128
Temperature Temperature regulation and regulation and monitoring monitoring

Temperature regulation and monitoring. Mammals and birds are homeothermic They require a nearly constant internal body temperature When internal temperature

Embed Size (px)

Citation preview

Page 1: Temperature regulation and monitoring. Mammals and birds are homeothermic They require a nearly constant internal body temperature When internal temperature

TemperatureTemperatureregulation andregulation and

monitoringmonitoring

Page 2: Temperature regulation and monitoring. Mammals and birds are homeothermic They require a nearly constant internal body temperature When internal temperature

Mammals and birds are homeothermicMammals and birds are homeothermic

They require a nearly They require a nearly constant internal body constant internal body temperaturetemperature

WhenWhen internal temperature internal temperature deviate significantly from deviate significantly from normal : normal : metabolic functionsmetabolic functions deteriorate deteriorate deathdeath

Thermoregulatory systemThermoregulatory system maintains maintains core body core body temperaturetemperature within within 0.2 C0.2 C of normal of normal (37)(37)/./.Anesthetic induced inhibition of thermoregulationAnesthetic induced inhibition of thermoregulation

/./.cold operating roomcold operating room

/./.unwarmed patiientsunwarmed patiients

HypothermicHypothermic

Page 3: Temperature regulation and monitoring. Mammals and birds are homeothermic They require a nearly constant internal body temperature When internal temperature

Mild hypothermiaMild hypothermia1-2 C1-2 C

1)1) Triples(3) morbid cardiac outcomTriples(3) morbid cardiac outcom

2)2) Triples(3) surgical wound infectionTriples(3) surgical wound infection

3)3) Prolonges recovery time -hospitalizationProlonges recovery time -hospitalization

4)4) Increases surgical blood lossIncreases surgical blood loss and the and the neneed for allogeneic transfusion by about ed for allogeneic transfusion by about 20%20%

Page 4: Temperature regulation and monitoring. Mammals and birds are homeothermic They require a nearly constant internal body temperature When internal temperature

Normal thermoregulationNormal thermoregulation

1.1. Afferent thermal sensing(input)Afferent thermal sensing(input)

2.2. Central regulationCentral regulation

3.3. Efferent responseEfferent response

Page 5: Temperature regulation and monitoring. Mammals and birds are homeothermic They require a nearly constant internal body temperature When internal temperature

Afferent inputAfferent inputCold-sensitiveCold-sensitive cells are cells are anatomicallyanatomically and and physiologicallyphysiologically distinct from those that detect distinct from those that detect warmthwarmth

Cold: A delta nerve fibers Cold: A delta nerve fibers warm: unmyelinated C fibers warm: unmyelinated C fibers (pain) (pain)

Page 6: Temperature regulation and monitoring. Mammals and birds are homeothermic They require a nearly constant internal body temperature When internal temperature

Most ascending thermal Most ascending thermal information traverses the information traverses the spinothalamic tracts in the spinothalamic tracts in the anterior spinal cord, but no anterior spinal cord, but no single spinal tract is critical for single spinal tract is critical for conveying thermal information. conveying thermal information.

Consequently, the entire anterior Consequently, the entire anterior cord must be destroyed to ablate cord must be destroyed to ablate thermoregulatory responsesthermoregulatory responses..

Page 7: Temperature regulation and monitoring. Mammals and birds are homeothermic They require a nearly constant internal body temperature When internal temperature

11//Hypothalamus Hypothalamus 20%20% total thermal input total thermal input 22//Other parts of brain Other parts of brain to theto the 33//Spinal cord (ant) Spinal cord (ant) central regulatory systemcentral regulatory system 44//Deep abdominal Deep abdominal and thoracic tissues and thoracic tissues 55//Skin Skin surfacesurface

Page 8: Temperature regulation and monitoring. Mammals and birds are homeothermic They require a nearly constant internal body temperature When internal temperature

Central controlCentral controlTemperature is regulated by central structures (primarily the hypothalamus) that compare integratd thermal inputs from the skin surface, neuraxis, and deep tissues with threshold temperatures for each thermoregulatory response.Most thermal information is "preprocessed" in the spinal cord and other parts of the central nervous system.

Page 9: Temperature regulation and monitoring. Mammals and birds are homeothermic They require a nearly constant internal body temperature When internal temperature

The slope of response intensity versus core temperature defines the gain of a thermoregulatory response.

This system of thresholds and gains is a model for a thermoregulatory system that is further complicated by interactions between other regulatory responses (i.e., vascular volume control) and time- and time-dependent effectsdependent effects.

Page 10: Temperature regulation and monitoring. Mammals and birds are homeothermic They require a nearly constant internal body temperature When internal temperature

How the body determines absolute threshold temperatures is unknown, but the mechanism appears to be mediated by norepinephrine, dopamine, S-hydroxytryptamine, acetylcholine, prostaglandin E" and neuropeptides.

Page 11: Temperature regulation and monitoring. Mammals and birds are homeothermic They require a nearly constant internal body temperature When internal temperature

Thresholds vary daily in both sexes (circadian rhythm) and monthly in women by approximately 0.5°C. Exercise, food intake, infection, hypothyroidism and hyperthyroidism, anesthetic and other drugs (including alcohol, sedatives, and nicotine), and cold and warm adaptation alter threshold temperatures.

Page 12: Temperature regulation and monitoring. Mammals and birds are homeothermic They require a nearly constant internal body temperature When internal temperature

Control of autonomic responses is approximately 80% determined by thermal input from core structures (Fig) In contrast, a large fraction of the input controlling behavioral responses is derived from the skin.

Page 13: Temperature regulation and monitoring. Mammals and birds are homeothermic They require a nearly constant internal body temperature When internal temperature
Page 14: Temperature regulation and monitoring. Mammals and birds are homeothermic They require a nearly constant internal body temperature When internal temperature

The interthreshold rangeinterthreshold range (core temperatures not triggering autonomic thermoregulatory responses) is only 0.2°C. This range is bounded by the sweating threshold at its upper end and by vasoconstriction at the lower end.

Page 15: Temperature regulation and monitoring. Mammals and birds are homeothermic They require a nearly constant internal body temperature When internal temperature

Both sweating and vasoconstriction thresholds are 0.3°C to 0.5 C higher in women than men, even during the follicular phase of the monthly cycle (first 10 days). Differences are even greater

during the luteal phase.

Page 16: Temperature regulation and monitoring. Mammals and birds are homeothermic They require a nearly constant internal body temperature When internal temperature

Central thermoregulatory control is apparently intact even in somewhat premature infants.

In contrast, thermoregulatory control is sometimes impaired in the elderly."

Page 17: Temperature regulation and monitoring. Mammals and birds are homeothermic They require a nearly constant internal body temperature When internal temperature

Efferent responsesEfferent responses

The body responds to thermal perturbations (body temperatures differing from the appropriate threshold) by activating effector mechanisms that increase metabolic heat production or alter environmental heat loss.

Page 18: Temperature regulation and monitoring. Mammals and birds are homeothermic They require a nearly constant internal body temperature When internal temperature

Each thermoregulatory effector has its own threshold and gain, so there is an orderly progression of responses and response intensities in proportion to need.

Page 19: Temperature regulation and monitoring. Mammals and birds are homeothermic They require a nearly constant internal body temperature When internal temperature

In general, energy-efficient effectors such as vasoconstriction are maximized before metabolically costly responses such as

shivering are initiated.

Page 20: Temperature regulation and monitoring. Mammals and birds are homeothermic They require a nearly constant internal body temperature When internal temperature
Page 21: Temperature regulation and monitoring. Mammals and birds are homeothermic They require a nearly constant internal body temperature When internal temperature
Page 22: Temperature regulation and monitoring. Mammals and birds are homeothermic They require a nearly constant internal body temperature When internal temperature

Effectors determine the ambient temperature range that the body will tolerate while maintaining a normal core temperature.

Page 23: Temperature regulation and monitoring. Mammals and birds are homeothermic They require a nearly constant internal body temperature When internal temperature

When specific effector mechanisms are inhibited (e.g., shivering prevented by the administration of muscle relaxants), the tolerable range is decreased. Still, temperature will remain normal unless other effectors can not compensate for the imposed stress. ,behavioral regulation (e.g., dressing appropriately, modifying the environmental temperature, assuming positions that oppose skin surfaces and voluntary movement) is the most important effector mechanism.

Page 24: Temperature regulation and monitoring. Mammals and birds are homeothermic They require a nearly constant internal body temperature When internal temperature

Infants regulate their temperatures remarkably well.

In contrast, advanced age, infirmity, or medications can diminish the efficacy of thermoregulatory responses & increase the risk of hypothermia.

Mr: min tolarable ambient temperature

(inhibit shivering)

Anticholinergics: max tolarable teper…Anticholinergics: max tolarable teper…

(inhibit sweating)(inhibit sweating)

Page 25: Temperature regulation and monitoring. Mammals and birds are homeothermic They require a nearly constant internal body temperature When internal temperature
Page 26: Temperature regulation and monitoring. Mammals and birds are homeothermic They require a nearly constant internal body temperature When internal temperature

Cutaneous vasoconstriction is the most consistently used autonomic effector mechanism. Metabolic heat is lost primarily through convection and radiation from the skin surface, and vasoconstriction reduces this loss. Total digital skin blood flow is divided into nutritional (mostly capillary) and thermoregulatory (mostly arteriovenous shunt) components. The arteriovenous shunts are anatomically and functionally distinct from the capillaries supplying nutritional blood to the skin (thus vasoconstriction does not compromise the needs of peripheral tissues).

Page 27: Temperature regulation and monitoring. Mammals and birds are homeothermic They require a nearly constant internal body temperature When internal temperature

Control of blood flow through arteriovenous shunts tends to be "on" or "off.“

In other words, the gain of this response is high.

Local alfa-adrenergic sympathetic nerves mediate constriction in the thermoregulatory arteriovenous shunts, and flow is minimally affected by circulating catecholamines.

10% of cardiac output traverses arteriovenous shunts; consequently, shunt vasoconstriction increases mean arterial pressure approximately 15 mm Hg.

Page 28: Temperature regulation and monitoring. Mammals and birds are homeothermic They require a nearly constant internal body temperature When internal temperature

Nonshivering thermogenesis increases metabolic heat production without producing mechanical work.

It doubles heat production in infants but increases it only slightly in adults.

Page 29: Temperature regulation and monitoring. Mammals and birds are homeothermic They require a nearly constant internal body temperature When internal temperature

Skeletal muscle and brown fat tissue are the major sources of nonshivering heat in adults.

The metabolic rate in both tissues is controlled primarily by norepinephrine release from adrenergic nerve terminals and is further mediated locally by an uncoupling protein.

Page 30: Temperature regulation and monitoring. Mammals and birds are homeothermic They require a nearly constant internal body temperature When internal temperature

Sustained shivering augments metabolic heat production 50% to 100% in adults. This increase is small in comparison to that produced by exercise (which can, at least briefly, increase metabolism 500%)and is thus surprisingly ineffective.

Shivering does not occur in newborn infants and is probably not fully effective until children are several years old

Page 31: Temperature regulation and monitoring. Mammals and birds are homeothermic They require a nearly constant internal body temperature When internal temperature

Sweating is mediated by postganglionic cholinergic Nerves. It is thus an active process that is prevented by nerve block or atropine administration.

Sweating is the only mechanism by which the body can dissipate heat in an environment exceeding core temperature. fortunately, the process is remarkably effective, with 0.58 kcal of heat dissipated per gram of evaporated sweat.

Page 32: Temperature regulation and monitoring. Mammals and birds are homeothermic They require a nearly constant internal body temperature When internal temperature

Active vasodilation is apparently Active vasodilation is apparently mediated by mediated by nitric oxidenitric oxide..

Page 33: Temperature regulation and monitoring. Mammals and birds are homeothermic They require a nearly constant internal body temperature When internal temperature

Active vasodilation requires intact sweat gland function, so it is also largely inhibited by nerve blocks.

The threshold for active vasodilation is usually similar to the sweating threshold, but the gain may be less.

maximum cutaneous vasodilation is generally delayed until core temperature is well above that provoking the maximum sweating intensity.

Page 34: Temperature regulation and monitoring. Mammals and birds are homeothermic They require a nearly constant internal body temperature When internal temperature

THERMOREGULATION DURING

GENERAL ANESTHESIA

Page 35: Temperature regulation and monitoring. Mammals and birds are homeothermic They require a nearly constant internal body temperature When internal temperature

Behavioral regulation is not relevant during general anesthesia because patients are unconscious and frequently paralyzed.

All general anesthetics tested thus far markedly impair normal autonomic thermoregulatory control.

Anesthetic-induced impairment has a specific form: warmresponse thresholds are elevated

slightly whereas coldresponse thresholds are markedly reduced.

Page 36: Temperature regulation and monitoring. Mammals and birds are homeothermic They require a nearly constant internal body temperature When internal temperature

the interthreshold range is increased from its normal values near 0.3°C to approximately 2°C to 4°c.

The gain and maximum intensity of some responses remain normal, whereas others are reduced by general anesthesia.

Page 37: Temperature regulation and monitoring. Mammals and birds are homeothermic They require a nearly constant internal body temperature When internal temperature

Response ThresholdsPropofol, alfentanil, and dexmedetomidine all produce

a slight linear increase in the sweating threshold

a marked linear decrease in the vasoconstriction and shivering thresholds.

Isoflurane and desflurane also slightly increase the sweating threshold;

they decrease the cold-response thresholds nonlinearly.

Page 38: Temperature regulation and monitoring. Mammals and birds are homeothermic They require a nearly constant internal body temperature When internal temperature

the volatile anesthetics inhibit vasoconstriction and shivering (less than propofol does at low concentrations, but more than propofol does at typical anesthetic doses.)

In all cases (except during In all cases (except during meperidinemeperidine

and and nefopamnefopam administration), administration), vasoconstriction and shivering decrease vasoconstriction and shivering decrease synchronously and thus maintain their synchronously and thus maintain their normal approximate 1°C difference.normal approximate 1°C difference..

Page 39: Temperature regulation and monitoring. Mammals and birds are homeothermic They require a nearly constant internal body temperature When internal temperature
Page 40: Temperature regulation and monitoring. Mammals and birds are homeothermic They require a nearly constant internal body temperature When internal temperature

The combination of increased sweating thresholds and reduced vasoconstriction thresholds increases the interthreshold range about 20-fold, from its normal value near 0.2°C to around 2°C to 4°C.

Temperatures within this range do not trigger thermoregulatory defenses;

patients are thus poikilothermic within this

temperature range.

Page 41: Temperature regulation and monitoring. Mammals and birds are homeothermic They require a nearly constant internal body temperature When internal temperature

Halothane, enflurane,and the combination of nitrous oxide and fentanyl decrease the vasoconstriction threshold 2°C to 4°C from its normal value near approximately 37°C.

However, the effect of these drugs on sweating or shivering remains unknown.

Cl0nidine synchronously decreases cold-response thresholds

while slightly increasing the sweating threshold.

Nitrous oxide decreases the vasoconstriction and shivering thresholds less than equipotent concentrations of volatile anesthetics do.

Page 42: Temperature regulation and monitoring. Mammals and birds are homeothermic They require a nearly constant internal body temperature When internal temperature

The only sedative or anesthetic drug tested that minimally influences thermoregulatory control is midazolam.

Painful stimulation slightly increases vasoconstriction thresholds.

thresholds will be somewhat lower when surgical pain is prevented by simultaneous local or regional anesthesia.

Page 43: Temperature regulation and monitoring. Mammals and birds are homeothermic They require a nearly constant internal body temperature When internal temperature

Responses in Infants and the Elderly

Thermoregulatory vasoconstriction is comparably impaired in infants, children, and adults given isoflurane or halothane (Fig. 40_4).

In contrast, the vasoconstriction threshold is about 1°C less in patients aged 60 to 80 years than in those between 30 and 50 years old (Fig. 40_5).

Page 44: Temperature regulation and monitoring. Mammals and birds are homeothermic They require a nearly constant internal body temperature When internal temperature

Thermoregulatory vasoconstriction is comparably impaired in infants, children, and adults given isoflurane or halothane .

Page 45: Temperature regulation and monitoring. Mammals and birds are homeothermic They require a nearly constant internal body temperature When internal temperature

the vasoconstrictionthreshold is about 1°C less in patients aged60 to 80 years than in those between 30 and 50 years old

Page 46: Temperature regulation and monitoring. Mammals and birds are homeothermic They require a nearly constant internal body temperature When internal temperature

Nonshivering thermogenesis does not occur in anesthetized aduIts, which is unsurprising because this response is not particularly important in unanesthetized adults.

In contrast to adult humans, nonshivering thermogenesis is an important thermoregulatory response in animals and human infants. However, nonshivering thermogenesis in animals is inhibited by volatile anesthetics and it fails to increase the metabolic rate in infants anesthetized with propofol.

Page 47: Temperature regulation and monitoring. Mammals and birds are homeothermic They require a nearly constant internal body temperature When internal temperature

Gain and Maximum Response Intensity

Both the gain and maximum intensity of sweating remain normal during isoflurane and enflurane anesthesia.

The gain of arteriovenous shunt vasoconstriction is reduced threefold during desflurane anesthesia ,even though the maximum vasoconstriction intensity remains normal.

Page 48: Temperature regulation and monitoring. Mammals and birds are homeothermic They require a nearly constant internal body temperature When internal temperature

Shivering is rare during surgical doses of general anesthesia, its threshold being roughly 1°C less than the vasoconstriction threshold.

(Vasoconstriction usually prevents additional hypothermia, so even unwarmed patients rarely become cold enough to shiver.) shivering can be induced by sufficient active cooling.

Page 49: Temperature regulation and monitoring. Mammals and birds are homeothermic They require a nearly constant internal body temperature When internal temperature

Gain and maximum shivering intensity remain normal during both meperidine and alfentanil administrationGain also remains nearly intact during nitrous oxide administration, although maximum intensity is reduced.Isoflurane changes the macroscopic pattern of shivering to such an extent that it is no longer possible to easily determine gain. The drug does, however, reduce maximum shivering intensity.

Page 50: Temperature regulation and monitoring. Mammals and birds are homeothermic They require a nearly constant internal body temperature When internal temperature

Sweating appears to be the thermoregulatory defense that is best preserved during anesthesia.

Not only is the threshold only slightly increased, but the gain and maximum intensity are also well preserved.

In contrast, the thresholds for vasoconstriction and shivering are markedly reduced, and furthermore, these responses are less effective than normal even after being activated.

Page 51: Temperature regulation and monitoring. Mammals and birds are homeothermic They require a nearly constant internal body temperature When internal temperature

DEVELOPMENT OF HYPOTHERMIADURING GENERAL ANESTHESIA

Inadvertent hypothermia during anesthesia is by far the most common perioperative thermal disturbance.

Hypothermia results from a combination of anesthetic impaired thermoregulation and exposure to a cold operating room environment.

Of these two causes, Of these two causes, impaired impaired thermoregulationthermoregulation is much more important. is much more important.

Page 52: Temperature regulation and monitoring. Mammals and birds are homeothermic They require a nearly constant internal body temperature When internal temperature

Heat TransferHeat can be transferred from a patient to the environment

in four ways: (1) radiation, (3) convection, (2) conduction (4) evaporation

Among these mechanisms, radiation and convection contribute most to perioperative heat loss.

All surfaces with a temperature above absolute zero radiate heat;

similarly, all surfaces absorb radiant heat from surrounding surfaces.

It is likely that radiation is the major type of heat loss in most surgical patients.

Page 53: Temperature regulation and monitoring. Mammals and birds are homeothermic They require a nearly constant internal body temperature When internal temperature

Conductive heat loss is proportional to the temperature difference between two adjacent surfaces .

. In general, conductive losses are negligible during surgery because patients usually only directly contact the foam pad (an excellent thermal insulator) covering most operating room tables.

Page 54: Temperature regulation and monitoring. Mammals and birds are homeothermic They require a nearly constant internal body temperature When internal temperature

convective loss is usually the second most important mechanism by which heat is transferred from patients to the environment

Sweating increases cutaneous evaporative loss enormously but is rare during anesthesia.

In the absence of sweating, evaporative loss from the skin surface is limited to less than 10% of metabolic heat production in adults.

In contrast, infants lose a higher fraction of their In contrast, infants lose a higher fraction of their metabolic heat from transpiration of water through metabolic heat from transpiration of water through thin skin. The problem becomes especially acute in thin skin. The problem becomes especially acute in premature infantspremature infants, who may lose one fifth of their , who may lose one fifth of their metabolic heat production via transcutaneous metabolic heat production via transcutaneous evaporation.evaporation.[[

.

Page 55: Temperature regulation and monitoring. Mammals and birds are homeothermic They require a nearly constant internal body temperature When internal temperature

only trivial amounts of heat are lost only trivial amounts of heat are lost from the respiratory system.from the respiratory system.

Evaporation inside surgical wounds Evaporation inside surgical wounds may contribute substantially to total may contribute substantially to total heat loss but has never been quantified heat loss but has never been quantified in humans.in humans.

Page 56: Temperature regulation and monitoring. Mammals and birds are homeothermic They require a nearly constant internal body temperature When internal temperature

Patterns of Intraoperative HypothermiaPatterns of Intraoperative Hypothermia

Hypothermia during general anesthesia develops with a characteristic pattern. An initial rapid decrease in core temperature is followed by a slow, linear reduction in core temperature. Finally, core temperature stabilizes and subsequently remains virtually unchanged .

Page 57: Temperature regulation and monitoring. Mammals and birds are homeothermic They require a nearly constant internal body temperature When internal temperature

Hypothermia during general anesthesia develops with a characteristic pattern. An initial rapid decrease in core temperature results from a core-to-peripheral redistribution of body heat. This is followed by a slow, linear reduction in core temperature that results simply from heat loss exceeding heat production. Finally, core temperature stabilizes and subsequently remains virtually unchanged. This plateau phase may be a passive thermal steady state or result when sufficient hypothermia triggers thermoregulatory vasoconstriction. Results are presented as means ± SD.

Page 58: Temperature regulation and monitoring. Mammals and birds are homeothermic They require a nearly constant internal body temperature When internal temperature

Thermoregulatory vasoconstriction during anesthesia significantly decreases cutaneous heat loss,but this decrease alone is usually insufficient to produce a thermal steady state.

Furthermore, neither adults nor infants appear to be able to increase intraoperative heat production in response to hypothermia.

Page 59: Temperature regulation and monitoring. Mammals and birds are homeothermic They require a nearly constant internal body temperature When internal temperature

An additional mechanism must therefore contribute to the core temperature plateau. Evidence suggests that a primary factor is constraint of metabolic heat to the core thermal compartment. In this scenario, the distribution of metabolic heat (which is largely produced centrally) is restricted to the core compartment to maintain its temperature

Page 60: Temperature regulation and monitoring. Mammals and birds are homeothermic They require a nearly constant internal body temperature When internal temperature

Peripheral tissue temperature, in contrast, continues to decrease because it is no longer being supplied with sufficient heat from the core .

core temperature plateau resulting from thermoregulatory vasoconstriction is thus not a thermal steady state, and body heat content continues to decrease even though core temperature remains nearly constant.

Page 61: Temperature regulation and monitoring. Mammals and birds are homeothermic They require a nearly constant internal body temperature When internal temperature
Page 62: Temperature regulation and monitoring. Mammals and birds are homeothermic They require a nearly constant internal body temperature When internal temperature
Page 63: Temperature regulation and monitoring. Mammals and birds are homeothermic They require a nearly constant internal body temperature When internal temperature

NEURAXIAL ANESTHESIANEURAXIAL ANESTHESIA

Autonomic thermoregulation is impaired during regional anesthesia, and the result is typically intraoperative core hypothermia.

this hypothermia is often not perceived by patients, but it nonetheless triggers shivering.

The result is frequently a potentially dangerous clinical paradox: a shivering patient who denies

feeling cold.

Page 64: Temperature regulation and monitoring. Mammals and birds are homeothermic They require a nearly constant internal body temperature When internal temperature
Page 65: Temperature regulation and monitoring. Mammals and birds are homeothermic They require a nearly constant internal body temperature When internal temperature

Epidural anesthesia and spinal anesthesia each decrease the thresholds triggering vasoconstriction and shivering (above the level of the block) about 0.6°C.

this decrease does not result from recirculation of neuraxially administered local anesthetic because:

1- the impairment is similar during epidural and spinal anesthesia.

Page 66: Temperature regulation and monitoring. Mammals and birds are homeothermic They require a nearly constant internal body temperature When internal temperature

2-lidocaine administered intravenously in doses producing plasma concentrations similar to those occurring during epidural anesthesia has no thermoregulatory effect

3- neuraxial administration of 2-chloroprocaine, a local anesthetic

that has a plasma half-life near 20 seconds, also impairs thermoregulatory control.

Page 67: Temperature regulation and monitoring. Mammals and birds are homeothermic They require a nearly constant internal body temperature When internal temperature

The vasoconstriction and shivering The vasoconstriction and shivering thresholds are comparably decreased thresholds are comparably decreased during regional anesthesia,suggesting during regional anesthesia,suggesting an alteration in an alteration in central, central, rather than rather than peripheral controlperipheral control. .

The mechanism by which The mechanism by which peripheral peripheral administration of local anesthesia administration of local anesthesia impairs centrally mediated impairs centrally mediated thermoregulation may involve thermoregulation may involve alteration of alteration of afferent thermal input afferent thermal input from from the legsthe legs

Page 68: Temperature regulation and monitoring. Mammals and birds are homeothermic They require a nearly constant internal body temperature When internal temperature

The key factor here is that The key factor here is that tonic cold tonic cold signalssignals dominatedominate thermal input at leg thermal input at leg skin temperatures in typical operating skin temperatures in typical operating room environments.room environments.

Regional anesthesia blocks all thermal Regional anesthesia blocks all thermal input from the blocked regions, which input from the blocked regions, which in the typical case is in the typical case is primarily cold primarily cold informationinformation..

Page 69: Temperature regulation and monitoring. Mammals and birds are homeothermic They require a nearly constant internal body temperature When internal temperature

The brain The brain may then interpret decreased may then interpret decreased cold information cold information as relative leg as relative leg warming. warming.

Because Because skin temperature skin temperature is an is an important input to the thermoregulatory important input to the thermoregulatory control systemcontrol system, leg warming , leg warming proportionately reduces the proportionately reduces the vasoconstriction and shivering vasoconstriction and shivering thresholdsthresholds

Page 70: Temperature regulation and monitoring. Mammals and birds are homeothermic They require a nearly constant internal body temperature When internal temperature

Consistent with this theory, a leg Consistent with this theory, a leg skin temperature near skin temperature near 38°38°C is C is required to produce the same required to produce the same reduction in cold-response reduction in cold-response thresholds in an thresholds in an unanesthetizedunanesthetized subject as produced by regional subject as produced by regional anesthesia.anesthesia.

Moreover, the reduction in Moreover, the reduction in thresholds is proportional to the thresholds is proportional to the number of spinal segments blocked number of spinal segments blocked

Page 71: Temperature regulation and monitoring. Mammals and birds are homeothermic They require a nearly constant internal body temperature When internal temperature
Page 72: Temperature regulation and monitoring. Mammals and birds are homeothermic They require a nearly constant internal body temperature When internal temperature

Because neuraxial anesthesia prevents Because neuraxial anesthesia prevents vasoconstriction and shivering in blocked vasoconstriction and shivering in blocked regions, it is not surprising that regions, it is not surprising that epidural epidural anesthesia anesthesia decreases the decreases the maximum intensity maximum intensity of shivering. However, epidural anesthesia of shivering. However, epidural anesthesia also reduces also reduces the gain the gain of shivering, which of shivering, which suggests that the regulatory system is unable suggests that the regulatory system is unable to compensate for lower body paralysis .to compensate for lower body paralysis .

Thermoregulatory defensesThermoregulatory defenses, once triggered, , once triggered, are thusare thus less effective less effective than usual during than usual during regional anesthesia. regional anesthesia.

Page 73: Temperature regulation and monitoring. Mammals and birds are homeothermic They require a nearly constant internal body temperature When internal temperature

Neuraxial anesthesia is frequently Neuraxial anesthesia is frequently supplemented supplemented with sedative with sedative and and analgesicanalgesic medications that impair medications that impair thermoregulatory control.thermoregulatory control.

Such inhibition may be Such inhibition may be severe severe when when combined with the intrinsic combined with the intrinsic impairment produced impairment produced by regional by regional anesthesia and other factors, anesthesia and other factors, including including advanced age advanced age and and preexisting illness.preexisting illness.

Page 74: Temperature regulation and monitoring. Mammals and birds are homeothermic They require a nearly constant internal body temperature When internal temperature

core hypothermia during regional core hypothermia during regional anesthesia may not trigger a anesthesia may not trigger a perception perception of coldof cold..

The reason is that thermal perception The reason is that thermal perception (behavioral regulation) is largely (behavioral regulation) is largely determined by determined by skinskin rather than core rather than core temperature. During regional temperature. During regional anesthesia, core hypothermia is anesthesia, core hypothermia is accompanied by a real increase in skin accompanied by a real increase in skin temperaturetemperature

Page 75: Temperature regulation and monitoring. Mammals and birds are homeothermic They require a nearly constant internal body temperature When internal temperature

The result is typically The result is typically a perception a perception of continued or increased of continued or increased warmthwarmth accompanied by activation of accompanied by activation of autonomic thermoregulatory autonomic thermoregulatory responses including responses including shiveringshivering

neuraxial anesthesia inhibits neuraxial anesthesia inhibits numerous aspects of numerous aspects of thermoregulatory control.thermoregulatory control.

Page 76: Temperature regulation and monitoring. Mammals and birds are homeothermic They require a nearly constant internal body temperature When internal temperature
Page 77: Temperature regulation and monitoring. Mammals and birds are homeothermic They require a nearly constant internal body temperature When internal temperature

The vasoconstriction and shivering The vasoconstriction and shivering thresholds are reduced by regional thresholds are reduced by regional anesthesiaanesthesia and further reduced by and further reduced by adjuvant drugsadjuvant drugs and advanced age. and advanced age.

Even once triggered, the gain and Even once triggered, the gain and maximum response intensity of maximum response intensity of shivering are about half-normal.shivering are about half-normal.

Page 78: Temperature regulation and monitoring. Mammals and birds are homeothermic They require a nearly constant internal body temperature When internal temperature

FinallyFinally

1) cold defenses are triggered at a lower 1) cold defenses are triggered at a lower temperature than normal during regional temperature than normal during regional anesthesia,anesthesia,

2) defenses are less effective once triggered, 2) defenses are less effective once triggered, andand

3) patients frequently do not recognize that 3) patients frequently do not recognize that they are hypothermic.they are hypothermic.

Page 79: Temperature regulation and monitoring. Mammals and birds are homeothermic They require a nearly constant internal body temperature When internal temperature

Because core temperature Because core temperature monitoring remains rare during monitoring remains rare during regional anesthesia, substantial regional anesthesia, substantial hypothermia often goes hypothermia often goes undetected in these patients.undetected in these patients.

Page 80: Temperature regulation and monitoring. Mammals and birds are homeothermic They require a nearly constant internal body temperature When internal temperature

Heat BalanceHeat Balance

Page 81: Temperature regulation and monitoring. Mammals and birds are homeothermic They require a nearly constant internal body temperature When internal temperature

Hypothermia is common during regional anesthesia and may be nearly as severe as during general anesthesia.Core temperature typically decreases O.5 to 1.0°C shortly after induction of anesthesia. However, the vasodilation induced by regional anesthesia only slightly increases cutaneous heat loss. Furthermore, metabolic heat production remains constant or increases because of shivering thermogenesis. This rapid decrease in core temperature, similar to that noted after induction of general anesthesia also results from an internal core-to-peripheral redistribution of body heat.

Page 82: Temperature regulation and monitoring. Mammals and birds are homeothermic They require a nearly constant internal body temperature When internal temperature

As during general anesthesia, redistribution hypothermia during regional

anesthesia can be minimized by cutaneous warming before induction.

Page 83: Temperature regulation and monitoring. Mammals and birds are homeothermic They require a nearly constant internal body temperature When internal temperature

Unlike patients given general anesthesia, however, core temperature does not necessarily plateau after several hours of surgery.

Not only is the vasoconstriction threshold centrally impaired by regional anesthesia, but more importantly, vasoconstriction in the legs is also directly prevented by nerve block.

Page 84: Temperature regulation and monitoring. Mammals and birds are homeothermic They require a nearly constant internal body temperature When internal temperature

core temperature during combined regional/general anesthesia continues to decrease throughout surgery.

core temperature monitoring and thermal

management are particularly important in patients given simultaneous regional and general anesthesia.

Page 85: Temperature regulation and monitoring. Mammals and birds are homeothermic They require a nearly constant internal body temperature When internal temperature

Shivering

Shivering-like tremor in volunteers given neuraxial anesthesia is always preceded by core hypothermia and vasoconstriction (above the level of the block). At least in nonpregnant individuals-that the temperature of injected local anesthetic does not influence the incidence of shivering during major conduction anesthesia.

Page 86: Temperature regulation and monitoring. Mammals and birds are homeothermic They require a nearly constant internal body temperature When internal temperature

Shivering during neuraxial anesthesia can sometimes be treated by warming sentient skin.

Because the entire skin surface contributes 20% to thermoregulatory controls and the lower part of the body contributes about 1O%, sentient skin warming is likely to compensate for only small reductions in core temperature

The same drugs that are effective for postanesthetic tremor are also useful for shivering during regional anesthesia; these drugs include meperidine (25 mg intravenously or epidurally), clonidine (75 /lgIV),ketanserin (10 mg IV), and magnesiumsulfat.(30 mg/kg iv)

Page 87: Temperature regulation and monitoring. Mammals and birds are homeothermic They require a nearly constant internal body temperature When internal temperature

The risk of shivering during neuraxial anesthesia is markedly diminished by maintaining normothermia.

there is a distinct incidence of low-intensity, shivering-like tremor that occurs in normothermic patients and is not thermoregulatory.

The cause of this muscular activity remains unknown, but it is associated with pain and may thus result from activation

of the sympathetic nervous system.

Page 88: Temperature regulation and monitoring. Mammals and birds are homeothermic They require a nearly constant internal body temperature When internal temperature

CONSEQUENCES OF MILDINTRAOPERATIVE HYPOTHERMIA

Perianesthetic hypothermia produces potentially severe complications as well as distinct benefits. Thermal management thus deserves the same thoughtful analysis of potential risks and benefits as other therapeutic decisions do.

Page 89: Temperature regulation and monitoring. Mammals and birds are homeothermic They require a nearly constant internal body temperature When internal temperature

Benefitsprotection against cerebral ischemia and

hypoxia Similar benefits have been demonstrated for acute myocardial infarction in human.Mild hypothermia reduces intracranial pressurebut randomized studies have yet to demonstrate that therapeutic hypothermia improve outcomes in patients with brain trauma, stroke, or subarachnoid hemorrhage.Improve outcome is during recovery from cardiac arrest

Page 90: Temperature regulation and monitoring. Mammals and birds are homeothermic They require a nearly constant internal body temperature When internal temperature

Protection ?Protection ?The approximately 8%/oC linear reduction in tissue metabolic rate. other factors (e.g., decreased release of excitatory amino acids) explain the protective action of hypothermia. there is no reason to expect protection to decrease linearly with temperature, and in animals it appears that much of the total benefit from moderate hypothermia occurs within the first couple of degrees.

Page 91: Temperature regulation and monitoring. Mammals and birds are homeothermic They require a nearly constant internal body temperature When internal temperature

complicationscomplicationsCoagulation is impaired by mild hypothermia.

1) The most important factor appears to be a cold-induced defect in platelet function.

the defect in platelet function is related to local temperature, not core temperatur,

2) Perhaps, hypothermia directly impairs enzymes of the coagulation cascade.

Mild hypothermia significantly increases blood loss .

Page 92: Temperature regulation and monitoring. Mammals and birds are homeothermic They require a nearly constant internal body temperature When internal temperature

Hypothermia can contribute to wound infections both by directly impairing immune function and by triggering thermoregulatory vasoconstriction, which in turn decreases wound oxygen delivery.

hypothermia delayed wound healing and prolonged the duration of hospitalization 20%,

even in patients without infection.

urinary nitrogen excretion remains elevated for several postoperative days in patients allowed to become hypothermic during surgery

Page 93: Temperature regulation and monitoring. Mammals and birds are homeothermic They require a nearly constant internal body temperature When internal temperature

Patients, asked years after surgery, often identify feeling cold in the immediate postoperative period as the worst part of their hospitalization-sometimes rating it worse than surgical pain.

Drug metabolism is markedly decreased by peri operative hypothermia.

Page 94: Temperature regulation and monitoring. Mammals and birds are homeothermic They require a nearly constant internal body temperature When internal temperature
Page 95: Temperature regulation and monitoring. Mammals and birds are homeothermic They require a nearly constant internal body temperature When internal temperature

Postanesthetic Shivering

40%40%

oxygen consumption increased

increasing intraocular and intracranial

pressure

postoperative shivering probably aggravates wound pain by stretching incisions.

Page 96: Temperature regulation and monitoring. Mammals and birds are homeothermic They require a nearly constant internal body temperature When internal temperature

Over the years, postanesthetic tremor has been attributed to uninhibited spinal reflexes, pain, decreased sympathetic activity, pyrogen release, adrenal suppression, respiratory alkalosis, and most commonly, simple thermoregulatory shivering in response to intraoperative hypothermia.

Unfortunately, the etiology of postanesthetic shivering-like tremor remains unclear.

Page 97: Temperature regulation and monitoring. Mammals and birds are homeothermic They require a nearly constant internal body temperature When internal temperature

at least two distinct tremor patterns:

(1) a tonic pattern resembling normal shivering, typically with a 4- to 8-cycle/min waxing-and-waning component,

(2) a phasic, 5- to 7-Hz bursting pattern resembling pathologic clonus.

Page 98: Temperature regulation and monitoring. Mammals and birds are homeothermic They require a nearly constant internal body temperature When internal temperature

The tonic pattern is apparently a simple thermoregulatory response to intraoperative hypothermia.

In contrast, the clonic pattern is not a normal component of thermoregulatory

shivering and appears to be specific to recovery from volatile anesthetics. Although the precise etiology of this tremor pattern remains unknown.

Page 99: Temperature regulation and monitoring. Mammals and birds are homeothermic They require a nearly constant internal body temperature When internal temperature

treatmenttreatmentSkin surface warmingSkin surface warmingDrugsDrugs::

clonidine (75 micg IV), ketanserin (10 mg IV), tramadol, physostigmine (0.04 mg/kg IV), and magnesium sulfate (30 mg/kg iV).

the specific mechanisms by which ketanserin, tramadol, physostigmine, and magnesium sulfate stop shivering remain unknown.

Similarly, how clonidine arrests shivering also remains unknown, but clonidine and dexmedetomidine comparably reduce the vasoconstriction and shivering thresholds (central > peripherally).

Page 100: Temperature regulation and monitoring. Mammals and birds are homeothermic They require a nearly constant internal body temperature When internal temperature

Alfentanil, a pure µ-receptor agonist, significantly impairs thermoregulatory control.

Meperidine is reportedly considerably more effective in treating shivering than equianalgesic doses of other µ-agonists are.

The action of this drug is mediated by non--µ-opioid receptors.

Meperidine possesses considerable K activity and also has central anticholinergic activity. However, neither mechanism appears to mediate meperidine's special antishivering activity.

Instead, it may result from agonist activity at central a-adrenoceptors. Whatever the mechanism, meperidine

appears to be considerably more effective in the treatment of postoperative shivering than other opioids are.

Page 101: Temperature regulation and monitoring. Mammals and birds are homeothermic They require a nearly constant internal body temperature When internal temperature

PERIOPERATIVE THERMAL PERIOPERATIVE THERMAL MANIPULATIONSMANIPULATIONS

Intraoperative thermoregulatory vasoconstriction, once triggered, is remarkably effective in preventing further core hypothermia.

Nonetheless, most patients are poikilothermic during surgery because they do not become sufficiently hypothermic to trigger thermoregulatory responses.

Therefore, intraoperative hypothermia can be minimized by any technique that limits cutaneous heat loss to the environment as a result of cold operating rooms, evaporation from surgical incisions,and conductive cooling produced by the administration of cold intravenous fluids

Page 102: Temperature regulation and monitoring. Mammals and birds are homeothermic They require a nearly constant internal body temperature When internal temperature

Effects of Vasomotor Tone on Heat Transfer

Intraoperative vasoconstriction thus slightly impedes peripheral-to-core transfer of cutaneous heating and cooling.

intraoperative thermoregulatory vasoconstriction is opposed by direct anesthetic-induced peripheral vasodilation.

Page 103: Temperature regulation and monitoring. Mammals and birds are homeothermic They require a nearly constant internal body temperature When internal temperature

During postanesthetic recovery, however, the situation differs markedly.

Here, anesthetic-induced peripheral dilation dissipates, with thermoregulatory vasoconstriction left unopposed.

As might be expected, this vasoconstriction then becomes an important factor and significantly impairs transfer of peripherally applied heat to the core thermal compartment.

Patients with a residual spinal anesthetic block warm considerably faster than those recovering from general anesthesia alone (Fig) .

Page 104: Temperature regulation and monitoring. Mammals and birds are homeothermic They require a nearly constant internal body temperature When internal temperature
Page 105: Temperature regulation and monitoring. Mammals and birds are homeothermic They require a nearly constant internal body temperature When internal temperature

postoperative thermoregulatory vasoconstriction decreases peripheral-to-core transfer of heat, applied warming

is most effective during surgery when patients are vasodilated.

this means that it is easier to maintain intraoperative normothermia (when most patients are vasodilated) than to rewarm them Postoperatively (when virtually all hypothermic patient are vasoconstricted).

intraoperative warming is more appropriate than postoperative treatment of hypothermia because it prevents the complications resulting from hypothermia

Patients unavoidably becoming hypothermic during surgery should nonetheless be actively heated postoperatively to increase thermal comfort, decrease shivering,and haste rewarming

Page 106: Temperature regulation and monitoring. Mammals and birds are homeothermic They require a nearly constant internal body temperature When internal temperature

Preventing Redistribution Hypothermia

The initial o.5 C to l.5 C reduction in core temperature is difficult to prevent because it results from redistribution of heat from the central thermal compartment to cooler

peripheral tissues.

Consequently, surface warming usually fails to prevent hypothermia during the first hour of anesthesia.

Lack of efficacy during this period results because the central-to-peripheral flow of heat is massive and because transfer of applied cutaneous heat to the core requires nearly an hour, even in vasodilated patients.

Although redistribution can not be treated effectively,it can be prevented.

Page 107: Temperature regulation and monitoring. Mammals and birds are homeothermic They require a nearly constant internal body temperature When internal temperature

Intravenous fluidsIntravenous fluidsIt is not possible to warm patients by administering heated fluids because the fluids cannot (much) exceed body temperature.On the other hand, heat loss from cold intravenous fluids becomes significant when large amounts of crystalloid solution or blood are administered. One unit of refrigerated blood or 1 L of crystalloid solution administered at room temperature decreases mean body temperature approximately 0.2S°C. Fluid warmers minimize these losses and should be used when large amounts of intravenous fluid or blood are administered.

Page 108: Temperature regulation and monitoring. Mammals and birds are homeothermic They require a nearly constant internal body temperature When internal temperature

Skin surface warming before induction of anesthesia

(30 min) does not significantly alter core temperature (which remains well regulated), but it does increase body heat content.

Page 109: Temperature regulation and monitoring. Mammals and birds are homeothermic They require a nearly constant internal body temperature When internal temperature

Simple thermodynamic calculations indicate that less than 10% of metabolic heat production is lost through the respiratory tract.

The loss results from both heating and humidifying inspiratory gases, but humidification requires two thirds of the heat. Because little heat is lost through respiration, even active airway heating and humidification minimally influence core temperature.

Airway Heating and HumidificationAirway Heating and Humidification

Page 110: Temperature regulation and monitoring. Mammals and birds are homeothermic They require a nearly constant internal body temperature When internal temperature

Airway heating and humidification are more effective in infants and children than adults, cutaneous warming is also more effective in these patients and transfers more than 10 times as much heat. Hygroscopic condenser humidifiers and heat- and moisture-exchanging filters ("artificial noses") retain substantial amounts of moisture and heat within the respiratory system. In terms of preventing heat loss, these passive devices are about half as good as active systems.

Page 111: Temperature regulation and monitoring. Mammals and birds are homeothermic They require a nearly constant internal body temperature When internal temperature

Intravenous Fluids

It is not possible to warm patients by administering heated fluids because the fluids cannot (much) exceed

body temperature. On the other hand, heat loss from cold intravenous

fluids becomes significant when large amounts of crystalloid solution or blood are administered.

One unit of refrigerated blood or 1 L of crystalloid solution

administered at room temperature decreases mean body

temperature approximately 0.25°C.Fluid warmers minimize these losses and should be

used when large amounts of intravenous fluid or blood are administered.

Page 112: Temperature regulation and monitoring. Mammals and birds are homeothermic They require a nearly constant internal body temperature When internal temperature

1) Operating room temperature is the most critical factor influencing heat loss because it determines the rate at which metabolic heat is lost by radiation and convection from the skin and by evaporation from within surgical incision

room temperatures exceeding 23°C are generally required to maintain normothermia in patients undergoing procedures;

most operating room personnel find such temperatures uncomfortably warm. Infants may require ambient temperatures exceeding 26°C to maintain normothermia.

Cutaneous Warming

Page 113: Temperature regulation and monitoring. Mammals and birds are homeothermic They require a nearly constant internal body temperature When internal temperature

2) 2) The easiest method of decreasing cutaneous heat loss is to apply passive insulation to the skin surface.:

cotton blankets, surgical drapes, plastic sheeting, and reflective composites ("space blankets").

A single layer of each reduces heat loss approximately 30%

the amount of skin covered is more important than which surfaces are insulated.

Page 114: Temperature regulation and monitoring. Mammals and birds are homeothermic They require a nearly constant internal body temperature When internal temperature

Passive insulation alone is rarely sufficient to maintain normothermia in patients undergoing large operations;3) active warming will be required in these cases :

A) circulating water more effective-and safer-when placed over patients rather than under them and, in that position,

can almost completely eliminate metabolic heat loss.

The most common perianesthetic warming system is B) forced air. The best forced-air systems transfer

more than 30 W across the skin surface, which rapidly increases mean body temperature.

Forced air usually maintains normothermia even during the largest operationsand is superior to circulating-water mattresses.

Page 115: Temperature regulation and monitoring. Mammals and birds are homeothermic They require a nearly constant internal body temperature When internal temperature
Page 116: Temperature regulation and monitoring. Mammals and birds are homeothermic They require a nearly constant internal body temperature When internal temperature

Induction of Mild Therapeutic Hypothermia ( ( 32°C or 33°C) Cold water – forced air cooling – Cold water – forced air cooling – endovascular coolingendovascular cooling

Inducing therapeutic hypothermia during surgery is relatively easy because anesthetics profoundly impair thermoregulatory responses.

In contrast, unanesthetized patients-even those who have suffered a stroke vigorously defend core temperature by vasoconstricting and shivering.

It is thus necessary to pharmacologically induce tolerance to hypothermia. The best method thus far identified is the combination of buspirone and meperidine, drugs that synergistically reduce the shivering thresholdto approximately 34°C without provoking excessive sedation or respiratory toxicity. The combination of dexmedetomidine and meperidine may also be helpful,

Page 117: Temperature regulation and monitoring. Mammals and birds are homeothermic They require a nearly constant internal body temperature When internal temperature

DELIBERATE SEVERE INTRAOPERATIVEHYPOTHERMIA

l0 to 15°C below normal. (i.e., 28°C)Organ function:

. . Ischemia damages tissues . more toxic metabolic waste products (e.g., lactate and superoxide radicals) .Hypothermia decreases the whole-body metabolic rate by approximately

8%/oC to approximately half the normal rate at 28°C. .Cerebral blood flow also decreases in proportion to the metabolic rate during

hypothermia because of an autoregulatory increase in cerebrovascular resistance.

.Cerebral function is well maintained until core temperatures reach around 33°C, but consciousness is lost at temperaturesbelow 28°C.,

. Respiratory strength is diminished at core temperatures less than 33°C, but the ventilatory CO2 response is minimally affected.

. . Nerve conduction decreases, but peripheral muscle tone increases, and rigidity and myoclonus ensue at temperatures near 26°C.

.acid-base changes.acid-base changesThe pH of neutral water (lOWI = [WI) increases 0.017 U for each 1°C reduction in temperature; the pH of bloodin a closed system

(e.g., test tube or artery) changes similarly.

Page 118: Temperature regulation and monitoring. Mammals and birds are homeothermic They require a nearly constant internal body temperature When internal temperature

Hypothermia is by far the most common perianesthetic thermal perturbation. However, hyperthermia is more

dangerous than a comparable degree of hypothermia.

Hyperthermia is a generic term simply indicating a core body temperature exceeding normal values.

In contrast, fever is a regulated increase in the core temperature targeted by the thermoregulatory system.

Hyperthermia can result from a variety of causes and usually indicates a problem of sufficient severity that physician intervention is required.

Hyperthermia Hyperthermia

Page 119: Temperature regulation and monitoring. Mammals and birds are homeothermic They require a nearly constant internal body temperature When internal temperature

Passive Hyperthermia and Malignant hyperthermia

Passive intraoperative hyperthermia results from excessive patient heating and is most common in infants and children.

It is especially frequent when effective active warming is used without adequate core temperature monitoring. it can easily be treated by discontinuing active warming and removing excessive insulation.

Page 120: Temperature regulation and monitoring. Mammals and birds are homeothermic They require a nearly constant internal body temperature When internal temperature

The increase in body temperature during malignant hyperthermia results from an enormous increase in metabolic heat produced by both internal organs and skeletal muscle.

Central thermoregulation presumably remains intact during acute crises, but efferent heat loss mechanisms may be compromised by the intense peripheral vasoconstriction resulting from circulating catecholamine concentrations 20 times normal.

Page 121: Temperature regulation and monitoring. Mammals and birds are homeothermic They require a nearly constant internal body temperature When internal temperature

feverfeverfever results when endogenous pyrogens increase the thermoregulatory target temperature ("set point"). Identified endogenous pyrogens include interleukin-l, tumor necrosis factor,interferon-a, and macrophage inflammatory protein-1.

Although it was initially believed that these factors acted directly on hypothalamic thermoregulatory centers, there is increasing evidence for a more complicated system

involving vagal afferents.

Page 122: Temperature regulation and monitoring. Mammals and birds are homeothermic They require a nearly constant internal body temperature When internal temperature

Fever is relatively rare during general anesthesia because volatile anesthetics per se inhibit the expression of fever as do opioids.

fever may reflect preexisting infection or result, for example, from urologic manipulations.

perioperative fever also occurs in response to mismatched blood transfusions, blood in the fourth cerebral ventricle, and allergic reactions. In addition, some degree of fever is typical after surgury.

Page 123: Temperature regulation and monitoring. Mammals and birds are homeothermic They require a nearly constant internal body temperature When internal temperature

In general, patients with fever and increasing core temperature will have constricted fingertips, whereas those with other types of hyperthermia will be vasodilated. Treatment: 1)cause

2)antipyreyic medications

3)active cooling

Page 124: Temperature regulation and monitoring. Mammals and birds are homeothermic They require a nearly constant internal body temperature When internal temperature

TEMPERATURE MONITORING

Core temperature measurements (e.g., tympanic membrane,pulmonary artery, distal portion of the esophagus, and nasopharynx) are used to monitor intraoperative hypothermia, prevent overheating, and facilitate detection of malignant hyperthermia.

Both core and skin surface temperature measurements are required to determine the thermoregulatoryeffects of different anesthetic drugs. Temperaturesare not uniform within the body; consequently, temperatures measured at each site have different physiologic and practical significance.

Page 125: Temperature regulation and monitoring. Mammals and birds are homeothermic They require a nearly constant internal body temperature When internal temperature

When Temperature Monitoring Is Required

core temperature should be measured during regional anesthesia in patients likely to become hypothermic (e.g., those undergoing body cavity surgery).Core temperature monitoring is appropriate during the administration of most general anesthetics both to facilitate detection of malignant hyperthermia and to quantify hyperthermia and hypothermia.

Page 126: Temperature regulation and monitoring. Mammals and birds are homeothermic They require a nearly constant internal body temperature When internal temperature

More common than malignant hyperthermia is intraoperativ hyperthermia of other etiologies,including excessive warming, infectious fever,blood in the fourth cerebral ventricle, and mismatched blood transfusions.Core temperature perturbations during the first 30 minutes of anesthesia are thus difficult to interpret,and measurements are not usually required. Body temperature should, however, be monitored in patients undergoing general anesthesia exceeding 30 minutes in duration and in all patients whose surgery lasts longer

than 1 hour.

Page 127: Temperature regulation and monitoring. Mammals and birds are homeothermic They require a nearly constant internal body temperature When internal temperature
Page 128: Temperature regulation and monitoring. Mammals and birds are homeothermic They require a nearly constant internal body temperature When internal temperature

Temperature-Monitoring and ThermalManagement Guidelines