13
Tetrahedral intrinsic structure of Oxygen-16 revisited Chris Halcrow University of Leeds INPC 2019 — Glasgow Joint work with C. King and N. S. Manton

Tetrahedral intrinsic structure of Oxygen-16 revisited · Chris Halcrow University of Leeds INPC 2019 — Glasgow Joint work with C. King and N. S. Manton. This is the tetrahedral

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Tetrahedral intrinsic structure of Oxygen-16 revisited · Chris Halcrow University of Leeds INPC 2019 — Glasgow Joint work with C. King and N. S. Manton. This is the tetrahedral

Tetrahedral intrinsic structure of Oxygen-16

revisitedChris Halcrow

University of Leeds

INPC 2019 — Glasgow

Joint work with C. King and N. S. Manton

Page 2: Tetrahedral intrinsic structure of Oxygen-16 revisited · Chris Halcrow University of Leeds INPC 2019 — Glasgow Joint work with C. King and N. S. Manton. This is the tetrahedral

This is the tetrahedral 16-Skyrmion, it has alpha-particles on each vertex.

Plan: model Oxygen-16 by including vibrational and rotational excitations of tet.

It has three vibrational modes:

Page 3: Tetrahedral intrinsic structure of Oxygen-16 revisited · Chris Halcrow University of Leeds INPC 2019 — Glasgow Joint work with C. King and N. S. Manton. This is the tetrahedral

This is the tetrahedral 16-Skyrmion, it has alpha-particles on each vertex.

Plan: model Oxygen-16 by including vibrational and rotational excitations of tet.

It has three vibrational modes:

• A vibration — symmetric stretching (1-Dimensional)

Page 4: Tetrahedral intrinsic structure of Oxygen-16 revisited · Chris Halcrow University of Leeds INPC 2019 — Glasgow Joint work with C. King and N. S. Manton. This is the tetrahedral

This is the tetrahedral 16-Skyrmion, it has alpha-particles on each vertex.

Plan: model Oxygen-16 by including vibrational and rotational excitations of tet.

It has three vibrational modes:

• A vibration — symmetric stretching (1-Dimensional)

• E vibration — two particles move down, two up (2D).

Page 5: Tetrahedral intrinsic structure of Oxygen-16 revisited · Chris Halcrow University of Leeds INPC 2019 — Glasgow Joint work with C. King and N. S. Manton. This is the tetrahedral

This is the tetrahedral 16-Skyrmion, it has alpha-particles on each vertex.

Plan: model Oxygen-16 by including vibrational and rotational excitations of tet.

It has three vibrational modes:

• A vibration — symmetric stretching (1-Dimensional)

• E vibration — two particles move down, two up (2D).

• F vibration — one vertex moves away, leaving a triangle of particles behind (3D).

Page 6: Tetrahedral intrinsic structure of Oxygen-16 revisited · Chris Halcrow University of Leeds INPC 2019 — Glasgow Joint work with C. King and N. S. Manton. This is the tetrahedral

Skyrme model suggests that the E-vibration is most important, as its frequency is much lower than A- and F-vibrations. Also, it connects the tetrahedron to the square, dynamically.

timeincreasing

Page 7: Tetrahedral intrinsic structure of Oxygen-16 revisited · Chris Halcrow University of Leeds INPC 2019 — Glasgow Joint work with C. King and N. S. Manton. This is the tetrahedral

A vibrational wavefunction, concentrated at the tetrahedra.

Page 8: Tetrahedral intrinsic structure of Oxygen-16 revisited · Chris Halcrow University of Leeds INPC 2019 — Glasgow Joint work with C. King and N. S. Manton. This is the tetrahedral

A vibrational wavefunction, concentrated at square configurations.

Page 9: Tetrahedral intrinsic structure of Oxygen-16 revisited · Chris Halcrow University of Leeds INPC 2019 — Glasgow Joint work with C. King and N. S. Manton. This is the tetrahedral

A vibrational wavefunction, concentrated at the tetrahedra and the squares.

Page 10: Tetrahedral intrinsic structure of Oxygen-16 revisited · Chris Halcrow University of Leeds INPC 2019 — Glasgow Joint work with C. King and N. S. Manton. This is the tetrahedral

Physical states are combinations of these vibrational wavefunctions with rotational (or spin) wavefunctions, and harmonic wavefunctions from the A- and F-vibrations.

The allowed combinations depend on the symmetries of the wavefunctions.

The energy for a spin state is

E = Evib + 12~!AnA + 1

2~!FnF + Erot<latexit sha1_base64="btLO58tTPzGThZG30FodLZ8KO10=">AAACUnicfVJdSxtBFJ3E+hW/Uvvoy9AgCErYFaF9UFCK4qMFo0I2LHcnd5MhszPLzF0xLPv7+gd8af9DXyv45CSmYLV44MLh3HPn48wkuZKOguBnrT73YX5hcWm5sbK6tr7R/Lh55UxhBXaEUcbeJOBQSY0dkqTwJrcIWaLwOhl9m/Svb9E6afQljXPsZTDQMpUCyEtxE075ET+NI8I7Km9lUvFdHlFqQZRhVe5X0TAByyOT4QDiE659vWM484Yzb/i7oDVUxc1W0A6m4G9JOCMtNsNF3PwV9Y0oMtQkFDjXDYOceiVYkkJh1YgKhzmIEQyw66mGDF2vnEZR8W2v9HlqrC9NfKq+nCghc26cJXs8sTBC8hMZ0NC99kzE//W6BaVfe6XUeUGoxfOGaaE4GT7Jl/elRUFq7AkIK/2ZuRiCj4v8KzR8GOHrq78lV/vtMGiH3w9ax4ezWJbYFvvMdljIvrBjds4uWIcJ9oP9Zn/YQ+2+9lj3v+TZWq/NZj6xf1BffQLbr7Ka</latexit><latexit sha1_base64="btLO58tTPzGThZG30FodLZ8KO10=">AAACUnicfVJdSxtBFJ3E+hW/Uvvoy9AgCErYFaF9UFCK4qMFo0I2LHcnd5MhszPLzF0xLPv7+gd8af9DXyv45CSmYLV44MLh3HPn48wkuZKOguBnrT73YX5hcWm5sbK6tr7R/Lh55UxhBXaEUcbeJOBQSY0dkqTwJrcIWaLwOhl9m/Svb9E6afQljXPsZTDQMpUCyEtxE075ET+NI8I7Km9lUvFdHlFqQZRhVe5X0TAByyOT4QDiE659vWM484Yzb/i7oDVUxc1W0A6m4G9JOCMtNsNF3PwV9Y0oMtQkFDjXDYOceiVYkkJh1YgKhzmIEQyw66mGDF2vnEZR8W2v9HlqrC9NfKq+nCghc26cJXs8sTBC8hMZ0NC99kzE//W6BaVfe6XUeUGoxfOGaaE4GT7Jl/elRUFq7AkIK/2ZuRiCj4v8KzR8GOHrq78lV/vtMGiH3w9ax4ezWJbYFvvMdljIvrBjds4uWIcJ9oP9Zn/YQ+2+9lj3v+TZWq/NZj6xf1BffQLbr7Ka</latexit><latexit sha1_base64="btLO58tTPzGThZG30FodLZ8KO10=">AAACUnicfVJdSxtBFJ3E+hW/Uvvoy9AgCErYFaF9UFCK4qMFo0I2LHcnd5MhszPLzF0xLPv7+gd8af9DXyv45CSmYLV44MLh3HPn48wkuZKOguBnrT73YX5hcWm5sbK6tr7R/Lh55UxhBXaEUcbeJOBQSY0dkqTwJrcIWaLwOhl9m/Svb9E6afQljXPsZTDQMpUCyEtxE075ET+NI8I7Km9lUvFdHlFqQZRhVe5X0TAByyOT4QDiE659vWM484Yzb/i7oDVUxc1W0A6m4G9JOCMtNsNF3PwV9Y0oMtQkFDjXDYOceiVYkkJh1YgKhzmIEQyw66mGDF2vnEZR8W2v9HlqrC9NfKq+nCghc26cJXs8sTBC8hMZ0NC99kzE//W6BaVfe6XUeUGoxfOGaaE4GT7Jl/elRUFq7AkIK/2ZuRiCj4v8KzR8GOHrq78lV/vtMGiH3w9ax4ezWJbYFvvMdljIvrBjds4uWIcJ9oP9Zn/YQ+2+9lj3v+TZWq/NZj6xf1BffQLbr7Ka</latexit><latexit sha1_base64="btLO58tTPzGThZG30FodLZ8KO10=">AAACUnicfVJdSxtBFJ3E+hW/Uvvoy9AgCErYFaF9UFCK4qMFo0I2LHcnd5MhszPLzF0xLPv7+gd8af9DXyv45CSmYLV44MLh3HPn48wkuZKOguBnrT73YX5hcWm5sbK6tr7R/Lh55UxhBXaEUcbeJOBQSY0dkqTwJrcIWaLwOhl9m/Svb9E6afQljXPsZTDQMpUCyEtxE075ET+NI8I7Km9lUvFdHlFqQZRhVe5X0TAByyOT4QDiE659vWM484Yzb/i7oDVUxc1W0A6m4G9JOCMtNsNF3PwV9Y0oMtQkFDjXDYOceiVYkkJh1YgKhzmIEQyw66mGDF2vnEZR8W2v9HlqrC9NfKq+nCghc26cJXs8sTBC8hMZ0NC99kzE//W6BaVfe6XUeUGoxfOGaaE4GT7Jl/elRUFq7AkIK/2ZuRiCj4v8KzR8GOHrq78lV/vtMGiH3w9ax4ezWJbYFvvMdljIvrBjds4uWIcJ9oP9Zn/YQ+2+9lj3v+TZWq/NZj6xf1BffQLbr7Ka</latexit>

Page 11: Tetrahedral intrinsic structure of Oxygen-16 revisited · Chris Halcrow University of Leeds INPC 2019 — Glasgow Joint work with C. King and N. S. Manton. This is the tetrahedral

The energy spectrum, up to 20 MeV. Colours represent number of A, E and F excitations

Page 12: Tetrahedral intrinsic structure of Oxygen-16 revisited · Chris Halcrow University of Leeds INPC 2019 — Glasgow Joint work with C. King and N. S. Manton. This is the tetrahedral

A comparison of our model (coloured symbols) to experiment (black dots).

The model successfully describe many (~70) states.

Explains the gap between lowest spin 2 states; due to the square configuration.

Predict another 4- state near 15 MeV

Predicts many high-spin, unnatural-parity states.

Biggest issue is 0- state.

Page 13: Tetrahedral intrinsic structure of Oxygen-16 revisited · Chris Halcrow University of Leeds INPC 2019 — Glasgow Joint work with C. King and N. S. Manton. This is the tetrahedral

References

Oxygen-16:

C. J. Halcrow, C. King and N. S. Manton, Phys. Rev. C 95, 031303 (2017) Int. J. Mod. Phys. E 28, No. 3 (2019) 1950026

Carbon-12 in the Skyrme Model:

P. H. C. Lau, N. S. Manton, Phys. Rev. Lett. 113, 232503 (2014)

J. I. Rawlinson, Nucl. Phys. A 975 (2018) 122

[arXiv:1608.05048] [arXiv:1902.09424]

[arXiv:1408.6680]

[arXiv:1712.05658]