68
TESTING MATERIALS FOR RENEWABLE ENERGY APPLICATIONS Ana Boyano Mechanical Engineering Department University of the Basque Country (UPV/EHU) Spain

TESTING MATERIALS FOR RENEWABLE ENERGY APPLICATIONS · mechanisms of failure in composite materials Chen X., Xu J.Z.: Structural failure analysis of wind turbines impacted by super

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

  • TESTING MATERIALS FOR RENEWABLE ENERGY APPLICATIONS

    Ana Boyano

    Mechanical Engineering Department

    University of the Basque Country (UPV/EHU)

    Spain

  • 2

    BACKGROUND: RENEWABLE ENERGIES, SUSTAINABILITY

    DELAMINATION TESTING: composites for wind turbine blade materials

    MECHANICAL TESTING: performance of PLA vs PLA+carbon fiber

    SUMMARY AND CONCLUSION

  • 3

    EROI(Energy Returned on Energy Invested)

    LCA(Life Cycle Assessment)

    (“IPCC Fifth Assessment Report”, 2008)

  • 4

    Paris Climate Change Conference in 2015• Universal agreement• Limit the temperature rise to 2ºC

    above pre-industrial levels• Lower emission targets every 5

    years

    shift to renewable energies

  • 5

    0102030405060708090

    Nuclear (PWR) Hydro (med-size)

    Coal Wind (E-66) Solar CSP Biomass

    ERO

    I

    "Business as usual" and sustainable view

    EROI (2013) EROI (2015)

    369%

  • 6

    0

    200

    400

    600

    800

    1000

    1200

    Emis

    sion

    s (g

    CO2

    eq/K

    Wh)

    Conservative and sustainable view

    2011 research 2014 research

    2180%

    LCA LCA

  • 7

    BACKGROUND: RENEWABLE ENERGIES, SUSTAINABILITY

    DELAMINATION TESTING: composites for wind turbine blade materials

    MECHANICAL TESTING: performance of PLA vs PLA+carbon fiber

    SUMMARY AND CONCLUSION

  • 8

    TESTING MATERIALS FOR RENEWABLE ENERGY APPLICATIONS

    BACKGROUND

    Wind energy fundamentalissue to reduce the fossil fuel dependency

    Picture taken from: https://www.mitchelltech.edu

  • 9

    INTRODUCTION

    TRENDS:

    Larger wind turbinesOffshore wind farms

    Picture from geograph.org.uk Author David Dixon /

    http://www.geograph.org.uk/photo/2391702http://www.geograph.org.uk/profile/43729

  • 10

    DESIGN OF WIND TURBINE BLADES

    Structural configuration

    Material selection

  • 11

    INTRODUCTION

    MATERIAL OPTIMUM FEATURES:

    • high stiffness• strength • damage and loading resistances• low weight (low density)

    COMPOSITESPicture from: http://www.compositestoday.com/category/green-composites/wind-energy-green-composites/

  • 12

    BLADESmass

  • 13

    MECHANISMS OF FAILURE IN COMPOSITE MATERIALS

    Main failure modes in COMPOSITE LAMINATES

    • Fibre failure

    • Matrix failure

    • Fibre-matrix debonding

    • Inter-laminar failure (delamination)

    • Buckling instability

  • 14

    MECHANISMS OF FAILURE IN COMPOSITE MATERIALS

    • Inter-laminar failure Delamination

  • 15

    MECHANISMS OF FAILURE IN COMPOSITE MATERIALS

    Chen X., Xu J.Z.: Structural failure analysis of wind turbines impacted by super typhoon usagi.Eng.Failure Anal. 60, 391-404 (2016).

  • 16

    Materials

    Manufacturingprocess

    StructuralDesign

    Development of new composite

    blades

  • 17

    Sørensen, B. Materials and structures for wind turbine rotor blades–an overview, Proceedings of the17th international conference on composite materials (ICCM 17), Edinburgh, 2009; , pp. 31

  • 18

    LINEAR ELASTIC

    FRACTURE MECHANICS

    Composite laminates

    can betailored

    delamination

  • Mixed-mode I/II fracture is commonly observed

    Mode I Mode II Mode III

    Energy Criterion : G > Gc

    G=GI+GII+GIII

    G : Energy release rateGc : Fracture toughness

  • 20

    ENFR test:End Notched Flexure test with inserted Roller

  • 21

    ENFR test:End Notched Flexure test with inserted Roller

  • 22

    ENFR test:End Notched Flexure test with inserted Roller

  • 23

    Load +

    Load application pointdisplacement

    Compliance Crack length

    ENFR test:End Notched Flexure test with inserted Roller

    23

    Mixed-mode ratio GII/G

    G=GI+GII

    Mode I Mode II

    GI GII

  • Initial crack tip position

    Crack propagation

    Crack propagation sequence

  • Initial crack tip position

    Crack propagation

  • Initial crack tip position

    Crack propagation

  • Initial crack tip position

    Crack propagation

  • Initial crack tip position

    Crack propagation

  • Initial crack tip position

    Crack advance

    Crack propagation

  • Initial crack tip position

    Crack advance

    Crack propagation

  • Initial crack tip position

    Crack advance

    Crack propagation

  • Initial crack tip position

    Crack advance

    Crack propagation

  • Initial crack tip position

    Crack advance

    Crack propagation

  • Initial crack tip position

    Crack advance

    Crack propagation

  • 35

    Unidirectional [0]16T300/F593

    Carbon fiber Epoxi matrix

    Specimen manufacturing

  • 36

  • ID Nomenclature Initial GII/G (%)1 a40-R1-c5 652 a42-R0.9-c8 653 a42-R1.5-c0 674 a43-R0.9-c8 675 a41-R1-c5 686 a42-R1.5-c0 687 a45-R1-c8 688 a40-R1.25-c0 719 a43-R1.5-c0 7210 a46-R1.5-c0 77

    37

    Summary of experimental test conditions

  • 0 1 2 3 40

    50

    100

    150

    200

    250

    300

    Displacement(mm)

    Load

    (N)

    1 2 3 4 5 6 7 8 9 10

    38

    Load - displacement

  • 0 1 2 3 40

    50

    100

    150

    200

    250

    300

    Displacement(mm)

    Load

    (N)

    1 2 3 4 5 6 7 8 9 10

    39

    Load - displacement

  • 0 1 2 3 40

    50

    100

    150

    200

    250

    300

    Displacement(mm)

    Load

    (N)

    1 2 3 4 5 6 7 8 9 10

    40

    Load - displacement

  • 0 1 2 3 40

    50

    100

    150

    200

    250

    300

    Displacement(mm)

    Load

    (N)

    1 2 3 4 5 6 7 8 9 10

    41

    Load - displacement

  • 42

    0 2 4 6 8 10 12 140

    50

    100

    150

    200

    Crack advance(mm)

    GI (J

    /m2 )

    1 2 3 4 5 6 7 8 9 10

    0 2 4 6 8 10 12 140

    200

    400

    600

    800

    Crack advance(mm)

    GII (

    J/m2 )

    1 2 3 4 5 6 7 8 9 10

    GI GII

    Mixed-mode ratioGII/G

  • Energy Criterion : G > Gc G : Energy release rateGc : Fracture toughness

    LINEAR ELASTIC FRACTURE MECHANICS

    I Ic

    II IIc

    G GG G

    >>

    1I IIIC IIC

    G GG G

    + =

    Mixed-modePure modes

    GIc and GIIc (fracture toughness) material property)

  • 44

    200 400 600 800 100050

    100

    150

    200

    250

    300

    GII(J/m2)

    GI(J

    /m2 )

    12345678910

    1I IIIC IIC

    G GG G

    + =

  • Test GIC (J/m2) GIIC (J/m2) R2 Geqc (J/m2)1 344 798 0.951 5242 309 1042 0.948 5683 304 1174 0.918 5984 298 1159 0.827 5885 252 1241 0.936 5596 274 1359 0.937 6117 237 1405 0.786 5778 265 986 0.882 5119 278 1312 0.753 604

    10 277 1179 0.829 571Mean value 284 ± 31 1165 ± 184 571 ± 33

    All data 263 1267 0.716 578Mode I 240 -Mode II - 1063

    45

  • Energy Criterion : G > Gc G : Energy release rateGc : Fracture toughness

    LINEAR ELASTIC FRACTURE MECHANICS

    ( )( )

    1/2

    1/2

    eq I IIc II Ic

    eqc Ic IIc

    G G G G G

    G G G

    = +

    =eq eqcG G≥

    ENFR test End Notched Flexure test with inserted Roller

    I Ic

    II IIc

    G GG G

    >>

    1I IIIC IIC

    G GG G

    + =

    Mixed-modePure modes

  • 47

    0 5 10 15350

    400

    450

    500

    550

    600

    650

    Crack advance(mm)

    GEq

    (J/m

    2 )Geq Equivalent Energy Release Rate

  • 48

    ON THE MIXED MODE FRACTURE IN COMPOSITES WIND TURBINE BLADE MATRIALS CONCLUSIONS

    • Wind turbine blades are made of layered materialsmixed mode failure

    • ENFR test proposed for analyzing mixed-mode fracture

    An equivalent energy release rate for mixed-mode propagation

    proposed: experimental results show a good agreement

    Future line:

    Apply the results to

    a cross section of a wind turbine blade

  • 49

    BACKGROUND: RENEWABLE ENERGIES, SUSTAINABILITY

    DELAMINATION TESTING: composites for wind turbine blade materials

    MECHANICAL TESTING: performance of PLA vs PLA+carbon fiber

    SUMMARY AND CONCLUSION

  • Addition Manufacturing (AM)

    50

    FDM(Fused Deposition

    Modelling)

  • MATERIALS

    51

    Poly Acid Lactic (PLA/1.75 mm)

    Biodegradable

    Flexural modulus 3,500 MPa

    Bending strength 80 MPa

    Shear modulus 2,400 MPa

  • MATERIALS

    52

    Carbon-fibre reinforced PLA (1.75 mm)

    Low impact material

    15% of fibres in weight

  • 53

    Specimen manufacturing: 3D printing

  • 54

    Specimen manufacturing: 3D printing

  • 55

    MECHANICAL TESTING3point bending testing fixture

    ISO 14125:1998

  • 56

    Different spans (mm) 35, 50, 80,100, 120

    Strain Range 0.05-0.25%

  • Results

  • Conclusions

    1. Good compliance of expected material properties2. Increase of flexural modulus 83.16%3. Adequate to the use as low impacts materials for renewable structures

    Still a long way

    1027% bigger

    CF-

    PLA

    1. Closer approximation to aluminium

    2. Shear modulus and other mechanical modulus calculation for deeper researchesFu

    ture

  • Thank you for your attention

    TESTING MATERIALS FOR RENEWABLE ENERGY APPLICATIONSNúmero de diapositiva 2Número de diapositiva 3Número de diapositiva 4Número de diapositiva 5Número de diapositiva 6Número de diapositiva 7TESTING MATERIALS FOR RENEWABLE ENERGY APPLICATIONSNúmero de diapositiva 9Número de diapositiva 10Número de diapositiva 11Número de diapositiva 12Número de diapositiva 13Número de diapositiva 14Número de diapositiva 15Número de diapositiva 16Número de diapositiva 17Número de diapositiva 18Número de diapositiva 19Número de diapositiva 20Número de diapositiva 21Número de diapositiva 22Número de diapositiva 23Número de diapositiva 24Número de diapositiva 25Número de diapositiva 26Número de diapositiva 27Número de diapositiva 28Número de diapositiva 29Número de diapositiva 30Número de diapositiva 31Número de diapositiva 32Número de diapositiva 33Número de diapositiva 34Número de diapositiva 35Número de diapositiva 36Número de diapositiva 37Número de diapositiva 38Número de diapositiva 39Número de diapositiva 40Número de diapositiva 41Número de diapositiva 42Número de diapositiva 43Número de diapositiva 44Número de diapositiva 45Número de diapositiva 46Número de diapositiva 47ON THE MIXED MODE FRACTURE IN COMPOSITES �WIND TURBINE BLADE MATRIALSNúmero de diapositiva 49Número de diapositiva 50Número de diapositiva 51Número de diapositiva 52Número de diapositiva 53Número de diapositiva 54Número de diapositiva 55Número de diapositiva 56Número de diapositiva 57Número de diapositiva 58Número de diapositiva 59Número de diapositiva 60Número de diapositiva 61Número de diapositiva 62Número de diapositiva 63Número de diapositiva 64Número de diapositiva 65Número de diapositiva 66ConclusionsNúmero de diapositiva 68