35
1 Tema 12 Transistores. 12.a. El transistor bipolar 12.b. El transistor MOS

Tema 12 Transistores. - QueGrande.orgquegrande.org/apuntes/ETIS-USC/1/FuFi/teoria/07-08/tema_12... · Figure 5.2 A simplified structure of the pnp transistor. El transistor bipolar

Embed Size (px)

Citation preview

1

Tema 12

Transistores.

12.a. El transistor bipolar

12.b. El transistor MOS

Capítulo12.a

El Transistor Bipolar

2

Fundamentos Físicos de la Informática – Curso Académico 2007-2008 Prof. Paula López Martínez

Microelectronic Circuits -

Fifth Edition

Sedra/Smith

3

Figure 5.1 A simplified structure of the npn transistor.

El transistor bipolar de unión, BJT, npn

Fundamentos Físicos de la Informática – Curso Académico 2007-2008 Prof. Paula López Martínez

Microelectronic Circuits -

Fifth Edition

Sedra/Smith

4

Figure 5.2 A simplified structure of the pnp transistor.

El transistor bipolar de unión, BJT, pnp

Fundamentos Físicos de la Informática – Curso Académico 2007-2008 Prof. Paula López Martínez

Símbolos

5Microelectronic Circuits -

Fifth Edition

Sedra/Smith

5

Figure 5.13 Circuit symbols for BJTs.

Fundamentos Físicos de la Informática – Curso Académico 2007-2008 Prof. Paula López Martínez

Microelectronic Circuits -

Fifth Edition

Sedra/Smith

6

Figure 5.3 Current flow in an npn transistor biased to operate in the active mode. (Reverse current components due to drift of

thermally generated minority carriers are not shown.)

El transistor BJT npn en zona activa directa

Fundamentos Físicos de la Informática – Curso Académico 2007-2008 Prof. Paula López Martínez

Microelectronic Circuits -

Fifth Edition

Sedra/Smith

7

Figure 5.4 Profiles of minority-carrier concentrations in the base and in the emitter of an npn transistor operating in the active mode:

vBE 0 and vCB 0.

Distribución de portadores minoritarios

Fundamentos Físicos de la Informática – Curso Académico 2007-2008 Prof. Paula López Martínez

Corrientes de portadores

8

nae

BC

nd

BEFI

na

BC JJJ

KTqV

nde

BEKT

qVpde

BE

nd

BE

pd

BE

d

EB

BEBE

eJeJJJJ

a

BE

d

BEBE

KTqV

BE

a

BE

d

BEBE

JJJ

eJJJJBE

0

0 1

Proporción de minoritarios que

consigue atravesar la base

nd

BE

pd

BEFI JJ

Flujos de carga proporcionales a la distribución de Maxwell-Boltzmann:

Corriente en la unión BE:

(Corriente diodo directa)

Corriente en la unión CB:

BEFKT

qV

BCCB JeJJCB

10

Fundamentos Físicos de la Informática – Curso Académico 2007-2008 Prof. Paula López Martínez

9

Circuito equivalente en zona activa directa

BEFBCBEFC

BFB

F

FCBEE

CBFEFCCBE

IIII

IIIII

IIIIIII

1

0

Fundamentos Físicos de la Informática – Curso Académico 2007-2008 Prof. Paula López Martínez

Microelectronic Circuits -

Fifth Edition

Sedra/Smith

10

Figure 5.19 (a) Conceptual circuit for measuring the iC –vCE characteristics of the BJT. (b) The iC –vCE characteristics of a practical

BJT.

Curva característica del BJT npn

Fundamentos Físicos de la Informática – Curso Académico 2007-2008 Prof. Paula López Martínez

Polarización en Emisor Común

11

Fundamentos Físicos de la Informática – Curso Académico 2007-2008 Prof. Paula López Martínez

El BJT como amplificador

• Modelo de pequeña señal

12

Fundamentos Físicos de la Informática – Curso Académico 2007-2008 Prof. Paula López Martínez

El BJT como conmutador

13

Fundamentos Físicos de la Informática – Curso Académico 2007-2008 Prof. Paula López Martínez

Lógica DTL (Diode-Transistor Logic)

14

Circuito inversor DTL:

Función de transferencia aproximada para el inversor DTL:

Fundamentos Físicos de la Informática – Curso Académico 2007-2008 Prof. Paula López Martínez

Lógica TTL (Transistor-Transistor Logic)

15

Circuito inversor TTL

Fundamentos Físicos de la Informática – Curso Académico 2007-2008 Prof. Paula López Martínez

Circuito inversor TTL con salida en colector

abierto

16

Fundamentos Físicos de la Informática – Curso Académico 2007-2008 Prof. Paula López Martínez

Lógica ECL (Emitter-Coupled Logic)

17

• Basada en el amplificador diferencial:

Capítulo12.b

El Transistor MOS (Metal Oxide

Semiconductor)

18

Fundamentos Físicos de la Informática – Curso Académico 2007-2008 Prof. Paula López Martínez

Microelectronic Circuits -

Fifth Edition

Sedra/Smith

19

Figure 4.1 Physical structure of the enhancement-type NMOS transistor: (a) perspective view; (b) cross-section. Typically L = 0.1 to 3

mm, W = 0.2 to 100 mm, and the thickness of the oxide layer (tox) is in the range of 2 to 50 nm.

Estructura

Fundamentos Físicos de la Informática – Curso Académico 2007-2008 Prof. Paula López Martínez

Microelectronic Circuits -

Fifth Edition

Sedra/Smith

20

Figure 4.9 Cross-section of a CMOS integrated circuit. Note that the PMOS transistor is formed in a separate

n-type region, known as an n well. Another arrangement is also possible in which an n-type body is used and

the n device is formed in a p well. Not shown are the connections made to the p-type body and to the n well; the

latter functions as the body terminal for the p-channel device.

Estructura

Fundamentos Físicos de la Informática – Curso Académico 2007-2008 Prof. Paula López Martínez

Microelectronic Circuits -

Fifth Edition

Sedra/Smith

21

Figure 4.10 (a) Circuit symbol for the n-channel enhancement-type MOSFET. (b) Modified circuit symbol with

an arrowhead on the source terminal to distinguish it from the drain and to indicate device polarity (i.e., n

channel). (c) Simplified circuit symbol to be used when the source is connected to the body or when the effect

of the body on device operation is unimportant.

Símbolo

Fundamentos Físicos de la Informática – Curso Académico 2007-2008 Prof. Paula López Martínez

Microelectronic Circuits -

Fifth Edition

Sedra/Smith

22

Figure 4.2 The enhancement-type NMOS transistor with a positive voltage applied to the gate. An n channel is

induced at the top of the substrate beneath the gate.

Polarización

Fundamentos Físicos de la Informática – Curso Académico 2007-2008 Prof. Paula López Martínez

Microelectronic Circuits -

Fifth Edition

Sedra/Smith

23

Figure 4.3 An NMOS transistor with vGS > Vt and with a small vDS applied. The device acts as a resistance whose

value is determined by vGS. Specifically, the channel conductance is proportional to vGS – Vt’ and thus iD is

proportional to (vGS – Vt) vDS. Note that the depletion region is not shown (for simplicity).

Polarización

Fundamentos Físicos de la Informática – Curso Académico 2007-2008 Prof. Paula López Martínez

Microelectronic Circuits -

Fifth Edition

Sedra/Smith

24

Figure 4.5 Operation of the enhancement NMOS transistor as vDS is increased. The induced channel acquires

a tapered shape, and its resistance increases as vDS is increased. Here, vGS is kept constant at a value > Vt.

Polarización

Fundamentos Físicos de la Informática – Curso Académico 2007-2008 Prof. Paula López Martínez

Microelectronic Circuits -

Fifth Edition

Sedra/Smith

25

Figure 4.6 The drain current iD versus the drain-to-source voltage vDS for an enhancement-type NMOS

transistor operated with vGS > Vt.

Regiones de operación

Fundamentos Físicos de la Informática – Curso Académico 2007-2008 Prof. Paula López Martínez

Microelectronic Circuits -

Fifth Edition

Sedra/Smith

26

Figure 4.8 Derivation of the iD–vDS characteristic of the NMOS transistor.

Cálculo de la curva característica I-V

Fundamentos Físicos de la Informática – Curso Académico 2007-2008 Prof. Paula López Martínez

Microelectronic Circuits -

Fifth Edition

Sedra/Smith

27

Figure 4.11 (a) An n-channel enhancement-type MOSFET with vGS and vDS applied and with the normal

directions of current flow indicated. (b) The iD–vDS characteristics for a device with k’n (W/L) = 1.0 mA/V2.

Curva característica I-V

Fundamentos Físicos de la Informática – Curso Académico 2007-2008 Prof. Paula López Martínez

Microelectronic Circuits -

Fifth Edition

Sedra/Smith

28

Figure 4.15 Increasing vDS beyond vDSsat causes the channel pinch-off point to move slightly away from the

drain, thus reducing the effective channel length (by DL).

Zona de saturación

Fundamentos Físicos de la Informática – Curso Académico 2007-2008 Prof. Paula López Martínez

Microelectronic Circuits -

Fifth Edition

Sedra/Smith

29

Figure 4.53 The CMOS inverter.

El inversor CMOS

Fundamentos Físicos de la Informática – Curso Académico 2007-2008 Prof. Paula López Martínez

Microelectronic Circuits -

Fifth Edition

Sedra/Smith

30

Figure 4.54 Operation of the CMOS inverter when vI is high: (a) circuit with vI = VDD (logic-1 level, or VOH); (b)

graphical construction to determine the operating point; (c) equivalent circuit.

El inversor CMOS

Fundamentos Físicos de la Informática – Curso Académico 2007-2008 Prof. Paula López Martínez

Microelectronic Circuits -

Fifth Edition

Sedra/Smith

31

Figure 4.55 Operation of the CMOS inverter when vI is low: (a) circuit with vI = 0 V (logic-0 level, or VOL); (b)

graphical construction to determine the operating point; (c) equivalent circuit.

El inversor CMOS

Fundamentos Físicos de la Informática – Curso Académico 2007-2008 Prof. Paula López Martínez

Microelectronic Circuits -

Fifth Edition

Sedra/Smith

32

Figure 4.56 The voltage transfer characteristic of the CMOS inverter.

El inversor CMOS

Fundamentos Físicos de la Informática – Curso Académico 2007-2008 Prof. Paula López Martínez

Microelectronic Circuits -

Fifth Edition

Sedra/Smith

33

Figure 4.57 Dynamic operation of a capacitively loaded CMOS inverter: (a) circuit; (b) input and output

waveforms; (c) trajectory of the operating point as the input goes high and C discharges through QN; (d)

equivalent circuit during the capacitor discharge.

Retardos de propagación

Fundamentos Físicos de la Informática – Curso Académico 2007-2008 Prof. Paula López Martínez

Puerta de transmisión CMOS

34

Fundamentos Físicos de la Informática – Curso Académico 2007-2008 Prof. Paula López Martínez

Puertas NAND y NOR CMOS

35

VDD VDD

VB

VA

VA

VB

Vout

Vout

Figura 7. Puertas NAND (a) y NOR (b) con tecnología CMOS.