227
TESINA D’ESPECIALITAT Títol Redundancy of bridge systems under lateral loads. Autor Giorgio Anitori Tutor Joan Ramon Casas Rius, Michel Ghosn Departament Enginyeria de la Construcció Intensificació Tecnologia i construcció d’estructures Data Novembre 2010

Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

  • Upload
    lequynh

  • View
    216

  • Download
    1

Embed Size (px)

Citation preview

Page 1: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

TESINA D’ESPECIALITAT

Títol

Redundancy of bridge systems under lateral loads.

Autor

Giorgio Anitori

Tutor

Joan Ramon Casas Rius, Michel Ghosn

Departament

Enginyeria de la Construcció

Intensificació

Tecnologia i construcció d’estructures

Data

Novembre 2010

Page 2: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya
Page 3: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

Abstract 3

Resumen

La evaluación de robustez es cada día más importante, ya qué las comprobaciones de miembros estructurales fuera de un contexto global está aceptado que es a menudo insuficiente. En esto trabajo se propone una metodología para evaluar la redundancia de puentes. El estudio se basa en el proyecto de investigación “U.S. National Cooperative Highway Research Program” (NCHRP) que ya desarrolló sistemas de evaluación de robustez para superestructuras y subestructuras. Estos dos elementos estructurales se pueden estudiar por separado si se asume que la tipología más común de diseño entre tablero y pilas es la que prevé aparato de apoyos entre los dos (tipología longitudinal de tramo recto). Por otro lado, el diseño de puentes integrales está adoptado en muchos casos, sobretodo en zonas de alto riesgo sísmico el puente ha de ser considerado como un conjunto monolítico y hace falta una evaluación global del sistema estructural. El método que se propone se basa en un análisis no lineal estático (pushover) sobre un modelo espacial de elementos finitos unidimensionales. Se considera la no linealidad del material a través de curvas esfurerzos-deformaciones realistas, calculando, relaciones post-elásticas para las solicitaciones más importantes (rigidez axial y a flexión). Se utiliza un modelo de plasticidad concentrada en puntos singulares (rotulas plásticas). Esto tipo de análisis permite calcular las curvas de capacidad, las cuales representan sintéticamente la energía que la estructura es capaz de disipar ante una determinada distribución de fuerzas. Estas curvas de respuesta, a través de criterios de tipo determinista, permiten una evaluación numérica de la redundancia del sistema lo cual permite una clasificación o “ranking “ de puentes más robustos y menos robustos. Los resultados pueden ser utilizados para evaluar puentes antiguos, para calibrar normas de diseño en el ámbito de la robustez estructural y para evaluar distintas opciones antes de tomar decisiones en el caso de mantenimiento o reparación. En esto trabajo, el problema se aborda planteando una complejidad creciente del sistema estructural: una soporte aislado, una pila tipo pórtico, una pila con reparación, un puente a escala, un puente real. Además se ha hecho un estudio de sensibilidad sobre el puente analizado, con el objetivo de estudiar cómo afecta a la robustez estructural del conjunto pilas-tablero la modificación de las condiciones de rigidez del suelo y la conexión pila-tablero.

Page 4: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

Abstract 4

Abstract

The design of bridges has been traditionally done on a member by member basis and little consideration is provided to the remaining capacity after the failure of one structural element. As a consequence of several tragic collapses that followed the failure of single elements, the evaluation of the structural robustness of bridges has become of primary importance. In this work, a methodology is proposed to for the evaluation of the redundancy and robustness of bridges under lateral loads. The basis of the study is the research conducted under the auspices of the U.S. National Cooperative Highway Research Program (NCHRP) which developed approaches for the redundancy analysis of bridge superstructures and substructures. Generally, engineers have treated these two structural sub-systems separately by uncoupling their response assuming that the connections are due to bearing supports. Recently, the design of integral bridges has become more common especially in seismic hazard zones. In these cases, the bridge has to be analyzed as one monolithic system and a global evaluation of the structural redundancy of the entire system must be performed. The proposed method of analysis, which is based on a static non-linear analysis (pushover) using a finite element 3D space frame model, is applicable for the redundancy analysis of sub-systems connected by bearing supports as well as the entire system with either bearings or integral connections. The proposed analysis accounts for material non-linearity using realistic models for the stress-strain relationships of the different material constituents based on plasticity models that take into consideration the interaction between the axial forces and bending moments when necessary. A lumped plasticity model is adopted. A push over analysis is adopted because it provides an adequate indictor of the post-elastic behavior of the entire system. Load-response curves are hence calculated for the intact structure and for the damaged system, and then compared to evaluate the loss of capacity and safety. The results can be used to analyze the redundancy of existing bridges, give guidelines for robust design, and evaluate the quality of different retrofitting schemes and selecting the best option. In this work the proposed approach is applied to structural systems with increasing levels of complexity. First, the analysis is performed for a simple column, followed by the analysis of a multi-column bent, a retrofitted bent, a scaled bridge model and a full scale bridge. Emphasis is placed on the analysis of the full scale bridge to evaluate the variation of the

Page 5: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

Abstract 5

redundancy indicators in relation to variations of some critical structural and geotechnical parameters including foundation stiffness and deck piers connection assumptions.

Page 6: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya
Page 7: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

Index of the contents 7

Index of the contents

Resumen ............................................................................................................................... 3 

Abstract ................................................................................................................................ 4 

Index of the contents ................................................................................................................ 7 

1.  List of figures ................................................................................................................. 10 

2.  List of tables ................................................................................................................... 15 

Introduction and objectives .................................................................................................... 17 

Introduction ........................................................................................................................ 18 

Thesis outline ..................................................................................................................... 20 

Objectives ........................................................................................................................... 21 

3.  Analytical procedure for lateral Push-over analysis ...................................................... 22 

Introduction ........................................................................................................................ 23 

Analysis of bridge bents ..................................................................................................... 23 

Sectional analysis ............................................................................................................... 25 

Results ................................................................................................................................ 31 

4.  Lateral load on 3-column bent ....................................................................................... 34 

Introduction ........................................................................................................................ 35 

Structural model and member properties ........................................................................... 37 

Results ................................................................................................................................ 42 

Redundancy evaluation ...................................................................................................... 44 

Redundancy criteria ........................................................................................................ 44 Damage scenarios ........................................................................................................... 46 

Page 8: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

Index of the contents 8

Results ............................................................................................................................ 48 5.  4-span bridge lateral load analysis ................................................................................. 50 

Introduction ........................................................................................................................ 51 

Geometry and loads ............................................................................................................ 52 

Prototype structure ......................................................................................................... 52 Scaled structure .............................................................................................................. 53 Loads .............................................................................................................................. 53 Lateral force distribution ................................................................................................ 54 

Structural model ................................................................................................................. 56 

Materials ......................................................................................................................... 57 Results ................................................................................................................................ 58 

Redundancy evaluation ...................................................................................................... 60 

Damage scenarios ........................................................................................................... 60 Results ............................................................................................................................ 62 

6.  Mountain Laurel way bridge analysis ............................................................................ 64 

Introduction ........................................................................................................................ 65 

Description of the structural system ............................................................................... 65 Objective of the analysis ................................................................................................ 68 

Structural model ................................................................................................................. 69 

Description of the model ................................................................................................ 69 Simplifications ............................................................................................................... 71 Materials ......................................................................................................................... 71 Mechanical properties of members ................................................................................ 78 Non linear properties ...................................................................................................... 80 Loads .............................................................................................................................. 92 

Results ................................................................................................................................ 96 

Multilinear vs Bilinear model ........................................................................................ 96 Redundancy evaluation ...................................................................................................... 98 

Damage scenarios ........................................................................................................... 98 Results ............................................................................................................................ 99 

Integral vs. continuous design .......................................................................................... 104 

Introduction .................................................................................................................. 104 Bearings analysis properties ......................................................................................... 104 Comparison of the results ............................................................................................. 106 

Influence of soil stiffness on the response ....................................................................... 110 

7.  Conclusions .................................................................................................................. 117 

Conclusions and further research ..................................................................................... 118 

Page 9: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

Index of the contents 9

8.  References .................................................................................................................... 120 

9.  Appendix 1: Simple span beam non linear test ............................................................ 121 

Material ............................................................................................................................ 122 

Geometry .......................................................................................................................... 124 

Curve points calculation ................................................................................................... 125 

Simple span beam calculation .......................................................................................... 131 

10.  Appendix 2: Compressed column under lateral load ................................................ 137 

Geometry .......................................................................................................................... 138 

Curve point calculation .................................................................................................... 139 

Compressed column under lateral load calculation ......................................................... 151 

11.  Appendix 3: Prestressed beam non linear test .......................................................... 155 

Structural properties ......................................................................................................... 156 

Geometry of the problem ............................................................................................. 156 Structural design ........................................................................................................... 156 Moment curvature relationship .................................................................................... 158 Equivalent prestress load .............................................................................................. 161 

Results .............................................................................................................................. 162 

Qualitative behavior ..................................................................................................... 162 SAP calculation ............................................................................................................ 166 Comparison .................................................................................................................. 166 

12.  Appendix 4: Non linear properties of MLW bridge ................................................. 168 

13.  Appendix 5: bearings support design and verification .............................................. 209 

Design and properties of bearing pads ............................................................................. 210 

Vertical design force .................................................................................................... 210 Preliminary design ........................................................................................................ 210 

Abutment 1 ....................................................................................................................... 215 

Abutment 2 ....................................................................................................................... 217 

Bent 1 ............................................................................................................................... 219 

Bent 2 ............................................................................................................................... 221 

Bent 3 ............................................................................................................................... 223 

Page 10: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

List of figures 10

List of figures

figure 1 column cross section properties ................................................................................ 23 figure 2 geometry of example bridge bent ............................................................................. 24 figure 3 steel reinforcement stress-strain curve ..................................................................... 25 figure 4 Typical stress-strain relation for concrete ................................................................ 26 figure 5 variation of the moment curvature relation skip for increasing axial loads ............. 27 figure 6 moment-curvature relation for bridge columns ........................................................ 28 figure 7 steel strain vs. curvature of the section ..................................................................... 28 figure 8 concrete strain vs. curvature of the section ............................................................... 29 figure 9 interaction curve for example column ...................................................................... 30 figure 10 push over curve ....................................................................................................... 31 figure 11 load distribution and order of plastic hinge formation ........................................... 32 figure 12 plastic rotation vs.cap displacement ....................................................................... 33 figure 13 plastic moment vs cap displacement ...................................................................... 33 figure 14 bent specimen ......................................................................................................... 35 figure 15 retrofitted bent ........................................................................................................ 36 figure 16 Materials stress-strain curves .................................................................................. 39 figure 17 constant axial load moment curvature relation and linearization ........................... 40 figure 18 moment curvature curves for varying axial load .................................................... 40 figure 19 linearized moment curvature curves for different axial load .................................. 41 figure 20 push over of example bent (with the plastic hinges in the columns not depending on the axial load) .................................................................................................................... 42 figure 21 push over of example bent (with the plastic hinges in the columns depending on the axial load) ......................................................................................................................... 43 figure 22 total damaged columns ........................................................................................... 46 figure 23 total damaged columns ........................................................................................... 46 figure 24 a)partial damaged columns, b) lateral column totally damaged and central column partially damaged ................................................................................................................... 47 figure 25 damaged push over curves ...................................................................................... 48 

Page 11: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

List of figures 11

figure 26 Post-tensioned Rods for Cap-Beam Deck Connection ........................................... 52 figure 27 plan view of the connection between deck and cap-beam ..................................... 53 figure 28 loading scheme of model bridge ............................................................................. 54 figure 29 lateral and longitudinal load distribution ................................................................ 55 figure 30 structural model of tested bridge ............................................................................ 56 figure 31 post elastic of bridge model column properties ...................................................... 57 figure 32 push over analysis and hysteretic behavior of bent 1 of model bridge .................. 58 figure 33 push over analysis and hysteretic behavior of bent 2 of model bridge .................. 59 figure 34 push over analysis and hysteretic behavior of bent 3 of model bridge .................. 59 figure 35 Total damage bent 1 ................................................................................................ 60 figure 36 Total damage bent 2 ................................................................................................ 60 figure 37 Total damage bent 3 ................................................................................................ 60 figure 38 Partial damage bent 1 .............................................................................................. 61 figure 39 Partial damage bent 2 .............................................................................................. 61 figure 40 Partial damage bent 3 .............................................................................................. 61 figure 41 total damages responses .......................................................................................... 62 figure 42 partial damages responses ....................................................................................... 62 figure 43 Bridge geographic location ..................................................................................... 65 figure 44 Bridge connections ................................................................................................. 66 figure 45 Crossed river ........................................................................................................... 66 figure 46 Seismic hazard map (Caltrans) ............................................................................... 67 figure 47 Legend for seismic hazard map (Caltrans) ............................................................. 67 figure 48 Deck dimensions ..................................................................................................... 68 figure 49 Space frame modeling ............................................................................................ 69 figure 50 plan and elevation view of the example model bridge ........................................... 70 figure 51 concrete qualities .................................................................................................... 74 figure 52 reinforcement steel stress-strain curve ................................................................... 76 figure 53 concrete stress-strain curves ................................................................................... 77 figure 54 Longitudinal element arrangement ......................................................................... 78 figure 55 Torsional area of the deck section .......................................................................... 78 figure 56 Shear lag derivation ................................................................................................ 79 figure 57 Partial deck 1 .......................................................................................................... 80 figure 58 Partial deck 2 .......................................................................................................... 80 figure 59 Partial deck 3 .......................................................................................................... 81 figure 60 section with tendon at 1.1m from the bottom. Different simplification: bilinear and multilinear .............................................................................................................................. 81 figure 61 Inferior slab section of a segment ........................................................................... 82 figure 62 Superior slab section of a segment ......................................................................... 83 figure 63 Stirrups spacing ...................................................................................................... 84 figure 64 Web 5 section of a segment .................................................................................... 85 figure 65 Web 10 section of a segment .................................................................................. 85 

Page 12: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

List of figures 12

figure 66 Web 25 cross section of a segment ......................................................................... 86 figure 67 Bent diaphragm cross section ................................................................................. 86 figure 68 Abutment diaphragm cross section ......................................................................... 87 figure 69 Column cross section .............................................................................................. 88 figure 70 moment curvature curves for different axial load .................................................. 88 

figure 71 multilinear simplification of columns M f curves ................................................ 89 

figure 72 bilinear simplification of columns M f curves ...................................................... 89 

figure 73 interaction curve for column example .................................................................... 90 figure 74 load case o f pier 1 .................................................................................................. 92 figure 75 load case of pier 2 ................................................................................................... 92 figure 76 load case of pier 3 ................................................................................................... 93 figure 77 transversal load distribution .................................................................................... 93 figure 78 Prestress profile ...................................................................................................... 93 figure 79 Equivalent load due to prestress ............................................................................. 94 figure 80 bent 1: capacity curves ............................................................................................ 96 figure 81 bent 2: capacity curves ............................................................................................ 97 figure 82 bent 3 capacity curves ............................................................................................. 97 figure 83 6 damage scenarios: 3 Total damage + 3 Partial damage ....................................... 98 figure 84 total damaged column in bent 1 ............................................................................ 100 figure 85 partial damaged column in bent 1 ......................................................................... 100 figure 86 total damaged column in bent 2 ............................................................................ 101 figure 87 partial damaged column in bent 2 ......................................................................... 101 figure 88 total damaged column in bent 3 ............................................................................ 102 figure 89 partial damaged column in bent 3 ......................................................................... 102 figure 90 Horizontal forve vs distorsion for typical axial load ............................................ 104 figure 91 comparison of the intact system curves ................................................................ 106 figure 92 comparison of the damage system curve .............................................................. 106 figure 93 pushover for standard design bridge: intact and damage system ......................... 107 figure 94 moment distribution in the columns a) standard design b) integral design .......... 108 figure 95 intact system parametrical analysis ...................................................................... 111 figure 96 damaged system parametrical analysis ................................................................. 111 figure 97 capacity curves for stiff soil .................................................................................. 112 figure 98 capacity curves for normal soil ............................................................................. 113 figure 99 capacity curves for soft soil .................................................................................. 114 figure 100 variation of the strength capacity varying soil stiffness ..................................... 115 figure 101 variation of the redundancy ratios for varying soil stiffness .............................. 115 figure 102 Concrete stress-strain relationship ...................................................................... 122 figure 103 reinforcement steel stress-strain relationship ..................................................... 122 figure 104 structural problem ............................................................................................... 124 figure 105 transversal cross section ..................................................................................... 124 figure 106 Comparison of results ......................................................................................... 130 

Page 13: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

List of figures 13

figure 107 solution strategy .................................................................................................. 131 figure 108 Simplified moment curvature curve ................................................................... 131 figure 109 distribution of moments along the beam under concentrated load at midspan .. 132 figure 110 elastic and plastic displacement .......................................................................... 136 figure 111 Structural problem .............................................................................................. 138 figure 112 cross section ........................................................................................................ 138 figure 113 curvature vs compressed steel strain .................................................................. 148 figure 114 curvature vs neutral axis ..................................................................................... 148 figure 115 curvature vs tensile steel deformation ................................................................ 149 figure 116 curvature vs concrete strain ................................................................................ 149 figure 117 curvature vs moment ........................................................................................... 150 figure 118 simplified moment curvature relationship .......................................................... 151 figure 119 interaction curve ................................................................................................. 151 figure 120 curve found by interpolation ............................................................................... 152 figure 121 Structural problem .............................................................................................. 156 figure 122 cross section properties ....................................................................................... 157 figure 123 Prestress path ...................................................................................................... 158 figure 124 Control sections and eccentricities ..................................................................... 158 figure 125 Moment curvature idealization for control section number 3 ............................ 159 figure 126 Strain paths and strain material limits for control section 3 ............................... 160 figure 127 Moment curvature curves with (red) and without (black) initial moment due to prestress for control section .................................................................................................. 160 figure 128 Prestress equivalent load .................................................................................... 161 figure 129 Initial moment distribution due to prestress eccentricità .................................... 162 figure 130 First section plasticized....................................................................................... 162 figure 131 Structure becoming mechanism .......................................................................... 163 figure 132 Original problem ................................................................................................. 164 figure 133 Problem 0 ............................................................................................................ 164 figure 134 Problem 1 ............................................................................................................ 164 figure 135 Moment distribution for the intact structure ....................................................... 165 figure 136 Section e0.3 properties ........................................................................................ 170 figure 137 Section e0.4 properties ........................................................................................ 171 figure 138 Section e0.5 properties ........................................................................................ 172 figure 139 Section e0.6 properties ........................................................................................ 173 figure 140 Section e0.7 properties ........................................................................................ 174 figure 141 Section e0.8 properties ........................................................................................ 175 figure 142 Section e0.9 properties ........................................................................................ 176 figure 143 Section e1.0 properties ........................................................................................ 177 figure 144 Section e1.1 properties ........................................................................................ 178 figure 145 Section e1.2 properties ........................................................................................ 179 figure 146 Section e1.3 properties ........................................................................................ 180 

Page 14: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

List of figures 14

figure 147 Section e1.4 properties ........................................................................................ 181 figure 148 Section e1.5 properties ........................................................................................ 182 figure 149 Section e1.6 properties ........................................................................................ 183 figure 150 Section le0.3 properties ...................................................................................... 184 figure 151 Section le0.4 properties ...................................................................................... 185 figure 152 Section le0.5 properties ...................................................................................... 186 figure 153 Section le0.6 properties ...................................................................................... 187 figure 154 Section le0.7 properties ...................................................................................... 188 figure 155 Section le0.8 properties ...................................................................................... 189 figure 156 Section le0.9 properties ...................................................................................... 190 figure 157 Section le1.0 properties ...................................................................................... 191 figure 158 Section le1.1 properties ...................................................................................... 192 figure 159 Section le1.2 properties ...................................................................................... 193 figure 160 Section le1.3 properties ...................................................................................... 194 figure 161 Section le1.4 properties ...................................................................................... 195 figure 162 Section le1.5 properties ...................................................................................... 196 figure 163 Section le1.6properties ....................................................................................... 197 figure 164 inferior slab properties ........................................................................................ 199 figure 165 superior slab properties ....................................................................................... 200 figure 166 web5 properties ................................................................................................... 201 figure 167 web10 properties ................................................................................................. 202 figure 168 web25 properties ................................................................................................. 203 figure 169 diaphragm abutment properties .......................................................................... 204 figure 170 diaphragm bent properties .................................................................................. 205 figure 171 M-f curve for P=0 ............................................................................................... 206 figure 172 simplification of the curves for P=0 ................................................................... 206 figure 173 M-f curve for P=-10000 ...................................................................................... 206 figure 174 simplification of the curves for P=-10000 .......................................................... 207 figure 175 M-f curve for P=-20000 ...................................................................................... 207 figure 176 simplification of the curves for P=-20000 .......................................................... 207 figure 177 M-f curve for P=40000 ....................................................................................... 208 figure 178 simplification of the curves for P=40000 ........................................................... 208 figure 179 Interaction surface for the two simplification strategy ....................................... 208 figure 180 Hazad map of Catalonia ...................................................................................... 213 figure 181 bearings scheme disposition ............................................................................... 225 

Page 15: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

List of tables 15

List of tables

table 1 comparison of displacements at critical points ........................................................... 31 table 2 comparison of lateral forces at critical points ............................................................ 32 table 3 comparison of analytical results to experimental results for the example bent ......... 43 table 4 redundancy evaluation ................................................................................................ 48 table 5 redundancy of damaged systems ................................................................................ 48 table 6 Undamage system ....................................................................................................... 63 table 7 Damaged system ......................................................................................................... 63 table 8 Partial deck 1: linear properties .................................................................................. 80 table 9 Partial deck 2: linear properties .................................................................................. 80 table 10 Partial deck 3: linear properties ................................................................................ 81 table 11 Inferior slab: linear properties .................................................................................. 82 table 12 Superior slab: linear properties ................................................................................. 83 table 13 Web 5: linear properties ........................................................................................... 85 table 14 Web 10: linear properties ......................................................................................... 85 table 15 Web 25: linear properties ......................................................................................... 86 table 16 Bent diaphragms: linear properties ........................................................................... 86 table 17 Bent diaphragms: linear properties ........................................................................... 87 table 18 Stiffness corrections ................................................................................................. 90 table 19 Bearing stiffness ....................................................................................................... 91 table 20 Equivalent force due to prestress in the different zones ........................................... 94 table 21 modal vs mass distribution ....................................................................................... 95 table 22 lateral force distribution ........................................................................................... 95 table 23 redundancy results for bent 1 ................................................................................. 100 table 24 redundancy results for bent 2 ................................................................................. 101 table 25 redundancy results for bent 3 ................................................................................. 102 table 26 redundancy values for the example bridge ............................................................. 103 table 27 resumen of properties and detail of the bearings support devices .......................... 105 table 28 redundancy values for standard design bridge ....................................................... 107 

Page 16: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

List of tables 16

table 29 Integral vs. standard design redundancy ................................................................ 109 table 30 soil stiffness ............................................................................................................ 110 table 31 redundancy evaluation for stiff soil stiffness ......................................................... 112 table 32 redundancy evaluation for normal soil stiffness ..................................................... 113 table 33 redundancy evaluation for soft soil stiffness .......................................................... 114 table 34 resume of the redundancy parameters for the example bridge ............................... 116 table 35 Concrete properties ................................................................................................. 122 table 36 reinforcement steel properties ................................................................................ 123 table 37 cross section properties ........................................................................................... 124 table 38 first stage results ..................................................................................................... 126 table 39 second stage results ................................................................................................ 128 table 40 resume of the problem data .................................................................................... 154 table 41 midspan displacements comparison ....................................................................... 154 table 42 Preliminar design results ........................................................................................ 157 table 43 Conforntation between by hand and SAP2000 calculation .................................... 166 table 44 values for wind load calculation ............................................................................. 212 

Page 17: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

Introduction and objectives 17

Introduction and objectives

Introduction Thesis outline Objectives

Page 18: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

Introduction and objectives 18

Introduction

Redundancy is an important structural characteristic recognized in most design applications as desirable and even necessary. In general, redundancy is defined as the ability of a structural system , particularly a bridge system, to sustain damage without collapsing. The AASHTO’s LRFD specifications define collapse as a major change in the geometry of a bridge rendering it unfit for use. The structural components of a bridge do not behave independently but interact with other components to form one structural system. Current bridge specifications generally ignore this system effect and deal with individual components. Because redundancy is related to system behavior, this study attempts to bridge the gap between a component-by-component design and the system effect. In this context a bridge system is safe if: it provides a reasonable safety against first member failure, it does not reach its ultimate system capacity under extreme loading conditions, it does not produce large deformations under expected loading conditions, it is able to carry some traffic load after damage to a component. The limit states that are checked to ensure adequate bridge redundancy and system safety are defined as: Member failure. This is a traditional check of individual member safety using elastic capacity and nominal member capacity Ultimate limit state. This is defined as the ultimate capacity of the intact bridge system. Functionality limit state. This is defined as the capacity of the system related to an unacceptable displacement. Damaged condition limit state. This is defined as the ultimate capacity of the bridge system after damage to one main load-carrying element. According to current engineering practice, redundancy should provide a structure with adequate alternative load paths in the case of excessive live loads or major component failures. Three types of redundancy are defined as follows:

Internal redundancy, which means that the failure of one element will not result in the failure of the other elements of the member. For example, cracks that develop in one element do not spread to other elements.

Structural redundancy refers to the redundancy which exists as a result of the continuity within the load path. Any statically indeterminate structure such as continuous beams and rigid frames would belong to this type. For example, a continuous two-span two-girder bridge is structurally indeterminate,

Page 19: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

Introduction and objectives 19

Load path redundancy, as defined by AASHTO Specifications, refers to the number of supporting elements. A structure is non-redundant if it has only one or two load paths. For example a bridge superstructure composed of only one or two parallel girders is regarded as non-redundant. Failure of one girder of a system with one or two load paths is assumed to result in the collapse of the span, hence, the bridge is considered to be non-redundant.

Redundancy is a function of the structural behavior of the total system. In order to consider the redundancy of a bridge, the overall system behavior and the interaction of the superstructure, substructure and foundation must be considered. In case of typical design the behavior of superstructure and substructure can be considered separated and according to [1] different redundancy evaluations are performed. In fact as substructures and foundations are normally designed for vertical loads with relatively high safety factors, the lateral load is most important load that affects substructure redundancy. In most bridge designs the superstructure load is transferred to substructure through bearing supports. In these cases, the superstructure provides little resistance to lateral loads and the behavior of the substructure and superstructure systems in most cases, may be studied independently. as long as the applied vertical load effects on the substructure, including axial forces and moments, are adequately accounted for. The uncoupling the behavior of the superstructures and substructures may not be valid when the two subsystems are integrally connected as in the case of integral bridges.

Page 20: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

Introduction and objectives 20

Thesis outline

Chapter 1 of this report is the first level of structural complexity represented by the analysis of a two column bent. This is supposed to be part of a typical design bridge system, in other words no integral design is used in this case. This analytical case is meant to reproduce the calculations performed in [1] and the redundancy calculation related to it Chapter 2 presents the analysis of a retrofitted 3-column bent under a lateral excitation. This is a scaled structure and a laboratory experiment. As already mentioned this kind of analysis can be useful to evaluate how a retrofitting can help in a determinate case and to choose among different solutions. Chapter 3 presents the analysis of a 4-span scale bridge tested in Nevada, [6], in this case integral design has been used. The original test is performed by applying a base acceleration at the base of the piers and measuring the response. In this chapter it is demonstrated that pushover analysis can be used for describing the behavior of the structural system matching as well as possible with the test results. Chapter 4 presents the analysis of a integral bridge located in California (USA). The existing bridge is evaluated with the approach developed in the previous chapters, and a more advanced level of structural complexity is used to simulate the non linear behavior of the bridge. Emphasis is placed on the analysis of the full scale bridge to evaluate the variation of the redundancy indicators in relation to variations of some critical structural and geotechnical parameters including foundation stiffness and deck piers connection assumptions.

Page 21: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

Introduction and objectives 21

Objectives

The objective of this study is to develop a methodology for considering substructure jointly with superstructure redundancy during the design and evaluation of bridge systems under lateral loads. A verification of the validity of the pushover analysis is performed in relation with laboratory test results. The results obtained in this work could be considered as a frame of the research project which is meant to improve the security of structural systems by considering structural redundancy and robustness. In this particular case the approach used in this work can be used to analyze old bridges, give guidelines for robust design or evaluate the quality of a retrofitting.

Page 22: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

Analytical procedure for lateral Push-over analysis 22

1. Analytical procedure for lateral Push-over analysis

Introduction Analysis of bridge bents Sectional analysis Results

Page 23: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

Analytical procedure for lateral Push-over analysis 23

Introduction

One objective of this Project is to study the system behavior of bridge bents and combined bridge systems when subjected to lateral loads. This Chapter describes the analysis and computational approach that will be used during the course of the project using the SAP2000 Computer Software to analyze bridge bents and superstructure-substructure systems under lateral load. The approach is validated by comparing the results to those obtained in [1] which used an in-house developed program and by comparing to experimental results.

Analysis of bridge bents

Following the method used in [1], material non-linearity is taken into account by considering a moment-curvature relation for the reinforced concrete columns. The ability of the structure to carry load after the plasticization of a component depends on the inelastic properties of the materials taking into consideration the confinement ratio. The bridge columns are modeled with lumped plasticity frame elements. Plastic hinges are used at the top and at the bottom of each column in order to simulate non linear behavior of the pier. The influence of the axial load on the plastic behavior is taken into account as well. The foundation is modeled as a zero-length element under each column, with equivalent linear values for the stiffness as proposed in [1]. Figure 1 shows the cross section of the column example and figure 2 shows the geometry of the problem.

figure 1 column cross section properties

Page 24: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

Analytical procedure for lateral Push-over analysis 24

figure 2 geometry of example bridge bent

Page 25: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

Analytical procedure for lateral Push-over analysis 25

Sectional analysis

The objective of the sectional analysis is to find the non-linear moment-curvature curve and determine the interaction curve for the axial force-bending moment that separates the elastic behavior of a section from the inelastic part. These properties are obtained with the SAP2000 section designer module which allows the automatic integration of the calculated properties into the finite element analysis. The effect of the confinement due to the presence of stirrups, is included by using the appropriate stress-strain relations for concrete. An elastic-perfectly-plastic bilinear stress-strain relation is used to describe the behavior of the reinforcing steel as shown in figure 3.

The elastic modulus is assumed to be 229000200000 inkMPaEs , the yielding stress is

260450 inkMPafs and the ultimate strain %0.10su .

figure 3 steel reinforcement stress-strain curve

For concrete in compression the following stress-strain relation is used (see figure 4):

ur

uu

rcc

c

c

ff

f

000

0

2

00

2

Page 26: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

Analytical procedure for lateral Push-over analysis 26

where %2.00 is the strain at peak stress, and cf is the concrete strength .

The residual stress for confined concrete is MPar 4.5 according to [1].

Zero residual stress is assumed for unconfined concrete. The transition to the residual stress of the stress-strain relation is at a strain of %6.0 and %3 for unconfined and confined concrete, respectively. This is the model chosen by the authors of [1], to describe the behavior of the concrete: as it is possible to notice no strength increment is provided to the confined concrete. The increase of strength is considered in more sophisticated models, like Mander’s model [2], which will be used in the further examples. In this case since the objective is to reproduce analytical results, the assumptions must be consistent with the original document [1]. The tensile strength is totally neglected.

figure 4 Typical stress-strain relation for concrete

Follows the moment curvature relation calculated for various axial forces.

Page 27: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

Analytical procedure for lateral Push-over analysis 27

figure 5 variation of the moment curvature relation skip for increasing axial loads

The superstructure dead load considering also the self-weight is given in [1]

kipkN 15286800 . The dead load is distributed uniformly along the bent cap.

The live load of kipkN 3111385 consists of the HL-93 lane and truck loads and is placed on

the bent cap to cause maximum effect on the right column in the direction of the lateral force. That column will have an axial force of kipkN 10064478 .

The foundation stiffness is 499572900 and ftkipmkN 666097200 in the transverse and

vertical directions respectively, and the rotational stiffness is radkipradkN /146125650000 .

Page 28: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

Analytical procedure for lateral Push-over analysis 28

figure 6 moment-curvature relation for bridge columns

Figure 7 and 8 show how the rupture of the compressed section is due to the reach of the ultimate concrete strain, while for the uncompressed the rupture is due to the reach of the ultimate steel strain; furthermore as already seen the ultimate curvature is higher for the compressed section, thus it is less ductile than the uncompressed. The concrete strain is limited arbitrarily by the authors at a value of 1.5%.

figure 7 steel strain vs. curvature of the section

Page 29: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

Analytical procedure for lateral Push-over analysis 29

figure 8 concrete strain vs. curvature of the section

For the numerical implementation the moment curvature is simplified as shown in figure 6,using the following values:

0030.0y , yielding curvature

0483.0u , ultimate curvature.

The plastic hinges are modeled at the nodes at the end of the columns. To relate the plastic curvature, to the plastic rotation of the hinge, , a plastic hinge

length, pL is defined such that:

pL

The authors of [1] approximates the plastic hinge length by:

effp LL 10.0

Where effL represents the distance from the plastic hinge to the point of contra-flexure.

In this case, due to a reasonably stiff foundation producing double curvature, in the columns, this effL is taken as half the height of the column.

The estimation of the plastic hinge length is very difficult and various researchers have proposed different empirical equations and approximations to estimate its value [3].

Page 30: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

Analytical procedure for lateral Push-over analysis 30

On the other hand, many engineers [4] have used the depth of the beam to estimate the length of plastic hinge which is the approach that will be used in the subsequent analyses that will be performed in this study. In all cases, when performing a frame or a grillage analysis, the upper limit on the plastic hinge length is half the length of the beam element. For the total column height of 11m (39.4 ft), the plastic hinge length can be estimated as 0.55m (1.8 ft), thus the plastic hinge rotation capacity maxp at which column failure takes

place is:

025.0max yupp l

Following [1], a cubic polynomial curve is chosen to describe the interaction between axial load and yielding moment using the expression:

3

u

2

uuu P

P952.0

P

P56.6

P

P96.41

M

M

where for this example kipskNPu 895739800 and ftkipkNmM u 27673751 .

This relationship was determined empirically by the authors of [1] and is obtained by calculating the yielding moment for different axial loads and finding the equations by the last error square technique. The approach is found to be reasonably accurate based on the experience of the researchers in the analysis of the bridge bents subjected to seismic loads and reduces the effort needed to find the moment-axial force M-P interaction curve for each cross section independently. The resulting curve for the columns of the example bent is shown in figure 9.

figure 9 interaction curve for example column

Page 31: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

Analytical procedure for lateral Push-over analysis 31

Results 

Figure 10 compares the results of the push over curve obtained from the analysis performed as part of [1] to the results obtained using SAP2000. The critical points in the curve are numbered. Table 1 and 2 compare the displacements and forces obtained from [1] and the SAP 2000 analysis for each of the critical points. It is noted that a maximum difference of 4.1% is observed between the forces demonstrating the consistency between the two sets of results. A larger error (7.1%) is observed for the displacement at critical point 1. This difference may be due to the different methods used in [1] and in this Chapter to simplify the original M-phi relationship to the simplified bilinear relationship. The SAP2000 analysis was stopped when the displacement reached 50 cm (19.7 in) which is the point at which the [1] analysis was stopped. Overall, the results in figure 10 show reasonably good agreement between the two curves.

1

2

3

4

0

500

1000

1500

2000

2500

0 10 20 30 40 50

Hor

izon

tal f

orce

(kN

)

cap displacement (cm)

NCHRP 458

SAP2000

figure 10 push over curve

point #

dNCHRP dSAP2000 err %

1 6.4 cm (2.5 in) 5.9 cm (2.3 in) 7.1% 2 7.7 cm (3.0 in) 7.7 cm (3.0 in) 0.6% 3 15.0 cm (5.9 in) 14.5 cm (5.7 in) 3.8% 4 50.0 cm (19.7 in) 50.0 cm (19.7 in) 0.0%

table 1 comparison of displacements at critical points

Page 32: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

Analytical procedure for lateral Push-over analysis 32

point

# FNCHRP FSAP2000 err %

1 1505.9 kN (6698.7 kip) 1557.3 kN (6927.1 kip) -3.3% 2 1694.2 kN (7536.0 kip) 1744.8 kN (7761.3 kip) -2.9% 3 1953.0 kN (8687.3 kip) 2035.7 kN (9055.2 kip) -4.1% 4 1953.0 kN (8687.3 kip) 2035.7 kN (9055.2 kip) -4.1%

table 2 comparison of lateral forces at critical points

Figure 11 describes the evolution of the plastic hinge developments. The two bottom plastic hinges form almost simultaneously at a displacement of 5.9 cm (2.3 in). The third hinge forms when the displacement reaches 7.7 cm (3.0 in) and the last at 14.46 cm (5.7in). The relation between the plastic hinge rotation and the displacement of the cap is also provided. Figure 12 shows the development of the non linear behavior in the plastic hinges; it is possible to notice the order of plastic hinge formation and how they have different yielding moments due to the different axial load in each of the two columns.

figure 11 load distribution and order of plastic hinge formation

Page 33: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

Analytical procedure for lateral Push-over analysis 33

figure 12 plastic rotation vs.cap displacement

figure 13 plastic moment vs cap displacement

Page 34: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

Lateral load on 3-column bent 34

2. Lateral load on 3-column bent

Introduction Structural model and member properties Results Redundancy evaluation

Page 35: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

Lateral load on 3-column bent 35

Introduction

In this section, the validity of the adopted structural analysis method is verified by comparing the analytical results to those obtained from an experimental investigation of a model three-column bridge bent performed by [5]. The experimental tests were performed for several kind of retrofitting to improve their seismic performance. The specimens are scaled at 1/4.5 in order to facilitate the testing in the laboratory. The original specimen (no retrofitting) is shown in figure 14. The particular bent analyzed in this section has been retrofitted by applying a link beam connecting the columns to add rigidity to the base of the substructure. The fully retrofitted case has got a concrete link beam applied just above the footings (figure 15).

figure 14 bent specimen

Page 36: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

Lateral load on 3-column bent 36

figure 15 retrofitted bent

The experimental observation showed that collapse mechanism of the structure was governed by the formation of flexural plastic hinges at the top of the columns and in the zone just above the link beam (see figure 15). No rotation or cracking was observed in the footings during the test.

Page 37: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

Lateral load on 3-column bent 37

Structural model and member properties

In order to consider the post-elastic behavior of the structure, the reinforcing steel is assumed to be elasto-plastic with strain hardening and the Mander’s model [2] is used for describing the behavior of the concrete taking into account the confinement effect.

Accordingly, the Elastic modulus for steel is 229000200000 inkMPaEs , the yielding

stress 250410 inkMPafs and the ultimate strain %0.10su .

For concrete the strength is psiMPafc 400028 .

Mander stress-strain relationship is used for unconfined (deck) and confined concrete (columns). For the unconfined concrete, the compression portion of the stress-strain curve consists of a curved portion and a linear portion. The curved part is defined for '2 c by:

rc

xr

xrff

1

'

The linear portion for uc '2 is defined by:

'221

'2

cu

ur

c

r

rff

where

'cx ;

'' ccfE

Er

.

and concrete strain; f concrete stress;

E modulus of elasticity;

cf ' concrete compressive strength;

' concrete strain at cf ' ;

u ultimate concrete strain capacity

Page 38: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

Lateral load on 3-column bent 38

The tensile yield stress for the Mander unconfined curve is taken at cf '5.7 in psi.

The Mander confined curve shape depends on the confinement steel and is defined by the following equation:

rcc

xr

xrff

1

'

where

cc

cccc f

f'11

'

'5

cc

x'

cc

ccfE

'

'sec

secEE

Er

and concrete strain; f concrete stress;

E modulus of elasticity;

secE modulus of elasticity;

cf ' concrete compressive strength of unconfined concrete;

ccf ' compressive strength of confined concrete;

c' concrete strain at cf ' ;

u ultimate concrete strain capacity for unconfined concrete and concrete spalling strain for

confined concrete;

cc' concrete strain at ccf ' ;

cu ultimate concrete strain capacity for confined concrete.

For circular cores the compressive strength of confined concrete is calculated by the following expression:

254.1

'

'2

'

'94.71254.2''

c

L

c

Lccc f

f

f

fff

Page 39: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

Lateral load on 3-column bent 39

where

Lf ' effective lateral pressure on confined concrete provided by the confinement steel.

The material properties are illustrated in figure 16.

-30

-25

-20

-15

-10

-5

0

5

-0.6%-0.4%-0.2%0.0%0.2%

s(N

/mm

^2)

e (%)

Mander confined concrete

-800

-600

-400

-200

0

200

400

600

800

-15% -10% -5% 0% 5% 10% 15%

s(N

/mm

^2)

e (%)

Steel reinforcement

figure 16 Materials stress-strain curves

The base of the structure is considered fixed because the link beam performs as a restraint to the footings eliminating its rotation or any plastic behavior and cracking. The effective length of the columns is taken as 1.73 m (68.11 in) to account for the effect of the link beam on the base of the column. The non linear behavior of each column is modeled by discrete plastic hinges and the plastic hinge length is chosen as the depth of the section according to [4]. Plastic hinge locations are placed at the nodes at half the effective column height as well as the bottom and top of the columns. Two different models are developed:

1) In the first case, the elastic behavior is independent of the axial load and the moment curvature curve is calculated for an axial load equal to 45 kN (10.1 kip), and is not varied during the analysis even though, in reality, the axial load in the columns varies between 10 kN (2.2 kip) and 80 kN (18 kip). For this range of axial load values, the interaction curve shows little variation in the yielding moment (the difference remaining within 9%) and results in a negligible variation in the moment-curvature curve. The constant axial load Moment curvature relationship is shown in figure 17.

2) In the second case, the effect of the axial load variation during the calculation steps is taken into account. Thus, an interaction curve and a discrete number of moment-curvature curves are defined.

Page 40: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

Lateral load on 3-column bent 40

In particular, three curves are defined for critical axial load values obtained from the results of solution 1, which are 0, 45, 100 kN (0, 10, 22.5 kip). The corresponding curves plotted in figure 18 and figure 19 shows the simplified linearized curves entered into the SAP2000 program.

0

5

10

15

20

25

0 0.2 0.4 0.6 0.8 1 1.2

M (k

N)

f (1/m)

P=-45 kN

Sectional analysis

SAP2000 input

figure 17 constant axial load moment curvature relation and linearization

0

5

10

15

20

25

0 0.2 0.4 0.6 0.8 1 1.2

M (k

N)

f (1/m)

P=-100 P=0

P=-45

figure 18 moment curvature curves for varying axial load

Page 41: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

Lateral load on 3-column bent 41

0

5

10

15

20

25

0 0.5 1 1.5

M (k

N)

f (1/m)

P=-45 kN

Sectional analysis

SAP2000 input

0

5

10

15

20

25

0 0.5 1

M (k

N)

f (1/m)

P=0 kN

Sectional analysisSAP2000 input

0

5

10

15

20

25

0 0.5 1 1.5

M (k

N)

f (1/m)

P=-100kN

Sectional analysis

SAP 2000 input

figure 19 linearized moment curvature curves for different axial load

The structural members are represented by frame elements with lumped plasticity, and a two-dimensional analysis is performed. The analysis applied a lateral force at the cap beam.

Page 42: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

Lateral load on 3-column bent 42

Results

The results of the push over analysis are shown in figure 20 and figure 21 and compared to the experimental results under cyclic loads. The figures show that the initial stiffness and resistance of the system are reasonably well simulated by the model. Tension softening is not taken into consideration using the simple model adopted herein which did not include a stiffness degradation law under cyclic load. The red line is the point at which the measured maximum load was recorded at a displacement of 7.6 cm (3 in). Table 3 compares the results for this displacement level from the two analytical solutions to the experimental results. The difference is found to be less than 3% showing a good match once the columns’ behavior is clearly in the nonlinear range.

0

10

20

30

40

50

60

70

80

90

100

0.00 0.02 0.04 0.06 0.08 0.10 0.12

Lat

eral

load

(kN

)

disp (m)

figure 20 push over of example bent (with the plastic hinges in the columns not depending on the axial load)

Page 43: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

Lateral load on 3-column bent 43

0

10

20

30

40

50

60

70

80

90

100

0.00 0.02 0.04 0.06 0.08 0.10 0.12

late

ral l

oad

(kN

)

disp (m)

figure 21 push over of example bent (with the plastic hinges in the columns depending on the axial load)

Lateral force for disp= 7.6 cm (3 in) Error % Solution 1 82.64 kN (18.58 kip) 2.66% Solution 2 81.49 kN (18.32 kip) 1.23%

Experimental 80.50 kN (18.10 kip) table 3 comparison of analytical results to experimental results for the example bent

Page 44: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

Lateral load on 3-column bent 44

Redundancy evaluation

Redundancy criteria

Redundancy of a bridge substructure is defined as the capability of the substructure system to continue to carry loads after the failure of any of its components. Thus, a redundant system consists of a structure for which two or more components must fail before the structural system collapses. A set of limit states are considered to ensure adequate structural redundancy: 1. Ultimate limit state – This is defined as the ultimate capacity of the structure when

undamaged. A ductile structure is expected to have large plastic deformations before collapse while in a brittle structure collapse may occur due to local loss of strength followed by the unloading of the system.

2. Functionality limit state – This is defined as a maximum total lateral displacement related to the loss of functionality and the serviceability of the structure. The reference value for this displacement is H/50, with H the clear column height of the bent.

3. Damaged condition ultimate capacity – This is defined as the ultimate capacity of the structure considering the loss or partial damage of a member. The member loss or damage can be due to a local brittle failure or a collision. The ability of a damaged structure to continue to carry load has also been referred to as structural robustness in the recent literature.

Three measures of redundancy are considered in this work, related to the limit states defined above. According to [1] the most rigorous definition for redundancy is the enhanced safety level represented by:

membersystem

Where system is the reliability index of the structural system and member is the component

reliability index. The deterministic approach proposed by [1] defines redundancy in terms of the system reserve ratios as follows:

20.1 luu LFLFR

20.1 lff LFLFR

50.0 ldd LFLFR

Page 45: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

Lateral load on 3-column bent 45

Respectively related to the ultimate, functionality and damaged condition limit states.

lLF is the load factor that causes the failure of the first member;

uLF is the load factor that causes collapse of the system;

fLF is the load factor that causes the functionality limit state of the initially intact structure

to be exceeded;

dLF is the load factor that causes the collapse of the damaged structure;

The criteria that the deterministic redundancy measures must meet were calibrated by performing non-linear analyses and the reliability assessment of common bent configurations that are known to have performed in a satisfactory way according to current design standards. Thus, the structural reliability level for a bridge bent that just meets the criteria is intended to be the same as that of a well designed bent to current standard practice.

Page 46: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

Lateral load on 3-column bent 46

Damage scenarios

In order to calculate the value of redundancy related to the damage state different damage scenarios are considered for the 3-column bent. These are:

1. Total loss of one column, it can be the interior column or one of the external columns. This is achieved by removing the column from the model (figure 22).

2. Partial loss of one column, it is intended to simulate a partial damage of a member that affects only its flexural resistance but where the axial load resistance is still in effect. This is achieved by setting the bending properties of the damaged column including the section moment of inertia equal to zero(figure 23).

3. Total loss of two columns, two damage scenarios are possible, one external and the central column or both columns are removed (figure 24 a).

4. Total loss of an external column simultaneously with the partial loss of the central column (figure 24 b).

figure 22 total damaged columns

figure 23 total damaged columns

Page 47: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

Lateral load on 3-column bent 47

figure 24 a)partial damaged columns, b) lateral column totally damaged and central column partially damaged

Page 48: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

Lateral load on 3-column bent 48

Results

The redundancy results for the undamaged cases are summarized in table 4.

Event Displacement Force First component failure 1.35 cm (0.53 in) 70.64 kN (15.88 kip)

System mechanism 5.67 cm (2.23 in) 84.60 kN (19.02 kip) 20.1uR

Excessive displacements (H/50)

3.46 cm (1.36 in) 82.40 kN (18.52 kip) 17.1fR

table 4 redundancy evaluation

The results for the different damage scenarios are summarized in table 5. (td)= total damage (pd)= element still carries axial load

Damage Displacement Force dR

Lateral (td) 1.97 cm (0.78 in) 58.08 kN (13.06 kip) 0.82 Central (td) 2.04 cm (0.80 in) 57.69 kN (12.97 kip) 0.81

Both lateral (td) 3.95 cm (1.56 in) 10.91 kN (2.45 kip) 0.15 Lateral+central (td) - - - - -

Lateral (pd) 5.53 cm (2.18 in) 54.99 kN (21.65 in) 0.77 Central (pd) 5.65 cm (2.22 in) 54.90 kN (21.61 in) 0.77 Lateral (td) + central (pd)

1.83 cm (0.72 in) 26.75 kN (10.53 in) 0.37

table 5 redundancy of damaged systems

The push over curves calculated for every damage scenario are plotted in figure 25.

0

10

20

30

40

50

60

70

-0.2-0.15-0.1-0.050

Lat

eral

forc

e (k

N)

displacement (m)

Lateral (td)

Central (td)

Both lateral (td)

Lateral (pd)

Central (pd)

Lateral (td) + central (pd)

figure 25 damaged push over curves

Page 49: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

Lateral load on 3-column bent 49

It is possible to notice that the functionality limit state is not satisfied; the damaged conditions ultimate capacity is satisfied for one column damage scenarios, it is not for the two column damage. Anyway these last scenarios are less probable. Results about two columns damage (central and lateral) are not represented because of the failure of the structure due to self-weight. The analyzed specimen can be considered redundant for the most probable damage scenarios like the ones related to the modification of the properties of only one column (the first two lines in table 5). Table 5 shows that the serviceability limit state is not strictly respected, anyway since the ratio is higher than one, follows that the bent cannot be defined strictly redundant, but somehow there is still a reserve of strength of 17% compared to the failure of the first member.

Page 50: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

4-span bridge lateral load analysis 50

3. 4-span bridge lateral load analysis

Introduction Geometry and loads Structural model Results Redundancy evaluation

Page 51: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

4-span bridge lateral load analysis 51

Introduction

The purpose of this section is to compare the analytical results of a ¼ scaled bridge to those obtained from tests on a real model in laboratory. The four-span model bridge tested at the University of Nevada, Reno is considered [6]. The bridge deck is a post-tensioned box-girder with width and transverse spacing between columns based on the average properties of typical highway bridges built in California. Each bent has a different pier height. A push over analysis is performed to study whether the results obtained will provide a reasonable envelope to the results of cyclic loads applied using three shaking tables. In addition this scale allows the use of conventional steel bars for the reinforcements, and conventional concrete instead of micro concrete. The scaled structure is the size reduced bridge, that allows to a laboratory evaluation, based on the prototype structure. In this work the attention is focused on a push-over analysis through a non-linear static analysis. In order to investigate the behavior of the bridge due to relative displacements in the plane of the deck, each bent has a different pier height. The deck is modeled by a single frame, thus the analysis does not provide information on local plastifications or ruptures.

Page 52: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

4-span bridge lateral load analysis 52

Geometry and loads

Prototype structure

The spans of the prototype bridge are 29.9 m (250 ft) and 35.3 m (116 ft) for the end and the middle spans respectively. The section of the deck is 12.6 m width (41.5 ft) in order to accommodate two 3.7 m (12 ft) wide lanes and wide shoulders. The spacing between columns in each bent is 7.6 m (25 ft) with 1.91 m (6.25 ft) overhangs. As recommended by AASHTO the deck depth is taken as 4% of the longest span, thus 1.42 m (56 in). The diameter of the piers is 1.22 m ( 4 ft), the bent cap width is taken as 1.52 m (5 ft) which is 304 mm (5 ft) larger than the bridge column diameter, providing 152 mm (1/2 ft) overhang from the column faces on both sides. The pier heights are 6.09 m (20 ft), 8.53 m (28 ft) and 7.31 m (24 ft) on bent 1, 2 and 3 respectively. The deck is continuous and integral with the piers, in particular the cap-beam is connected to the deck by post-tensioned rods as shown in figure 26.

figure 26 Post-tensioned Rods for Cap-Beam Deck Connection

The segments of the deck are connected to each other by the post tensioned cable running through it as shown in (figure 27); in the same image can also be seen the ducts for the vertical rods linking cap-beam and pier.

Page 53: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

4-span bridge lateral load analysis 53

figure 27 plan view of the connection between deck and cap-beam

Scaled structure

As already mentioned a scaled structure is analytically calculated in order to obtain comparable data to match with laboratory results. The model’s columns are circular with 305 mm (12 in) diameter and are reinforced with 16 bars of 9.52 mm (#3) of diameter, the concrete cover is 12.7 mm(1/2 in), the lateral reinforcement consisted of 4.9 mm (0.192 in) of spiral steel wire with 31.7 mm (1.25 in) pitch. The superstructure is adapted to the characteristics of the prototype structure, because a detailed reproduction would be difficult to construct. In addition the superstructure should remain elastic and its prestress should guarantee uncracked sections, therefore constant properties are assumed for the deck. Therefore the bridge model’s deck section is constructed by solid rectangular sections of 760 mm (30 in) by 360 mm (14 in) resulting in a 2.29 m (90 in) wide slab with 360 mm (14 in) thickness. The abutments are constructed as an L-shaped seat which support the superstructure with rollers. The beams are supported by a cap made of a T-shaped beam, and connected to this by two post-tensioned 31.7 mm ( 1¼ inch)diameter rods.

Loads

The purpose of the superimposed axial load is to reproduce a target axial load which represents a typical bridge column axial load. The axial load is related to the self-weight of the structure, effect of post-tensioning. In the model test, additional load is provided by lead bricks and concrete blocks that are attached on the top of the superstructure. The geometric configuration of the loads is shown in figure 28.

Page 54: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

4-span bridge lateral load analysis 54

figure 28 loading scheme of model bridge

Lateral force distribution

A mass distribution is used according to the following formula:

j

imass P

Pf

This distribution of loads can be used if the stiffness distribution is regular and if the span dimensions are similar among them. Figure 29 shows the lateral load distribution adopted for the example bridge. Theoretically the lateral force is applied to each mass, but since the deck in the transverse direction is considered very stiff, the force can be directly applied to the piers by contributive masses.

Page 55: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

4-span bridge lateral load analysis 55

figure 29 lateral and longitudinal load distribution

Page 56: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

4-span bridge lateral load analysis 56

Structural model

This chapter discusses the analytical model that is developed for the non-linear push-over analysis of the 4-span bridge. The bridge is modeled using a three dimensional assemblage of nodes and mono dimensional frame elements as shown in figure 30, the orientation of the model is the x axis for the longitudinal direction, the y for the vertical and the z for the transversal direction.

figure 30 structural model of tested bridge

Soil interaction is not taken into account, thus fixed supports are used for the external restrains of the columns. The non-linearity is assumed to be concentrated in the column elements using a lumped plasticity model, it is represented by the M-P-ϕ curves as already described in the previous chapters and illustrated in figure 31.

Page 57: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

4-span bridge lateral load analysis 57

0

20

40

60

80

100

120

140

0 0.1 0.2 0.3 0.4 0.5

M (k

Nm

)

f (1/m)

P=-250 kN

P=-500 kN

P=-50 kN

-3500

-3000

-2500

-2000

-1500

-1000

-500

0

500

0 50 100 150

P (k

N)

M (kNm)

figure 31 post elastic of bridge model column properties

Materials

For concrete, a confined stress-strain relationship is considered and Mander’s model is used with 45.2 MPa (6.56 ksi) peak stress at 0.5% strain and 35.1 MPa (5.09 ksi) stress at the ultimate strain of 1.69%. No tensile capacity is considered. For the reinforcing bars, a bilinear curve is adopted: the initial slope is 199,810 MPa (29,000 ksi) up to yield stress of 469 MPa (68 ksi) and 1461 MPa (212 ksi) for the second stage up to ultimate stress of 553.9 MPa (80 ksi). The stress-strain relationship is symmetric for tension and compression.

Page 58: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

4-span bridge lateral load analysis 58

Results

Figures 32, 33 and 34 compare the results of the push-over analysis to those obtained from the shaking table test. In particular, the base shear of each bent and its related cap displacement are plotted and the resultant curve is considered as an envelope to the cyclic load test. The vertical lines represent the displacement of a bent linked to the formation of the first plastic hinge in each of the bents: this information allows us to notice that when bent 3 plasticizes the other bents are still totally elastic. Bent 2 (the central bent) plasticizes next and bent 1 is the last to plasticize. It can be noticed that the beginning of the inelastic behavior in bent 1 occurs when the displacement of bent 1 is almost the same as that of the other bents. The initial stiffness and resistance are reasonably well simulated by the simplified static analysis and as in the analysis of the bent performed chapter 2, softening is not considered. The figures show that the responses of Bent 1 and Bent 3 are reasonably well modeled although the analytical results slightly underpredict some of the cyclic responses. Larger differences are observed for Bent 2.

0

50

100

150

200

0 0.05 0.1 0.15

Bent base shear (kN

)

Displacements (m)

Bent 1 plastic

Bent 2 plastic

Bent 3 plastic

Bent 1 PO MPf

figure 32 push over analysis and hysteretic behavior of bent 1 of model bridge

Page 59: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

4-span bridge lateral load analysis 59

0

20

40

60

80

100

120

0 0.02 0.04 0.06

Bent base shear (kN

)

Displacement (m)

Bent 1 plastic

Bent 2 plastic

Bent 3 plastic

Bent 2 PO MPf

figure 33 push over analysis and hysteretic behavior of bent 2 of model bridge

0

50

100

150

200

0 0.02 0.04 0.06 0.08 0.1 0.12

Bent base shear (kN

)

Displacements (m)

Bent 1 plastic

Bent 2 plastic

Bent 3 plastic

Bent 3 PO MPf

figure 34 push over analysis and hysteretic behavior of bent 3 of model bridge

Page 60: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

4-span bridge lateral load analysis 60

Redundancy evaluation

Damage scenarios

Capacity curves are calculated for damaged systems. The damage is represented by a partial or total loss of a member. As mentioned in chapter 2, a partial damage consist on the loss of the flexural stiffness but the element can still carry axial load. Both damage typology are considered for one column of each bent, one at the time. Thus a total of six damage scenarios are taken into account and showed in the following figures.

figure 35 Total damage bent 1

figure 36 Total damage bent 2

figure 37 Total damage bent 3

Page 61: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

4-span bridge lateral load analysis 61

figure 38 Partial damage bent 1

figure 39 Partial damage bent 2

figure 40 Partial damage bent 3

Page 62: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

4-span bridge lateral load analysis 62

Results

Figure 41 and 42 show the results for the damaged systems. As expected there is a loss of resistance and ductility compared to the intact structure. The loss of a central element results in a less important loss of strength of the system.

0

100

200

300

400

500

600

700

0 0.1 0.2 0.3 0.4

Lat

eral

forc

e (k

N)

Displacement (m)

Column bent 3 (td)

Column bent 1 (td)

Column bent 2 (td)

Undamaged

figure 41 total damages responses

0

100

200

300

400

500

600

700

0 0.1 0.2 0.3 0.4

Lat

eral

forc

e (k

N)

Displacement (m)

Column bent 3 (pd)

Column bent 1 (pd)

Column bent 2 (pd)

Undamaged

figure 42 partial damages responses

In table 6 and 7 are presented the results that quantify the redundancy of the bridge system.

Page 63: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

4-span bridge lateral load analysis 63

Event Displacement Force

First component failure

0.64 cm (0.25 in) 423.63 kN (95.24 kip)

System collapse 36.37 cm (14.32 in) 613.62 kN (137.95 kip) Ru=1.45 Excessive

displacements (H/50)

4.00 cm (1.57 in) 570.00 kN (128.14 kip) Rf=1.35

table 6 Undamage system

Damage Displacement Force Rd

Column bent 1 (td) 21.17 cm (8.33 in) 503.40 kN (113.17 kip) 1.19 Column bent 2 (td) 36.38 cm (14.32 in) 567.14 kN (127.50 kip) 1.34 Column bent 3 (td) 19.18 cm (7.55 in) 501.23 kN (112.68 kip) 1.18

Column bent 1 (pd) 30.74 cm (12.10 in) 525.72 kN (206.98 in) 1.24 Column bent 2 (pd) 32.72 cm (12.88 in) 580.20 kN (228.43 in) 1.37 Column bent 3 (pd) 33.78 cm (13.30 in) 529.14 kN (208.32 in) 1.25

table 7 Damaged system

It is possible to notice that for the intact system the criteria are satisfied and even more redundancy than the requirements is provided. This aspect is more emphasized in the damaged systems, which for the loss of only one column still provide a large redundancy level for the substructure for both cases of total and partial damage. Integral design in this case allows the structure an important redundancy performance.

Page 64: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

Mountain Laurel way bridge analysis 64

4. Mountain Laurel way bridge analysis

Introduction Structural model Results Redundancy evaluation Integral vs. continuous design Influence of soil stiffness on the response

Page 65: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

Mountain Laurel way bridge analysis 65

Introduction

After the validation of the proposed method in the cases presented in the preceding chapters, next is the application of the method of redundancy assessment to the case of a real bridge. The studied bridge is representative of a structural typology called “integral”. The design of these structures provides a coupling of the piers with the deck and a transfer of forces between them. The capacity of these kind of bridges is higher than the typical design with bearing supports on the bents. In this work it is evaluated the relation between capacity and redundancy in the intact and damaged conditions.

Description of the structural system The bridge is located in Azusa (California), it represents the beginning of the Mountain Laurel way intersecting san Gabriel canyon road at 90°.

figure 43 Bridge geographic location

Page 66: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

Mountain Laurel way bridge analysis 66

figure 44 Bridge connections

figure 45 Crossed river

The reason of being of this bridge is because of the need to cross San Gabriel river and connect the two river sides.

Page 67: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

Mountain Laurel way bridge analysis 67

figure 46 Seismic hazard map (Caltrans)

figure 47 Legend for seismic hazard map (Caltrans)

The structure is in a high seismic zone with a PGA of 0.7g (see figure 46 and 47), this fact justifies integral strategy for designing in this area; the bridge has four spans with three piers fixed to the deck. The abutments supports the deck by elastomeric bearing pads. The longitudinal path consists on a straight part of 71 m (233 ft) and a curved part of radius 91 m (300 ft) and length 30 m (99 ft) for a total of 101 m (332 ft). Span ratios (depth over span length) are 2%, 5.6%, 3.8% and 5.1%. The deck is a multicellular box-girder and diaphragms are located above the piers and the abutments. It is shown in figure 48 the cross section of the deck.

Page 68: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

Mountain Laurel way bridge analysis 68

figure 48 Deck dimensions

Abutments and piers are skew by angles between 15° and 32°.

Objective of the analysis Static non-linear analysis is performed on a three-dimensional FEM model (Push-over). A lateral distribution of forces is applied to the bridge at displacement control, and capacity curves are obtained; more assumptions on the structural properties (soil coefficient parametric analysis) and exceptional modification of the structure (damage scenarios) led to a variation of the capacity curves and consequent conclusions about the redundancy of the bridge. These are compared among them to obtain results useful to design.

Page 69: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

Mountain Laurel way bridge analysis 69

Structural model

Description of the model A spatial 3D FEM model is planned out and 1D elements are used. A plan view and an elevation view are provided in figure 50. The deck is represented by longitudinal and transversal members, while the piers are represented by frame elements that simulate the columns.

figure 49 Space frame modeling

Page 70: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

Mountain Laurel way bridge analysis 70

figure 50 plan and elevation view of the example model bridge

Page 71: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

Mountain Laurel way bridge analysis 71

In figure 49 it is shown how different frame elements are organized to represent at best the real properties of the structural system. Longitudinal members (in black) represent the longitudinal bending and a part of the torsional stiffness of the deck, transverse elements (in green) represent the rest of torsional stiffness. Transverse (in blue) and vertical (in red) elements simulate distortion of the and bending of the deck in the section plane. Diaphragms are modeled with a single element since it is not distortionable; it has bending, and part (like in green elements) of torsional stiffness of the deck. According to integral design columns are fixed to diaphragms. Further details are provided in par.0.

Simplifications The following simplifications are assumed considering that they are not influencing the results significantly:

abutments and bents skew is ignored and transverse elements are considered perpendicular to the path axis, according to [5];

the deck in the first span has linear varying depth, from 4 to 6 ft this variation is ignored and a depth of 6 ft (like for the rest of the bridge) is considered;

each column is founded on a pier, in the analysis the columns are considered fixed to the ground at the base;

vertical and in plan curvature of the path is ignored, follows a straight axis, preserving span lengths;

shear stiffness of the deck is ignored because much higher than the flexural one bending stiffness in transverse direction is considered very high, in fact due to the

shape of the deck, lateral displacements are basically due to piers flexibility. due to the shape of the deck shear lag is not accounted; further details are provided in

the next paragraph.

Materials

Steel reinforcement

For the steel reinforcement the Simple curve is used; this uses a parabolic shape for the strain hardening region. The rebar yield strain, y , is determined from Ef yy .

The stress-strain curve has three regions. They are an elastic region, a perfect plastic region, and a strain hardening region. Different equations are used to define the stress-strain curves in each region. For y (elastic region)

Ef

Page 72: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

Mountain Laurel way bridge analysis 72

for shy (perfectly plastic region)

yff

for ush (strain hardening region)

shu

shyuy ffff

where rebar strain; f rebar stress;

E modulus of elasticity;

yf rebar compressive strength;

uf rebar ultimate stress capacity;

sh strain rebar at the onset of strain hardening

u ultimate rebar strain capacity

Steel prestressing tendons

The following parameters define the 270ksi strand stress strain curve. f tendon stress

tendon strain E Young’s modulus

y tendon yield strain

u tendon yield ultimate strain

The tendon ultimate strain, u is taken as 0.043. The tendon yield strain, y , is determined

by solving the following quadratic equation, where E is in ksi. The larger obtained value of

y is used.

093.1007.02702 yy EE

The stress-strain curve is defined by the following equations: For y

Ef

Page 73: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

Mountain Laurel way bridge analysis 73

For uy

007.0

04.0270

f

Page 74: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

Mountain Laurel way bridge analysis 74

Concrete

Different kind of concrete are used along the structural system, these are described in figure 51.

figure 51 concrete qualities

Mander stress-strain relationship is used for unconfined (deck) and confined concrete (columns). For the unconfined concrete, the compression portion of the stress-strain curve consists of a curved portion and a linear portion. The curved part is defined for '2 c by:

rc

xr

xrff

1

'

The linear portion for uc '2 is defined by:

'221

'2

cu

ur

c

r

rff

where

'cx ;

'' ccfE

Er

.

and concrete strain; f concrete stress;

E modulus of elasticity;

Page 75: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

Mountain Laurel way bridge analysis 75

cf ' concrete compressive strength;

' concrete strain at cf ' ;

u ultimate concrete strain capacity

The tensile yield stress for the Mander unconfined curve is taken at cf '5.7 in psi.

The Mander confined curve shape depends on the confinement steel and is defined by the following equation:

rcc

xr

xrff

1

'

where

cc

cccc f

f'11

'

'5

cc

x'

cc

ccfE

'

'sec

secEE

Er

and concrete strain; f concrete stress;

E modulus of elasticity;

secE modulus of elasticity;

cf ' concrete compressive strength of unconfined concrete;

ccf ' compressive strength of confined concrete;

c' concrete strain at cf ' ;

u ultimate concrete strain capacity for unconfined concrete and concrete spalling strain for

confined concrete;

cc' concrete strain at ccf ' ;

cu ultimate concrete strain capacity for confined concrete.

For circular cores the compressive strength of confined concrete is calculated by the following expression:

Page 76: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

Mountain Laurel way bridge analysis 76

254.1

'

'2

'

'94.71254.2''

c

L

c

Lccc f

f

f

fff

where

Lf ' effective lateral pressure on confined concrete provided by the confinement steel.

This lateral pressure depends on the cross section shape and on the stirrup properties, further details are given in [2].

Utilized curves

In the following figures the curves used as input are shown.

-2000

-1500

-1000

-500

0

500

1000

1500

2000

-0.12 -0.07 -0.02 0.03 0.08

s(M

pa)

e (-)

50 ksi (345 MPa)

270 ksi low relaxation (1880 MPa)

figure 52 reinforcement steel stress-strain curve

Page 77: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

Mountain Laurel way bridge analysis 77

-10

-5

0

5

10

15

20

25

30

35

40

45

-0.002 0.003 0.008 0.013 0.018

s(M

pa)

e (-)

4000 psi (27.6 Mpa) unconfined

4000 psi (31 Mpa) confined

4500 psi (31 Mpa) unconfined

figure 53 concrete stress-strain curves

Page 78: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

Mountain Laurel way bridge analysis 78

Mechanical properties of members

Deck

As already mentioned, exception made for diaphragms, a constant section is used for all the bridge length, the geometrical dimension are shown in figure 48. Simulation of longitudinal flexural behavior of the bridge is assigned to longitudinal elements representing part of the deck.

figure 54 Longitudinal element arrangement

All the properties are calculated with respect to the centroid of the whole section, the partial sections are cut at half of the inferior slabs length. The moment of inertia of the partial sections is calculated as:

A

x dAyI 2

with y distance of the element of area with respect to the centroid of the whole section.

Torsion stiffness of the whole section is defined by Bredt’s formula:

i

i

t

sA

t

dsA

J22 44

where: A is the area contained by the mid line of the section as shown in figure 55;

figure 55 Torsional area of the deck section

is is the finite length of the i-th part of the section;

it is the thickness of the i-th part of the section.

According to [7] and [8] only half of the torsional stiffness is provided to longitudinal members proportionally to the area of each partial section.

Page 79: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

Mountain Laurel way bridge analysis 79

tot

ii A

AJJ

2

where:

iJ is the torsional stiffness of the partial section;

iA is the area of the partial section;

totA is the area of the whole section.

The effective width of the flange for longitudinal elements depends on bbe , Lb and how it

is loaded the element. where

eb effective flange width

b actual flange width L length between point of contraflexure Due to the impossibility of considering all kind of loading that the bridge can experience, a uniform load is used. Whit this assumption, the distance between point of contraflexure is taken as spanLL 47.0

figure 56 Shear lag derivation

Considering the different span lengths and the different values of b , Lb ratio is between

0.015 and 0.07 which corresponds to a bbe greater than 0.95. Thus no correction due to

shear lag is assumed. Furthermore according to [7]: In calculations for collapse conditions it may be appropriate to ignore shear lag, in the global and local analyses, if the flanges yield so that the most highly stressed regions near the webs shed to the outer edges.

Page 80: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

Mountain Laurel way bridge analysis 80

Non linear properties

The nonlinear behaviour of these elements is represented by flexural plastic hinges, thus moment curvature relationship is obtained. This curve is strongly dependent on the compression of the section and in the case of prestressing also depends on the position of the tendon; further details are provided in par. 0. The curve obtained by computer sectional analysis (Xtract, SAP2000, Response 2000) is simplified with a bilinear curve and with a multilinear curve. The approaches used to calculate these two curves are presented in appendix 4. The non linearity of the deck for the flexural stiffnss is simulated by a discretization of the member and the calculation at each node of the sectional properties. The procedure is explained and verified in appendix 3. The rest of the properties of the structural elements are briefly resumed in the following pages. Partial deck 1

figure 57 Partial deck 1

A 1.418 2m 15.269 2ft

Igross 0.600 4m 69.509 4ft

J 1.749 4m 202.602 4ft

table 8 Partial deck 1: linear properties

Partial deck 2

figure 58 Partial deck 2

A 1.366 2m 14.707 2ft

Igross 0.678 4m 78.586 4ft

J 1.684 4m 195.155 4ft

table 9 Partial deck 2: linear properties

Page 81: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

Mountain Laurel way bridge analysis 81

Partial deck 3

figure 59 Partial deck 3

A 1.377 2m 14.817 2ft

Igross 0.689 4m 79.771 4ft

J 1.697 4m 196.605 4ft

table 10 Partial deck 3: linear properties

Non linear properties are provided in appendix 4, shows an example of the obtained curve and the simplification strategies adopted.

-8000

-6000

-4000

-2000

0

2000

4000

-0.04 -0.03 -0.02 -0.01 0.00 0.01 0.02 0.03 0.04 0.05

M (k

Nm

)

f (1/m)

actual

bilinear

multilinear

figure 60 section with tendon at 1.1m from the bottom. Different simplification: bilinear and multilinear

Slabs

Slabs are modeled as transverse elements representing according to contributive area. The distance among transverse frame is variable between 2.97 m [9.75 ft] and 3.28 m [10.75] therefore a unique value of 3.05 m [10 ft] is considered for the width of the elements. Linear stiffness is lowered to account for cracking. Therefore, cracked Inertia is used as input for the linear part. Inferior slab

Page 82: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

Mountain Laurel way bridge analysis 82

figure 61 Inferior slab section of a segment

A 0.290 2m 5.600 2ft

I 1.2E-3 4m 1.4E-1 4ft

Icrack 9.9E-5 4m 1.2E-2 4ft

table 11 Inferior slab: linear properties

Page 83: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

Mountain Laurel way bridge analysis 83

Superior slab

figure 62 Superior slab section of a segment

A 0.640 2m 6.800 2ft

I 2.2E-3 4m 2.6E-1 4ft

Icrack 2.4E-4 4m 2.8E-2 4ft

table 12 Superior slab: linear properties

Webs

Webs transverse elements representing according to contributive area; the width is considered as well as in the slabs. The only difference between the web and the slabs is that transverse reinforcement is not constant along the bridge. The distribution of stirrups is simplified as shown in figure 63, thus only three typologies of web element are considered called web 5, web 10, web 25. The number indicates the quantity of stirrups contained in the width of the element representing the slice of web longitudinally. In figure 63 web 5 is indicated in blue, web 10 in cyan, web 25 in yellow.

Page 84: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

Mountain Laurel way bridge analysis 84

figure 63 Stirrups spacing

Page 85: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

Mountain Laurel way bridge analysis 85

Web 5

figure 64 Web 5 section of a segment

A 0.946 2m 10.000 2ft

I 7.2E-3 4m 8.3E-1 4ft

table 13 Web 5: linear properties

Web 10

figure 65 Web 10 section of a segment

table 14 Web 10: linear properties

A 0.946 2m 10.000 2ft

Igross 7.2E-3 4m 8.3E-1 4ft

Page 86: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

Mountain Laurel way bridge analysis 86

Web 25

figure 66 Web 25 cross section of a segment

A 0.946 2m 10.000 2ft

Igross 7.2E-3 4m 8.3E-1 4ft

table 15 Web 25: linear properties

Diaphragms

Only one element is used to simulate diaphragms, since the section is undistortionable. Bent diaphragms

figure 67 Bent diaphragm cross section

A 4.460 2m 10.000 2ft

J 2.715 4m 8.3E-1 4ft

I 1.243 4m 144 4ft

table 16 Bent diaphragms: linear properties

Page 87: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

Mountain Laurel way bridge analysis 87

Abutment diaphragms

figure 68 Abutment diaphragm cross section

A 2.230 2m 24.00 2ft

J 0.655 4m 75.84 4ft

I 0.621 4m 72.00 4ft

table 17 Bent diaphragms: linear properties

Page 88: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

Mountain Laurel way bridge analysis 88

Columns

The columns have all the same properties and geometric dimensions. Figure 69 shows the typical configuration.

figure 69 Column cross section

The nonlinear behavior of this element depends on the performing axial load, which is generally unknown and on the direction of the principal bending solicitation due to vectorial combination of the moment in the longitudinal and transverse direction. Due to the axisimetric cross section and properties of the element each direction led to the same sectional response. Moment curvature relationships are calculated for different values of axial load as shown in figure 70.

0

5000

10000

15000

20000

25000

30000

0.00 0.01 0.02 0.03 0.04 0.05

M (kNm)

f (1/m)

P=-40000 kN

P=-20000 kNP=-10000 kN

P=0 kN

figure 70 moment curvature curves for different axial load

At this stage it is useful to perform a gross calculation to estimate the range of axial load that the column will experience during the analysis.

Page 89: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

Mountain Laurel way bridge analysis 89

This in order to provide better definition of the properties only where really needed. An interaction surface is defined, as bound of the elastic behavior. Curves represented in figure 70 are simplified as bilinear to be used as input for computer calculation.

0

4000

8000

12000

16000

20000

24000

28000

0.000 0.010 0.020 0.030 0.040 0.050

M (k

Nm

)

f (1/m)

P=0 kN

P=-10000 kN

P=-20000 kN

P=-40000 kN

figure 71 multilinear simplification of columns M f curves

0

4000

8000

12000

16000

20000

24000

28000

0.000 0.010 0.020 0.030 0.040 0.050

M (k

Nm

)

f (1/m)

P=0 kN

P=-10000 kN

P=-20000 kN

P=-40000 kN

figure 72 bilinear simplification of columns M f curves

Page 90: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

Mountain Laurel way bridge analysis 90

-100000

-80000

-60000

-40000

-20000

0

20000

40000

0 5000 10000 15000 20000 25000 30000

N (k

N)

M (kNm)

bilinear strategy

multilinear strategy

figure 73 interaction curve for column example

Inside the interaction surface only one stiffness is defined for the element but as can be noticed by figure 70 the slope from the origin to the yielding moment is varying with the axial load. Thus an average among them as been used, in particular grossEIEI 53.0 .

Gross section properties for the frame elements are generally modified to account for cracking, this is quantified by defining the following correction factor (also used in the software to correct the gross section properties):

grossEI

EI

In table 18 values are resumed.

Deck 0.5-0.6

Columns 0.53 Webs 0.053-0.2 Slabs 0.1-0.16

Diaphragms 0.12-0.45 table 18 Stiffness corrections

Page 91: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

Mountain Laurel way bridge analysis 91

Bearings

Bearings in the abutments are simulated by linear elastic springs. In the following table the stiffness for each bearing are resumed, assuming G=0.8MPa for the elastomeric pads.

Left abutment Right

abutment

xk 1684 2mkN 2222 2mkN

yk 1684 2mkN 2222 2mkN

zk table 19 Bearing stiffness

Page 92: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

Mountain Laurel way bridge analysis 92

Loads

Dead and live load

The self weight is calculated automatically from the software. The superimposed load is represented by a 5cm (1.97 in) of deck cover pavement of

37.1 mkN and the weight of the barrier of 223.2 mkN .

These loads are distributed on the longitudinal frames as distributed load per length. The live load is disposed to maximize the axial force on the piers, thus different load cases are considered.

The live load provided by [10] is 24 mkN and 6 punctual forces of 100kN for the truck.

The live load is represented by a distributed load of 209.0 mkN on the spans adjacent to the

target pier like shown in figure 74, 75 and 76. These loads are obtained by applying a partial coefficient of 2.0 related to the seismic

load patterns.

figure 74 load case o f pier 1

figure 75 load case of pier 2

Page 93: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

Mountain Laurel way bridge analysis 93

figure 76 load case of pier 3

figure 77 transversal load distribution

Prestress

A parabolically profiled prestressing tendon generates a uniform loading that can be calculated by:

2

2

dx

ydPw

where the x axis is coincident with the neutral axis of the deck. The force is upward when the slope is positive. In the following figure it is shown (in a compressed scale) the path of the tendons.

figure 78 Prestress profile

Page 94: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

Mountain Laurel way bridge analysis 94

Zone w

1 0.00035 P2 -0.00526 P3 0.00227 P4 -0.00878 P5 0.00159 P6 -0.00744 P7 0.00181 P

table 20 Equivalent force due to prestress in the different zones

figure 79 Equivalent load due to prestress

The system of force is self-equilibrated, although in this the moments and the vertical forces at the ends are ignored. The moment applied at the ends of the bridge depends on the distance from the cable to the centroid of the cross section at the ends, this distance is very little. The vertical force whatever value has loads directly the abutments, thus the force is transferred to the restrain without influencing the structure. This distribution of loads provides jointly with the structural restrains the total moment due to prestress, sum of isostatic moment and hyperstatic moment.

Lateral load distribution

For the calculation of the lateral load distribution two strategies are adopted: a modal distribution and a mass distribution. In both cases the mass is considered lumped at the piers. The modal distribution is calculated by the following formula:

jj

iii P

Pf

mod, .

where

ifmod, is the ratio of lateral load of the i-th pier

P is the weight associated with the pier

Page 95: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

Mountain Laurel way bridge analysis 95

is the modal displacement of the bent of the pier obtained by performing a dynamic

analysis. This kind of analysis is performed by SAP2000 considering the real distribution of masses and stiffness. For the modal displacements it has been considered the most significant mode (98% of mass participation in the transverse direction). The mass distribution is calculated by the following formula:

j

imass P

Pf

The first distribution takes into account the stiffness of the structure by the modal analysis, but if the structure is regular enough and the stiffness is regularly distributed the two evaluations coincide. For instance for pier 3 the results are in table 21.

Modal Mass f1 0.59 0.56 f2 0.61 0.59 f3 1.00 1.00

table 21 modal vs mass distribution

All the results are normalized at 1. In fact, the analysis is conducted at displacement control, thus only the ratios are important. In this example mass distribution is considered but due to the shape of the problem the other is sufficiently accurate as well. For the three load cases the distribution of lateral forces are resumed in table 22.

Pier1 Pier2 Pier3 f1 0.79 0.64 0.56 f2 0.68 0.83 0.59 f3 1.00 1.00 1.00

table 22 lateral force distribution

Page 96: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

Mountain Laurel way bridge analysis 96

Results

Multilinear vs Bilinear model

As already mentioned, when planning simplification for moment curvature relations, a different approach is considered for the same analysis. The typical design pushover is usually performed with a bilinear curve (for example Caltrans) for the non linear behavior. In that case the objective of the analysis is different from the present study, thus a bilinear simplification can be accurate enough. On the other hand a multilinear simplification leads to a more accurate behavior since not only plastic energy is basically preserved but also a discrete number of the point coinciding with the actual curve points. A sensitivity study between bilinear and multilinear approach is done over total damaged structural systems because these are more sensible to the non-linear analysis. In other words, more members go plastic than in the intact system analysis. Figure 80, 81 and 82 show the result of the sensitivity analysis.

0

10000

20000

30000

40000

50000

60000

0 0.1 0.2 0.3 0.4

base

she

ar (k

n)

displacement (m)

bilinear

multilinear

figure 80 bent 1: capacity curves

Page 97: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

Mountain Laurel way bridge analysis 97

0

10000

20000

30000

40000

50000

60000

0 0.1 0.2 0.3

base

she

ar (k

N)

displacement (m)

bilinear

multilinear

figure 81 bent 2: capacity curves

0

10000

20000

30000

40000

50000

0 0.05 0.1 0.15 0.2 0.25

base

she

ar (k

N)

displacement (m)

bilinear

multilinear

figure 82 bent 3 capacity curves

The plots show a relevant difference in resistance and ductility. Thus the two modeling cannot be used equivalently. In this case guaranteeing in the plastic hinges the same energy dissipation of the actual curve with a bilinear simplification, is not enough because at the moment of the collapse some columns can still be just above the yielding moment, and therefore they cannot dissipate all the energy available. In other words the simplification of a bilinear behavior would work only if all the plastic hinges could finish their plastic path. That would give a capacity curve energetically comparable with the multilinear strategy.

Page 98: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

Mountain Laurel way bridge analysis 98

Redundancy evaluation

Damage scenarios Like in chapter 3, six damage scenarios are considered. One column at time is removed and total damage curves are calculated. One column at time maintains only axial stiffness, but not the bending one, and partial damage curves are calculated. These damage scenarios are shown in figure 83.

figure 83 6 damage scenarios: 3 Total damage + 3 Partial damage

Page 99: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

Mountain Laurel way bridge analysis 99

Results Due to the considerations done in the previous paragraph the multilinear strategy is adopted to evaluate redundancy indicators. Because of the different loading patterns depending on the pier under study, not only the damage curve change from plot to plot, but also the intact curve.

Page 100: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

Mountain Laurel way bridge analysis 100

0

10000

20000

30000

40000

50000

60000

-0.1 0.0 0.1 0.2 0.3 0.4

base

she

ar (k

N)

displacement (m)

Undamaged

Damaged

figure 84 total damaged column in bent 1

0

10000

20000

30000

40000

50000

60000

-0.1 0.0 0.1 0.2 0.3 0.4

base

she

ar (k

N)

displacement (m)

Damaged

Undamaged

figure 85 partial damaged column in bent 1

Event Displacement Force First component

failure 1.02 cm (0.40 in) 26067.00 kN (5860.09 kip)

System collapse 37.19 cm (14.64 in) 55374.65 kN (12448.71 kip) Ru=2.12

Excessive displacements

(H/50) 10.76 cm (4.24 in) 37594.09 kN (8451.49 kip) Rf=1.44

Damage Displacement Force Rd

Column bent 1 (td) 25.59 cm (10.07 in) 39361.54 kN (8848.82 kip) 1.51 Column bent 1 (pd) 24.21 cm (8.70 in) 40435.38 kN (15919.44 in) 1.55

table 23 redundancy results for bent 1

Page 101: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

Mountain Laurel way bridge analysis 101

0

10000

20000

30000

40000

50000

60000

-0.1 0.0 0.1 0.2 0.3

base

she

ar (k

N)

displacement (m)

Undamaged

Damaged

figure 86 total damaged column in bent 2

0

10000

20000

30000

40000

50000

60000

-0.1 0.0 0.1 0.2 0.3

base

she

ar (k

N)

displacement (m)

Damaged

Undamaged

figure 87 partial damaged column in bent 2

Event Displacement Force First component

failure 1.04 cm (0.41 in) 26572.48 kN (5973.73 kip)

System collapse 26.54 cm (10.45 in) 50722.32 kN (11402.83 kip) Ru=1.91

Excessive displacements (H/50)

11.96 cm (4.71 in) 38994.44 kN (8766.30 kip) Rf=1.47

Damage Displacement Force Rd Column bent 2 (td) 23.49 cm (9.25 in) 42376.39 kN (9526.59 kip) 1.59 Column bent 2 (pd) 23.42 cm (9.22 in) 43008.24 kN (16932.38 in) 1.62

table 24 redundancy results for bent 2

Page 102: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

Mountain Laurel way bridge analysis 102

0

10000

20000

30000

40000

50000

-0.1 0.0 0.1 0.2

base

she

ar (k

N)

displacement (m)

Undamaged

Damaged

figure 88 total damaged column in bent 3

0

10000

20000

30000

40000

50000

-0.1 0.0 0.1 0.2 0.3

base

she

ar (k

N)

displacement (m)

Damaged

Undamaged

figure 89 partial damaged column in bent 3

Event Displacement Force First component

failure 0.93 cm (0.37 in) 25948.53 kN (5833.46 kip)

System collapse 20.19 cm (7.95 in) 46631.98 kN (10483.29 kip) Ru=1.80

Excessive displacements

(H/50) 9.18 cm (3.62 in) 36605.73 kN (8229.29 kip) Rf=1.41

Damage Displacement Force Rd Column bent 3 (td) 13.42 cm (5.28 in) 33234.62 kN (7471.44 kip) 1.28 Column bent 3 (pd) 14.52 cm (5.72 in) 34196.57 kN (13463.22 in) 1.32

table 25 redundancy results for bent 3

Page 103: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

Mountain Laurel way bridge analysis 103

As expected the integral design leads to a highly redundant system, since all the values satisfy the criteria adopted in chapter 2. The global values considered for describing the redundancy of the bridge are the minimum of each ratio, and they are summarized in table 26.

Event Force First component failure

(bent 3) 25948.53 kN (5833.46 kip)

System collapse (bent 3) 46631.98 kN (10483.29 kip) Ru=1.80

Excessive displacements (H/50) (bent 3)

36605.73 kN (8229.29 kip) Rf=1.41

Damage Force Rd Column bent 3 (td) 34196.57 kN (13463.22 in) 1.32

table 26 redundancy values for the example bridge

As expected the most critical bent is the one adjacent with the longest span, but after all, especially for the damaged system, the ratios are fully satisfied. For bent 1 analysis the partial damage scenario provides a larger displacement then the total damage scenario, but the maximum base shear is lower. This result can be accepted since the ductility and the yielding moment on the columns depend on the axial load. In other words a total damage in a pier increases the axial load in the left columns, this fact can provide an additional ductility that it is not present in the case of a partial damage, since in this last case the distribution of the axial loads in the columns is basically the same of the intact structure.

Page 104: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

Mountain Laurel way bridge analysis 104

Integral vs. continuous design

Introduction

Integral design is common in seismic zones, in order to make the structure more monolithic, follows that in serviceability and construction stages some loads must be resisted by the stiffness of the piers. When it is possible a standard design (simply supported beam at piers and abutments) allows to a disconnection of the deck to the piers by using elastomeric pads or similar bearing devices. The objective of this paragraph is to evaluate how this difference in design influences the redundancy of the bridge

Bearings analysis properties

The verification of the bearing supports can be found in appendix 5. The stiffness needed to simulate the bearing has to be representative of the real behavior of the device. Thus stiffness is corrected to account for the stages that in a normal service condition are not significant. In the test relative to a bearing pad, vertically loaded, and a lateral growing load, a strong nonlinear behavior can be seen. For design it is usually considered the red stiffness because represents the field of distortions allowable encountered in normally service conditions. However for distortion values out of the normal range, stiffness can be clearly different. In this example the green slope in figure 90 is chosen in order to achieve an energy balance with the real curve.

figure 90 Horizontal forve vs distorsion for typical axial load

Page 105: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

Mountain Laurel way bridge analysis 105

The correction factor is:

26.2nonlin

lin

tg

tg

follows

linnonlin GG 26.2

The non linear stiffness is calculated by:

ne

abGk nonlinnonlin

The results are resumed in and it is the same for all the supports since they have same properties.

abutments piers 1,2 pier 3 a 600 mm 24 in 800 mm 31 in 800 mm 31 in

b 600 mm 24 in 800 mm 31 in 800 mm 31 in

e 10 mm 0.4 in 20 mm 0.8 in 20 mm 0.8 in

n 12 5 5

t 3 mm 0.1 in 4 mm 0.2 in 4 mm 0.2 in

klin 14400.0 kN/m 986.7 kip/ft 30720.0 kN/m

2105.0 kip/ft

30720.0 kN/m

2105.0 kip/ft

knonlin 32544.0 kN/m 2230.0 kip/ft69427.2 kN/m

4757.3 kip/ft

69427.2 kN/m

4757.3 kip/ft

X0 59.71 m

table 27 resumen of properties and detail of the bearings support devices

Page 106: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

Mountain Laurel way bridge analysis 106

Comparison of the results

As already mentioned different load cases and different damage scenarios are considered to evaluate the redundancy of the example bridge. In this comparison it is considered the intact system with the load case that maximize the axial load in pier 3 and the relative total damage scenario; in fact it results the most critical condition. For the input vertical stiffness will be considered very high and rotational stiffness will be ignored and lateral stiffness is the one calculated in the last paragraph and indicated in table 27.

0

10000

20000

30000

40000

50000

0.0 0.1 0.2 0.3 0.4 0.5

base

she

ar (k

N)

displacement of control point (m)

Integral

Standard

figure 91 comparison of the intact system curves

0

10000

20000

30000

40000

0.0 0.1 0.2 0.3 0.4 0.5

base

she

ar (k

N)

displacement of control point (m)

Standard

Integral

figure 92 comparison of the damage system curve

Page 107: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

Mountain Laurel way bridge analysis 107

0

10000

20000

30000

0.0 0.1 0.2 0.3 0.4 0.5

base

she

ar (k

N)

displacement of control point (m)

Damaged

Intact

figure 93 pushover for standard design bridge: intact and damage system

Event Displacement Force First component

failure 10.49 cm (4.13 in) 15549.28 kN (3495.62 kip)

System collapse 44.20 cm (17.40 in) 25814.69 kN (5803.37 kip) Ru=1.66

Excessive displacements

(H/50) 10.90 cm (4.29 in) 15935.51 kN (3582.44 kip) Rf=1.02

Damage Displacement Force Rd

Column bent 3 (td) 50.00 cm (19.69 in) 24181.73 kN (5436.27 kip) 1.56

table 28 redundancy values for standard design bridge

The results show a drastic loss of capacity between the integral and the standard design due basically to the fact that in standard design the top of the columns do not transmit moment to the deck and thus do not dissipate energy. In the next table it can be noticed that the redundancy indicators are lower, a part for the damaged system which is almost stable. The real loss of performance is noticed in the capacity and forces that the bridge can resist. The strength is significantly lower for the standard bridge (see table 29)

Page 108: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

Mountain Laurel way bridge analysis 108

 

Integral standard difference% fl1 25948.00 kN (5833.34 kip) 15549.28 kN (3495.62 kip) -40% flf 36605.00 kN (8229.13 kip) 15935.51 kN (3582.44 kip) -56% flu 46631.00 kN (10483.06 kip) 25814.69 kN (5803.37 kip) -45% fld 34196.00 kN (7687.57 kip) 24181.73 kN (5436.27 kip) -29% Rf 1.80 1.02 -43% Ru 1.41 1.66 18% Rd 1.32 1.56 18%

table 29 Furthermore, initial stiffness of standard design is lower than for the integral system, as can be clearly seen in the plots figures 91 and 92. This can influence the serviceability limit state. In fact, it results the most critical and the only one that do not satisfy redundancy criteria for excessive displacements. In table 29 can be seen how the loss of redundancy (except for the serviceability limit state) in the standard design is lower than the loss of resistance. For the integral design the resistant scheme is represented by the formation of two plastic hinges at the top and at the bottom of the columns, because the moment distribution is the one shown in figure 94 b.

figure 94 moment distribution in the columns a) standard design b) integral design

For standard design the resistant scheme changes drastically: the moment distribution is the one shown in figure 94 a, the energy is dissipated only at the bottom of the columns. In other words, only the bottom plastic hinge forms. The consequences in the response for a standard design are a lower strength, around half of the integral design because half of the plastic (the ones on the top) hinges do not work. The system is also less stiff, and allows a higher deformation up to the rupture of the first bent. The results are resumed in table 29.

Page 109: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

Mountain Laurel way bridge analysis 109

Integral standard difference% fl1 25948.00 kN (5833.34 kip) 15549.28 kN (3495.62 kip) -40% flf 36605.00 kN (8229.13 kip) 15935.51 kN (3582.44 kip) -56% flu 46631.00 kN (10483.06 kip) 25814.69 kN (5803.37 kip) -45% fld 34196.00 kN (7687.57 kip) 24181.73 kN (5436.27 kip) -29% Rf 1.80 1.02 -43% Ru 1.41 1.66 18% Rd 1.32 1.56 18%

table 29 Integral vs. standard design redundancy

Page 110: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

Mountain Laurel way bridge analysis 110

Influence of soil stiffness on the response

The influence of the soil on the response is considered by using springs at the base of the columns. The approach used in [1] assures that for redundancy evaluation:

1) one spring element for each restrained degree of freedom at the base is sufficient to simulate soil interaction.

2) a linear curve can be used for the springs, thus the only parameter is the stiffness value.

The following calculations are performed on the real bridge configuration focusing on bent 3 which has been demonstrated being the most critical. The foundation of the example bridge is represented by a single pile under each column. In table 30, taken from [1], different stiffness values for linear springs are shown. Since information about soil properties are not available a parametrical analysis is performed depending on the type of soil and pile foundation. Soft, normal and stiff soil characteristic are modeled with spring constants as defined in table 30.

a. Two-Column Bent - Average Column Width Kvertical (kN/m) Ktransverse (kN/m) Krotation (kNm)

1 spread\normal\ 97200 72900 3650000 2 spread\stiff\ 147000 110000 5530000 3 extension\soft\ 443077 5226 113726 4 extension\normal\ 1107000 17784 220882 5 extension\stiff\ 1994000 46628 367348 6 pile\soft\ 675400 18870 376700 7 pile\normal\ 1689000 85870 941700 8 pile\stiff\ 3039000 299000 1695000

table 30 soil stiffness

Soft soils are defined as soils that produce a blow count N=5. Normal soils are those with N=15 blow counts. Stiff soils are those with N=30 blow counts or higher.

Page 111: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

Mountain Laurel way bridge analysis 111

0

10000

20000

30000

40000

50000

0.0 0.1 0.2 0.3 0.4 0.5 0.6

base

she

ar (k

N)

displacement (m)

k= infinite

k= soft

k= normal

k= stiff

figure 95 intact system parametrical analysis

0

10000

20000

30000

40000

0.0 0.1 0.2 0.3 0.4 0.5 0.6

base

she

ar (k

N)

displacement (m)

k= infinite

k= soft

k= normal

k= stiff

figure 96 damaged system parametrical analysis

As expected, the consequence of a deformable foundation is a less stiff system response; in the following pages redundancy evaluation is performed.

Page 112: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

Mountain Laurel way bridge analysis 112

0

10000

20000

30000

40000

50000

0.0 0.1 0.1 0.2 0.2 0.3 0.3

base

she

ar (k

N)

displacement (m)

Intact

Damaged

figure 97 capacity curves for stiff soil

k=stiff Event Displacement Force

First component failure

2.54 cm (1.00 in) 19745.87 kN (4439.05 kip)

System collapse 25.83 cm (10.17 in) 41475.18 kN (9323.99 kip) Ru=2.10

Excessive displacements

(H/50) 11.91 cm (4.69 in) 34365.29 kN (7725.62 kip) Rf=1.74

Damage Displacement Force Rd

Column bent 3 (td) 18.82 cm (7.41 in) 31805.11 kN (7150.07 kip) 1.61

table 31 redundancy evaluation for stiff soil stiffness

Page 113: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

Mountain Laurel way bridge analysis 113

0

10000

20000

30000

40000

50000

0.0 0.1 0.2 0.3 0.4

base

she

ar (k

N)

displacement (m)

Intact

Damaged

figure 98 capacity curves for normal soil

k=normal Event Displacement Force

First component failure

5.51 cm (2.17 in) 19756.11 kN (4441.35 kip)

System collapse 34.09 cm (13.42 in) 41577.47 kN (9346.99 kip) Ru=2.10

Excessive displacements

(H/50) 10.64 cm (4.19 in) 29456.89 kN (6622.17 kip) Rf=1.49

Damage Displacement Force Rd

0 26.07 cm (10.26 in) 32900.46 kN (7396.32 kip) 1.67 table 32 redundancy evaluation for normal soil stiffness

Page 114: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

Mountain Laurel way bridge analysis 114

0

10000

20000

30000

40000

50000

0.0 0.1 0.2 0.3 0.4 0.5 0.6

base

she

ar (k

N)

displacement (m)

Intact

Damaged

figure 99 capacity curves for soft soil

k=soft Event Displacement Force

First component failure

16.19 cm (6.37 in) 19045.61 kN (4281.62 kip)

System collapse 49.99 cm (19.68 in) 40917.76 kN (9198.68 kip) Ru=2.15

Excessive displacements

(H/50) 11.17 cm (4.40 in) 13465.13 kN (3027.08 kip) Rf=0.71

Damage Displacement Force Rd

0 50.41 cm (19.84 in) 36321.77 kN (8165.46 kip) 1.91 table 33 redundancy evaluation for soft soil stiffness

Page 115: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

Mountain Laurel way bridge analysis 115

10000

20000

30000

40000

50000

k=infinite k=stiff k=normal k=soft

base

she

ar (k

N)

lff

lf1

lfu

lfd

figure 100 variation of the strength capacity varying soil stiffness

0.0

0.5

1.0

1.5

2.0

2.5

k=infinite k=stiff k=normal k=soft

Rf,

Ru,

Rd

Rf

Ru

Rd

figure 101 variation of the redundancy ratios for varying soil stiffness

The worst effect of a softer soil in the example bridge is related to the functionality limit state. It can be noticed in figure 100 and figure 101 that Lff and Rf decrease much faster than the other parameters. In fact, from figure 101 Ru and Rd increase as the soil becomes less stiff. On the other hand damage redundancy seems to be improved, even if by only checking the redundancy ratio it is not considered that the stiffness of the whole system decreases with a softer soil. A soft soil as defined in [1] would not be acceptable because do not satisfy the functionality limit state as shown in table 34.

Page 116: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

Mountain Laurel way bridge analysis 116

k=infinite k=stiff fl1 25948.53 kN (5833.46 kip) 19745.87 kN (4439.05 kip) flf 36605.73 kN (8229.29 kip) 34365.29 kN (7725.62 kip) flu 46631.98 kN (10483.29 kip) 41475.18 kN (9323.99 kip) fld 33234.62 kN (7471.44 kip) 31805.11 kN (7150.07 kip) Rf 1.41 1.74 Ru 1.80 2.10 Rd 1.28 1.61 k=normal k=soft

fl1 19756.11 kN (4441.35 kip) 19045.61 kN (4281.62 kip) flf 29456.89 kN (6622.17 kip) 13465.13 kN (3027.08 kip) flu 41577.47 kN (9346.99 kip) 40917.76 kN (9198.68 kip) fld 32900.46 kN (7396.32 kip) 36321.77 kN (8165.46 kip) Rf 1.49 0.71 Ru 2.10 2.15 Rd 1.67 1.91

table 34 resume of the redundancy parameters for the example bridge

It is interesting to notice how for the soft soil stiffness the damaged system provides the higher ultimate strength. Actually, the ultimate strength depends on the order of formation of the plastic hinges and on how they really dissipate all the energy that they can provide. A different stiffness of the soil led to a different moment distribution on the columns that permits, globally, a more efficient dissipation of the energy. This consideration does not mean that a soft soil is better than a stiff soil because for a soft soil, as already mentioned, the lateral displacement is largely unacceptable. Furthermore in this study it has not been included the second order moment effect (p-delta). This effect decrease the resistance of the structural system as the displacement increase. Thus, considering this effect the strength in soft soil case should reach a lower value of final resistance.

Page 117: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

Conclusions 117

5. Conclusions

Conclusions and further research

Page 118: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

Conclusions 118

Conclusions and further research

The methodology used to rationally evaluate structural redundancy provides a good balance between simplicity of the analysis and accuracy of results. In the first part of the work it has been demonstrated that the used approach can describe the real behavior of the structure for this purpose. The first result of this work (appendices 1 and 2) validated the use of commercial software:

to evaluate moment curvature relationship in different situations: simple reinforced concrete section, prestressed section, compressed section;

to calculate the structural response by a finite element approach. The comparison between hand calculations and computer results show a very good match and allows to use automatic programs for more complex problems. For isolated bents the push over curve calculated represent the capacity of the system and can be adopted as indicator of the quality of different retrofitting schemes, and to rank the various maintenance strategies among them. In particular, push over analysis in most of the cases, can be adopted as the envelope of a time history analysis, or of a dynamic test. The capacity curves obtained with the pushover analysis can give important information on the redundancy of the structural system. A methodology has been proposed a to simulate the non-linear behavior of a prestressed member and it has been demonstrated, by comparison with hand calculations, the validity of the proposed approach. The same approach is used to evaluate non-linear properties of a more complex problem (deck longitudinal members of the 3D space frame model) In order to simulate the real strength and resistance of the bridge under lateral loads it is necessary to model the plastic hinges with segment curves that follow the real behavior of the moment curvature relationship. The typical bilinear simplification used in the design process do not provide enough precision, specially for the strength of the system. In chapter 3 the deck of the scaled bridge is simulated with a simple frame containing all the section properties. In chapter 4 the deck of the real bridge is simulated by a complex 3D grillage accounting for non linearity of each member and for each local bending. Incidentally it is observed that, the behavior of the deck does not considerably influence the capacity curves. If the interest of the analysis is focused on the response of the deck to lateral loads and to damages (for instance verifying that the deflection after a damage permits the passage of the rescue facility), it is necessary to model the deck.

Page 119: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

Conclusions 119

The study has numerically demonstrated the large loss of performance of a standard deck-substructure design compared to an integral strategy of design. In particular, the top of the column do not transmit moment when the connection involves bearing supports, and this change of moment distribution leads to a less resistant and more flexible system. The loss of redundancy is less relevant than the strength. This indicates that the over-strength after the first failure of one member is still acceptable, but the standard design system has in general lower overall resistant. The response of the structure can be considerably different if it is considered the soil stiffness in the analysis. In general a softer soil result in a less stiff system response but also the stiffness of the soil can influence the strength of the system, since the moment distribution can change and the dissipation of energy becomes more efficient. This fact has to be considered jointly with the serviceability results, because a system can be very efficient in dissipating energy but not sufficiently stiff for the serviceability conditions. The next step of this work should include a reliability based measure of redundancy to account for the uncertainties of the main parameters. This could be done by implementing a simulation probabilistic model like Latin hypercube or Monte Carlo simulation. Furthermore retrofitting schemes should be planned and its influence on the structural properties of the system should be analyzed. In particular, future research should consider a CFRP reinforcing of the columns, as the importance of this new materials is growing every day.

Page 120: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

References 120

6. References

[1] Ghosn M., Liu W. D., Moses F., Neuenhoffer A. Redundancy in highway bridge substructures, NCHRP Report 458, Transportation Research Board, Washington DC, 2001.

[2] Mander J.B., Park R., Prisley M.J.N., Theoretical stress-strain model for confined concrete. Journal of structural engineering. ASCE. 114(3). p. 1804-1826. 1984

[3] Berry M.P. Eberhard M.O., Performance modeling strategies for modern reinforced concrete bridge columns, Pacific earthquake engineering research center, University of California Berkley. 2008

[4] Wilson E.L., A new method of dynamic analysis for linear and non-linear systems, vol.1 pag.21-23, 1985

[5] McLean D., Kuebler S. E., Mealy T. E. Seismic performance and retrofit of multicolumn bridge bents, Washington state department of transportation, 1998

[6] Saiidi M.S., Zadeh M.S., , Pre-test Analytical Studies of NEESR-SG Report No. CCEER-07-3. 2007

[7] Hambly E.C., Bridge deck behavior, Taylor & Francis, New York, 1991. [8] O’Brien E. ,Keogh D. L., Bridge deck analysis, E&FN SPON, London, 1999. [9] Burns N.H., Lin T.Y., Design of prestressed concrete structure, John Wiley & Sons,

1981. [10] IAP Instrucciones a considerar en el proyecto de puentes de carretera, Ministerio de

Fomento, Madrid. 1998

Page 121: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

Appendix 1: Simple span beam non linear test 121

7. Appendix 1: Simple span beam non linear test

Material Geometry Curve points calculation

Page 122: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

Appendix 1: Simple span beam non linear test 122

Simple span beam calculation

Page 123: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

Appendix 1: Simple span beam non linear test 123

Material

The purpose of this appendix is to verify the validity of the softwares used during the sectional analysis. In order to do that simple problems are solved by hand and compared to the automatic results obtained by softwares. Concrete and steel properties are resumed in table 35.

Concrete

figure 102 Concrete stress-strain relationship

cf psiMPa 435130 Concrete strength

cE psiEMPa 64.21742 Young’s modulus

table 35 Concrete properties

Steel

figure 103 reinforcement steel stress-strain relationship

Page 124: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

Appendix 1: Simple span beam non linear test 124

sf psiMPa 58021400 Steel strength

sE psiEMPa 629200000 Young’s modulus

table 36 reinforcement steel properties

Page 125: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

Appendix 1: Simple span beam non linear test 125

Geometry

The first problem is a simple span beam with a concentrated load at mid point

figure 104 structural problem

The cross section is shown in figure 105

figure 105 transversal cross section

with

sA 22 1.32000 inmm Steel area

h inmm 6.23600 Full section depth

d inmm 4.22570 Reduced section depth

coverclear inmm 18.130 Clear cover

b inmm 74.15400 Section width table 37 cross section properties

Page 126: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

Appendix 1: Simple span beam non linear test 126

Material non linearity is taken into account by allowing the midpoint rotation to follow a moment-curvature relation.

Page 127: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

Appendix 1: Simple span beam non linear test 127

Curve points calculation

To achieve non linear behavior of the beam the moment curvature relation is needed. In the first stage the materials are in the elastic range; in the second stage one of the two materials yield; in the third stage one of the two materials gets ultimate.

1) One of the two materials get yielded

The first hypothesis made is the yielding of the concrete which is reached at ,

this formulation addresses the following equations:

The two unknown quantities are and , by resolving a second grade equation is possible

to know the strain of the steel

The meaning of this value is that the yielding of the steel is reached before than the one of the concrete, then changing the hypothesis to the following system of equation is

resolved:

Page 128: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

Appendix 1: Simple span beam non linear test 128

In table 38 the results are resumed.

By hand SAP 2000 Err %

c %11324.0 %11329.0 %04.0

C inmm 11.806200.206 inmm 11.805832.206 %00.0 milradkmrad /67.1/4954.5 milradkmrad /67.1/4954.5 %00.0

M inkipkNm 35490501.401 inkipkNm 35499905.400 %01.0

Response 2000 Err %

c %11321.0 %03.0

C inmm 11.897253.205 %04.0

milradkmrad /67.1/4954.5 %00.0

M inkipkNm 35490701.401 %00.0

Xtract Err %

c %11320.0 %03.0

C inmm 11.897253.205 %04.0

milradkmrad /67.1/4940.5 %00.0

M inkipkNm 35490000.401 %01.0

table 38 first stage results

Page 129: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

Appendix 1: Simple span beam non linear test 129

2) Cracked section, yielded steel, yielded concrete

The initial hypothesis is , as already verified it follows a yielded steel; the

neutral axis is found by resolving the equation of equilibrium for the horizontal forces:

With N=0 in this case. The other parameters are calculated as follows

Page 130: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

Appendix 1: Simple span beam non linear test 130

In table 39 the results are resumed.

By hand SAP 2000 Err %

s %57313.0 %57276.0 %06.0

C inmm 25.533333.133 inmm 25.543447.133 %07.0 milradkmrad /00.4/1250.13 milradkmrad /00.4/1250.13 %00.0

M inkipkNm 37204444.420 inkipkNm 37207700.420 %07.0

Response 2000 Err %

s %57313.0 %06.0

C inmm 25.535714.133 %02.0 milradkmrad /00.4/1250.13 %00.0

M inkipkNm 37204496.420 %07.0

Xtract Err %

s %57313.0 %06.0

C inmm 25.535714.133 %02.0 milradkmrad /00.4/1250.13 %00.0

M inkipkNm 37202000.420 %06.0 table 39 second stage results

3) Ultimate strength, ultimate strain of steel or concrete

The first strain hypothesis is about the concrete strain ; the strain in the steel is

to be controlled:

Page 131: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

Appendix 1: Simple span beam non linear test 131

With .

The first equation is resoluble directly, substituting the neutral axis value found in the second equation, the steel strain is found .

The meaning of this result is that the rupture of the section is on the concrete side, follows the calculation of the last parameters

Page 132: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

Appendix 1: Simple span beam non linear test 132

With , and where is the yielding stress of the concrete.

By hand SAP 2000 Err %

s %89430.1 %89260.1 %09.0

C inmm 50.388889.88 inmm 50.397286.88 %09.0 milradkmrad /00.12/3750.39 milradkmrad /00.12/3750.39 %00.0

M inkipkNm 37903456.428 inkipkNm 37905128.428 %04.0

Response 2000 Err %

s %89444.1 %01.0

C inmm 50.358318.88 %34.0 milradkmrad /00.12/3750.39 %00.0

M inkipkNm 37903596.428 %04.0

Xtract Err %

s %57313.0 %06.0

C inmm 50.370000.88 %02.0 milradkmrad /00.12/3750.39 %00.0

M inkipkNm 37202000.429 %06.0

In figure 106 the results are shown and compared with the automatic ones.

5.5; 401.05 13.1; 420.44 39.4; 428.35

0

50

100

150

200

250

300

350

400

450

0 5 10 15 20 25 30 35 40 45

M (k

Nm

)

f (rad/km)

By hand

Xtract

SAP2000

Response 2000

figure 106 Comparison of results

Page 133: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

Appendix 1: Simple span beam non linear test 133

Simple span beam calculation

The structure in figure 107 is now calculated in different ways as follows: 1) By hand by sum of different stages based on different stiffness of the spring at

midpoint plus the elastic deformation 2) SAP2000 non linear calculation with a plastic hinge at midpoint and the section

properties as inputs.

figure 107 solution strategy

The moment curvature used for the example is the one shown in figure 108.

figure 108 Simplified moment curvature curve

Page 134: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

Appendix 1: Simple span beam non linear test 134

The length in which the rotation is integrated is taken the same dimension of the depth of the section. Considering the relation

it is possible to obtain the stiffness for each stage

(1)

where n is the number of the stage. Till the moment in the section is lower than the plasticization one, the spring-plastic hinge behaves elastically with stiffness a load increment beyond the moment yielding point

turns on the non-linear behavior changing the stiffness punctually.

figure 109 distribution of moments along the beam under concentrated load at midspan

For a concentrated load at mid span

Page 135: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

Appendix 1: Simple span beam non linear test 135

Using the first stage mid span displacement is found.

First yielding moment

Initial stiffness

First yielding load

First yielding displacement

SAP 2000 first yielding displacement

The second stage is calculated as a rigid rotation concentrated in the plastic hinge and an elastic deformation due to the stiffness of the beam.

Page 136: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

Appendix 1: Simple span beam non linear test 136

The rigid rotation is calculated as follows

Using equation (1) the second stage stiffness is calculated, and the mid-span rotation is found as a rigid rotation

with

considering small displacements

follows

Page 137: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

Appendix 1: Simple span beam non linear test 137

The displacements due to the elastic stiffness of the rest of the beam are calculated by the relations used for the first stage

Plastic hinge length

Second stage allowed moment increment

Integrated curvature

Second stage elastic mid span displacement

Second stage plastic mid span displacement

Second stage mid span displacement

Page 138: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

Appendix 1: Simple span beam non linear test 138

For the third stage the values are achieved in the same way as before and reported in the following tab.

Third stage allowed moment increment

Integrated curvature

Third stage elastic mid span displacement

Third stage plastic mid span displacement

Third stage mid span displacement

In the following table the results obtained by SAP2000 are shown

By hand SAP2000 Err %

figure 110 shows the trend of the curve load displacement found.

figure 110 elastic and plastic displacement

Page 139: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

Appendix 2: Compressed column under lateral load 139

8. Appendix 2: Compressed column under lateral load

Geometry Curve point calculation Compressed column under lateral load

Page 140: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

Appendix 2: Compressed column under lateral load 140

Geometry

In order to test the axial-moment plastic hinge the structure in figure 111 is planned.

figure 111 Structural problem

With the section in figure 112

figure 112 cross section

The vertical force is fixed while the lateral load is a stepped force thru the full value. with

Bottom steel area

Top steel area

Full section depth

Clear cover

Section width

Page 141: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

Appendix 2: Compressed column under lateral load 141

Curve point calculation

It is taken into account the material non linearity by allowing the base point to follow a moment-curvature relation, related to the performing axial force. To achieve the moment curvature relationship the following steps are performed, remembering that an axial force is present :

0) No moment performing, only axial load

In this stage curvature and moment are null and the neutral axis is at infinite, the strain for steel and concrete are calculated by the following expressions

css

cccssssss AEAEAEN

'

'' 0

The results are resumed in the following table

by hand SAP err sap

f 0.00 rad/km 0.00 rad/mil 0.00 rad/km 0.00 rad/mil 0.00%

M 0.00 kNm 0.00 kip-in 0.00 kNm 0.00 kip-in 0.00% C inf inf 0.00%

ec -0.019932% -0.019930% -0.01%

es -0.019932% -0.019930% -0.01%

es' -0.019932% -0.019930% -0.01%

Response err resp

f 0.00 rad/km 0.00 rad/km 0.00%

M 0.00 kNm 0.00 kNm 0.00% C inf 0.00%

ec -0.019900% -0.16%

es -0.019900% -0.16%

es' -0.019900% -0.16%

Page 142: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

Appendix 2: Compressed column under lateral load 142

1) Only compressed concrete

The equilibrium equations and geometrical relations for the strain (plane sections remain plane) addresses to the following formulations:

The three equations have as unknown the strains witch must result still in the

material elastic stage. Then the moment and the curvature are found

by hand SAP err sap

f 0.786516854 rad/km 0.49 rad/mil 0.786516854 rad/km 0.49 rad/mil 0.00%

M 100.678652 kNm 890.97 kip-in 98.913397 kNm 875.35 kip-in -1.75% C 0.500000 m 19.69 in 0.499722 m 19.67 in -0.06%

ec -0.039326% -0.039590% 0.67%

es -0.002360% -0.002620% 11.04%

es' -0.036966% -0.037231% 0.72%

Page 143: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

Appendix 2: Compressed column under lateral load 143

Response err resp

f 0.786516854 rad/km 0.49 rad/mil 0.00%

M 98.166551 kNm 868.74 kip-in -2.50%C 0.502477 m 19.78 in 0.50%

ec -0.039563% 0.60%

es -0.002597% 10.05%

es' -0.037203% 0.64%

2) Concrete yielding

The governing equations are:

Substituting the two geometrical equations in the equilibrium one, by the resolution of a second grade equation the neutral axis is found. Then the steel strains are calculated and it is necessary to verify that they are minor than the yielding ones. In this case , which is over the yielding steel limit of , follows the

changing of the assumption.

Page 144: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

Appendix 2: Compressed column under lateral load 144

2bis) Bottom steel yielding

The governing equations are:

For the resolution of the three equations system a second grade equation is resolved, then the strain check is performed assuring that the strains are minor than the yielding ones. The moment and the curvature are calculated by:

by hand SAP err sap

f 7.440001360 rad/km 4.62 rad/mil 7.440001360 rad/km 4.62 rad/mil 0.00%

M 524.170631 kNm 4638.72 kip-in 521.376124 kNm 4613.99 kip-in -0.53% C 0.201183 m 7.92 in 0.203430 m 8.01 in 1.12%

ec -0.149680% -0.151448% 1.18%

es 0.200000% 0.198290% -0.86%

es' -0.127360% -0.129128% 1.39%

Page 145: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

Appendix 2: Compressed column under lateral load 145

Response err resp

f 7.440001360 rad/km 4.62 rad/mil 0.00%

M 521.672300 kNm 4616.61 kip-in -0.48%C 0.203162 m 8.00 in 0.98%

ec -0.151128% 0.97%

es 0.198552% -0.72%

es' -0.128808% 1.14%

3) Bottom steel yielded, concrete yielding

The governing equations are:

For the resolution of the three equations system a second grade equation is resolved, then the strain check is performed assuring that the strain o the steel is over the yielding one but under the ultimate one. The moment and the curvature are calculated by:

Page 146: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

Appendix 2: Compressed column under lateral load 146

by hand SAP err sap

f 10.686083193 rad/km 6.64 rad/mil 10.686083193 rad/km 6.64 rad/mil 0.00%

M 541.800043 kNm 4794.73 kip-in 540.062071 kNm 4779.35 kip-in -0.32%C 0.163764 m 6.45 in 0.165733 m 6.52 in 1.20%

ec -0.175000% -0.177403% 1.37%

es 0.327246% 0.324215% -0.93%

es' -0.142942% -0.145490% 1.78%

Response err resp

f 10.686083193 rad/km 6.64 rad/mil 0.00%

M 539.744110 kNm 4776.54 kip-in -0.38%C 0.166346 m 6.55 in 1.58%

ec -0.177617% 1.50%

es 0.324629% -0.80%

es' -0.145559% 1.83%

Page 147: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

Appendix 2: Compressed column under lateral load 147

4) Concrete and bottom steel yielded, top steel yielding

The governing equations are:

After resolving the linear system of equation the stress verification is needed, in particular the bottom steel and the concrete must be over the yielding strain and under the rupture strain. The moment and the curvature are calculated by:

Page 148: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

Appendix 2: Compressed column under lateral load 148

by hand SAP err sap

f 30.681818182 rad/km 19.06 rad/mil 30.681818182 rad/km 19.06 rad/mil 0.00%

M 566.633402 kNm 5014.50 kip-in 564.327818 kNm 4994.10 kip-in -0.41%C 0.095185 m 3.75 in 0.099055 m 3.90 in 4.07%

ec -0.292045% -0.304218% 4.17%

es 1.150000% 1.136364% -1.19%

es' -0.200000% -0.212200% 6.10%

Response err resp

f 30.681818182 rad/km 19.06 rad/mil 0.00%

M 564.317636 kNm 4994.01 kip-in -0.41%C 0.098956 m 3.90 in 3.96%

ec -0.303825% 4.03%

es 1.137740% -1.07%

es' -0.212184% 6.09%

5) Bottom and top steel yielded, concrete at rupture strain

The governing equations are:

Page 149: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

Appendix 2: Compressed column under lateral load 149

After resolving the linear system of equation the stress verification is needed, in particular the bottom and the top steel must be over the yielding strain and under the rupture strain. The moment and the curvature are calculated by:

by hand SAP err sap

f 39.375000000 rad/km 24.47 rad/mil 39.375000000 rad/km 24.47 rad/mil 0.00%

M 567.432099 kNm 5021.57 kip-in 565.589025 kNm 5005.26 kip-in -0.32%C 0.088889 m 3.50 in 0.092394 m 3.64 in 3.94%

ec -0.350000% -0.361984% 3.42%

es 1.500625% 1.503214% 0.17%

es' -0.231875% -0.244783% 5.57%

Response err resp

f 39.375000000 rad/km 24.47 rad/mil 0.00%

M 565.061405 kNm 5000.59 kip-in -0.42%C 0.092248 m 3.63 in 3.78%

ec -0.365328% 4.38%

es 1.485297% -1.02%

es' -0.247203% 6.61%

In the following figures the results are plotted.

Page 150: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

Appendix 2: Compressed column under lateral load 150

figure 113 curvature vs compressed steel strain

figure 114 curvature vs neutral axis

Page 151: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

Appendix 2: Compressed column under lateral load 151

figure 115 curvature vs tensile steel deformation

figure 116 curvature vs concrete strain

Page 152: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

Appendix 2: Compressed column under lateral load 152

figure 117 curvature vs moment

Page 153: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

Appendix 2: Compressed column under lateral load 153

Compressed column under lateral load calculation

In the figure below the simplified bilinear curves used to perform calculation are represented.

figure 118 simplified moment curvature relationship

According to sectional and material properties the interaction yielding curve is represented in the figure below.

figure 119 interaction curve

Page 154: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

Appendix 2: Compressed column under lateral load 154

This simplified curve does not have physical sense since there is not an elastic tensile part and the shape is made just of three points; according to the symmetry of the cross section only half curve is represented. The red points indicate the axial values related to a moment curvature curve user defined, in particular for kNN 500 and kNN 1500 . For a generic axial load the moment curvature curve is calculated by interpolating the parameters of the input curves as follows:

where ii MN , and jj MN , are the closer interaction curve user defined points, and xN .is

the performing axial load. Once found the yielding moment, the interpolation is performed for the yielding curvature

Where is the actual axial load performing on the structure and for which the moment

curvature curve is calculated by the two given curve with nearest axial load respectively higher and lower .

This strategy, considering , addresses to the following curve illustrated in the

figure below, and to the following values.

figure 120 curve found by interpolation

Page 155: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

Appendix 2: Compressed column under lateral load 155

In this particular case the interpolation value is quite at the corner of the already shown interaction curve, thus to avoid numerical problems dues to the numerical precision of SAP2000 a small flat valued zone is used around the target axial load. Furthermore the yielding moment is higher than both of the user defined curve due to the shape of the interaction surface (this is the axial force for which the yielding moment results maximum). Starting with the yielding moment the curve is completely defined since the plastic rotation and the plastic moment increment are held fixed. In this calculation axial load is held fixed thus there is no need to plan a model which take into account the variation of the moment curvature curve during the calculation due to the variation of the performing axial load, anyway SAP2000 performs it automatically with and guarantees same energy dissipation. In the resolution of the problem two stages are recognized:

1. Elastic stage. All the sections of the structure are in the elastic range and the deflection of the element depends exclusively on the section properties (bending stiffness).

(1)

2. Plastic stage Since the yielding moment is reached a punctual plastic hinge is supposed performing at the base of the element (most stressed point). The rotation of this point is governed by the nonlinear curve found before (figure 120) and is calculated as

and the deflection

Furthermore an elastic deflection due to elastic behavior of the lasting sections is present and is calculated by the formula 1.

Page 156: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

Appendix 2: Compressed column under lateral load 156

In table x the data for the particular problem are resumed

EI 22 17047089285 ftkipkNm Bending stiffness

P kipkN 68.6371.283 Lateral load

N kipkN 80.2241000 Axial load

l ftm 56.62 Element length

phl inmm 68.19500 Plastic hinge length

table 40 resume of the problem data

In table x the results are shown By hand SAP 2000 Err %

1elf inmm 39.09200.9 inmm 39.09200.9 %00.0

2elf inmm 03.07159.0 inmm 03.07159.0 %00.0

plastic rad01596.0 rad01600.0 %16.0

2plf inmm 25.19359.31 inmm 25.10046.32 %22.0

totf inmm 67.15709.42 inmm 67.16405.42 %16.0

table 41 midspan displacements comparison

Page 157: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

Appendix 3: Prestressed beam non linear test 157

9. Appendix 3: Prestressed beam non linear test

Structural properties Results

Page 158: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

Appendix 3: Prestressed beam non linear test 158

Structural properties

Geometry of the problem

The double span beam shown in figure 121 is considered for this test.

figure 121 Structural problem

Due to symmetry only half of the problem is studied, thus due to continuity the point corresponding to the central support is considered fixed. The moment due to fixing this point will represent the continuity moment between the two spans.

Structural design

Preliminar design is performed according to [9] by the following formula for the prestress force:

h

MP

65.0

where a lever arm of 0.65h is considered. The prestress steel area is calculated by:

seps hf

MA

65.0

with )232(1550 ksiMPafse which is the working stress of prestress steel.

A section depth of 8l is chosen, with a I shape.

Page 159: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

Appendix 3: Prestressed beam non linear test 159

The minimum concrete area is evaluated by the following formula:

c

sepsc f

fAA

5.0

where )4500(31 psiMPafc the maximum allowable stress for concrete.

The results obtained are resumed in table 42 and shown in.

table 42 Preliminar design results

P 256.41 kN 57.64 kip psA 1.65E-4 m² 1.78E-3 ft²

cA 1.65E-2 m² 1.78E-1 ft²

figure 122 cross section properties

The path of the prestressing cables is chosen to be parabolic, with its maximum and minimum corresponding to the maximum and minimum moment as shown in figure 123. In figure 122 it is possible to notice the kernel of prestress in the section along the beam.

Page 160: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

Appendix 3: Prestressed beam non linear test 160

figure 123 Prestress path

Moment curvature relationship

In order to simulate non linear behavior moment curvature relationship is calculated in 7 control sections as shown in figure 124.

figure 124 Control sections and eccentricities

In every section moment curvature curve is calculated and then simplified with a bilinear relationship as plotted in figure 125.

Page 161: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

Appendix 3: Prestressed beam non linear test 161

-60

-40

-20

0

20

40

60

80

100

120

140

160

-0.35 -0.30 -0.25 -0.20 -0.15 -0.10 -0.05 0.00 0.05 0.10 0.15

M (k

Nm

)

f (1/m)

e3pos

e3neg

Idealized

figure 125 Moment curvature idealization for control section number 3

The idealized curve is found by imposing the initial slope as the gross section stiffness EI multiplied by a factor which depends on the shape of the analytical curve; the ultimate curvature corresponds to the crushing of the concrete or the rupture of the steel, and the yielding moment is calculated so that the area of the real curve and the one of the idealized is minimized. It can be noticed in figure 126 that in this case the failure of the section is due to the rupture of the steel. In this particular case every section reaches the ultimate curvature at steel rupture, this indicate a global ductile behavior of the beam.

Page 162: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

Appendix 3: Prestressed beam non linear test 162

-0.03

-0.02

-0.01

0.00

0.01

0.02

0.03

0.04

0.05

-0.31 -0.26 -0.21 -0.16 -0.11 -0.06 -0.01 0.04 0.09

e(-

)

f (1/m)

Max. prestress Strain

Min. concrete Strain

Steel limit

Concrete limit

figure 126 Strain paths and strain material limits for control section 3

The moment curvature curve plotted in figure 125 accounts for initial moment due to prestress, thus the curve is not passing in the origin of the coordinate axis. In order to input the curve in SAP2000 moment curvature curve must be decrease of a quantity equal to the initial moment (isostatic moment), This is achieved by applying a force system which includes isostatic moment.

-100

-50

0

50

100

150

-0.35 -0.30 -0.25 -0.20 -0.15 -0.10 -0.05 0.00 0.05 0.10 0.15

M (k

Nm

)

f (1/m)

figure 127 Moment curvature curves with (red) and without (black) initial moment due to prestress for control

section

Page 163: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

Appendix 3: Prestressed beam non linear test 163

The result of this operation is a shift of the curve towards the upper part of the plot, shift equal to the initial prestress moment.

Equivalent prestress load

As already mentioned in the previous paragraph, the initial moment due to eccentricity of the cable must be reestablished by an equivalent system of force. A parabolically profiled prestressing tendon generates a uniform loading that can be calculated by:

2

2

dx

ydPw

where the x axis is coincident with the neutral axis of the deck. Follows the distribution of forces shown in figure 128.

figure 128 Prestress equivalent load

This distribution of force provides a moment in each section equal to total moment, sum of isostatic moment and hyperstatic moment.

Page 164: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

Appendix 3: Prestressed beam non linear test 164

Results

Qualitative behavior

The behavior of this structure when applying a distributed load can be evaluated in a qualitative manner. The unloaded stage is represented by a distribution of moment equal to the initial moment in every section (figure 129).

figure 129 Initial moment distribution due to prestress eccentricità

Then the uniform load produces a moment opposite in sign to the one due to eccentricity of the cable. The first point to reach the plastic moment will be at the fixed end, and due to the shape of the moment curvature curves the moment will not be able to grow up (figure 130).

figure 130 First section plasticized

At this point the structure behaves like a simply supported beam and the moment due to an additional load will follow the simply supported beam equation.

Page 165: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

Appendix 3: Prestressed beam non linear test 165

When yielding moment is reached, and all the plastic rotation available is exhausted in the span also, (the position is unknown) the structure becomes a mechanism and it is defined collapsed. The final load will be related to the collapse of the structure.

figure 131 Structure becoming mechanism

Page 166: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

Appendix 3: Prestressed beam non linear test 166

By hand calculation The first stage moment distribution is calculated with the force method.

figure 132 Original problem

The structure in figure 132 is once hiperstatic, thus one hiperstatic unknown has to be set. This is done by removing one restrain degree of freedom, follows an isostatic structure. Then two problems are set, in the first the actual load is performing (problem 0), in the second a unit moment is applied to the degree of freedom related to the one of the removed restrain (problem1). The final result will is represented by the sum of the two systems after founding the unknown X which makes:

010 BBB X .

figure 133 Problem 0

figure 134 Problem 1

l

l

EI

M

EI

MM

X2

1

10

After finding the hiperstatic unknown the moment distribution of the original moment results:

Page 167: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

Appendix 3: Prestressed beam non linear test 167

xxxxxXMMM st 97.4364.1243.64.5064.12 22101

In the second stage (figure 135) the moment distribution is found to be:

xpxpM ststst 22

22 875.15.0

The maximum moment is found to be at the fixed end, thus the first yielding moment will be reached in this point. The sum of the two moment distribution calculated in x=l equal to the yielding moment at the fixed end gives the first yield load:

221 125.1315.9655.98)()( stststy plMlMM

ftkipmkNpst 01.1/83.142

figure 135 Moment distribution for the intact structure

At this point the moment distribution due to additional load is the one related to the simple supported beam, which is:

xpxppxM stststst 32

333 5.25.0),(

The moment diagram will be the sum of the three stages, but this time also the point of the beam that yields is unknown thus one more equation is needed. The first derivate gives the additional condition.

xpxpxxpxMxMxMxM ststststststtot 32

32

3321 5.25.016.16225.5),()()()(

05.216.1645.10),(

333 stst

sttot pxpxdx

pxdM

the yielding moment depends on the section, thus in general it is not possible to know this value since the section that yields is unknown. Anyway the position of yielding can be identified by qualitative analysis and an average of the yielding moments around this point can be considered.

Page 168: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

Appendix 3: Prestressed beam non linear test 168

By resolving the system of equation and imposing 93yM the following result is obtained:

mx 97.2

mkNpst /48.313

mkNppp ststult /31.4632

SAP calculation

To model this problem with SAP 2000 the beam is divided into frames according to figure 124 and plastic hinges are placed at the end of each frame element. Because the plastic hinge is a frame property each node has half hinge in one frame and half in the adjacent, thus each plastic hinge will have half of the total length of integration. In this case the length of integration is taken as the depth of the section. The load applied is calculated from the vertical reactions at the joints, thus the equivalent uniform load representing the equivalent load due to prestress eccentricity is:

2211 lplplpeq

mkNpeq /216.8

This represents the load that should be applied to obtain the same vertical reactions of the loads due to prestress in stage 1. The reason of this calculation is that the load due to prestress is made of two part of different intensity, while this is a distributed value and can be subtracted to the total load that it is going to be calculated because they are homogenous quantity. By reading the reactions in SAP2000 related to the ultimate stage, and subtracting the eqp it

is possible to calculate the following values:

0 eqBAult pVVlp

mkNpult /47.45

In this case the zone that go plastic is represented by the plastic hinge since the plasticity is not continuous but is concentrated at the nodes, in this case plastic hinge number 3 cause the final collapse and it is at:

mx 17.3

Comparison

In the following table results are compared.

table 43 Conforntation between by hand and SAP2000 calculation

Page 169: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

Appendix 3: Prestressed beam non linear test 169

By hand SAP2000 Err % x 2.97 m (9.74 ft) 3.17 m (10.40 ft) 6.7%

ultp 46.31 kN/m (3.17 kip/ft) 45.47 kN/m (3.12 kip/ft) 1.8%

It can be noticed that the ultimate load is well simulated by this modeling strategy. The position of the last plastic hinge depends on the discretization adopted for the beam, because the only points of the structure that can go plastic are the ones set by the user. The advantage of a close spacing between the plastic hinge is a more accurate evaluation of the last plastic hinge position, on the other hand the disadvantage is a more computational cost represented by the calculation of the plastic properties at each section, and, for complicate structures, a high time of calculation by the software.

Page 170: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

Appendix 4: Non linear properties of MLW bridge 170

10. Appendix 4: Non linear properties of MLW bridge

Geometry Curve point calculation Compressed column under lateral load

Page 171: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

Appendix 4: Non linear properties of MLW bridge 171

Deck properties In the following pages are plotted the non linear properties of the deck. As already mentioned it is meshed into grillage members and each node contains a moment curvature relationship to be followed in the analysis. Two kind o simplification are proposed:

bilinear: there is only an elastic stage and a plastic (with constant moment) stage. The stiffness of the curve is based on the actual plastic moment on the analytical curve, the plastic moment, which is equivalent to the ultimate moment, is calculated by minimizing the difference between the area bounded by the actual curve and the one bounded by the simplified curve.

multilinear: the curve is made of three segments, and the points of the curve are chosen among the ones of the actual curve to fit at best.

It is plotted a zoom of the moment curvature relationship around the Mi point. It is plotted for each step of the sectional analysis the significant strain for the two materials. The last plot shows the input values used in SAP2000. The tables show the type of section (if central or lateral) and the distance of the cable from the bottom and from the centroid of the section. The parameter represents a correction of the gross section stiffness:

gross

cracked

EI

EI .

Page 172: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

Appendix 4: Non linear properties of MLW bridge 172

-2000

0

2000

4000

6000

8000

10000

-0.05 -0.04 -0.03 -0.02 -0.01 0.01 0.02 0.03

M (k

Nm

)

f (1/m)

actual

bilinear

multilinear

0

1000

2000

3000

-0.0003 -0.0001 0.0001

M (k

Nm

)

f (1/m)

Zoom to Mp

0%

1%

2%

3%

4%

5%-0.3%

-0.2%

-0.1%

0.0%

-0.05 -0.03 -0.01 0.02

e(%

)

f (1/m)

Min. concrete StrainConcrete limitMax. prestress StrainSteel limit

-0.0430; 0

-0.0430; -4459

0.0000; -4459

0.0000; 6032

0.0255; 6032

0.0255; 0

-0.0431; 0

-0.0431; -4581-0.0028; -4094 0.0000; -3362

0.0000; 3324

0.0027; 56060.0257; 6600

0.0257; 0

-5000

-2500

0

2500

5000

-0.05 -0.03 -0.01 0.01 0.03

M (k

Nm

)

f-fy (1/m)

Input curves

figure 136 Section e0.3 properties

Mi 2994.37 kN/m 205.18 kip/ft

section Central

e 0.63 m 2.05 ft

0.73

Page 173: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

Appendix 4: Non linear properties of MLW bridge 173

-2500

-500

1500

3500

5500

7500

9500

-0.05 -0.04 -0.03 -0.02 -0.01 0.00 0.01 0.02 0.03

M (k

Nm

)

f (1/m)

actual

bilinear

multilinear

0

1000

2000

3000

-0.0003 -0.0001 0.0001

M (k

Nm

)

f (1/m)

Zoom to Mp

0%

1%

2%

3%

4%

5%-0.3%

-0.2%

-0.1%

0.0%

-0.05 -0.03 -0.01 0.01 0.03

e(%

)

f (1/m)

Min. concrete StrainConcrete limitMax. prestress StrainSteel limit

-0.0423; 0

-0.0423; -4600

0.0000; -4600

0.0000; 5869

0.0275; 5869

0.0275; 0

-0.0424; 0

-0.0424; -4741-0.0028; -4164 0.0000; -3297

0.0000; 3287

0.0035; 54580.0277; 6382

0.0277; 0

-6000

-3000

0

3000

6000

-0.05 -0.03 -0.01 0.01 0.03

M (k

Nm

)

f-fy (1/m)

Input curves

figure 137 Section e0.4 properties

Mi 2513.67 kN/m 172.24 kip/ft

section Central

e 0.53 m 1.73 ft

0.73

Page 174: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

Appendix 4: Non linear properties of MLW bridge 174

-3000

-1000

1000

3000

5000

7000

-0.05 -0.04 -0.03 -0.02 -0.01 0.00 0.01 0.02 0.03 0.04

M (k

Nm

)

f (1/m)

actual

bilinear

multilinear

0

1000

2000

3000

-0.0003 -0.0001 0.0001

M (k

Nm

)

f (1/m)

Zoom to Mp

0%

1%

2%

3%

4%

5%-0.3%

-0.2%

-0.1%

0.0%

-0.05 -0.03 -0.01 0.01 0.03

e(%

)

f (1/m)

Min. concrete StrainConcrete limitMax. prestress StrainSteel limit

-0.0415; 0

-0.0415; -4755

0.0000; -4755

0.0000; 5738

0.0298; 5738

0.0298; 0

-0.0417; 0

-0.0417; -4919-0.0050; -4456 0.0000; -3305

0.0000; 3480

0.0050; 5641

0.0299; 6201

0.0299; 0

-6000

-3000

0

3000

6000

-0.05 -0.03 -0.01 0.01 0.03

M (k

Nm

)

f-fy (1/m)

Input curves

figure 138 Section e0.5 properties

Mi 2037.51 kN/m 139.61 kip/ft

section Central

e 0.43 m 1.40 ft

a 0.67

Page 175: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

Appendix 4: Non linear properties of MLW bridge 175

-4000

-2000

0

2000

4000

6000

8000

-0.05 -0.04 -0.03 -0.02 -0.01 0.00 0.01 0.02 0.03 0.04

M (k

Nm

)

f (1/m)

actual

bilinear

multilinear

0

1000

2000

-0.0003 -0.0001 0.0001

M (k

Nm

)

f (1/m)

Zoom to Mp

0%

1%

2%

3%

4%

5%-0.3%

-0.2%

-0.1%

0.0%

-0.05 -0.03 -0.01 0.01 0.03

e(%

)

f (1/m)

Min. concrete StrainConcrete limitMax. prestress StrainSteel limit

-0.0411; 0

-0.0411; -4922

0.0000; -4922

0.0000; 5563

0.0325; 5563

0.0325; 0

-0.0413; 0

-0.0413; -5117-0.0056; -4711

0.0000; -3212

0.0000; 3327

0.0053; 5426

0.0326; 6037

0.0326; 0

-5600

-2600

400

3400

6400

-0.05 -0.03 -0.01 0.01 0.03

M (k

Nm

)

f-fy (1/m)

Input curves

figure 139 Section e0.6 properties

Mi 1566.32 kN/m 107.33 kip/ft

section Central

e 0.33 m 1.07 ft

0.70

Page 176: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

Appendix 4: Non linear properties of MLW bridge 176

-4500

-2500

-500

1500

3500

5500

7500

-0.05 -0.04 -0.03 -0.02 -0.01 0.00 0.01 0.02 0.03 0.04

M (k

Nm

)

f (1/m)

actual

bilinear

multilinear

0

1000

2000

-0.0003 -0.0001 0.0001

M (k

Nm

)

f (1/m)

Zoom to Mp

0%

1%

2%

3%

4%

5%-0.3%

-0.2%

-0.1%

0.0%

-0.05 -0.03 -0.01 0.01 0.03

e(%

)

f (1/m)

Min. concrete StrainConcrete limitMax. prestress StrainSteel limit

-0.0403; 0

-0.0403; -5101

0.0000; -5101

0.0000; 5405

0.0358; 5405

0.0358; 0

-0.0405; 0

-0.0405; -5328-0.0051; -4904

0.0000; -3335

0.0000; 3258

0.0050; 5153

0.0359; 5815

0.0359; 0

-6000

-3000

0

3000

6000

-0.05 -0.03 -0.01 0.01 0.03

M (k

Nm

)

f-fy (1/m)

Input curves

figure 140 Section e0.7 properties

Mi 1099.08 kN/m 75.31 kip/ft

section Central

e 0.23 m 0.74 ft

0.71

Page 177: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

Appendix 4: Non linear properties of MLW bridge 177

-5000

-3000

-1000

1000

3000

5000

-0.05 -0.04 -0.03 -0.02 -0.01 0.00 0.01 0.02 0.03 0.04 0.05

M (k

Nm

)

f (1/m)

actual

bilinear

multilinear

0

500

1000

-0.0003 -0.0001 0.0001

M (k

Nm

)

f (1/m)

Zoom to Mp

0%

1%

2%

3%

4%

5%-0.3%

-0.2%

-0.1%

0.0%

-0.05 -0.03 -0.01 0.01 0.03 0.05

e(%

)

f (1/m)

Min. concrete StrainConcrete limitMax. prestress StrainSteel limit

-0.0398; 0

-0.0398; -4916

0.0000; -4916

0.0000; 5592

0.0394; 5592

0.0394; 0

-0.0402; 0

-0.0402; -5169

-0.0069; -4748

0.0000; -3075

0.0000; 3944

0.0049; 53070.0395; 6007

0.0395; 0

-6000

-3000

0

3000

6000

-0.05 -0.03 -0.01 0.02 0.04

M (k

Nm

)

f-fy (1/m)

Input curves

figure 141 Section e0.8 properties

Mi 244.87 kN/m 16.78 kip/ft

section Central

e 0.13 m 0.41 ft

0.46

Page 178: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

Appendix 4: Non linear properties of MLW bridge 178

-5700

-3700

-1700

300

2300

4300

-0.05 -0.04 -0.03 -0.02 -0.01 0.00 0.01 0.02 0.03 0.04 0.05

M (k

Nm

)

f (1/m)

actual

bilinear

multilinear

0

20

40

60

80

100

-0.00005 0.00000 0.00005

M (k

Nm

)

f (1/m)

Zoom to Mp

0%

1%

2%

3%

4%

5%-0.3%

-0.2%

-0.1%

0.0%

-0.05 -0.03 -0.01 0.01 0.03 0.05

e(%

)

f (1/m)

Min. concrete StrainConcrete limitMax. prestress StrainSteel limit

-0.0392; 0

-0.0392; -5446

0.0000; -5446

0.0000; 5156

0.0439; 5156

0.0439; 0

-0.0397; 0

-0.0397; -5681

-0.0048; -5252

0.0000; -3166

0.0000; 3690

0.0055; 49270.0439; 5528

0.0439; 0

-6500

-3500

-500

2500

5500

-0.05 -0.03 -0.01 0.01 0.03 0.05

M (k

Nm

)

f-fy (1/m)

Input curves

figure 142 Section e0.9 properties

Mi 52.19 kN/m 3.58 kip/ft

section Central

e 0.03 m 0.09 ft

0.42

Page 179: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

Appendix 4: Non linear properties of MLW bridge 179

-7000

-5000

-3000

-1000

1000

3000

5000

-0.05 -0.04 -0.03 -0.02 -0.01 0.00 0.01 0.02 0.03 0.04 0.05

M (k

Nm

)

f (1/m)

actual

bilinear

multilinear

-200

-180

-160

-140

-120

-100

-80

-60

-40

-20

0

-0.00005 0.00000 0.00005

M (k

Nm

)

f (1/m)

Zoom to Mp

0%

1%

2%

3%

4%

5%-0.3%

-0.2%

-0.1%

0.0%

-0.05 -0.03 -0.01 0.01 0.03 0.05

e(%

)

f (1/m)

Min. concrete StrainConcrete limitMax. prestress StrainSteel limit

-0.0389; 0

-0.0389; -5855

0.0000; -5855

0.0000; 4704

0.0428; 4704

0.0428; 0

-0.0390; 0

-0.0390; -6209

-0.0048; -5517

0.0000; -4131

0.0000; 3066

0.0059; 4463

0.0431; 4982

0.0431; 0

-7000

-4000

-1000

2000

5000

-0.05 -0.03 -0.01 0.01 0.03 0.05

M (k

Nm

)

f-fy (1/m)

Input curves

figure 143 Section e1.0 properties

Mi -115.20 kN/m -7.89 kip/ft

section Central

e -0.07 m -0.24 ft

0.43

Page 180: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

Appendix 4: Non linear properties of MLW bridge 180

-7000

-5000

-3000

-1000

1000

3000

-0.05 -0.04 -0.03 -0.02 -0.01 0.00 0.01 0.02 0.03 0.04 0.05

M (k

Nm

)

f (1/m)

actual

bilinear

multilinear

-1700

-1500

-1300

-1100

-900

-700

-500

-300

-100

-0.00010 0.00000 0.00010

M (k

Nm

)

f (1/m)

Zoom to Mp

0%

1%

2%

3%

4%

5%-0.3%

-0.2%

-0.1%

0.0%

-0.05 -0.03 -0.01 0.01 0.03 0.05

e(%

)

f (1/m)

Min. concrete StrainConcrete limitMax. prestress StrainSteel limit

-0.0352; 0

-0.0352; -5931

0.0000; -5931

0.0000; 4704

0.0449; 4704

0.0449; 0

-0.0356; 0

-0.0356; -6227

-0.0038; -5642

0.0000; -3321

0.0000; 3468

0.0057; 4598

0.0449; 4940

0.0449; 0

-7000

-4000

-1000

2000

5000

-0.05 -0.03 -0.01 0.01 0.03 0.05

M (k

Nm

)

f-fy (1/m)

Input curves

figure 144 Section e1.1 properties

Mi -757.67 kN/m -51.92 kip/ft

section Central

e -0.37 m -1.23 ft

0.56

Page 181: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

Appendix 4: Non linear properties of MLW bridge 181

-8000

-6000

-4000

-2000

0

2000

4000

-0.04 -0.03 -0.02 -0.01 0.00 0.01 0.02 0.03 0.04 0.05

M (k

Nm

)

f (1/m)

actual

bilinear

multilinear

-2200

-1700

-1200

-700

-200

-0.00010 0.00000 0.00010

M (k

Nm

)

f (1/m)

Zoom to Mp

0%

1%

2%

3%

4%

5%-0.3%

-0.2%

-0.1%

0.0%

-0.04 -0.02 0.00 0.02 0.04

e(%

)

f (1/m)

Min. concrete StrainConcrete limitMax. prestress StrainSteel limit

-0.0321; 0

-0.0321; -6145

0.0000; -6145

0.0000; 4524

0.0455; 4524

0.0455; 0

-0.0324; 0

-0.0324; -6455

-0.0038; -5777

0.0000; -3383

0.0000; 3399

0.0055; 4306

0.0455; 4717

0.0455; 0

-7000

-5000

-3000

-1000

1000

3000

5000

-0.04 -0.02 0.00 0.02 0.04

M (k

Nm

)

f-fy (1/m)

Input curves

figure 145 Section e1.2 properties

Mi -1223.42 kN/m -83.83 kip/ft

section Central

e -0.27 m -0.90 ft

0.58

Page 182: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

Appendix 4: Non linear properties of MLW bridge 182

-9000

-7000

-5000

-3000

-1000

1000

3000

-0.04 -0.03 -0.02 -0.01 0.00 0.01 0.02 0.03 0.04 0.05

M (k

Nm

)

f (1/m)

actual

bilinear

multilinear

-2100

-1600

-1100

-600

-100

-0.0001 0.0000 0.0001

M (k

Nm

)

f (1/m)

Zoom to Mp

0%

1%

2%

3%

4%

5%-0.3%

-0.2%

-0.1%

0.0%

-0.04 -0.02 0.00 0.02 0.04

e(%

)

f (1/m)

Min. concrete StrainConcrete limitMax. prestress StrainSteel limit

-0.0293; 0

-0.0293; -6721

0.0000; -6721

0.0000; 3782

0.0463; 3782

0.0463; 0

-0.0296; 0

-0.0296; -7175

-0.0037; -6283

0.0000; -4339

0.0000; 2641

0.0062; 3589

0.0463; 3950

0.0463; 0

-8000

-6000

-4000

-2000

0

2000

4000

-0.04 -0.02 0.00 0.02 0.04

M (k

Nm

)

f-fy (1/m)

Input curves

figure 146 Section e1.3 properties

Mi -1128.64 kN/m -77.34 kip/ft

section Central

e -0.37 m -1.23 ft

0.56

Page 183: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

Appendix 4: Non linear properties of MLW bridge 183

-9500

-7500

-5500

-3500

-1500

500

2500

-0.04 -0.03 -0.02 -0.01 0.00 0.01 0.02 0.03 0.04 0.05

M (k

Nm

)

f (1/m)

actual

bilinear

multilinear

-3000

-2500

-2000

-1500

-1000

-500

0

-0.0002 0.0000 0.0002

M (k

Nm

)

f (1/m)

Zoom to Mp

0%

1%

2%

3%

4%

5%-0.3%

-0.2%

-0.1%

0.0%

-0.04 -0.02 0.00 0.02 0.04

e(%

)

f (1/m)

Min. concrete StrainConcrete limitMax. prestress StrainSteel limit

-0.0272; 0

-0.0272; -6450

0.0000; -6450

0.0000; 4191

0.0469; 4191

0.0469; 0

-0.0275; 0

-0.0275; -6840

-0.0028; -6036

0.0000; -3233

0.0000; 3220

0.0058; 3951

0.0469; 4325

0.0469; 0

-8000

-6000

-4000

-2000

0

2000

4000

-0.04 -0.02 0.00 0.02 0.04

M (k

Nm

)

f-fy (1/m)

Input curves

figure 147 Section e1.4 properties

Mi -2163.83 kN/m -148.27 kip/ft

section Central

e -0.47 m -1.56 ft

0.70

Page 184: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

Appendix 4: Non linear properties of MLW bridge 184

-10000

-8000

-6000

-4000

-2000

0

2000

-0.04 -0.03 -0.02 -0.01 0.00 0.01 0.02 0.03 0.04 0.05

M (k

Nm

)

f (1/m)

actual

bilinear

multilinear

-3500

-3000

-2500

-2000

-1500

-1000

-500

0

-0.0002 0.0000 0.0002

M (k

Nm

)

f (1/m)

Zoom to Mp

0%

1%

2%

3%

4%

5%-0.3%

-0.2%

-0.1%

0.0%

-0.04 -0.02 0.00 0.02 0.04

e(%

)

f (1/m)

Min. concrete StrainConcrete limitMax. prestress StrainSteel limit

-0.0253; 0

-0.0253; -6611

0.0000; -6611

0.0000; 4044

0.0477; 4044

0.0477; 0

-0.0256; 0

-0.0256; -7026

-0.0049; -6551

0.0000; -3427

0.0000; 3251

0.0058; 3837

0.0477; 4158

0.0477; 0

-8000

-6000

-4000

-2000

0

2000

4000

-0.04 -0.02 0.00 0.02 0.04

M (k

Nm

)

f-fy (1/m)

Input curves

figure 148 Section e1.5 properties

Mi -2641.17 kN/m -180.98 kip/ft

section Central

e -0.57 m -1.88 ft

0.66

Page 185: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

Appendix 4: Non linear properties of MLW bridge 185

-11000

-9000

-7000

-5000

-3000

-1000

1000

-0.03 -0.02 -0.01 0.00 0.01 0.02 0.03 0.04 0.05 0.06

M (k

Nm

)

f (1/m)

actual

bilinear

multilinear

-4000

-3500

-3000

-2500

-2000

-1500

-1000

-500

0

-0.0001 0.0001 0.0003

M (k

Nm

)

f (1/m)

Zoom to Mp

0%

1%

2%

3%

4%

5%-0.3%

-0.2%

-0.1%

0.0%

-0.03 -0.01 0.01 0.03 0.05

e(%

)

f (1/m)

Min. concrete StrainConcrete limitMax. prestress StrainSteel limit

-0.0236; 0

-0.0236; -6676

0.0000; -6676

0.0000; 3919

0.0487; 3919

0.0487; 0

-0.0239; 0

-0.0239; -7203

-0.0033; -6247

0.0000; -3313

0.0000; 3264

0.0071; 3806

0.0487; 4014

0.0487; 0

-8000

-6000

-4000

-2000

0

2000

4000

-0.03 -0.01 0.01 0.03 0.05

M (k

Nm

)

f-fy (1/m)

Input curves

figure 149 Section e1.6 properties

Mi -3126.76 kN/m -214.25 kip/ft

section Central

e -0.67 m -2.21 ft

0.68

Page 186: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

Appendix 4: Non linear properties of MLW bridge 186

-1500

0

1500

3000

4500

6000

7500

9000

-0.03 -0.02 -0.01 0.01 0.02 0.03

M (k

Nm

)

f (1/m)

actual

bilinear

multilinear

0

2000

4000

6000

8000

-0.003 -0.001 0.001

M (k

Nm

)

f (1/m)

Zoom to Mp

0%

1%

2%

3%

4%

5%-0.3%

-0.2%

-0.1%

0.0%

-0.03 -0.01 0.01 0.03

e(%

)

f (1/m)

Min. concrete2 StrainConcrete limitMax. prestress StrainSteel limit

-0.0197; 0

-0.0197; -8330

0.0000; -8330

0.0000; 1864

0.0251; 18640.0251; 0

-0.0203; 0

-0.0203; -8386

-0.0003; -7723

0.0000; -7498

0.0000; 279

0.0037; 14740.0253; 2371

0.0253; 0

-10000

-8000

-6000

-4000

-2000

0

2000

-0.03 -0.02 -0.01 0.00 0.01 0.02 0.03

M (k

Nm

)

f-fy (1/m)

Input curves

figure 150 Section le0.3 properties

Mi 7067.29 kN/m 484.26 kip/ft

section Lateral

e 0.84 m 2.75 ft

0.18

Page 187: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

Appendix 4: Non linear properties of MLW bridge 187

-2000

0

2000

4000

6000

8000

-0.03 -0.02 -0.01 0.01 0.02 0.03

M (k

Nm

)

f (1/m)

actual

bilinear

multilinear

0

1000

2000

3000

4000

5000

6000

-0.002 -0.001 0.000 0.001

M (k

Nm

)

f (1/m)

Zoom to Mp

0%

1%

2%

3%

4%

5%-0.3%

-0.2%

-0.1%

0.0%

-0.03 -0.01 0.01 0.03

e(%

)

f (1/m)

Min. concrete2 StrainConcrete limitMax. prestress StrainSteel limit

-0.0203; 0

-0.0203; -76670.0000; -7667

0.0000; 2519

0.0266; 2519

0.0266; 0

-0.0201; 0

-0.0201; -7809

-0.0015; -7386

0.0000; -7044

0.0000; 568

0.0027; 1984 0.0275; 2910

0.0275; 0

-10000

-8000

-6000

-4000

-2000

0

2000

-0.03 -0.02 -0.01 0.00 0.01 0.02 0.03

M (k

Nm

)

f-fy (1/m)

Input curves

figure 151 Section le0.4 properties

Mi 5865.60 kN/m 401.92 kip/ft

section Lateral

e 0.74 m 2.42 ft

0.22

Page 188: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

Appendix 4: Non linear properties of MLW bridge 188

-2700

-700

1300

3300

5300

7300

-0.03 -0.02 -0.01 0.01 0.02 0.03 0.04

M (k

Nm

)

f (1/m)

actual

bilinear

multilinear

0

1000

2000

3000

4000

5000

-0.001 0.000 0.001

M (k

Nm

)

f (1/m)

Zoom to Mp

0%

1%

2%

3%

4%

5%-0.3%

-0.2%

-0.1%

0.0%

-0.03 -0.01 0.01 0.03

e(%

)

f (1/m)

Min. concrete2 StrainConcrete limitMax. prestress StrainSteel limit

-0.0206; 0

-0.0206; -69250.0000; -6925

0.0000; 31210.0295; 3121

0.0295; 0

-0.0207; 0

-0.0207; -7109

-0.0027; -6624

0.0000; -5796

0.0000; 1217

0.0032; 2713 0.0299; 3578

0.0299; 0

-8000

-6000

-4000

-2000

0

2000

4000

-0.03 -0.02 -0.01 0.00 0.01 0.02 0.03 0.04

M (k

Nm

)

f-fy (1/m)

Input curves

figure 152 Section le0.5 properties

Mi 4536.87 kN/m 310.87 kip/ft

section Lateral

e 0.64 m 2.09 ft

0.36

Page 189: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

Appendix 4: Non linear properties of MLW bridge 189

-4000

-2000

0

2000

4000

6000

8000

-0.03 -0.02 -0.01 0.01 0.02 0.03 0.04

M (k

Nm

)

f (1/m)

actual

bilinear

multilinear

0

500

1000

1500

2000

2500

3000

3500

4000

-0.0005 0.0000 0.0005

M (k

Nm

)

f (1/m)

Zoom to Mp

0%

1%

2%

3%

4%

5%-0.3%

-0.2%

-0.1%

0.0%

-0.03 -0.01 0.01 0.03

e(%

)

f (1/m)

Min. concrete2 StrainConcrete limitMax. prestress StrainSteel limit

-0.0206; 0

-0.0206; -61650.0000; -6165

0.0000; 38170.0324; 3817

0.0324; 0

-0.0207; 0

-0.0207; -6378

-0.0028; -5822

0.0000; -4822

0.0000; 1639

0.0038; 3470 0.0328; 4272

0.0328; 0

-8000

-6000

-4000

-2000

0

2000

4000

-0.03 -0.02 -0.01 0.00 0.01 0.02 0.03 0.04

M (k

Nm

)

f-fy (1/m)

Input curves

figure 153 Section le0.6 properties

Mi 3179.57 kN/m 217.87 kip/ft

section Lateral

e 0.54 m 1.76 ft

0.50

Page 190: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

Appendix 4: Non linear properties of MLW bridge 190

-2000

0

2000

4000

6000

-0.01 0.00 0.01 0.02 0.03 0.04

M (k

Nm

)

f (1/m)

actual

bilinear

multilinear

0

500

1000

1500

2000

2500

3000

-0.0005 0.0000 0.0005

M (k

Nm

)

f (1/m)

Zoom to Mp

0%

1%

2%

3%

4%

5%-0.3%

-0.2%

-0.1%

0.0%

-0.02 0.00 0.02 0.04

e(%

)

f (1/m)

Min. concrete2 StrainConcrete limitMax. prestress StrainSteel limit

-0.0054; 0

-0.0054; -33540.0000; -3354

0.0000; 42820.0358; 4282

0.0358; 0

-0.0054; 0

-0.0054; -3635

-0.0007; -2997

0.0000; -2327

0.0000; 2293

0.0033; 3835 0.0361; 4702

0.0361; 0

-4100

-2100

-100

1900

3900

-0.02 -0.01 0.00 0.01 0.02 0.03 0.04

M (k

Nm

)

f-fy (1/m)

Input curves

figure 154 Section le0.7 properties

Mi 2115.28 kN/m 144.94 kip/ft

section Lateral

e 0.44 m 1.43 ft

0.61

Page 191: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

Appendix 4: Non linear properties of MLW bridge 191

-2000

0

2000

4000

6000

-0.01 0.00 0.01 0.02 0.03 0.04

M (k

Nm

)

f (1/m)

actual

bilinear

multilinear

0

200

400

600

800

1000

1200

1400

1600

1800

-0.0005 0.0000 0.0005

M (k

Nm

)

f (1/m)

Zoom to Mp

0%

1%

2%

3%

4%

5%-0.3%

-0.2%

-0.1%

0.0%

-0.02 0.00 0.02 0.04

e(%

)

f (1/m)

Min. concrete2 StrainConcrete limitMax. prestress StrainSteel limit

-0.0053; 0

-0.0053; -24790.0000; -2479

0.0000; 48710.0394; 4871

0.0394; 0

-0.0054; 0

-0.0054; -2768-0.0011; -2215

0.0000; -1435

0.0000; 3338

0.0047; 4581 0.0397; 5248

0.0397; 0

-4000

-2000

0

2000

4000

-0.02 -0.01 0.00 0.01 0.02 0.03 0.04 0.05

M (k

Nm

)

f-fy (1/m)

Input curves

figure 155 Section le0.8 properties

Mi 884.94 kN/m 60.64 kip/ft

section Lateral

e 0.34 m 1.11 ft

0.39

Page 192: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

Appendix 4: Non linear properties of MLW bridge 192

-2500

-1000

500

2000

3500

5000

-0.01 0.00 0.01 0.02 0.03 0.04 0.05

M (k

Nm

)

f (1/m)

actual

bilinear

multilinear

0

500

1000

1500

2000

-0.0005 0.0000 0.0005

M (k

Nm

)

f (1/m)

Zoom to Mp

0%

1%

2%

3%

4%

5%-0.3%

-0.2%

-0.1%

0.0%

-0.02 0.00 0.02 0.04

e(%

)

f (1/m)

Min. concrete2 StrainConcrete limitMax. prestress StrainSteel limit

-0.0053; 0

-0.0053; -32580.0000; -3258

0.0000; 38260.0445; 3826

0.0445; 0

-0.0055; 0

-0.0055; -3584-0.0018; -3182

0.0000; -1799

0.0000; 2373

0.0046; 3468 0.0447; 4159

0.0447; 0

-4500

-2500

-500

1500

3500

-0.02 -0.01 0.00 0.01 0.02 0.03 0.04 0.05

M (k

Nm

)

f-fy (1/m)

Input curves

figure 156 Section le0.9 properties

Mi 1331.77 kN/m 91.26 kip/ft

section Lateral

e 0.24 m 0.78 ft

0.50

Page 193: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

Appendix 4: Non linear properties of MLW bridge 193

-5900

-3900

-1900

100

2100

4100

-0.03 -0.02 -0.01 0.01 0.02 0.03 0.04 0.05 0.06

M (k

Nm

)

f (1/m)

actual

bilinear

multilinear

0

200

400

600

800

1000

1200

1400

1600

1800

-0.0005 0.0000 0.0005

M (k

Nm

)

f (1/m)

Zoom to Mp

0%

1%

2%

3%

4%

5%-0.3%

-0.2%

-0.1%

0.0%

-0.03 -0.01 0.01 0.03 0.05

e(%

)

f (1/m)

Min. concrete2 StrainConcrete limitMax. prestress StrainSteel limit

-0.0194; 0

-0.0194; -6540 0.0000; -6540

0.0000; 3594

0.0507; 3594

0.0507; 0

-0.0194; 0

-0.0194; -6729-0.0047; -6416

0.0000; -5004

0.0000; 2026

0.0075; 3428 0.0512; 3871

0.0512; 0

-8000

-6000

-4000

-2000

0

2000

4000

-0.04 -0.02 0.00 0.02 0.04 0.06

M (k

Nm

)

f-fy (1/m)

Input curves

figure 157 Section le1.0 properties

Mi 944.85 kN/m 64.74 kip/ft

section Lateral

e 0.14 m 0.45 ft

0.42

Page 194: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

Appendix 4: Non linear properties of MLW bridge 194

-4000

-2000

0

2000

4000

-0.01 0.00 0.01 0.02 0.03 0.04 0.05 0.06

M (k

Nm

)

f (1/m)

actual

bilinear

multilinear

0

200

400

600

800

1000

1200

1400

-0.0002 0.0000 0.0002

M (k

Nm

)

f (1/m)

Zoom to Mp

0%

1%

2%

3%

4%

5%-0.3%

-0.2%

-0.1%

0.0%

-0.02 0.00 0.02 0.04 0.06

e(%

)

f (1/m)

Min. concrete2 StrainConcrete limitMax. prestress StrainSteel limit

-0.0053; 0

-0.0053; -32390.0000; -3239

0.0000; 33450.0591; 3345

0.0591; 0

-0.0053; 0

-0.0053; -3624-0.0013; -2932

0.0000; -2082

0.0000; 1628

0.0049; 3041 0.0595; 3606

0.0595; 0

-4100

-2100

-100

1900

3900

-0.03 -0.01 0.01 0.03 0.05

M (k

Nm

)

f-fy (1/m)

Input curves

figure 158 Section le1.1 properties

Mi 559.28 kN/m 38.32 kip/ft

section Lateral

e 0.04 m 0.12 ft

0.49

Page 195: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

Appendix 4: Non linear properties of MLW bridge 195

-4000

-2000

0

2000

4000

-0.01 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

M (k

Nm

)

f (1/m)

actual

bilinear

multilinear

0

200

400

600

800

1000

-0.0001 0.0000 0.0001

M (k

Nm

)

f (1/m)

Zoom to Mp

0%

1%

2%

3%

4%

5%-0.3%

-0.2%

-0.1%

0.0%

-0.02 0.00 0.02 0.04 0.06

e(%

)

f (1/m)

Min. concrete2 StrainConcrete limitMax. prestress StrainSteel limit

-0.0053; 0

-0.0053; -32610.0000; -3261

0.0000; 31070.0706; 3107

0.0706; 0

-0.0054; 0

-0.0054; -3646

-0.0010; -2764 0.0000; -1978

0.0000; 1708

0.0048; 2825 0.0708; 3328

0.0708; 0

-4100

-2100

-100

1900

-0.03 -0.01 0.01 0.03 0.05 0.07

M (k

Nm

)

f-fy (1/m)

Input curves

figure 159 Section le1.2 properties

Mi 174.76 kN/m 11.97 kip/ft

section Lateral

e -0.06 m -0.21 ft

0.47

Page 196: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

Appendix 4: Non linear properties of MLW bridge 196

-4000

-3000

-2000

-1000

0

1000

2000

3000

-0.01 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

M (k

Nm

)

f (1/m)

actual

bilinear

multilinear

-1200

-1000

-800

-600

-400

-200

0

-0.0001 0.0000 0.0001

M (k

Nm

)

f (1/m)

Zoom to Mp

0%

1%

2%

3%

4%

5%-0.3%

-0.2%

-0.1%

0.0%

-0.02 0.00 0.02 0.04 0.06 0.08

e(%

)

f (1/m)

Min. concrete2 StrainConcrete limitMax. prestress StrainSteel limit

-0.0053; 0

-0.0053; -3267 0.0000; -3267

0.0000; 28670.0874; 2867

0.0874; 0

-0.0055; 0

-0.0055; -3649

-0.0013; -27720.0000; -1643

0.0000; 1829

0.0088; 2710 0.0876; 3044

0.0876; 0

-4500

-3000

-1500

0

1500

3000

-0.03 -0.01 0.01 0.03 0.05 0.07 0.09

M (k

Nm

)

f-fy (1/m)

Input curves

figure 160 Section le1.3 properties

Mi -209.65 kN/m -14.37 kip/ft

section Lateral

e -0.16 m -0.53 ft

0.45

Page 197: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

Appendix 4: Non linear properties of MLW bridge 197

-4500

-3000

-1500

0

1500

-0.01 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.11

M (k

Nm

)

f (1/m)

actual

bilinear

multilinear

-1600

-1400

-1200

-1000

-800

-600

-400

-200

0

-0.0001 0.0000 0.0001

M (k

Nm

)

f (1/m)

Zoom to Mp

0%

1%

2%

3%

4%

5%-0.3%

-0.2%

-0.1%

0.0%

-0.01 0.02 0.05 0.08 0.11

e(%

)

f (1/m)

Min. concrete2 StrainConcrete limitMax. prestress StrainSteel limit

-0.0055; 0

-0.0055; -3187 0.0000; -3187

0.0000; 2623

0.1095; 2623

0.1095; 0

-0.0057; 0

-0.0057; -3634-0.0016; -2823

0.0000; -1151

0.0000; 1651

0.0098; 2474 0.1096; 2761

0.1096; 0

-4100

-2100

-100

1900

-0.04 -0.02 0.00 0.02 0.04 0.06 0.08 0.10 0.12

M (k

Nm

)

f-fy (1/m)

Input curves

figure 161 Section le1.4 properties

Mi -594.48 kN/m -40.73 kip/ft

section Lateral

e -0.26 m -0.86 ft

0.57

Page 198: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

Appendix 4: Non linear properties of MLW bridge 198

-9500

-7500

-5500

-3500

-1500

500

-0.03 -0.01 0.01 0.03 0.05 0.07 0.09 0.11

M (k

Nm

)

f (1/m)

actual

bilinear

multilinear

-2000

-1500

-1000

-500

0

-0.0005 0.0000 0.0005

M (k

Nm

)

f (1/m)

Zoom to Mp

0%

1%

2%

3%

4%

5%-0.3%

-0.2%

-0.1%

0.0%

-0.03 0.00 0.03 0.06 0.09

e(%

)

f (1/m)

Min. concrete2 StrainConcrete limitMax. prestress StrainSteel limit

-0.0180; 0

-0.0180; -76690.0000; -7669

0.0000; 2535

0.1064; 2535

0.1064; 0

-0.0183; 0

-0.0183; -7972-0.0035; -7239

0.0000; -4843

0.0000; 1619

0.0049; 2311 0.1065; 2621

0.1065; 0

-8500

-6500

-4500

-2500

-500

1500

-0.05 -0.03 -0.01 0.01 0.03 0.05 0.07 0.09 0.11 0.13

M (k

Nm

)

f-fy (1/m)

Input curves

figure 162 Section le1.5 properties

Mi -1160.73 kN/m -79.54 kip/ft

section Lateral

e -0.36 m -1.19 ft

0.64

Page 199: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

Appendix 4: Non linear properties of MLW bridge 199

-5500

-4000

-2500

-1000

500

-0.01 0.01 0.03 0.05 0.07 0.09 0.11

M (k

Nm

)

f (1/m)

actual

bilinear

multilinear

-2400

-1900

-1400

-900

-400

-0.0002 -0.0001 0.0000 0.0001 0.0002

M (k

Nm

)

f (1/m)

Zoom to Mp

0%

1%

2%

3%

4%

5%-0.3%

-0.2%

-0.1%

0.0%

-0.02 0.01 0.04 0.07 0.10

e(%

)

f (1/m)

Min. concrete2 StrainConcrete limitMax. prestress StrainSteel limit

-0.0057; 0

-0.0057; -3112

0.0000; -3112

0.0000; 2106

0.1024; 2106

0.1024; 0

-0.0060; 0

-0.0060; -3672

-0.0016; -2682

0.0000; -720

0.0000; 1431

0.0018; 18660.1024; 2161

0.1024; 0

-4500

-2500

-500

1500

-0.04 0.01 0.06 0.11

M (k

Nm

)

f-fy (1/m)

Input curves

figure 163 Section le1.6properties

Mi -1365.69 kN/m -93.58 kip/ft

section Lateral

e -0.46 m -1.52 ft

0.56

Page 200: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

Appendix 4: Non linear properties of MLW bridge 200

The following pages contain the non linear information of the transversal members used in the analysis. The properties plotted are similar to the ones of the previous paragraph, but in this care the sections are symmetrical thus only one side of the results are shown.

Page 201: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

Appendix 4: Non linear properties of MLW bridge 201

0

20

40

60

80

100

120

0.00 0.05 0.10 0.15 0.20 0.25 0.30

M (k

Nm

)

f (1/m)

actual

bilinear

multilinear

0

10

20

30

40

50

60

70

0.00 0.01 0.02

M (k

Nm

)

f (1/m)

actualSAP bilinearSAP multilinear

-0.3%

-0.2%

-0.1%

0.0%0%

2%

4%

6%

8%

10%

0.00 0.10 0.20 0.30

e(%

)

f (1/m)

Max. 50ksi steel reinf Strain

Steel limit

Min. psi4500 no softening Strain

Concrete limit

0.0000; 870.2705; 87

0.2705; 0

0.0000; 66

0.1097; 86

0.2766; 98

0.2766; 00

20

40

60

80

100

120

0.00 0.05 0.10 0.15 0.20 0.25 0.30

M (k

Nm

)

f-fy (1/m)

Input curves

figure 164 inferior slab properties

0.1

Page 202: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

Appendix 4: Non linear properties of MLW bridge 202

0

50

100

150

200

250

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45

M (k

Nm

)

f (1/m)

actual

bilinear

multilinear

0

20

40

60

80

100

120

140

0.00 0.01

M (k

Nm

)

f (1/m)

actualSAP bilinearSAP multilinear

-0.3%

-0.2%

-0.1%

0.0%0%

2%

4%

6%

8%

10%

0.00 0.10 0.20 0.30 0.40

e(%

)

f (1/m)

Max. 50ksi steel reinf Strain

Steel limit

Min. psi4500 no softening Strain

Concrete limit

0.0000; 1810.4249; 181

0.4249; 0

0.0000; 136

0.1593; 176

0.4295; 209

0.4295; 00

50

100

150

200

250

0.00 0.10 0.20 0.30 0.40 0.50

M (k

Nm

)

f-fy (1/m)

Input curves

figure 165 superior slab properties

0.16

Page 203: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

Appendix 4: Non linear properties of MLW bridge 203

0

20

40

60

80

100

120

140

160

180

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

M (k

Nm

)

f (1/m)

actual

bilinear

multilinear

0

20

40

60

80

100

120

0.00 0.01

M (k

Nm

)

f (1/m)

actualSAP bilinearSAP multilinear

-0.3%

-0.2%

-0.1%

0.0%0%

2%

4%

6%

8%

10%

0.00 0.10 0.20 0.30 0.40

e(%

)

f (1/m)

Max. 50ksi steel reinf Strain

Steel limit

Min. psi4500 no softening Strain

Concrete limit

0.0000; 1420.3829; 142

0.3829; 0

0.0000; 95

0.1423; 138

0.3875; 165

0.3875; 00

20

40

60

80

100

120

140

160

180

0.00 0.10 0.20 0.30 0.40 0.50

M (k

Nm

)

f-fy (1/m)

Input curves

figure 166 web5 properties

0.053

Page 204: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

Appendix 4: Non linear properties of MLW bridge 204

0

50

100

150

200

250

300

0.00 0.05 0.10 0.15 0.20

M (k

Nm

)

f (1/m)

actual

bilinear

multilinear

0

40

80

120

160

200

0.00 0.01

M (k

Nm

)

f (1/m)

actualSAP bilinearSAP multilinear

-0.3%

-0.2%

-0.1%

0.0%0%

2%

4%

6%

8%

10%

0.00 0.10 0.20

e(%

)

f (1/m)

Max. 50ksi steel reinf Strain

Steel limit

Min. psi4500 no softening Strain

Concrete limit

0.0000; 2450.1596; 245

0.1596; 0

0.0000; 191

0.0641; 2450.1624; 279

0.1624; 00

50

100

150

200

250

300

0.00 0.05 0.10 0.15 0.20

M (k

Nm

)

f-fy (1/m)

Input curves

figure 167 web10 properties

a 0.1

Page 205: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

Appendix 4: Non linear properties of MLW bridge 205

0

100

200

300

400

500

600

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07

M (k

Nm

)

f (1/m)

actual

bilinear

multilinear

0

100

200

300

400

0.00 0.01

M (k

Nm

)

f (1/m)

actualSAP bilinearSAP multilinear

-0.3%

-0.2%

-0.1%

0.0%0%

2%

4%

6%

8%

10%

0.00 0.02 0.04 0.06

e(%

)

f (1/m)

Max. 50ksi steel reinf Strain

Steel limit

Min. psi4500 no softening Strain

Concrete limit

0.0000; 4870.0556; 487

0.0556; 0

0.0000; 440

0.0235; 4820.0569; 537

0.0569; 00

100

200

300

400

500

600

0.00 0.01 0.02 0.03 0.04 0.05 0.06

M (k

Nm

)

f-fy (1/m)

Input curves

figure 168 web25 properties

0.2

Page 206: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

Appendix 4: Non linear properties of MLW bridge 206

0

1000

2000

3000

4000

0.00 0.01 0.02 0.03 0.04

M (k

Nm

)

f (1/m)

actual

bilinear

multilinear

0

500

1000

1500

2000

2500

3000

0.000 0.001 0.002

M (k

Nm

)

f (1/m)

actualSAP bilinearSAP multilinear

-0.3%

-0.2%

-0.1%

0.0%0%

2%

4%

6%

8%

10%

0.00 0.02 0.04

e(%

)

f (1/m)

Max. 50ksi steel reinf Strain

Steel limit

Min. psi4500 no softening Strain

Concrete limit

0.0000; 3697

0.0332; 3697

0.0332; 0

0.0000; 2788

0.0175; 37950.0336; 4225

0.0336; 00

1000

2000

3000

4000

0.00 0.01 0.02 0.03 0.04

M (k

Nm

)

f-fy (1/m)

Input curves

figure 169 diaphragm abutment properties

0.12

Page 207: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

Appendix 4: Non linear properties of MLW bridge 207

0

5000

10000

15000

20000

25000

30000

35000

0.000 0.005 0.010 0.015

M (k

Nm

)

f (1/m)

actual

bilinear

multilinear

0

5000

10000

15000

20000

25000

0.000 0.001 0.002

M (k

Nm

)

f (1/m)

actualSAP bilinearSAP multilinear

-0.3%

-0.2%

-0.1%

0.0%0%

2%

4%

6%

8%

10%

0.00 0.01

e(%

)

f (1/m)

Max. 50ksi steel reinf Strain

Steel limit

Min. psi4500 no softening Strain

Concrete limit

0.0000; 28597

0.0120; 28597

0.0120; 0

0.0000; 24490

0.0064; 282400.0123; 32280

0.0123; 00

5000

10000

15000

20000

25000

30000

35000

0.000 0.005 0.010 0.015

M (k

Nm

)

f-fy (1/m)

Input curves

figure 170 diaphragm bent properties

0.45

Page 208: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

Appendix 4: Non linear properties of MLW bridge 208

Colunms

0

4000

8000

12000

16000

20000

0 0.01 0.02 0.03 0.04 0.05

M (k

Nm

)

f (1/m)

M Phi curve

M Phi simplified

M phi multilinear

figure 171 M-f curve for P=0

0.000; 14330

0.041; 14330

0.041; 0

0.000; 9197

0.004; 12335

0.042; 16089

0.042; 00

2000

4000

6000

8000

10000

12000

14000

16000

18000

0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040 0.045

M (k

Nm

)

f-fy (1/m)

Input curves

figure 172 simplification of the curves for P=0

0

4000

8000

12000

16000

20000

24000

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035

M (k

Nm

)

f (1/m)

M Phi curve

M Phi simplified

M Phi multilinear

figure 173 M-f curve for P=-10000

Page 209: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

Appendix 4: Non linear properties of MLW bridge 209

0.000; 18557

0.030; 18557

0.030; 0

0.000; 13954

0.004; 17405

0.031; 19924

0.031; 00

5000

10000

15000

20000

25000

0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035

M (k

Nm

)

f-fy (1/m)

Input curves

figure 174 simplification of the curves for P=-10000

0

4000

8000

12000

16000

20000

24000

0 0.005 0.01 0.015 0.02 0.025 0.03

M (k

Nm

)

f (1/m)

M Phi curve

M Phi simplified

M Phi multilinear

figure 175 M-f curve for P=-20000

0.000; 21697

0.023; 21697

0.023; 0

0.000; 17907

0.003; 21135

0.024; 22812

0.024; 00

5000

10000

15000

20000

25000

0.000 0.005 0.010 0.015 0.020 0.025 0.030

M (k

Nm

)

f-fy (1/m)

Input curves

figure 176 simplification of the curves for P=-20000

Page 210: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

Appendix 4: Non linear properties of MLW bridge 210

0

4000

8000

12000

16000

20000

24000

28000

0 0.005 0.01 0.015 0.02 0.025

M (k

Nm

)

f (1/m)

M Phi curve

M Phi simplified

M Phi multilinear

figure 177 M-f curve for P=40000

0.000; 24583

0.016; 24583

0.016; 0

0.000; 19923

0.001; 23626

0.016; 25301

0.016; 00

5000

10000

15000

20000

25000

30000

0.000 0.005 0.010 0.015 0.020

M (k

Nm

)

f-fy (1/m)

Input curves

figure 178 simplification of the curves for P=40000

0; -78176

24583; -40000

21697; -20000

18557; -1000014330; 0

0; 18015

0; -78176

19923; -40000

17907; -20000

13954; -10000

9196.8915; 0

0; 18015

-100000

-80000

-60000

-40000

-20000

0

20000

40000

0 5000 10000 15000 20000 25000 30000

bilinear strategy

multilinear strategy

figure 179 Interaction surface for the two simplification strategy

Page 211: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

Appendix 5: bearings support design and verification 211

11. Appendix 5: bearings support design and verification

Design and properties of bearing pads Abutment 1 Abutment 2 Bent 1 Bent 2 Bent 3

Page 212: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

Appendix 5: bearings support design and verification 212

Design and properties of bearing pads

Vertical design force

Considering a live load of 4kN/m2 (0.08kip/ft2) and a truck equivalent load as planned at pag.76 it is obtained: for bearings in the piers

kipkNP 15717000max

kipkNP 7003100min

for bearings in the abutments kipkNP 15712000max

kipkNP 7001100min

Preliminary design

The size of the bearings is calculated by limiting the internal tension of the elastomeric support at 15 Mpa, thus: for bearings in the piers

ininmmmmmmP

Aall

6.275.6.27700700460000 2max

for bearings in the abutments

ininmmmmmmP

Aall

8.118.11300300133000 2max

For the bearings on the abutments the thickness is preliminarily designed with the maximum displacement due to serviceability deformation. Considering 20mm (0.78in) thick elastomeric layer the relation to respect is:

5.0tg

In this preliminary design the point of fixity is considered to be at the center of the deck longitudinal axis.

140)6.23(60 neincmuL

for 140ne there is need of 7 layers.

Page 213: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

Appendix 5: bearings support design and verification 213

Thickness of the bearings on the piers is preliminarily designed with the maximum rotation in serviceability condition. Considering 20mm (0.78in) thick elastomeric layer the relation to respect is:

27.1

31043

23

2

n

aenrad

a

en

The actions are taken according to [10][9], for the location of the bridge it is chosen Barcelona (Spain).

Braking force

The braking load is defined as 1/20 of the superimposed dead load of design. This value is limited at 720 kN (161kip) and that is the value that it is used. The distribution of breaking force in the bearings is proportional to the stiffness of each subsystem. The following formula is used to calculate the substructure stiffness:

G

ne

abEI

hk bearingpier 1

3

13

where h is the eight of the columns EI is the gross section flexural stiffness G is the shear stiffness of the elastomeric device a,b,n,e are the dimensions of the support. The result is ftkipmkNk /122028106 for pier 1 and 2, and ftkipmkNk /111728840

for pier 3. The abutment is considered infinitely stiff, thus the only stiffness is given by the bearing:

ftkipmkN

G

ne

ab

kabutments /111915421

1 .

The total stiffness of the bridge will be:

ftkipmkNkkkK pierspiersabutments /10800179356246 32,1

The breaking force will distribute as follows in each support device:

Page 214: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

Appendix 5: bearings support design and verification 214

kipkNK

kFF abutments

babutb 77.1619.6,

kipK

kFF pierbearing

bbentb 31.151122,1,

kipK

kFF pierbearing

bbentb 31.157.1153,

Wind load

For spans shorter than 200 m (656 ft) wind load can be considered as a static load. The following formulas are used to find the equivalent force due to wind action.

2

2

1cDv VACF

refgzrtc vCCCCV

Values adopted are resumed in table 44.

Ct 1 Cr 1.04 return time=100 years Cz 0.665 type IV Cg 1.877 vref 28 m/s vc 36.35 m/s

r 1.25 kg/m^3 heq 4 m car heigth 2m B 14 m deck width Cd 1.3 A 400 m^2 exposition area

table 44 values for wind load calculation

The result is kipkNFv 44.96429

Page 215: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

Appendix 5: bearings support design and verification 215

Seismic load

The base acceleration of the location is 0.05 according to

figure 180 Hazad map of Catalonia

Assuming a damage coefficient equal to 1: gg 06.005.0

which is the condition to ignore seismic load.

Total horizontal design force

As a simplification it is assumed that the wind load distributes itself equally on the supports, then summing vectorially these forces with the breaking forces the following forces are obtained: for each pier or bent.

kipkNFw 79.98.85

for each bearing device

2, wpierw FF

3, wabutmentw FF

2,

2, pierbpierwpier FFH

2,

2, abutmentsbabutmentswabutments FFH

kipkNH piers 79.9119

Page 216: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

Appendix 5: bearings support design and verification 216

kipkNHabutments 79.926.29

As a simplification only the most critical situation is considered. The fix point is found by the following formula:

mk

XkX

i

ii 71.540

By considering the iX starting from the beginning of the bridge (abutment 1).

Page 217: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

Appendix 5: bearings support design and verification 217

Abutment 1

x 59.71 m

exL 1.1 mm/m

exi 0.6 mm/m

Pmax 2000000 N

Pmin 1100000 N

a 600 mm

b 600 mm

e 10 mm

n 12

t 3 mm

S 15

GL 0.8 MPa

H 38297.87234 N

uL 65.681 mm displacements long duration

ui 0.13 mm displacements short duration

q 7.30E-04 rad

Compression strength verification

sM 5.555555556 Mpa ≤ sall 15 MPa ≤ s2 24 Mpa

12 if train bridge

Verification ok

Page 218: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

Appendix 5: bearings support design and verification 218

Slip verification

sMin 3.0555556 ≥ 3 MPa Verification ok

for contact between concrete and elastomer

f1 0.30

H 38297.872 N ≤ f1*V 326000 N Verification ok

Allowable distortion

0.5 ≤ tgg 0.5 long term Verification ok

0.5 ≤ tgg 0.7 total Verification ok

Allowable rotation

aall 0.00073 ≤ 3*n*(e/a)^2 0.01 Verification ok

Behavior ≥

tv 0.6 ≤ 3G 2.4 Verification ok

th 0.5 ≤ 0.5G 0.4 Verification ok

ta 1.1 ≤ 1.5G 1.2 Verification ok

St 2.2 ≤ 5*G 4 Verification ok

Buckling

a/ne 5 ≥ 5 Verification ok

Steel plates

t 3 ≥ a*sm/(S*sst) 0.556 Verification ok

Page 219: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

Appendix 5: bearings support design and verification 219

Abutment 2

x 41.29 m

exL 1.1 mm/m

exi 0.6 mm/m

Pmax 2000000 N

Pmin 1100000 N

a 600 mm

b 600 mm

e 10 mm

n 12

t 3 mm

S 15

GL 0.8 MPa

H 38297.87234 N

uL 45.419 mm displacements long duration

ui 0.13 mm displacements short duration

q 1.80E-04 rad

Compression strength verification

sM 5.555555556 Mpa ≤ sall 15 MPa ≤ s2 24 Mpa

12 if train bridge

Verification ok

Page 220: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

Appendix 5: bearings support design and verification 220

Slip verification

sMin 3.0555556 ≥ 3 MPa Verification ok

for contact between concrete and elastomer

f1 0.30

H 38297.872 N ≤ f1*V 326000 N Verification ok

Allowable distortion

0.4 ≤ tgg 0.5 long term Verification ok

0.4 ≤ tgg 0.7 total Verification ok

Allowable rotation

aall 0.00018 ≤ 3*n*(e/a)^2 0.01 Verification ok

Behavior

tv 0.6 ≤ 3G 2.4 Verification ok

th 0.4 ≤ 0.5G 0.4 Verification ok

ta 0.3 ≤ 1.5G 1.2 Verification ok

St 1.2 ≤ 5*G 4 Verification ok

Buckling

a/ne 5 ≥ 5 Verification ok

Steel plates

t 3 ≥ a*sm/(S*sst) 0.556 Verification ok

Page 221: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

Appendix 5: bearings support design and verification 221

Bent 1

x 40.21 m

exL 1.2 mm/m

exi 0.6 mm/m

Pmax 6992000 N

Pmin 3166000 N

a 800 mm

b 800 mm

e 20 mm

n 5

0.80

t 4 mm

S 10

GL 0.8 MPa

H 39891.99099 N

uL 48.252 mm displacements long duration

ui 0.08 mm displacements short duration

q 1.50E-03 rad

Compression strength verification

sM 10.925 Mpa ≤ sall 15 MPa ≤ s2 16 Mpa

12 if train bridge

Verification ok

Page 222: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

Appendix 5: bearings support design and verification 222

Slip verification

sMin 4.946875 ≥ 3 MPa Verification ok

for contact between concrete and elastomer

f1 0.22

H 39891.991 N ≤ f1*V 700600 N Verification ok

Allowable distortion

0.5 ≤ tgg 0.5 long term Verification ok

0.5 ≤ tgg 0.7 total Verification ok

Allowable rotation

aall 0.0015 ≤ 3*n*(e/a)^2 0.009 Verification ok

Behavior

tv 1.6 ≤ 3G 2.4 Verification ok

th 0.4 ≤ 0.5G 0.4 Verification ok

ta 1.0 ≤ 1.5G 1.2 Verification ok

St 3.0 ≤ 5*G 4 Verification ok

Buckling

a/ne 8 ≥ 5 Verification ok

Steel plates

t 4 ≥ a*sm/(S*sst) 2.185 Verification ok

Page 223: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

Appendix 5: bearings support design and verification 223

Bent 2

x 8.31 m

exL 1.1 mm/m

exi 0.6 mm/m

Pmax 6992000 N

Pmin 3166000 N

a 800 mm

b 800 mm

e 20 mm

n 5

t 4

S 10

GL 0.8 MPa

H 81702.12766 N

uL 9.141 mm displacements long duration

ui 0.16 mm displacements short duration

q 1.50E-03 rad

Compression strength verification

sM 10.925 Mpa ≤ sall 15 MPa ≤ s2 16 Mpa

12 if train bridge

Verification ok

Page 224: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

Appendix 5: bearings support design and verification 224

Slip verification

sMin 4.946875 ≥ 3 MPa Verification ok

for contact between concrete and elastomer

f1 0.22

H 81702.128 N ≤ f1*V 700600 N Verification ok

Allowable distortion

0.1 ≤ tgg 0.5 long term Verification ok

0.1 ≤ tgg 0.7 total Verification ok

Allowable rotation

aall 0.0015 ≤ 3*n*(e/a)^2 0.009 Verification ok

Behavior

tv 1.6 ≤ 3G 2.4 Verification ok

th 0.2 ≤ 0.5G 0.4 Verification ok

ta 1.0 ≤ 1.5G 1.2 Verification ok

St 2.8 ≤ 5*G 4 Verification ok

Buckling

a/ne 8 ≥ 5 Verification ok

Steel plates

t 4 ≥ a*sm/(S*sst) 2.185 Verification ok

Page 225: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

Appendix 5: bearings support design and verification 225

Bent 3

x 38.69 m

exL 1.1 mm/m

exi 0.6 mm/m

Pmax 6992000 N

Pmin 3166000 N

a 800 mm

b 800 mm

e 20 mm

n 5

t 4 mm

S 10

GL 0.8 MPa

H 40440.88773 N

uL 42.559 mm displacements long duration

ui 0.08 mm displacements short duration

q 1.50E-03 rad

Compression strength verification

sM 10.925 Mpa < sall 15 MPa < s2 16 Mpa

12 if train bridge

Verification ok

t 4 > a*sm/(S*sst) 2.185 Verification ok

Page 226: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

Appendix 5: bearings support design and verification 226

Slip verification

sMin 4.946875 ≥ 3 MPa Verification ok

for contact between concrete and elastomer

f1 0.22

H 40440.888 N < f1*V 700600 N Verification ok

Allowable distortion

0.4 < tgg 0.5 long term Verification ok

0.4 < tgg 0.7 total Verification ok

Allowable rotation

aall 0.0015 < 3*n*(e/a)^2 0.009 Verification ok

Behavior

tv 1.6 ≤ 3G 2.4 Verification ok

th 0.4 ≤ 0.5G 0.4 Verification ok

ta 1.0 ≤ 1.5G 1.2 Verification ok

St 3.0 ≤ 5*G 4 Verification ok

Buckling

a/ne 8 ≥ 5 Verification ok

Steel plates

t 4 ≥ a*sm/(S*sst) 2.185 Verification ok

Page 227: Tesi parziale22 10 2010 UPC - core.ac.uk · PDF fileRedundancy of Bridge Systems under Lateral Loads Abstract 3 Resumen La evaluación de robustez es cada día más importante, ya

Redundancy of Bridge Systems under Lateral Loads

Appendix 5: bearings support design and verification 227

The initial value of the point of fixity the bearing supports must be verified. The verification present in the previous paragraphs leads to the bearing devices configuration illustrated in figure 181.

figure 181 bearings scheme disposition