.714 55.423 51.190

12.254 9.714 60.423 56.190

14.318 11.142 95.423 91.190

16.318 13.142 100.423 96.190

32.318 29.142 110.635 104.285

36.318 33.142 120.635 114.285

40.423 36.190 200.635 194.285

Dimensions of the bolt in mm

Thread diameter d Minor diameter d1 Cross−section of tap A in mm Flank diameter d2

8 5.460 0.234 6.730

9 6.460 0.328 7.730

10 7.460 0.437 8.730

11 8.460 0.562 9.730

12 9.460 0.703 10.730

14 10.825 0.920 12.412

16 12.825 1.292 14.412

32 28.825 6.526 30.412

36 32.825 8.463 34.412

40 35.767 10.05 37.883

44 39.767 12.42 42.883

48 43.767 15.05 45.883

52 47.767 17.92 49.883

55 50.767 20.24 52.883

60 55.767 24.43 57.883

95 90.767 64.71 92.883

100 95.767 72.03 97.883

110 103.650 84.38 106.825

120 113.650 101.45 116.825

200 193.650 294.5 196.825

209

Page 216: Textbook for Vocational Training - Formulas and Tables Metal

24.1.3. Characteristics of screw joints

Thread Hexagon cap screw,hexagon nut

Fillister−headscrew

Washer

P mm dB mm Aq mm2 k mm sw mm m mm D mm k mm d mm

M 2 0.4 1.6 1.79 − 4 1.6 3.5 1.4 2.2

M 2.5 0.45 2.05 2.98 − 5 2 4.5 1.7 2.7

M 3 0.5 2.5 4.47 − 5.5 2.4 5 2 3.2

M 4 0.7 3.3 7.75 − 7 3.2 7 2.8 4.3

M 5 0.8 4.2 12.7 3.5 8 4 8.5 3.5 5.3

M 6 1 5 17.9 4 10 5 10 4 6.4

M 8 1.25 6.75 32.8 5.5 14 6 12.5 5 8.4

M 10 1.5 8.5 52.3 7 17 8 15 6 10.5

M 12 1.75 10.25 76.2 8 19 9.5 − − 13

M 16 2 14 144 10 24 13 − − 17

M 20 2.5 17.5 225 13 30 16 − − 21

M 24 3 21 324 15 36 18 − − 25

M 30 3.5 26.5 519 19 46 22 − − 31

M 36 4 32 759 23 55 28 − − 37

M 42 4.5 37.5 1045 26 65 32 − − 43

P pitch, dB drill diameter for core hole, Aq cross−section of tap, k height of screw head, swwidth across flats, m height of nut head, D head diameter, d hole diameter of the washer

24.2. Welded joints

24.2.1. Types of welds in fusion welding

Type of weld Welding process

G E SG (CO2)

Plain butt weld, welded on one side > 0.5 < 3 < 10

Plain butt weld, welded on both sides − 2 − 5 6 − 25

V−weld 3 − 8 3 − 20 4 − 20

V−weld with capping pass − 5 − 20 4 − 20

Square−edge weld − > 10 > 20

Double−V weld − 12 − 40 20 − 40

Y−weld − − 10 − 20

Y−weld with capping pass − 5 − 20 10 − 20

Double−Y−weld − − 20 − 60

U−weld − > 12 > 30

210

Page 217: Textbook for Vocational Training - Formulas and Tables Metal

U−weld with capping pass − > 12 > 30

Double U weld − > 30 > 50

Double bevel butt weld − 12 − 40 >15

Single bevel butt weld − 3 − 20 3 − 20

Single bevel butt weld, welded on both sides − 3 − 20 3 − 20

Single−J butt weld − > 15 > 20

Double−3 butt weld − > 30 > 40

Fillet weld > 1 > 1 > 1

Double fillet weld > 2 > 2 > 2

Edge joint weld > 2 > 2 > 2

Flange weld > 4 > 4 > 4

Edge groove weld > 3 > 4 > 4

Corner weld > 1 > 2 > 2

G oxyacetylene welding, E electric welding, SG(CO2) inert−gas arc welding

24.2.2. Symbols for fusion welding

WeldDesignation

Section (graphic) View (symbolic) Symbol

Butweld

General S

Plain buttweld

||

V−weld V

211

Page 218: Textbook for Vocational Training - Formulas and Tables Metal

DoubleV−weld

X

Y−weld Y

Filletweld

Fillet weld

Double filletweld

Corner weld

Edge jointweld

|||

Edge grooveweld

212

Page 219: Textbook for Vocational Training - Formulas and Tables Metal

24.2.3. Fusion welding processes

Process Symbol Process Symbol

Oxyacetylene welding G Gas−shielded arc welding SG

Electric arc welding E Submerged−arc welding UP

TIG welding TIG Firecracker welding US

MIG welding MIG Electroslag welding ES

Process Use Positions Plate and wall thicknesses

G Steel and non−ferrous metals all positions small thickness

E preferably steel all positions greater thickness

WIG aluminium and alloys all positions small thickness

TIG high−alloy steel all positions thickness > 4 mm

SG unalloyed and low Mn−alloy steel all positions all thicknesses

US steel horizontal small thickness

UP preferably steel horizontal great thickness

ES steel upward thickness > 12 mm

24.2.4. Resistance spot welding of unalloyed steels

Dimensions in mm

Individualplate

thickness

Electrodediameter

(min.)

Electrodetip

diameter(max.)

Spotdiameter

(min.)

Electrodeforce in

kN

Weldcurrentin kA

Overlapping Min. spotspacing with

regard to

Spotshear

strengthin kN/spot

shunt strength

0.4 8 4 3.2 1 5 8 9 6 1

0.6 10 5 3.8 1.5 7 10 12 8 2

0.8 10 6 4.4 2 8 11 15 9 3

1.0 13 6 5.0 2.5 9 13 18 10 4

1.2 13 8 5.5 3.0 10 14 20 11 5.25

1.4 13 8 6.0 3.5 11 15 23 12 6.5

1.6 13 8 6.4 4.0 12 16 26 13 8

1.8 16 8 6.7 4.5 13 17 28 13 9.7

2.0 16 8 7.0 5.0 14 18 30 14 11.5

2.2 16 10 7.4 5.5 15 18 32 15 13

2.4 16 10 7.7 6.0 16 19 34 15 15

2.6 16 10 8.0 6.5 17 20 36 16 17

2.8 20 10 8.3 7.0 18 21 38 17 19

3.0 20 10 8.6 7.5 19 22 40 17 21

213

Page 220: Textbook for Vocational Training - Formulas and Tables Metal

3.2 20 10 8.9 8.0 20 22 42 18 23

24.2.5. Symbols for pressure welding

Weld Designation Symbol View (symbolic) Section(graphic)

single−row

double−row

staggered

continuous

interrupted

214

Page 221: Textbook for Vocational Training - Formulas and Tables Metal

projection in the top plate

projection in the bottomplate

mash weld

burr weld

reinforced weld

24.3. Riveted joints

24.3.1. Arrangements of rivets

Designation Figure

215

Page 222: Textbook for Vocational Training - Formulas and Tables Metal

Single−row overlapping

Double−row staggered overlapping

Triple−row overlapping

216

Page 223: Textbook for Vocational Training - Formulas and Tables Metal

Single−row butt riveted joint

Single−row double butt riveted joint

217

Page 224: Textbook for Vocational Training - Formulas and Tables Metal

double−row double butt riveted joint

24.3.2. Dimensions of rivets

218

Page 225: Textbook for Vocational Training - Formulas and Tables Metal

Shape A

Shape B

219

Page 226: Textbook for Vocational Training - Formulas and Tables Metal

Shape of Dimensions in mm

rivet d1 10 12 16 20 24 30

A d2 18 22 28 36 43 53

d3± 0.2 11 13 17 21 25 31

k 7 9.5 11.5 14 17 21

R1 9.5 11 14.5 18.5 22 27

d2 16 19 25 32 40 48

d3± 0.2 11 13 17 21 25 31

k 6.5 7.5 10 13 16 19

R1 8 9.5 13 16.5 20.5 24.5

B ? + 5° 75° 60° 45°

t 2.3 3.3 5.9 9.1 11.3 13.9

R2 27 41 85 124.5 91 114

w 1 2

24.3.3. Grips of rivets

Shape A B

d1 10 12 16 20 24 30 10 12 16 20 24 30

1 max. grip in mm

16 10

20 6 14

24 9 8 17 16 15

32 17 15 13 22 22 20

40 22 22 18 16 28 28 28 26

50 32 30 26 22 36 36 34

60 40 38 34 30 26 44 42 42

80 58 52 48 44 38 60 60 60 60

100 72 68 66 62 58 78 78

125 88 86 82 78 98

160 116 112 108

200 132

Shape A B

d1 10 12 16 20 24 30 10 12 16 20 24 30

1 max. grip in mm

16 10

20 14 13

220

Page 227: Textbook for Vocational Training - Formulas and Tables Metal

24 6 17 16

32 13 10 22 22 20

40 19 17 13 28 28 28 26

50 26 24 20 16 36 36 34 32

60 34 32 28 24 18 44 42 42

80 50 48 46 42 36 30 60 60 60 60

100 60 56 52 48 78 78

125 76 74 72 98

160 104 100 96

200 126

Grips of rivets in steel structures

Shape A B

d1 10 12 16 20 24 30 10 12 16 20 24 30

1 max. grip in mm

20 7 15

24 12 10 18 17

32 18 17 15 24 22 22

40 24 24. 20 18 32 30 30 28

50 34 32 28 24 20 40 38 38 36 34

60 40 36 32 28 46 46 44 44

80 56 54 50 46 42 62 62 64 64 64

100 74 72 70 66 62 78 78 80 82 82

125 86 82 100 100 104

150 108 104 120 122

24.4. Soldered joints

24.4.1. Use of soldering processes

Solderingprocess

(selection) UseBrazing? > 450

°C

Soldering? < 450

°C

Metal Glasscermics

Workpieces

Solderingwith

soldering iron − + + + smaller surfaces andthicknesses

Torchbrazing

Torch brazing Greasemodel

+ + + o larger surfaces andthicknesses

soldering − + + −

Bath brazing Salt bath brazing − + + o large number ofpieces (mass

221

Page 228: Textbook for Vocational Training - Formulas and Tables Metal

production)

Dip brazing + + + −

Ultrasonic soldering − + + −

Oil bath soldering − + + −

Furnacesoldering

Chamber furnacesoldering

− + + + mass production

Controlled −atmosphere furnacebrazing

+ − + +

Electricbrazing

Induction brazing + + + + parts accessible only

Resistance soldering + + + − with difficulty

Arc brazing + − + −

Hot−gas brazing − + + o

Reaction brazing − + + −

+ soldering or brazing possible without difficulty; 0 brazing possible in principle; − soldering orbrazing impossible

24.4.2. Soft solders

Symbol Alloyingcomponents in

% of

Melting range in°C (approx.)

Sn±0.5 Pb solidus liquidus

LSn 8 8 rest 270 305

LSn 25 25 183 257

LSn 30 30 249

LSn 33 33 242

LSn 40 40 223

LSn 50 50 200

LSn 60 60 185

LSn 90 90 219

24.4.3. Brazing solders on the basis of copper

Symbol Melting range in °C(approx.)

Operating Temperaturein °C

Use

solidus liquidus

LMs 60 890 900 900 steel, malleable cast iron, copper andcopper alloys, nickel and nickel alloys

LCu 1070 1080 1070 copper

LCuP8 710 730 710 copper, brass

222

Page 229: Textbook for Vocational Training - Formulas and Tables Metal

24.4.4. Brazing solders for aluminium and aluminium alloys

Symbol Melting range in °C(approx.)

Operating Temperature in°C

Use

solidus liquidus

LAlSi12 575 590 590 gap brazing with

LZnAl30 450 515 520 attached or inserted brazingsolders

LZnSnCd25 165 300 − especially suitable for purealuminium

LSnZn40 200 310to350

LZnCd40 265 330to350

LCdZn20 265 270to280

280

LCdZn30 265 300to310

310 aluminium alloys can be tinnedwithout restriction

Tinning temperature in°C

LZnSnCd25 220 − 230

LSnZn40 260

LZnCd40 300

24.4.5. Brazing solders on the basis of silver

Symbol Operatingtemperature in °C

Material to be brazed Use

LAg 12 830 iron, steel, copper,copper alloys

large−scale brazing of medium−thick andthick parts

LAg12Cd7 800 copper and copper alloys small−scale brazing of thick parts;medium−thick and thin parts without flux

LAg20Cd15 750 iron, steel, copper small−scale brazing of thin, cladded plates

LAg25 copper alloys thin plates, wires, pipes; large−scalebrazing of thick and medium thick parts

LAg25Cd14 730 copper and copper alloys small−scale brazing of thick and thin parts

LAg27 840 steel, hard metal large−scale and small−scale brazing ofthick and thin parts

LAg30Cd12 700 copper and copper alloys small−scale brazing of medium−thick andthin plates, wires, pipes (mass production)

LAg49 690 stainless steels small−scale and large−scale brazing

LAg50Cd10 670

223

Page 230: Textbook for Vocational Training - Formulas and Tables Metal

copper and copperalloys, silver and silveralloys

brazing of thin parts (e.g. contactnetworks), knife handles

24.4.6. Fluxes for soldering and welding metallic materials

Symbol Used for

Heavymetal

Lightmetal

Brazing Soldering Oxyacetylenewelding

Explanation

SHG 1 + − + − + over 550 °C

SHG 2 + − + − + 750 °C

SHG 3 + − + − + 1000 °C

SW1 + − − + − remove residues, corrosionhazard

SW2 + − − + − corrosive under certainconditions

AW3 + − − + − residues remain on thesoldering point

LH1 − + + − − remove residues

LH2 − + + − − residues are retained

LW1 − + − + − reacts with aluminium

LW2 − + − + − 200 − 350 °C

LG1 − + − − + remove residues

LG2 − + − − + Al alloys up to 2 % Mg

LG3 − + − − + Al, Al alloys above 2 % Mg

LG4 − + − − + residues are retained

+ suitable, − unsuitable

25. Changing of material properties

25.1. Annealing of steel

25.1.1. Annealing process

224

Page 231: Textbook for Vocational Training - Formulas and Tables Metal

Long annealing times and high annealing temperatures result in macrostructures and should be avoided.

T Temperature, TG annealing temperature, t time,1 heating, 2 maintaining the annealing temperature, 3 cooling

Stress−free annealing 450 − 650 °C

Compensating of stresses after cold forming or after non−uniform cooling in heat treatment, hot forming orjoining.

Recrystallization annealing 650 − 750 °C

Removal of the disturbed structure after cold forming.

Soft annealing. Several hours at 710° C, several times for a short period at 723 °C.

Removal of hard spots in the structure after forging or casting; formation of a homogeneous soft structure forsubsequent metal cutting.

Normalizing 723 − 950 °C (depending on the C content)

Removal of the macrostructure after hot forming, casting or welding; increase in strength and toughness

25.1.2. Annealing temperatures and annealing colours

225

Page 232: Textbook for Vocational Training - Formulas and Tables Metal

Temperature in °C Colour

1400

1300 white

1200 chrome yellow

1100 orange

1000 bright red

900 cherry−red

800 cherry−red (beginning)

700 dark red

600 dark red (beginning)

C content

1 Normalizing,2 recrystallization annealing,3 soft annealing,4 stress−free annealing

25.2. Hardening of steel

25.2.1. Hardening process

226

Page 233: Textbook for Vocational Training - Formulas and Tables Metal

Heating of the steel (carbon content 0.4 − 1.5 %); rearrangement of the carbon particles; quenching (in wateror oil) results in a new, stressed structure; the workpieces become hard and brittle

T temperature, Tu transformation temperature (740 − 890 °C), t time 1 heating, 2 maintainingthe transformation temperature, 3 quenching

Normal hardening

Hardening effect throughout the workpiece (thin−walled workpieces)

Surface hardening

Hardening effect on the surface only; surface−hardened workpieces with a tough core

25.2.2. Quenchants

Quenchant Cooling rate (with reference to still air) Effect Use

Acidified water 35 very abrupt steel

0.5 − 0.9 %

Salty water 32 abrupt C−content

Water (20 °C) 30 vigorous

Milk of lime 24 less vigorous steel

0.9 − 1.5 %

Water (40 C) 22 almost mild C content

Petroleum 20 almost mild

Oil 14 mild steel

Compressed air 4 very mild alloyed

Still air 1 very mild

25.2.3. Quenching process

Shape ofworkpiece

Right Wrong

227

Page 234: Textbook for Vocational Training - Formulas and Tables Metal

Short parts

Long parts(cutting punches,centering pins,(draw punches)

Parts with holesand openings

Hollow dies 1gas space

228

Page 235: Textbook for Vocational Training - Formulas and Tables Metal

Unequal parts

Flat parts

Deep dies 1Spray

229

Page 236: Textbook for Vocational Training - Formulas and Tables Metal

Chisels,centre−punches,piercers (quenchonly the cuttingedge)

25.2.4. Faults in hardening

Faults inhardening

Possible causes

Temperaturetoo low

Temperaturetoo high

Quenchanttoo abrupt

Quenchingtime too

short

Faultydipping

Drawingtemperature

too high

Insufficientmotion

Heatingtoo

rapid

Non−uniformheating

Drawingtemperature

too low

Quenchanttoo mild

Heatingtoo

long

too soft + + + +

non−uniformlyhard

+ + +

too hard + + +

brittle + +

Workpiecedistorted

+ + +

or ruptured + +

25.3. Tempering and hardening with subsequent drawing of steel

25.3.1. Tempering and hardening process

Tempering

Heating to Ta and quick cooling. Reduction in the hardness by quenching (glass hardness, brittleness).Adjustment of different hardness degrees, e.g. for tools

230

Page 237: Textbook for Vocational Training - Formulas and Tables Metal

Ta drawing temperature (depends on the hardness required)1 hardening, 2 tempering

Hardening with subsequent drawing

Heating to Tv and cooling in still air, almost complete removal of hardness, increase in strength and toughnessowing to uniform, close−grained structure, for highly stressed workpieces

TV hardening temperature1 hardening, 2 hardening with subsequent drawing

25.3.2. Drawing temperatures and temper colours

Temperature in °C Colour Use

400 grey

380

360 greyish−blue

340

320 light blue

300 cyaneous centre−punch

280 violet tools for wood−working

260 brownish−red milling cutters, reamers, hammers

240 dark yellow turning tools and planer tools

220 light yellow twist drills, measuring tools, scribers

200 yellowy−white

180

231

Page 238: Textbook for Vocational Training - Formulas and Tables Metal

232