25
TECO, R. Boers 18 Oct 1 Radar Observations of Fog Layers R. Boers, H. Klein Baltink, J. Hemink, F. Bosveld, and M. Moerman 18.10.2012

TECO, R. Boers 18 October 2012 1 Radar Observations of Fog Layers R. Boers, H. Klein Baltink, J. Hemink, F. Bosveld, and M. Moerman 18.10.2012

Embed Size (px)

Citation preview

Page 1: TECO, R. Boers 18 October 2012 1 Radar Observations of Fog Layers R. Boers, H. Klein Baltink, J. Hemink, F. Bosveld, and M. Moerman 18.10.2012

TECO, R. Boers 18 October 2012

1

Radar Observations of Fog Layers

R. Boers, H. Klein Baltink, J. Hemink, F. Bosveld, and M. Moerman

18.10.2012

Page 2: TECO, R. Boers 18 October 2012 1 Radar Observations of Fog Layers R. Boers, H. Klein Baltink, J. Hemink, F. Bosveld, and M. Moerman 18.10.2012

TECO, R. Boers 18 October 2012

2

Purpose of the Project

• To assess the fog detection capabilities of ground based remote sensing instruments [in particular cloud radar, 35GHz].

• To interpret the remote sensing data in terms of the physical processes that are responsible for fog formation.

• To arrive at a visibility product based on remote sensing data.

Page 3: TECO, R. Boers 18 October 2012 1 Radar Observations of Fog Layers R. Boers, H. Klein Baltink, J. Hemink, F. Bosveld, and M. Moerman 18.10.2012

TECO, R. Boers 18 October 2012

3

Why do we do this project?

• Fog is a restricting factor in aircraft movements at airports: Which instruments have added –value in air traffic control?

• Fog is a restricting factor in road traffic: What new information

can remote sensing instruments bring to contribute to road safety?

Page 4: TECO, R. Boers 18 October 2012 1 Radar Observations of Fog Layers R. Boers, H. Klein Baltink, J. Hemink, F. Bosveld, and M. Moerman 18.10.2012

TECO, R. Boers 18 October 2012

4

Meteorological definition of fog is based on visibility only,

i.e. it is a definition based on ‘diffuse’ principles

Are we dealing with droplets, aerosols, spiders, anything?

Fog: visibility less than 1000 mDense fog: visibility less than 200 mVery dense fog: visibility less than 50 m Mist: visibility more than 1000 m, less than 5000mHaze: restriction of visibility by dry aerosols

(RH < 80%)

Page 5: TECO, R. Boers 18 October 2012 1 Radar Observations of Fog Layers R. Boers, H. Klein Baltink, J. Hemink, F. Bosveld, and M. Moerman 18.10.2012

TECO, R. Boers 18 October 2012

5

In cloud physics there is a strict discrimination between water droplets and wet aerosol.

Wet aerosol: Aerosol particles having attracted water vapor RH < 100%Water droplets: Only form when RH > 100%

So: for fog mist haze, we need to understand the physics of wet aerosol AND water droplets

Page 6: TECO, R. Boers 18 October 2012 1 Radar Observations of Fog Layers R. Boers, H. Klein Baltink, J. Hemink, F. Bosveld, and M. Moerman 18.10.2012

TECO, R. Boers 18 October 2012

6

Procedure to acquire a VIS-RAD product

Measure radar reflectivity [up to many km away from observer]

Measure visibility locally

radar …….……………………………………………………

…….Establish local link between radar

reflectivity and visibility

Use local link to convert entire radar signal to visibility

Page 7: TECO, R. Boers 18 October 2012 1 Radar Observations of Fog Layers R. Boers, H. Klein Baltink, J. Hemink, F. Bosveld, and M. Moerman 18.10.2012

TECO, R. Boers 18 October 2012

7

Cabauw

Cabauw Experimental Site for Atmospheric Research [CESAR]

Page 8: TECO, R. Boers 18 October 2012 1 Radar Observations of Fog Layers R. Boers, H. Klein Baltink, J. Hemink, F. Bosveld, and M. Moerman 18.10.2012

TECO, R. Boers 18 October 2012

8

Fog detection configuration at the Cabauw Experimental Site for Atmospheric Research (CESAR)

Radar, lidar, microwave radiometer location

View angle adapted for fog configuration

Normal cloud radar configuration

Visibility sensors Aerosol size spectraThermodynamics

Page 9: TECO, R. Boers 18 October 2012 1 Radar Observations of Fog Layers R. Boers, H. Klein Baltink, J. Hemink, F. Bosveld, and M. Moerman 18.10.2012

TECO, R. Boers 18 October 2012

9

Installatie van reflectorplaat op Cabauw

Fase 1 [December 2010]Fase 2 [Februari 2011]

Page 10: TECO, R. Boers 18 October 2012 1 Radar Observations of Fog Layers R. Boers, H. Klein Baltink, J. Hemink, F. Bosveld, and M. Moerman 18.10.2012

TECO, R. Boers 18 October 2012

10

Interpretation of the next pictures

radar

reflector

fog

3.4 degrees

Radar signal path

Top of fog layer

Page 11: TECO, R. Boers 18 October 2012 1 Radar Observations of Fog Layers R. Boers, H. Klein Baltink, J. Hemink, F. Bosveld, and M. Moerman 18.10.2012

TECO, R. Boers 18 October 2012

11

Page 12: TECO, R. Boers 18 October 2012 1 Radar Observations of Fog Layers R. Boers, H. Klein Baltink, J. Hemink, F. Bosveld, and M. Moerman 18.10.2012

TECO, R. Boers 18 October 2012

12

The puzzling conversion ofradar reflectivity to visibility

Measure visibility with standard visibility detectors at the same time

begin

end

Page 13: TECO, R. Boers 18 October 2012 1 Radar Observations of Fog Layers R. Boers, H. Klein Baltink, J. Hemink, F. Bosveld, and M. Moerman 18.10.2012

TECO, R. Boers 18 October 2012

13

Page 14: TECO, R. Boers 18 October 2012 1 Radar Observations of Fog Layers R. Boers, H. Klein Baltink, J. Hemink, F. Bosveld, and M. Moerman 18.10.2012

TECO, R. Boers 18 October 2012

14

The puzzling conversion ofradar reflectivity to visibility

Measure visibility with standard visibility detectors at the same time

begin

end

Page 15: TECO, R. Boers 18 October 2012 1 Radar Observations of Fog Layers R. Boers, H. Klein Baltink, J. Hemink, F. Bosveld, and M. Moerman 18.10.2012

TECO, R. Boers 18 October 2012

15

Can we understand the characteristic signature of the radar – visibility link?

Modelling the onset of fog

Use aerosol data at tower at 60 m, and model the evolution of the particle size spectra.

Modelling done during 1 cycle of a fog event cooling - warming

Page 16: TECO, R. Boers 18 October 2012 1 Radar Observations of Fog Layers R. Boers, H. Klein Baltink, J. Hemink, F. Bosveld, and M. Moerman 18.10.2012

TECO, R. Boers 18 October 2012

16(Hilding Köhler, 1888-1982; Professor for Meteorology, Uppsala, S)

What is droplet activation? Köhler curvesThe growth of every dry aerosol

particle when it takes up water is prescribed by a Köhler curve

Small particle

Bigger particle

Even bigger particle

The domain of wet aerosol

The domain of fog droplets

Page 17: TECO, R. Boers 18 October 2012 1 Radar Observations of Fog Layers R. Boers, H. Klein Baltink, J. Hemink, F. Bosveld, and M. Moerman 18.10.2012

TECO, R. Boers 18 October 2012

17(Hilding Köhler, 1888-1982; Professor for Meteorology, Uppsala, S)

A movie of droplet activation

Ambient relative humidity (RH)

Equilibrium saturation relative humidity at the

surface of individual particle (Es)

Droplet growth is proportional to the difference between

RH and Es

Page 18: TECO, R. Boers 18 October 2012 1 Radar Observations of Fog Layers R. Boers, H. Klein Baltink, J. Hemink, F. Bosveld, and M. Moerman 18.10.2012

TECO, R. Boers 18 October 2012

18

Fog droplet growth

Page 19: TECO, R. Boers 18 October 2012 1 Radar Observations of Fog Layers R. Boers, H. Klein Baltink, J. Hemink, F. Bosveld, and M. Moerman 18.10.2012

TECO, R. Boers 18 October 2012

19

Condensation and evaporation of fog are distinctly different

The onset and disappearance of fogs is very sudden

Clouds and fogs have distinct edges

Page 20: TECO, R. Boers 18 October 2012 1 Radar Observations of Fog Layers R. Boers, H. Klein Baltink, J. Hemink, F. Bosveld, and M. Moerman 18.10.2012

TECO, R. Boers 18 October 2012

20

Modelled droplet activation (12000 dry particles to start with)

Page 21: TECO, R. Boers 18 October 2012 1 Radar Observations of Fog Layers R. Boers, H. Klein Baltink, J. Hemink, F. Bosveld, and M. Moerman 18.10.2012

TECO, R. Boers 18 October 2012

21

Very few aerosol particles are activated to become cloud droplets!

[About 1% of total]

Why?

Because fog is equivalent of a cloudy air parcel moving upward at very low speed

(< 4 cm/s!)

So, only very few droplets can be activated[And some will evaporate again before

reaching maturity]

Page 22: TECO, R. Boers 18 October 2012 1 Radar Observations of Fog Layers R. Boers, H. Klein Baltink, J. Hemink, F. Bosveld, and M. Moerman 18.10.2012

TECO, R. Boers 18 October 2012

22

The link between radar reflectivity and visibility

Model

condensation

evaporation

Page 23: TECO, R. Boers 18 October 2012 1 Radar Observations of Fog Layers R. Boers, H. Klein Baltink, J. Hemink, F. Bosveld, and M. Moerman 18.10.2012

TECO, R. Boers 18 October 2012

23

Conclusions

1) Most visibility reduction down to 1 km is attributable to swelling / wetting of aerosol but only water droplet activation is responsible for dense fog.

2) The process of condensation is not symmetric to evaporation

3) For dense fog [Vis < 700m] a radar visibility product can be made

4) For less dense fogs [700m < Vis < 1500m] a lidar visibility product should be contemplated

5) Fogs have less water droplets than clouds

Page 24: TECO, R. Boers 18 October 2012 1 Radar Observations of Fog Layers R. Boers, H. Klein Baltink, J. Hemink, F. Bosveld, and M. Moerman 18.10.2012

TECO, R. Boers 18 October 2012

24

Prospects

1) Design specs for radar (TNO / TUDelft) [on way]

2) Business case KNMI – TNO – TUDelft – KLM – Schiphol [not yet]

Page 25: TECO, R. Boers 18 October 2012 1 Radar Observations of Fog Layers R. Boers, H. Klein Baltink, J. Hemink, F. Bosveld, and M. Moerman 18.10.2012

TECO, R. Boers 18 October 2012

25

Thank you!