215
See discussions, stats, and author profiles for this publication at: http://www.researchgate.net/publication/272479844 Distribution, abundance and interaction patterns between sympatric carnivores in a mediterranean protected area THESIS · FEBRUARY 2013 READS 49 1 AUTHOR: Carolina Soto Navarro Estación Biológica de Doñana 8 PUBLICATIONS 4 CITATIONS SEE PROFILE Available from: Carolina Soto Navarro Retrieved on: 05 October 2015

Tesis Carolina Soto Navarro - copia.pdf

Embed Size (px)

Citation preview

Page 1: Tesis Carolina Soto Navarro - copia.pdf

Seediscussions,stats,andauthorprofilesforthispublicationat:http://www.researchgate.net/publication/272479844

Distribution,abundanceandinteractionpatternsbetweensympatriccarnivoresinamediterraneanprotectedarea

THESIS·FEBRUARY2013

READS

49

1AUTHOR:

CarolinaSotoNavarro

EstaciónBiológicadeDoñana

8PUBLICATIONS4CITATIONS

SEEPROFILE

Availablefrom:CarolinaSotoNavarro

Retrievedon:05October2015

Page 2: Tesis Carolina Soto Navarro - copia.pdf

Carolina Soto Navarro

Patrones de distribución, abundancia e interacciones entre

Carnívoros Simpátridosen un área mediterránea protegida

Page 3: Tesis Carolina Soto Navarro - copia.pdf

Carolina Soto Navarro

‘Patrones de distribución, abundancia e interacciones entre carnívoros simpátridos en un área mediterránea protegida’

© Carolina Soto NavarroIlustraciones: Carolina Soto NavarroDiseño y maquetación: Ramsés GarcíaFotografía: Carolina Soto Navarro, Ramsés García

Page 4: Tesis Carolina Soto Navarro - copia.pdf

Patrones de distribución, abundancia e interacciones entre carnívoros simpátridos en un

área mediterránea protegida

Distribution, abundance and interaction patterns between sympatric carnivores in a Mediterranean protected area

Tesis doctoralCarolina Soto Navarro

Sevilla, Diciembre 2012

Page 5: Tesis Carolina Soto Navarro - copia.pdf

Director de tesisDr. Francisco Palomares FernándezProfesor de InvestigaciónDepartamento de Biología de la ConservaciónEstación Biológica de Doñana-CSIC (EBD-CSIC)Sevilla-España

TutorDra. Mª José Leiva MoralesProfesora Titular Departamento de Biología Vegetal y EcologíaUniversidad de SevillaSevilla-España

Page 6: Tesis Carolina Soto Navarro - copia.pdf

A mis padres

A la tata nana

Para Ramsés

Page 7: Tesis Carolina Soto Navarro - copia.pdf
Page 8: Tesis Carolina Soto Navarro - copia.pdf

‘We cannot ease the burdens of the past, but we can atone by assuring the carnivores of the future’

Where the wild things were. W. Stolzenburg

Page 9: Tesis Carolina Soto Navarro - copia.pdf

Índice

Page 10: Tesis Carolina Soto Navarro - copia.pdf

ESTRUCTURA DE LA TESIS DOCTORAL............................................

INTRODUCCIÓN........................................................................................

Contexto de la tesis............................................................................. Marco teórico...................................................................................... Teoría de la selección de hábitat.............................................

El concepto de hábitat............................................................. El concepto de nicho ecológico..............................................

El estudio de la selección de hábitat....................................... Escalas espacio-temporales de investigación......................... De lo realmente importante y disponible para los individuos

Características ecológicas de las especies y mecanismos de coexistencia.............................................................................

De cómo simplemente encontrar el hábitat más idóneo suele nosersuficiente.......................................................................

Objetivos de la tesis doctoral..............................................................

Especies y área de estudio...................................................................

Las especies modelo................................................................

Área de estudio........................................................................

CHAPTER 1. Non-biological factors affecting track censuses: implications for sampling design and reliability.............................................

CHAPTER 2. Fine-scale habitat use and niche separation in a guild of sympatric carnivore species that differ in life-history traits ...........................

CHAPTER 3. Species abundances in a community of sympatric carnivores: a trade-off between habitat selection and interspecificinteractions?....................................................................................................

11

12

13

21

21

21

25

28

29

31

32

36

39

41

41

46

65

93

135

Page 11: Tesis Carolina Soto Navarro - copia.pdf

CHAPTER 4. Human-related factors regulate dog presence in protected areas: implications for conservation and management control...........................

CHAPTER 5. Surprising low abundance of European wildcats in a protected area of southwestern Spain.............................................................................

CONCLUSIONES........................................................................................

AGRADECIMIENTOS...............................................................................

157

185

209

213

Page 12: Tesis Carolina Soto Navarro - copia.pdf

11

ESTRUCTURA DE LA TESIS DOCTORAL

La presente tesis consta de los siguientes apartados: una Introducción al

estado de la cuestión y al marco teórico de la tesis; los Objetivos de la tesis; una

sección de Especies y área de estudio en la que se describen las especies modelo

y el área de estudio; redactados todos en castellano; cinco Capítulos Temáticos,

presentados en formato de manuscritos publicados y por publicar en revistas

internacionales, y por lo tanto escritos en inglés, aunque acompañados de sus

respectivos resúmenes encastellano;y,finalmente, lasConclusiones principales

obtenidas en la tesis redactadas en castellano.

Page 13: Tesis Carolina Soto Navarro - copia.pdf

Introducción

Page 14: Tesis Carolina Soto Navarro - copia.pdf

13

Introducción

Contexto de la tesis

Los seres humanos hemos cambiado la biosfera1 sustancialmente, hasta

el punto que algunos abogan por el reconocimiento de la época actual en la que

vivimos como una nueva era geológica, el ‘Antropoceno’ (Steffen et al. 2011,

Rockström et al. 2009, Zalasiewicz et al. 2011). Existen evidencias de que la Tierra

como ecosistema global puede estar acercándose a una transición crítica o punto

deinflexiónquepuedesuponeruncambiodeestado2 rápido a escala planetaria en

un período de décadas o siglos, si no se ha iniciado ya en la actualidad (Barnosky

et al. 2012). A pesar de que vivimos en una era geológica con la mayor riqueza

de especies y diversidad, nos encontramos en el comienzo de un fenómeno de

extinción en masas (Primack 2006). La principal causa de esta actual crisis a escala

global es el incremento de la alteración humana de la Tierra (Vitousek et al. 1997,

Primack 2006, Sinclair et al. 2006). De hecho, las tasas de crecimiento actuales de

la población mundial (77 millones de personas al año) así como el incremento de

las actividades humanas han supuesto cambios rápidos y drásticos en los paisajes

naturales (como la transformaciónde entreun tercioy lamitadde la superficie

terrestre (Vitousek et al. 1997, Hoekstra et al. 2005). El consumo excesivo de los

recursos y la expansión de las áreas humanizadas han llevado a la destrucción directa

1 El término ‘biosfera’ fue acuñado por el geólogo Eduard Suess en 1875, pero el concepto ecológico de biosfera procede de 1920 con Vladimir I. Vernadsky, precediendo a la introducción en 1935 del término ecosistemaporArthurTansley.Enestatesisempleoladefinicióndebiosferacomoecosistemaglobal.

2 En ecología, la teoría de estados estables alternativos predice que los ecosistemas pueden existir en múltiples ‘estados’ (conjunto de condiciones bióticas y abióticas únicas). Estos estados alternativos no son transitorios y por lo tanto se consideran como estables a escalas de tiempo ecológicamente relevantes. Los ecosistemas pueden sufrir una transición de un estado estable a otro, en lo que se conoce como un ‘cambio de estado’ (a veces llamado un cambio de fase o cambio de régimen), cuando son sometidos a perturbaciones. Uno de los cambios de estado más rápidos del planeta y el más reciente, ha sido la transición desde la última era glacial al presente período interglacial (Scheffer et al. 2009, Lenton 2012) que se produjo a lo largo de milenios (Hoek 2008).

Page 15: Tesis Carolina Soto Navarro - copia.pdf

14

Introducción

y fragmentación3 de hábitats naturales (por ejemplo, debido a la red de carreteras, la

expansión de las zonas agrícolas y ganaderas, y el desarrollo de las ciudades). De una

manera indirecta, procesos inducidos por el hombre también causan la degradación

de los hábitats de numerosas especies a través de la contaminación (pesticidas,

herbicidas, emisiones de industrias químicas y de automóviles que conducen a un

cambio climático anómalo (Houghton et al. 2001) y la introducción de especies

invasoras (Primack 2006). Debido a estos cambios drásticos en los ecosistemas,

muchas especies nativas se han extinguido o están en peligro de extinción debido

al impacto negativo de la reducción de hábitats y su degradación (Tilman et al.

1994, Brooks et al. 2002, Primack 2006). La transformación de la tierra es la fuerza

motriz de la amenaza para la biodiversidad a nivel mundial (Vitousek et al. 1997), y

este proceso está funcionando tan rápido que para la mayoría de las especies no hay

tiempoparaunaadaptaciónatalesmodificacionesatravésdeunacompensación

evolutiva (Teyssèdre 2004).

Almodificarelhábitatdenumerosasespecies, los sereshumanossehan

convertidoenunaparteintegraldesuentorno.Estainfluenciatieneefectoadiferentes

escalasespacialesynivelesbiológicos,talescomoladistribucióngeográficadelas

especies, la organización espacial de las poblaciones y el comportamiento individual

aescalafina.Porejemplo,lafragmentacióndehábitatspuedeimplicarladivisión

de las actuales poblaciones en subpoblaciones o metapoblaciones4 alterando así su

dinámica (por ejemplo, Banks et al. 2005). Este escenario puede restringir a muchas

3 Existeunaampliadiversidaddedefinicionesparaeltérminofragmentacióndehábitats.Enestatesislodefinirécomoelprocesoporelqueunhábitatgrandesetransformaenpequeñosparchesdelmismohábitat(véase la revisión de Fahrig 2003).

4UsaréladefinicióndeMoilanenetal.(1998):“una metapoblación es un conjunto de poblaciones locales que habitan distintos parches de hábitat distribuidos en un espacio definido”.

Page 16: Tesis Carolina Soto Navarro - copia.pdf

15

Introducción

especies a reservas naturales y áreas adyacentes en gran parte del mundo (Woodroffe

& Ginsberg 1998). No obstante, las áreas protegidas no están exentas en muchos

casos de las alteraciones relacionadas con las actividades humanas, bien porque

actividades humanas de alteración del medio han tenido lugar de forma común o

bienporquesufrenlasconsecuenciasdelainfluenciadelasáreasquelascircundan.

Además, para muchos de los ambientes y ecosistemas no existe una información

precisanifiablesobre lascomplejas interrelacionesqueregulanydeterminan la

distribución y abundancia de las especies, ni los efectos que diferentes factores

tienen sobre el individuo, las poblaciones o las comunidades.

Dentro de este contexto, la comprensión de la relación entre los organismos

ysuambientetieneimplicacionesfundamentalesenvariasdisciplinascientíficas

como la Ecología (por ejemplo, ¿cómo los cambios ambientales afectan a los

individuos o a la dinámica poblacional?), Evolución (por ejemplo, ¿cómo afectan

estoscambiosalfitnessdelosindividuos?,¿cómoseadaptanlasespeciesaestos

cambios, ¿cuáles son los fenotipos que mejor se adaptan a estos cambios?) y

Biología de la Conservación (por ejemplo, ¿cuáles son los “mejores” hábitats que

deben ser priorizados para la conservación de las especies?).

La importancia atribuida a los recursos naturales varía entre generaciones

junto con los cambios en la sociedad y las consecuencias de los niveles de explotación

anteriores (Conover 2002), pero el reconocimiento de que la biodiversidad desempeña

un papel esencial en el bienestar humano y en el equilibrio de los ecosistemas es

creciente, y ha llevado a la generación de medidas urgentes para incrementar la

conservación de especies y hábitats en todo el mundo, lo que también se traduce en

la cristalización de la era moderna de la ciencia y política conservacionistas. Desde

Page 17: Tesis Carolina Soto Navarro - copia.pdf

16

Introducción

que se acuñó el término en 1978 y se creó esta disciplina5, los estudios centrados

en la Biología de la Conservación han crecido exponencialmente hasta alcanzar la

relevancia actual que tiene esta área de investigación (Figura 1).

La distribución de las especies en el medio ambiente (también aplicable

para las poblaciones e individuos, pero me referiré a las especies en esta sección

por conveniencia de lectura) surge de la interacción entre eventos deterministas

y estocásticos (Corsi et al. 2000). De hecho, es el resultado de la interacción

entre eventos biológicos (por ejemplo, alimentación, reproducción o dispersión;

deterministas) y eventos impredecibles (por ejemplo, incendios, tormentas;

estocásticos). Durante estos eventos biológicos, los animales pueden elegir las

áreas que mejor satisfagan sus requerimientos ecológicos (por ejemplo, áreas con

abundantes recursos en épocas de escasez), es decir, pueden elegir hábitats a través

de sus movimientos. En un contexto ecológico, los requerimientos de las especies

seidentificanportantoenelmarcodelaselección de hábitat, un concepto que

desarrollaré más adelante.

5 El término Biología de la Conservación fue introducido como el título de una conferencia que tuvo lugar en la Universidad de California, San Diego en La Jolla, en 1978, organizado por los biólogos Bruce Wilcox y Michael E. Soulé. Conposterioridad,en1987,secreólaprimerasociedadcientíficaprofesional(The Society for Conservation Biology); “The Society is a response by professionals, mostly biological and social scientists, managers and administrators to the biological diversity crisis that will reach a crescendo in the first half of the twenty-first century. We assume that we are in time, and that by joining together with each other and with other well-intentioned persons and groups, the worst biological disaster in the last 65 million years can be averted. … Although we have varying philosophies, we share a faith in ourselves, as a species and as individuals, that we are equal to the challenge.… For these reasons we join together in professional alliance, in the service of each other, but also in the service of the less articulate members of our evolutionary tree” (Soulé 1987:4-5).

Page 18: Tesis Carolina Soto Navarro - copia.pdf

17

Introducción

La selección de hábitat es un concepto central en Ecología, debido a su

influenciaenladinámicadelaspoblacionesysupersistencia,lasinteraccionesentre

especies, y comunidades ecológicas (Morris 2003). En el contexto de la Biología de

la Conservación, el estudio de la selección de hábitat tiene por tanto implicaciones

importantes. Además, los modelos de hábitat son herramientas fiables para la

conservaciónymanejodeespeciesamenazadasquepermitenlaidentificaciónde

hábitats relativamente6 idóneos a proteger y/o gestionar adecuadamente para la

conservación de las especies.

6 He utilizado el término ‘relativamente’ para subrayar que hoy en día, debido a la alteración humana delpaisaje,laexpresiónde‘hábitatidóneo’debeserinterpretadaconcautela.Enmiopinión,serefierealo‘mejor dentro de lo malo’ más que simplemente a una calidad de hábitat buena para la especie según sus requerimientos. En esta tesis emplearé ‘la idoneidad de hábitat’ en este sentido.

Figura 1.Tendenciaenelusodeltérmino“BiologíadelaConservación”enlaspublicacionescientíficas.Los resultados proceden de una búsqueda en la ISI Web of Knowledge (http://isiknowledge.com/), con el término “conservation biology” como topic keyword.Lalíneaverticalsefijóenelaño1978.

Page 19: Tesis Carolina Soto Navarro - copia.pdf

18

Introducción

El objetivo de esta tesis es comprender los requerimientos ecológicos de un

gremio7 de mamíferos carnívoros silvestres y domésticos a nivel de población en un

área mediterránea protegida.

Los mamíferos constituyen un foco importante de conservación en una tasa

desproporcionadamente alta teniendo en cuenta que sólo representan un pequeño

porcentaje del número total de especies que existen en la tierra (alrededor de 4.500

especiesdemamíferosdemásde1.000.000deespeciestaxonómicasclasificadas

hasta 1970) (May 1992, Entwistle & Stephenson 2000). Los carnívoros, en

particular, constituyen un grupo de especies muy carismáticas que se han utilizado

como “especies bandera” (flagships)8 en muchos programas de conservación de

la biodiversidad y hábitats naturales. No obstante, su conservación se enfrenta a

diversos problemas. Generalmente presentan bajas densidades poblacionales, bajo

rendimiento reproductivo, períodos de gestación relativamente largos, necesitan

grandessuperficiesenunbuenestadodeconservación(notolerangrandeszonas

urbanasodealtaactividadhumana)ytiendenasermuyelusivos(loquedificulta

su estudio) (Cardillo et al. 2004, Karanth & Chellam 2009, Schipper et al. 2008).

Además, en algunos casos se consideran una amenaza para el ser humano o

sus actividades surgiendo así un conflicto de intereses (Inskip& Zimmerman

2009).Eseescenariodeconflictosrelegaaestasespeciesenmuchasocasiones

a reservas naturales y áreas adyacentes que deben permanecer ecológicamente

intactas y su gestión deber adoptar un enfoque metapoblacional que traspase las

fronteras de las reservas para evitar problemas como la endogamia y fenómenos

7 empleado en el sentido de un grupo de especies que utilizan recursos similares y por lo tanto, pueden competir.

8aunqueexistenmúltiplesacepcionesemplearéladefinicióndeHeywood1995;“especies carismáticas que sirven como símbolos o iconos para estimular la conciencia conservacionista”.

Page 20: Tesis Carolina Soto Navarro - copia.pdf

19

Introducción

estocásticos (como brotes epidémico) (Fernández et al. 2007) y asegurar así el

éxito conservacionista. Muchas especies de carnívoros han sufrido una disminución

dramática en los últimos pocos cientos de años y algunas se encuentran entre los

mamíferos terrestres más amenazados del planeta (ej. Ceballos & Ehrlich 2002,

Rodríguez & Delibes 2003, Naves et al. 2003). La pérdida de hábitat, el agotamiento

de sus presas, la explotación de pieles y la persecución directa han contribuido a la

disminución de muchas de estas especies en el pasado (Woodroffe 2001). Hoy en día,

la persecución directa y la disminución de sus potenciales presas son las amenazas

más inmediatas a corto plazo pero la pérdida de sus hábitats naturales y la mortalidad

adicionalrecientecausadaporeltráficoson,probablemente,lasmayoresamenazasa

largo plazo para su persistencia (Ginsberg 2001, Kerley et al. 2002, Burkey & Reed

2006).

Afortunadamente, el reciente reconocimiento de la importancia ecológica

de los depredadores y la falta de información para apoyar las estrategias de

recuperación ha llevado a una mayor preocupación por los efectos de los cambios

inducidos por el hombre en estas especies (Miller et al. 2001, Sergio et al. 2008). La

eliminación de un carnívoro superior en un ecosistema puede tener un impacto en la

abundancia relativa de las especies presa y en el gremio de carnívoros en general (por

ejemplo, Palomares et al. 1996), causando efectos en cascada a través de las cadenas

tróficashastalasplantas,afectandolasinteraccionesentrelasespeciesasícomola

estructurade lascomunidadesecológicasymodificando losprocesosbásicosde

funcionamiento de un ecosistema (por ejemplo, Estes & Palmisan 1974, Crooks

& Soulé 1999, Duffy et al. 2007, Delibes-Mateos et al. 2008). Un ejemplo clásico

de ello es la disminución de la densidad poblacional del puma (Puma concolor)

en el Parque Nacional Zion (Utah, EE.UU.), que condujo a un incremento en las

Page 21: Tesis Carolina Soto Navarro - copia.pdf

20

Introducción

densidades de venados mula o bura (su principal especie presa), una mayor presión

de herbivoría y en consecuencia un descenso en el reclutamiento de álamos de

rivera, un aumento en las tasas de erosión de los márgenes de rivera y una reducción

resultante de la abundancia de especies tanto acuáticas como terrestres (Ripple &

Beschta 2006). Otro ejemplo relevante de su importancia es el proceso conocido

como ‘liberación de mesodepredadores’ (mesopradator release)9 (por ejemplo,

Palomares et al. 1998, Gehrt & Prange 2007). Es decir, los carnívoros presentan un

papel claro en el mantenimiento directo o indirecto de la biodiversidad, mediante el

controldemesodepredadoresydiversificacióndelaspresas(Terborghetal.1999,

Miller et al. 2001). Estos estudios constituyen ejemplos de investigaciones holísticas

aniveldeecosistemayestimulanenfoquessimilaresendiferentesbiomas,afinde

comprender plenamente el papel de los mamíferos carnívoros en el funcionamiento

de los ecosistemas y su representatividad como especies clave (keystone species)10.

Esto sólo se puede lograr con investigaciones a largo plazo basadas en protocolos

estrictos de monitoreo de las especies y su medio ambiente (Yoccoz et al. 2001).

9 Las ideas relativas a la ‘liberación de mesodepredadores’ se remontan varias décadas, cuando los ecologistas comenzaron a observar que la eliminación de depredadores originaba explosiones poblacionales de otras especies inferiores (por ejemplo, Paine 1969, Pacala & Roughgarden 1984). El término fue acuñado por Soulé et al. (1988) para describir un proceso mediante el cual las poblaciones de mamíferos carnívoros de tamaño intermedio se hacían más prevalentes en ausencia de un carnívoro superior, y las poblaciones de diversas aves se veían deprimidas como consecuencia de ello. En esta tesis empleo el término de una manera másampliasegúnBrasharesetal.(2010)paradefinirlaexpansiónendensidadodistribución,oelcambioencomportamiento de un predador de rango medio como resultado de la disminución en densidad o distribución de un predador superior. Aunque la liberación de mesodepredadores se emplea normalmente en el contexto de lateoríatróficadecascadas(porejemplo,Bergeretal.2008,Brasharesetal.2010),setrataesencialmentedeuna interacción intragremial entre depredadores.

10 Paine 1969; “especies cuya presencia es crucial en el mantenimiento de la organización y diversidad de las comunidades ecológicas; especies excepcionales, en relación con el resto de la comunidad, en su importancia”.

Page 22: Tesis Carolina Soto Navarro - copia.pdf

21

Introducción

Marco teórico

Teoría de la selección de hábitat

Los patrones de distribución de las poblaciones en el medio natural son

el resultado de procesos que ocurren a diferentes escalas espaciales. La elección

individual de las características del medio ambiente es una de las fuerzas motrices

que opera a escalafina (Turchin 1998).Esta elección individual es inherente al

concepto de selección de hábitat,definidoporJohnson(1980)como“el proceso

por el cual un animal elige los componentes del hábitat a usar”. No obstante el

conceptodehábitatdebedefinirseyaclararseantesdedesarrollarelconceptode

selección de hábitat.

El concepto de hábitat

Aunque el concepto de hábitat es fundamental en Ecología, carece de una

clarayconsistentedefinición,apesarde losnumerososesfuerzosdeunificación

(Whittaker et al. 1973, Hall et al. 1997, Morris 2003, Kearney 2006), y su utilidad

es a veces incluso controvertida (Mitchell 2005). Básicamente, este término se usa

a menudo para describir el medio físico de las especies, poblaciones o individuos

a diferentes escalas espaciales. El hábitat se considera a veces sólo como una

descripción de la naturaleza física de un lugar (componentes abióticos y bióticos)

donde un organismo vive o puede potencialmente vivir (Kearney 2006, Morrison et

al.2006).Enocasionesladefinicióndehábitatincluyelosconceptosdepersistencia

de especies/poblaciones o la supervivencia y reproducción de los individuos

(Whittaker et al. 1973, Hall et al. 1997, Morris 2003). Sin embargo, todavía no

existeunconsensosobre laspropiedadesespecíficas individualesdelhábitat,ya

que esto relaciona la presencia de una especie, población o individuos con las

Page 23: Tesis Carolina Soto Navarro - copia.pdf

22

Introducción

características físicas y biológicas de un área (Hall et al. 1997). En mi opinión,

ladefinicióndeesteconceptodependeengranmedidadelcontextoenelquese

emplea. Cuando estamos hablando del hábitat de una especie (o de una población o

individuo) desde una perspectiva evolutiva, es evidente que el hábitat debe incluir el

fitness individual o la persistencia de las especies/poblaciones. En este contexto, la

respuesta a la pregunta: ‘¿Cuál es el hábitat de esta especie?’ incluye implícitamente

la noción de ‘buen’ hábitat en el que la especie puede persistir. Sin embargo, los

estudios de selección de hábitat rara vez consideran o miden ningún componente

relacionado con el fitness (pero ver McLoughlin et al. 2007), ya que es difícil

relacionar estas medidas con el hábitat de las especies. De hecho, los investigadores

tradicionalmente describen el hábitat de una especie, relacionando la presencia de

individuos, poblaciones o especies con las características de un área, asumiendo

que la presencia de la especie es un buen indicador de la calidad del hábitat. En este

contexto, el concepto de hábitat se emplea en un sentido más espacial. Por ejemplo,

consideremos una población en una dinámica de fuente-sumidero (para más detalles

véase Pulliam 1988), donde la población fuente (cuya reproducción local es mayor

que la mortalidad local) vive en una zona con características ambientales diferentes

que la población sumidero (cuya reproducción local no compensa el ritmo de la

mortalidad local). Sin la población fuente, la población sumidero no persistiría.

Por tanto, el área donde vive la población sumidero (a menudo denominado como

‘hábitatsumidero’)noseríaun‘hábitat’paralaespecieenelcontextodeladefinición

de rendimiento o persistencia.

Probablementeseaimposibleunificarestosconceptos,porloquemásbien

deberíadefinirseelconceptodehábitatespecíficamenteparacadaestudio,según

el contexto. Creo que la idea de persistencia o rendimiento de las especies debe

Page 24: Tesis Carolina Soto Navarro - copia.pdf

23

Introducción

referirse al concepto subyacente de calidad del hábitat, “la capacidad del medio

ambiente para proporcionar las condiciones apropiadas para la persistencia del

individuo y la población” (Hall et al. 1997). En este contexto, los hábitats sumidero

siguen siendo hábitats, pero de mala calidad, induciendo una alta mortalidad o una

bajareproducción.Porlotanto,preferiríaunadefinicióndehábitatquenoincluyera

la noción de persistencia, sino más bien las características físicas y biológicas de un

áreaenlaqueunaespecie(poblaciónoindividuo)puedevivir.Sinembargo,prefiero

pedir prestadoparte de la definiciónproporcionadaporWhittaker (1973), quien

destacó la propiedad multivariante de un hábitat: “Las m variables del ambiente

físico [biológico] y químico que forman gradientes espaciales en un paisaje o área

definida como ejes en un hábitat representado como un hiperespacio. La parte de

este hiperespacio que ocupa una determinada especie [en una escala particular

de espacio y tiempo] representa un hipervolumen que define su hábitat”. Esta

definiciónseacercabastantealadefinicióndenichoecológico(véaselasección

siguiente y Figura 2). Por lo tanto, en esta tesis trato de interpretar la selección del

hábitat de los animales haciendo con cautela inferencias acerca de la calidad del

mismo (aunque al tratarse de un área protegida, a pesar de que se llevan y se han

llevado a cabo de manera tradicional ciertos usos humanos del paisaje en la zona de

estudio, la alteración en cuanto a fragmentación y alteración del mismo se supone

menor que en otro tipo de áreas más humanizadas).

Page 25: Tesis Carolina Soto Navarro - copia.pdf

24

Introducción

Figura 2.Representaciónesquemáticadelnichoecológico.Lasflechasnegrasrepresentanvariablesambientales (e.g. cobertura de matorral, disponibilidad de presas), y por tanto el espacio ecológico. La elipse gris oscuro se corresponde con los valores de esas variables que están disponibles para la especie (población o individuos). La elipse gris claro representa el rango de valores usado por la especie, es decir, su nicho ecológico.

Siguiendoestadefinición,unparchedehábitatdescribiráunsubconjunto

del hábitat de la especie, es decir, una combinación particular de los componentes

(las variables del hábitat) que constituyen el hábitat de la especie. De acuerdo con

la cuestión de interés, las variables del hábitat pueden referirse como variables

ambientales (por ejemplo, elevación, tipo de vegetación, condiciones climáticas),

pero también puede integrar sus congéneres (por ejemplo, la densidad de población)

u otras especies (por ejemplo, la densidad de presas para un depredador). El término

‘parche’ se utiliza a menudo para describir áreas delimitadas que contienen una

cantidad limitada de recursos agregados en un ambiente pobre en recursos a

mayor escala (Cezilly & Benhamou 1996). Estos conceptos se pueden utilizar

para diferentes entidades, tales como especies, poblaciones, individuos o incluso

comunidades.

Niche(used)

E1

E3 E2

Environment(available)

Page 26: Tesis Carolina Soto Navarro - copia.pdf

25

Introducción

El concepto de nicho ecológico

Esteconceptotambiénsufredelafaltadeunadefiniciónunificadayseconfunde

a menudo con el concepto de hábitat. Fue desarrollado por primera vez por Grinnell

(1917) para referirse a todas las características del medio ambiente que le permiten a

unaespeciesobreviviryreproducirse(nóteselasimilitudconladefinicióndehábitat

mencionada, por ejemplo, Hall et al. 1997). Posteriormente, Elton (1927) introdujo

el papel funcional de la especie dentro de su comunidad, en su nueva definición

del concepto. Estos autores están detrás de las controversias pasadas y actuales.

¿Tenemos en cuenta el impacto de las especies en su medio ambiente y comunidad o

sólo el efecto del ambiente en la especie, es decir, el efecto de factores limitantes11en

la especie? Esto también depende del contexto. En 1957, Hutchinson formalizó el

conceptodenichoconunmodelogeométrico.Definióelnichocomoelhipervolumen

en el espacio multivariado de variables ambientales (el espacio ecológico, Figura 3)

dondeunaespeciepuedepersistir(Figura2).Estadefiniciónhacehincapiéenlagama

de condiciones ambientales necesarias para la persistencia de la especie, es decir, el

nicho Grineliano12 (que es similar al concepto de hábitat). En este contexto, el nicho

ecológico representa la posición de la especie en la gama de condiciones ambientales,

de manera que cada dimensión del nicho se corresponde por tanto con un subconjunto

de este rango potencial o realmente importante para la especie. Hutchinson no obstante

reconoció el papel potencial de la especie en su comunidad mediante la descripción de

dos tipos de nicho: el nicho fundamental y el nicho realizado.

11 los factores limitantes son “cualquier proceso [o factores] que afectan de una manera cuantificable el crecimiento de una población”(Messier1991),talycomorecursostróficos,refugiosocondicionesclimáticas.. 12definidoporGrinnell1917.

Page 27: Tesis Carolina Soto Navarro - copia.pdf

26

Introducción

Figura 3.(a)Espaciogeográficoy(b)ecológico.Lalocalización(normalmentedefinidapordoscoordenadas en el espacio; longitud y latitud) de una especie se emplea con frecuencia para analizar sus propiedades ecológicas en el espacio ecológico de variables ambientales (E1 a E3). (Adaptado de Calenge 2005).

El primer término corresponde al lugar ocupado por una especie en ausencia

de competencia. Sin embargo, el nicho fundamental rara vez se produce en la

naturaleza, ya que los ecosistemas están compuestos por conjuntos de especies

que coexisten e interactúan entre ellas. Por lo tanto, la presencia de una especie

no indica necesariamente que el hábitat sea el óptimo, pero es el resultado de un

trade-offentre lacalidaddelhábitaty lacompetencia intrae interespecíficaque

limitalosrecursoseinterfiereelaccesoaellos(VanHorne1983,Araujo&Guisan

2006, Soberón 2007). El segundo término tiene en cuenta dichas interacciones y

hace referencia a la distribución de la especie en su entorno, dada la presencia de

competidores, y por tanto se asume como más estrecho que el nicho fundamental.

Este concepto nos lleva a la idea de la partición de nicho, el mecanismo que permite

la coexistencia entre especies que habitan el mismo biotopo13 (Rosenzweig 1981).

13 Un biotopo es un área física con condiciones ambientales uniformes dónde viven un conjunto específicodeplantasyanimales.

(a) (b)E1

E3 E2

Page 28: Tesis Carolina Soto Navarro - copia.pdf

27

Introducción

Como resultado de la exclusión competitiva (Gause 1934), dos o más especies que

viven en la misma zona y tienen requisitos similares y utilizan los mismos factores

limitantes, puedenmodificar el uso de recursos (al menos una de las especies,

Gause 1934, Rosenzweig 1981), aunque esta idea está sujeta a controversia en la

literatura (Araujo & Guisan 2006). El uso de los conceptos nicho fundamental y

nicho realizado es frecuentemente confuso en la literatura (Soberón 2007) y su

utilidad ampliamente debatida (Araujo & Guisan 2006).

Enesta tesisheutilizadoel enfoquedeHutchinsonparadefinir elnicho

ecológico, ya que está íntimamente ligado al concepto de hábitat (cualquiera que

sealadefinicióndehábitat,ambassebasanenlarelaciónentreunaespecieylas

características del medio ambiente). Aunque los conceptos de nicho ecológico y

hábitat están relacionados con el espacio ecológico, a menudo están relacionados

conel espaciogeográfico (Figura3,Calenge2005,Araujo&Guisan2006).De

hecho,elestudiodelaubicacióndelasespeciesensuespaciogeográficopermite

laidentificacióndesuspropiedadesecológicas,ylaasociacióndelaspropiedades

ecológicas con factores espacialmente explícitos da lugar a la distribución

potencial de la especie (Araujo & Guisan 2006). En el marco de este concepto

se han desarrollado diversos métodos en relación con el objetivo de relacionar la

distribución de las especies con su medio ambiente (Hirzel et al. 2002, Calenge et

al. 2005, Basille et al. 2008, Calenge & Basille 2008, Calenge et al. 2008). Algunos

de estos métodos utilizan dos interesantes propiedades del nicho: la marginalidad

y especialización de las especies. La marginalidad es la posición de las especies en

losgradientesambientalesdisponibles.Porlotanto,serefierealaexcentricidaddel

nicho en comparación con el gradiente de componentes ambientales (Calenge et al.

2005). Por lo tanto, una especie marginal se encontrará en condiciones ambientales

Page 29: Tesis Carolina Soto Navarro - copia.pdf

28

Introducción

más atípicas (valores extremos del gradiente de una variable), mientras que las

especies no marginales usarán condiciones ambientales medias. La especialización

es la anchura del nicho, es decir, el grado de tolerancia de la especie al gradiente

ambiental. Cuanto más grande sea el nicho, mayor tolerancia presentará la especie,

mientras que cuánto más estrecho sea, más especializada estará la especie en el

uso de ciertos recursos. Estos conceptos son particularmente útiles para describir y

cuantificarlarelaciónentreunaespecieyelmedioambientedisponibleparaella.

En los últimos años, se han desarrollado numerosos análisis para la estimación del

nicho ecológico (Guisan & Zimmermann 2000, Calenge & Basille 2008). Aunque

este concepto ha sido desarrollado y utilizado a nivel de especie o población,

también puede ser generalizado a nivel individual.

El estudio de la selección de hábitat

Los estudios de selección de hábitat para identificar las características

ambientales que selecciona una especie, en el supuesto de que estas características

se han seleccionado debido a que proporcionan las mejores condiciones para la

supervivencia y la reproducción (Thomas & Taylor 2006), se abordan cada vez más

desde diferentes disciplinas (Evolución, Ecología y Conservación). La selección de

hábitat generalmente se investiga utilizando datos sobre el uso del espacio de una

especie dada. Las características del hábitat utilizado por la especie se comparan con

las de las zonas no utilizadas y más comúnmente con las de áreas que se consideran

como disponibles para la especie (Thomas & Taylor 1990, Manly et al. 2002). Se

dice que un hábitat es seleccionado cuando la proporción utilizada por los animales

es mayor que la proporción disponible. Por el contrario, se dice que un hábitat se

‘evita’ cuando la proporción de uso es menor que la proporción disponible. Sin

Page 30: Tesis Carolina Soto Navarro - copia.pdf

29

Introducción

embargo, como se indicó anteriormente las interpretaciones resultantes de estos

comparaciones requieren cierta precaución, porque no son una medida directa de

la calidad del hábitat (lo que requeriría algún tipo de medida relacionada con el

fitness14). Sin embargo, aunque la densidad de individuos podría ser un indicador

pobre de la calidad del hábitat en algunas condiciones (Van Horne 1983), la mayoría

de las veces es un buen indicador de la idoneidad (calidad) de un área en particular.

Escalas espacio-temporales de investigación

La naturaleza misma de la selección de hábitat es jerárquica. Diferentes

procesos actúan a diferentes escalas espacio-temporales, lo que resulta en una

selección diferencial del hábitat de acuerdo con la escala bajo consideración. Las

características de un área en la que se distribuye una población de una determinada

especie (selección de primer orden podrían no ser congruentes con las características

de los hábitats disponibles dentro del área de campeo de los individuos (selección

de tercer orden), porque los mecanismos implicados no son los mismos. La elección

de la escala de investigación (por ejemplo el rango geográfico de la especie, el

área ocupada por una población, la selección de hábitat individual dentro de las

áreas de campeo, etc) es crucial, ya que las inferencias a partir de los análisis a

una escala particular, están limitada a esa escala (Pendleton et al. 1998). Además,

la importancia de una escala particular puede ser diferente según la especie de

estudio. Para las especies generalistas, por ejemplo, las escalas grandes (escala de

paisaje,porejemplo)podríansermenosimportantesquelasescalasmásfinas(por

ejemplo, la selección de hábitat o recursos dentro del área de campeo) que para las

14aptitud,adecuaciónoeficaciabiológica

Page 31: Tesis Carolina Soto Navarro - copia.pdf

30

Introducción

especiesespecialistas,paralasqueelhábitatenelrangogeográficopuedeserde

crucial importancia. Sin embargo, como la mayoría de los procesos ecológicos, la

selección de hábitat a menudo se produce a más de una escala (Levin 1992).

Thomas & Taylor (1990) propusieron diferentes diseños de estudio para

las comparaciones entre hábitats usados y hábitats disponibles (o no usados)

teniendo en cuenta el organismo de estudio (población, individuos) y la escala

de investigación. El diseño de tipo I se utiliza para estudios a nivel de población

(selección de primer orden) cuando no se identifican los individuos. El uso del

hábitat y la disponibilidad de hábitat se miden a nivel de población. Los datos se

supone que son independientes (la presencia de la especie en un sitio particular

nodebeinfluirensupresenciaenotroslugares)yelaccesoalosrecursosesigual

para todos los individuos (deben por lo tanto, seguir una distribución ‘libre ideal’15

(Fretwell & Lucas 1969). Para este diseño se suelen emplear índices de presencia

de las especies (por ejemplo, heces, pelos, rastros).

Los diseños de tipo II, III y IV se utilizan para estudios a nivel individual

(selección de 2º, 3º y 4º orden). Los individuos se identifican (por ejemplo,

utilizando telemetría) y los datos de uso se miden por separado para cada uno de

los individuos. En el diseño de tipo II, la disponibilidad de hábitat es la misma

para todos los individuos (por ejemplo, la composición de áreas de campeo dentro

delrangogeográficodedistribucióndelasespecies),mientrasqueenlosdiseños

de tipo III y IV, la disponibilidad de hábitat se mide de forma independiente para

cada individuo. La disponibilidad de hábitat es constante durante el período de

estudioeneldiseño tipo III,por loque sedefineporunamedida (porejemplo,

15 La teoría de la distribución libre (ideal free distribution; IFD) formula que el número de individuos que se agregan en varios parches es proporcional a la cantidad de recursos disponibles en cada uno y predice que la distribución de los animales entre parches minimizará la competencia por los recursos y maximizará el fitness.

Page 32: Tesis Carolina Soto Navarro - copia.pdf

31

Introducción

el área de campeo de un individuo). En el diseño IV, hay un cambio temporal en

la disponibilidad de hábitat para un individuo dado, lo que requiere una serie de

medidas de disponibilidad (una medida por cada localización de un individuo). Este

último diseño fue creado con posterioridad por Erickson et al. (2001) para tener en

cuenta la creciente utilización de los nuevos tipos de datos proporcionados por la

telemetría, que permiten localizaciones frecuentes de los animales (por ejemplo,

una localización cada 30 minutos). En esta tesis empleo un diseño de estudio tipo

I para determinar los patrones de selección de hábitat de especies de carnívoros

silvestres y domésticos en un área protegida.

De lo realmente disponible e importante para los individuos

Medir la disponibilidad de hábitat para una especie requiere tener en cuenta

dosaspectosimportantes:laeleccióndelasvariablesbiológicassignificativaspara

la especie y los límites de la zona que consideraremos como disponible para la

especie en cuestión. La elección de las variables de hábitat a integrar en los análisis

es una tarea difícil (Lennon 1999, Guisan & Zimmermann 2000), y debe basarse

en un conocimiento previo profundo de la especie. Todas las variables de hábitat

consideradas limitantes para la especie deben incluirse. Sin embargo, la elección de

variables a menudo se basa en consideraciones logísticas, ya que algunas variables

son difíciles de medir (Mitchell 2005).

Como se mencionó anteriormente, la elección de la escala es muy importante

yconducealproblemainherentededefinicióndeladisponibilidaddehábitat.En

los estudios de selección de hábitat, la determinación de lo que es disponible para la

especie es un reto, ya que sólo los animales ‘saben’ lo que está realmente disponible.

En teoría, los investigadoresdebemosdefinirobjetivamente ladisponibilidadde

Page 33: Tesis Carolina Soto Navarro - copia.pdf

32

Introducción

hábitat, desde el punto de vista de la especie. Esto es crítico para la interpretación

de los análisis, porque al cambiar la disponibilidad cambiará la proporción de cada

uno de los componentes hábitat, y por tanto, la comparación entre la proporción

de uso y disponibilidad de este componente, especialmente si este componente

muestra agregación espacial (Porter & Church 1987). En la práctica, sin embargo, la

disponibilidadsedefineamenudosubjetivamente,debidoaladificultaddeevaluar

la percepción que tiene la especie del medio. Por ejemplo, una zona puede aparecer

disponibleparaunindividuodado,mientrasquelasinteraccionesinterespecíficas

(porejemplo, lapresenciadedepredadores)o interacciones intraespecíficas (por

ejemplo, la defensa del territorio) podría prevenir su uso o su acceso, respectivamente.

Enalgunoscasos,ladefinicióndedisponibilidaddebeserreducidasilacuestiónde

interésserefierealoscomponentesfísicosdelhábitat,osivariablesreferidasasus

congéneres, presas o depredadores deben ser incluidas.

LasescalasdeseleccióndefinidasporJohnson(1980)ayudanareduciresta

subjetividad, ya que tienen una base biológica, pero no la eliminan por completo

(Erickson et al. 2001). Por ejemplo, en la escala de establecimiento del área de

campeoenladistribucióngeográficadeunaespecie,loslímitesdeláreadeestudio

a menudo abarcan el área en la que se distribuye la población.

Características ecológicas de las especies y mecanismos de coexistencia

La selección natural ha inducido la aparición de estrategias más o

menos especializadas entre especies presentando un trade-off evolutivo entre la

especializaciónpararealizarunaspocasactividadeseficazmenteoelgeneralismo

para desarrollar muchas actividades de una manera menos efectiva (Levins 1968).

Algunas especies muestran amplias tolerancias ambientales y presentan una dieta

Page 34: Tesis Carolina Soto Navarro - copia.pdf

33

Introducción

muy variada (generalistas de hábitat y dieta), mientras que otras tienen tolerancias

ambientales muy específicas y estrechas y sólo consumen ciertos recursos

(especialistas de hábitat y dieta). Estas dos categorías de especies tienen diferentes

dinámicas poblacionales (Kolasa & Li 2003). Por ejemplo, la variación en la

densidad de población es mayor en los especialistas que en los generalistas (Kolasa

& Li 2003). Del mismo modo, los especialistas de hábitat utilizan unidades de

hábitat más pequeñas anidadas dentro de unidades de hábitat más grandes (Kolasa

& Pickett 1989). Esto tiene otra consecuencia ya que las especies que utilizan

pequeñas unidades de hábitat tienden a tener bajas densidades poblacionales como

consecuencia de la disminución de la eficiencia en la búsqueda de los parches

adecuados y de la mortalidad durante la dispersión (Kolasa & Romanuk 2005).

Así, la disponibilidad de hábitats adecuados parece afectar más a las especies

especialistas que a las más generalistas, las cuales utilizan una gama más amplia

de tipos de hábitats para satisfacer sus necesidades (Munday et al. 1997, Bean et

al. 2002). Obviamente existe un gradiente continuo en el nivel de especialización

de una especie entre el especialismo más extremo (como el caso del lince ibérico;

Lynx pardinus) y el completo generalismo (como el caso del zorro común; Vulpes

vulpes).

Ladefiniciónoperativadeespecializaciónqueusaréenestatesisseráeluso

de un subconjunto relativamente restringido de recursos o hábitats en comparación

con otras especies. Las especies especialistas suelen beneficiarse de ambientes

relativamente homogéneos o estables (en el espacio y/o tiempo) mientras que las

especiesgeneralistassuelenbeneficiarsedeambientesmásheterogéneos(Futuyma

& Moreno 1988, Kassen 2002, Marvier et al. 2004, Ostergard & Ehrlén 2005).

Las características ecológicas particulares de cada especie pueden afectar

Page 35: Tesis Carolina Soto Navarro - copia.pdf

34

Introducción

laeficienciadelaidoneidaddelhábitatolosmodelosdedistribucióndeespecies

(Stockwell & Peterson 2002). Por ejemplo, Hepinstall et al. (2002) sugieren que la

amplitud de nicho de las especies es importante porque para las especies generalistas

que utilizan diferentes hábitats se podría predecir su ocurrencia en todas partes

por los métodos de asociación de hábitat, mientras que las especies con nichos

estrechos son más propensas a ser predichas con mayor exactitud. Tsoar et al.

(2007), además, encontró que los rangos de distribución de las especies con nichos

ecológicos estrechos se puede modelar con mayor precisión que los de las especies

más generalistas. Otros autores (por ejemplo Cowley et al. 2000, Hepinstall et al.

2002, Brotons et al. 2004, Hernández et al. 2006, Brotons et al. 2007) también han

señalado que las especies con nichos ecológicos restringidos pueden ser modeladas

con mayor precisión que las especies más generalistas. Brotons et al. (2007) sugiere

que las especies que tienen distribuciones más amplias o utilizan una amplia variedad

de hábitats en un área no deben estar limitadas por los factores predictivos medidos

a la escala a la que se ajustan los modelos. Cowley et al. (2000) también encontró

que los modelos con mayor rendimiento son los de especies sedentarias que tienen

fuertes asociaciones de hábitat y que presentan una distribución generalizada en

esos hábitats.

El mecanismo por el que especies con diferentes historias de vida o

características ecológicas conviven en la misma área ha sido foco de estudio en

ecología. Diversos autores han discutido en detalle como la heterogeneidad espacial

promuevelacoexistenciaentreespeciespertenecientesalmismoniveltrófico(Levin

1974, Yodzis 1978, Hastings 1980). Los primeros modelos teóricos mostraron que

dos especies que comparten recursos no pueden coexistir en un solo parche, pero

pueden hacerlo cuando dos o más parches diferentes están presentes (Levin 1974).

Page 36: Tesis Carolina Soto Navarro - copia.pdf

35

Introducción

En la década de 1980 el concepto de que la heterogeneidad espacial promueve la

coexistencia fue estudiada con más detalle en una teoría desarrollada para explicar

la coexistencia entre especies basándose en las teorías de la selección óptima de

los recursos (optimal foraging theory) y la selección de hábitat, conocida como la

teoría Isoleg (Pimm & Rosenzweig 1981, Rosenzweig 1981). Esta teoría explica

cómo dos especies competidoras se distribuyen en hábitats de diferente calidad

segúnsusdensidadesintraeinterespecíficas.Unadelasprincipalesprediccionesde

la teoría isoleg es que la coexistencia se ve favorecida cuando una de las especies

competidoras es un especialista (comportándose por tanto de manera selectiva),

mientras que el otro es un generalista (actuando por tanto de forma oportunista)

(Rosenzweig 1987). Cuando el especialista es también la especie dominante, se

prevéquelacoexistenciaseveafavorecidaenáreasconunadiversidadsuficiente

de hábitats en las que la especie generalista subordinada pueda segregarse de la

especie especialista dominante. Un concepto similar se desarrolló con anterioridad

para los sistemas predador-presa – las presas pueden ‘buscar la seguridad’ frente a

los depredadores en zonas conocidas como refugios de depredación, lo que puede

ser crucial para la persistencia de ambas (Hassell & May 1973). Este principio

se puede aplicar igualmente a la competencia interespecífica y, en un entorno

heterogéneo, las especies con baja capacidad competitiva puede persistir mediante

el uso de refugios donde la competencia se reduce (Durant 1998).

No obstante, en áreas aparentemente homogéneas desde una perspectiva

o escala mayor, los mecanismos de coexistencia que deben desarrollar especies

similares(esdecir,pertenecientesalmismoniveltrófico)quelespermitansegregarse

yportantosubsistirnoresultantanevidentes.Estosmecanismopuedenreflejarse

en patrones diferenciados de uso del hábitat relativamente homogéneo a una escala

Page 37: Tesis Carolina Soto Navarro - copia.pdf

36

Introducción

másfina(aescaladeparche)ydebeversefavorecidoporlapresenciadeespecies

con diferentes grado de especialización en el gremio. Conocer el efecto del hábitat

en la coexistencia de las especies puede ser especialmente relevante cuando puede

afectar a las políticas de conservación y gestión, incluso en áreas protegidas.

De cómo simplemente encontrar el hábitat más idóneo puede no ser suficiente

Como ya referimos con anterioridad con las ideas Hutchinsonianas de nicho

fundamental y nicho realizado, la presencia de una especie no indica necesariamente

que el hábitat sea el óptimo debido a la existencia de un trade-off entre la calidad

del hábitat y las interacciones intra e interespecífica que limitan los recursos e

interfierenelaccesoaellos.Así,losmodelosdeseleccióndehábitat‘puros’16 no

siemprereflejanlaidoneidaddelhábitatparaunaespecie,oalmenosparaaquellas

especies para las cuales la presencia de otras especies pertenecientes al mismo nivel

tróficoylasinteraccionesconellaspuedanalterarsuusodelespacioylimitarsu

abundancia o distribución (e.g. Laurenson 1995, Lindström et al. 1995).

Así, bajo condiciones de competencia por el uso de los recursos17, la densidad

de individuos puede ser un indicador pobre de la calidad del hábitat para algunas

especies.

La competencia se suele clasificar tanto en competencia por explotación

como en competencia por interferencia (Park 1962). La competencia por explotación

se produce cuando una especie utiliza un recurso (por ejemplo consume una

16 con modelos de selección de hábitat ‘puros’ hago referencia a modelos en los que no se tienen en cuentalaspotencialesinteraccionescompetitivasexistentesentreespeciespertenecientesalmismoniveltróficoque la especie bajo estudio, sino solamente las características ‘anatómicas’ del paisaje que las rodea.

17entiéndasecomorecursocualquierfuentedelacuallaespecieobtengaunbeneficio,esdecirtantolas características del paisaje como la vegetación o disponibilidad de presas, como el propio espacio en sí mismo.

Page 38: Tesis Carolina Soto Navarro - copia.pdf

37

Introducción

presa específica) y con ello reduce la oportunidad de usar esemismo recurso a

otra especie. La competencia por interferencia implica sin embargo interacciones

comportamentales entre las especies como la predación intragremial (Polis et al.

1989) en el caso más extremo o bien mecanismos más sutiles como evitar los

hábitats más usados por el predador principal y mostrar preferencias por hábitats

menos productivos (Harrison et al. 1989, Thurber et al. 1992, Durant 1998, Fedriani

et al. 1999, Fuller & Keith 1981), ajuste de los patrones de actividad para reducir

los encuentros con el predador principal (Litvaitis 1992, Johnson et al. 1996) o

bien formar grupos para competir de una manera más exitosa por los recursos

y/o obtener ventajas antipredadoras (Kruuk 1975, Eaton 1979, Lamprecht 1981,

Gittleman 1989).

El tamaño corporal se considera normalmente el factor más influyente

que determina la dirección y fuerza de la dinámica intragremial (Polis et al. 1989,

Donadio & Buskirk 2006), siendo las especies de tamaño superior capaces de

excluiralasmáspequeñasdelosparchesdehábitatorecursostróficos.

Las especies de carnívoros de pequeño y mediano tamaño a menudo se

ven perjudicados por interacciones agresivas con otros miembros simpátridos de

mayor tamaño del gremio al que pertenecen (Palomares et al. 1996, Crooks & Soule

1999, Palomares & Caro 1999, Fedriani et al. 2000, Donadio & Buskirk 2006). Las

interacciones agresivas o predación intragremial entre los mamíferos carnívoros

es muy frecuente y en algunas especies, además de suponer un cambio en el uso

del hábitat de las especies menos aventajadas competitivamente tiene también un

impacto considerable en las tasas de mortalidad (Ralls & White 1995, Sovada et

al. 1995) y por tanto en las densidades relativas de dichas especies en presencia

de un competidor superior. En esta tesis analizaremos la existencia de potenciales

Page 39: Tesis Carolina Soto Navarro - copia.pdf

38

Introducción

interacciones agresivas o predación intragremial entre las especies que conforman

el gremio de mamíferos carnívoros de nuestra área de estudio para determinar cómo

predadoresinferiorespuedenmostrarunarespuestanuméricanegativareflejadaen

sus densidades relativas en presencia de un predador superior.

Page 40: Tesis Carolina Soto Navarro - copia.pdf

39

Introducción

OBJETIVOS DE LA TESIS DOCTORAL

El capítulo I está dedicado a consideraciones metodológicas, particularmente

en lo relativo a la necesidad de tener en cuenta variables metodológicas y/o

climáticas en los censos de rastros en sustratos arenosos y cómo su inclusión como

variablesadicionalesenmodelosdeseleccióndehábitatpuedemejorarlafiabilidad

de los resultados obtenidos.

Los objetivos biológicos de esta tesis cubren la selección de hábitat a nivel

de área de campeo de los individuos y la biología de la conservación y se presentan

en los capítulos del II al V.

En el capítulo II, el objetivo es determinar los patrones de selección de

hábitataescalafinadelasdistintasespeciesdecarnívorossilvestresconsiderándolas

en su conjunto. Particularmente el objetivo consiste en determinar cómo especies

con diferentes historias de vida (es decir, grado de especialismo de hábitat y

dieta) pueden convivir en un área estudiada relativamente homogénea a escala de

macrohábitat. Nos centramos en determinar el espacio ecológico ocupado por cada

una de las especies (nicho ecológico) dentro del hiperespacio representado por las

variables ambientales medidas en el área de estudio y en evaluar cómo factores

relacionadas con el tipo de vegetación, la disponibilidad de presas, la estructura del

paisaje o las perturbaciones humanas pueden afectar a los patrones diferenciales de

seleccióndehábitatentrelasdistintasespeciesaunaescalafina.

En el capítulo III pretendemos determinar si la presencia de un predador

superior puede afectar negativamente las densidades relativas de especies inferiores

unavezcontroladoporlaseleccióndehábitataescalafinadecadaespecie;efecto

potencialmente atribuible a la existencia de depredación intragremial.

Page 41: Tesis Carolina Soto Navarro - copia.pdf

40

Introducción

En el capítulo IV nos planteamos determinar si las rastros de perros

detectados durante los censos se correspondían con perros domésticos procedentes

de la matriz humanizada circundante al área protegida o se correspondían con perros

asilvestrados residentes en el interior del Parque, así como en evaluar las variables

ambientales y/o relacionadas con la presencia humana que determinan su uso del

espacio. Asimismo, discutimos las implicaciones de los resultados en términos de

gestión y manejo de especies domésticas en el área.

El capítulo V está dedicado a la presencia de gato montés en el Parque

Nacional. Esta especie resulta de especial interés debido a que no se han llevado a

cabo estudios relacionados con su presencia, abundancia y/o selección de hábitat

con anterioridad en el área protegida asumiéndose una especie muy escasa a pesar

de la potencial idoneidad del hábitat para la especie. En este capítulo realizamos

un estudio de fototrampeo para determinar su presencia y estatus de conservación.

Asimismo, discutiremos las posibles razones relacionadas con el actual estado de

la población en el área. Estos resultados sirven además como una herramienta para

ayudar a los gestores en la toma de decisiones en materia de conservación y gestión

de la población de dicha especie.

Page 42: Tesis Carolina Soto Navarro - copia.pdf

41

Introducción

ESPECIES & ÁREA DE ESTUDIO

Las especies modelo

Esta tesis se centra en el estudio de un gremio de carnívoros compuesto

por cuatro especies nativas (el lince ibérico Lynx Pardinus, el tejón europeo

Meles meles, el zorro común Vulpes vulpes y el gato montés Felis silvestris) y dos

introducidas en tiempos históricos (la gineta común Genetta genetta y el meloncillo

Herpestes ichneumon) (Figura 4) en un área protegida del suroeste de España; el

Parque Nacional de Doñana.

El zorro común (5-7 Kg.), debido a su marcado generalismo de hábitat y

dieta (Mitchell-Jones et al. 1999, Pita et al. 2009), es la especie más extendida en el

Mediterráneo. Presenta una alta resistencia ecológica gracias a su alta movilidad y

capacidadreproductiva(Blanco1998,Piñero2002)asícomounaaltaflexibilidad

en su ecología espacial; puede ocupar cualquier tipo de hábitat que le ofrezca un

mínimo de refugio y alimento adaptándose a cualquier tipo de cambio (Fedriani

1996, Piñero 2002). Como depredador oportunista, consume una amplia variedad de

recursostróficosysealimentadeacuerdoconladisponibilidaddepresas(Carvalho

& Gomes 2001, Cavallini & Lovari 1991, Delibes-Mateos et al. 2008).

El tejón europeo (7-8 Kg.) es un carnívoro social y territorial con una amplia

distribución en el Paleártico (Revilla & Palomares 2005). De actividad en su mayor

parte nocturna, es considerado comoun generalista trófico por la gran variedad

de recursos disponibles de los que hace uso (lombrices, insectos, frutos, gazapos;

Revilla & Palomares 2002). Pese a que en Europa central muestra preferencias por

los bosques templados y pastos asociados, se ha demostrado que también selecciona

las masas arbustivas como hábitat principal en climas más secos, como es el caso

del suroeste de la Península Ibérica (Revilla et al. 2000). Su presencia parece

Page 43: Tesis Carolina Soto Navarro - copia.pdf

42

Introducción

condicionada por la existencia de cobertura vegetal que oculte las madrigueras

(Revilla & Palomares 2005). El tamaño del área de campeo puede variar mucho

entre individuos y en función de la productividad de los hábitats ocupados, siendo

el tamaño medio de 525 hectáreas en el suroeste de la Península Ibérica (Rodríguez

et al. 1996).

El meloncillo (3 Kg.) es un carnívoro diurno procedente de África (Riquelme

Cantal-et al. 2008) cuya distribución en Europa se restringe al suroeste de la

Península Ibérica. Se alimenta en grupos presentando una dieta de amplio espectro

que incluye conejos, roedores, aves, reptiles y carroña (Palomares & Delibes 1991,

Palomares 1993, Zapata et al. 2007). Debido a su carácter diurno, la especie muestra

preferencias por zonas de matorral denso con una alta densidad de presas y refugio

evitando las zonas abiertas, por lo que se le ha considerado en cierto grado como

especialista de hábitat en zonas mediterráneas (Palomares & Delibes 1990, 1993).

El tamaño medio de su área de campeo es de 300 hectáreas (Palomares 1994).

Al igual que en el caso del meloncillo, la gineta (2 Kg.) también en una especie

introducida de África (Riquelme-Cantal et al. 2008). Es un carnívoro nocturno que

se alimenta de pequeños mamíferos, aves, reptiles y artrópodos, aunque la presa

principal puede variar en diferentes zonas de distribución (Virgós et al. 1999). En

nuestra zona de estudio, el Parque Nacional de Doñana, el análisis de la dieta ha

mostradounapreferenciapormicromamíferos,seguidodeaves,insectos,anfibios,

conejos y reptiles (Palomares & Delibes 1991). Aunque es muy adaptable en cuanto

al hábitat se ha descrito su uso de formaciones arboladas con cobertura arbustiva

(Palomares & Delibes 1994, Virgós & Casanovas 1997), así como que evita zonas

abiertas a no ser que exista vegetación de matorral cercana o parches aislados con

árboles y vegetación de sotobosque que puedan actuar como refugios para la especie

Page 44: Tesis Carolina Soto Navarro - copia.pdf

43

Introducción

(Rosalino & Santos-Reis 2002, Galantinho & Mira 2009). Debido a que presentan

ciertospatronesde seleccióndehábitatdefinidosen funciónde la zonaycierta

especialización local en la dieta, la gineta se considera entre el típico generalista y

el típico especialista de hábitat y dieta (Virgós, Llorente & Cortés 1999). El tamaño

medio del área de campeo en Doñana de la especie es de 541 hectáreas (Palomares

& Delibes 1994).

El gato montés (3-7 Kg.) es un carnívoro del cual, desde un punto de vista

científico, se ha sabido bastante poco hasta añosmuy recientes.Aunque puede

vivir en una gran variedad de hábitats, tradicionalmente se ha considerado como

una especie típicamente forestal (Guggisberg 1975, Ragni 1978, Blanco 1998). No

obstante, en climas más secos como la cuenca Mediterránea la especie se encuentra

en paisajes constituidos por mosaicos de matorral y pastizales con abundantes cursos

de agua y presas además de una alta cobertura de arbustos a escala de microhábitat

(Lozano et al. 2003). Se considera como un especialista facultativo de dieta; siendo

el conejo de monte (Oryctolagus cuniculus) la presa más abundante en su dieta

cuando está presente, pero consumiendo una alta proporción de roedores cuando los

conejos son escasos o ausentes (Moleon & Gil Sánchez 2003, Lozano et al. 2006,

Sarmento 1996).

Por último, el lince ibérico (9-15 Kg.) es la especie de felino más amenazada

del planeta (UICN 2008); es endémico de la Península Ibérica (Rodríguez & Delibes

1992, Ferreras et al. 2010) y en la actualidad existe únicamente en dos poblaciones

estables y reproductoras: Doñana y Sierra Morena oriental (Ferreras et al. 2010).

Ellinceibéricoesunespecialistatrófico,estrictamentedependientedelconejode

monte (Delibes et al. 2000). La densidad de conejos determina la densidad de linces

(Palomares 2001, Palomares et al. 2001). Además, asociado entre otras cosas a su

Page 45: Tesis Carolina Soto Navarro - copia.pdf

44

Introducción

sistema de caza y a la distribución natural del conejo, el lince ibérico también es un

especialista de hábitat, estando asociado al matorral mediterráneo (Palomares et al. 1991,

2000, Palomares 2001). La combinación de zonas de matorral denso y de extensiones

herbáceas o maquis abiertos que permitan la caza y el desplazamiento parece esencial

(Delibes et al. 2000). Esta especie constituye un claro ejemplo de contracción rango

extremo en las últimas décadas. Hay evidencias que indican un descenso continuo de la

especie debido al agotamiento severo de su principal presa por enfermedades (mixomatosis

y enfermedad hemorrágica vírica (Villafuerte et al. 1995, 1997) y el exceso de caza

(Rodríguez & Delibes 1992). La reducción y fragmentación del matorral mediterráneo

del que tanto el lince como su presa principal dependen, también ha causado un impacto

negativo sobre la especie (Rodriguez & Delibes 1992). Hoy en día, las poblaciones de

lince ibérico en declive persisten bajo condiciones de seria presión humana, incluyendo

reforestaciones con especies no nativas y rozas de matorral, persecución directa de la

especie, expansión de la red vial, construcción de presas y la urbanización del medio

natural (Rodriguez & Delibes 2004). El volumen creciente de tráfico es también el

responsable de las altas tasas de mortandad adicionales no naturales en el lince ibérico;

particularmente en los alrededores del Parque Nacional de Doñana (Ferreras et al. 1992).

De manera adicional, recientes estudios han demostrado que el deterioro concomitante

tantodelosatributosdemográficosdelaespeciecomodelascaracterísticasgenéticasde

la misma (es decir, tasas de mortalidad no traumática, tamaño de camada, supervivencia

de crías, edad de adquisición de territorio, proporción de sexos, tasas de endogamia y

diversidad genética) es consistente con un vórtice de extinción, y que esa coocurrencia,

conosininteracción,deldeteriorodemográficoygenéticopodríaexplicarlafaltadeéxito

de los esfuerzos de conservación de la población de lince ibérico o su lenta recuperación

en nuestra área de estudio (Palomares et al. 2012).

Page 46: Tesis Carolina Soto Navarro - copia.pdf

45

Introducción

Figura 4. Especies de estudio en el Parque Nacional de Doñana; (a) tejón europeo (Meles meles),

(b) zorro común (Vulpes vulpes), (c) gato montés (Felis silvestris), (d) lince ibérico (Lynx pardinus),

(e) gineta común (Genetta genetta) y (d) meloncillo (Herpestes ichneumon).

Page 47: Tesis Carolina Soto Navarro - copia.pdf

46

Introducción

Área de estudio

El nombre de Doñana surge para designar el conjunto de cotos de caza

mayor con paisaje de matorral y bosque situado en el entorno de las marismas del

río Guadalquivir en el suroeste de España, entre las provincias de Huelva y Sevilla

(Figura 5). El interés despertado por la fauna de este enclave conlleva la creación

de un área protegida en 1964, así como un centro de investigación, la Estación

Biológica de Doñana. En 1969 el área bajo protección aumenta hasta las 35.000

ha con la creación del Parque Nacional de Doñana. En 1982 el área protegida ve

aumentadadenuevosusuperficieconlacreacióndelParqueNaturaldeDoñanaen

el entorno del Parque Nacional (García-Novo & Martín-Cabrera 2005).

En la actualidad el Parque Nacional ocupa una extensión de 550 Km2

El área está designada como Reserva de la Biosfera (UNESCO), Humedal de

Importancia Internacional (Ramsar), Zona de Especial Protección para las Aves

Figura 5. Imagen general del área de estudio Parque Nacional de Doñana y su localización en el suroeste de España.

Page 48: Tesis Carolina Soto Navarro - copia.pdf

47

Introducción

(ZEPA - Natura 2000) y Patrimonio de la Humanidad (UNESCO). El clima en

Doñana es Mediterráneo sub-húmedo, con inviernos lluviosos y veranos secos. El

paisaje de Doñana ha sido transformado por la acción del hombre, con un mayor

alcance de estas transformaciones a lo largo del siglo XX. Como en muchos otros

humedales europeos, desde el siglo XIX se observan intentos de desecación y

puesta en cultivo de las marismas de Doñana. Sin embargo, la transformación en el

caso de Doñana fue particularmente lenta hasta mediados del siglo XX. Aunque las

primeras repoblaciones con pino piñonero en Doñana datan del siglo XIX, destacan

las llevadas a cabo con esta especie en la década de 1950, seguida de repoblaciones

de eucaliptos en la década de los 70 (García-Novo & Martín-Cabrera 2005). Así, el

alcornoque, el enebro y la sabina han sido sustituidos en muchas áreas de Doñana por el

pino y el eucalipto. El área ocupada por las marismas de agua dulce y salada tiene una

extensión actual de 30.000 ha (Enggass 1968, García-Novo & Martín-Cabrera 2005)

(Figura 6), suponiendo la quinta parte de las marismas naturales que aún subsisten en

España (García-Novo & Martín-Cabrera 2005). Además, el Parque Nacional presenta un

sistema de lagunas temporales y permanentes que consta de más de 3000 cuerpos de agua

en periodos de máxima inundación (Gómez-Rodríguez 2009). Estas zonas inundadas

constituyen uno de los hábitats de hibernación y cría más utilizados por miles de aves

europeas y africanas.

Figura 6. Vista aérea de la marisma de Doñana desde la denominada Torre del Palacio en época otoñal antes de las primeras lluvias.

Figura 5. Imagen general del área de estudio Parque Nacional de Doñana y su localización en el suroeste de España.

Page 49: Tesis Carolina Soto Navarro - copia.pdf

48

Introducción

Page 50: Tesis Carolina Soto Navarro - copia.pdf

49

Introducción

Page 51: Tesis Carolina Soto Navarro - copia.pdf

50

Introducción

Actualmente Doñana está formada por un mosaico de ecosistemas (playa, dunas,

cotos, marisma, matorral mediterráneo) (Figura 7). El monte o los cotos (Figura 8) es

el ecosistema más estable del Parque. Se localiza en su zona oeste y esta cubierto

deunespesomatorralmediterráneoqueocupamásdel50%de lasuperficiedel

área protegida y que según las especies dominantes, se denomina localmente como

‘monte blanco’ (jaras, jaguarzos, tomillos y romeros) o ‘monte negro’ (brecinas,

brezos, tojos y zarzas) (Figura 5). Este paisaje de monte mediterráneo constituye un

ambiente bastante homogéneo a escala de macrohábitat.

El tren de dunas móviles de Doñana, que avanzan hasta 6 metros por año,

está separado por depresiones intermedias con vegetación de matorral y pino

piñonero, que se denominan corrales, y se sitúa en la zona sur occidental del Parque

Nacional. También es de destacar el ecosistema conocido localmente como ‘La

Figura 7. Mosaico de ecosistemas del Parque Nacional de Doñana. (a) monte blanco, (b) monte

negro, (c) pastizal en La Vera de Doñana, (d) laguna temporal inundada en época invernal, (e)

pastizal en zona inundable desecada durante la época estival, (f) zonas de repoblación de pinos

piñoneros, (g) eucaliptar, (h) marisma inundada en época invernal, (i) inicio del tren de dunas

móviles, (j) pinares en corrales entre dunas, (k) dunas móviles (cerro de Los Ánsares de Doñana),

(l) vista de pinares de repoblación desde el inicio del tren de dunas móviles, (m) vista general de

zona de sabinares y matorral mediterráneo (n) vista general de La Vera de Doñana con pastizal y

alcornoques remanentes del bosque primigenio de Doñana.

Figura 8. Vista general de la zona de cotos o matorral mediterráneo en el Parque Nacional de Doñana. El matorral predominante en la imagen se corresponde con el denominado monte blanco (aulagas, jaguarzos y romeros como especies predominantes) aunque también se puede apreciar algunas manchas dispersas de monte negro (dominadas por brezales) (ver texto).

Page 52: Tesis Carolina Soto Navarro - copia.pdf

51

Introducción

Vera’, uno de los biotopos con más biodiversidad de Doñana (Figura 8).

Es un terreno de pastizales que constituye la zona de contacto entre la

marisma y el monte, y recorre el Parque Nacional de norte a sur. La capa freática

estámuypróximaalasuperficie,demodoqueformanumerosaslagunastemporales

en la estación húmeda. En la seca, sin embargo, solo aflora en los lugaresmás

deprimidos, generalmente ahondados ex profeso para proporcionar agua a la fauna

(zacallones).

Para dar una idea de la enorme riqueza de este espacio, baste mencionar que en

Doñana han sido avistadas 400 especies de aves y en lo que respecta a los demás

vertebrados,seencuentran29especiesdemamíferos,19dereptiles,12deanfibios

y 7 de peces, a las que añadir otras 60 del Estuario del Guadalquivir (García-

Novo & Martín-Cabrera 2005). Estas cifras, ciertamente altas para España, son

excepcionales para el subcontinente europeo.

REFERENCIASAraújo MB, Guisan A (2006) Five (or so) challenges for species distribution modelling. Journal of

Biogeography 33 (10):1677-1688.

Banks SC, Finlayson GR, Lawson SJ, Lindenmayer DB, Paetkau D, Ward SJ, Taylor AC (2005) The

effects of habitat fragmentation due to forestry plantation establishment on the demography

and genetic variation of a marsupial carnivore, Antechinus agilis. Biological Conservation

122 (4):581-597.

Barnosky AD, Hadly EA, Bascompte J et al (2012) Approaching a state shift in Earth’s

biosphere. Nature 486 (7401):52-58.

Basille M, Calenge C, Marboutin E, Andersen R, Gaillard JM (2008) Assessing habitat selection

usingmultivariatestatistics:Somerefinementsoftheecological-nichefactoranalysis.Ecol

Model 211 (1-2):233-240.

Bean K, Jones GP, Caley MJ (2002) Relationships among distribution, abundance and microhabitat

Page 53: Tesis Carolina Soto Navarro - copia.pdf

52

Introducción

specialisation inaguildofcoral reef triggerfish (familyBalistidae).MarEcol-ProgSer

233:263-272.

Berger KM, Gese EM, Berger J (2008) Indirect effects and traditional trophic cascades: A test

involving wolves, coyotes, and pronghorn. Ecology 89 (3):818-828.

Blanco JC (1998). Mamíferos de España. Geoplaneta, Barcelona.

Brashares JS, Prugh LR, Stoner CJ, Epps CW (2010) Ecological and conservation implications

of mesopredator release. In Terborgh J, Estes JA, eds. Trophic Cascades. Island Press.

Forthcoming.

Brooks TM, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Rylands AB, Konstant WR, Flick

P,PilgrimJ,OldfieldS,MaginG,Hilton-TaylorC(2002)Habitatlossandextinctioninthe

hotspots of biodiversity. Conserv Biol 16 (4):909-923.

Brotons L, Herrando S, Pla M (2007) Updating bird species distribution at large spatial scales:

applications of habitat modelling to data from long-term monitoring programs. Diversity

and Distributions 13 (3):276-288.

Brotons L, Thuiller W, Araujo MB, Hirzel AH (2004) Presence-absence versus presence-only

modelling methods for predicting bird habitat suitability. Ecography 27 (4):437-448.

Burkey TV, Reed DH (2006) The effects of habitat fragmentation on extinction risk: mechanisms

and synthesis. Songklanakarin Journal of Science and Technology 28 (1):9-37.

Calenge C (2005) Des outils statistiques pour l’analyse des semis de points dans l’espace écologique.

Université Claude Bernard Lyon 1.

Calenge C, Basille M (2008) A general framework for the statistical exploration of the ecological

niche. Journal of Theoretical Biology, 252: 674–685.

Calenge C, Darmon G, Basille M, Loison A, Jullien JM (2008) The factorial decomposition of the

Mahalanobis distances in habitat selection studies. Ecology 89 (2):555-566.

Calenge C, Dufour AB, Maillard D (2005) K-select analysis: a new method to analyse habitat

selection in radio-tracking studies. Ecol Model 186 (2):143-153.

Cardillo M, Purvis A, Sechrest W, Gittleman JL, Bielby J, Mace GM (2004) Human population

density and extinction risk in the world’s carnivores. PLoS Biology 2 (7):909-914.

Carvalho JC, Gomes P (2001) Food habits and trophic niche overlap of the red fox, european wild

cat and common genet in the Peneda-Geres National Park. Galemys, 13, 39-48.

Page 54: Tesis Carolina Soto Navarro - copia.pdf

53

Introducción

CavalliniP,LovariS(1991)Environmental-FactorsInfluencingTheUseofHabitatInTheRedFox,

Vulpes-Vulpes. J Zool 223:323-339.

Ceballos G, Ehrlich PR (2002) Mammal population losses and the extinction crisis. Science 296

(5569):904-907.

Cezilly F, Benhamou S (1996) Optimal foraging strategies: A review. Rev Ecol-Terre Vie 51 (1):43-86.

ConoverM(2002)Resolvinghuman-wildlifeconflicts:thescienceofwildlifedamagemanagement.

Resolvinghuman-wildlifeconflicts: thescienceofwildlifedamagemanagement.Lewis

Publishers.

Corsi F, de Leeuw J, Skidmore A (2000) Modeling species distribution with GIS. Research techniques

in animal ecology: controversies and consequences. Columbia University Press.

Cowley MJR, Wilson RJ, Leon-Cortes JL, Gutierrez D, Bulman CR, Thomas CD (2000) Habitat-

basedstatisticalmodelsforpredictingthespatialdistributionofbutterfliesandday-flying

moths in a fragmented landscape. Journal of Applied Ecology 37:60-72.

Crooks KR, Soule ME (1999) Mesopredator release and avifaunal extinctions in a fragmented

system. Nature 400 (6744):563-566.

Delibes M, Rodríguez A, Ferreras P (2000) Action plan for the conservation of the Iberian lynx in

Europe (Lynx pardinus). Council of Europe Publishing, Strasbourg.

Delibes-Mateos M, de Simon JF, Villafuerte R, Ferreras P (2008) Feeding responses of the red

fox (Vulpes vulpes) to different wild rabbit (Oryctolagus cuniculus) densities: a regional

approach. Eur J Wildl Res 54 (1):71-78.

DonadioE,BuskirkSW(2006)Diet,morphology,andinterspecifickillingincarnivora.AmNat

167 (4):524-536.

Duffy JE, Cardinale BJ, France KE, McIntyre PB, Thebault E, Loreau M (2007) The functional role

of biodiversity in ecosystems: incorporating trophic complexity. Ecol Lett 10 (6):522-538.

Durant SM (1998) Competition refuges and coexistence: an example from Serengeti carnivores. J

Anim Ecol 67 (3):370-386.

Eaton RL (1979) Interference Competition among Carnivores - Model For The Evolution of Social-

Behavior. Carnivore 2 (MAR):9-16.

Elton G (1927) Animal Ecology. Animal Ecology. London (Sidgwick & Jackson).

Enggass PM (1968) Land reclamation and resettlement in the Guadalquivir Delta-Las Marismas.

Page 55: Tesis Carolina Soto Navarro - copia.pdf

54

Introducción

Economic Geography 44, 125-143.

Entwistle AC (2000) Flagships for future? Oryx 34: 239-240.

Entwistle AC, PJ Stephenson (2000) Small mammals & the conservation agenda. Pages 119-140

in A. Entwistle & N. Dunston, editors. Priorities for the Conservation of Mammalian

Diversity: Has the P&a Had its Day? Cambridge University Press, Cambridge, UK.

Erickson WP, McDonald TL, Gerow KG, Howlin S, Kern JW (2001) Statistical issues in resource selection

studies with radio-marked animals. Radio tracking and animal populations. Academic Press.

Estes JA, Palmisan JF (1974) Sea Otters - Their Role in Structuring Nearshore Communities.

Science 185 (4156):1058-1060.

Fahrig L (2003) Effects of habitat fragmentation on biodiversity. Annu Rev Ecol Evol Syst 34:487-515.

Fedriani JM (1996) Dieta anual del zorro, Vulpes vulpes, en dos hábitats del Parque Nacional de

Doñana. Doñana Acta Vertebrata, 23, 143-152.

Fedriani JM, Fuller TK, Sauvajot RM, York EC (2000) Competition and intraguild predation among

three sympatric carnivores. Oecologia 125 (2):258-270.

Fedriani JM, Palomares F, Delibes M (1999) Niche relations among three sympatric Mediterranean

carnivores. Oecologia 121 (1):138-148.

Fernandez N, Delibes M, Palomares F (2007) Habitat-related heterogeneity in breeding in a

metapopulation of the Iberian lynx. Ecography 30 (3):431-439.

Ferraras P, Rodriguez A, Palomares F, Delibes M (2010) Iberian lynx: the uncertain future of a

critically endangered cat. Biology and conservation of wild felids. Oxford University Press.

Ferreras P, Aldama JJ, Beltran JF, Delibes M (1992) Rates And Causes of Mortality in a Fragmented Population

of Iberian Lynx Felis-Pardina Temminck, 1824. Biological Conservation 61 (3):197-202.

Fretwell SD, Lucas HL (1969) On territorial behavior and other factors influencing habitat

distribution in birds. 1. Theoretical development. Acta Biotheoretica.

Fuller TK, Keith LB (1981) Woodland Caribou Population-Dynamics in Northeastern Alberta.

Journal of Wildlife Management 45 (1):197-213.

Futuyma DJ, Moreno G (1988) The Evolution of Ecological Specialization. Annu Rev Ecol Syst

19:207-233.

GalantinhoA,MiraA (2009)The influence of human, livestock, and ecological features on the

occurrence of genet (Genetta genetta): a case study on Mediterranean farmland. Ecol Res

Page 56: Tesis Carolina Soto Navarro - copia.pdf

55

Introducción

24 (3):671-685.

García-novo, F. y C. Martín-Cabrera -2005- Doñana: Agua y Biosfera. Doñana 2005, Confederación

hidrográficadelGuadalquivir,MinisteriodeMedioAmbiente.Madrid.

Gause GF (1934) The struggle for existence. The struggle for existence. (Williams & Wilkins).

Gehrt SD, Prange S (2007) Interference competition between coyotes and raccoons: a test of the

mesopredator release hypothesis. Behav Ecol 18 (1):204-214.

Ginsberg JR (2001) Setting Priorities for Carnivore Conservation: What Makes Carnivores Different? In:

Macdonald D, Gittleman J, Wayne R (Eds) Carnivore Conservation. Cambridge University Press.

Gittleman JL (1989) Carnivore group living: comparative trends. Carnivore behavior, ecology, and

evolution. Chapman & Hall, London & Cornell University Press, New York.

Gómez-RodríguezC (2009)Condicionantes ecológicos de la distribución de anfibios en el Parque

Nacional de Doñana. Tesis Doctoral, Departamento de Biología Animal, Ecología,

Parasitología, Edafología y Química Agrícola, Universidad de Salamanca, Salamanca, España.

Grinnell J (1917) The Niche-Relationships of the California Thrasher. The Auk 34 (4):427-433.

Guisan A, Zimmermann NE (2000) Predictive habitat distribution models in ecology. Ecol Model

135 (2-3):147-186.

Guggisberg CAW (1975). Wild cats of the world. David & Charles, Newton Abbot, London.

Hall LS, Krausman PR, Morrison ML (1997) The habitat concept and a plea for standard terminology.

Wildl Soc Bull 25 (1):173-182.

Harrison DJ, Bissonette JA, Sherburne JA (1989) Spatial Relationships Between Coyotes and Red

Foxes in Eastern Maine. Journal of Wildlife Management 53 (1):181-185.

Hassell MP, May RM (1973) Stability in Insect Host-Parasite Models. J Anim Ecol 42 (3):693-726.

Hastings A (1980) Disturbance, Coexistence, History, And Competition For Space. Theor Popul

Biol 18 (3):363-373.

Hepinstall JA, Krohn WB, Sader SA (2002) Effects of niche width on the performance and agreement

of avian habitat models. Predicting Species Occurrences: Issues of Accuracy and Scale.

Island Press, Washington.

Hernandez PA, Graham CH, Master LL, Albert DL (2006) The effect of sample size and species

characteristics on performance of different species distribution modeling methods.

Ecography 29 (5):773-785.

Page 57: Tesis Carolina Soto Navarro - copia.pdf

56

Introducción

Heywood, V.H. (1995) Global biodiversity assessment. Cambridge University Press, Cambridge.

Hirzel AH, Hausser J, Chessel D, Perrin N (2002) Ecological-niche factor analysis: How to compute

habitat-suitability maps without absence data? Ecology 83 (7):2027-2036.

Hoek WZ (2008) The Last Glacial-Interglacial Transition. Episodes 31 (2):226-229.

Hoekstra JM, Boucher TM, Ricketts TH, Roberts C (2005) Confronting a biome crisis: global

disparities of habitat loss and protection. Ecol Lett 8 (1):23-29.

Houghton, JT, Y Ding, DJ Griggs, M Noguer, PJ Van der Linden, D Xiaosu, Eds., 2001: Climate

Change 2001: The Scientific Basis: Contributions of Working group I to the Third

Assessment Report of the Intergovernmental Panel on Climate Change.Cambridge

University Press, 881 pp.

Hutchinson GE (1957). Concluding remarks. Cold Spring Harb. Symp. Quant. Biol. 22, 415–427.

InskipC,ZimmermannA(2009)ReviewHuman-felidconflict:areviewofpatternsandpriorities

worldwide. Oryx 43 (1):18-34.

Johnson DH (1980) The Comparison of Usage and Availability Measurements for Evaluating

Resource Preference. Ecology 61 (1):65-71.

Johnson WE, Fuller TK, Franklin WL (1996) Sympatry in canids: a review and assessment. Carnivore

behaviour, ecology and evolution, volume 2. Cornell University Press.

Karanth KU, Chellam R (2009) Carnivore conservation at the crossroads. Oryx 43 (1):1-2.

Kassen R (2002) The experimental evolution of specialists, generalists, and the maintenance of

diversity. J Evol Biol 15 (2):173-190.

Kearney M (2006) Habitat, environment and niche: what are we modelling? Oikos 115 (1):186-191.

Kerley LL, Goodrich JM, Miquelle DG, Smirnov EN, Quigley HB, Hornocker NG (2002) Effects of

roads and human disturbance on Amur tigers. Conserv Biol 16 (1):97-108.

Kolasa J, Li BL (2003) Removing the confounding effect of habitat specialization reveals

the stabilizing contribution of diversity to species variability. Proc R Soc B-Biol Sci

270:S198-S201.

Kolasa J, Pickett STA (1989) Ecological-Systems and the concept of Biological Organization. Proc

Natl Acad Sci USA 86 (22):8837-8841.

Kolasa J, Romanuk TN (2005) Assembly of unequals in the unequal world of a rock pool

metacommunity. Metacommunities: spatial dynamics and ecological communities.

Page 58: Tesis Carolina Soto Navarro - copia.pdf

57

Introducción

University of Chicago Press.

Kruuk H (1975) Functional aspects of social hunting by carnivores. Function and evolution in

behaviour. Essays in honour of Professor Niko Tinbergen, F.R.S. i-xxxi, l-393. Clarendon

Press, Oxford.

Lamprecht J (1981) The Function of Social Hunting in Larger Terrestrial Carnivores. Mammal

Review 11 (4):169-179.

Laurenson MK (1995) Implications of high offspring mortality for cheetah population dynamics.

Serengeti 2: dynamics, management and conservation of an ecosystem. University of

Chicago Press.

Lennon JJ (1999) Resource selection functions: taking space seriously? Trends Ecol Evol 14

(10):399-400.

Lenton TM, Livina VN, Dakos V, Scheffer M (2012) Climate bifurcation during the last deglaciation?

Clim Past 8 (4):1127-1139.

Levin SA (1974) Dispersion and Population Interactions. Am Nat 108 (960):207-228.

Levin SA (1992) The Problem of Pattern and Scale in Ecology. Ecology 73 (6):1943-1967.

Levins R (1968) Evolution in Changing Environments. Princeton University Press, Princeton, NJ.

Lindstrom ER, Brainerd SM, Helldin JO, Overskaug K (1995) Pine Marten Red Fox Interactions - A

Case of Intraguild Predation. Ann Zool Fenn 32 (1):123-130

Litvaitis JA (1992) Niche relations between coyotes and sympatric Carnivora. Pages 73–86 in

A. H. Boer, ed. Ecology and management of the eastern coyote.Wildlife Research Unit,

University of Brunswick, Canada.

Lozano J, Moleon M, Virgos E (2006) Biogeographical patterns in the diet of the wildcat,

Felis silvestris Schreber, in Eurasia: factors affecting the trophic diversity. Journal of

Biogeography 33 (6):1076-1085.

Lozano J, Virgós E, Malo AF, Huertas DL, Casanovas JG (2003) Importance of scrub–pastureland

mosaics for wild-living cats occurrence in a Mediterranean area: implications for the

conservation of the wildcat (Felis silvestris). Biodiversity & Conservation 12 (5):921-935.

Manly BFJ, McDonald LL, Thomas DL, McDonald TL, Erickson WP (2002) Resource selection by

animals:statisticaldesignandanalysisforfieldstudies.Secondedition.Resourceselection

by animals: statistical design and analysis for field studies. Second edition. Kluwer

Page 59: Tesis Carolina Soto Navarro - copia.pdf

58

Introducción

Academic Publishers.

Marvier M, Kareiva P, Neubert MG (2004) Habitat destruction, fragmentation, and disturbance promote

invasion by habitat generalists in a multispecies metapopulation. Risk Anal 24 (4):869-878.

May RM (1992) How many species inhabit the earth? Sci Amer 10: 18–24.

McLoughlin PD, Gaillard JM, Boyce MS, Bonenfant C, Messier F, Duncan P, Delorme D, Van

Moorter B, Said S, Klein F (2007) Lifetime reproductive success and composition of the

home range in a large herbivore. Ecology 88 (12):3192-3201.

Messier F (1991)The Significance of Limiting andRegulating Factors onTheDemography of

Moose and White-Tailed Deer. J Anim Ecol 60 (2):377-393.

Miller B, Dugelby B, Foreman D, Martinez del Rio C, Noss R, Phillips M, Reading R, Soule ME,

Terborgh J, Willcox L (2001) The importance of large carnivores to healthy ecosystems.

Endangered Species Update 18 (5):202-210.

Mitchell SC (2005) How useful is the concept of habitat? a critique. Oikos 110 (3):634-638.

Mitchell-Jones AJ, Amori G, Bogdanowicz W et al. (1999) The Atlas of European Mammals.

Academic Press, London, UK.

Moilanen A, Smith AT, Hanski I (1998) Long-term dynamics in a metapopulation of the American

pika. Am Nat 152 (4):530-542.

Moleon M, Gil-Sanchez JM (2003) Food habits of the wildcat (Felis silvestris) in a peculiar habitat:

the Mediterranean high mountain. J Zool 260:17-22.

Morris DW (2003) Toward an ecological synthesis: a case for habitat selection. Oecologia 136 (1):1-13.

Morrison ML, Marcot BG, Mannan RW (2006) Wildlife-habitat relationships: concepts and

applications. Third edition. Wildlife-habitat relationships: concepts and applications. Third

edition. Island Press.

Munday PL, Jones GP, Caley MJ (1997) Habitat specialisation and the distribution and abundance of

coral-dwelling gobies. Mar Ecol-Prog Ser 152 (1-3):227-239.

Naves J, Wiegand T, Revilla E, Delibes M (2003) Endangered species constrained by natural and

human factors: The case of brown bears in northern Spain. Conserv Biol 17 (5):1276-1289.

Ostergard H, Ehrlen J (2005) Among population variation in specialist and generalist seed predation

- the importance of host plant distribution, alternative hosts and environmental variation.

Oikos 111 (1):39-46.

Page 60: Tesis Carolina Soto Navarro - copia.pdf

59

Introducción

Pacala S, Roughgarden J (1984) Control Of Arthropod Abundance By Anolis Lizards On St-

Eustatius (Neth Antilles). Oecologia 64 (2):160-162.

Paine RT (1969) A Note on Trophic Complexity and Community Stability. Am Nat 103 (929):91-&.

Palomares F, Delibes M (1990) Habiatat preference of large grey mongoose, Herpestes ichneumon,

in Spain. Acta Theriologica, 35, 1-6.

Palomares F (1993) Opportunistic Feeding of The Egyptian Mongoose, Herpestes-Ichneumon, (L)

in Southwestern Spain. Rev Ecol-Terre Vie 48 (3):295-304.

Palomares F (1994) Site Fidelity and Effects of Body-Mass on Home-Range Size of Egyptian

Mongooses. Can J Zool-Rev Can Zool 72 (3):465-469.

Palomares F (2001) Vegetation structure and prey abundance requirements of the Iberian lynx:

implications for the design of reserves and corridors. Journal of Applied Ecology 38 (1):9-18.

Palomares F, CaroTM (1999) Interspecific killing amongmammalian carnivores.AmNat 153

(5):492-508.

Palomares F, Delibes M (1991) Dieta del meloncillo, Herpestes ichneumon, en Coto del Rey, Norte

delParqueNacionaldeDonana.Dofiana,ActaVertebrata,18,187-194.

Palomares F, Delibes M (1991) Alimentación del meloncillo Herpestes ichneumon y de la

gineta Genetta genetta en la Reserva Biológica de Doñana, SO de la península

Ibérica. Doñana Acta Vertebrata, 18 (1): 5-20.

Palomares F, Delibes M (1993) Resting Ecology and Behavior of Egyptian Mongooses (Herpestes-

Ichneumon) in Southwestern Spain. J Zool 230:557-566.

Palomares F, Delibes M (1994) Spatiotemporal Ecology and Behavior of European Genets in

Southwestern Spain. J Mammal 75 (3):714-724.

Palomares F, Delibes M, Revilla E, Calzada J, Fedriani JM (2001) Spatial ecology of Iberian lynx and

abundance of European rabbits in south-western Spain. Wildlife Monographs 148, 1–36.

Palomares F, Ferreras P, Fedriani JM, Delibes M (1996) Spatial relationships between Iberian lynx and

other carnivores in an area of south-western Spain. Journal of Applied Ecology 33 (1):5-13.

Palomares F, Ferreras P, Travaini A, Delibes M (1998) Co-existence between Iberian lynx and

Egyptian mongooses: estimating interaction strength by structural equation modelling and

testing by an observational study. J Anim Ecol 67 (6):967-978.

Palomares F, Godoy JA, Lopez-Bao JV, Rodriguez A, Roques S, Casas-Marce M, Revilla E, Delibes

Page 61: Tesis Carolina Soto Navarro - copia.pdf

60

Introducción

M (2012) Possible Extinction Vortex for a Population of Iberian Lynx on the Verge of

Extirpation. Conserv Biol 26 (4):689-697.

PalomaresF,RodriguezA,LaffitteR,DelibesM(1991)TheStatusandDistributionofTheIberian

Lynx Felis-Pardina (Temminck) in Coto Donana Area, Sw Spain. Biological Conservation

57 (2):159-169.

Park T (1962) Beetles, Competition, and Populations - Intricate Ecological Phenomenon is Brought

into Laboratory and Studied as an Experimental Model. Science 138 (3548):1369.

Pendleton GW, Titus K, DeGayner E, Flatten CJ, Lowell RE (1998) Compositional analysis and

GIS for study of habitat selection by goshawks in southeast Alaska. Journal of Agricultural

Biological and Environmental Statistics 3 (3):280-295.

Pimm SL, Rosenzweig ML (1981) Competitors and Habitat Use. Oikos 37 (1):1-6.

Pinero JR (2002) Mamíferos Carnívoros Ibéricos (Iberian Mammalian Carnivores). Lynx Edicions

PitaR,MiraA,MoreiraF,MorgadoR,BejaP(2009)Influenceoflandscapecharacteristicsoncarnivore

diversity and abundance in Mediterranean farmland. Agric Ecosyst Environ 132 (1-2):57-65.

Polis GA, Myers CA, Holt RD (1989) The Ecology and Evolution of Intraguild Predation - Potential

Competitors that Eat Each Other. Annu Rev Ecol Syst 20:297-330.

Porter WF, Church KE (1987) Effects of environnemental pattern on habitat preference analysis.

Journal of Wildlife Management 51, 681-685.

Primack RB (2006) Essentials of conservation biology. Fourth edition. Essentials of conservation

biology. Fourth edition. Sinauer Associates.

Pulliam HR (1988) Sources, Sinks, and Population Regulation. Am Nat 132 (5):652-661.

Ragni B (1978) Observations on the ecology and behaviour of the wild cat (Felis silvestris Schreber,

1777) in Italy. Carnivore Genetics Newsletters, 3: 270–274.

Ralls K, White PJ (1995) Predation on San-Joaquin Kit Foxes by Larger Canids. J Mammal 76

(3):723-729.

Revilla E, Palomares F (2002) Does local feeding specialization exist in Eurasian badgers? Can J

Zool-Rev Can Zool 80 (1):83-93.

Revilla E, Palomares F (2005) Patrones generales de organizacion social en el tejon eurasiático. In: Virgos E,

Revilla E, mangas JG, Domingo-Roura X (Eds.) Ecología y conservación del tejón en ecosistemas

mediterráneos. Sociedad Espanola para la Conservacion y Estudio de los Mamiferos SECEM.

Page 62: Tesis Carolina Soto Navarro - copia.pdf

61

Introducción

RevillaE, PalomaresF,DelibesM (2000)Defining key habitats for lowdensity populations of

Eurasian badgers in Mediterranean environments. Biological Conservation 95 (3):269-277.

Ripple WJ, Beschta RL (2006) Linking a cougar decline, trophic cascade, and catastrophic regime

shift in Zion National Park. Biological Conservation 133 (4):397-408.

Riquelme-Cantal JA, Simon-Vallejo MD, Palmqvist R, Cortes-Sanchez M (2008) The oldest

mongoose of Europe. J Archaeol Sci 35 (9):2471-2473.

Rockstrom J, Steffen W, Noone K, et al. (2009) A safe operating space for humanity. Nature 461

(7263):472-475.

Rodriguez A, Delibes M (1992) Current Range and Status of The Iberian Lynx Felis-Pardina

Temminck, 1824 in Spain. Biological Conservation 61 (3):189-196.

Rodriguez A, Delibes M (2003) Population fragmentation and extinction in the Iberian lynx.

Biological Conservation 109 (3):321-331.

Rodriguez A, Delibes M (2004) Patterns and causes of non-natural mortality in the Iberian lynx

during a 40-year period of range contraction. Biological Conservation 118 (2):151-161.

Rodriguez A, Martin R, Delibes M (1996) Space use and activity in a mediterranean population of

badgers Meles meles. Acta Theriol 41 (1):59-72.

Rosalino LM, Santos-Reis M (2002) Feeding habits of the common genet Genetta genetta (Carnivora

: Viverridae) in a semi-natural landscape of central Portugal. Mammalia 66 (2):195-205.

Rosenzweig ML (1981) A Theory of Habitat Selection. Ecology 62 (2):327-335.

Rosenzweig ML (1987) Habitat selection as a source of biological diversity. Evol Ecol 1 (4):315-330.

Sarmento P (1996) Feeding ecology of the European wildcat Felis silvestris in Portugal. Acta Theriol

41 (4):409-414.

Scheffer M, Bascompte J, Brock WA, Brovkin V, Carpenter SR, Dakos V, Held H, van Nes EH, Rietkerk

M, Sugihara G (2009) Early-warning signals for critical transitions. Nature 461 (7260):53-59.

Schipper J, Chanson JS, Chiozza F, et al. (2008) The status of the world’s land and marine mammals:

Diversity, threat, and knowledge. Science 322 (5899):225-230.

Sergio F, Caro T, Brown D, Clucas B, Hunter J, Ketchum J, McHugh K, Hiraldo F (2008) Top

Predators as Conservation Tools: Ecological Rationale,Assumptions, and Efficacy. In:

Annual Review of Ecology Evolution and Systematics, vol 39. Annual Review of Ecology

Evolution and Systematics. Annual Reviews, Palo Alto, pp 1-19.

Page 63: Tesis Carolina Soto Navarro - copia.pdf

62

Introducción

Sinclair ARE, Fryxell JM, Caughley G (2006) Wildlife ecology, conservation, and management. Second

edition. Wildlife ecology, conservation, and management. Second edition. Blackwell Publishing.

Soberon J (2007) Grinnellian and Eltonian niches and geographic distributions of species. Ecol Lett

10 (12):1115-1123.

Soulé ME (1987) History of the Society for Conservation Biology: how and why we got here.

Conserv Biol 1 (1):4-5

Soulé ME, Bolger DT, Alberts AC, Wright J, Sorice M, Hill S (1988). Reconstructed dynamics

of rapid extinctions of chaparral-requiring birds in urban habitat islands. Conservation

Biology 2: 75–91.

Sovada MA, Sargeant AB, Grier JW (1995) Differential Effects of Coyotes and Red Foxes on Duck

Nest Success. Journal Of Wildlife Management 59 (1):1-9.

Steffen W, Grinevald J, Crutzen P, McNeill J (2011) The Anthropocene: conceptual and historical

perspectives. Philos Trans R Soc A-Math Phys Eng Sci 369 (1938):842-867.

Stockwell DRB, Peterson AT (2002) Effects of sample size on accuracy of species distribution

models. Ecol Model 148 (1):1-13.

Terborgh J, Estes JA, Paquet P, Ralls K, Boyd-Heger D, Miller BJ, Noss RF (1999) The role of top

carnivoresinregulatingterrestrialecosystems.Continentalconservation:scientificfoundations

of regional reserve networks. Island Press.

Teyssèdre A (2004) Vers une sixième crise d’extinctions ?, in Barbault R. et Chevassus-au-Louis B.,

(eds.).Biodiversitéetchangementsglobaux.Enjeuxdesociétéetdéfispourlarecherche,

ADPF, Paris, France.

Thomas DL, Taylor EJ (1990) Study Designs and Tests for Comparing Resource Use and Availability.

Journal Of Wildlife Management 54 (2):322-330.

Thomas DL, Taylor EJ (2006) Study designs and tests for comparing resource use and availability

II. Journal of Wildlife Management 70 (2):324-336.

Thurber JM, Peterson RO, Woolington JD, Vucetich JA (1992) Coyote Coexistence With Wolves on

The Kenai Peninsula, Alaska. Can J Zool-Rev Can Zool 70 (12):2494-2498.

Tilman D, May RM, Lehman CL, Nowak MA (1994) Habitat Destruction and the Extinction Debt.

Nature 371 (6492):65-66.

Tsoar A, Allouche O, Steinitz O, Rotem D, Kadmon R (2007) A comparative evaluation of presence-

Page 64: Tesis Carolina Soto Navarro - copia.pdf

63

Introducción

only methods for modelling species distribution. Diversity and Distributions 13 (4):397-405.

Turchin P (1998) Quantitative analysis of movement: measuring and modeling population

redistribution in animals and plants. Quantitative analysis of movement: measuring and

modeling population redistribution in animals and plants. Sinauer Associates, Inc.

Vanhorne B (1983) Density as A Misleading Indicator of Habitat Quality. Journal of Wildlife

Management 47 (4):893-901.

Villafuerte R, Calvete C, Blanco JC, Lucientes J (1995) Incidence of viral hemorrhagic disease in

wild rabbit populations in Spain. Mammalia 59 (4):651-659.

Villafuerte R, Lazo A, Moreno S (1997) Influence of food abundance and quality on rabbit

fluctuations:Conservation andmanagement implications inDonanaNationalPark (SW

Spain). Rev Ecol-Terre Vie 52 (4):345-356.

Virgós E, Casanovas JG (1997) Habitat selection of genet Genetta genetta in the mountains of

central Spain. Acta Theriol 42 (2):169-177.

Virgós E, Llorente M, Cortes Y (1999) Geographical variation in genet (Genetta genetta L.) diet: a

literature review. Mammal Review 29 (2):117-126.

Vitousek PM, Mooney HA, Lubchenco J, Melillo JM (1997) Human domination of Earth’s

ecosystems. Science 277 (5325):494-499.

Whittake.Rh, Levin SA, Root RB (1973) Niche, Habitat, and Ecotope. Am Nat 107 (955):321-338.

Woodroffe R (2001) Strategies for carnivore conservation: lessons from contemporary extinctions.

In: Gittleman JL, Funk SM, Macdonald DW, Wayne RK (eds) Carnivore Conservation, vol

5. Conservation Biology Series. Cambridge Univ Press, Cambridge, pp 61-92.

Woodroffe R, Ginsberg JR (1998) Edge effects and the extinction of populations inside protected

areas. Science 280 (5372):2126-2128.

Yoccoz NG, Nichols JD, Boulinier T (2001) Monitoring of biological diversity in space and time.

Trends Ecol Evol 16 (8):446-453.

Yodzis P (1978) Competition for space and the structure of ecological communities. Springer-Verlag.

Zalasiewicz J, Williams M, Haywood A, Ellis M (2011) The Anthropocene: a new epoch of geological time?

Introduction. Philos Trans R Soc A-Math Phys Eng Sci 369 (1938):835-841.

Zapata SC, Travaini A, Ferreras P, Delibes M (2007) Analysis of trophic structure of two carnivore

assemblagesbymeansofguildidentification.EurJWildlRes53(4):276-286.

Page 65: Tesis Carolina Soto Navarro - copia.pdf

64

Page 66: Tesis Carolina Soto Navarro - copia.pdf

65

Soto C, Desniça S, Palomares F (2012) Non-biological factors affecting track

censuses: implications for sampling design and reliability. European Journal of

Wildlife Research 58:117–126

CHAPTER 1

Non-biological factors affecting track censuses: implications for sampling design and reliability

Factores no biológicos afectan los censos de rastros:

implicaciones para el diseño muestral y fiabilidad

Page 67: Tesis Carolina Soto Navarro - copia.pdf

66

Chapter 1

Page 68: Tesis Carolina Soto Navarro - copia.pdf

67

Chapter 1

ABSTRACT

Track census is a widely used method for rapid faunal assessments, which

assumes that differences in track count numbers mainly reflect differences in

species abundance due to some biological factors. However, some methodological

and climatic variables might affect results of track censuses. Here, we tested the

effect of climatic variables, such as maximum temperature, humidity, wind speed

or days since last rain, and methodological factors, such as censusing day period,

distance from transect to vegetation edge, substrate condition or observer on the

number of tracks of mammal carnivores and some of their potential prey detected in

sandy substrates. We sampled 2 x 2 km squares located within the scrubland area of

Doñana National Park (southwestern Spain) for carnivore and several potential prey

tracks. Our results showed differences in the number of tracks detected between

observersandasignificantinteractionbetweenobserversandthedayperiodwhen

censuses were carried out. Moreover, the variables increasing the quality of the

substrate (higher environmental humidity, lower wind speed and days since last

rain) led to a greater detection of carnivore tracks, but depending on the size of the

species sampled other variables, such as distance from transects to the vegetation

border,alsoaffectedresults.Werecommendrestrictingsamplingtocertainfixed

weather conditions when planning to monitor relative animal abundance from

track censuses. When not possible, climatic or methodological variables should be

included as covariates in analyses that try to test for the biological factors affecting

wildlife abundance, taking into account that these variables, which affect the number

of tracks detected could vary between years.

Page 69: Tesis Carolina Soto Navarro - copia.pdf

68

Chapter 1 Chapter 1

RESUMEN

Los censos de rastros constituyen un método ampliamente utilizado en

estudios de fauna y asumen que las diferencias en el número de rastros detectados

reflejandiferenciasenlaabundanciadelasespeciesdebidoafactoresbiológicos.

Sin embargo, algunas variables metodológicas y/o climáticas pueden afectar

los resultados de dichos censos de rastros. En este estudio analizamos el efecto

potencial de variables climáticas tales como la temperatura máxima, la humedad,

la velocidad del viento o los días transcurridos desde la última lluvia, así como de

variables metodológicas como el periodo del día en el que se realiza el censo, la

distancia desde el transecto al borde de la vegetación, las condiciones del sustrato

o el observador, en el número de rastros de diferentes especies de mamíferos

carnívoros así como de algunas de sus potenciales presas detectados en censos de

rastros en sustratos arenosos.

Censamos rastros de carnívoros y de diferentes presas potenciales en

cuadrículas de 2 x 2 km2 localizadas dentro del área de matorral del Parque Nacional

de Doñana (situado en el suroeste de España). Nuestros resultados mostraron

diferencias en el número de rastros detectados en los censos dependiendo del

observador,asícomounainteracciónsignificativaentreelobservadoryelperíodo

del día en el que se realizó el censo. Además, las variables que incrementaban la

calidad del sustrato (una mayor humedad ambiental y una menor velocidad del

viento, así como un número bajo de días transcurridos desde la última lluvia),

permitieron una mayor detección de rastros de carnívoros. No obstante, dependiendo

del tamaño de la especie, otras variables como la distancia del transecto al borde

de la vegetación también afectaron los resultados. Recomendamos restringir los

censos a ciertas condiciones climáticas determinadas cuando se planteen realizar

Page 70: Tesis Carolina Soto Navarro - copia.pdf

69

Chapter 1 Chapter 1

monitoreos de la abundancia relativa de especies basándose en datos obtenidos por

censos de rastros. En los casos en los que no sea posible, las variables climáticas

y/o metodológicas se deben incluir como covariables en los análisis que tengan

como objetivo analizar los factores biológicos que determinan la abundancia de las

especies, teniendo en cuenta que esas variables que pueden afectar los resultados de

censos, además pueden variar entre distintos años.

Page 71: Tesis Carolina Soto Navarro - copia.pdf

70

Chapter 1 Chapter 1

INTRODUCTION

Determining occurrence and estimating population abundance of species

is fundamental for their conservation, research and management (Caughley

and Sinclair 1994; Silveira et al. 2003; Sadlier et al. 2004). This is particularly

difficultandposesmanypracticalproblemsona largespatialscaleandin long-

term monitoring for cryptic species with nocturnal and solitary habits, large home

ranges, low-density populations and an elusive nature, such as most mammalian

carnivore species and their prey.

Few methods are suitable for monitoring elusive, low-density species (Mills

et al. 2000) in spite of the amount of available monitoring methods (Williams et

al. 2002; Liebenberg 2010), but indirect sampling methods such as track counts on

suitable natural substrates (e.g. snow, mud or sand) have been traditionally used to

overcome these problems (e.g. Stephenson 1986; Smallwood and Fitzhugh 1995;

Zaumyslova 2000; Gusset and Burgener 2005; Datta 2008; Funston et al. 2010).

Thebroadapplicationofnaturalsignsurveyssuchastrackcountshasfirmly

established their use as a tool for wildlife detection. Track surveys do not rely upon

special technology or equipment, can be relatively straightforward and quick to

conduct, and can easily incorporate multispecies and large geographic area objectives.

Moreover, track counts do not require a behavioural response to attractants or other

survey equipment, thus there are potentially fewer species-specific limitations

andbiasesinherenttotracksurveys(Longetal.2008).Nevertheless,field-based

species identificationmay be ambiguous or unfeasible so additional efforts and

highlyskilledandexperiencedtrackersareneededtovalidatetheidentificationof

species or individuals.Thisweakness related to species identification combined

with the limited availability of appropriate tracking mediums or conditions, the

Page 72: Tesis Carolina Soto Navarro - copia.pdf

71

Chapter 1 Chapter 1

ephemeral and weather-dependent character of tracks and the inconsistent survey

designs and quality control procedures, have resulted in a growing criticism of track

surveys and the need to improve survey efforts to meet more rigorous standards.

Although strong relationships between kilometric abundance indices (KAI),

obtained by spotlight counts, and population size have been previously reported

(e.g. Newsome et al. 1989; Short et al. 1997; Garel 2010), it is important to highlight

that track censuses can only be taken as indices of presence, relative abundance

or density estimators (Anderson 2001) and that such indices are rated closely to

true animal abundance across habitat types, observers, and other factors (see Gibbs

200). Herein, the number of tracks of certain species encountered on a transect will

depend on biological factors, such as their abundance, food density and distribution,

vegetationstructureandintra-orinterspecificinterference,includinghumans(e.g.

Odonoghue et al. 1997; Shapira et al. 2008; Bayne et al. 2008; Blaum et al. 2009)

but there are other classes of variables that affect the index (Buckland et al. 1993).

These variables are related to the observer, including the observer’s training and

experience, eyesight and fatigue level, the environment (i.e. climatic conditions and

local habitats) and aspects of the species itself, such as their body size (Anderson

2001; Mackenzie and Kendall 2002). Among the variables associated with the

environment, such as wind speed, temperature, humidity, cloud cover, time of

sunrise or days from the last rain or snow, many have been previously suggested as

potentialinfluencesontheresultsoftracksampling(Norton 1990; Hayward et al.

2002; Long et al. 2008). These non-biological factors constitute an important source

of error, as they affect the probability of detection and therefore the count. If they are

not considered when designing a monitoring program they can increase variance or

uncertainty for the estimates of relative abundance indices (Thompson et al. 1989).

Page 73: Tesis Carolina Soto Navarro - copia.pdf

72

Chapter 1 Chapter 1

Despitethepotentialinfluencethattheabove-mentionedfactorsmayhave

on track counts, specific studies on the subject are scarce (Jennelle et al. 2002;

Karanth et al. 2003, but see Stander 1998; Balme et al. 2009; Zielinski and Schlexer

2009). Nevertheless, there is a growing suggestion to include measures of precision

and estimates of the detection probability when using indices values (usually raw

counts) purporting to measure relative abundance (e.g. Anderson 2001; Rosenstock

et al. 2002; Engeman 2003).

Here, we studied how methodological and climatic factors affected the number

oftracksdetectedinsurveyscarriedoutonsand-basedsubstrates.Specifically,we

examined whether some climatic variables such as maximum temperature, average

relative humidity, maximum wind speed or days since last rain and methodological

factors such as censusing day period, distance from transect to vegetation edge,

substrate condition or observer may affect the number of tracks detected for a set of

seven mammalian carnivores and some of their potential prey on sandy substrates

in South-western Spain and how, depending on the size of the animals surveyed,

different factors could affect the detection probability.

Page 74: Tesis Carolina Soto Navarro - copia.pdf

73

Chapter 1 Chapter 1

METHODS

Study area

The study was carried out in Doñana National Park in southwestern Spain

(37º9´N, 6º26´W). This is a 550 km2flatsandyareaatsealevelborderedtothesouth

and west by the Atlantic Ocean and to the east by the Guadalquivir River mouth.

The climate is Mediterranean subhumid (i.e. characterised by mild wet winters

and hot dry summers), with an average annual rainfall of 500-600 mm. There are

three main environmental units in the park: marshland, dunes and Mediterranean

scrubland (Fig. 1). Track censuses were restricted to the scrubland area, which

is mainly characterised by heterogeneous patches of xerophytic species such as

Halimium sp. and Cistus sp., and hygrophytic ones such as Erica sp., with some

patches of Juniperus phoenicea and Pistacia lentiscus shrubs. Interspersed with the

scrubland there are scattered cork oak trees (Quercus suber) and wild olive trees

(Olea europea), and a few patches of pine Pinus pinea and eucalyptus Eucalyptus

sp. plantations. The Mediterranean scrubland represents approximately half of the

National Park surface area.

Carnivore species in our study area are the red fox (Vulpes vulpes), the

Eurasian badger (Meles meles), the Egyptian mongoose (Herpestes ichneumon), the

common genet (Genetta genetta), the polecat (Mustela putorius) the Iberian lynx

(Lynx pardinus), the European otter (Lutra lutra), wild and domestic cat (Felis sp.),

and domestic dog (Canis familiaris). Polecats and otters were excluded from our

study because of their low abundance.

Potential target prey species for hunting or consumption as carrion by the

carnivore community and sampled in our study were small mammals (i.e. Garden

dormouse (Eliomys quercinus), Southern Water Vole (Arvicola sapidus), bush rat

Page 75: Tesis Carolina Soto Navarro - copia.pdf

74

Chapter 1 Chapter 1

(Rattus rattus), Long-tailed Field Mouse (Apodemus sylvaticus) and other mice

(Mus spp.), but the most common are A. sylvaticus (Kufner and Moreno 1989)),

European rabbits (Oryctolagus cuniculus), red partridges (Alectoris rufa), domestic

cows (Bos Taurus) and horses (Equus caballus) and wild ungulates such as the

fallow deer (Dama dama), the red deer (Cervus elaphus) and the wild boar (Sus

scrofa).

Track sampling

Under a wider project that aims to study biological and anthropic

factors affecting wild and domestic carnivore abundance and distribution within

Doñana National Park, during the wet seasons of 2007-08 and 2008-09 (from

Figure 1. Map of the study area showing Doñana National Park in the southwestern Spain and the 2x2 km2, where carnivore and prey track censuses were carried out

Page 76: Tesis Carolina Soto Navarro - copia.pdf

75

Chapter 1 Chapter 1

November 2007 to May 2008 and from October 2008 to April 2009) three and two

observers sampled 59 and 57, respectively, 2 x 2 km squares all with at least 40% of

their surface located within the scrubland area of the park (Fig.1). Marshland area

was not sampled as its clay soils make it unsuitable for track censuses. The squares

with≥40%areaofopendunewereexcludedforthepresentstudysincevegetation

is clearly different from the rest of the scrubland area, which would add an extra

sourceofvariabilitytodata.Thethreeobserversofthefirstyearwereafieldworker

with 15 years of experience and two without previous experience, but that were

trainedfortwomonthsbytheexperiencedfieldworker.Duringthesecondyear,the

experienced observer and one of the others carried out the surveys.

We sampled for carnivore tracks in each square by slowly walking zigzag

(ca.1.5km/h)inatleast3km-longsandypaths(incartracksorfirebreaks).Once

a continuous track, that crossed side to side across the pathway, was detected, we

georeferenced it using a GPS. We noted location as a grid reference, date, and the

methodological variables, censusing day time (we established three block schedules;

early morning (from 8 a.m. to 12 a.m.), afternoon (from 12 a.m. to 3 p.m.) and

evening (from 5 p.m. to sunset), start time and end time for each census, and the

observer who carried out the census. In order to homogenize the number of tracks

detected per grid and maximize the probability of detection for each carnivore

species, we re-sampled the same path (leaving at least 7 days between samplings) a

secondtimeinafewsquaresuntilcompleting3kmifduringthefirstsamplingthere

was not enough available path within the square to achieve this distance. Thus, we

had more censuses than total number of 2x2 km squares. We always carried out

surveys at least 3 days after any rainfall.

Page 77: Tesis Carolina Soto Navarro - copia.pdf

76

Chapter 1 Chapter 1

We concentrated prey sampling within on month to avoid strong intermonthly

variations in abundance for some species (e.g. see Kufner 1986; Palomares et al.

2001 for small mammals and European rabbits, respectively). Thus, we carried out

the sampling of prey tracks in April 2009 along transects in every 2x2 km square

sampled for carnivore tracks. These transects for prey species were walked as they

were for carnivore tracks, were 25 m in length and approximately 1.7 m wide (i.e.

the area of a four-wheel-drive car) and were located in the middle of the census path

and separated by at least 300 m. We recorded the location as a grid reference, date,

observer, and the following methodological variables: distance from nearest border

of census transect to the closest vegetation border (not recorded for carnivore track

censuses as they were carried out by zigzag walking), pathway where transects

wereestablished(firebreaksorcartracks)andqualityofthesubstratefordetecting

tracks based on the presence of grass (we established two categories; good (when

grassy groundcover was less than 10% in any part of the 25 m transect) and fair

(when grassy groundcover in any part of the 25 m transect was between 11-30%).

We considered unsuitable for prey counts transects in which grassy groundcover

was more than 30% in some part of the transect.

The climatic variables result from an average of the maximum temperature

(calculated as the average of the maximum temperature measured on the census day

and the maximum temperature measured two consecutive days before the census

day), relative humidity, maximum wind speed, and the number of days since last

rain. The data was obtained from a station located inside Doñana National Park

(Control RM1 Meteorological Station; Latitude: 37º 1’18’’, Longitude: 6º 33’ 17’’

http://icts.ebd.csic.es).

Page 78: Tesis Carolina Soto Navarro - copia.pdf

77

Chapter 1 Chapter 1

Data analyses

In order to avoid linearity assumptions, we preliminary explored the shape of the

responseforeachlandscapevariablebeforefittingthemintothefinalequations(Austin,

2002).WiththisaimwefitGeneralisedAdditiveModels(GAMs)(HastieandTibshirani,

1990) using carnivore Kilometric Abundance Indexes and the number of prey tracks as

responsevariablesandfittingsmoothingsplineswith3degreesoffreedomtomodel

every climatic and methodological continuous effect. The smoothed variables were then

turned into suitable parametric terms guided by visual inspection of the partial residual

plots(Crawley,2005).Thepostulatedmodelswerethenfittothetrack-censusdataset

using general linear models (GLM) with the log link, negative binomial error structure

andlinearandnon-linearresponsestofixedeffectsinaccordancewiththeGAMresults.

We analyzed the effect of methodological variables observer (observer) and censusing

day time (day_time), and climatic variables maximum temperature (max_temp), average

relative humidity (humidity), maximum wind speed on census day (wind_speed), and

days since last rain (last_rain) on the carnivore Kilometric Abundance Index (KAI)).

We also included in the models the interactions between observer and day_time, as the

number of samplings carried out by each observer in each daily time period was different.

Correlations between predictors were always low (r<0.6)sowefittedfullmodels(i.e.

models including all the methodological and climatic variables). As for some 2x2 km

squares we carried out more than one census, our sampling unit was the census and not

the square. We examined the effect of the above variables on total carnivore abundance

index, small carnivore (from 1-5 kg of body mass) abundance index (including the

common genet, wild and domestic cats and the Egyptian mongoose) and medium-sized

carnivore (>7 kg of body mass) abundance index (including the red fox, the Eurasian

badger, the Iberian lynx and the domestic dog).

Page 79: Tesis Carolina Soto Navarro - copia.pdf

78

Chapter 1 Chapter 1

We followed a backward regression-model selection procedure excluding

variables contributing least to the model (i.e. variables with P > 0.3) before models

wererefitted.OnlyvariableswithP ≤0.05wereinterpretedasstatisticallysignificant.

Overdispersion was not a problem (ɸ was close to 1 (1.14 - 1.21)) for any of the models

(Zuur at al. 2009). We analyzed data separately for each study year as the number of

observers changed and to maximize the variability between conditions, which could

affect the number of tracks detected on sand substrates.

We also performed general linear models (GLM) with negative binomial errors

and log link function to analyse the effect of observer, distance from border of census

transects to the closest vegetation border (dist_veg.), type of path (place) where prey

censuseswerecarriedout(firebreaksorcartracks),qualityofthesubstrate(quality) and

climatic variables last_rain, max_temp, humidity and wind_speed on track counts data

of prey species. We also included in the models the interactions between observer and

quality and observer and place. Prey data were grouped as total prey, small prey (small

mammals), medium-sized prey (rabbits and partridges) and large prey (cows, horses and

ungulates). Correlation between predictors was low (r <0.5),sowefittedfullmodels.

Overdispersion was not a problem (ɸ = 1.04 - 1.24). The sample unit to adjust GLM was

the 25 m transects.

To simplify models and their understanding we also followed a backward

regression-model selection procedure excluding variables with P>0.3,andthenrefitted

the models.

All statistical analyses were performed using the SAS® 9.2 statistical software

(SAS Inst. Inc., Cary,NC),GAM andGLMwere fitted using the gam and genmod

procedures, respectively.

Page 80: Tesis Carolina Soto Navarro - copia.pdf

79

Chapter 1 Chapter 1

RESULTS

A total of 471 km were walked and 8,373 carnivore tracks were found during

surveys, with the red fox, the Eurasian badger and the Egyptian mongoose being

the most recorded species (Table 1). For prey, 5,000 tracks were detected on 11,575

m sampled (Table 2). Prey species more often detected were ungulates (i.e. fallow

deer, red deer, wild boar) and rabbits.

Forthefirstyear,thereweredifferencesinthenumberoftracksdetected

among observers for all small and medium carnivores, and the number of tracks

decreased when wind speed increased for total carnivores, increased when humidity

was higher for small carnivores, and was highest during the afternoon for medium-

sizedcarnivores(Table3,Fig.2).Asignificantinteractionwasalsodetectedbetween

thecensusingdayperiodandtheobserver,withthethreeobserversfindingmore

medium-sized carnivore tracks in the evening than in the morning or afternoon

(Table 3, Fig. 2d).

Number of censuses was 76 and 62 for each study year, respectively.

2007-2008 2008-2009

SpeciesPositive censuses

Total number of

tracks

KAI (mean±SD)

RangePositive censuses

Total number of tracks

KAI (mean±SD)

Range

Lynx pardinus 19 65 0.4 ± 0.9 0 - 5.4 14 75 0.4 ± 0.9 0 - 5.0

Meles meles 68 599 3.9 ± 5.1 0 - 20.6 53 666 3.7 ± 3.8 0 - 17.3

Herpestes ichneumon 60 631 4.0 ± 4.4 0 - 21.1 48 544 2.8 ± 3.3 0 - 12.5

Vulpes vulpes 76 3,138 17.7 ± 9.1 2.4 - 44.2 61 2,333 11.9 ± 6.5 1.2 - 32.6

Genetta genetta 21 160 0.8 ± 2.3 0 - 15.9 20 66 0.4 ± 0.7 0 - 2.8

Felis sp. 8 25 0.2 ± 0.8 0 - 5.7 17 27 0.1 ± 0.3 0 - 1.3

Canis familiaris 12 23 0.2 ± 0.7 0 - 5.9 11 21 0.1 ± 0.3 0 - 2.0

Table 1. Carnivore kilometric abundance index (tracks / km; KAI) in the scrubland area of Doñana National Park during the wet seasons of 2007-2008 and 2008-2009.

Page 81: Tesis Carolina Soto Navarro - copia.pdf

80

Chapter 1 Chapter 1

During the second year, more tracks were detected when humidity increased for total

and medium-sized carnivores, and fewer small carnivore tracks were recorded when

daily maximum temperature and days since last rain increased (Table 3, Fig. 3).

Most of the variables considered affected the total number of prey tracks

detected (Table 4). Thus, the number of tracks for total prey increased when the

daily maximum temperature, humidity and days since last rain increased (Fig.

4c), and decreased when wind speed and distance to vegetation edge was highest.

Furthermore, the number of total tracks was higher when samplings were carried

out in car tracks than infirebreaks (Fig. 4b), oneobserverdetectedmore tracks

thantheother(Fig.4a),andtherewasasignificantinteractionbetweenobserver

and place (Fig. 4d). Some interesting exceptions to this general pattern were found

when data were separated by type of prey (Table 4). For small prey, number of

tracks was not affected by wind speed, humidity, maximum daily temperature and

days since last rain, and the interaction between observer and place was not found.

For medium-sized prey the number of tracks found was not affected by wind speed,

daily maximum temperature and days from the last rain, but in this case quality of

the road did affect results, with a higher number of tracks being detected at transects

without grass. Finally, the number of large prey tracks was not affected by daily

maximum temperature, distance to vegetation, type of path, or observer, and there

was no interaction between observer and place.

DISCUSSION

Track censuses can provide a rapid and cost-effective assessment of relative

abundance of a species, but improving their performance and robustness by

understanding the factors that potentially affect them is a key step for the design of

Page 82: Tesis Carolina Soto Navarro - copia.pdf

81

Chapter 1 Chapter 1

sound monitoring programmes. Indexes derived from track surveys are partially a

function of animal abundance, but are also a function of a long list of methodological

and climatic variables and characteristics of the species being surveyed. Our results

support the hypothesis that non-biological factors can affect the number of animal

tracks detected in surveys, and must be taken into account when planning to study

animal abundance, distribution or the biological factors determining them.

The aim of this study is not to establish a standard protocol to carry out

track censuses in sandy substrates but to identify how different methodological

and climatic variables can affect the number of tracks detected in censuses.

Nevertheless, as a rule, our study shows how variables increasing the quality of the

substrate (e.g. higher environmental humidity, lower wind speed and few days since

last rain) allowed the detection of a greater number of tracks. Previous studies had

suggestedthatthesetypesofvariablescouldinfluenceresults,butnoquantitative

data had been provided (but see Hayward et al. 2002; Bayne et al. 2008). For

instance, to determine the presence of mountain lions Felis concolor californica,

through track surveys, Van Dyke et al. (1986) and Smallwood and Fitzhugh (1995)

recommended excluding desert areas or windy conditions. Other authors (Zielinski

and Kucera 1995; Bayne et al. 2005) have made recommendations for snow

tracking to detect the presence of a wide diversity of species such as American

Table 2. Total number of tracks detected and the mean index of abundance (tracks / 25 m) for each group of potential prey species along 463 25 m transects.

Species group No of tracks Mean ± SD RangeSmall mammals 233 0.5 ± 1.4 0 - 13Rabbits 2,132 4.6 ± 9.4 0 - 115Partridges 260 0.6 ± 1.3 0 - 11Cows/horses 210 0.4 ± 1.6 0 - 18Ungulates 2,165 4.7 ± 9.4 0 - 33

Page 83: Tesis Carolina Soto Navarro - copia.pdf

82

Chapter 1 Chapter 1

martens (Martes americana), Canada lynx (Lynx canadensis), wolverines (Gulo

gulo), coyotes (Canis lastrans), red foxes (Vulpes vulpes), bobcats (Lynx rufus),

grey wolves (Canis lupus) or mountain lions (Puma concolor) among others.

Recommendations include avoiding tracking during snowfall and waiting until the

second morning after a snowfall, carrying out tracking early in the morning during

periods of melting and freezing and not tracking on south-facing slopes.

Moreover, in Europe and other arid regions of Australia, India, South

America or South Africa where track surveys occurring in dust, mud or sand are more

broadly employed, many authors have also tried to standardize survey design and

Effects 2007-2008 2008-2009

Total carnivores

Small carnivores

Medium-sized carnivores

Total carnivores

Small carnivores

Medium-sized

carnivoresIntercept 3.7238 *** 0.5065 3.2957*** 2.4779** 2.0154 1.4906 wind_speed -0.1329* - -0.1316 0.1071 -0.1751 -0.0711 humidity - 0.0269** - 0.0194** - 0.0261** max_temp - - - -0.0376 -0.0937** -0.0095 last_rain - - - -0.0160 -0.048** -0.0023 day_time

early morning

afternoon

evening

24.5214

28.3601

35.5493

-

-

-

15.1443**

22.8087**

27.8652**

16.5645

20.3801

29.2495

-

-

-

15.1596

16.6357

23.1351 observer

1

2

3

20.7509***

27.8207***

38.8229***

3.4544***

2.4517***

11.5468***

16.1252**

25.1415**

28.3257**

-

-

-

3.5478

2.4450

20.0273

16.1825

observer*day_time ns - *** - - -

Table 3. Results of GLM analysis to test for the effect of several methodological and climatic variables on abundance indeces of total, small and medium-sized carnivores in Doñana National Park. Standard errors have been omitted to simplify the table. Variables with P > 0.3 excluded from the models are represented as (-). Least squares means (LS-Means) of the categorical fixedeffectsobserver and day time are shown. Non-est. means that the model could not calculate the parameter because of little data. (*P < 0.05; **P < 0.01; ***P<0.001;nsnotsignificant).

Page 84: Tesis Carolina Soto Navarro - copia.pdf

83

Chapter 1 Chapter 1

effortbysuspendingsearchesoftracksfor≥24hoursafterprecipitationorperiods

ofhighwinds(≥24km/h)andalsobyusingonly early morning observations for

analysis (e.g. Stander et al. 1998; Sargeant et al. 2005; Evans et al. 2009; Funston

et al. 2010).

There was some exception to the general rule stated. A positive correlation

was found between number of tracks recorded and days since last rain for large prey

species. Their large size rendered their tracks easily recognizable in poor substrate

conditions.

Table 4. Results of GLMM analysis to test for the effect of several methodological and climatic variables on abundance indeces of total, small and medium-sized and large prey in Doñana National Park. Standard errors have been omitted to simplify the table. Variables with P > 0.3 excluded from the models are represented as (-). Least squares means (LS-Means) of the categorical fixed effects place, quality and observer are shown. Non-est. means that the model could not calculate the parameter because of little data. (*P < 0.05; **P < 0.01; ***P < 0.001).

Effects Total prey Small prey Medium-sized prey Large prey

Intercept 2.4520*** -2.7311*** 0.7317* 2.4978***wind_speed -0.0005** - -0.0004 -0.0006**humidity 0.0001*** - 0.0001** 0.0001**max_temp 0.0002** - 0.0002 -last_rain 0.0439*** - - 0.0622***distance_veg -0.0666*** -0.1018* -0.1234*** -place firebreak car track

2.4818**2.8317**

-1.0304**-2.3403**

1.2910*1.7615*

--

quality without grass with grass

2.54092.7726

-1.3780-1.9927

1.8563**1.1962**

1.5986***2.3358***

observer 1 2

3.1145***2.1989***

-1.2665**-2.1042**

2.3213***0.7312***

--

observer*place *** - *** -

observer*quality Non-est. Non-est. Non-est. Non-est.

Page 85: Tesis Carolina Soto Navarro - copia.pdf

84

Chapter 1 Chapter 1

Other methodological variables also affected results depending on the size

of the species sampled. A higher number of prey species tracks were detected when

transects ran near a vegetation border or in car tracks. This result could be caused

by two different reasons. Vegetation must exert a protective effect against wind and

maintain a higher level of moisture on the sand, thereby increasing substrate quality

for detecting tracks. Also, medium and small prey may prefer to remain near a

vegetation edge to decrease predation risk (Hughes and Ward 1993, but see Moreno

et al. 1996).

Figure 2. Effects of wind speed on total carnivore tracks per km detected (a), of observer (least square means and their standard errors are represented) on total carnivore tracks per km (b), of relative humidity on small carnivore tracks per km (c), and differences in the number of medium-sized carnivore tracks per km detected by observers in each period of the day given as estimated leastsquaremeansandtheirstandarderrors(d)duringthefirststudyyear.FvaluescomputedasMSModel / MSError (i.e. Mean SquareModel/Mean SquareError), and their respective p-values are shown.

Page 86: Tesis Carolina Soto Navarro - copia.pdf

85

Chapter 1 Chapter 1

Nevertheless, it is necessary to note that our results were not consistent

among size groups or between years. This could be due to the fact that many of the

variables that affect detectability, and therefore the count, exhibit time trends (i.e.

vary between years) further confounding the value and interpretation of the index.

This is an important issue as it makes track censuses incomparable across different

climatic and methodological conditions.

Our results also showed differences in the number of tracks detected

amongst observers. Moreover, the differences were more apparent in poor

substrate conditions, when the tracks of nocturnal species would have suffered the

greatest deterioration due to time, sun or wind, aswassuggestedbythesignificant

interaction foundbetweenobserver and thecensusday time.This result reflects

the fact that some observers are able to detect more tracks at one period of the day

than others, probably depending on their performance. The effect of the observer in

the number of tracks detected could also be partially related to the census speed as

differences among observers in their average speed as a function of their experience

were detected (data not shown). Quality of data had been previously questioned

Figure 3. Effects of maximum temperature on small carnivore tracks per km (a), and of days since last rain on small carnivore tracks per km detected (b) for the second study year. F values computed as MSModel / MSError, and their respective p-values are shown.

Page 87: Tesis Carolina Soto Navarro - copia.pdf

86

Chapter 1 Chapter 1

depending on skill level of observers (Bider 1968; Smallwood and Fitzhugh 1995;

Anderson 2001; Wilson and Delahay 2001; Silveira et al. 2003). For this reason,

suggestions have been recently proposed to decrease differences among observers

or to evaluate observer skills (Sadlier et al. 2004; Evans 2006, 2009; Zielinski and

Schlexer 2009).

Different approaches might be used to reduce the possible influence

of methodological and climatic variables on track counts. One would be to limit

track censuses to some given weather conditions, which would ensure a constant

substrate quality for detecting tracks. Furthermore, to keep constant the time of the

Figure 4. Effects of observer (least square means and their standard errors are represented) on total prey tracks per 25 m transects (a), of censusing place on total prey tracks per km (least square means and their standard errors are represented) (b), of days since last rain on number of large prey tracks (c), and the interaction between observer and type of pathway sampled given as estimated least square means and their standard errors (d). F values computed as MSModel / MSError, and their respective p-values are shown.

Page 88: Tesis Carolina Soto Navarro - copia.pdf

87

Chapter 1 Chapter 1

day, days from the last rain or snow, observers involved in the sampling, or distance

to vegetation borders will also help to diminish variability in the number of tracks

recorded. Some of these suggestions have been approached by maintaining constant

substratequalitythroughtheuseofartificialsubstratesandbyerasingandresampling

newlylefttracksontransectsforagivenfixednumberofdays(Gruberatal.2008;

Watts et al. 2008; Russell et al. 2009; Zielinski and Schlexer 2009).

Avoiding such potentially confounding effects in data collection should be

a fundamental design concept (Engeman 2003). However, it is not always possible

to consider these meteorological or methodological issues when carrying out large-

scale samplings or when large volumes of data are needed for population estimation

procedures. Thus, we also propose that these possible meteorological or methodological

variables be recorded and to include them as covariates in any further statistical

analysis aiming to test for biological factors affecting relative animal abundance (also

see Smallwood and Fitzhugh 1995). Survey design and statistical rigor are important,

but we agree with previous authors (e.g. Thompson et al. 1998;Nichols et al. 2000;

Anderson 2001; Yoccuz et al. 2001; Mackenzie and Kendall 2002) that estimating

relative abundance based on indices alone (e.g., raw counts) is naive, and that the

focus of efforts ought to be on estimating detection probabilities as well.

Theseresultscouldbeappliedtoavarietyofresearchfields,bothfortesting

validity of pre-existing data and improving the suitability and performance of future

studies based on track surveys. Although the indices derived from track censuses

are only partially a function of animal abundance (Anderson 2001), if the variables

associated with the observer, the environment, and characteristics of the species

being surveyed are controlled, the reliability of the information extracted from these

methods may be improved.

Page 89: Tesis Carolina Soto Navarro - copia.pdf

88

Chapter 1 Chapter 1

ACKNOWLEDGMENTS

This research was funded by the projects CGL2004-00346/BOS (Spanish Ministry

of Education and Science) and 17/2005 (Spanish Ministry of the Environment; National Parks

Research Programme). Land-Rover España S.A. lent two vehicles for this work. We are very grateful

especiallytoJ.C.Rivillafortheirassistanceduringfieldwork.C.SotowasalsosupportedbyaJAE-

Predoc grant from the CSIC.

REFERENCES

Anderson DR (2001) The need to get the basics right in wildlife studies. Wildl Soc Bull 29:1294-1297.

Balme GA, Hunter LTB, Slotow R (2009) Evaluating Methods for Counting Cryptic Carnivores. J

Wildl Manag 73(3):433-441.

Austin MP (2002) Spatial prediction of species distribution: an interface between ecological theory

and statistical modelling. Ecol. Model. 157, 101–118.

Bayne E, Moses R, Boutin S (2005) Evaluation of winter tracking protocols as a method for

monitoring mammals in the Alberta Biodiversity Monitoring Program. Rep Alta

Biodivers Monit Progr, Vegreville, Alberta, Canada.

Bayne EM, Boutin S et al. (2008)EcologicalfactorsinfluencingthespatialpatternofCanadalynx

relative to its southern range edge in Alberta, Canada. Can J Zool-Rev Can Zool 86(10):

1189-1197.

Bider JR (1968) Animal activity in uncontrolled terrestrial communities as determined by a sand

transect technique. Ecol Monogr 38(3):269-308.

Blaum N, Tietjen B et al. (2009) Impact of Livestock Husbandry on Small- and Medium- Sized

Carnivores in Kalahari Savannah Rangelands. J Wildl Manag 73(1): 60-67.

Buckland ST, Anderson DR, Burnham KP and Laake JL (1993) Distance Sampling: Estimating

Abundance of Biological Populations. Chapman and Hall, London. 446pp

Caughley G, Sinclair ARE (1994) Wildlife ecology and Management. Blackwell Science

Publications, Oxford.

Crawley MJ (2005) Statistics: An Introduction using R. JohnWiley & Sons Ltd., Chichester.

Datta A, Anand MO, Naniwadekar R (2008) Empty forests: Large carnivore and prey

abundance in Namdapha National Park, north-east India. Biol Conserv 141(5):1429-1435.

Page 90: Tesis Carolina Soto Navarro - copia.pdf

89

Chapter 1 Chapter 1

Engeman RM (2003) More on the need to get the basics right: population indices. Wildl Soc Bull

31: 286-287.

Evans J (2006) Observer error in identifying species using indirect signs: analysis of a river otter

track survey technique. Thesis, Texas A&M University, College Station, USA.

Evans et al. (2009) Determining Observer Reliability in Counts of River Otter Tracks. J Wildl

Manag 73: 426-432.

Funston PJ, Frank L et al. (2010) Substrate and species constraints on the use of track incidences to

estimate African large carnivore abundance. J Zool 281(1):56-65.

Garel M, Bonenfant C, Hamann JL, Klein F, Gaillard JM (2010) Are abundance indices derived

from spotlight counts reliable to monitor red deer populations? Wildl Biol 16(1)

Gruber B, Reineking B et al. (2008) A new method for estimating visitation rates of cryptic animals

via repeated surveys of indirect signs. J Appl Ecol 45(2): 728-735.

Gibbs JP (2000) Monitoring populations. Pp. 213-247 in Research techniques in animal ecology:

controversies and consequences (L. Boitani & T. Fuller, eds.). Columbia University Press,

New York.

Gusset M, Burgener N (2005) Estimating larger carnivore numbers from track counts and

measurements. Afr J Ecol 43(4): 320-324.

Hastie, TJ, Tibshirani RJ (1990) Generalized Additive Models. Chapman & Hall, London.

Hayward GD, Miquelle DG et al. (2002) Monitoring Amur tiger populations: characteristics of track

surveys in snow. Wildl Soc Bull 30(4): 1150-1159.

Hughes JJ,Ward D (1993) Predation risk and distance to cover affect foraging behaviour in Namib

Desert gerbils. Anim Behav 46: 1243-1245.

Jennelle CS, Runge MC MacKenzie DI (2002) The use of photographic rates to estimate densities

of tigers and other cryptic mammals: a comment on misleading conclusions. Anim

Conserv 5:119-120.

KaranthKU,NicholsJDetal.(2003)Sciencedeficiencyinconservationpractice:themonitoringof

tiger populations in India. Anim Conserv 6:141-146.

Kufner MB (1986) Tamaño actividad, densidad relativa y preferencias de hábitat de los pequeños

y medianos mamíferos de Doñana, como factores condicionantes de su tasa de predación.

Thesis, Universidad Autónoma, Madrid, Spain.

Page 91: Tesis Carolina Soto Navarro - copia.pdf

90

Chapter 1 Chapter 1

Kufner MB, Moreno YS (1989) Abundancia y amplitud de los desplazamientos de Apodemus

sylvaticus encuatrobiotoposdeDoñanaquedifierenencoberturavegetal.Doñana,Acta

Vertebrata, 16: 179-181.

Liebenberg et al. (2010) Practical Tracking. Stackpole Books.

Long et al. 2008. Noninvasive Survey Methods for Carnivores. Island Press.

Mills LS, Citta J et al. (2000) Estimating animal abundance using non-invasive DNA sampling:

promise and pitfalls. Ecol Appl 10(1):283–294.

MacKenzie DI, and WL Kendall (2002) How should detection probability be incorporated into

estimates of relative abundance. Ecology 83: 2387-2393

Moreno S, Villafuerte R, Delibes M (1996) Cover is safe during the day but dangerous at night:

the use of vegetation by European wild rabbits. Can J Zool 74: 1656-1660.

Newsome AE, Parer I, Catling PC (1989) Prolonged prey suppression by carnivores-predator-

removal experiments. Oecologia 78:458–467.

Nichols JD, Hines JE, Sauer JR, Fallon FW, Fallon JE, and Heglund PJ (2000) A double-observer

approach for estimating detection probability and abundance from counts. Auk 117:393–408.

Norton PM (1990) How many leopards? A criticism of Martin and de Meulenaer’s population

estimates for Africa. S Afr J Sci 86:218–220.

Odonoghue M, Boutin S et al. (1997) Numerical responses of coyotes and lynx to the snowshoe hare

cycle. Oikos 80(1): 150-162.

Palomares F, Delibes M et al. (2001) Spatial ecology of Iberian lynx and abundance of European

rabbits in South western Spain. Wildl Monogr 148:1-36.

Rosenstock SS, Anderson DR, Giesen KM, Leukering T, and Carter MF (2002) Landbird counting

techniques: Current practices and an alternative. Auk 119:46–53.

Russell JC, Hasler N et al (2009) Automatic track recognition of footprints for identifying cryptic

species. Ecol 90, 2007–2013.

Sadlier LMJ, Webbon CC et al. (2004) Methods of monitoring red foxes Vulpes vulpes and badgers

Meles meles:arefieldsignstheanswer?MammRev34:75-98.

Sargeant GA, Sovada MA et al. (2005) Markov chain Monte Carlo estimation of species distributions:

a case study of the swift fox in western Kansas. J Wildl Manag 69:483– 497.

Shapira I, Sultan H et al. (2008) Agricultural farming alters predator-prey interactions in nearby

Page 92: Tesis Carolina Soto Navarro - copia.pdf

91

Chapter 1 Chapter 1

natural habitats. Anim Conserv 11(1): 1-8.

Short J, Turner B, Risbey DA, Carnamah R (1997) Control of feral cats for nature conservation. II.

Population reduction by poisoning. Wildl Res 24:703–714.

Silveira L, Jácomo ATA, Diniz-Filho JAF (2003) Camera trap, line transect census and track

surveys: a comparative evaluation. Biol Conserv 114: 351-355.

Smallwood KS, Fitzhugh EL (1995) A track count for estimating mountain lion Felis concolor

californica population trend. Biol Conserv 71:251–259.

Stander PE (1998) Spoor counts as indices of large carnivore populations: the relationship between

spoor frequency, sampling effort and true density. J Appl Ecol 35:378–385.

Stephenson RO (1986) Development of lynx population estimation techniqucs. Alaska Department

of Fish and Game, Project W-22-2, W-22-3, W-22-4, and W-22-5, Res. Final Report, 84 pp.

Thompson ID, Davidson IJ et al. (1989) Use of track transects to measure the relative occurrence of

some boreal mammals in uncut forest and regenerations stands. Can J Zool 67:1816-1823.

Thompson WL, White GC, and Gowan C (1998) Monitoring vertebrate populations. Academic

Press, San Diego, California, USA.

Van Dyke FG, Brocke RH, Shaw HG (1986) Use of road track counts as indexes of mountain lion

presence. J Wildl Manag 50 (1):102-109.

Watts CH, Thornburrow D et al. (2008) Tracking tunnels: a novel method for detecting a threatened

New Zealand giant weta (Orthoptera: Anostostomatidae). N Z J Ecol 31:92–97.

Williams BK, Nichols JD, Conroy MJ (2002) Analysis and management of animal populations:

modeling, estimation, and decision making. Academic Press, San Diego, USA: 1–1040.

Wilson GJ, Delahay RJ (2001) A review of methods to estimate the abundance of terrestrial

carnivoresusingfieldsignsandobservation.WildlRes28(2):151-164.

Yoccuz NG, Nichols JD, and Boulinier T (2001) Monitoring of biological diversity in space and

time. Trends in Ecol. and Evol. 16:446–453.

Zaumyslova O.Yu. (2000) Long term population-dynamics of ungulates in the Sikhote-Alin Reserve

from winter transect count data. In Analysis of long-term monitoring data of nature

componentsinNatureReservesintheRussianFarEast:70–79.Astafiev,A.A.(Ed.).

Vladivostok: Dalnauka, USAID.

ZielinskiWJ,KuceraTE,BarrettRH(1995)Americanmarten,fisher,lynx,andwolverine:survey

Page 93: Tesis Carolina Soto Navarro - copia.pdf

92

Chapter 1

methodsfortheirdetection.USDAforestservice,PacificSouthwestResearchStation

General Technical Report PSW-GTR-157, Albany, CA.

Zielinski WJ, Schlexer FV (2009) Inter-Observer Variation in Identifying Mammals from Their

Tracks at Enclosed Track Plate Stations. Northwest Science 83(4): 299-307.

Page 94: Tesis Carolina Soto Navarro - copia.pdf

93

CHAPTER 2

Fine-scale habitat use and niche separation in a guild of sympatric carnivore species that differ in life-history traits

Uso del hábitat a escala fina y segregación de nicho en un

gremio de carnívoros simpátridos que difieren en sus rasgos

de historia de vida

Page 95: Tesis Carolina Soto Navarro - copia.pdf

94

Chapter 2

Page 96: Tesis Carolina Soto Navarro - copia.pdf

95

Chapter 2

ABSTRACT

Heterogeneous landscapes offer many choices in habitat selection but in

landscapes where a general habitat type dominates, the resources distribution is

limited and opportunities for coexistence are likely to be the most restrictive. Subtle

patterns of habitat partitioning as well as coexistence between species with different

degree of specialisation may promote ecological separation and therefore sympatry

underthisscenario.Wetestedthehypothesisoffine-scalespatialpartitioningasa

functionofthespecies’degreeofspecialisationbycomparinghabitatuseoffive

sympatric carnivore species (Iberian lynx, Eurasian badger, Egyptian mongoose,

common genet and red fox) within a Mediterranean protected area dominated by

Mediterraneanscrublandinsouth-westernSpain.Wefirstdevelopedlogisticand

regression generalized linear mixed models to analyse habitat use and to assess the

environmental features that best describe the relationship between each species and

their environment and secondly we used OMI analysis to illustrate the ecological

spacefilledbyeachspeciesinamultidimensionalspace.Ourresultssuggestedthat

sympatryofcarnivorespeciesinDNPappearstobemediatedbyfine-scalehabitat

selection only for the most specialist species (lynxes and genets). Lynxes and

genets showed the narrowest and most marginal niches as well as niche segregation.

Lynxes were associated with zones of high density of bushes and ecotones between

bushes and pastureland whereas genets showed association to areas with high small

mammal abundance and pine forest with undergrowth bushes. Mongooses were

positively associated with dense bush cover whereas foxes and badgers showed a

non-specifichabitatusepatternandawidedistributionacross theenvironmental

conditions sampled in the study area. Foxes, badgers and mongooses overlapped in

niche position, but foxes and badgers had broader niches than mongooses suggesting

Page 97: Tesis Carolina Soto Navarro - copia.pdf

96

Chapter 2Chapter 2

that mongooses exhibit certain degree of habitat specialization.

Differences in fine-scale habitat use and ecological separation through

segregation along the ecological niche dimensions have been shown as key

mechanisms for the most specialist species (genets and lynxes) allowing coexistence

whereas for the most generalist species such as mongooses, foxes and badgers,

another mechanisms such as spatial-temporal segregation of activity patterns might

help to explain coexistence among them.

Page 98: Tesis Carolina Soto Navarro - copia.pdf

97

Chapter 2Chapter 2

RESUMEN

Los paisajes heterogéneos ofrecen diversas oportunidades a las especies

para la selección de hábitat, sin embargo, en paisajes dominados por un tipo de

hábitat principal, la distribución de los recursos es limitada y las oportunidades para

la coexistencia entre especies probablemente más restrictivas. Patrones sutiles de

particióndehábitatasícomolacoexistenciaentreespeciesquedifierenensugrado

deespecialismodehábitaty/otróficodebenfomentarlasimpatríaysegregaciónde

nicho bajo este escenario. Comprobamos la hipótesis de la partición espacial a escala

finaenfuncióndelgradodeespecialismode laespecieencuestióncomparando

los patrones de uso del hábitat de cinco especies de carnívoros simpátridos (lince

ibérico, tejón, zorro, gineta y meloncillo) en un área Mediterránea protegida en la

que la zona de estudio estuvo dominada por un tipo de hábitat principal; matorral

Mediterráneo, en el suroeste de España. En primer lugar ajustamos modelos lineares

generalizados mixtos logísticos y de regresión para analizar el patrón de selección

de hábitat y determinar las características ambientales que mejor describen las

relaciones de cada especie con su ambiente. Posteriormente realizamos un análisis

OMI para ilustrar el espacio ecológico ocupado por cada especie en un espacio

multimensional.

Nuestros resultados sugieren que la simpatría entre especies de carnívoros

en el Parque Nacional de Doñana parece estar mediada por selección de hábitat

aescalafinasolopara lasespeciesmásespecialistas(lincesyginetas).Lincesy

ginetas mostraron los nichos ecológicos más estrechos y marginales así como una

segregación de nicho entre ambas especies. Los linces mostraron asociación con

zonas con una densidad elevada de matorral alto y ecotonos entre matorral alto y

pastizales mientras que las ginetas aparecieron asociadas con áreas con una elevada

Page 99: Tesis Carolina Soto Navarro - copia.pdf

98

Chapter 2Chapter 2

disponibilidad de micromamíferos y pinares con sotobosque denso. Los meloncillos

estuvieron asociados a zonas con una cobertura densa de matorral alto mientras que

loszorrosy tejonesnomostraronunpatrónespecíficode seleccióndehábitata

escalafina.Zorros,tejonesymeloncillossolaparonenlaposiciónespacialdesus

nichos ecológicos, pero los zorros y tejones mostraron nichos más amplios que el

de los meloncillos, sugiriendo probablemente un mayor especialismo de hábitat de

estosúltimos.Lasdiferenciasenelusodelhábitataescalafinaylasegregación

de nicho resultaron ser mecanismos clave de coexistencia para las especies más

especialistas (linces y ginetas), mientras que para las especies más generalistas como

los meloncillo, zorros y tejones, otros mecanismos como la segregación espacio-

temporal en sus patrones de actividad deben ayudar a explicar los mecanismos de

coexistencia entre estas especies.

Page 100: Tesis Carolina Soto Navarro - copia.pdf

99

Chapter 2Chapter 2

INTRODUCTION

The competitive exclusion principle or Gause’s law (Gause 1934, Hardin

1960) states that two ecologically similar species cannot coexist unless they differ

sufficientlyinnicheseparation,thatis,inthewaytheyuseresources.Thus,some

degree of partitioning has to occur in the realized niche of coexisting species which

can occur at the temporal, trophic and/or habitat selection level. This is particularly

obvious in heterogeneous landscapes where spatial heterogeneity foments

coexistence between similar species (i.e., within the same trophic level), selection

of different habitats being one of the main processes that promotes sympatry (Levin

1974, Rosenzweig 1984). Nevertheless, mechanisms that facilitate coexistence

between similar species in apparently homogeneous landscapes where a general

habitat type dominates have been poorly explored.

Coexistence may be dependent on the availability of patches that support a set

ofresourcessufficienttofulfilspecies’basicneeds.Hence,accurate discrimination

and quality assessment of suitable habitats may require more detailed landscape

information to detect crucial habitat features not obvious at broader scales

(Fernández et al. 2003, Martin et al. 2010).

Additionally, life-history trait differences between coexisting species in

apparently homogeneous landscapes (i.e., where the spatial variation in the species’

biotic or abiotic environment is low) may help to understand the way species

exploitresources.Hence,besidesfine-scalehabitatusesegregation,coexistenceis

therefore possible if species exhibit differences in their life history traits that allow

niche differences in space (Brown and Wilson 1956, Hutchinson 1959, Chesson

2000). In other words, cohabitation may be privileged when species with different

degrees of habitat and/or trophic specialisation are present.

Page 101: Tesis Carolina Soto Navarro - copia.pdf

100

Chapter 2Chapter 2

To test the hypothesis of fine-scale spatial partitioning as a function of

the species’ degree of specialisationwe compared habitat use of five sympatric

carnivore species (Iberian lynx Lynx pardinus, Eurasian badger Meles meles,

Egyptian mongoose Herpestes ichneumon, common genet Genetta genetta and red

fox Vulpes vulpes) within a Mediterranean protected area with a main habitat type

in south-western Spain. We hypothesized that in an area with a main habitat type,

fine-scalehabitatusedifferencesmayallowsympatryofspecieswithinthesame

thropic level but that differ in the degree of specialisation. If we graph the ecological

space filled by each specieswithin an n-dimensional hypervolume representing

environmental variability, spatial segregation in their realized niches of the species

asafunctionoftheirdegreesofspecialisationmayberevealed.Wefirstdeveloped

habitatmodelsatfine-spatialscalestoassesstheenvironmentalfeaturesthatbest

describe the relationship between each species and its environment. Second, we

usedanordinationmethodtoillustratetheecologicalspacefilledbyeachspeciesin

amultidimensionalspace.Wefittedasetoffine-scalehabitatmodelsconsidering

prior knowledge of species ecology to test five hypotheses: (a) vegetation and

landscape structure are the best explanatory factors of species habitat use; (b) since

our study area is quite homogeneous in vegetation, we hypothesized that prey

availability is the single explanatory factor of habitat use; (c) human disturbance

is the most important variable describing habitat selection; (d) vegetation and

landscape structure and prey availability interact to explain habitat use; and (e) all

landscape descriptors, prey availability and human disturbance are relevant.

The study of the carnivore guild considered here is particularly interesting

because it will allow to compare different species within a continuum of

specialisation ranging from complete specialisation (i.e., the Iberian lynx) to full

Page 102: Tesis Carolina Soto Navarro - copia.pdf

101

Chapter 2Chapter 2

generalisation (i.e., the red fox). The Eurasian badger and the red fox are habitat and

thropic generalist species (Carvalho and Gomes 2001, Cavallini and Lovari 1991,

Kruuk and Parish 1985, Roper and Lups 1995, Balestrieri et al. 2004, Rosalino et

al. 2005, Amores 1975). The Egyptian mongoose is a habitat specialist but trophic

generalist (Palomares and Delibes 1991, Palomares and Delibes 1993, Zapata et al.

2007,) whereas the Iberian lynx is a highly habitat and trophic specialist species

(Palomares et al. 1991, Delibes et al. 2000, Palomares et al. 2001). The genet

meanwhile is considered between typical generalists and typical specialists (Virgós

et al. 1999).

We predicted that habitat use in lynxes and genets should be explained by

multiple variables due to their higher degree of habitat and trophic specialisation

whereas badgers and foxes should have fewer requirements and respond to single

explanatory factors such as prey availability or vegetation and landscape structure

because of their omnivorous diets and habitat generalism. For mongooses, as

habitat specialists but trophic generalists vegetation and landscape structure should

explain their pattern of habitat use. Therefore, genets and lynxes should show the

most marginal (i.e., located in extreme values of variable gradients) and narrowest

realized niches whereas foxes and badgers would have the most widespread and

widest niches among those possible. Mongooses meanwhile may show a non-

marginal niche, wider than lynxes and genets but narrower than foxes and badgers.

Page 103: Tesis Carolina Soto Navarro - copia.pdf

102

Chapter 2Chapter 2

Figure 1. The study area. Doñana National Park and its location in south-western Spain.

Page 104: Tesis Carolina Soto Navarro - copia.pdf

103

Chapter 2Chapter 2

METHODS

Study area

This study was located in Doñana National Pak (DNP), a fully protected

area in southwestern Spain (550 km237°9′N,6°26′W)(Fig.1).DNPisaflatsandy

area at sea level bordered to the south and west by the Atlantic Ocean and to the

east by the Guadalquivir River mouth. The climate is Mediterranean subhumid (i.e.,

characterized by mild wet winters and hot dry summers), with an average annual

rainfall of approximately 550 mm. Approximately half of the surface of DNP is

covered by Mediterranean scrubland, and the other half by marshland. There is

a dune system in the southern part of the scrubland area. Track censuses were

restricted to the scrubland biotope.

Mediterranean scrubland is dominated by hygrophytic species consisting

of very dense clumps of heathers Erica sp. up to 3 m high (Erico scoparidae –

Ullicetum australis and Erico ciliaris – Ullicetum (minaris) lusitanici associations)

and xerophytic species of up to 1.5 m high mainly consisting of Halimium sp, and

other such as Cistus sp., gorses Ulex sp. and rosemary Rosmarinus officinalis,

(Halimio halimifolii – Stauracanthetum genistoidis association). More mature

shrubland areas with Pistacia lentiscus and Myrtus communis can be found mainly

in the north and in the valleys of the dune system. Interpested between purely

scrubland areas there are a few and small patches of Eucalyptus camaldulensis and

pine, Pinis pinea plantations. Most of the dune valleys are also colonized by pines

Pinus pinea.

Human access into the park is regulated, but some low impact traditional

usesaremaintainedundercontrolincludingcattle-raising,apiculture,andfishing

with traditional methods. The northern and western edges of the protected area are

Page 105: Tesis Carolina Soto Navarro - copia.pdf

104

Chapter 2Chapter 2

inclosecontactwithhumansettlements,cropfieldsandahighlyintensiveusepaved

road. There are two villages close to the edge of the park limits. Populations in the

main suburban settlement (situated in the western vicinity) vary greatly between

winter and summer, as this area is mainly a summer resort occupied by about

250.000 people during the summer seasons. The other village situated in the north

is occupied by about 1,635 year-round residents, although on holydays the numbers

of people increase considerably and during a spring pilgrimage may even reach up

to one million people. There are also private large and medium-sized farms used for

agriculture as well as six visitor centers, hiking and cycling paths, recreation zones

and bird observatories in the nearby area.

Sampling protocol

The study area was divided into 69 2 x 2 km quadrants following UTM

coordinates. Quadrants were sampled throughout the wet seasons, from November

2007 to May 2008 and from October 2008 to April 2009. In each quadrant, a 3 km-

length survey route was slowly walked searching for carnivore and prey tracks. The

surveyrouteswerelocatedalongfirebreaksandcarroadsbetween2and12mwide.

Once a continuous track that crossed from one side to the other across the pathway

was detected, we georeferenced it using a global positioning system. We resampled

21 squares over the two sampling periods a second time (leaving at least 7 days

betweensamplings)untilcompleting3km,ifduringthefirstsamplingtherewere

insufficientavailablepathswithinthesquaretoachievethisdistance.Thus,aswe

had more censuses than quadrants we averaged track counts to get a single value per

quadrant. We always carried out surveys at least 3 days after any rainfall.

Potential target prey species of the carnivores studied were also sampled

Page 106: Tesis Carolina Soto Navarro - copia.pdf

105

Chapter 2Chapter 2

by trackcensuses.Preys sampledwere smallmammals (mostly long-tailedfield

mouse (Apodemus sylvaticus) according to Kufner and Moreno 1989), European

rabbits (Oryctolagus cuniculus), red partridges (Alectoris rufa), domestic cows

(Bos Taurus) and horses (Equus caballus) and wild ungulates such as the fallow

deer (Dama dama), the red deer (Cervus elaphus) and the wild boar (Sus scrofa).

Wild and domestic ungulates are rarely prey of any of the carnivore species studied

here, but we sampled them since they may provide on occasions an important food

sourceascarrionforsomeofthem.Forthefirststudyyear,thepreycensuseswere

carried out at each quadrant at the same time as the carnivore censuses. For the

second study year, we concentrated prey sampling in a one-month period to avoid

particularly apparent inter-monthly variations in abundance for some species (i.e.,

small mammals and European rabbits) (Kufner 1986, Palomares et al. 2001). Thus,

we carried out the sampling of prey tracks in April (corresponding to the intra-

annual abundance peak in both species) along transects in every quadrant sampled

for carnivore tracks. As Kilometric Abundance Index (KAI) of prey calculated

for each quadrant was obtained from censuses carried out in different months,

we applied a correction in order to homogenize prey indexes for the two study

years relativizing the first year’s KilometricAbundance Indexes toApril using

the abundance trend curve of the species that likely exhibit higher inter-monthly

variation in their relative densities (rabbits and small mammals) throughout the year

(Moreno et al. 2007, Moreno and Kufner 1988, Villafuerte et al. 1993, Villafuerte

and Moreno 1997). These transects for prey species were located in the middle of

the same routes walked for carnivore tracks, were 25 m in length and approximately

1.7 m wide (i.e., the area of a four-wheel-drive car) and separated by at least 300 m..

Thus, between 7 and 10 prey censuses were carried out per quadrant.

Page 107: Tesis Carolina Soto Navarro - copia.pdf

106

Chapter 2Chapter 2

Vegetation characteristics of quadrants were also sampled in the same places

where we censused prey species. There, we visually estimated the cover of short

shrubs (species such as Halimium sp. and Cistus sp.), tall shrubs (species such as

Erica sp., Juniperus phoenica and Pistacia lentiscus) and trees in a circle of 25 m

diameter around the sampling point. In addition we also measured other variables

related to habitat structure: average tree height and average tall- and short-shrub

height.

Predictive variables

Fourteen variables were selected to study habitat selection patterns for each

species (Table 1; see next section for arguments on variable selection).

For each quadrant, we averaged the value obtained at the sampling points both for

prey and vegetation indexes. We then used an index (Kilometre Abundance Index

of tracks (KAI) and percentage of coverage) to categorize different prey abundance

and vegetation type coverage in each quadrant.

The distance to water, distance to La Vera and distance to the anthropic edge

(see Table 1) were calculated from digitized roads, urban settlements, and water

source cover layers in DNP using a Euclidean distance-based approach (Perkin and

Conner2004,BensonandChamberlain2007).Roads includedfirewalls andcar

roads inside DNP. Urban settlements included towns and villages surrounding the

NationalPark.Watersourcesincludednaturalandartificialponds(i.e.,dugforthe

cattleinzoneswerethewatertableishigher)permanentlyflooded.Trafficindex

per quadrantwas derived fromdata on a previous study on the effect of traffic

on biodiversity in DNP (Román et al. 2010). Ecotones between pastureland and

scrublandweredefinedusinga1:10000fine-scalevegetationmapfortheyears1996-

Page 108: Tesis Carolina Soto Navarro - copia.pdf

107

Chapter 2Chapter 2

Table 1. Explanatory variables used to model relative abundance of Egyptian mongoose, Eurasian badger, and red fox and the probability of Iberian lynx and common genet presence.

Variable Code Definition UnitsVegetation tall shrub %B Mean cover of bushes per quadrant %short shrub + tall shrub %SB Mean cover of short shrub and bushes per quadrant %

trees %T Mean cover of trees per quadrant %Landscape

edges between tall shrub and pastureland eBP

Linear measure of the density of the ecotones between patches with bush cover >50% and patches with pasture cover >50%

m/ha

distance to water DW Measured in meters from the quadrant centre to the nearestpermanentfloodednaturalorartificialpond m

distance to La Vera DVMeasured in meters from the quadrant centre to the ecotone between the marshland and the Mediterranean scrubland

m

Prey availability

rabbits Ra Kilometric Abundance Index of rabbits per quadrant calculated as the mean of censuses per quadrant Tracks/km

small mammals SMKilometric Abundance Index of small mammals per quadrant calculated as the mean of censuses per quadrant

Tracks/km

Total prey TotKilometric Abundance Index of rabbits + partridges + small mammals + ungulates per quadrant calculated as the mean of censuses per quadrant

Tracks/km

distance to antropic edge DH

Measured in meters from the quadrant centre to the nearest protected areaborder influencedbyhumans(iexcluding the beach and marshland edges)

m

Human disturbance

Trafficindex TMean daily traffic (MDT), adjusted for road length(m)andtypeofroad(i) inthequadrant(=∑(MDTi * mi))

car/m

Humidity Hum Environmental humidity on census day %Observer Obs Observer who carried out censuses no units

Page 109: Tesis Carolina Soto Navarro - copia.pdf

108

Chapter 2Chapter 2

2006 obtained from the Sistema de Información Ambiental de Andalucía for the

Doñanaarea.Wereclassifiedvegetationunitsorpolygonsbasedonfourvegetation

attributes of physiognomy, species composition and density of each vegetation layer

within the polygon: (1) trees (P. pinea, Quercus suber and Eucaliptus spp.); (2)

tall shrubs (subsequently referred to as bushes) of mature Mediterranean shrubland

(e.g., P. lentiscus, M. communis) and also tall, thicket Erica spp.; (3) short shrubs

(H. halimifolium, Ulex spp., Stauracanthus genistoides) and (4) pastures. The result

wasa reclassifiedvegetationdigitalmapwith316polygonsand fourvegetation

attributes per polygon. The projection for all GIS layers and data was UTM 30S,

datum European 1950 (ED50). Hawth’s tools and Geopreocessing extension in

ArcInfo 9.3 (ESRI, Redlands, California, USA) was used to calculate distance-

based variables, to identify ecotones, and to calculate their density (Table 1).

Statistical analysis

We based our analyses on information-theoretic methods guided by the

view that ecological inference can best be approached by weighing evidence for

multiple working hypotheses simultaneously (Hilborn and Mangel 1997, Burnham

and Anderson 1998, Johnson and Omland 2004). In essence, these methods consist

of identifying a priori the alternative hypotheses for habitat selection and their

mathematical formulation, and then testing their support by fitting the relevant

equations to species distribution data and examining penalized maximum-likelihood

estimates (e.g., Fernández et al. 2003, Johnson et al. 2004).

We first specified a set of 16 candidate models that could potentially

predict species habitat use and distribution in DNP, therefore restricting the model

selection process to a few meaningful combinations of predictors of the species. For

Page 110: Tesis Carolina Soto Navarro - copia.pdf

109

Chapter 2Chapter 2

selecting predictor variables and formulating the candidate models, we considered

fiveworkinghypothesesaddressingthecriticalpointsofthedifferentspecieslife-

history traits and requirements: (1) vegetation and landscape structure, (2) prey

availability, (3) human disturbance, (4) vegetation and landscape structure + prey

availabilityand(5)global.Wedesignedfine-scalehabitatmodelsconsideringprior

knowledge of species ecology. The Eurasian badger and the red fox are generalist of

habitat use and diet (Carvalho and Gomes 2001, Cavallini and Lovari 1991, Delibes-

Mateos et al. 2008, Kruuk and Parish 1985, Roper and Lups 1995, Balestrieri et al.

2004, Rosalino et al. 2005, Amores 1975) although a certain degree of local feeding

specialisation has been reported for several badger populations and for different

resources (Kruuk and Parish 1981, Martín et al. 1995) as well as negative responses

to certain types of landscape fragmentation patterns (Virgós 2002). The Egyptian

mongoose is a trophic generalist (Zapata et al. 2007, Palomares and Delibes 1991),

but habitat specialists in Mediterranean areas (Palomares 1985, Palomares and

Delibes 1993). Mongooses actively avoid open areas and select those with dense

vegetation (bushes) for foraging and resting (Palomares and Delibes 1993). The

Iberian lynx is the most specialised in terms of habitat use and trophic niche of this

carnivore guild (Palomares et al. 1991, Ferreras et al. 1997, Delibes et al. 2000,

Palomares et al. 2001). Lynxes feed almost exclusively upon European wild rabbits

(Oryctolagus cuniculus) and need shrub vegetation patches to rest and breed.

Habitats sustaining stable lynx populations should ideally include 40% cover of

understorey vegetation half of which should be bushes (Palomares 2001, Delibes et

al. 2000). Moreover, the density of ecotones between shrubland and pastureland is

also a robust predictor of territory occurrence (Fernández et al. 2006, Fernández et al.

2007). Finally, the common genet is considered to be intermediate, falling between

Page 111: Tesis Carolina Soto Navarro - copia.pdf

110

Chapter 2Chapter 2

a typical generalist and a typical specialist species (Virgós et al. 1999). Genets need

bushes and hollow trees as sites for nocturnal and diurnal resting and feed mainly on

smallmammalssuchasthelong-tailedfieldmouse(Apodemus sylvaticus) (Delibes

1974, Palomares 1986, Palomares and Delibes 1988, Palomares and Delibes

1991). We also hypothesized that distance to permanent water resources may be an

important factor for all species particularly during the hottest months when many

surface water sources dry out. Additionally, proximity to humans and infrastructure

derivedfromtheiractivityaswellas traffic index inside theprotectedareamay

be detrimental to all the species because they produce higher mortality, degrade

the original Mediterranean ecosystems and involve a higher risk of predation or

competition with non-native carnivores (i.e., domestic dogs).

Highly correlated predictors (r > 0.6) were never included in the same

model.Inaddition,wefittedanintercept-onlyequationinordertotestimprovement

over the null model of no effect. Fitted models were compared using the Akaike

Information Criterion (AICc) and model weights (Burnham and Anderson 2002).

We ranked models by their AICc values and determined the model averaged

parameter estimates (Burham and Anderson 2002). The relative variable importance

of predictor variable j (wj) was determined as the sum of the wi across all models

where j occurs. Larger wj values indicate a higher relative importance of variable j

compared to other variables (Burnham and Anderson 2002).

Candidate model equations were fitted using Generalized Linear Mixed

Models (GLMM) in SAS 9.2 with logit-link and binomial (for lynxes and genets) or

negative binomial (for badgers, mongooses and foxes) error structure (McCullagh

and Nelder 1989). Observer and quadrant were modelled as random effects,

humidity as an additional explanatory variable (Soto et al. 2012), and the distance

Page 112: Tesis Carolina Soto Navarro - copia.pdf

111

Chapter 2Chapter 2

covered per quadrant during track censuses as an offset in all the models.

Additionally, although we selected 4 km2 grids for sampling in order to

diminish the possibility of the same individuals being sampled in neighbouring

grids (several of carnivore species sampled may have home ranges of this size;

Palomares 1994, Palomares and Delibes 1994), track counts at neighbouring

grids can be expected to show spatial autocorrelation. Therefore, we checked for

autocorrelation in our data through inspection of semi-variograms and Moran’s

I correlograms of non-spatial negative binomial and logistic generalised model

residuals. We performed analyses using an autocovariate (AC) method in the

GLIMMIX procedure (SAS 9.2, Littell et al. 1996) when spatial autocorrelation

in non-spatial generalised model residuals was detected (Hosmer and Lemeshow

2000).Theautocovariatemethodaccountsforfine-scalespatialvariationinthedata

byestimatinghowmuchtheresponseateachlocationreflectsresponsevaluesat

surrounding locations (Dormann 2007). This extra parameter is intended to capture

spatial autocorrelation originating from endogenous processes such as movement

of censused individuals between sampling sites (Smith 1994, Keitt et al. 2002,

Yamaguchi et al. 2003). For every quadrant in our study area, we calculated the

autocovariate in ArcGIS 9.3 (ESRI, Redlands, CA, USA) as:

where yj is the number of tracks at quadrant j and wj is the inverse Euclidean distance

between locations i and j. Hence, an autocovariate at location i is defined as a

weighted sum of observation records y at locations j in a neighbourhood determined

by Ni (Miller et al. 2007). The neighbourhood size may be informed by biological

Page 113: Tesis Carolina Soto Navarro - copia.pdf

112

Chapter 2Chapter 2

parameters, such as the species’ dispersal capacity (Knapp et al. 2003) if the cause

of spatial autocorrelation is known (or at least suspected). We hypothesised that

autocorrelation in our data may partially originated from movement of censused

individuals between sampling sites so we set the neighbourhood size to two quadrants

from each quadrant border to capture the average home range for all species. We

incorporated each autocovariate as an additional explanatory variable in the GLMM

models to account for the variation explained by space while maintaining the same

variable selection procedures as for spatially invariant models. Finally, we tested

autocovariate models for autocorrelation in the Pearson residuals, using Moran’s

I correlograms and semivariograms of the most parsimonious model. We used

variogram procedure in SAS 9.2 to conduct these tests.

To separate the ecological space filled by each species within an

n-dimensional hypervolume representing environmental variability at DNP, we

used an ordination method called the outlying mean index analysis (OMI) (Dolédec

et al. 2000). This method measures the marginality of a species’ habitat distribution

(niche position), i.e., the distance between the mean habitat conditions used by a

species (species centroid) and the mean habitat conditions across the study area

(origin of the niche hyperspace) as well as the species tolerance (niche breadth), i.e.,

the amplitude in the distribution of each species along the sampled environmental

gradients (Hurlbert 1978). The OMI index measures the niche position of each

species. Species with high values of OMI have marginal niches and are assumed

to be influenced by a subset of themeasured environmental variables (occur in

atypical habitats in a region), and those with low values have non-marginal niches

andindicatenospecificresponseofaspeciestotheenvironmentalvariables(occur

in typical habitats in a region); such species tend to be more common throughout

Page 114: Tesis Carolina Soto Navarro - copia.pdf

113

Chapter 2Chapter 2

the study area. The niche breadth or species tolerance is measured by an additional

variance term provided by this method. Low values of species tolerance mean that

a species is distributed across habitats with a limited range of conditions (specialist

species), while high values imply that a species is distributed across habitats with

widely varying environmental conditions (generalist species). Residual tolerance is

the variation in species occurrence not accounted for by the main gradient. Outlying

mean index is robust to unimodal, linear, or a mixture of species response curves and

is not biased against species-poor or low-abundance sites on the synthetic gradient.

Its interpretations are also robust to multicollinearity among the explanatory

variables (Dolédec et al. 2000). Wedeterminedsignificanceoftheoutlyingmean

index analysis at α=0.05basedupon aMonteCarlo simulation (Metropolis and

Ulam 1949), in which observed marginalities were statistically compared to 10,000

random permutation values of species marginalities or the null hypothesis that

species are distributed equivalently in relation to the environmental variables. The

OMI analysis was performed with the ADE4 library (Thioulouse et al. 1997) in the

‘R’ Software (R Development Core Team 2005).

RESULTS

We surveyed 471 km and 8,373 carnivore tracks were found, with foxes,

badgers and mongooses being the most frequent species (Fig. 2, Table 2). For prey,

5,000 tracks were detected on 11.6 km sampled. The most common prey species

were wild ungulates and rabbits (Table 2). The variables Ra and Tot were correlated

(r = 0.669, P < 0.001).

Based on the p-value of Moran’s I (P>0.05) and the semivariograms of

residuals, habitat use models for badgers, mongooses and foxes showed spatial

Page 115: Tesis Carolina Soto Navarro - copia.pdf

114

Chapter 2Chapter 2

Figure 2. Mapsofscaledabundances(0-1)(tracks/km)perquadrantofthefivecarnivorespecies for both study years in DNP. (a) Genetta genetta; (b) Lynx pardinus; (c) Herpestes icheumon; (d) Meles meles and (d) Vulpes vulpes.

Page 116: Tesis Carolina Soto Navarro - copia.pdf

115

Chapter 2Chapter 2

autocorrelation while it this was not detected for lynxes and genets. We therefore

fitted spatial negativebinomial generalisedmodels (i.e., using an autocovariate)

for badgers, mongooses and foxes and non-spatial logistic generalised models for

lynxes and genets.

Thebestapproximatingmodels(∆AICc<2)formongooses,badgersand

foxes belonged to the set of candidates designed with the hypothesis of vegetation

and landscape structure + prey availability as well as with the hypothesis of prey

availability (Table 3). For mongooses, top models included as predictors of their

relative abundance DV, DW, Tot, Ra, %SB, %B and eBP. Variables DW and DV had

the highest weights and were positively associated with the number of mongoose

tracks (Table 5). Variables Tot and %B were also positive and had relatively high

weights (wj > 0.4) (Table 5). For badgers, models included as predictors Ra, SM,

%SB, %B, %T, DW, V and eBP. All of these predictors were positive except for the

distance to La Vera. Ra was the variable with the highest weight (wj = 0.577) (Table

5) and was positively associated with the number of badger tracks. For the red fox

only one model was supported by data (Table 3). This model included as predictors

%B, %T, DW and SM and were all positively associated with the number of fox

tracks. Only two variables showed high weights; %B (wj = 0.809) and DW (wj =

0.871) (Table 5).

The best approximating models for lynxes and genets belonged to the set

of candidates designed with the hypothesis of vegetation and landscape structure,

vegetation and landscape structure + prey availability as well as with the global

hypothesis (Table 4). For genets, top models included as predictors %B, %T, DW,

SM, DH and T. Four variables included in top models (%B, %T, DW and SM) had

high weights (> 0.812; Table 5). %B, %T and SM were positively associated with the

Page 117: Tesis Carolina Soto Navarro - copia.pdf

116

Chapter 2Chapter 2

Posi

tive

quad

rant

sN

º tra

cks (

%)

KA

IAv

erag

eR

ange

Aver

age

Ran

geSp

ecie

#1st

2nd

1st

2nd

1st

1st

2nd

2nd

Lynx

par

dinu

s17

1774

(1.1

)73

(1.7

)0.

3±0.

90.

0-5.

40.

3 ±0

.90.

0-5.

0Vu

lpes

vul

pes

6961

4368

(65.

9)27

73 (6

4.3)

17.2

±9.1

2.4-

42.1

13.1

±10.

21.

6-77

.4H

erpe

stes

ichn

eum

on61

5099

6 (1

5.0)

617

(14.

3)3.

9±4.

60.

0-21

.23.

1±3.

70.

0-17

.2M

eles

mel

es55

5378

6 (1

1.8)

665

(15.

4)2.

6±3.

70.

0-19

.53.

3±3.

40.

0-17

.3G

enet

ta g

enet

ta29

2228

0 (4

.2)

83 (1

.9)

1.2±

2.5

0.0-

15.9

0.4±

0.8

0.0-

3.1

Felis

sp.ǂ

1221

48 (0

.7)

35 (0

.8)

0.1±

0.5

0.0-

3.9

0.2±

0.3

0.0-

1.4

Can

is fa

mili

aris

1512

38 (0

.6)

29 (0

.7)

0.2±

0.8

0.0-

5.9

0.2±

0.5

0.0-

3.4

Lutr

a lu

tra

1414

49 (0

.7)

37 (0

.9)

0.2±

0.7

0.0-

3.8

0.2±

0.4

0.0-

2.2

TOTA

L69

6566

3943

123.

2±5.

80.

0-42

.12.

6±4.

450.

0-77

.4O

ryct

olag

us c

unic

ulus

6965

3942

(43.

2)21

32 (4

2.6)

58.0

±59.

50-

1.1

32.8

±44.

60.

007-

1Sm

all m

amm

als*

4952

454

(5.0

)23

3 (4

.7)

6.7±

.40-

0.2

3.6±

.00-

0.1

Alec

tori

s ruf

a43

4484

8 (9

.3)

260

(5.2

)12

.5±2

1.6

0-0.

34.

0±.7

0-0.

07D

omes

tic u

ngul

ates

**21

2716

8 (1

.8)

210

(4.2

)2.

5±.2

0-0.

093.

2±.3

0-0.

1W

ild u

ngul

ates

***

6965

3720

(40.

7)21

65 (4

3.3)

54.7

±42.

60.

02-0

.633

.3±2

3.2

0.02

–0.4

TOTA

L69

6591

3250

0026

.9±2

7.9

0-1.

115

.4±1

7.0

0-1

*Elio

mys

que

rcin

us, A

rvic

ola

sapi

dus,

Rattu

s rat

tus,

Apod

emus

sylv

atic

us, M

us sp

p.

**Bo

s Tau

rus,

Equu

s cab

allu

s**

*Dam

a da

ma,

Cer

vus e

laph

usǂN

odistinctionbetweentrackso

fFel

is si

lves

tris

and

Fel

is c

atus

.#

Stud

y ye

ar (1

st (2

008-

2009

); 2n

d (2

009-

2010

))

Tabl

e 2.

Num

ber o

f pos

itive

2x2

km

qua

dran

ts (f

or 6

9 an

d 65

sam

pled

in e

ach

year

), to

tal t

rack

s fo

und

(Nº t

rack

s) a

nd p

erce

ntag

e re

gard

ing

tota

l tra

cks

foun

d (%

), an

d nu

mbe

r of t

rack

s pe

r km

(KAI

) for

eac

h ca

rniv

ore

and

thei

r pot

entia

l pre

y sp

ecie

s ce

nsus

ed in

Doñ

ana

Nat

iona

l Par

k du

ring

the

wet

seas

on fo

r eve

ry st

udy

year

.

Page 118: Tesis Carolina Soto Navarro - copia.pdf

117

Chapter 2Chapter 2

presence of genet tracks while DW was negatively associated. Finally, for lynxes

top models included as predictors %SB, %B, DW, eBP, V and Ra. Variables included

in the best models showed high weights (wj>0.8) (Table 5). %SB, %B, DW, eBP

and Ra were positively associated with the presence of lynx tracks while DV was

negatively associated.

Toillustratenicheseparationbetweenspecies,weusedthefirst twoaxes

of the outlying mean index analysis, which accounted for 99.95% of the total

explained environmental variability (Table 1, supplementary information). The

overall outlying mean index analysis (i.e. sensitivity of carnivores to environmental

variables)wassignificant(P < 0.0001).

ThepositionofthespeciesalongthefirsttwoOMIaxesispresentedinFig.

3. Genets and lynxes were clearly separated from mongooses, badgers and foxes.

Figure 3. OMI analysis.Ecological position of thefive carnivore species in the n-dimensionalhypervolumerepresentingfine-scaleenvironmentalvariabilityinDNP.(a)Lynx pardinus, (b) Genetta genetta, (c) Herpestes ichneumon, (d) Meles meles and (d) Vulpes vulpes.

Page 119: Tesis Carolina Soto Navarro - copia.pdf

118

Chapter 2Chapter 2

Tabl

e 3.

Sum

mar

y of

spa

tial n

egat

ive

bino

mia

l pre

dict

ive

mod

els

for

Egyp

tian

mon

goos

e, E

uras

ian

badg

er a

nd r

ed f

ox a

bund

ance

and

mod

el

sele

ctio

n es

timat

ors;

-2 lo

g(L)

=-2 log-likelihoodestim

ates;A

ICc=secondorderAkaike’sInformationCriterion;∆i=(A

ICc)i-(A

ICc)min;A

kaike

Wi=Akaikeweights.Topmodels(∆A

ICc≤2)aresh

owninbold.

Her

pest

es ic

hneu

mon

Mel

es m

eles

Vulp

es v

ulpe

sM

odel

ǂA

ICc

∆iW

iR

anki

ngA

ICc

∆iW

iR

anki

ngA

ICc

∆iW

iR

anki

ng

Nul

l mod

el

1

. Int

erce

pt o

nly

918.

5265

.55

0.00

1791

0.64

51.6

70.

0017

1277

.53

60.4

70.

0017

Vege

tatio

n an

d la

ndsc

ape

stru

ctur

e

2

. %SB

, %B,

DW

, eBP

, DV

880.

3527

.38

0.00

1488

5.97

27.0

00.

0011

1252

.19

35.1

30.

0013

3

. %B,

%T,

DW

884.

5431

.57

0.00

1588

6.03

27.0

60.

0012

1248

.20

31.1

40.

0011

4

. %SB

, %B,

DW

, DV

878.

3425

.37

0.00

1288

8.92

29.9

50.

0013

1250

.28

33.2

20.

0012

5

. DW

, DV

875.

0322

.06

0.00

1189

0.03

31.0

60.

0015

1252

.62

35.5

60.

0014

Prey

ava

ilabi

lity

6

. Ra

858.

835.

860.

035

858.

970.

000.

331

1221

.22

4.16

0.05

6

7

. SM

859.

796.

820.

028

861.

612.

640.

095

1221

.77

4.71

0.04

8

8

. Tot

862.

919.

940.

009

861.

132.

160.

114

1222

.05

4.99

0.03

9

Hum

an d

istu

rban

ce

9

. DH

, T88

5.97

33.0

00.

0016

889.

9430

.97

0.00

1412

53.6

936

.63

0.00

16

Page 120: Tesis Carolina Soto Navarro - copia.pdf

119

Chapter 2Chapter 2

Vege

tatio

n an

d la

ndsc

ape

stru

ctur

e +

prey

ava

ilabi

lity

1

0. %

SB, %

B, D

W, e

BP, D

V, R

a85

4.30

1.33

0.25

285

9.94

0.97

0.21

212

20.9

23.

860.

064

1

1. %

B, %

T, D

W, S

M85

8.92

5.95

0.02

686

0.64

1.67

0.14

312

17.0

60.

000.

421

1

2. %

SB, %

B, D

W, D

V, T

ot85

5.37

2.40

0.14

386

3.36

4.39

0.04

712

19.1

12.

050.

152

1

3. D

W, D

V, T

ot85

2.97

0.00

0.48

186

5.11

6.14

0.02

912

20.9

23.

860.

065

Glo

bal m

odel

s

1

4. %

SB, %

B, D

W, eB

P, DV

, Ra,

DH, T

857.

584.

610.

054

863.

314.

340.

046

1223

.07

6.01

0.02

10

1

5. %

B, %

T, D

W, S

M, D

H, T

863.

7810

.81

0.00

1086

4.74

5.77

0.02

812

21.3

94.

330.

057

1

6. %

SB, %

B, D

W, D

V, To

t, DH

, T85

9.56

6.59

0.02

786

7.54

8.57

0.00

1012

19.9

22.

860.

103

1

7. D

W, D

V, T

ot, D

H, T

879.

2826

.31

0.00

1389

4.15

35.1

80.

0016

1253

.63

36.5

70.

0015

ǂSeeTable1form

odeldefinitions

Page 121: Tesis Carolina Soto Navarro - copia.pdf

120

Chapter 2Chapter 2

Genets and lynxes had the highest marginality values and the lowest tolerance

to average habitat conditions of the synthetic gradients (Table 2, supplementary

information). Badgers and foxes had the lowest marginality and the highest

Table 4. Summary of non-spatial logistic predictive models for common genet and Iberian lynx occurrence, and model selection estimators; -2 log(L)=-2 log-likelihood estimates; AICc = second orderAkaike’sInformationCriterion;∆i = (AICc)i - (AICc)min; Akaike Wi = Akaike weights. Top models(∆AICc≤2)areshowninbold.

Genetta genetta Lynx pardinus

Modelǂ AICc ∆i Wi Rank AICc ∆i Wi Rank

Null model 1. Intercept only 175.23 18.59 0.00 17 151.89 44.15 0.00 15Vegetation and landscape structure 2. %SB, %B, DW, eBP, V 168.97 12.33 0.00 12 107.74 0.00 0.52 1 3. %B, %T, DW 163.47 6.83 0.02 8 141.70 33.96 0.00 10 4. %SB, %B, DW, V 170.63 13.99 0.00 13 121.26 13.52 0.00 5 5. DW, V 172.75 16.11 0.00 14 125.16 17.42 0.00 9Prey availability 6. Ra 173.89 17.25 0.00 16 151.71 43.97 0.00 14 7. SM 173.62 16.98 0.00 15 152.87 45.13 0.00 16 8. Tot 163.08 6.44 0.02 7 148.24 40.50 0.00 13Human pressure 9. DH, T 166.58 9.94 0.00 11 155.17 47.43 0.00 17

Vegetation and landscape structure + prey availability

10. %SB, %B, DW, eBP, V, Ra 164.69 8.05 0.01 9 109.53 1.79 0.21 2 11. %B, %T, DW, SM 157.25 0.61 0.34 2 142.21 34.47 0.00 11 12. %SB, %B, DW, V, Tot 162.11 5.47 0.03 4 122.23 14.49 0.00 6 13. DW, V, Tot 162.67 6.03 0.02 6 110.99 3.25 0.10 4

Global models 14. %SB, %B, DW, eBP, V, Ra, DH, T 162.32 5.68 0.03 5 110.02 2.28 0.17 3

15. %B, %T, DW, SM, DH, T 156.64 0.00 0.47 1 146.19 38.45 0.00 12

16. %SB, %B, DW, V, Tot, DH, T 161.11 4.47 0.05 3 122.93 15.19 0.00 8

17. DW, V, Tot, DH, T 164.91 8.27 0.01 10 122.72 14.98 0.00 7

ǂSeeTable1formodeldefinitions

Page 122: Tesis Carolina Soto Navarro - copia.pdf

121

Chapter 2Chapter 2

tolerance values whereas mongooses exhibited relatively low marginality and high

tolerance.Although theoverall responseofmongooseswasnonsignificant their

marginality and tolerance levels was between that of genets/lynxes and badgers/

foxes as predicted.

Ordination diagrams on the first two axes of the OMI describe the

environmentalgradientsthatbestdiscriminatedtheoccurrencesofthefivecarnivore

speciesinDNP(Fig.1,supplementaryinformation).ThefirstOMIaxiswasmost

influenced by prey availability and shrub cover far from human nuclei and the

proportion of tall shrubs and trees at the opposing end of the gradient. The second

OMIaxiswasmostinfluencedbydistancetothemainecotonebetweenmarshland

and scrubland (La Vera) and prey availability and percentage of ecotones between

pastureland and scrubland at the opposite end of the gradient (Table 2, supplementary

information). The presence of genet tracks was negatively associated with axis 1

(Fig. 3), and thus was positively related to patches distant from human nuclei and

with high tree and tall shrub coverage. Lynxes were positively associated with axis

1 and negatively with axis 2 and thus positively related to patches with high prey

availability (mainly rabbits) close to La Vera. Conversely, mongooses, badgers and

foxes were more likely to be found across a wide range of habitat types with varying

environmental conditions.

DISCUSSION

Heterogeneous landscapes offer many choices in habitat selection (i.e.

different axes over which species can differ), thus broadening opportunities for

coexistence. However, in quite homogeneous landscapes where a general habitat

type dominates, the distribution of the resources available for species is limited, and

Page 123: Tesis Carolina Soto Navarro - copia.pdf

122

Chapter 2Chapter 2

Tabl

e 5.

Var

iabl

e w

eigh

t (w

j),averagem

odelcoefficient(β)withaveragestandarderror(S

E(β))forvariablesin

cludedin

topmodels.

Varia

bles

are

des

crib

ed in

Tab

le 1

.

Her

pest

es

ichn

eum

onM

eles

mel

esVu

lpes

vul

pes

Gen

etta

gen

etta

Lynx

par

dinu

s

Vari

able

SE(β

)w

SE(β

)w

SE(β

)w

SE(β

)w

SE(β

)w

j

%B

0.17

0.12

0.48

0.33

0.26

0.45

0.35

0.25

0.81

0.10

0.06

0.95

0.32

0.12

0.90

%SB

-0.2

70.

240.

440.

140.

100.

291.

691.

20.

90

%T

0.05

0.01

0.83

eBP

-0.1

00.

080.

290.

420.

140.

241.

850.

690.

90

DW

0.08

0.04

0.96

0.25

0.19

0.46

0.29

0.22

0.87

-0.1

20.

070.

980.

480.

371.

00

V0.

610.

220.

93-0

.01

0.00

0.26

-2.5

60.

701.

00

Ra0.

160.

070.

320.

050.

030.

580.

020.

000.

38

SM0.

020.

000.

250.

000.

010.

510.

600.

180.

47

Tot

0.21

0.17

0.64

DH

0.01

0.04

0.56

T0.

010.

010.

210.

000.

000.

47-0

.16

0.14

0.56

HU

M0.

020.

011.

000.

020.

011.

000.

010.

021.

000.

020.

021.

000.

020.

021.

00

auto

cov

8.08

2.96

1.00

9.71

3.27

1.00

1.91

0.00

1.00

Page 124: Tesis Carolina Soto Navarro - copia.pdf

123

Chapter 2Chapter 2

opportunities for coexistence are likely to be the most restrictive. Hence, subtle

patterns of habitat partitioning as well as coexistence between species with different

degree of specialisation may promote ecological separation and therefore sympatry

under this scenario. A parsimony-based strategy for confronting different model

hypotheses allowed us to assess fine-scale landscape attributes linked to five

carnivore species in a protected area where species coexist in a largely similar

habitat type, the Mediterranean scrubland. These species exhibited spatial storage

or separate niches along a gradient of environmental variability according to their

degrees of specialization.

On the basis on OMI analysis, lynxes and genets are marked specialists and

showed the narrowest and most marginal niches throughout DNP’s environmental

conditions (Fig. 3). Additionally, lynxes and genets showed niche segregation

as a result of their differences in ecological preferences (Table 2 supplementary

information), which is supported by the fine-scale habitat use results. Results

of fine-scale habitat usemodels for lynxes and genetswere probably related to

the availability of prime resources for both species such as refuges and prey.

Lynxes and genets showed the most restricted habitat use pattern depending on

vegetation, landscape, prey and human-related variables. Lynxes were associated

with zones of high density of bushes likely representing areas of late-successional

Mediterranean communities, an uncommonm microhabitat in the area due to the

human transformation of the autochthonous vegetation (García-Novo and Martín-

Cabrera 2005). The density of ecotones between bushes and pastureland, which in

turn favour abundance of the main prey of lynx, the European rabbit (Fernández

et al. 2006, Fernández et al. 2007), was also a robust predictor of the presence of

lynx tracks, as well as the distance to the ecotone band between the Mediterranean

Page 125: Tesis Carolina Soto Navarro - copia.pdf

124

Chapter 2Chapter 2

scrubland La Vera, where refuge and grass availability favour a high rabbit density

in Doñana (Villafuerte and Moreno 1997, Fernández and Palomares 2000). As

expected, genets showed association to areas with high small mammal abundance

(acommunitymostlycomposedoflong-tailedfieldmouse),importantpreyitems

for the species in Mediterranean areas (Palomares and Delibes 1991), as well as

preference for pine forest areas with undergrowth bushes. These results agree with

previousfindingsfortheradio-trackedpopulationoftheIberianlynx(Palomareset

al. 2000, Palomares 2001, Fernández et al. 2003) and the common genet (Palomares

and Delibes 1988, 1991, 1994, Palomares et al. 1996) in the protected area. The low

abundance and the spatially structured distribution of both species in DNP (Fig.

2) could therefore be explained by the fact that genets and lynxes may be limited

in their home ranges to areas of simultaneous convergence of high small mammal

or rabbit availability as well as a high percentage of tall shrub cover and overall

understorey or a high percentage of tree cover, respectively.

Foxes andbadgers showedanon-specifichabitat usepattern and awide

distribution across the environmental conditions sampled in our study area as

shownbythelowweightsofpredictorinthefine-scalehabitatmodels(Table5)

and the OMI analysis results (Fig. 3) suggested. Rabbits, as well as bush density

and distance to water sources, were the most important predictors associated with

numbers of badger and red fox tracks, respectively. Badgers are trophic generalists

but in Mediterranean areas rabbits may constitute an important prey for the species

(Revilla and Palomares 2002). Foxes exhibited higher relative abundances in areas

with dense bush cover, a microhabitat that could potentially offer higher protection.

Mongooses were positively associated with dense bush cover and high

availability of different prey items as a whole (i.e., rabbits, small mammals and

Page 126: Tesis Carolina Soto Navarro - copia.pdf

125

Chapter 2Chapter 2

partridges) as well as with high availability of rabbits. It could be explained by the

fact that in spite of the trophic generalism of the species (Santos et al. 2007), wild

rabbits constitute an important prey item for the species in Mediterranean areas

(Palomares and Delibes 1991).

Foxes, badgers and mongooses overlapped in niche position, but foxes

and badgers had broader niches than mongooses (Fig. 3, Table 1 supplementary

information). In fact, mongooses exhibited and intermediate niche position and

niche breadth between that of genets/lynxes and that of badgers/foxes (Table 2,

supplementary information). These results suggest that mongooses exhibited certain

degree of habitat specialization.

The wider spatial niches exhibited by mongooses, foxes and badgers may

bearesponsetofluctuationsinresourceavailabilitycharacteristicofMediterranean

environments. Mediterraneity (Virgós and Casanovas 1999) may result in an

opportunistic behaviour in food gathering and habitat use broadening realized niches

of species and allowing coexistence between species with similar requirements by

switching to other temporarily available resources.

In summary, sympatry of carnivore species in DNP appears to be mediated by

fine-scalehabitatselectiononlyforthemostspecialistspecies(lynxesandgenets).

Badgers and foxes meanwhile did not show any clear pattern of specialization at

afinescaleasexpectedduetotheirhighlevelsofhabitatandtrophicgeneralism.

Although mongooses were more specialised in habitat selection than badgers and

foxes, for areas such as that studied here the three species can coexist with no

apparent differences in habitat use and/or realized niche segregation. Differences in

activity patterns of these three species might help to explain the coexistence among

them. Mongooses are almost exclusively diurnal in the study area (Palomares and

Page 127: Tesis Carolina Soto Navarro - copia.pdf

126

Chapter 2Chapter 2

Delibes 1993) while badgers are exclusively nocturnal (Revilla and Palomares

2002) and foxes nocturnal and crepuscular. Therefore, the carnivore community

structureinDNPseemsnottobedefinedonlybyhabitatusepartitioning.

Interspecific interactions among predators are another aspect that should

be explored and can also greatly shape the community structure. Mongooses, for

example, were strongly negatively associated with distance to La Vera, which might

be related with the high use that lynxes made of this area (Palomares et al. 1991,

Viota et al. 2012).

Underalandscapeanalysisschemethatwehavedefinedascoarse-scaled,

where Mediterranean shrubland can be considered as a homogeneous landscape,

we have been able to detect differences in suitability for carnivores in DNP after

examining fine scale habitat variables.Differences in fine-scale habitat use and

ecological separation through segregation along the ecological niche dimensions

have been shown as key mechanisms for some species allowing coexistence. Hence,

the study of spatial heterogeneity at small scales particularly in largely homogeneous

areas is essential to understanding the community structure of coexisting similar

species. To manage conservation areas that protect coexisting carnivore species,

wemustunderstandspecies-specifichabitatusepatternsandevaluatetherolethat

competitors play in determining these patterns.

ACKNOWLEDGEMENTS

This research was funded by the projects CGL2004-00346/BOS (Spanish Ministry of

Education and Science) and 17/2005 (Spanish Ministry of the Environment; National Parks Research

Program). Land-Rover España lent us two vehicles for this work. We are very grateful especially to J.C.

RivillaandS.DesniçaforassistanceduringfieldworkandtoM.Gonzálezforhervaluablesuggestions

on earlier versions of the manuscript. C. Soto was also supported by a JAE-Predoc grant from the CSIC.

Page 128: Tesis Carolina Soto Navarro - copia.pdf

127

Chapter 2Chapter 2

REFERENCES

Amores F (1975) Diet of the red fox (Vulpes vulpes) in the western Sierra Morena (south Spain).

Doñana Acta vert 2 (2):221-239.

Balestrieri A, Remonti L, Prigioni C (2004) Diet of the Eurasian badger (Meles meles) in an

agricultural riverine habitat (NW Italy). Hystrix 15 (2):3-12.

Benson JF, Chamberlain MJ (2007) Space use and habitat selection by female Louisiana black

bears in the Tensas River Basin of Louisiana. Journal of Wildlife Management 71

(1):117-126.

Brown WL, Wilson EO (1956) Character displacement. Systematic Zoology 5 (2):49-64.

Burnham KP, David R Anderson (1998) Model Selection and Inference: A Practical Information-

Theoretical Approach. New York: Springer-Verlag.

Burnham KP, David R Anderson (2002) Model Selection and Multimodel Inference: A Practical

Information-TheoreticalApproach. 2d ed. New York: Springer-Verlag.

CavalliniP,LovariS(1991)Environmental-FactorsInfluencingtheuseofHabitatintheredfox,

Vulpes vulpes. J Zool 223:323-339.

Carvalho JC, Gomes P (2001) Food habits and trophic niche overlap of the red fox, European wild

cat and common genet in the Peneda-Geres National Park. Galemys, 13 (2): 39-48.

Chesson P (2000) General theory of competitive coexistence in spatially-varying environments.

Theor Popul Biol 58 (3):211-237.

Delibes M (1974) Sobre la alimentación y biología de la gineta (Genetta genetta, L.) en España.

Doñana Acta Vertebrata, 1 (1): 143-199.

Delibes M, Rodríguez A, Ferreras P (2000) Action plan for the conservation of the Iberian lynx in

Europe (Lynx pardinus). Council of Europe Publishing, Strasbourg.

Delibes-Mateos M, de Simon JF, Villafuerte R, Ferreras P (2008) Feeding responses of the red fox

(Vulpes vulpes) to different wild rabbit (Oryctolagus cuniculus) densities: a regional

approach. Eur J Wildl Res 54 (1):71-78.

Doledec S, Chessel D, Gimaret-Carpentier C (2000) Niche separation in community analysis: A

new method. Ecology 81 (10):2914-2927.

Dormann CF, McPherson JM, Araujo MB, Bivand R, Bolliger J, Carl G, Davies RG, Hirzel A,

Jetz W, Kissling WD, Kuhn I, Ohlemuller R, Peres-Neto PR, Reineking B, Schroder B,

Page 129: Tesis Carolina Soto Navarro - copia.pdf

128

Chapter 2Chapter 2

Schurr FM, Wilson R (2007) Methods to account for spatial autocorrelation in the analysis

of species distributional data: a review. Ecography 30 (5):609-628.

Fernández N, Delibes M, Palomares F, Mladenoff DJ (2003) Identifying breeding habitat for the

Iberianlynx:Inferencesfromafine-scalespatialanalysis.EcolAppl13(5):1310-1324.

Fernández N, Delibes M, Palomares F (2007) Habitat-related heterogeneity in breeding in a

metapopulation of the Iberian lynx. Ecography 30: 431-439.

Fernández N, Delibes M, Palomares F (2006) Landscape evaluation in conservation: molecular

sampling and habitat modeling for the Iberian lynx. Ecological applications 16: 1037-1049.

Fernández N, Palomares F (2000) The selection of breeding dens by the endangered Iberian lynx

(Lynx pardinus): implications for its conservation. Biological Conservation 94 (1):51-61.

Ferreras P, Beltran JF, Aldama JJ, Delibes M (1997) Spatial organization and land tenure system of

the endangered Iberian lynx (Lynx pardinus). J Zool 243:163- 189.

Hardin G (1960) Competitive exclusion principle. Science 131 (3409):1292-1297.

García-novo, F. y C. Martín-Cabrera -2005- Doñana: Agua y Biosfera. Doñana 2005, Confederación

hidrográficadelGuadalquivir,MinisteriodeMedioAmbiente.Madrid.

Gause, G.F. (1934). The struggle for existence. Baltimore, MD: Williams & Wilkins.

Hilborn R, Mangel M (1997) The ecological detective. Confronting models with data. Monographs

in Population Biology 28: I-XVII, 1-315.

Hosmer, D.W., Lemeshow, S., 2000. Applied Logistic Regression.Wiley, NewYork.

Hurlbert SH (1978) Measurement of niche overlap and some relatives. Ecology 59 (1):67-77.

Hutchinson GE (1959) Homage to Santa-Rosalia or why are there so many kinds of animals. Am

Nat 93 (870):145-159.

Johnson CJ, Seip DR, Boyce MS (2004) A quantitative approach to conservation planning: using

resource selection functions to map the distribution of mountain caribou at multiple spatial

scales. Journal of Applied Ecology 41 (2):238-251.

Johnson JB, Omland KS (2004) Model selection in ecology and evolution. Trends Ecol Evol 19

(2):101-108.

Keitt TH, Bjornstad ON, Dixon PM, Citron-Pousty S (2002) Accounting for spatial pattern when

modeling organism-environment interactions. Ecography 25 (5):616-625.

Knapp RA, Matthews KR, Preisler HK, Jellison R (2003) Developing probabilistic models to

Page 130: Tesis Carolina Soto Navarro - copia.pdf

129

Chapter 2Chapter 2

predict amphibian site occupancy in a patchy landscape. Ecol Appl 13 (4):1069-1082.

Kruuk H, Parish T (1981) Feeding specialization of the european badger Meles meles in scotland.

J Anim Ecol 50 (3):773-788.

Kruuk H, Parish T (1985) Food, food availability and weight of badgers (Meles meles) in relation

to agricultural changes. Journal of Applied Ecology 22 (3):705-715.

Kufner MB (1986) Tamaño actividad, densidad relativa y preferencias de hábitat de los pequeños

y medianos mamíferos de Doñana, como factores condicionantes de su tasa de predación.

Tesis doctoral. Universidad Autónoma de Madrid.

Kufner MB, Moreno S (1989) Abundancia y amplitud de los desplazamientos de Apodemus

sylvaticusencuatrobitopesdeDoñanaquedifierenencoberturavegetal.Doñana

Acta Vertebrata 16 (1):179-181.

LittellRC,GAMilliken,WWStroup,RDWolfinger(1996)SASSystemforMixedModels,Cary,

NC: SAS Institute Inc.

Martin J, Basille M, Van Moorter B, Kindberg J, Allainé D, Swenson JE (2010) Coping with

human disturbance: spatial and temporal tactics of the brown bear (Ursus arctos).

Canadian Journal of Zoology 88 (9):875-883.

Martin R, Rodriguez A, Delibes M (1995) Local feeding specialization by badgers (Meles meles)

in a mediterranean environment. Oecologia 101 (1):45-50.

McCullagh, P. and Nelder, J. A. (1989). Generalized Linear Models, 2nd edition. London:

Chapman and Hall.

Metropolis N, Ulam S (1949) The monte carlo method. J Am Stat Assoc 44 (247):335-341.

Miller J, Franklin J, Aspinall R (2007) Incorporating spatial dependence in predictive vegetation

models. Ecol Model 202 (3-4):225-242.

MorenoS,BeltranJF,CotillaI,KuffnerB,LaffiteR,JordanG,AyalaJ,QuinteroC,JimenezA,

Castro F, Cabezas S, Villafuerte R (2007) Long-term decline of the European wild

rabbit (Oryctolagus cuniculus) in south-western Spain. Wildl Res 34 (8):652-658.

Moreno S, Kufner MB (1988) Seasonal patterns in the wood mouse-population in Mediterranean

scrubland. Acta Theriol 33 (1-11):79-85.

PalomaresF(1994)Sitefidelityandbodymassonhome-rangesizeofEgyptianmongooses.

Canad J Zool. 72, 465-469.

Page 131: Tesis Carolina Soto Navarro - copia.pdf

130

Chapter 2Chapter 2

Palomares F (1986) Ecología de la gineta y del meloncillo en el Parque Nacional de Doñana. Tesis

de licenciatura. Universidad de Granada. 186 pp.

Palomares F (2001) Vegetation structure and prey abundance requirements of the Iberian lynx:

implications for the design of reserves and corridors. Journal of Applied Ecology

38 (1):9-18.

Palomares F, Delibes M (1988) Time and Space Use by Two Common Genets (Genetta genetta) in

the Doñana National Park, Spain. J Mammal 69 (3):635-637.

Palomares F, Delibes M (1991) Dieta del meloncillo, Herpestes ichneumon, en Coto del Rey, norte

del Parque Nacional de Doñana. Doñana Acta Vertebrata, 18: 187-194.

Palomares F, Delibes M (1991). Ecología comparada de la gineta, Genetta genetta (L.) y el meloncillo,

Herpestes ichneumon, (L.) (Mammalia, Viverridae) en Doñana (SO de la Península

Ibérica). Bol. R. Soc. Esp. Hist. Nat. (Secc. Biol.), 87: 257-266.

Palomares F, Delibes M (1993) Key habitats for Egyptian mongooses in Doñana National-park,

south-western spain. Journal of Applied Ecology 30 (4):752-758.

Palomares F, Delibes M (1993) Resting ecology and behavior of Egyptian mongooses (Herpestes

ichneumon) in southwestern spain. J Zool 230:557-566

Palomares F, Delibes M (1994) Spatiotemporal ecology and behavior of european genets in

southwestern spain. J Mammal 75 (3):714-724.

Palomares F, Delibes M, Ferreras P, Fedriani JM, Calzada J, Revilla E (2000) Iberian lynx in a

fragmented landscape: Predispersal, dispersal, and postdispersal habitats. Conserv Biol 14

(3):809-818.

Palomares F, Delibes M, Revilla E, Calzada J, Fedriani JM (2001) Spatial ecology of Iberian lynx

and abundance of European rabbits in southwestern Spain. Wildl Monogr (148):1-36.

Palomares F, Ferreras P, Fedriani JM, Delibes M (1996) Spatial relationships between Iberian lynx

and other carnivores in an area of south-western Spain. Journal of Applied Ecology 33

(1):5-13.

PalomaresF,RodriguezA,LaffitteR,DelibesM(1991)ThestatusanddistributionoftheIberian

Lynx Felis-Pardina (Temminck) in Coto Doñana area, Sw Spain. Biological Conservation

57 (2):159-169.

Revilla E, Palomares F (2002) Does local feeding specialization exist in Eurasian badgers? Can J

Page 132: Tesis Carolina Soto Navarro - copia.pdf

131

Chapter 2Chapter 2

Zool-Rev Can Zool 80 (1):83-93.

Román J, A Barón, E Revilla (2010) Evaluación de los efectos del tránsito a motor sobre especies

y comunidades de interés en el Espacio Natural de Doñana. Consejería de Medio

Ambiente, Junta de Andalucía. Estación Biológica de Doñana, CSIC. 236 pp.

Roper TJ, Lups P (1995) Diet of badgers (Meles meles) in central switzerland - an analysis of

stomach contents. Z Saugetierkd-Int J Mamm Biol 60 (1):9-19.

Rosalino LM, Loureiro F, MacDonald DW, Santos-Reis M (2005) Dietary shifts of the badger

(Meles meles) in Mediterranean woodlands: an opportunistic forager with seasonal

specialisms. Mamm Biol 70 (1):12-23.

Rosenzweig ML, Abramsky Z, Brand S (1984) Estimating species interactions in heterogeneous

environments. Oikos 43 (3):329-340.

Santos MJ, Pinto BM, Santos-Reis M (2007) Trophic niche partitioning between two native and

two exotic carnivores in SW Portugal. Web Ecology 7:1-62.

Smith PA (1994) Autocorrelation in logistic-regression modeling of species distributions. Glob

Ecol Biogeogr Lett 4 (2):47-61.

Soto C, Desniça S, Palomares F (2012) Nonbiological factors affecting track censuses: implications

for sampling design and reliability.

Thioulouse J, Chessel D, Dolédec S, Olivier J (1997) Ade-4: a multivariate analysis and graphical

display software. Statistics and Computing, 7:75-83.

VillafuerteR,KufnerMB,DelibesM,MorenoS(1993)Environmental-factorsinfluencingthe

seasonal daily activity of the European rabbit (Oryctolagus cuniculus) in a Mediterranean

area. Mammalia 57 (3):341-347.

VillafuerteR,LazoA,MorenoS(1997)Influenceoffoodabundanceandqualityonrabbit

fluctuations:ConservationandmanagementimplicationsinDoñanaNationalPark(SW

Spain). Rev Ecol-Terre Vie 52 (4):345-356.

Villafuerte R, Moreno S (1997) Predation risk, cover type and group size in European rabbits in

Doñana (SW Spain).Acta Theriologica, 42 (2): 225-230.

Viota M, López-Bao JV, Palomares F, Rodríguez A (2012) Shift in microhabitat use as a mechanism

allowing the coexistence of victim and killer carnivore predators.

Page 133: Tesis Carolina Soto Navarro - copia.pdf

132

Chapter 2Chapter 2

Virgós E (2002) Are habitat generalists affected by forest fragmentation? A test with Eurasian

badgers (Meles meles) in coarse-grained fragmented landscapes of central Spain. J Zool

258 (3):313-318.

Virgós E, Casanovas JG (1999) Environmental constraints at the edge of a species distribution, the

Eurasian badger (Meles meles L.): a biogeographic approach. Journal of Biogeography 26

(3):559-564.

Virgós E, Llorente M, Cortes Y (1999) Geographical variation in genet (Genetta genetta L.) diet: a

literature review. Mammal Review 29 (2):117-126.

Yamaguchi N, Rushton S, Macdonald DW (2003) Habitat preferences of feral American mink in

the Upper Thames. J Mammal 84 (4):1356-1373.

Zapata SC, Travaini A, Ferreras P, Delibes M (2007) Analysis of trophic structure of two carnivore

assemblagesbymeansofguildidentification.EurJWildlRes53(4):276-286.

Page 134: Tesis Carolina Soto Navarro - copia.pdf

133

Chapter 2Chapter 2

Supplementary information

Table 1. Results of the outlying mean index analysis depicting relationships of occurrences of Carnivora species to the suite of environmental variables measured across sampling sites in DNP. Inertia = variance or weighted sum of squared distances to the origin of the environmental axes; OMI = outlying mean index (marginality) or the deviation of a particular species’ distribution from the overall mean habitat conditions (origin of outlying mean index axes), described by the environmental variables; Tol = tolerance index, which is analogous to ‘‘niche breadth’’ or spatial variance of an organism’s ‘‘niche’’ across the measured environmental variables—a function of all sampling sites with which the species is associated; RTol = residual tolerance. Italicized terms representthepercentagesofvariabilitycorrespondingtoaspecificstatistic.P = frequency based on number of random permutations (out of 10,000) that yielded a higher value than the observed outlying mean index (P ≤0.05indicatesasignificantinfluenceoftheenvironmentalvariablesforaspecies).

Species Inertia OMI Tol Rtol OMI Tol Rtol PLynx pardinus 13.22 5.19 1.35 5.73 39.30 17.40 43.30 0.00040Genetta genetta 15.66 4.13 1.61 6.54 26.40 31.90 41.70 0.00010Herpestes ichneumon 9.39 0.35 2.30 7.45 2.70 18.00 79.30 0.09329Meles meles 11.79 0.25 1.69 9.83 3.00 13.60 83.40 0.06429Vulpes vulpes 10.89 0.04 4.99 9.51 0.30 12.40 87.30 0.63804

Table 2. Loadingsof environmental variables for thefirst two axes of the outlyingmean indexanalysis. Values represent the best linear combination that explains occurrences of Carnivora at DNP. Variables are described in Table 1.

Variable Axis 1 Axis 2%SB 0.2014 0.0251%B -0.2361 -0.1876%T -0.2138 0.1877DH -0.5163 -0.1776Traf 0.1279 0.3091eBP 0.0237 -0.5020DW 0.2807 0.2649DV -0.0605 0.5255Ra 0.2431 -0.3693SM 0.0365 0.0165Tot 0.2635 -0.2575Eigenvalue 0.3766 0.0003Percentage variance explained 0.9986 0.0009

Page 135: Tesis Carolina Soto Navarro - copia.pdf

134

Chapter 2

SM SB

DW

DH

eBP

Ra

Tot

Traf

DV

T

B

Axis 1

Figure 1.Contributionofenvironmental,humanandpreyvariablestothefirstaxesproducedbythe OMI analysis. The length of the arrow describes the relative importance of each variable in the analysis, and the direction of the arrow indicates among-variable correlations.

Page 136: Tesis Carolina Soto Navarro - copia.pdf

135

CHAPTER 3

Species abundances in a community of sympatric carnivores: a trade-off between habitat selection and interspecific interactions?

Abundancia de especies en una comunidad de carnívoros

simpátridos: ¿existe un equilibrio entre la selección de

hábitat y las interacciones interespecíficas?

Page 137: Tesis Carolina Soto Navarro - copia.pdf

136

Chapter 3

Page 138: Tesis Carolina Soto Navarro - copia.pdf

137

Chapter 3

ABSTRACT

Inacarnivoreguild,theoccurrenceoflargerspeciescanexertsasignificant

effect on the relative abundances of smaller guild members, whereas similar-sized

species may potentially not exhibit any density-dependent relationships. When

modelling habitat use, the species relative abundance could be therefore a misleading

proxy of habitat quality if a larger predator may be limiting their abundance in the

potentially best optimal habitat.

We analyzed the potential effect of the co-occurrence of sympatric

carnivores in the habitat use pattern of five medium-sized carnivore species

(Iberian lynx, Eurasian badger, common genet, Egyptian mongoose and red fox) in

a Mediterranean protected area in southwest Spain (Doñana National Park; DNP),

by logistic and regression generalized linear mixed models. We carried out track

censuses during 2007-2008 and 2008-2009 within 2 x 2 km2 quadrants and we

found that the relative abundance of foxes, mongooses and genets were negatively

affected by the occurrence of the top predator of the carnivore guild, the Iberian

lynx. However, abundance of genets and mongooses were positively correlated

with the occurrence of mongooses and badgers, respectively, also improving the

explanatory power of the habitat use models of those species. Intraguild predation

as well as coincidence in the use of resources between species could explain the

patterns of co-occurrence found. We suggest that the particular identity of predator

species within a guild strongly affects the relative competitive advantage of each

guild member and we propose that relative abundances of predators at the same

trophic level should not be overlooked and included as covariates when studying

carnivore community structure and habitat use.

Page 139: Tesis Carolina Soto Navarro - copia.pdf

138

Chapter 3Chapter 3

RESUMEN

En un gremio de carnívoros, la ocurrencia de las especies más grandes puede

ejercer un efecto significativo sobre las abundancias relativas de los miembros más

pequeños de la comunidad, mientras que las especies de tamaño similar no deben presentar

aparentemente ninguna relación denso-dependiente entre ellas. En consecuencia, cuando

se modela el uso del hábitat por una especie, la abundancia relativa de la misma puede

ser un indicador erróneo de la calidad de hábitat si un depredador superior está limitando

la abundancia de la especie en su mejor hábitat potencial.

En este estudio analizamos el efecto potencial de la co-ocurrencia de carnívoros

simpátridos en el patrón de uso del hábitat de cinco especies de carnívoros de mediano

tamaño (lince ibérico, tejón, gineta, meloncillo y zorro) en un área protegida en el suroeste

de España (Parque Nacional de Doñana), a través de modelos lineares generalizados

mixtos logísticos y de regresión. Llevamos a cabo censos de rastros durante los años

2007-2008 y 2008-2009 en cuadrículas de 2 x 2 km2 y encontramos que la abundancia

relativa de zorros, meloncillos y ginetas se vio afectada negativamente por la ocurrencia

del carnívoro superior del gremio, el lince ibérico.

Sin embargo, la abundancia de ginetas y meloncillos se correlacionó positivamente

con la ocurrencia de meloncillos y tejones, respectivamente, mejorando también el poder

explicativo de los modelos de hábitat para dichas especies. La depredación intragremial

así como la coincidencia en el uso de los recursos entre especies pueden explicar dichos

patrones de co-ocurrencia detectados. Sugerimos que la identidad particular de una especie

de depredador dentro de un gremio afecta en gran medida su ventaja competitiva dentro

de la comunidad y proponemos que la abundancia relativa de predadores pertenecientes

almismoniveltróficodebeincluirsecomovariableexplicativaenestudiosdeusodel

hábitat y estructura de las comunidades de mamíferos carnívoros.

Page 140: Tesis Carolina Soto Navarro - copia.pdf

139

Chapter 3Chapter 3

INTRODUCTION

The statement that density of a species in a given habitat is a direct measure

of the quality of that habitat for the species is a widely accepted assumption in

habitat use studies (but see VanHorne 1983). Nevertheless, some species may not

exhibit the highest densities in their potentially best optimal habitats according to

the species life-history traits, as their relative abundances and pattern of habitat use

canbeaffectedbyinterspecificinteractionswithotherspeciesatthesametrophic

level (Case and Gilpin 1974, Estes and Palmisano 1974, Menge and Sutherland

1987, Durant 1998).

Among mammal carnivores, body size influences the outcomes of

interspecificinteractions(PalomaresandCaro1999).Withtheexceptionofsome

species that prey in packs (e.g., Rogers and Mech 1981, Paquet and Carbyn 1986),

interference competition is inflicted by a larger carnivore species on a smaller

one killing it (termed as intraguild predation (Polis et al. 1989)) or excluding it

from habitat patches or prey carcasses (Palomares and Caro 1999). These highly

asymmetrical interactions mediated by body size are common (e.g. Fedriani et al.

1999, Kamler et al. 2003, Durant et al. 2010) being the smaller species almost

invariably the loser due to their subordinate position (Palomares and Caro 1999,

Prugh et al. 2009, Roemer et al. 2009). Nevertheless, smaller members of a guild

may also kill cubs, young or subadult individuals of the larger species (Palomares

and Caro 1999). In the absence of predator species, small carnivores should be

ideally distributed based on habitat quality and preferred food availability (Van der

Meer and Ens 1997, Roemer et al. 2009), but in most natural communities smaller

species are potentially subject to top-down effects that mediate their ability to use

preferred habitat and limit their access to high-quality foraging areas (Palomares

Page 141: Tesis Carolina Soto Navarro - copia.pdf

140

Chapter 3Chapter 3

and Caro 1999, Ritchie and Johnson 2009). Moreover, in some carnivores,

intraguild predation has a considerable impact on small carnivore’ mortality rates

and consequently a negative effect on the relative abundance of the species in

the presence of the larger predator (Ralls and White 1995, Sovada et al. 1998).

In such cases, due to these potential predation-driven direct effects or fear-driven

indirect effects, the relative abundances of some predators may not be related to

prey availability or vegetation type. Densities of smaller members of a guild may

represent a trade-off between suitable areas that satisfy their basic requirements and

areas where probability of encounters with larger predators are null or lower (i.e., to

diminish the risk of being killed).

In this paper, we examine the potential effect of the co-occurrence of different

sympatric carnivores on the habitat use pattern of five small andmedium-sized

carnivore species in a Mediterranean protected area in southwest Spain, namely

DoñanaNationalPark(DNP).Onpreviouslyfittedfine-scalehabitatusemodelsfor

aguildoffivecarnivorespeciesweanalysedwhethertheinclusionoftherelative

abundances of any carnivore species improves the explanatory power of habitat

models (Johnson and Omland 2004, Burnham and Anderson 2002). The studied

carnivore guild is composed by the Iberian lynx (Lynx pardinus, 9-15 kg), Eurasian

badger (Meles meles, 7-8 kg), the red fox (Vulpes vulpes, 5-7 kg), the Egyptian

mongoose (Herpestes ichneumon, 3 kg) and the common genet (Genetta genetta,

2 kg). In DNP these species form a community of continuum degree of habitat

and trophic specialization predators with different degree of habitat use overlap.

It has been described aggressive interactions between some of these carnivores in

DNP, which always involved lynxes as the top predator. The Iberian lynx uses to

kill genets, mongooses and foxes (Palomares et al. 1996, Fedriani 1997), but no

Page 142: Tesis Carolina Soto Navarro - copia.pdf

141

Chapter 3Chapter 3

aggressive interactions between lynx and badger has been reported. On the other

hand, aggressive interactions between badgers, foxes, mongooses and genets have

been unreported, although according to the theory differences in body size among

some of these species could support such interactions (Palomares and Caro 1999,

Fedriani et al. 2000).

Specifically,wetestedthehypothesisthatinourcarnivoreguildthespatial

occurrenceoflargerspeciesexertsasignificanteffectontherelativeabundances

of other smaller guildmembers after controlling by species-specific habitat use

patterns. Based in our previous knowledge on the reported aggressive interaction

between species in the study area and in the general knowledge of the effect of

body size on carnivore interactions (reviewed in Palomares and Caro 1999), our

predictions were those outline in Figure 1: a) we expected a negative effect of the

lynx presence and/or abundance on the relative densities of foxes, mongooses and

genets; b) abundance of foxes and badgers should negatively affect abundance of

mongooses and genets and c) it should be no effect between badgers and foxes,

badgers and lynxes and mongooses and genets.

METHODS

Study area

DNP isa fullyprotectedandflat sandyareaat sea level in southwestern

Spain (550 km2 37°9′N,6°26′W), locatedon thewestbankof theGuadalquivir

River mouth. The climate is Mediterranean sub-humid, characterized by dry, hot

summers and mild, wet winters. Average annual rainfall is 500-600 mm. There are

three main biotopes in the park: scrubland, dunes, and marsh (Valverde 1958). The

dune area is situated at the western border of the protected area limited by the

Page 143: Tesis Carolina Soto Navarro - copia.pdf

142

Chapter 3Chapter 3

Atlantic Ocean and the marsh area at the northern and eastern borders limited by the

Guadalquivir River. The Mediterranean scrubland represents approximately half of

the National Park surface area and is mainly characterised by heterogeneous patches

of xerophytic species such as Halimium sp. and Cistus sp., and hydrophytic species

such as Erica sp., with some patches of Juniperus phoenica and Pistacia lentiscus

shrubs. Interspersed among the scrubland are scattered cork oak trees (Quercus

suber) and wild olive trees (Olea europea), and a few patches of pine Pinus pinea

Figure 1. Sketch of the possible expected interrelationships among the different carnivore species studied here. Single-headed arrow and straight lines represent aggressive interactions that have been previously reported in the literature for those species in the study area; single-headed arrow and dashed lines represent potential aggressive interactions based in the body size of the involved species but that have been previously unreported; and double-headed arrow and dashed lines represent potential neutral expected interactions between similar-sized species in the DNP carnivore guild.

Page 144: Tesis Carolina Soto Navarro - copia.pdf

143

Chapter 3Chapter 3

and eucalyptus Eucalyptus sp. plantations.

In addition to the studied species (i.e., red fox, Eurasian badger, Egyptian

mongoose, common genet and Iberian lynx), there are other carnivores such as

least weasel (Mustela nivalis), European polecat (Mustela putorius), Eurasian otter

(Lutra lutra) and wild cat (Felis silvestris), but they were excluded from the study

because of their scarcity in the area.

Sampling protocol

To assess the co-occurrence of carnivore species and to obtain relative

densities for foxes, badgers, lynxes, mongooses and genets we divided the study

area into 69 2 x 2 km quadrants following UTM coordinates (Figure 2). Quadrants

were sampled throughout the wet seasons of 2007-2008 and 2008-2009. In each

quadrant, a 3 km-length survey route was slowly walked searching for carnivore

tracks. Thesurveyrouteswerelocatedalongfirebreaksandcarroadsbetween2and

12 m wide. Once a continuous track that crossed from one side to the other across

the pathway was detected, we georeferenced it using a global positioning system.

For the two sampled seasons altogether we resampled 21 squares (leaving at least 7

days between samplings) a second time until completing 3 km, because there were

insufficientavailablepathswithinthesquaretoachievethisdistance.Thus,aswe

had more censuses than quadrants we averaged track counts to get a single value per

quadrant. We always carried out surveys at least 3 days after any rainfall.

Data about prey availability and vegetation variables included in habitat

models were obtained through track censuses in transects of 25 m in length and

approximately 1.7 m wide and from visually estimates in 25 m diameter circle

situated in the same places where transects for prey (see Soto et al. 2012 for more

details).

Page 145: Tesis Carolina Soto Navarro - copia.pdf

144

Chapter 3Chapter 3

Data analysis

To test the effect of the abundance of other species on the abundance of a

givenspeciesaccordingthisoutlinedinFigure1,wefirstfittedfine-scalehabitat

use models for each species (Chapter 2). After, we added the relative abundance

(Kilometric Abundance Index; KAI) or presence of the different carnivore species

to the best approximating habitat model describing abundance of each species

(hereafter null models) and observed whether models improved (i.e. a decrease of

the Akaike Information Criterion corrected for small sample size; AICc). According

totheinformation-theoreticapproach,modelswith∆AICc < 2 from the model with

the lowest AICc are considered to be virtually the same plausible models (Burnham

and Anderson 2002). Hence, in spite of the existence of certain model selection

uncertainty in multimodel inference, statistical models that decrease the AICc of

a reference model more than 2 units could be considered as more parsimonious

modelsandtobestfitthedata.Thus,forthespecificaimsofourstudy,when ∆AICc

< -2andmodelcoefficient(β) was negative we considered that there were support

to the predictions about the abundance or presence of a given species affected the

abundance or presence of the target species; when ∆AICc < -2andmodelcoefficient

(β) was positive we considered that both species could coincide in habitat resources

used,butnonegative interactionoccurredbetween them;andfinallywhen -2>

∆AICc < 2 we considered that abundance or presence of a given species did not

affect the abundance or presence of the target species. Note that if our hypothesis

is right, the inclusion of the relative abundance of presence of smaller species in

the model of habitat selection of larger species should have either no effect or if

any (i.e.,∆AICc > 2), β should be positive.Hence,we included as a control of

hypothesis all possible carnivore species in null models for each target species to

Page 146: Tesis Carolina Soto Navarro - copia.pdf

145

Chapter 3Chapter 3

test if this was the case.

Nullmodelsweredefinedbasedonprevioushabitatusestudiesforeachspeciesin

the DNP (Chapter 2). These models included different variables related to landscape

features, vegetation type, prey availability and human disturbance for each species

(see Table 1 for variable description). The general null model for the occurrence of

mongooses (HI), foxes (VV), badgers (MM) and for the presence of genets (GG)

and lynxes (LP) at site jwasspecifiedas:

logit(HI j)=φHI + α1DW j + α2DV j + α3Tot j + α4Hum j + ζHI autocovj

logit(VV j)=φVV + β1%B j + β2%T j + β3DW j + β4SMj + β5Humj + ζVV autocovj

logit(MM j)=φMM+γ1%B j+γ2%SB j+γ3eBP j+γ4DVj+γ5DW j+γ6Raj +γ7Hum j + ζMM autocovj

logit(GG j)=φGG+δ1%B j+δ 2%T j+δ3DW j+δ4SMj+δ5DH j+δ 6Traf j +δ7Hum j

logit(LP j)=φLP+ε1%B j+ε2%SB j+ε3eBP j+ε4DVj+ε5DW j+ε6Raj +ε7Hum j

whereφiisthespecies-specificintercept,thecoefficientsα1,..., α4, β1,..., β5,γ1,...,

γ7, δ1,..., δ7 and ε1,..., ε7 represent effects of the associated explicative variables

(Table 1) on species i, and ζi is the effect of the autocovariate on species i (see text

below).

Candidatemodel equationswere fitted usingGeneralizedLinearMixedModels

(GLMM) with binomial (for genets and lynxes) or negative binomial (for mongooses,

badgers and foxes) error structure using the glmmADMB and lmer library (Fournier

et al. 2012, Skaug et al. 2012) respectively in R 2.15.2 (R Development Core Team

2008). The dependent variable was the number of tracks/km. Observer and quadrant

were modelled as random effects, humidity as a covariate (Soto et al. 2012), and the

distance covered per quadrant during track censuses as an offsset. We incorporated

Page 147: Tesis Carolina Soto Navarro - copia.pdf

146

Chapter 3Chapter 3

an autocovariate as an additional explanatory variable in the GLMM models to

accountforfine-scalespatialvariationinthedatabyestimatingthedegreetowhich

the response at each location reflects response values at surrounding locations

(Dormann 2007). This extra parameter is intended to capture spatial autocorrelation

originating from endogenous processes such as movement of censused individuals

between sampling sites (Smith 1994, Keitt et al. 2002, Yamaguchi et al. 2003).

Table 1. Variablesusedtodefinefine-scalehabitatusenullmodelsforbadgers,mongooses,foxes,genets and lynxes.

Variable Code Definition Units

tall shrub %B Mean cover of bushes per quadrant calculated by averaging values obtained at the different sampling points of vegetation censuses %

trees %T Mean cover of trees per quadrant calculated by averaging values obtained at the different sampling points of vegetation censuses %

distance to water DW

Measured in meters using a Euclidean distance-based approach fromthequadrantcentretothenearestpermanentlyfloodednaturalorartificialpond(i.e.dugforthecattleatzoneswerethewatertableis higher) in a digitized water sources cover layer of DNP

m

distance to La Vera DV

Measured in meters from the quadrant centre to the ecotone between the marshland and the Mediterranean scrubland (locally called La Vera)

m

small mammals SM

Kilometric Abundance Index of small mammals per quadrant calculated as the mean between prey indexes at the different sampling points of prey censuses per quadrant

Tracks/km

rabbits RaKilometric Abundance Index of rabbits per quadrant calculated as the mean between prey indexes at the different sampling points of prey censuses per quadrant

Tracks/km

distance to antropic edge

DHMeasured in meters from the quadrant centre to the nearest protected area border influenced by humans (i.e., excluding the beach andmarshland edges)

m

Trafficindex T

Meandailytraffic(MDT),adjustedforroadlength(m)andtypeofroad(i)inthequadrant(=∑(MDTi*mi))derivedfromRománetal. 2010

car/m

Humidity HumEnvironmental humidity on census day obtained from a meteorological station located inside DNP. http://icts.ebd.csic.es %

Observer Obs Observer who carried out censuses no units

Page 148: Tesis Carolina Soto Navarro - copia.pdf

147

Chapter 3Chapter 3

RESULTS

Nullmodelsoffoxes,mongoosesandgenetssignificantlyimproved(∆AICc

< -2) after including the occurrence and/or presence of lynxes (Table 2). The

three species were less abundant in areas where lynxes exhibited a higher relative

abundance (Fig. 3a, c and e). Habitat models of foxes, genets (Fig. 3b) and badgers

also improved after including the relative density of mongooses (Table 2) but the

Figure 2. Map of the DNP showing its location in southwest of the Iberian Peninsula and the 2×2 km2 quadrants where carnivore track censuses were carried out during the wet seasons of 2007-2008 and 2008-2009. The dashed zone represents the marshland area of the DNP.

Page 149: Tesis Carolina Soto Navarro - copia.pdf

148

Chapter 3Chapter 3

three species exhibited higher relative densities in areas where mongooses were

also more abundant.

The inclusion of the presence of genets and the relative abundance of badgers

(Fig. 3d) also improved the habitat model of mongooses that were more abundant

in areas where genets were detected or where the occurrence of badgers was higher

(Table2).Theinclusionofanyofthesmallermembersoftheguildsignificantly

improved the habitat model of the Iberian lynx (Table 2).

DISCUSSION

Our results support the hypothesis that in a carnivore guild, the occurrence

ofsomespeciesexertsasignificanteffectontherelativeabundanceofotherguild

membersaftercontrollingbyspecies-specifichabitatusepatterns.Aswepreviously

hypothesized, the relative abundance of foxes, mongooses and genets in DNP was

negatively affected by the presence or occurrence of lynxes, the larger reported

intraguild predator for all of them (Palomares and Caro 1999). In fact, it had been

previously described for Doñana as foxes, mongooses and genets avoided temporal

or spatially highly used areas by lynxes (Palomares et al. 1996, 1998, Fedriani et

al. 1999, Viota et al. 2012). Similar results have been obtained in other carnivore

communities involving African wild dogs Lycaon pictus and cheetahs Acinonyx

jubatus with lions Panthera leo and spotted hyenas Crocuta crocuta (Laurenson

1995, Creel and Creel 1996, Durant 2000).

Also as predicted, the relative abundance of smaller species did not affect

the relative abundance of larger ones; in our case lynxes, badgers and foxes.

However, although theory predicts that larger species such as foxes and badgers

might negatively interact with genets and mongooses, results did not confirm

Page 150: Tesis Carolina Soto Navarro - copia.pdf

149

Chapter 3Chapter 3

Table 2. Results from negative binomial (foxes, badgers and mongooses) and logistic regression models (genets and lynxes) investigating the effects of the occurrence and/or presence of predator species on each carnivore species in the DNP. We report the small sample-size–adjusted Akaike’s information criteria (AICc),thedifferenceinAICcbetweeneachmodelandthenullmodel(∆AICc), the model coefficient (β) with standard error (SE) as well as its P-value of those models that decreasedthenullmodel≥2.VariablesaredescribedinTable1.

Species Models AICc ∆AICc β SE(β) P-value

Genetta genetta0. Intercept only 175.23 12.55 . . .1. Null model%B + %T + DW + SM + DH + Traf + Hum + autocov 162.68 0.00 . . .2. Null model + KAIl 159.75 -2.94 -1.14 0.72 0.053. Null model + KAIb 162.07 -0.61 . . .4. Null model + KAIf 161.07 -1.61 . . .5. Null model + KAIIm 153.01 -9.67 0.26 0.08 0.006. Null model + Lynx 160.62 -2.06 -1.13 0.59 0.08

Herpestes ichneumon

0. Intercept only 918.52 38.76 . . .1. Null modelDW + DV + Tot + Hum + autocov 879.76 0.00 . . .2. Null model + KAIl 877.23 -2.53 -0.31 0.14 0.033. Null model + KAIb 874.89 -4.87 0.06 0.02 0.014. Null model + KAIf 879.74 -0.02 . . .5. Null model + KAIg 879.63 -0.13 . . .6. Null model + Lynx 881.56 1.80 . . .7. Null model + Genet 863.83 -15.93 0.82 0.19 0.00

Vulpes vulpes0. Intercept only 1277.53 24.66 . . .1. Null model%B + %T + DW + SM + Hum + autocov 1252.87 0.00 . . .2. Null model + KAIl 1253.99 1.12 . . .3. Null model + KAIb 1254.09 1.22 . . .4. Null model + KAIm 1250.46 -2.41 0.03 0.01 0.035. Null model + KAIg 1254.84 1.97 . .6. Null model + Lynx 1249.69 -3.18 -0.27 0.12 0.027. Null model + Genet 1250.91 -1.96 . . .

Page 151: Tesis Carolina Soto Navarro - copia.pdf

150

Chapter 3Chapter 3

this prediction. Contrarily, positive correlations between some of these species

(mongooses with badgers and foxes) were found. The lacks of negative interactions

may be explained by the fact that the degree of intra-guild interference is thought

to depend on body-size differences: at small differences, attacks are less likely to

occur (Buskirk 1999, Donadio and Buskirk 2006), and the positive relationships

between species might simply be explained by the fact that they might exploit

the same resources or that the distribution of the resources used by each species,

although different, might overlap.

Meles meles0. Intercept only 910.64 9.29 . . .1. Null model%SB + %B + eBP + DW + DV + Ra + Hum + autocov 901.35 0.00 . . .2. Null model + KAIl 901.98 0.63 . . .3. Null model + KAIf 903.12 1.77 . . .4. Null model + KAIm 890.65 -10.70 0.11 0.03 0.005. Null model + KAIg 903.04 1.69 . . .6. Null model + Lynx 900.83 -0.52 . . .7. Null model + Genet 902.95 1.60 . . .

Lynx pardinus0. Intercept only 153.89 41.97 . . .1. Null model%B + %SB + DW + eBP + DV + Ra + Hum 111.92 0.00 . . .2. Null model + KAIb 112.27 0.35 . . .3. Null model + KAIf 111.00 -0.92 . . .4. Null model + KAIm 113.92 2.00 . . .5. Null model + KAIIg 110.43 -1.49 . . .6. Null model + Genet 112.21 0.29 . . .

KAIl; Kilometre Abundance Index of lynxKAIb; Kilometre Abundance Index of badgerKAIf; Kilometre Abundance Index of foxKAIm; Kilometre Abundance Index of mongooseKAIg; Kilometre Abundance Index of genetGenet: Presence/Absence of Genet (1/0)Lynx; Presence/Absence of Lynx (1/0)

Page 152: Tesis Carolina Soto Navarro - copia.pdf

151

Chapter 3Chapter 3

The same explanation might apply to the positive association found between

mongooses and genets; two similar-sized species. Genets and mongooses partially

overlap in their habitat use in DNP (Chapter 2). Furthermore, previous studies have

also shown that both mongooses and genets use similar microhabitats such as dense

bushes or thickets for activity and resting in Doñana (Palomares and Delibes 1993),

and that a large fraction of their diets may coincide (Palomares and Delibes 1991).

On the same way, although mongooses exhibit a certain higher degree of habitat

specialization than foxes and badgers, the niche overlap of all three predators is large

probably due to their trophic and/or habitat generalism (Chapter 2). Additionally,

mustelids are not species with a high aggressive nature (Palomares and Caro 1999),

so it is reasonable to think that they can coexist with smaller predators without any

interference.

Our results demonstrate that the inclusion of the relative abundance of other

carnivorespeciesinhabitatmodelsforagivenspeciesmaysignificantlyimprove

them. Models based on species relative densities that excluded other predators’

occurrence could be a misleading proxy of habitat quality when studying patterns of

habitat use by species, and this may be particularly important for smaller predators

that very often are intraguild prey in natural communities. Smaller species might be

more abundant at sub-optimal or marginal habitats due to predation-driven direct

or fear-driven indirect effects from larger predators. There are some examples of

other carnivore species that have been reported as exhibiting limited patterns of

distribution and abundance due to interference competition with larger predators

(Berger and Gese 2007, Peterson 1995, Thurber et al. 1992, White and Garrott

1997, Burrows 1995, Durant 2000). However, habitat use models for carnivore

species at the apex of their ecological communities that are based on vegetation

Page 153: Tesis Carolina Soto Navarro - copia.pdf

152

Chapter 3Chapter 3

and/or landscape features as well as on prey availability should be enough to design

adequate management plans that aim to restore habitat for the species.

Figure 3. Relationships between the probability of genet presence and the numbers of lynx (a) and mongoose tracks (b) detected; between the numbers of mongooses tracks and that of lynxes (c) and badgers (d); and between the number of fox tracks and the presence of lynx (least square means and their standard errors are represented) (e).

Page 154: Tesis Carolina Soto Navarro - copia.pdf

153

Chapter 3Chapter 3

ACKNOWLEDGMENTS

ThisstudywasfinancedbytheprojectsCGL2004-00346/BOS(SpanishMinistryofEducationand

Science) and 17/2005 (Spanish Ministry of the Environment; National Parks Research Programme),

and sponsored by Land-Rover España S.A. We are especially thankful to J.C. Rivilla and S. Desniça

fortheirassistanceduringfieldwork.C.SotoreceivedaJAEpredoctoralgrantfromCSIC(Spanish

National Research Council).

REFERENCES

Berger KM, Gese EM (2007) Does interference competition with wolves limit the distribution and

abundance of coyotes? Journal of Animal Ecology 76:1075–1085.

Burnham KP, Anderson DR (2002) Model selection and multimodel inference. A practical

information-theoretic approach. 2nd ed. Springer, New York.

Burrows R (1995) Demographic changes and social consequences in wild dogs, 1964–1992. In

Serengeti II. Dynamics, management and conservation of an ecosystem: 385–400.

Sinclair, A. R. E. & Arcese, P. (Eds). Chicago: University of Chicago Press.

Buskirk SW (1999) Mesocarnivores of Yellowstone. Pages 165–187 in T. W. Clark, A. Peyton

Curlee, S. C. Minta, and P. M. Kareiva, eds. Carnivores in ecosystems: the Yellowstone

experience. Yale University Press, London.

Case TJ, Gilpin ME (1974) Interference Competition and Niche Theory. Proc Natl Acad Sci U S A

71 (8):3073-3077.

Creel S, Creel NM (1996) Limitation of African wild dogs by competition with larger carnivores.

Conservation Biology, 10, 526–538.

DonadioE,BuskirkSW(2006)Diet,morphology,andinterspecifickillingincarnivora.AmNat

167:524–536.

Dormann CF, McPherson JM, Araujo MB, Bivand R, Bolliger J, Carl G, Davies RG, Hirzel A, Jetz

W, Kissling WD, Kuhn I, Ohlemuller R, Peres-Neto PR, Reineking B, Schroder B, Schurr

FM, Wilson R (2007) Methods to account for spatial autocorrelation in the analysis of

species distributional data: a review. Ecography 30 (5):609-628.

Durant SM (1998) Competition refuges and coexistence: an example from Serengeti carnivores. J

Page 155: Tesis Carolina Soto Navarro - copia.pdf

154

Chapter 3Chapter 3

Anim Ecol 67 (3):370-386.

Durant SM (2000) Living with the enemy: avoidance of hyenas and lions by cheetahs in the

Serengeti. Behavioral Ecology, 11, 624–632.

Durant SM, Craft ME, Foley C, Hampson K, Lobora AL, Msuha M, Eblate E, Bukombe J, McHetto

J, Pettorelli N (2010) Does size matter? An investigation of habitat use across a carnivore

assemblage in the Serengeti, Tanzania. J Anim Ecol 79 (5):1012-1022.

Estes JA, Palmisan JF (1974) Sea Otters - Their Role In Structuring Nearshore Communities.

Science 185 (4156):1058-1060.

FedrianiJM(1997)Relacionesinterespecíficasentreellinceibérico,Lynx pardina, el zorro,

Vulpes vulpes, y el tejón, Meles meles en el Parque Nacional de Doñana. Universidad de

Sevilla. Facultad de Ciencias Biológicas. 181 Pg.

Fedriani JM, Palomares F, Delibes M (1999) Niche relations among three sympatric Mediterranean

carnivores. Oecologia 121 (1):138-148.

Fedriani JM, Fuller TK, Sauvajot RM, York EC (2000) Competition and intraguild predation among

three sympatric carnivores. Oecologia 125:258–270.

Fournier DA, Skaug HJ, Ancheta J, Ianelli J, Magnusson A, Maunder M, Nielsen A and Sibert

J (2012). “AD Model Builder: using automatic differentiation for statistical inference of

highly parameterized complex nonlinear models.” Optim. Methods Softw., *27*, pp. 233-249.

Johnson JB, Omland KS (2004) Model selection in ecology and evolution. Trends Ecol Evol 19

(2):101-108.

Kamler JF, Ballard WB, Gilliland RL, Mote K (2003) Spatial relationships between swift foxes and

coyotes in northwestern Texas. Can J Zool-Rev Can Zool 81 (1):168-172.

Keitt TH, Bjornstad ON, Dixon PM, Citron-Pousty S (2002) Accounting for spatial pattern when

modeling organism-environment interactions. Ecography 25 (5):616-625.

Laurenson MK (1995). Implications of high offspring mortality for cheetah population dynamics.

Pages 385–399 in A. R. E. Sinclair and P. Arcese, eds. Serengeti II: dynamics, management

and conservation of an ecosystem. University of Chicago, Chicago.

Menge BA, Sutherland JP (1987) Comrnunity regulation: variation in disturbance, competition,

and predation in relation to environmental stress and recruitment. Am Nat 130: 730-757.

Palomares F, CaroTM (1999) Interspecific killing amongmammalian carnivores.AmNat 153

Page 156: Tesis Carolina Soto Navarro - copia.pdf

155

Chapter 3Chapter 3

(5):492-508.

Palomares F, Delibes M (1991) Ecología comparada de la gineta, Genetta genetta (L.) y el meloncillo,

Herpestes ichneumon, (L.) (Mammalia, Viverridae) en Doñana (SO de la Península Ibérica.

Bol. R. Soc. esp. Hist. Nat. (Secc. Biol.), 87: 257-266.

Palomares F, Delibes M (1993) Key Habitats for Egyptian Mongooses in Doñana-National-Park,

South-Western Spain. Journal of Applied Ecology 30 (4):752-758.

Palomares F, Ferreras P, Fedriani JM, Delibes M (1996) Spatial relationships between Iberian lynx and

other carnivores in an area of south-western Spain. Journal of Applied Ecology 33 (1):5-13.

Palomares F, Ferreras P, Travaini A, Delibes M (1998) Co-existence between Iberian lynx and

Egyptian mongooses: estimating interaction strength by structural equation modelling and

testing by an observational study. J Anim Ecol 67 (6):967-978.

Paquet PC, Carbyn LN (1986) Wolves, Canis-Lupus, Killing Denning Black Bears, Ursus-

Americanus, in The Riding-Mountain-National-Park Area. Can Field-Nat 100 (3):371-372.

PetersonRO(1995)Wolvesasinterspecificcompetitorsincanidecology.EcologyandConservation

of Wolves (eds L.N. Carbyn, S.H. Frittz & D.R. Seip), pp. 315–324. Circumpolar Press,

Edmonton, Alberta.

Polis GA, Myers CA, Holt RD (1989) The Ecology and Evolution of Intraguild Predation - Potential

Competitors that eat each other. Annu Rev Ecol Syst 20:297-330.

Prugh LR, Stoner CJ, Epps CW, Bean WT, Ripple WJ, Laliberte AS, Brashares JS (2009) The Rise

of the Mesopredator. Bioscience 59 (9):779-791.

R Development Core Team (2008). R: A language and environment for statistical computing. R

Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL

http://www.R-project.org.

Ralls K, White PJ (1995) Predation on San-Joaquin Kit Foxes by Larger Canids. J Mammal 76

(3):723-729.

Ritchie EG, Johnson CN (2009) Predator interactions, mesopredator release and biodiversity

conservation. Ecol Lett 12 (9):982-998.

Roemer GW, Gompper ME, Van Valkenburgh B (2009) The Ecological Role of the Mammalian

Mesocarnivore. Bioscience 59 (2):165-173.

Rogers LL, Mech LD (1981) Interactions of Wolves and Black Bears in Northeastern Minnesota. J

Page 157: Tesis Carolina Soto Navarro - copia.pdf

156

Chapter 3

Mammal 62 (2):434-436. doi:10.2307/1380735.

Soto C, Desniça S, Palomares F (2012) Nonbiological factors affecting track censuses: implications

for sampling design and reliability.

Skaug H, Fournier D, Nielsen A, Magnusson A and Bolker B (2012). Generalized Linear Mixed

Models using AD Model Builder.

Smith PA (1994) Autocorrelation in logistic regression modelling of species distributions. – Global

Ecol. Biodiv. Lett. 4: 47–61.

Sovada MA, Roy CG, Bright JB, Gillis JR (1998) Causes and rates of mortality of swift foxes in

western Kansas. Journal of Wildlife Management 62 (4):1300-1306.

Thurber JM, RO Peterson, JD Woolington and JA Vucetich (1992) Coyote coexistence with wolves

on the Kenai Peninsula, Alaska. Canadian Journal of Zoology 70:2494–2498.

Valverde JA (1958). An ecological sketch of the Coto Doñana. British Birds 51:1-23.

VanderMeer J, Ens BJ (1997) Models of interference and their consequences for the spatial

distribution of ideal and free predators. J Anim Ecol 66 (6):846-858.

Van Horne B (1983) Density as a Misleading Indicator of Habitat Quality. Journal of Wildlife

Management 47 (4):893-901.

Viota M, López-Bao JV, Palomares F, Rodríguez A (2012) Shift in microhabitat use as a mechanism

allowing the coexistence of victim and killer carnivore predators.

White PA, RA Garrott (1997) Factors regulating kit fox populations. Canadian Journal of Zoology

75: 1982–1988.

Yamaguchi N, Rushton S, Macdonald DW (2003) Habitat preferences of feral American mink in the

Upper Thames. J Mammal 84 (4):1356-1373.

Page 158: Tesis Carolina Soto Navarro - copia.pdf

157

Chapter 4

Soto C, Palomares F (2012) Human-related factors regulate dog presence in

protected areas: implications for conservation and management control. Submitted.

CHAPTER 4

Human-related factors regulate dog presence in protected areas: implications for conservation and management control

Factores humanos regulan la presencia de perros en las

áreas protegidas: implicaciones para la conservación y

gestión

Page 159: Tesis Carolina Soto Navarro - copia.pdf

158

Chapter 4

Page 160: Tesis Carolina Soto Navarro - copia.pdf

159

Chapter 4

ABSTRACT

The presence of domestic species such as dogs Canis familiaris in protected

areas represents a conservation problem due to competition, predation and/or

disease transmission to native species. This introduced species may increase their

ranging activity towards protected areas by the planning of new urban areas and

by the spread of houses and small urban settlements because they are abundant in

those environments. Dogs’ effects on wildlife in protected areas may depend on

their nature (domestic dogs vs. feral dogs), on where they are found and on the

factors controlling their space use. In order to improve our ability to design effective

control policies, we investigate the factors affecting detection of dog tracks in a

Mediterranean national park which protects the world’s most critically endangered

felid species, the Iberian lynx (Lynx pardinus).

We studied the presence or absence of dogs at 69 2x2 km grids and

analysed the associated environmental and/or human constraints by logistic

regression models. We failed to detect dogs in areas away from anthropogenic

edges (track census effort above 470 km) so according to our results, dogs at DNP

may be domestic dogs incurring occasionally into the protected area from the

surrounding matrix. The detection of dog tracks was dependent on the presence

of people and consequently on the resources they provide. The direct threats of

dogs to wildlife may therefore not spread throughout the entire reserve or along the

entire edge length. Any strategy aimed at reducing domestic dogs’ impact in areas

of conservation concern where feral dogs populations are not established should

focus on the presence of settlements and their spatial spread, local awareness and

regulation to encourage local people to restrain their dogs’ movements as well as

control measures on boundaries and areas close to human dwellings.

Page 161: Tesis Carolina Soto Navarro - copia.pdf

160

Chapter 4 Chapter 4

RESUMEN

La presencia de especies domésticas como los perros Canis familiaris

en las áreas protegidas representa un problema para la conservación debido a

competición, predación y/o transmisión de enfermedades a especies nativas. Estas

especies introducidas deben incrementar su actividad en el interior de las áreas

protegidascomoconsecuenciadelaplanificacióndenuevasáreasurbanasasícomo

de la expansión de zonas urbanizadas, debido a su abundancia en esos ambientes.

Los efectos de los perros en la fauna nativa en las áreas protegidas debe

depender de su naturaleza (si se trata de perros domésticos o perros asilvestrados),

de dónde se encuentran y de los factores que determinan su uso del espacio. Para

mejorar nuestra capacidad de diseño de políticas de control efectivas, analizamos

los factores que determinan la detección de rastros de perros en un Parque Nacional

que protege la especie de felino más amenazada a nivel mundial, el lince Ibérico

(Lynx pardinus).

Estudiamos la presencia o ausencia de perros en 69 cuadrículas de 2 x 2

km2 y analizamos los factores ambientales y/o humanos que pudieran determinar

su presencia a través de modelos de regresión logísticos. No detectamos perros en

zonas alejadas de los límites antrópicos del área protegida a pesar del esfuerzo de

muestreo (más de 470 Km. de caminos censados). Según nuestros resultados, los

perros presentes en el Parque Nacional de Doñana deben ser perros domésticos

que hacen incursiones de manera ocasional en el área protegida desde la matriz

antrópica circundante. La detección de rastros de perros dependió de la presencia

de humanos y consecuentemente de los recursos que proporcionan. Los efectos

directos de los perros en la fauna nativa no deben por tanto mostrar la misma

intensidad en toda la extensión del área protegida o a lo largo de toda la longitud

Page 162: Tesis Carolina Soto Navarro - copia.pdf

161

Chapter 4 Chapter 4

de sus límites. Cualquier plan de manejo que pretenda disminuir la incidencia de

perros domésticos en áreas protegidas en las cuales no existan poblaciones de

perros silvestres establecidos, debe focalizarse en la presencia de asentamientos

humanos y su localización espacial, en la concienciación y regulación local para

fomentar que los propietarios restrinjan los movimientos de sus mascotas, así como

en la localización de las medidas de control en los límites de las áreas protegidas

próximos a las viviendas o zonas habitadas.

Page 163: Tesis Carolina Soto Navarro - copia.pdf

162

Chapter 4 Chapter 4

INTRODUCTION

The introduction of non-native species into ecosystems represents one of

the causes of native species decline and endangerment (e.g., King 1985, Soulé

1990, Williamson 1999, IUCN 2012). Due to human population growth, urban

sprawl and the rapid urbanization of natural landscapes, humans and with them

their companion animals such as domestic dogs Canis familiaris may be closely in

contact with wildlife in many areas (Ordeñana et al. 2010) including places where

nature conservation is a priority, such as protected areas and national parks created

to protect populations of vulnerable or threatened species. These non-native species

introduced by human across the globe (Wandeler et al. 1993) may therefore increase

their ranging activity towards the remaining natural landscapes extending within

those areas the deleterious human-associated effects.

In areas of conservation concern presence of companion animals like domestic

dogs may pose distinct threats including competition, interbreeding, predation and

disease. Dogs harass and kill wildlife exhibiting in many cases a “surplus” killing

behaviour (e.g., Iverson 1978, Kruuk & Snell 1981, Manor & Saltz 2004, Banks

& Bryan 2007), compete with wildlife (e.g., Boitani 1983, Butler & du Toit 2002,

Butler et al. 2004, Vanak et al. 2009) and spread disease like rabies, parvovirus or

canine distemper (e.g., Sillero-Zubiri et al. 1996, Cleaveland et al. 2000, Fiorello

et al. 2004, Fiorello et al. 2006, Vanak & Gompper 2009). Moreover, dogs such

asmid-sized canids, can also exert a top-down influence on smaller carnivores

through interference competition or intraguild predation (e.g., Glen & Dickman

2005, Mitchell & Banks 2005, Vanak & Gompper 2009). Studying where domestic

dogs came from in protected areas is needed in order to manage them and prevent

their potential impacts on native fauna. Dogs at protected areas may exhibit varying

Page 164: Tesis Carolina Soto Navarro - copia.pdf

163

Chapter 4 Chapter 4

levelsofhuman reliance, fromdomesticdogswhoseneedsare satisfieddirectly

or indirectly by people (i.e., owned dogs, urban or rural free-roaming dogs and/

or village dogs (Vanak & Gompper 2009)) and spend time sporadically in natural

protected areas, to feral dogs living and reproducing freely in protected areas. The

effects of dogs on wildlife may therefore depend on their nature (i.e., domestic dogs

vs. feral dogs), on where they are found and on the factors controlling their numbers

and space use.

As a heavily human-subsidized species, domestic dogs exhibit higher

densities in areas close to human residences or places with a high density of houses

(e.g., Odell & Knight 2001, Ordeñana et al. 2010) as well as in areas near natural

reserve borders with agriculture, where rural human residences are nearby. In

contrast, they may exhibit lower densities in areas contiguous to large tracts of

native forest, which may be acting as a buffer to the entrance of dogs (Srbek-Araujo

& Chiarello 2008).

Domestic dogs’ records decrease from anthropogenic matrices to forest

patch edges (Torres & Prado 2010). Hence, if we consider protected areas as large

patches, presence and therefore direct negative effects of domestic dogs on native

fauna (i.e., predation and/or competition) may decrease from the anthropogenic

matrix to the protected area interior reaching their maximum at the borders. This

could strengthen the negative anthropogenic edge effect associated with these

artificialborderareas(Woodroffe&Ginsberg1998,Revillaetal.2001)diminishing

therefore the reserve’s effectiveness in conserving wildlife.

Feral dogs are meanwhile completely wild and independent of human-derived

materials as food sources (Nesbitt 1975, Green & Gipson 1994). They depend

almost exclusively on wild-caught food (e.g., Marsack & Greg 1990, Glen &

Page 165: Tesis Carolina Soto Navarro - copia.pdf

164

Chapter 4 Chapter 4

Dickman 2005, Mitchell & Banks 2005, Campos et al. 2007, Glen & Dickman

2008) and might not exhibit any human association. The direct threats of feral dogs

to wildlife may therefore spread throughout entire protected areas.

In this context we studied the patterns of detection of dog tracks and the

associated environmental and/or human constraints that could influence their

presence in a fully protected Mediterranean area, Doñana National Park (DNP),

with high potential for dog-arrival due to its proximity to urban and rural settlements

and with the potential of dog-settlement due to its size.

Our main research goals were to answer: (1) where are dogs present at

DNP? And (2) what factors predict dog presence? A priori, we hypothesised that

dogs using DNP might come either from a domestic dog population formed by

individuals that incur occasionally from the surrounding matrix, or from a feral

dogpopulation livingand reproducing freely. In thefirstcase,wewouldexpect

that dogs are heavily dependent on humans and are more abundant at the edges

of the protected area close to human settlements than far away from these edges.

In the second case, we would expect that dogs avoid human association, are more

evenly distributed throughout the protected area, and their presence or abundance

related to environmental features describing habitat suitability or potential wild

food availability. DNP is optimal for the design of a study of this type since 1) part

of the protected area is surrounded by human settlements and others are not, and 2)

it is large enough to potentially hold a feral dog population in its interior.

Page 166: Tesis Carolina Soto Navarro - copia.pdf

165

Chapter 4 Chapter 4

METHODS

Study area

ThestudywascarriedoutatDoñanaNationalPark(DNP),aflatsandyarea

located in south-western Spain (550 Km2,37º9´N,6º26´W)atsealevel.Wedefined

the anthropogenic DNP edge as the northern and western edges in close contact

withhumansettlements,cropfieldsandahigh-traffichighway,andthenaturalDNP

edge as the southern edge limiting with the Atlantic Ocean and the eastern edge

limiting with the Guadalquivir River through a 27,000 ha marshland area (Fig. 1).

Population in the main suburban settlement (situated in the western vicinity

and separated from the DNP by a paved road) undergoes great variation between

winter and summer, as it is mainly a summer resort occupied by about 2,710 people

in summer seasons. The village situated in the north, and separated by the DNP

from the marshland area, is occupied by about 1,635 year-round residents, although

during a spring pilgrimage, the number of visitors can reach up to one million

people. There are also private large and medium-sized farms used for agriculture

as well as six visitor centers, hiking and cycling paths, recreation zones and bird

observatories in the nearby area. The DNP is fenced but the fence is permeable to

small and medium-sized animals including dogs. Free access is forbidden to people

and access to the core area and the dirt-road network inside the DNP is restricted to

the park staff and researchers.

The climate is Mediterranean sub-humid, with mild, wet winters, and hot,

dry summers, and an average annual rainfall around 550 mm. There are three main

biotopes in the park: scrubland, dunes, and marsh (Valverde 1958). The dune area

is situated at the western border of the protected area limited by the Atlantic Ocean

and the marsh area at the northern and eastern borders limited by the Guadalquivir

Page 167: Tesis Carolina Soto Navarro - copia.pdf

166

Chapter 4 Chapter 4

Figure 1.StudyareadefinedbytheDoñanaNationalParksiteandthesurroundinganthropogenicarea. Dog tracks detected during track counts in 2×2 km2 cell grids between November 2007 and April 2009 are shown below in detail.

Page 168: Tesis Carolina Soto Navarro - copia.pdf

167

Chapter 4 Chapter 4

River. The Mediterranean scrubland represents approximately half of the National

Park surface area and is mainly characterised by heterogeneous patches of

xerophytic species such as Halimium sp. and Cistus sp., and hydrophytic ones such

as Erica sp., with some patches of Juniperus phoenica and Pistacia lentiscus shrubs.

Interspersed among the scrubland there are scattered cork oak trees (Quercus suber)

and wild olive trees (Olea europea), and a few patches of pine Pinus pinea and

eucalyptus Eucalyptus sp. plantations.

Among larger mammals wild boar (Sus scrofa), red deer (Cervus elaphus)

and fallow deer (Dama dama) are frequent. Wild carnivores include red fox (Vulpes

vulpes), Eurasian badger (Meles meles), Egyptian mongoose (Herpestes ichneumon),

common genet (Genetta genetta), least weasel (Mustela nivalis), European polecat

(Mustela putorius), Eurasian otter (Lutra lutra), wild cat (Felis silvestris) and

Iberian lynx (Lynx pardinus). 14 small-medium sized mammal species have been

recorded in DNP, as well as 397 bird species, approximately half of which are

breeding in the park.

Field methods

To evaluate detection of dog tracks we carried out systematic track surveys

on sandy paths at 69 2x2 km2 grid cells located within the entire scrubland and dune

areas of the protected area during the wet season of 2007-08 and 2008-09.

We sampled for dog tracks in each square by slowly walking (ca. 1.5 km/h)

atleast3kmalongavailablepathways(i.e.,sandyroadsandfirebreaks).Oncea

track was detected, we georeferenced it using a GPS. We re-sampled the same path

(leaving at least seven days between samplings) a second time in a few squares until

completing3kmifduringthefirstsamplingtherewereinsufficientavailablepaths

Page 169: Tesis Carolina Soto Navarro - copia.pdf

168

Chapter 4 Chapter 4

within the square to achieve this distance. We always carried out surveys at least

three days after any rainfall.

Environmental quality of the sampling grids to hold a feral dog population

was assessed by sampling potential prey availability and general habitat structure.

Feral dogs are habitat generalists and opportunistic foragers depending almost

exclusively on a wide variety of wild-caught food (e.g., Boitani et al. 1995, Marsack

& Greg 1990). Potential prey availability was estimated by counting tracks of small

mammals, European rabbits (Oryctolagus cuniculus), red partridges (Alectoris rufa),

domestic cows (Bos taurus) and horses (Equus caballus) and wild ungulates such

as the fallow deer (Dama dama), the red deer (Cervus elaphus) and the wild boar

(Sus scrofa). Prey such as small mammals, rabbits, partridges and young of wild

ungulates might be hunted by feral dogs, but adults of many species are consumed

as carrion (e.g., Sillero-Zubiri & Macdonald 1997, Butler et al. 2004, Aiyadurai &

Jhala 2006). Prey species were surveyed by walking between 7 and 10 25 m-long

transects of approximately 1.7 m wide (the width of a four-wheel-drive car) and

separatedbyat least300mwithineach2x2kmgrid.Duringthefirstyear,prey

transects were carried out throughout the wet season, when tracks from dogs were

surveyed, but during the second year, we concentrated samplings within the month

of April to avoid possible intermonthly variations in abundance for some species

(e.g., see Kufner 1986, Palomares et al. 2001 for small mammals and European

rabbits, respectively.

In order to identify main habitats at DNP (dunes, pine reforestation and

Mediterraneanscrubland),generalhabitatstructurewasrecordedforthefirstyear.

We estimated visually the percentage of open ground cover, and the percentage

and modal height of three vegetation categories: short shrub (xerophytic species

Page 170: Tesis Carolina Soto Navarro - copia.pdf

169

Chapter 4 Chapter 4

such as Halimium sp. and Cistus sp), tall shrub (Erica sp., Juniperus phoenica and

Pistacia lentiscus shrubs) and trees. The estimation of these variables related to

habitat structure were carried out in a circle of 15 m radius around the sampling

point every 300 m on transects walked for dog and prey tracks. For each square

sampled, we averaged the value obtained at the vegetation sampling points.

Data analyses

We examined different environmental and/or human-related factors

explaining the detection of dog tracks within each 2x2 km grid at DNP using

generalised linear models with a binomial error distribution and a logit link function

(logistic procedure in SAS® 9.2 (SAS Inst. Inc., Cary, NC)). Non-biological factors

(i.e. methodological and climatic variables) have been previously reported as

potentially affecting results of track censuses (Soto et al. 2012); therefore we also

incorporatedinthemodelfittingthesefactorstocontrolfortheirpotentialeffect.

Each grid cell was associated with a set of habitat variables as vegetation

type (dunes (> 60% of open groundcover on average inside the grid), pine forest (>

60% of pine vegetation on average) and Mediterranean shrub (> 60% of shrub (short

or tall) vegetation on average) and prey abundance (kilometric abundance index

of total prey) and with variables describing their location in DNP by calculating

Euclidean distance from the grid cell centre to every infrastructure.

We used a two-step approach to analyze data. First, we assessed which

methodological and/or climatic variables potentially affect dog detectability and

selectedthebest-fittingmodelusinganinformation-theoreticapproach(Burnharm

& Anderson 2002). Variables considered to be included in models were the

observer who carried out censuses (three and two observers for both study years

Page 171: Tesis Carolina Soto Navarro - copia.pdf

170

Chapter 4 Chapter 4

respectively) (Obs), relative humidity (%) on census day (Hum), days since last rain

(Rain), year (Year) and the maximum temperature (ºC) calculated as the average of

the maximum temperature on the census day and the maximum temperature two

consecutive days before the census day (Temp). Climatic data was obtained from a

meteorological station located inside DNP (Latitude: 37º 1’18’’, Longitude: 6º 33’

17’’) http://icts.ebd.csic.es.

Secondly,weusedthisbest-fittingmodelasanullmodeltodevelopaset

of a priori models of dog tracks’ detectability at DNP based on three groups of

hypotheses stemming from the different variables considered in relation to 1) the

possible human dependence of dog tracks’ detectability (i.e., dogs being domestic),

2) the possibility of dogs coming from a feral population (i.e., dog tracks’

detectability related to environmental and/or prey variables), or 3) dogs coming

from a combination of both domestic and feral populations. Variables included

in models were the minimum distance to nearest single house or visitors centre

(D_HOU), minimum distance to human settlements (D_VIL), distance to nearest

paved road (D_RD), distance to anthropogenic edge of DNP (D_ANT), distance to

natural edge of DNP (D_NAT), Kilometre Abundance Index of total prey (Pt) and

the vegetation category; dunes, pine forest, scrubland (Veg).

Initially, the correlation among variables was explored using Kendall’s tau

statistics, in order to eliminate highly correlated variables (tau > 0.4) and among

them; we retained the more ecologically meaningful ones.

We used the Akaike Information Criterion (AIC) corrected for a small sample

size (AICc) and the difference in AICc between each model and the model with the

lowest AICc (∆AICc) to rank the models according to their capacity to describe

the data parsimoniously (Burnharm & Anderson 2002). The model with the lowest

Page 172: Tesis Carolina Soto Navarro - copia.pdf

171

Chapter 4 Chapter 4

AICcandthosewith∆AICc≤2wereconsideredtobesupported.ΔAICcvalues

wereusedtocomputeAkaike’sweights(ωi), which is the weight of evidence that a

model is the best approximating model given the model set (Burnham & Anderson

2002)andisdefinedas

ωi =exp(-1/2∆i)/∑R r=1exp(-1/2∆r).

In addition, the relative variable importanceofpredictorvariablej(ωj) was

determinedasthesumoftheωiacrossallmodelswherejoccurs.Largerωj values

indicate a higher relative importance of variable j compared to other variables.

For each hypothesis we used data from both years andwe began by fitting all

variables included and then successively removing the terms that decreased the

AIC the most (Crawley 2002).

Finally,we explored the classification accuracy of the selectedmodel(s)

using the nonparametric estimate of the area under the curve (AUC) of receiver-

operating characteristic plots (Hosmer & Lemeshow 2000). AUC indices range

from 0.5 to 1, with ranges from 0.5 to 0.7 indicating poor discrimination, from 0.7

to 0.8 acceptable discrimination, from 0.8 to 0.9 good discrimination, and > 0.9

outstanding discrimination. The AUC measure from the ROC curve is considered

useful for comparing the performance of the detection of dog tracks-absence model

in a threshold-independent fashion (Fielding & Bell 1997).

Page 173: Tesis Carolina Soto Navarro - copia.pdf

172

Chapter 4 Chapter 4

RESULTS

A total of 471 km was walked and 72 dog tracks were found during surveys

(Fig. 1). We detected dog tracks at 16 and 12 grid cells surveyed in each study year,

respectively. Four anthropogenic variables were strongly correlated. In particular,

distance to the anthropogenic edge of the National Park (D_ANT), distance to

nearest village (D_VIL), distance to nearest paved road (D_ROAD) and distance

to the natural edge of DNP (D_NAT). Analyses were focused on distance to the

anthropogenic edge of DNP and distance to the natural edge of DNP.

The best-fittingmodel explaining detection of dog tracks based on non-

biological factors included humidity (Hum) and days since last rain (Rain). Humidity

waspositivebutnon-significant(oddsratio=1.035,χ2 = 2.159, P=0.142) whereas

dayssince last rainwasnegativelyandsignificantlycorrelatedwithdetectionof

dogtracks(oddsratio=0.931,χ2 = 4.286, P=0.035). Both predictors were therefore

included as covariables in further analyses.

The analysis of dog tracks’ detectability based on human-related, habitat

and prey variables showed that the a priori hypothesis best adjusted to data only

included human-related predictors.

The best model describing the detection of dog tracks at DNP after adjusting

for detection probability variables in the null model included the distance to the

anthropogenic edge of DNP (explaining 27.6 % of the deviance); the next model

included the distance to the anthropogenic edge of DNP and the distance to the

natural edge of DNP (models 1 and 3, Table 1).

Detectionofdogswassignificantlyandnegativelyassociatedtothedistance

totheanthropogenicedgeofDNP(oddsratio=0.737,χ2 = 8.020, P=0.005)

(Fig. 2). Equation for this model (model 1, Table1) is:

Page 174: Tesis Carolina Soto Navarro - copia.pdf

173

Chapter 4 Chapter 4

logit(P) = -3.32(±1.86) - 0.31(±0.11)D_ANT + 0.05(±0.02)Hum -

0.06(±0.04)Rain

where P is the probability of dog occurrence; values within parentheses are standard

errors.

The relative variable importance of this anthropogenic variable determined

asthesumoftheωiacrossallmodelswherethevariableoccurredwasωj=0.999.

The discriminating ability of the top model was AUC = 0.802 (P < 0.0001).

DISCUSSION

Results show that the detection of dog tracks at DNP was associated with

distance from the park boundary with human presence, a synthetic indicator of

Table 1. Selection results from logistic regression models investigating the effects of anthropogenic, habitat and a combination of all variables on detection of dog tracks at DNP. For the top models, we report the small sample-size-adjusted Akaike’s information criteria (AICc), the difference in AICc between each model with the lowest AICc(∆AICc) and the AICc weight (wi).

Model code Deviance AICc ∆AICc wi0. Null model 139.210 121.107 12.939 0.000Anthropogenic1. D_ANT, Hum, Rain 100.170 108.168 0.000 0.2762. D_NAT, D_ANT, D_HOU, Hum, Rain 97.470 109.469 1.301 0.1443. D_NAT, D_ANT, Hum, Rain 98.240 108.242 0.074 0.2664. D_ANT, D_HOU, Hum, Rain 99.750 109.747 1.579 0.125Habitat5. Pt, Hum, Rain 112.970 120.971 12.803 0.0006. Veg, Hum, Rain 106.720 122.265 14.097 0.0007. Pt, Veg, Hum, Rain 110.900 122.897 14.729 0.000Global8. D_NAT, D_ANT, D_HOU, Pt, Hum, Rain 97.950 111.953 3.785 0.0429. D_NAT, D_ANT, Pt, Hum, Rain 98.850 110.853 2.685 0.07210. D_ANT, Pt, Hum, Rain 100.810 110.811 2.643 0.074

Page 175: Tesis Carolina Soto Navarro - copia.pdf

174

Chapter 4 Chapter 4

humaninfluencethatcapturestheeffectofdistancetonearestvillageandnearest

paved road.

We found a high number of dog records near the reserve’s borders where

rural and suburban households were closer and we were unable to detect signs of

dogs far away from these anthropogenic DNP edges in spite of our large census

effort. Additionally, dog tracks’ detectability did not seem to be related to the

environmental variability of DNP such as vegetation type or prey availability.

This lack of association between dogs and variables describing habitat

suitability or potential wild food availability, their dependence on human-related

variables and their higher abundance at the edges of the protected area close to

human settlements compared to areas far away from these edges, support our

Figure 2. Probability of domestic dog tracks’ detectability as a function of distance to the anthropogenic edge of DNP during the wet seasons of 2007-08 and 2008-09.

Page 176: Tesis Carolina Soto Navarro - copia.pdf

175

Chapter 4 Chapter 4

hypothesis that dogs using DNP come from a domestic dog population formed by

individuals that arrive sporadically from the surrounding matrix (i.e., owned dogs,

urban/rural free-roaming dogs or village dogs (Vanak & Gompper 2009)) and not

from a feral dog population living and reproducing freely. The lack of association

between detection of dog tracks and wildlife food resources possibly also reveals

the dependence of dogs on human-derived materials, which is typical for the vast

majority of dog populations for which diet has been studied (Atickem 2003, Butler

et al. 2004, Vanak 2008, Vanak & Gompper 2009).

Feral dogs survive and reproduce independently of human assistance but

some feral dogs use human garbage for food (Green & Gipson 1994). A feral dog

population established inside DNP could therefore use the edge of the protected

area to access human subsidies. Nevertheless, the primary feature that distinguishes

feral from domestic dogs is the degree of reliance on humans, so if dogs using

DNP come from a feral dog population living and reproducing freely but accessing

human subsidies for food, we would expect dog detectability to be dependent

on habitat suitability and/or wild food availability and marginally dependent on

human-related variables.

In contrast with domestic dogs, feral dogs are highly social living in packs

or groups year round in most cases (Daniels & Bekoff 1989, Green & Gipson 1994).

In our study area, we only detected isolated dog’s tracks. Additionally, camera-

trapping studies conducted inside DNP during the same period detected only six

dogs,allofwhichwerefoundnearhumansettlementsandidentifiedasdomestic

animals based on their external physical appearance (personal observ.).

Additionally, the occurrence of dog tracks restricted to the DNP edge and

the low number of tracks detected far away from these reserve’s edges supports

Page 177: Tesis Carolina Soto Navarro - copia.pdf

176

Chapter 4 Chapter 4

the idea that the presence of domestic dogs at Doñana may be exacerbating the

anthropogenic edge effect associated with its border areas.

Some previous authors have also reported a higher occurrence of domestic dogs

near the edges of natural reserves compared to their interiors (Butler & du Toit

2004, Srbek-Araujo & Chiarello 2008, Lacerda et al. 2009, Marks & Duncan 2009).

In this sense, domestic dogs could be generally considered as human-derived

edge effect at protected areas. The direct threats of domestic dogs to wildlife may

therefore not spread throughout the entire protected area or along the entire edge

length reaching its maximum near the anthropogenic border areas.

Edge effects can be important in the dynamics of populations living in

fragmented landscapes because they may affect key population parameters, such

as survival and reproduction (Murcia 1995, Noss & Csuti 1997). The peripheries

of reserves thus function as population sinks (Revilla et al. 2001) and the resulting

edge effect can cause the decline or the extinction of protected carnivore populations

(Woodroffe & Ginsberg 1998). The higher occurrence of dogs in these border areas

due to human presence in the surrounding matrix might exacerbate this effect.

Nevertheless, although domestic dogs rarely leave the vicinity of human

dwellings (Vanak & Gompper 2009, Butler & du Toit 2002) and appear to exhibit

a range mainly limited to reserves’ borders, their daily activity pattern may involve

free-ranging that can bring them into contact with wildlife, especially when their

movementsarenotconfinedtoaproscribedoutdoorarea(Butleretal.2004,Vanak

2008).

Diseases from dogs that affect wild species (e.g., Woodroffe & Ginsberg

1999, Cleaveland et al. 2000) could be transmitted across the border of reserves

worsen therefore the direct edge effects represented by domestic dogs in protected

Page 178: Tesis Carolina Soto Navarro - copia.pdf

177

Chapter 4 Chapter 4

areas (i.e., the eventual predation and displacement of some species near the park

border). In consequence, domestic dogs maintaining highly virulent, multi-host

pathogenscan inducemortality towildcarnivoresowing to interspecificdisease

transmission between susceptible wild carnivores in the community even when the

wildlife population of interest may never have contact with them.

DNP houses one of the last metapopulation of the most globally endangered

felid species, the Iberian lynx (Lynx pardinus) (Palomares et al. 2011) so dogs

living or spending time inside the area come into contact with this wild endangered

carnivore posing a serious risk for its conservation (Ferreras et al. 1992, Meli et al.

2009 and 2010, Millán et al. 2009a and 2009b).

Domestic dogs are present in large numbers in urban, suburban and rural

areas, so, due to their high numbers, they can have a substantial impact on wildlife,

even when they do not need to hunt to survive.

This situation forms a complicated scenario for conservation biologists

especially in conservation areas with endangered endemic carnivore populations

and/or those where reserve size is too small in relation to the scale of the species’

movement. There is a huge demand for more knowledge about and experience with

this type of situation, in order to help prevent or diminish the impacts on native

fauna in natural reserves.

Conclusions and management implications

Domestic dogs in DNP and in the surrounding matrix can considerably

diminish the reserve’s effectiveness in conserving wildlife. The rapid urbanization

process close to conservation units and the growth of domestic dog populations is

an increasing worldwide conservation. Thus, transborder conservation measures

Page 179: Tesis Carolina Soto Navarro - copia.pdf

178

Chapter 4 Chapter 4

must be implemented in the protected areas.

InthespecificcaseofDNP,controllingthedogpopulationsisurgentandkey

for the wildlife protection in this National Park. The detection of dog tracks at DNP

was dependent on the presence of people and consequently on the resources they

provide such that the potential direct effects of dogs on wildlife may be stronger on

these anthropogenic boundaries. Management of domestic dogs in protected areas

where feral dogs’ populations are not established may therefore be focused at borders

and neighbourhoods close to human dwellings. We suggest that control measures

must include the restriction of domestic dog’s free-roaming activity through local

public awareness focusing on responsible ownership and biodiversity conservation,

the removal of un-owned dogs through systematic campaigns on reserve boundaries

near human settlements, as well as strengthening of pet policies.

ACKNOWLEDGMENTS

ThisstudywasfinancedbytheprojectsCGL2004-00346/BOS(SpanishMinistryofEducationand

Science) and 17/2005 (Spanish Ministry of the Environment; National Parks Research Programme),

and sponsored by Land-Rover España S.A. CS received a JAE predoctoral grant from CSIC

(Spanish National Research Council). We are especially thankful to J.C. Rivilla and S. Desniça for

theirassistanceduringfieldwork,toN.Fernándezforhisusefulinputsforanalysisofthedataand

valuable suggestions, and to C. Dickman and P. Ferreras for their comments on earlier versions of

the manuscript.

REFERENCES

Acevedo-Whitehouse, K. (2009). The importance of disease management programmes for wildlife

conservation. Anim. Conserv. 12, 185–186.

Aguirre, A.A., Starkey, E.E., Hansen, D.E. (1995). Wildlife diseases in national park ecosystems.

Wildlife Soc. B. 23, 415–419.

Page 180: Tesis Carolina Soto Navarro - copia.pdf

179

Chapter 4 Chapter 4

Aiyadurai, A., Jhala, Y.V. (2006). Foraging and habitat use by golden jackals (Canis aureus) in the

Bhal Region, Gujarat, India. J. Bombay Nat. Hist.Soc. 103, 5–12.

Atickem, A. (2003). The ecology of domestic dog (Canis familiaris) and its effect on the survival

of the Ethopian wolf (Canis simensis) in the Web Valley of the Bale Mountains National

Park, Ethopia. MS thesis, Addis Ababa University, Addis Ababa, Ethiopia.

Banks, P., Bryant, J. (2007). Four-Legged Friend or Foe? Dog Walking Displaces Native Birds. Biol.

Lett. 3, 611–613.

Boitani, L. (1983). Wolf and dog competition in Italy. Acta Zool. Fennica. 174, 259–264.

Boitani, L., Francisci, F., Ciucci, P., Andreoli, G. (1995). Population biology and ecology of feral

dogs in central Italy. In The Domestic Dog. Its Evolution, Behaviour, and Interactions

with People: 217–244. Serpell, J. (Ed.). Cambridge, UK: Cambridge University Press.

Burnharm, K.P., Anderson, D.R. (2002). Model selection and multimodel inference. A practical

information-theoretic approach. 2nd ed. New York: Springer.

Butler, J.R.A., du Toit, J.T. (2002). Diet of free-ranging Domestic Dogs (Canis familiaris) in rural

Zimbabwe: Implications for wild scavengers on the periphery of wildlife reserves.

Anim. Conserv. 5, 29–37.

Butler, J.R.A., du Toit, J.T., Bingham, J. (2004). Free-ranging domestic dogs (Canis familiaris) as

predators and prey in rural Zimbabwe: threats of competition and disease to large wild

carnivores. Biol. Conserv. 115, 369–378.

Campos, C.B., Esteves, C.F., Ferraz, K., Crawshaw, P.G., Verdade, L.M. (2007). Diet of free-ranging

cats and dogs in a suburban and rural environment, south-eastern Brazil. J. Zool. 273, 14–20.

Clark, T.W., Curlee, A.P., Reading, R.P. (1996). Crafting effective solutions to the large carnivore

conservation problem. Conserv. Biol. 10, 940–948.

Cleaveland, S., Appel, M.G.J., Chalmers, W.S.K., Chillingworth, C., Kaare, M., Dye, C. (2000).

Serological and demographic evidence for domestic dogs as a source of canine distemper

virus infection for Serengeti wildlife. Vet. Microbiol. 72, 217–227.

Crawley, M.J. (2002). Statistical computing: An introduction to data analysis using S-Plus.

Chichester, West Sussex, UK, Wiley.

Crooks, K.R. (2002). Relative sensitivities of mammalian carnivores to habitat fragmentation.

Conserv. Biol. 16, 488–502.

Page 181: Tesis Carolina Soto Navarro - copia.pdf

180

Chapter 4 Chapter 4

Ferreira, J.P., Leita, I., Santos-Reis, M., Revilla, E. (2011). Human-related factors regulate the

spatial ecology of domestic cats in sensitive areas for conservation. PlosOne 6, e25970.

Ferreras, P., Aldama, J.J, Beltrán, J.F., Delibes, M. (1992). Rates and causes of mortality in a

fragmented population of lberian lynx Felis pardina Temminck, 1824. Biol. Conserv. 61,197–202.

Fielding, A.H., Bell, J.F. (1997). A review of methods for the assessment of prediction errors in

conservation presence/absence models. Environ. Conserv. 24, 38–49.

Fiorello, C.V., Noss, A.J., Deem, S.L. (2006). Demography, hunting ecology, and pathogen exposure

of domestic dogs in the Isoso of Bolivia. Conserv. Biol. 20, 762–771.

Glen, A.S., Dickman, C.R. (2005). Complex interactions among mammalian carnivores in Australia,

and their implications for wildlife management. Biol. Rev. 80, 387–401.

Glen, A.S., Dickman, C.R. (2008). Niche overlap between marsupial and eutherian carnivores: does

competition threaten the endangered spotted-tailed quoll?. J.Appl. Ecol. 45, 700–707.

Green, J.S., Gipson, P.S. (1994). Feral dogs. In The Handbook: Prevention and Control of Wildlife

Damage :1–7. Hygnstrom, S. E., Timm R. M and Larson G. E. (Ed.). University of

Nebraska, Lincoln, NE, USA.

IUCN 2012. The IUCN Red List of Threatened Species. Version 2012.1.

<http://www.iucnredlist.org>. Downloaded on 25 June 2012.

Iverson, J.B. (1978). The impact of feral cats and dogs on populations of theWest Indian rock iguana,

Cyclura carinata. Biol. Conserv. 14, 63–73.

King, W.B. (1985). Island birds: will the future repeat the past?. In Conservation of island birds:

3–15. Moors, P. J. (Ed.). ICBP Technical Publication Number 33.

Kruuk, H., Snell, H. (1981). Prey selection by feral dogs from a population of marine iguanas

Amblyrhynchus cristatus. J. Appl. Ecol. 18, 197–204.

Kufner, M.B. (1986). Tamaño actividad, densidad relativa y preferencias de hábitat de los pequeños

y medianos mamíferos de Doñana, como factores condicionantes de su tasa de predación.

Thesis, Universidad Autónoma, Madrid, Spain.

Lacerda, A.C.R., Tomas, W.M., Marinho-Filho, J. (2009). Domestic dogs as an edge effect in the

Brasília National Park, Brazil: interactions with native mammals. Anim. Conserv. 12, 477–487.

Manor, R., Saltz, D. (2004). The impact of free-ranging dogs on gazelle kid/female ratio in a

fragmented area. Biol. Conserv. 119, 231–236.

Page 182: Tesis Carolina Soto Navarro - copia.pdf

181

Chapter 4 Chapter 4

Marks, B.K., Duncan, R.S. (2009). Use of Forest Edges by Free-ranging Cats and Dogs in an

Urban Forest Fragment. South. Nat. 8, 427–436.

Marsack, P., Greg, C. (1990). Feeding behavior and diet of dingoes in the Nullarbor region, Western

Australia. Aust. Wildlife Res. 17, 349–357.

McCallum, H. (1996). Immunocontraception for wildlife population control. Trends Ecol. Evol. 11,

491–493.

Meli, M.L., Cattoril, V., Martínez, F., López, G., Vargas, A., Simón, M.A., Zorrilla, I., Muñoz A.,

Palomares F., López-Bao, J.V., Pastor, J., Tandom, R., Willi, B., Hofmann-Lehmann R.,

Lutz, H. (2009). Feline leukaemia virus and other pathogens as important threats to the

survival of the critically endangered Iberian Lynx (Lynx pardinus). PLoS ONE. 4, e4744.

Meli,M.L.,Cattori,V.,Martınez,F.,López,G.,Vargas,A.,Palomares,F.,López-Bao,J.V., Hofmann-

Lehmann, R., Lutz, H. (2010). Feline leukemia virus infection: a threat for the survival of the

critically endangered Iberian lynx (Lynx pardinus). Vet. Immunol. Immunop. 134, 61–67.

Millán, J., Candela, M.G., Palomares, F., Cubero, M.J., Rodríguez, A., Barral, M., de la Fuente,

J., Almería, S., León-Vizcaíno, L (2009a). Disease threats to the endangered Iberian lynx

(Lynx pardinus). Vet. J. 182, 114–124.

Millán, J., Cabezón, O., Pabón, M., Dubey, J.P., Almería, S. (2009b). Seroprevalence of Toxoplasma

gondii and Neospora caninum in feral cats (Felis silvestris catus) in Majorca, Balearic

Islands, Spain. Vet. Parasitol. 165, 323–326.

Mitchell, B.D., Banks, P.B. (2005). Do wild dogs exclude foxes? Evidence for competition from

dietary and spatial overlaps. Austral Ecol. 30, 581–591.

Murcia, C. (1995). Edge effects in fragmented forests: implications for conservation. Trends Ecol.

Evol. 10, 58–62.

Nesbitt, W.H. (1975). Ecology of a feral dog pack on a wildlife refuge. In The Wild Canids : 391–

395. Fox, M. W. (Ed.). New York, USA: Van Nostrand Reinhold Company.

Neronov, V.M. Khlyap, L.A. Bobrov, V.V., Warshavsky, A.A. (2008). Alien species of mammals

and their impact on natural ecosystems in the biosphere reserves of Russia. Integrative

Zool. 3, 83–94.

Noss, R.F., Csuti B. (1997). Habitat fragmentation. In Principles of conservation biology: 269–

304. Meffe, G. K. and Carroll, C. R. (Eds.). Sunderland, Massachusetts: Sinauer

Page 183: Tesis Carolina Soto Navarro - copia.pdf

182

Chapter 4

Associates, Inc., Publishers.

Nowell, K., Jackson, P. (1996). Wild Cats: Status Survey and Conservation Action Plan. IUCN/

SSC, Gland, Switzerland.

Odell, E.A., Knight, R.L. (2001). Songbird and medium-sized mammal communities associated

with exurban development in Pitkin County, Colorado. Conserv. Biol. 15, 1143–1150.

Ordeñana, M.A., Crooks, K.R., Boydston, E.E., Fisher, R.N., Lyren, L.M., Siudyla, S., Haas,

C.D., Harris, S., Hathaway, S.A., Turschak, G.M., Miles, A.K., Van Vuren, D.H. (2010).

Effects of urbanization on carnivore species distribution and richness. J. Mammal. 91,

1322–1331.

Palomares, F., Delibes, M., Revilla E., Calzada, J., Fedriani, J.M. (2001). Spatial ecology of Iberian

lynx and abundance of European rabbits in Southwestern Spain. Wildlife Monogr.148,1–36.

Reed, S.E., Merenlender, A.M. (2011). Effects of Management of Domestic Dogs and Recreation on

Carnivores in Protected Areas in Northern California. Conserv. Biol. 25, 504–513.

Revilla, E., Palomares, F., Delibes, M. (2001). Edge-core effects and the effectiveness of traditional

reserves in conservation: Eurasian Badgers in Doñana National Park. Conserv. Biol. 15,

148–158.

Ryser-Degiorgis, M.P., Hofmann-Lehmann, R., Leutenegger, C.M., af Segerstad, C.H., Morner, T.,

Mattsson, R., Lutz, H. (2005). Epizootiologic investigations of selected infectious disease

agents in freeranging Eurasian lynx from Sweden. J. Wildlife Dis. 41, 58–66.

Schonewald-Cox, C., Azari, R., Blume, S. (1991). Scale, variable density and conservation planning

for mammalian carnivores. Conserv. Biol. 5, 491–495.

Sillero-Zubiri, C., King, A.A., MacDonald, D.W. (1996). Rabies and mortality in Ethiopian wolves

(Canis simensis). J. Wildlife Dis. 32, 80–86.

Sillero-Zubiri, C., Macdonald, D.W. (1997). The Ethiopian Wolf: Status Survey and Conservation Action

Plan. IUCN Canid Specialist Group, Gland, Switzerland, and Cambridge, UK.

Sleeman, J.M., Keane, J.M., Johnson, J.S., Brown, R.J., Woude, S.V. (2001). Feline leukemia virus

in a captive bobcat. J. Wildlife Dis. 37, 194–200.

Soto, C.A., Desnica, S., Palomares, F. (2010). Non-biological factors affecting track censuses;

implications for sampling design and reliability. Eur. J. Wildlife Res. 58, 117–126.

Soulé, M.E. (1990). The onslaught of alien species, and other challenges in the coming decades.

Page 184: Tesis Carolina Soto Navarro - copia.pdf

183

Chapter 4

Conserv. Biol. 4, 233–239.

Srbek-Araujo, A.C., Chiarello, A.G. (2008). Domestic dogs in Atlantic forest preserves of south-

eastern Brazil: a camera-trapping study on patterns of entrance and site occupancy rates.

Braz. J. Biol. 68, 771–779.

Torres, P.C., Prado, P.I. (2010). Domestic dogs in a fragmented landscape in the Brazilian Atlantic

Forest: abundance, habitat use and caring by owners. Braz. J. Biol. 70, 987–994.

Tyndale-Biscoe, C.H. (1994). Virus-vectored immunocontraception of feral mammals. Reprod.

Fert. Develop. 6, 281–287.

Valverde, J. A. (1958). An ecological sketch of the Coto Doñana. British Birds. 51, 1– 23.

Vanak, A.T. (2008). Intraguild interactions between native and domestic carnivores in central India.

PhD Dissertation, University of Missouri, Columbia, MO, USA.

Vanak, A.T., Gompper, M. E. (2009a). Dogs Canis familiaris as carnivores: their role and function

in intraguild competition. Mammal Rev. 39, 265–283.

Vanak, A.T., Gompper, M.E. (2009b). Dietary niche separation between sympatric free-ranging

domestic dogs and Indian foxes in central India. J. Mammal. 90, 1058–1065.

Vanak, A.T., Thaker, M., Gompper, M.E. (2009). Experimental examination of behavioural interactions

between free-ranging wild and domestic canids. Behav. Ecol. Sociobiol. 64, 279–287.

Wandeler, A.I., Matter, H.C., Kappeler, A., Budde, A. (1993). The Ecology of Dogs and Canine

Rabies: A Selective Review. Rev. Sci. Tech. O.I.E. 12, 51–71.

Whiteman, C.W., Matushima, E.R., Confalonieri, U.E.C., Palha, M.D.C., Silva, A.S.L., Monteiro,

V.C. (2007). Human and domestic animal populations as a potential threat to wild carnivore

conservation in a fragmented landscape from the Eastern Brazilian Amazon. Biol. Conserv.

138, 290–296.

Williamson, M. (1999). Invasions. Ecography. 22, 5–12.

Woodroffe, R., Ginsberg, J.R. (1998). Edge effects and the extinction of populations inside protected

areas. Science. 280, 2126–2128.

Woodroffe, R., Ginsberg, J.R. (1999). Conserving the African wild dog Lycaon pictus. I.Diagnosing

and treating causes of decline. Oryx, 33,132-142.

Page 185: Tesis Carolina Soto Navarro - copia.pdf

184

Chapter 4

ANNEX II

Domestic dogs sighted within Doñana National Park and photo-trapped during the study period.

Page 186: Tesis Carolina Soto Navarro - copia.pdf

185

CHAPTER 5

Surprising low abundance of European wildcats in a protected area of southwestern Spain

Abundancia sorprendentemente baja de gato montés en un

área protegida del suroeste de España

Page 187: Tesis Carolina Soto Navarro - copia.pdf

186

Chapter 5

Page 188: Tesis Carolina Soto Navarro - copia.pdf

187

Chapter 5

ABSTRACT

The wildcat Felis silvestris is a protected species in Europe but the lack

of information on its status in many areas of its distribution range is an obstacle

to conservation initiatives. To assess the status of the species over a 550 km2

Mediterranean protected area in south-western Spain; Doñana National Park, we

carried out track censuses during the wet season of 2007-08 and 2008-09 in 2 x 2

km2 quadrants and set camera traps from June 2008 to October 2010 in quadrants or

nearby quadrants where cat tracks were detected. We detected a total of 52 cat tracks

forbothstudyyearsand identifiedsixdifferent individualsusingmorphological

criteria from 28 photographs taken at 12 out of 166 trapping stations. We hypothesized

that the a priori surprising low abundance of the species in the protected area might

be likely multifold and could be explained by the decrease of rabbit population

in the DNP during the last decades, the isolation of DNP from the nearest natural

areas that could have slowed the recovery of wildcat populations after the species

declining at the beginning of the 20th century, an increased mortality rate over time

due to potential disease transmission from domestic cats and/or the competitive

exclusion of the species by the Iberian lynx (Lynx pardinus) in the Doñana area.

Page 189: Tesis Carolina Soto Navarro - copia.pdf

188

Chapter 5Chapter 5

RESUMEN

El gato montés Felis silvestris es una especie protegida en Europa pero la

escasa información sobre su estatus de conservación en muchas zonas de su área de

distribución, es un obstáculo para la conservación de la especie.

Para determinar el estado de conservación de la especie en un área

Mediterránea protegida situada en el suroeste de España; el Parque Nacional de

Doñana, realizamos censos de rastros durante la estación húmeda de los años 2007-

2008 y 2008-2009 en cuadrículas de 2 x 2 km2, y colocamos cámaras de foto-

trampeo entre junio del 2008 y octubre del 2010 en cuadrículas en las cuales se

detectaron rastros de gatos o en cuadrículas cercanas. Detectamos un total de 52

rastrosdegatoenambosañosdemuestreoeidentificamos6individuosatravés

de criterios morfológicos a partir de 28 fotografías obtenidos en 12 de las 166

estaciones de foto-trampeo colocadas. Sugerimos que la a priori sorprendentemente

baja abundancia de la especie en el área protegida debe estar originada por causas

múltiples como el descenso de las poblaciones de conejos en Doñana durante las

últimas décadas, el aislamiento de las zonas naturales más cercanas que podría

haber ralentizado la recuperación del gato montés después del declive de la especie

a inicios del siglo XX, una mayor tasa de mortalidad a lo largo del tiempo debido

a la potencial transmisión de enfermedades a través de gatos domésticos y/o una

exclusión competitiva por el lince ibérico (Lynx pardinus) en el área.

Page 190: Tesis Carolina Soto Navarro - copia.pdf

189

Chapter 5Chapter 5

INTRODUCTION

The European wildcat Felis silvestris is one of few wild felids in Europe,

but its conservation status is somewhat paradoxical. The wildcat is listed as of

Least Concern by the IUCN (2008) due to its wide distribution, ranging from the

Iberian Peninsula to Eastern Europe (Nowell and Jackson 1996, IUCN 2007).

Nevertheless, human-mediated habitat disturbance and large-scale hunting in the

early 20th century have led to severe local declines and extirpations in Europe

(Stahl and Léger 1992, Sunquist and Sunquist 2002), resulting in a fragmented

distribution (Stahl and Artois 1991, Nowell and Jackson 1996, Peichocki 2001).

Subsequent legal protection, under the Bern Convention (Appendix II 1979) and the

European Habitat Directive 92/43/EEC (EUROP 1992), has reduced the causes of

this decline and has led to a spontaneous recovery of European wildcat populations

in some parts of Europe (Stahl and Artois 1991). But despite this legal protection,

the wildcat continues to face number of threats throughout its range (Lozano 2009),

with human persecution (predator control) and habitat alteration (Lozano et al. 2007,

Virgós and Travaini 2005) likely the most important. Hence, the European wildcat

is considered to be “Near-Threatened” in the 25 member states of the European

Union (Temple and Terry 2007) including Spain, where wildcat subpopulations are

suspected to have decreased at a rate of >30% over three generations (Palomo and

Gisbert 2002).

In order to develop action plans for the conservation of the wildcat and

defineareaswhereconservationofwildcatsshouldbepriority, it isnecessary to

evaluate its distribution, abundance, ecological requirements and population status.

The aim of this study was to assess the presence of European wildcat in a protected

Mediterranean area, the Doñana National Park (DNP), where wildcats and other

Page 191: Tesis Carolina Soto Navarro - copia.pdf

190

Chapter 5Chapter 5

wildlifehavebeenprotectedformorethanfivedecades(thatis,apriorilowhuman

pressure and persecution), and where habitat and prey availability should be

potentially favourable to wildcat.

Although previous information is anecdotal and sporadic, it seems that the

abundance of the species has been very low long ago. Fifty years ago Valverde

(1967) considered the species as low abundant in the area. More recent available

information refers to a litter of three kittens found within the Doñana National

Park in 1997 when looking for Iberian lynx litters (N. Fernández, pers. comm.),

three individuals captured in 1999, 30 pictures of wildcats photo-trapped between

2000 and 2007 and a total of 52 direct sightings of the apparently wildcats between

1989 and 2000 collected by all personal working in the Doñana National Park

(Centro International de Estudios y Convenciones Ecológicas y Medioambientales

(CIECEM)) (see Annex III). Note that for the same period, other carnivores such as

foxes or lynxes were sighted in 1211 and 669 occasions, respectively.

The main objective of this study was to assess the wildcat’s current status

in the Doñana area and to discuss about the factors explaining its abundance.

Given how little is known about wildcat biology and the vulnerability of Iberian

populations, we aimed to provide baseline data to promote further research and

conservation of the wildcat in southern Spain.

METHODS

Study area

DNP is approximately a 550 km2 area in southwestern Spain bordered to

the south and west by the Atlantic Ocean and to the east by the Guadalquivir River

mouth.Theareaisflatandmostlynearsealevel;soilsarepredominantlysandyand

Page 192: Tesis Carolina Soto Navarro - copia.pdf

191

Chapter 5Chapter 5

of marine origin. The climate is Mediterranean subhumid and has marked seasons:

winters are mild and wet, and summers are hot and dry. Mean annual precipitation is

approximately 550 mm. Its situation between the Atlantic Ocean and Mediterranean

Sea and in southern Europe promotes some of the highest biological diversity on

the continent, particularly of vertebrate animals and vascular plants (Fernández-

Delgado 1997). There are three main biotopes in the park: scrubland, dunes, and

marsh (Valverde 1958). The dune area is situated at the western border of the

protected area where it is limited by the Atlantic Ocean and the marsh area lies at the

northern and eastern borders limited by the Guadalquivir River. The Mediterranean

scrubland represents approximately half of the National Park surface area and

is mainly characterised by heterogeneous patches of xerophytic species such as

Halimium sp. and Cistus sp., and hydrophytic ones such as Erica sp., with some

patches of Juniperus phoenica and Pistacia lentiscus shrubs. Interspersed among

the scrubland are scattered cork oak trees (Quercus suber) and wild olive trees (Olea

europea), and a few patches of pine Pinus pinea and eucalyptus Eucalyptus sp.

plantations. Vegetation in bare sand dunes is scarce and dune hollows are colonized

by pines Pinus pinea and varied scrubland species.

DNP is fully protected and access to the core area and the dirt-road network

inside DNP is restricted to the park staff and researchers. The northern and western

edgesofDNPareinclosecontactwithhumansettlements,cropfieldsandahigh

use paved road (Fig. 1). These surroundings support intense human activity, with

private large- and medium-sized farms used for agriculture as well as six visitor

centers, hiking and cycling paths, recreation zones and bird observatories in the

nearby area.

Page 193: Tesis Carolina Soto Navarro - copia.pdf

192

Chapter 5Chapter 5

Field methods

Weusedtracksurveysasafirstapproximationandphoto-trappingstudies

as a more directed methodology (since tracks of wildcats are not distinguishable

from that of domestic cats) to analyze the presence and/or occurrence of wildcats in

DNP. We carried out systematic track surveys at 69 and 67 2 x 2 km2 quadrant cells

located within the entire scrubland and dune areas of the DNP during the wet season

of 2007-08 and 2008-09, respectively. Marshland area was not sampled as its clay

soils make it unsuitable for track censuses. We sampled for cat tracks in each square

byslowlywalking(ca.1.5km/h)atleast3kmalongsandyroadsandfirebreaks.

Once a track was detected, we georeferenced it using a GPS. We re-sampled the

same path (leaving at least seven days between samplings) a second time in a few

squaresuntilcompleting3kmifduringthefirstsamplingtherewereinsufficient

available paths within the square to achieve this distance. We always carried out

surveys at least three days after any rainfall. Potential prey availability for wildcats

was also estimated by counting tracks of European rabbits (Oryctolagus cuniculus),

red partridges (Alectoris rufa) and small mammals (probably mostly long-tailed

fieldmouse(Apodemus sylvaticus) according to Kufner and Moreno 1989) in 25 m

long and approximately 1.7 m wide transects separated by at least 300 m (see Soto

et al. 2012). We also visually estimated variables related to vegetation type and

structure along transects in a circle of 15 m radius around the sampling point (see

Table 1 for variable description).

To asses the occurrence of wildcats and to determine if tracks detected

belonged to the species, we used camera-trapping techniques from June 2008 to

November 2010. Thirteen camera trap surveys with an average duration of 23 days

were conducted. To set the cameras, we selected quadrants and nearby quadrants

Page 194: Tesis Carolina Soto Navarro - copia.pdf

193

Chapter 5Chapter 5

Table 1. Variables used to compare means between quadrants with no evidence of cat presence, quadrants where wildcats were photographed and quadrants where cat tracks were detected during track censuses by non-parametric tests.

Variable Code Definition UnitsVegetationShort shrub %S Mean cover of short scrubland per quadrant* %Short shrub height S_h Average height of short scrubland per quadrant* m

Tall shrub %B Mean cover of bushes per quadrant* %Tall shrub height B_h Average height of bushes per quadrant* mTrees %T Mean cover of trees per quadrant* %Tree height T_h Average height of trees per quadrant* m

Landscape

Distance to water DW

Measured in meters using a Euclidean distance-based approach from the quadrant centre to the nearest permanentlyfloodednaturalorartificialpond(i.e.,dugfor the cattle at zones were the water table is higher) in a digitized water sources cover layer of DNP

m

Distance to La Vera DV

Measured in meters from the quadrant centre to the ecotone between the marshland and the Mediterranean scrubland (locally called La Vera)

m

Ecotones between pastureland and scrubland

eBP

Linear measure of the density of the ecotone between patches with bush cover >50% and patches with pasture cover>50%definedfroma reclassifiedfine-scale1:10000 vegetation map for the year 1996-2006 obtained from the Sistema de Información Ambiental de Andalucía

m/ha

Prey availabilityRabbits Ra Kilometric Abundance Index of rabbits per quadrant * Tracks/km

Small mammals SM Kilometric Abundance Index of small mammals per quadrant * Tracks/km

Total prey Tot Kilometric Abundance Index of rabbits + partridges + small mammals + ungulates per quadrant * Tracks/km

Human disturbance

Distance to antropic edge DH

Measured in meters from the quadrant centre to the nearestprotectedareaborderinfluencedbyhumans(i.e.excluding the beach and marshland edges)

m

Predators occurrenceKilometre abundance index of domestic dogs

KAId Number of dog tracks detected per km per quadrant m/ha

Kilometre abundance index of lynxes

KAIl Number of lynx tracks detected per km per quadrant tracks/km

* calculated by averaging values obtained at the different sampling points within quadrants

Page 195: Tesis Carolina Soto Navarro - copia.pdf

194

Chapter 5Chapter 5

where cat tracks were detected during track censuses. Camera traps were set

in the borders of car tracks and firebreaks, or in the edges of patches of dense

Mediterranean shrub with pasturelands (habitat potentially favourable for wildcats

(Lozano et al. 2003). In order to maximize the detection of wildcats we used scent

lures of valerian, catnip and canned sardines sprayed on a piece of cotton attached

toawoodenstakeata30–50cmheight,wetfish(sardines),liveprey(reportedas

themostefficientlureforsamplingsomefelidspecies(Guiltetal.2010,Garroteet

al. 2012)) such as rock pigeons (Columba livia) and rabbits (Oryctolagus cuniculus)

in wire cages inaccessible to wildcats, as well as no attractants. Cages of live prey

were approximately 100 x 50 x 50 cm and supplied with ample food and water

at least twice a week. On average, we set up 15 digital camera traps with passive

infraredmotionsensorsandautomaticflash(CuddebackDigitalScoutingModel

Expert®) per quadrant. Cameras were placed 20 cm above ground, at a distance

of 2-4 m from the lure with 300-400 m between them. We set camera traps with a

delay time of 1 min between successive photos, and checked at least twice per week

to replace attractant lures and twice a month for battery replacement.

Differentiation between wildcats and domestic cats was based on the general

physical appearance and on the pelage pattern of the individuals. Studies on the

European wildcat have indicated that camera trapping can be used to some extent

to determine the presence and abundance of this species and that individuals are

identifiablebasedontheirmorphology(RagniandPossenti1996,Monterrosoetal.

2005, Anile et al. 2007, Karanth et al. 2004). We considered photos as independent

events when taken more than 4 hours apart for the same individuals or if different

individualscouldbeidentified(O’Brienetal.2003).

Page 196: Tesis Carolina Soto Navarro - copia.pdf

195

Chapter 5Chapter 5

Figure 1. Locations of cat tracks detected during track censuses in 2 x 2 km2 quadrants during 2007-2009 (a); locations of the 166 trapping stations set during 2008-2010 (b), and the camera trap stations that provided pictures of wildcats and domestic cats, respectively, as well as the home range of the wildcat radio-tracked in DNP (c) are shown.

Page 197: Tesis Carolina Soto Navarro - copia.pdf

196

Chapter 5Chapter 5

We performed a Kruskal–Wallis test to determine whether different measures of

landscape structure, vegetation type, prey availability, human disturbance and the

occurrence of other carnivore species (i.e., domestic dogs (Canis familiaris) and

Iberian lynx (Lynx pardinus) as potentially negatively affecting wildcats (Palomares

and Caro 1999) (Table 1) differed across three categories of quadrants with different

wildcat presence: (0) quadrants with no evidence of wildcat presence (i.e., neither

photographs nor tracks), (1) quadrants where wildcats were photographed and

(2) quadrants where cat tracks were detected. Multiple post hoc comparisons of

meanrankswerealsoestimatedtodetectstatisticallysignificantdifferencesforall

pairs of groups (Siegel and Castellan 1988). Kruskal–Wallis analyses and post hoc

comparisons were conducted in SPSS software.

We also trapped a wildcat in a box-trap in December 2008 under a broader

project that aimed to study the effectiveness of red fox control actions within DNP.

The captured animal was chemically immobilized with a 0.75 ml dose (100mg*ml-1)

of tiletamine- zolazepam (Zoletil©, Virbac, Spain), measured, weighted, checked

for any sanitary disorders and sexed. Genetic analysis from blood samples collected

revealed that the individual was ‘pure’ or without any indication of parental

domestic heritage (Alves, P.C., pers. comm.). After handling, the individual was

maintained in the dark and returned to the capture location for release after complete

recoveryofreflexes(1–3h).Theindividualwasfittedwitharadio-collar(Wildlife

Materials, Inc., Carbondale, Illinois, USA), radio-tracked between December 2009

and March 2010 and located on average twice per week between 9:00 am and 2:00

pm. We used triangulation to determine the position of the individual (White and

Garrott 1990) and the minimum convex polygon method to estimate the home

range size based on all available locations (Mohr 1947, White and Garrott 1990)

Page 198: Tesis Carolina Soto Navarro - copia.pdf

197

Chapter 5Chapter 5

with Hawth’s Analysis Tools (Beyer 2004) in ArcGIS (ESRI, Redlands, CA). We

determine the main vegetation types included within the individual home range

froma1:10000fine-scalevegetationmapfortheyear1996-2006obtainedfromthe

Sistema de Información Ambiental de Andalucía (http://www.juntadeandalucia.es/

medioambiente/site/rediam/)

RESULTS

We detected a total of 25 and 27 cat tracks in 8 and 17 of 69 and 67 quadrants

censused in each year, respectively (Fig. 1). We set cameras at 166 different points

in 25 quadrants. Camera effort was 5761 trap-days with an average of 24.4 day/

cameras (SD= 8.02, range=1-33). We obtained a total of 2173 photographs in

whichweidentifiedmammals(n = 2050) or birds (n = 123). The red fox was the

most common species photographed followed by the Egyptian mongoose and the

common genet (Table 2). Thirty pictures of cats were taken at 12 of the 166 points

where we set camera trap stations. Twenty-eight of these pictures were of wildcats

and two pictures were of domestic cats. These camera traps were baited with

pigeons (n = 8) and wet sardines (n = 6) (Table 2). Wildcats were photographed

between20:00and07:00hours.Sixdifferentwildcatswereidentified(Fig.2)from

12 camera trap records (Table 3) and all were photographed only once. None of

the individuals could be sexed, nor could the presence of more than one individual

per trap-site be ascertained. Two-hundred six camera-trap days were required on

average to document the presence of an individual.

Radio-tracking effort produced 24 locations and a home range size of

approximately 24 km2 (Fig. 1). More than 60% of the individual home range

included areas of Mediterranean short scrubland (i.e., species such as Halimium sp.

Page 199: Tesis Carolina Soto Navarro - copia.pdf

198

Chapter 5Chapter 5

and Cistus sp.) and approximately 18% pine woodlands with understorey vegetation

(i.e., short shrubs and tall shrubs such as Erica sp., Juniperus phoenica and Pistacia

lentiscus).

We found differences between quadrants where wildcats were photographed,

quadrants with only cat tracks and quadrants with no evidence of cat presence for the

Table 2. Total number and percentage of pictures taken during camera-trapping surveys at DNP.

Specie N %

Felis silvestris 28 1.3Felis catus 2 0.1Lynx pardinus 3 0.1Genetta genetta 60 2.8Herpestes ichneumon 152 7.0Meles meles 26 1.2Vulpes vulpes 1284 59.1Canis familiaris 7 0.3Others* 611 28.1*other mammals and birds

Table 3. UTM coordinates (29S) of the camera-trap positions where wildcat were photographed. The period of time the camera was active and the number of wildcat pictures taken and baits used are also provided.

Trap station X Y Pictures Trap-days Bait

1 185585 4106480 7 22 Pigeon2 186451 4106914 1 22 Pigeon

3 185780 4100419 1 10 Pigeon

4 186990 4099547 1 29 Wet sardine5 184710 4101010 3 29 Wet sardine6 185476 4107561 1 29 Wet sardine7 185967 4108394 1 29 Pigeon8 185895 4108264 7 29 Wet sardine9 186503 4109315 1 29 Wet sardine10 183961 4117788 5 20 Pigeon11 190451 4105106 1 22 Pigeon12 189275 4105888 1 30 Pigeon

Page 200: Tesis Carolina Soto Navarro - copia.pdf

199

Chapter 5Chapter 5

variable distance to the anthropic edge of the protected area (Table 4). Mann-Whitney

U post-hoc tests revealed that quadrants where wildcats were photographed were

closer to the anthropic edge of the protected area than quadrants with no evidence of

cats and than quadrants where tracks were detected (Table 5). No differences were

found for any of the remaining variables analysed.

Figure 2. Individual wildcats distinguished on the basis of their external aspect in the Doñana National Park between 2008 and 2010.

Page 201: Tesis Carolina Soto Navarro - copia.pdf

200

Chapter 5Chapter 5

DISCUSSION

Thisstudyprovides thefirstsystematic informationon theoccurrenceof

wildcats throughout the DNP and reveals a priori surprising low abundance of the

species in the protected area. Wildcats like autochthonous Mediterranean scrubland

areas with scrub–pastureland mosaics (Lozano et al. 2003), and may rely for

feeding on rabbits (Gil-Sánchez et al. 1999, Lozano et al. 2006)) or small mammals

(Sarmento 1996, Moleón and Gil-Sánchez 2003, Carvalho and Gomes 2004). These

habitats and prey are common in many parts of the DNP, so one would expect that

wildcats were more abundant in the area than what we have found. Furthermore,

protection of the DNP for more than 5 decades has provided a safe place for wildcats.

Therefore, DNP should hold one of the largest wildcat populations in south western

Spain and be one of the most important areas for conservation of the species.

Wildcat scarcity in DNP might be due to several factors. First, during the

last decades wild rabbit population has decreased everywhere and in the DNP due to

diseases such as myxomatosis and Rabbit Hemorrhagic Disease (RHD) (Thompson

and King 1994, Villafuerte et al. 1995) and to changes in scrubland management

(Moreno and Villafuerte 1995). Abundance of the wildcat population might have

diminished for this reason. In fact, the large home range size of the radio-tracked

individual in our study area suggests low food abundance. However, there are some

areas where rabbits are abundant within the park, and wildcats can also consume

other alternative prey species such as small mammals (Lozano et al. 2003, Malo et

al. 2004), so this reason not fully explain the low abundance of wildcats in the area.

Secondly, the isolation of DNP from the nearest natural areas (Sierra Morena and

Cádiz)duetohumansettlements,widespreadfieldcropsortheGuadalquivirRiver

may also contribute to the low abundance of the species. Wildcats disappeared

Page 202: Tesis Carolina Soto Navarro - copia.pdf

201

Chapter 5Chapter 5

from many regions across its range and reached minimum levels at the beginning

of the 20th century (McOrist and Kitchener 1994). The recovery of the species

in several places was possible in the 1990s when anthropic pressure on wildcat

populations and their habitat was reduced (e.g., Parent 1975, Easterbee et al. 1991)

but the isolation and fragmented distribution of the species in Doñana may have

prevented the recovery in spite of the reduction in potential threats. Additionally,

Table 4. Results of the Kruskal Wallis Test to test for differences in the means of several variables between (0) quadrants with no evidence of cat presence, (1) quadrants where wildcats were photographedand(2)quadrantswherecattracksweredetected.Significantvariablesarerepresentedin bold.

Mean rank Kruskal Wallis Test

Variable 0 1 2 Chi-square P-value

Vegetation

%SB 37.03 39.58 29.54 2.574 0.276

%S 33.72 43.17 33.58 1.265 0.531

S_h 38.70 34.92 28.18 4.229 0.121

%B 37.77 35.00 29.54 2.590 0.274

B_h 35.36 27.67 34.86 0.796 0.672

%T 33.66 29.67 36.90 0.796 0.672

T_h 35.35 32.00 33.84 0.193 0.908

Human disturbance

DH 38.41 16.33 33.08 6.637 0.036

Landscape

eBP 38.24 32.83 29.36 3.065 0.216

DW 31.43 34.17 39.12 2.257 0.324

DV 30.81 50.00 36.24 5.168 0.075

Predators

KAId 32.43 40.67 36.08 2.437 0.296

KAIl 36.65 34.50 31.32 1.731 0.421

Prey

R 32.34 27.42 34.00 0.606 0.739

SM 29.25 25.00 38.98 4.963 0.084

Tot 32.40 28.83 33.56 0.312 0.856

Page 203: Tesis Carolina Soto Navarro - copia.pdf

202

Chapter 5Chapter 5

an increased mortality rate over time due to potential disease transmission from

domestic cats (e.g., McOrist et al. 1991) could be another causal factor explaining

wildcat scarcity in Doñana. The domestic cat population in the Doñana area might

have increased over the last decades due to the urbanization of the surrounding

neighbourhoods of the protected area. Hence, as in other natural areas (e.g., Ferreira

et al. 2011), feral and/or domestic may spend time sporadically within DNP during

their free-ranging activity potentially transmitting diseases to their wild relatives.

InfactourresultsconfirmthepresenceofdomesticcatswithintheDNPcloseto

humansettlements(Fig.1,Table4).Finally,althoughourresultsdonotconfirm

that the relative abundance of the Iberian lynx can negatively affect the detection

ofwildcats, interspecificinteractionsbetweenwildcatsandtheIberian lynxmay

have also led to the competitive exclusion of the species as carnivores persisting

at low population densities have been suggested to experience an increase in the

effect of intraguild predation (Creel and Creel 1998, Creel 2001, Creel et al. 2001,

Creel and Creel 2002). The European wildcat and the Iberian lynx may potentially

overlap in habitat use of Mediterranean scrubland but intraguild interaction with

the Iberian lynx may have resulted in habitat partitioning in that wildcats will avoid

habitat patches of high lynx densities to the detriment of its own success in prey

acquisition and access to the most suitable habitats. In turn, wildcats may have

been forced to enlarge their home ranges to continue hunting and may even roam

in human-occupied areas increasing their mortality risk. In fact our results revealed

that wildcats were detected more frequently near the anthropic edge of the area

suggesting that individuals could be ranging outside of DNP. Nevertheless, in spite

of the continued decrease of the Iberian lynx population in the Doñana area in

recent decades (Palomares et al. 2012) wildcats have not increased its abundance

Page 204: Tesis Carolina Soto Navarro - copia.pdf

203

Chapter 5Chapter 5

intheareaconfirmingthehypothesisthatthelowoccurrenceofthespeciesinDNP

can not be only attributed to Iberian lynx decrease.

In summary, although the DNP is optimal for a large wildcat population the

potential threats explained above may shed light on the low occurrence of the species

inthearea.Nevertheless,manythreatstothespeciesmayremainunidentifiedin

Doñana, so although its low population density makes field studies and direct

observationdifficult,moreresearchanddetailedinformationonoccurrenceaswell

as on wildcat habitat requirements based on radio-tracking efforts are necessary to

provide guidelines for management and conservation of the species in the area.

ACKNOWLEDGEMENTS

This research was funded by the projects CGL2004-00346/BOS (Spanish Ministry of

Education and Science) and 17/2005 (Spanish Ministry of the Environment; National Parks Research

Program). Land-Rover España lent us two vehicles for this work. We are very grateful especially to

J.C.RivillaandS.Desnicaforassistanceduringfieldwork.C.SotowasalsosupportedbyaJAE

Predoc grant from the CSIC.

REFERENCES

Anile S, Bizzarri L, Ragni B (2007) Experiences obtained from camera trapping the wildcat in Sicily

(Italy). Hystrix Italian Journal of Mammalogy Supplement V European Congress of

Mammalogy, 294.

Beyer HL (2004). Hawth’s Analysis Tools for ArcGIS. Available at www.spatialecology.com/htools.

Carvalho JC, Gomes P (2004) Feeding resource partitioning among four sympatric carnivores in

the Peneda-Gerês National Park (Portugal). Journal of Zoology 263: 275–283.

CreelSPG,CreelN(2001)Interspecificcompetitionandthepopulationbiologyofextinction

prone-carnivores. In: Carnivore Conservation. Eds. Gitleman, JL, Funk, SM

MacDonald, D Wayne RK. pp. 35-60. Cambridge University Press.

Creel S (2001) Four factors modifying the effect of competition on carnivore population dynamics

Page 205: Tesis Carolina Soto Navarro - copia.pdf

204

Chapter 5Chapter 5

as illustrated by African wild dogs. Conserv Biol 15 (1):271-274.

Creel S, Creel NM (1998) Six ecological factors that may limit African wild dogs, Lycaon pictus.

Animal Conservation 1 (1):1-9.

Creel S, Creel NM (2002) The African wild dog: behavior, ecology, and conservation. The African

wild dog: behavior, ecology, and conservation. Princeton University Press.

Daniels MJ, Balharry D, Hirst D, Kitchener AC, Aspinall RJ (1998) Morphological and pelage

characteristicsofwildlivingcatsinScotland:implicationsfordefiningthe‘wildcat’.J

Zool 244:231-247.

Duarte J, Vargas JM (2001) Son selectivos los controles de predadores en los cotos de caza?

Galemys 13 (special number): 1–9.

Easterbee N, Hepburn LV, Jefferies DJ (1991) Survey of the status and distribution of the wildcat

in Scotland, 1983-1987. Survey of the status and distribution of the wildcat in Scotland,

1983-1987. Nature Conservancy Council for Scotland, Edinburgh.

Garrote G, Gil-Sanchez JM, McCain EB, de Lillo S, Telleria JL, Simon MA (2012) The effect of

attractant lures in camera trapping: a case study of population estimates for the Iberian lynx

(Lynx pardinus). Eur J Wildl Res 58 (5):881-884.

Gil-Sanchez JM, Valenzuela G, Sanchez JF (1999) Iberian wild cat Felis silvestris tartessia predation on

rabbit Oryctolagus cuniculus: functional response and age selection. Acta Theriol 44 (4):421-428

Guilt F, Agudin S, El-Khadir N, Fernandez-Olalla M, Figueredo J, Dominguez FG, Garzon P,

Gonzalez G, Munoz-Igualada J, Oria J, Silvestre F (2010) Factors conditioning the camera-

trappingefficiencyfortheIberianlynx(Lynx pardinus). Eur J Wildl Res 56 (4):633-640.

Ferreira JP, Leitão I, Santos-Reis M, Revilla E (2011) Human-Related factors regulate the spatial ecology

of domestic cats in sensitive areas for conservation. PLoS ONE 6(10): e25970 (2011).

Ferrer M. 1993. El águila imperial. Quercus, Madrid, Spain.

Fernández-Delgado C (1997) Conservation management of an European Natural Area: Doñana

National Park, Spain. En: Groom, M.J., Meffe, G.K., Carroll, C.R. (Eds.), Principles of

Conservation Biology, pp. 536-543. Third Edition. Sinauer Associates, Inc. Publishers,

Sunderland, Massachusetts, USA.

IUCN (2007) European Mammal Assessment. IUCN, Gland, Switzerland and Cambridge, UK.

Jackson R.M., Roe J.D., Wangchuk R., Hunter D.O. 2005. Surveying Snow Leopard populations

Page 206: Tesis Carolina Soto Navarro - copia.pdf

205

Chapter 5Chapter 5

with emphasis on camera trapping. A handbook. Sonoma, California, The Snow Leopard

Conservancy: 73.

Karanth KU, Chundawat RS, Nichol JD, Kumar NS (2004) Estimation of tiger densities in the

tropical dry forests of Panna, Central India, using photographic capture-recapture sampling.

Animal Conservation 7:285-290.

Lozano J, Moleon M, Virgos E (2006) Biogeographical patterns in the diet of the wildcat, Felis

silvestris Schreber, in Eurasia: factors affecting the trophic diversity. Journal of

Biogeography 33 (6):1076-1085.

Lozano J, Virgos E, Cabezas-Diaz S, Mangas JG (2007) Increase of large game species in

Mediterranean areas: Is the European wildcat (Felis silvestris) facing a new threat?

Biological Conservation 138 (3-4):321-329.

Lozano J, Virgós E, Malo AF, Huertas DL, Casanovas JG (2003) Importance of scrub–pastureland

mosaics for wild-living cats occurrence in a Mediterranean area: implications for the

conservation of the wildcat (Felis silvestris). Biodivers Conserv 12 (5):921-935.

Lozano 2009. Gato montés–Felis silvestris. In: Enciclopedia Virtual de los Vertebrados Españoles.

(L. M. Carrascal and A. Salvador, Eds.). Museo Nacional de Ciencias Naturales, Madrid.

http://www.vertebradosibericos.org/

Malo AF, Lozano J, Huertas DL, Virgos E (2004) A change of diet from rodents to rabbits

(Oryctolagus cuniculus). Is the wildcat (Felis silvestris) a specialist predator? J Zool

263:401-407.

McOrist S, Kitchener AC (1994) Current Threats to the European Wildcat, Felis silvestris in

Scotland. Ambio 23 (4-5):243-245.

Mohr CO (1947) Table of equivalent populations of North American Small Mammals. Am Midl

Nat 37 (1):223-249.

Moleon M, Gil-Sanchez JM (2003) Food habits of the wildcat (Felis silvestris) in a peculiar habitat:

the Mediterranean high mountain. J Zool 260:17-22.

Monterroso, P., Sarmento, P., Ferreras, P. and Alves, P. C. 2005. Spatial distribution of the European

wildcat (Felis silvestris) in Vale do Guadiana Natural Park, South Portugal. Symposium:

Biology and Conservation of the European Wildcat (Felis silvestris) (ed M. Herrmann), pp.

17. NABU, Germany, January 21st –23rd 2005.

Page 207: Tesis Carolina Soto Navarro - copia.pdf

206

Chapter 5Chapter 5

McOrist, S., Boid, R., Jones, T.W., Hubbard, A.L., Easterbee, N., Jarret, O., 1991.Some viral and

protozoal diseases of the European wildcat Felis silvestris. Journal of Wildlife Diseases 27,

693–696.

Moreno S, Villafuerte R (1995) Traditional management of scrubland for the conservation of

rabbits Oryctolagus cuniculus and their predators in Doñana National Park, Spain.

Biological Conservation 73:81-85.

O’Brien TG, Kinnaird MF, Wibisono HT (2003) Crouching tigers, hidden prey: Sumatran tiger

and prey populations in a tropical forest landscape. Animal Conservation 6:131-139.

Palomo LJ and Gisbert J (2002) Atlas de los Mamíferos terrestres de España. Dirección General de

Conservación de la Naturaleza-SECEM-SECEMU, Madrid.

Parent GM (1975) La migration recente, a caractere invasionnel, du chat sauvage, Felis silvestris

Schreber, en Lorraine Belge. Mammalia 39 (2):251-288.

Peichocki, R. 2001. Lebensräume. Die Verbreitung der Wildkatze in Europa. In: H. Grabe and G.

Worel (eds), Die Wildkatze. Zurück auf leisen Pfoten, pp. 14-27. Buch and Kunstverlag

Oberpfalz, Amberg.

Ragni B. 2006. Il gatto selvatico. Salvati dall’Arca. A. Perdisa Ed., Bologna.

Rodriguez A, Delibes M (1992) Current range and status of the Iberian Lynx Felis-Pardina

Temminck, 1824 in Spain. Biological Conservation 61 (3):189-196.

Ruiz-Olmo J (1986) Dades sobre les causes de mortalitat dels carnívors (Mammalia) als massissos

del Montseny i del Montnegre i les seves rodalies. In: II trobada d’estudiosos del Montseny.

Diputación de Barcelona, Servei de Parcs Naturals, Barcelona, pp. 21–23.

Sarmento P (1996) Feeding ecology of the European wildcat Felis silvestris in Portugal. Acta

Theriologica 41: 409-414

Stahl P, Artois M (1991) Status and Conservation of the wild cat (Felis silvestris) in Europe and

around the Mediterranean rim. Council of Europe, Strasbourg.

Stahl P, Leger F (1992) Le chat sauvage (Felis silvestris, Schreber, 1777). En: Artois, M. y Maurin,

H. (Eds). Encyclopédie des Carnivores de France. Société Française pour l’Etude et la

Protection des Mammifères (S.F.E.P.M.), Bohallard, Puceul.

Stahl P, Artois M, Aubert MFA (1988) Organisation spatiale et déplacements des chats forestiers

adultes (Felis silvestris, Schreber, 1777) en Lorraine . Revue d’Écologie (Terre et

Page 208: Tesis Carolina Soto Navarro - copia.pdf

207

Chapter 5Chapter 5

Vie), 43: 113-131.

Sunquist M, Sunquist F (2002) Wild Cats of the World. The University of Chicago Press, Chicago.

TempleHJ,TerryA(2007)ThestatusanddistributionofEuropeanmammals.OfficeforOfficial

Publicationsof the European Communities, Luxembourg.

Villafuerte R, Calvete C, Blanco JC, Lucientes J (1995) Incidence of viral hemorrhagic disease in

wild rabbit populations in Spain. Mammalia 59 (4):651-659.

Valverde JA (1967) Estructura de una Comunidad de Vertebrados Terrestres. C.S.I.C., Madrid.

Virgos E, Travaini A (2005) Relationship between small-game hunting and carnivore diversity in

central Spain. Biodivers Conserv 14 (14):3475-3486.

White GC, Garrott RA (1990) Analysis of wildlife radio-tracking data. Analysis of wildlife radio-

tracking data. Academic Press Inc., San Diego, New York etc.

Wild cats: status survey and conservation action plan (1996). Wild cats: status survey and

conservation action plan. IUCN.

Wilson GJ, Delahay RJ (2001) A review of methods to estimate the abundance of terrestrial

carnivoresusingfieldsignsandobservation.WildlRes28(2):151-164.

Page 209: Tesis Carolina Soto Navarro - copia.pdf

208

Chapter 5

ANNEX III

Pictures of sporadic sightings of individual wildcats within the DNP (a and

b), wildcat radio-tracked in the study area between December 2009 and March

2010 (c) and wildcat photographed in March 2011 by the personal working in the

Doñana National Park (Centro International de Estudios y Convenciones Ecológicas

y Medioambientales (CIECEM)) (d). Credit pictures: CIECEM (a, b and d) and C.

Soto (c).

Page 210: Tesis Carolina Soto Navarro - copia.pdf

209

Conclusiones

Page 211: Tesis Carolina Soto Navarro - copia.pdf

210

Conclusiones Conclusiones

1. La abundancia relativa de especies obtenida a través de censos de rastros

depende de la abundancia en sí de las especies censadas pero también de

factores no biológicos condicionados por las condiciones climáticas los días

anteriores al censo y de factores relacionados con el método de censado.

2. Las variables que incrementan la calidad del sustrato sobre el que se

realizan los censos (elevada humedad ambiental, ausencia de viento fuerte,

o un número bajo de días transcurridos desde las últimas precipitaciones)

permiten una mayor detección de rastros en sustratos arenosos. Además,

en función del tamaño de las especies censadas, variables metodológicas

como la distancia del transecto sobre el que se realiza el censo al borde de

la vegetación más cercana o el observador, también afectan al número de

rastros encontrados.

3. Para disminuir la variabilidad en el número de rastros detectados y aumentar

lafiabilidadde losdatosobtenidos se recomienda restringir los censosa

ciertas condiciones climáticas y/o metodológicas, y si no es posible, incluir

en los modelos estadísticos las variables relacionadas con el clima y el

método que potencialmente pueden afectar el número de rastros encontrados

durante los censos.

4. De las cinco especies de carnívoros censadas en toda la zona de matorral del

Parque Nacional de Doñana, el zorro fue la especie más común y ubicua,

encontrándose en el 98.5% de las cuadrículas muestreadas. Le siguió el

tejón (97.1%), el meloncillo (94.2%), la gineta (59.4%) y el lince que ocupó

algo más de un tercio del área muestreada (37.6%).

Page 212: Tesis Carolina Soto Navarro - copia.pdf

211

Conclusiones Conclusiones

5. Modelosdeusodelhábitataescalafinaindicaronquelapresenciadelince

estuvo asociada a zonas con una alta cobertura de matorral alto y densidad

de ecotonos entre matorral alto y pastizal, mientras que la presencia de

ginetas se asoció a zonas de pinares con vegetación densa de sotobosque

así como con una alta abundancia de micromamíferos. Los zorros, tejones

y meloncillos mostraron un patrón de selección de hábitat menos marcado,

siendo la abundancia de presas totales y de conejo de monte, o la cobertura

de matorral alto algunos de los predictores de su abundancia y distribución.

6. Análisis de nicho indicaron que ginetas y linces son las especies más

especializadas con nichos ecológicos más estrechos, segregados y

marginales. Los zorros y tejones sin embargo, mostraron un generalismo

manifiesto,situándoseespacialmentesunichoecológicoentreeldezorros

y tejones por un lado y el de linces y ginetas por otro.

7. Cuando a los modelos generales de uso del hábitat se le añadieron las

variables de abundancia relativa o presencia de las otras especies de

carnívoros, se encontró una relación negativa entre la presencia del lince

y la abundancia relativa de zorros, meloncillos y ginetas. Sin embargo, la

abundancia de ginetas y meloncillos estuvo positivamente asociada con la

abundancia relativa de meloncillos y tejones, respectivamente.

8. Las asociaciones encontradas entre especies se enmarcan dentro de las

relacionesinterespecíficasconocidasdentrodelacomunidaddecarnívoros

del Parque Nacional, donde el lince actúa como depredador intragremial

de especies mas pequeñas como zorros, meloncillos y ginetas, y sugieren

Page 213: Tesis Carolina Soto Navarro - copia.pdf

212

Conclusiones

la importancia de incluir la presencia y/o abundancia de los grandes

depredadores en los estudios de uso y selección del hábitat de depredadores

pequeños y medianos.

9. Rastros de perros fueron detectados en el 17-23% de la superficie de

matorral del Parque Nacional de Doñana. Hubo mayor probabilidad de

encontrar perros en las áreas cercanas a los límites del Parque Nacional, y

no se encontraron rastros en zonas del interior del Parque, lo que sugiere

que se trata de perros procedentes de los núcleos urbanos y que no hay una

población silvestre establecida en el mismo.

10. Para un control efectivo de perros que usan el interior del Parque Nacional

deberíaactuarsesobrelosnúcleosurbanoscircundantes,asícomointensificar

las medidas de control en los límites del Parque Nacional.

11. La abundancia de gato montés en el Parque Nacional de Doñana fue

sorprendentemente baja a pesar del nivel de protección que ofrece el área de

estudio. Durante dos años de estudio se detectaron solo 52 rastros de gato en

algomásdeunterciodelascuadrículasmuestreadas,ysoloseidentificaron

6 individuos diferentes de gato montés para lo que fue necesario un esfuerzo

de muestreo de 24.4 cámaras/día para detectar cada uno de ellos.

12. La baja abundancia de gato montés en el Parque Nacional podría explicarse por uno

o más factores tales como el descenso de las poblaciones de conejo, el aislamiento

de la población, una posible alta incidencia de enfermedades debido al contacto

con gatos domésticos, y la competencia por interferencia con el lince ibérico.

Page 214: Tesis Carolina Soto Navarro - copia.pdf

213

Agradecimientos

Page 215: Tesis Carolina Soto Navarro - copia.pdf

En Biología de la Conservación, los estudios de selección de hábitat son cruciales para entender los mecanismos y/o proce-sos que determinan la distribución y abundancia de las espe-cies en el medio natural. Los mamíferos carnívoros constitu-yen un modelo de estudio ampliamente utilizado debido a su papel en los ecosistemas terrestres. Los objetivos generales de esta tesis son proporcionar información sobre los patrones de selección de hábitat a escala fina y las relaciones interespecífi-cas que puedan influenciarlos de distintas especies de carní-voros simpátridos que muestran diferentes rasgos de historias de vida en un área mediterránea protegida.