45
Versuchsanstalt für Stahl, Holz und Steine, Karlsruher Institut für Technologie (KIT) Tel.: +49 (0)721 608 2205 Abt. Stahl- und Leichtmetallbau, D-76128 Karlsruhe, Deutschland Fax: +49 (0)721 608 4078 This test report may only be reproduced in an unabridged version. A publication in extracts needs our written approval. TEST REPORT No.: D3.2 – part 3 Tests on axially loaded sandwich panels Publisher: Saskia Käpplein Thomas Misiek Karlsruher Institut für Technologie (KIT) Versuchsanstalt für Stahl, Holz und Steine Task: 3.4 Object: Global load bearing capacity of axially loaded sandwich panels This report includes 45 pages. Date of issue: 03.09.2010

TEST REPORT · Thomas Misiek . Karlsruher Institut für Technologie (KIT) Versuchsanstalt für Stahl, Holz und Steine . Task: 3.4 . Object: Global load bearing capacity of aally loaded

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: TEST REPORT · Thomas Misiek . Karlsruher Institut für Technologie (KIT) Versuchsanstalt für Stahl, Holz und Steine . Task: 3.4 . Object: Global load bearing capacity of aally loaded

Versuchsanstalt für Stahl, Holz und Steine, Karlsruher Institut für Technologie (KIT) Tel.: +49 (0)721 608 2205 Abt. Stahl- und Leichtmetallbau, D-76128 Karlsruhe, Deutschland Fax: +49 (0)721 608 4078

This test report may only be reproduced in an unabridged version. A publication in extracts needs our written approval.

TEST REPORT

No.: D3.2 – part 3

Tests on axially loaded sandwich panels

Publisher: Saskia Käpplein

Thomas Misiek

Karlsruher Institut für Technologie (KIT)

Versuchsanstalt für Stahl, Holz und Steine

Task: 3.4

Object: Global load bearing capacity of axially loaded sandwich

panels

This report includes 45 pages.

Date of issue: 03.09.2010

Page 2: TEST REPORT · Thomas Misiek . Karlsruher Institut für Technologie (KIT) Versuchsanstalt für Stahl, Holz und Steine . Task: 3.4 . Object: Global load bearing capacity of aally loaded

page 2 of test report No.: D3.2 – part 3

This test report may only be reproduced in an unabridged version. A publication in extracts needs our written approval.

Project co-funded under the European Commission Seventh Research and Technology De-velopment Framework Programme (2007-2013)

Theme 4 NMP-Nanotechnologies, Materials and new Production Technologies

Prepared by

Saskia Käpplein, Thomas Misiek, Karlsruher Institut für Technologie (KIT), Versuchsanstalt für Stahl, Holz und Steine

Drafting History

Draft Version 1.1 16.08.2010

Draft Version 1.2

Draft Version 1.3

Draft Version 1.4

Final 03.09.2010

Dissemination Level

PU Public

PP Restricted to the other programme participants (including the Commis-sion Services)

RE Restricted to a group specified by the Consortium (including the Com-mission Services)

CO Confidential, only for members of the Consortium (including the Com-mission Services) X

Verification and approval

Coordinator

Industrial Project Leader

Management Committee

Industrial Committee

Deliverable

D3.2 – part 3: Axially loaded sandwich panels Due date:

Month 24

Completed:

Month 23

Page 3: TEST REPORT · Thomas Misiek . Karlsruher Institut für Technologie (KIT) Versuchsanstalt für Stahl, Holz und Steine . Task: 3.4 . Object: Global load bearing capacity of aally loaded

page 3 of test report No.: D3.2 – part 3

This test report may only be reproduced in an unabridged version. A publication in extracts needs our written approval.

Table of contents

1 Preliminary remark 4

2 Object of testing 4

3 Test set-up 5

4 Test performance 9

5 Results of the tests 10

6 Determination of the material properties 42

6.1 Core thickness of the metallic surface layers 42

6.2 Mechanical properties of the core layer 42

6.3 Wrinkling stress 43

7 Summary 45

Page 4: TEST REPORT · Thomas Misiek . Karlsruher Institut für Technologie (KIT) Versuchsanstalt für Stahl, Holz und Steine . Task: 3.4 . Object: Global load bearing capacity of aally loaded

page 4 of test report No.: D3.2 – part 3

This test report may only be reproduced in an unabridged version. A publication in extracts needs our written approval.

1 Preliminary remark

Traditionally sandwich panels are used as covering elements of buildings. In this application

the panels only transfer transverse loads (wind, snow) to the substructure by bending. In the

panels only the stress resultants of bending moment and transverse force are effective. A

recent tendency, especially in the area of smaller buildings – such as cooling chambers, cli-

matic chambers and clean rooms – is to apply the panels without substructure. In addition to

the stress resultants arising from transverse loads, the wall panels also have to transfer nor-

mal forces. This result in the question for the load-bearing capacity of the panels subjected to

axial loads or a combination of axial and transverse loads.

A design concept for axially loaded sandwich panels was developed within the framework of

the EASIE project. In deliverable D3.2 – part 3, the results of the experimental tests on axial

loaded sandwich panels are presented. The evaluation of the results can be found in deliver-

able D3.3. Deliverable D3.3 is also dealing with the numerical calculations and the derivation

of a design concept.

2 Object of testing

Investigations on different types of sandwich panels were performed (Tab.1). The length of

the panels varied between 2500 mm and 3500 mm. For all tests specimens with the width

400 mm have been used.

No. Core material Core thickness Face material Face thickness Profiling of faces

F PUR 60 steel 0,75 lightly profiled

K EPS 60 steel 0,60 flat

L EPS 60 GFRP 1,8 flat

Tab. 1: tes ted types o f s andwich panels

The geometry of one panel with profiled faces (type F) was measured. The results are shown

in the following figure.

Page 5: TEST REPORT · Thomas Misiek . Karlsruher Institut für Technologie (KIT) Versuchsanstalt für Stahl, Holz und Steine . Task: 3.4 . Object: Global load bearing capacity of aally loaded

page 5 of test report No.: D3.2 – part 3

This test report may only be reproduced in an unabridged version. A publication in extracts needs our written approval.

11,9 11,9

0,58

1,35

8044

37

B B*

top side ofproduction

bottom side ofproduction

Fig . 1: Geometry o f pane l type F

3 Test set-up

The test set-up for performing the tests on axial loaded sandwich panels is outlined in Fig. 2

und Fig. 3.

Page 6: TEST REPORT · Thomas Misiek . Karlsruher Institut für Technologie (KIT) Versuchsanstalt für Stahl, Holz und Steine . Task: 3.4 . Object: Global load bearing capacity of aally loaded

page 6 of test report No.: D3.2 – part 3

This test report may only be reproduced in an unabridged version. A publication in extracts needs our written approval.

transverse load P

axial load N

strain gauges

measurement of force

measurement of displacement

hinged support

L-shaped aluminium profiles 60x40x4glued to the face of the panel

wooden board

support in mid-span leng

th L

sheet of steel d=20mm

hinged supportround steel d=30mm

Fig . 2: Tes t s e t-up

Page 7: TEST REPORT · Thomas Misiek . Karlsruher Institut für Technologie (KIT) Versuchsanstalt für Stahl, Holz und Steine . Task: 3.4 . Object: Global load bearing capacity of aally loaded

page 7 of test report No.: D3.2 – part 3

This test report may only be reproduced in an unabridged version. A publication in extracts needs our written approval.

Fig . 3: Tes t s e t-up

For introducing the axial force L-shaped aluminium profiles 60x40x4 were glued on the faces

of the panel. The profiles were screwed on a wooden board. The profiles were glued on the

panels, thus there was a 5 mm gap between the wooden board and the end of the panel

(Fig. 4).

Page 8: TEST REPORT · Thomas Misiek . Karlsruher Institut für Technologie (KIT) Versuchsanstalt für Stahl, Holz und Steine . Task: 3.4 . Object: Global load bearing capacity of aally loaded

page 8 of test report No.: D3.2 – part 3

This test report may only be reproduced in an unabridged version. A publication in extracts needs our written approval.

Fig . 4: Load in troduction

The axial force N was introduced by a sheet of steel which was connected to a round steel. At

the lower end of the panel the round steel was used as hinged support (Fig. 5). At the top end

of the panel the round bar was supported hinged and vertical movable.

Fig . 5: Hinged s upport

In mid-span of the panel an additional support was located to apply an initial deflection to the

panel. During the test the reaction force P and the deflection w was measured at mid-span

(Fig. 6 and Fig. 7).

At the face subjected to tension two strain gauges were applied.

Page 9: TEST REPORT · Thomas Misiek . Karlsruher Institut für Technologie (KIT) Versuchsanstalt für Stahl, Holz und Steine . Task: 3.4 . Object: Global load bearing capacity of aally loaded

page 9 of test report No.: D3.2 – part 3

This test report may only be reproduced in an unabridged version. A publication in extracts needs our written approval.

Fig . 6: Support a t mid -s pan

measurement of force

measurement of displacementP1

support at mid-span

strain gauges

P2

w1 w2

Fig . 7: Meas urements a t mid -s pan

4 Test performance

At the beginning of the test an initial deflection w0 was applied to the panel at mid-span. At this

position the support was fixed during the test. Following the axial force N was applied, the rate

of loading was 1 mm/min.

During the test the axial force N, the reaction force P in mid-span and the deflection w of the

panel was measured. Additionally the strain in the face subjected to tension was measured by

the strain gauges.

Page 10: TEST REPORT · Thomas Misiek . Karlsruher Institut für Technologie (KIT) Versuchsanstalt für Stahl, Holz und Steine . Task: 3.4 . Object: Global load bearing capacity of aally loaded

page 10 of test report No.: D3.2 – part 3

This test report may only be reproduced in an unabridged version. A publication in extracts needs our written approval.

5 Results of the tests

The following pages show the results of the tests on axial loaded sandwich panels. For each

test, a table listing all relevant parameters is given, followed by the graphs of the measured

values. In addition significant pictures are shown for each test.

Page 11: TEST REPORT · Thomas Misiek . Karlsruher Institut für Technologie (KIT) Versuchsanstalt für Stahl, Holz und Steine . Task: 3.4 . Object: Global load bearing capacity of aally loaded

page 11 of test report No.: D3.2 – part 3

This test report may only be reproduced in an unabridged version. A publication in extracts needs our written approval.

No. 01

type of panel: F

length of panel: 2500 mm

face material: steel

face thickness: 0,75 / 0,75 mm

core material: PU

core thickness: 60 mm

Measured dimensions

length L: 2548 mm

thickness of the panel B: 61,20 mm / 60,45 mm

width of the panel: 404 mm

Initial deflection at mid-span w0: 15,0 mm

max. axial load N: 34,4 kN

mode of failure: Failure of glue at load introduction

remarks:

Page 12: TEST REPORT · Thomas Misiek . Karlsruher Institut für Technologie (KIT) Versuchsanstalt für Stahl, Holz und Steine . Task: 3.4 . Object: Global load bearing capacity of aally loaded

page 12 of test report No.: D3.2 – part 3

This test report may only be reproduced in an unabridged version. A publication in extracts needs our written approval.

Page 13: TEST REPORT · Thomas Misiek . Karlsruher Institut für Technologie (KIT) Versuchsanstalt für Stahl, Holz und Steine . Task: 3.4 . Object: Global load bearing capacity of aally loaded

page 13 of test report No.: D3.2 – part 3

This test report may only be reproduced in an unabridged version. A publication in extracts needs our written approval.

Fig . 8: Fa ilu re mode of tes t no . 01

Page 14: TEST REPORT · Thomas Misiek . Karlsruher Institut für Technologie (KIT) Versuchsanstalt für Stahl, Holz und Steine . Task: 3.4 . Object: Global load bearing capacity of aally loaded

page 14 of test report No.: D3.2 – part 3

This test report may only be reproduced in an unabridged version. A publication in extracts needs our written approval.

No. 02

type of panel: F

length of panel: 2500 mm

face material: steel

face thickness: 0,75 / 0,75 mm

core material: PU

core thickness: 60 mm

Measured dimensions

length L: 2545 mm

thickness of the panel: 60,52 mm / 60,82 mm

width of the panel: 402 mm

Initial deflection at mid-span w0: 15 mm

max. axial load N: 51,0 kN

mode of failure: Delamination of the face subjected to compression at the lower end

remarks:

Page 15: TEST REPORT · Thomas Misiek . Karlsruher Institut für Technologie (KIT) Versuchsanstalt für Stahl, Holz und Steine . Task: 3.4 . Object: Global load bearing capacity of aally loaded

page 15 of test report No.: D3.2 – part 3

This test report may only be reproduced in an unabridged version. A publication in extracts needs our written approval.

Page 16: TEST REPORT · Thomas Misiek . Karlsruher Institut für Technologie (KIT) Versuchsanstalt für Stahl, Holz und Steine . Task: 3.4 . Object: Global load bearing capacity of aally loaded

page 16 of test report No.: D3.2 – part 3

This test report may only be reproduced in an unabridged version. A publication in extracts needs our written approval.

Fig . 9: Fa ilu re mode of tes t no . 02

Page 17: TEST REPORT · Thomas Misiek . Karlsruher Institut für Technologie (KIT) Versuchsanstalt für Stahl, Holz und Steine . Task: 3.4 . Object: Global load bearing capacity of aally loaded

page 17 of test report No.: D3.2 – part 3

This test report may only be reproduced in an unabridged version. A publication in extracts needs our written approval.

No. 03

type of panel: L

length of panel: 3000 mm

face material: GFRP

face thickness: 1,8 / 1,8 mm

core material: EPS

core thickness: 60 mm

Measured dimensions

length L: 3043 mm

thickness of the panel: 61,59 mm / 62,06 mm

width of the panel: 399 mm

Initial deflection at mid-span w0: 22 mm

max. axial load N: 10,6 kN

mode of failure: Global buckling at max. N, shear failure of the core near load introduction after increasing the deflection

remarks:

Page 18: TEST REPORT · Thomas Misiek . Karlsruher Institut für Technologie (KIT) Versuchsanstalt für Stahl, Holz und Steine . Task: 3.4 . Object: Global load bearing capacity of aally loaded

page 18 of test report No.: D3.2 – part 3

This test report may only be reproduced in an unabridged version. A publication in extracts needs our written approval.

Page 19: TEST REPORT · Thomas Misiek . Karlsruher Institut für Technologie (KIT) Versuchsanstalt für Stahl, Holz und Steine . Task: 3.4 . Object: Global load bearing capacity of aally loaded

page 19 of test report No.: D3.2 – part 3

This test report may only be reproduced in an unabridged version. A publication in extracts needs our written approval.

Fig . 10: s pec imen no . 03 during the tes t

Page 20: TEST REPORT · Thomas Misiek . Karlsruher Institut für Technologie (KIT) Versuchsanstalt für Stahl, Holz und Steine . Task: 3.4 . Object: Global load bearing capacity of aally loaded

page 20 of test report No.: D3.2 – part 3

This test report may only be reproduced in an unabridged version. A publication in extracts needs our written approval.

Fig . 11: Fa ilu re mode of tes t no . 03

Page 21: TEST REPORT · Thomas Misiek . Karlsruher Institut für Technologie (KIT) Versuchsanstalt für Stahl, Holz und Steine . Task: 3.4 . Object: Global load bearing capacity of aally loaded

page 21 of test report No.: D3.2 – part 3

This test report may only be reproduced in an unabridged version. A publication in extracts needs our written approval.

No. 04

type of panel: K

length of panel: 3000 mm

face material: steel

face thickness: 0,60 / 0,60 mm

core material: EPS

core thickness: 60 mm

Measured dimensions

length L: 3049 mm

thickness of the panel: 59,94 mm / 59,62 mm

width of the panel: 399 mm

Initial deflection at mid-span w0: 20 mm

max. axial load N: 25,3 kN

mode of failure: Shear failure of the core near load introduction

remarks:

Page 22: TEST REPORT · Thomas Misiek . Karlsruher Institut für Technologie (KIT) Versuchsanstalt für Stahl, Holz und Steine . Task: 3.4 . Object: Global load bearing capacity of aally loaded

page 22 of test report No.: D3.2 – part 3

This test report may only be reproduced in an unabridged version. A publication in extracts needs our written approval.

Page 23: TEST REPORT · Thomas Misiek . Karlsruher Institut für Technologie (KIT) Versuchsanstalt für Stahl, Holz und Steine . Task: 3.4 . Object: Global load bearing capacity of aally loaded

page 23 of test report No.: D3.2 – part 3

This test report may only be reproduced in an unabridged version. A publication in extracts needs our written approval.

Fig . 12: Fa ilu re mode of tes t no . 04

Page 24: TEST REPORT · Thomas Misiek . Karlsruher Institut für Technologie (KIT) Versuchsanstalt für Stahl, Holz und Steine . Task: 3.4 . Object: Global load bearing capacity of aally loaded

page 24 of test report No.: D3.2 – part 3

This test report may only be reproduced in an unabridged version. A publication in extracts needs our written approval.

No. 05

type of panel: F

length of panel: 3000 mm

face material: steel

face thickness: 0,75 / 0,75 mm

core material: PU

core thickness: 60 mm

Measured dimensions

length L: 3049 mm

thickness of the panel B*: 59,38 mm / 59,92 mm

width of the panel: 401 mm

Initial deflection at mid-span w0: 15 mm

max. axial load N: 46,2 kN

mode of failure: Shear failure of the core at load introduction

remarks:

Page 25: TEST REPORT · Thomas Misiek . Karlsruher Institut für Technologie (KIT) Versuchsanstalt für Stahl, Holz und Steine . Task: 3.4 . Object: Global load bearing capacity of aally loaded

page 25 of test report No.: D3.2 – part 3

This test report may only be reproduced in an unabridged version. A publication in extracts needs our written approval.

Page 26: TEST REPORT · Thomas Misiek . Karlsruher Institut für Technologie (KIT) Versuchsanstalt für Stahl, Holz und Steine . Task: 3.4 . Object: Global load bearing capacity of aally loaded

page 26 of test report No.: D3.2 – part 3

This test report may only be reproduced in an unabridged version. A publication in extracts needs our written approval.

Fig . 13: s upport in mid -s pan during tes t no . 05

Page 27: TEST REPORT · Thomas Misiek . Karlsruher Institut für Technologie (KIT) Versuchsanstalt für Stahl, Holz und Steine . Task: 3.4 . Object: Global load bearing capacity of aally loaded

page 27 of test report No.: D3.2 – part 3

This test report may only be reproduced in an unabridged version. A publication in extracts needs our written approval.

Fig . 14: Fa ilu re mode of tes t no . 05

Page 28: TEST REPORT · Thomas Misiek . Karlsruher Institut für Technologie (KIT) Versuchsanstalt für Stahl, Holz und Steine . Task: 3.4 . Object: Global load bearing capacity of aally loaded

page 28 of test report No.: D3.2 – part 3

This test report may only be reproduced in an unabridged version. A publication in extracts needs our written approval.

No. 06

type of panel: F

length of panel: 3000 mm

face material: steel

face thickness: 0,75 / 0,75 mm

core material: PU

core thickness: 60 mm

Measured dimensions

length L: 3043 mm

thickness of the panel B: 60,97 mm / 60,36 mm

width of the panel: 401 mm

Initial deflection at mid-span w0: 17,5 mm

max. axial load N: 47,0 kN

mode of failure: Shear failure of the core at load introduction

remarks:

Page 29: TEST REPORT · Thomas Misiek . Karlsruher Institut für Technologie (KIT) Versuchsanstalt für Stahl, Holz und Steine . Task: 3.4 . Object: Global load bearing capacity of aally loaded

page 29 of test report No.: D3.2 – part 3

This test report may only be reproduced in an unabridged version. A publication in extracts needs our written approval.

Page 30: TEST REPORT · Thomas Misiek . Karlsruher Institut für Technologie (KIT) Versuchsanstalt für Stahl, Holz und Steine . Task: 3.4 . Object: Global load bearing capacity of aally loaded

page 30 of test report No.: D3.2 – part 3

This test report may only be reproduced in an unabridged version. A publication in extracts needs our written approval.

Fig . 15: Fa ilu re mode of tes t no . 06

Page 31: TEST REPORT · Thomas Misiek . Karlsruher Institut für Technologie (KIT) Versuchsanstalt für Stahl, Holz und Steine . Task: 3.4 . Object: Global load bearing capacity of aally loaded

page 31 of test report No.: D3.2 – part 3

This test report may only be reproduced in an unabridged version. A publication in extracts needs our written approval.

No. 07

type of panel: F

length of panel: 3500 mm

face material: steel

face thickness: 0,75 / 0,75 mm

core material: PU

core thickness: 60 mm

Measured dimensions

length L: 3548 mm

thickness of the panel B: 60,20 mm / 60,37 mm

width of the panel: 402 mm

Initial deflection at mid-span w0: 20 mm

max. axial load N: 36,7 kN

mode of failure: Shear failure of the core at load introduction

remarks:

Page 32: TEST REPORT · Thomas Misiek . Karlsruher Institut für Technologie (KIT) Versuchsanstalt für Stahl, Holz und Steine . Task: 3.4 . Object: Global load bearing capacity of aally loaded

page 32 of test report No.: D3.2 – part 3

This test report may only be reproduced in an unabridged version. A publication in extracts needs our written approval.

Page 33: TEST REPORT · Thomas Misiek . Karlsruher Institut für Technologie (KIT) Versuchsanstalt für Stahl, Holz und Steine . Task: 3.4 . Object: Global load bearing capacity of aally loaded

page 33 of test report No.: D3.2 – part 3

This test report may only be reproduced in an unabridged version. A publication in extracts needs our written approval.

Fig . 16: Fa ilu re mode of tes t no . 07

Page 34: TEST REPORT · Thomas Misiek . Karlsruher Institut für Technologie (KIT) Versuchsanstalt für Stahl, Holz und Steine . Task: 3.4 . Object: Global load bearing capacity of aally loaded

page 34 of test report No.: D3.2 – part 3

This test report may only be reproduced in an unabridged version. A publication in extracts needs our written approval.

No. 08

type of panel: F

length of panel: 3500 mm

face material: steel

face thickness: 0,75 / 0,75 mm

core material: PU

core thickness: 60 mm

Measured dimensions

length L: 3555 mm

thickness of the panel B*: 59,66 mm / 59,18 mm

width of the panel: 401 mm

Initial deflection at mid-span w0: 16,5 mm

max. axial load N: 43,0 kN

mode of failure: Shear failure of the core at load introduction

remarks:

Page 35: TEST REPORT · Thomas Misiek . Karlsruher Institut für Technologie (KIT) Versuchsanstalt für Stahl, Holz und Steine . Task: 3.4 . Object: Global load bearing capacity of aally loaded

page 35 of test report No.: D3.2 – part 3

This test report may only be reproduced in an unabridged version. A publication in extracts needs our written approval.

Page 36: TEST REPORT · Thomas Misiek . Karlsruher Institut für Technologie (KIT) Versuchsanstalt für Stahl, Holz und Steine . Task: 3.4 . Object: Global load bearing capacity of aally loaded

page 36 of test report No.: D3.2 – part 3

This test report may only be reproduced in an unabridged version. A publication in extracts needs our written approval.

Fig . 17: s upport in mid-s pan during tes t no . 08

Page 37: TEST REPORT · Thomas Misiek . Karlsruher Institut für Technologie (KIT) Versuchsanstalt für Stahl, Holz und Steine . Task: 3.4 . Object: Global load bearing capacity of aally loaded

page 37 of test report No.: D3.2 – part 3

This test report may only be reproduced in an unabridged version. A publication in extracts needs our written approval.

Fig . 18: Fa ilu re mode of tes t no . 08

Page 38: TEST REPORT · Thomas Misiek . Karlsruher Institut für Technologie (KIT) Versuchsanstalt für Stahl, Holz und Steine . Task: 3.4 . Object: Global load bearing capacity of aally loaded

page 38 of test report No.: D3.2 – part 3

This test report may only be reproduced in an unabridged version. A publication in extracts needs our written approval.

No. 09

type of panel: F

length of panel: 3500 mm

face material: steel

face thickness: 0,75 / 0,75 mm

core material: PU

core thickness: 60 mm

Measured dimensions

length L: 3545 mm

thickness of the panel B: 60,56 mm / 60,54 mm

width of the panel: 402 mm

Initial deflection at mid-span w0: 5 mm

max. Axial load N: 43,4 kN

mode of failure: Wrinkling of the face subjected to compression

remarks:

Page 39: TEST REPORT · Thomas Misiek . Karlsruher Institut für Technologie (KIT) Versuchsanstalt für Stahl, Holz und Steine . Task: 3.4 . Object: Global load bearing capacity of aally loaded

page 39 of test report No.: D3.2 – part 3

This test report may only be reproduced in an unabridged version. A publication in extracts needs our written approval.

Page 40: TEST REPORT · Thomas Misiek . Karlsruher Institut für Technologie (KIT) Versuchsanstalt für Stahl, Holz und Steine . Task: 3.4 . Object: Global load bearing capacity of aally loaded

page 40 of test report No.: D3.2 – part 3

This test report may only be reproduced in an unabridged version. A publication in extracts needs our written approval.

Fig . 19: s upport in mid -s pan during tes t no . 09

Page 41: TEST REPORT · Thomas Misiek . Karlsruher Institut für Technologie (KIT) Versuchsanstalt für Stahl, Holz und Steine . Task: 3.4 . Object: Global load bearing capacity of aally loaded

page 41 of test report No.: D3.2 – part 3

This test report may only be reproduced in an unabridged version. A publication in extracts needs our written approval.

Fig . 20: Fa ilu re mode of tes t no . 09

Page 42: TEST REPORT · Thomas Misiek . Karlsruher Institut für Technologie (KIT) Versuchsanstalt für Stahl, Holz und Steine . Task: 3.4 . Object: Global load bearing capacity of aally loaded

page 42 of test report No.: D3.2 – part 3

This test report may only be reproduced in an unabridged version. A publication in extracts needs our written approval.

6 Determination of the material properties

6.1 Core thickness of the metallic surface layers

For each tested type of panel the core thicknesses of the metallic faces were determined.

The mean values of the results are listed in Tab. 2.

No. tK

[mm]

F

Face subjected to compression (top side of production)

0,698

Face subjected to tension (bottom side of production)

0,700

K Face subjected to compression 0,554

Face subjected to tension 0,551

L GFRP

Tab. 2: Core th icknes s o f the meta llic s u rface layers

6.2 Mechanical properties of the core layer

The mechanical properties were determined according to EN 14509. The determination of the

compression strength fCc, the tensile strength fCt, the shear strength fCv, as well as the appro-

priate shear, compression and tensile module values GC, ECc and ECt was realized on at least

three specimens. The analysis of the modulus of elasticity EC was realised as mean value

from the compression and tensile module of a specimen pair. The mean values of the results

are listed in Tab. 3 and Tab. 4.

No. fCv fCc fCt

[N/mm²] [N/mm²] [N/mm²]

F 0,15 0,15 0,13

K 0,14 - -

L 0,14 - -

Tab. 3: Mechanica l p roperties o f the core layer - s treng th

Page 43: TEST REPORT · Thomas Misiek . Karlsruher Institut für Technologie (KIT) Versuchsanstalt für Stahl, Holz und Steine . Task: 3.4 . Object: Global load bearing capacity of aally loaded

page 43 of test report No.: D3.2 – part 3

This test report may only be reproduced in an unabridged version. A publication in extracts needs our written approval.

No. GC ECc ECt EC

[N/mm²] [N/mm²] [N/mm²] [N/mm²]

F 3,81 3,25 4,06 3,66

K 5,57 - - -

L 11,08 - - -

Tab. 4: Mechanica l p roperties o f the core layer – module

6.3 Wrinkling stress

Single-span bending tests were performed with sandwich panels type F. The sandwich panels

with a length of 5000 mm were loaded until failure in a vacuum chamber with an effective

span of 4800 mm under uniform surface load. For the calculation of the wrinkling stress the

measured thickness of the steel faces and the measured thickness of the panels were used.

The results of the single-span bending tests are listed in table 5 followed by the load-

deflection-diagrams.

test no.

thickness of panel

(mean value)

width of specimen span

core sheet thickness

of face subjected to com-pression

failure load incl. dead

weight

wrinkling stress

[mm] [mm] [mm] [mm] [kN/m] [N/mm²]

D B la tK p σw

WS 1 1) 60,5 400 4800 0,698 0,95 165

WS 2 2) 60,5 402 4800 0,700 1,24 213

1) top side of production subjected to compression 2) bottom side of production subjected to compression

Tab. 5: Wrinkling s tres s o f the faces

Page 44: TEST REPORT · Thomas Misiek . Karlsruher Institut für Technologie (KIT) Versuchsanstalt für Stahl, Holz und Steine . Task: 3.4 . Object: Global load bearing capacity of aally loaded

page 44 of test report No.: D3.2 – part 3

This test report may only be reproduced in an unabridged version. A publication in extracts needs our written approval.

test WS 1

0

0,2

0,4

0,6

0,8

1

1,2

0 10 20 30 40 50 60 70 80 90 100

deflection [mm]

forc

e [k

N/m

]

test WS 2

0

0,2

0,4

0,6

0,8

1

1,2

1,4

0 20 40 60 80 100 120 140

deflection [mm]

forc

e [k

N/m

]

Page 45: TEST REPORT · Thomas Misiek . Karlsruher Institut für Technologie (KIT) Versuchsanstalt für Stahl, Holz und Steine . Task: 3.4 . Object: Global load bearing capacity of aally loaded

page 45 of test report No.: D3.2 – part 3

This test report may only be reproduced in an unabridged version. A publication in extracts needs our written approval.

7 Summary

WP 3, task 3.4 of the EASIE project deals with sandwich panels used for buildings without

substructure. In this application the wall panels have to transfer normal forces in addition to

transverse loads. In deliverable 3.2 – part 3 the results of the experimental tests on axially

loaded sandwich panels are presented.