30
 PHYSICAL, CHEMICAL & BIOLOGICAL CONDITIONS OF SURFACE WATERS IN MONTEVERDE, COSTA RICA Monteverde Adopt-A-Stream Program 2009-2010 Annual Technical Report Bethany Elmore MAASP Assistant [email protected] Justin Welch IWRP Coordinator  [email protected] Monteverde Institute 29 JULY 2010

Technical Report 2009-2010 Monteverde Adopt-A-Stream

Embed Size (px)

Citation preview

Page 1: Technical Report 2009-2010 Monteverde Adopt-A-Stream

8/3/2019 Technical Report 2009-2010 Monteverde Adopt-A-Stream

http://slidepdf.com/reader/full/technical-report-2009-2010-monteverde-adopt-a-stream 1/30

 

PHYSICAL, CHEMICAL & BIOLOGICAL CONDITIONS OF SURFACE WATERS INMONTEVERDE, COSTA RICA

Monteverde Adopt-A-Stream Program2009-2010 Annual Technical Report

Bethany ElmoreMAASP Assistant

[email protected] 

Justin WelchIWRP Coordinator 

 [email protected] 

Monteverde Institute

29 JULY 2010

Page 2: Technical Report 2009-2010 Monteverde Adopt-A-Stream

8/3/2019 Technical Report 2009-2010 Monteverde Adopt-A-Stream

http://slidepdf.com/reader/full/technical-report-2009-2010-monteverde-adopt-a-stream 2/30

ii

Table of Contents

Executive Summary iii1. Introduction 1

1.1 Background 1

1.2 Site Locations & Participant Groups 22. Physical, Chemical & Biological Parameters 32.1 Temperature 32.2 Dissolved Oxygen 42.3 pH 42.4 Turbidity 42.5 Conductivity 52.6 Nitrates 52.7 Phosphates 52.8 Stream Discharge 52.9 Macroinvertebrates 5

3. Methods & Materials 63.1 Chemical Sampling 63.2 Physical Sampling 73.3 Biological Sampling 7

4. Summary of Annual Data 8References 15Appendix 1. Monthly Data 16Appendix 2. Monthly Biological Summary 20Appendix 3. Decree Nº 33903-MINAET 24

Page 3: Technical Report 2009-2010 Monteverde Adopt-A-Stream

8/3/2019 Technical Report 2009-2010 Monteverde Adopt-A-Stream

http://slidepdf.com/reader/full/technical-report-2009-2010-monteverde-adopt-a-stream 3/30

iii

Executive Summary The Monteverde Adopt-A Stream Program (MAASP) is a community-oriented initiative of theMonteverde Institute’s Integrated Water Resources Program, which seeks to monitor the long-term health of local streams and involve students in a “hands-on” learning experience thatcontributes to the understanding and protection of community water resources. Each month,

 physical, chemical and biological data are collected from selected headwater streams of the RíoGuacimal watershed: Quebrada Cuecha, Quebrada Sucia, and Quebrada Rodriguez.

During the 2009-2010 monitoring cycle, the MAASP involved 4 student groups who each monthmeasured temperature, dissolved oxygen, pH, turbidity, conductivity, nitrates, phosphates, andstream discharge at separate up- and downstream sites. Participants principally used Vernier LabQuest sensors and probes to collect data according to protocols specified by the internationalGLOBE Program (www.globe.gov). Phosphate concentrations were measured with a LaMotteGREEN TesTabs kit. Every three months, participants sampled for aquatic macroinvertebratesin order to compare abundance and diversity. Macroinvertebrates were sampled according to the protocol described by Laidlaw in her Adopt-A-Stream manual (http://www.rivercenter.uga.edu/

international/wfl/manual_english.htm).Data collection was sporadic at some sites due to variable academic schedules as well as theintroduction of GLOBE protocols and new Vernier equipment in August of 2009. As such,August to December, 2009 was considered a trial period and a normal sampling schedule wasfollowed between February and May, 2010.

Page 4: Technical Report 2009-2010 Monteverde Adopt-A-Stream

8/3/2019 Technical Report 2009-2010 Monteverde Adopt-A-Stream

http://slidepdf.com/reader/full/technical-report-2009-2010-monteverde-adopt-a-stream 4/30

1

1. Introduction1.1 BackgroundMonteverde is located along the leeward slope of the continental divide in the Tilarán mountainrange of northwest Costa Rica. It is famous internationally for extensive cloud forest reserves,which are important locally due to their location at the head of several large watersheds,

including that of the Río Guacimal. These watersheds support multiple use types such ascommunity drinking water, hydro-electricity, agricultural production, and natural habitat.What’s more, the mixed regional economy of agriculture, services and tourism creates uniquechallenges for managing the quantity and quality of local water resources (Welch, 2008).

The Monteverde Adopt-A Stream Program (MAASP) is a community-oriented initiative of theMonteverde Institute’s Integrated Water Resources Program, which seeks to monitor the long-term health of local streams and involve students in “hands-on” learning. The MAASP activelyworks with 4 local high schools and a co-ed “scouts” group in order to monitor the physical,chemical and biological conditions of headwater streams in the Upper Río Guacimal watershed.Monitoring sites are located within completely forested to heavily urbanized catchments

throughout the Monteverde area in order to provide comparisons between natural conditions andthose affected by human activity. In each stream, data is collected from an up- and downstreamsite in order to provide comparisons within individual stream continuums. Data is collectedmonthly throughout the year in order to allow temporal comparisons between seasons and years.

Monteverde is considered to be a tropical montane cloud forest; a “relatively altitudinal zonewith frequent cloud cover during much of the year” (Clark, Lawton, Nadkarni, Wheelwright,2000). This type of forest is one of the most threatened ecosystems in the world. The frequentwind-driven mist and fog in this ecosystem makes it a very valuable resource and gives it animportant role in the hydrological process that is unlike other forest types.

Local climate in Monteverde is divided in three distinct seasons. The wet season lasts from Maythrough October and is characterized by convective precipitation that arrives in the form of cumulus clouds and rain on most afternoons lasting through the early evening. The transitionalseason generally lasts from November to January and can be characterized by wind driven precipitation in the form of mist and horizontal light rains that last day and night. The dry seasonis from February to April and is mostly characterized by wind driven mist and cloud water that  blow through mostly at night (Clark et al., 2000). Rainfall is heaviest during June, andSeptember-October when the Intertropical Convergence Zone (ITCZ) is directly above CostaRica. As the ITCZ migrates south, northwestern trade winds from the Caribbean Sea bringmoisture to the region (Clark et al., 2000).

From 2000 to 2003, students and researchers from Smith College (Northampton, Massachusetts,USA) conducted similar studies of water quality in the Rio Guacimal watershed, focusing on theion chemistry of headwater streams (Rhodes et al., in press). Throughout this three year period,they collected a total of 432 water samples from eight different sites along five different streams.Of those eight sites, two are shared with our current Adopt-A-Stream Program, along theQuebrada Cuecha (the QC1 and QC2). We also have a similar site along the Quebrada Sucia(QS1) (Rhodes et al., in press).

Page 5: Technical Report 2009-2010 Monteverde Adopt-A-Stream

8/3/2019 Technical Report 2009-2010 Monteverde Adopt-A-Stream

http://slidepdf.com/reader/full/technical-report-2009-2010-monteverde-adopt-a-stream 5/30

2

1.2 Site Locations & Participant Groups

The Junior Rangers (JR) is a co-ed scout group with participants from elementary to high schoolages. The older Rangers have a monitoring site (QC-1) located in the headwaters of theQuebrada Cuecha, 200 meters behind the Tropical Science Center Laboratory, located within theMonteverde Cloud Forest Reserve. This location demonstrates the most natural conditions

among all sampling sites as it drains both primary and secondary protected forests.The Monteverde Friend’s School (MFS) is a private bi-lingual high school in the area. Their monitoring site (QC-2) is located on the Quebrada Cuecha, 50 meters downstream of the bridge by the Cheese Factory. The Q. Cuecha flows through several agricultural and commercial areasalong the outskirts of the Monteverde Cloud Forest Reserve.

The Escuela Creativa (CEC) is another private bi-lingual school with an emphasis onenvironmental studies in their curriculum. Their monitoring site (QS-1) is located in theQuebrada Sucia, 50 meters downstream of the Art House, upstream of a dense residential area.

The Adventist School (EA) is the smallest private school in the region. Their monitoring site(QS-2) is located on the Quebrada Sucia, 50 meters east of the Zamora bus garage, downstreamof a residential area. Sampling at this site was also supported by students at the CEC betweenFebruary and May, 2010.

The Santa Elena Technical College (CTPSE) is the only public high school in the Monteverdearea. They have two stream sites which are located within the Quebrada Rodriguez. The first site(QR-1) is located 50 meters behind the soda in front of the CTPSE. The second site (QR-2) islocated across the street from the Trio restaurant. This catchment is located near downtown SantaElena and is one of the most urbanized of the region. The stream flows through both residentialand commercial areas that exhibit significant development along the stream edge as well as ahigh concentration of impervious surfaces.

Site Code Group Name Stream Site Altitude Longitude LatitudeQC-1 JR Q. Cuecha Upper 1460m 10.305N 084.796WQC-2 MFS Q. Cuecha Lower 1346m 10.305N 084.809WQS-1 CEC Q. Sucia Upper 1374m 10.315N 084.816WQS-2 EA Q. Sucia Lower 1307m 10.314N 084.821WQR-1 CTSE1 Q. Rodriguez

Upper 1347m 10.318N 084.825W

QR-2 CTSE2 Q. RodriguezLower  1351m 10.319N 084.823WTable 1. Monteverde Adopt-A-Stream Program site codes and geographic information. (*SeeFigure 1 below)

Page 6: Technical Report 2009-2010 Monteverde Adopt-A-Stream

8/3/2019 Technical Report 2009-2010 Monteverde Adopt-A-Stream

http://slidepdf.com/reader/full/technical-report-2009-2010-monteverde-adopt-a-stream 6/30

3

2. Physical, Chemical, & Biological Parameters2.1 TemperatureWater temperature plays a vital role in aquatic environments. An increase can affect thesensitivity of organisms to toxic wastes, parasites, and disease by lowering their defenses(Laidlaw, 1996). As a further complication to lowered defenses, warmer waters permit higher 

  bacterial counts (Southwest). An increase in temperature also lowers the reproductive andmetabolic rates of aquatic organisms. (Laidlaw, 1996)

Water temperature is an important factor for the photosynthetic rate of plants and the amount of dissolved oxygen available to organisms. As water warms it is able to hold more dissolvedsolids, but less dissolved gases, like oxygen. (Southwest)

Figure 1. Map of Monteverde Adopt-A-Stream Program sites (modified from King, 2004). 

Page 7: Technical Report 2009-2010 Monteverde Adopt-A-Stream

8/3/2019 Technical Report 2009-2010 Monteverde Adopt-A-Stream

http://slidepdf.com/reader/full/technical-report-2009-2010-monteverde-adopt-a-stream 7/30

4

2.2 Dissolved Oxygen

Dissolved oxygen is the “most important environmental factor for the survival, growth, andreproduction of aquatic organisms” (Laidlaw, 1996) as it is essential for their respiration.Dissolved oxygen comes from the atmosphere or as a byproduct of photosynthesis from aquatic plants, algae, and phytoplankton.

Oxygen dissolves slowly into the water until it becomes saturated and is then distributed bymovement which can be amplified by wind and turbulence. The amount of DO required tosupport aquatic life depends on the species and also an organism’s stage of life (LaMotte).Dissolved oxygen can decrease as a result of elevated organic pollution from sewage or largeamounts of decomposing organic matter in the stream (LaMotte). This decrease is a result of aerobic bacterial activity which can rapidly consume available oxygen within the water.Furthermore, changes in air and water temperature can create fluctuations in percent saturation of DO throughout the day. (Southwest)

2.3 pH

The pH indicates the concentration of hydrogen ions found in water and is one of the mostcommonly used analyses in water quality testing. (LaMotte) This factor is important due to its  profound influence on chemical reactions both within the water body and the physiological processes of the organisms living there. It is measured on a scale from 0 (extremely acidic) to 14(extremely basic), with 7 being considered neutral. A pH range of 6.5 to 8.5 is consideredoptimal for most organisms. (Lamotte) An increase in water’s pH can be caused when rapidlygrowing algae and vegetation start to remove CO2 from water during the process of  photosynthesis. (LaMotte) A decrease in water’s pH can be attributed to automobile emissions,volcanic activity or acidic rain. When the pH becomes too acidic it has a detrimental affect onaquatic organisms, especially invertebrates and can affect the embryonic development of fish.(Laidlaw, 1996)

2.4 Turbidity

Turbidity is the measure of water clarity and is a good indicator of water quality. Turbidity can be affected by the presence of particles suspended in the water column, such as phytoplankton,algae growth, and/or sediments which come from soil erosion, urban runoff or wastewater discharges, as well as re-suspended sediments from the bottom surface of a stream whendisturbed. (LaMotte) Turbidity causes water to appear cloudy when light reflects off of the solid particles found in a body of water. Observers need to be careful not to confuse this cloudinesswith the color of water as dark or brackish water can actually have a low turbidity reading.(Laidlaw, 1996)

Water turbidity is important because it can cause detrimental effects on a stream’s ecosystem. Asthe turbidity increases, the suspended particles absorb the heat from the sun, thus increasingwater temperature which in turn reduces dissolved oxygen levels. As the particles scatter thelight, preventing it from reaching deeper plants, photosynthetic activity is decreased whichcauses them to die off, further lowering already reduced oxygen levels. (Laidlaw, 1996;Southwest)

Page 8: Technical Report 2009-2010 Monteverde Adopt-A-Stream

8/3/2019 Technical Report 2009-2010 Monteverde Adopt-A-Stream

http://slidepdf.com/reader/full/technical-report-2009-2010-monteverde-adopt-a-stream 8/30

5

2.5 Conductivity

Conductivity demonstrates the concentration of total dissolved solids (ions) in a sample of water  based on how easily an electrical current can flow through water. A high conductivity readingsignifies the presence of more dissolved solids. This is due to the fact that as the solids dissolvethey become charged ions which help to conduct an electrical current through the water column.

(Laidlaw, 1996)2.6 Nitrates

  Nitrogen can be found in a body of water in three forms, nitrate (NO3), nitrite (NO4), andammonia (NH3). The MAASP focuses on nitrates, which commonly originate from organicwastes (i.e., wastewater discharge, improperly functioning septic tanks and runoff from animaloperations) as well as agricultural fertilizers. (Laidlaw, 1996) Just as in a terrestrial system,nitrates can act as a fertilizer within aquatic ecosystems, causing elevated aquatic plant and algalgrowth. Furthermore, extremely elevated levels of nitrogen in drinking water can reduce the body’s ability to carry oxygen in the blood, a condition called methemoglobinemia (LaMotte).

2.7 PhosphatesPhosphate (PO4) is a form of phosphorous that can originate from human, animal, and industrialwastes. Over half of the phosphates found in water come from household detergents. (LaMotte)Like nitrates, phosphates also act as a fertilizer for aquatic plants. Phosphorous is often referredto as a limiting factor of organism growth in aquatic systems and is naturally found in lowconcentrations (Laidlaw, 1996). It is an essential nutrient for aquatic plant growth and metabolicreactions in both plants and animals (Laidlaw, 1996).

Free phosphates are used up quickly by algae and large aquatic plants or become bound to soil particles rendering it useless except to those plants rooted in the soil (Laidlaw, 1996). Althoughnot harmful in very low levels, an excess of phosphates can cause eutrophication, excessive

nutrient loading (Laidlaw, 1996). In turn, this can lead to algal blooms, anoxic conditions andred tides, which can result in the die off of fish and aquatic organisms.

2.8 Stream Discharge

Stream discharge is the volumetric measure of water flowing in a stream at a given point in time(usually displayed in cubic feet or cubic meters per second). This volumetric rate is importantfor understanding the capacity of a stream to dilute contaminates, supply withdrawals for humanactivities and maintain the natural processes of the environment.

2.9 Macroinvertebrates

Macroinvertebrates found in streams are often in the immature aquatic stage of an insects’ life.

They usually live on submerged material, such as rocks, logs, or leaf packs, or on a stream’s bottom substrate. In theory, certain groups and orders are more sensitive to water quality andhabitat conditions, enabling the analysis of ecological health based on the composition of individuals within a sample (LaMotte). What’s more, macroinvertebrates are present in the water   body over an extended period of time, thus providing a better indication of long-term streamhealth than chemical samples, which are only indicative of water quality at a given moment intime.

Page 9: Technical Report 2009-2010 Monteverde Adopt-A-Stream

8/3/2019 Technical Report 2009-2010 Monteverde Adopt-A-Stream

http://slidepdf.com/reader/full/technical-report-2009-2010-monteverde-adopt-a-stream 9/30

6

Due to the lack of extensive studies on aquatic macroinvertebrates and their levels of tolerance inmany Costa Rican watersheds, the MAASP focuses more on relative abundance and diversitycalculations, such as the EPT% test, than it does on weighted indexes such as that of the CostaRican Biological Monitoring Working Party (BMWP’-CR).

3. Methods & MaterialsThere are two main sampling periods throughout the year for the MAASP based on the academicschedules of participant groups. The first period is from mid-August/early September throughlate November/early December. The second period is from mid-January/early February throughlate May/early June. Data is collected once a month at each site at approximately the same timeof day every month.

3.1 Chemical Sampling

Three aggregate samples are taken according to GLOBE Program protocols in order to calculatean average for each parameter. A Vernier LabQuest unit and accessory probes and sensors are

used according to their respective protocols in order to obtain individual readings. Eachsensor/probe is calibrated as necessary at the beginning of each site visit using a two pointcalibration system to provide a higher level of accuracy. Vernier sensor and probe specificationsare listed in Table 2.

Equipment Level of Accuracy Range TemperatureCompensation

  pH Sensor +/- 0.1 pH unit pH 0-14 5-80 °CDissolvedOxygen Probe

+/- 0.2 mg/L 0-15 mg/L (ppm) Automatic from 5-35°C

Turbidity

Sensor 

+/- 2 NTU readings

with >25NTU+/- 5% readings with <25NTU

0-200 NTU n/a

ConductivityProbe

+/- 1% of full scalereading

0 to 2000 µs/cm Auto from 5-35 °C

Stainless SteelTemp. Probe

+/- 0.2 °C @ 0°C and+/- 0.5 @ 100°C

-40 to 135°C n/a

 Nitrate IonSelectiveElectrode

+/- 5% reading 0.10 to 14,000 mg/L(ppm)

n/a

Flow Rate

Sensor 

+/- 1% 0 to 4.0 m/s n/a

Table 2. Technical specifications of Vernier probes and sensors.

Phosphates are measured using LaMotte TesTabs. Students fill a test tube with 5mL of water andthen drop a phosphorous TesTab into the water, cap it and shake the tube until the tabletcompletely disintegrates. They must wait for five minutes afterwards while the reagent in theTesTabs, ammonium molybdate, reacts with the sample’s phosphorus to form a phosphomolybdate complex. This complex is then reduced to a blue complex by ascorbic acid

Page 10: Technical Report 2009-2010 Monteverde Adopt-A-Stream

8/3/2019 Technical Report 2009-2010 Monteverde Adopt-A-Stream

http://slidepdf.com/reader/full/technical-report-2009-2010-monteverde-adopt-a-stream 10/30

7

which is compared to a phosphate color chart giving them a reading of 0, 1, 2, or 4ppm phosphate. Three samples are taken and an average is calculated.

3.2 Physical Sampling

Stream discharge is calculated by multiplying the cross-sectional surface area of the stream and

flow velocity in a discharge calculator created by Dr. Andrew Guswa of Smith College. A cross-section of each site is measured in width in meters using a tape measure and is then divided intoeleven taglines with one and eleven always measuring 0 and marking the edges of the stream’s banks. Students then measure the depth of each tagline in meters using a meter stick. A Vernier flow rate sensor is then used to take a reading of the water’s flow average over a 5-second periodat each tagline. This is repeated three times at each tagline.

3.3 Biological Sampling

Macroinvertbrates are collected at each site once every three months in order to diminish thenegative impacts on the local macroinvertebrate populations. Students use a kick net to collectthe organisms, holding the net downstream of the sampling site while one student disturbs the

substrate (e.g., move rocks, agitate the bottom substrate, loosen and move submerged leaf packs,etc.) within five meters upstream of the net for five minutes. Students then remove the net fromthe water using a swooping movement to prevent the organisms from slipping off of the net.Once collected, students sort and identify the specimens on-site to the order and family levelsand then release the macroinvertebrates back into the stream.

Page 11: Technical Report 2009-2010 Monteverde Adopt-A-Stream

8/3/2019 Technical Report 2009-2010 Monteverde Adopt-A-Stream

http://slidepdf.com/reader/full/technical-report-2009-2010-monteverde-adopt-a-stream 11/30

8

4. Summary of Annual Data 2009-2010

Average(MIN;MAX;

STD DEV)

Air Temp(oC)

Water Temp(oC)

DissolvedOxygen(mg/L)

 pHTurbidity

(NTU)Conductivity

(µS/cm) Nitrates

(ppm)Phosphates

(ppm)Discharge

(m3/s)

QC-1

19.27(8;

18.1;21.3;1.13)

17.42 (8; 16.7;

18.6;0.69)

7.59 (8;6.6; 11.8;

1.74)

6.05 (8;

4.59;7.21;0.75)

2.79(8; 0;9.83;3.40)

32.96 (8;20.33; 100.67;

27.43)

0.67 (5;0.1; 1.2;

0.41)

2.33 (8; 1;3.3; 0.81)

0.182 (3;0.077;0.317;0.123)

QC-2

20.13 (9;

18.6;21.5;0.78)

17.74 (10;16.6;19;

0.77)

7.16 (9;5.8; 8.27;

0.75)

6.10 (10;4.66;6.6;

0.55)

7.78 (10;0; 21.93;

6.41)

54.07 (9; 19;150.13; 43.50)

0.92 5;(0.35;1.27;0.37)

2.70 (10; 1;4; 0.85)

0.090 (7;0.016;0.271;0.082)

QS-1

21.23 (7;

18.1;23.8;2.26)

18.74 (7; 17.5;

19.5;

0.68)

6.40 (8;5.5; 6.63;

0.66)

6.1 (7;

5.28;6.53;0.41)

10.60 (8;6.5;

20.03;

4.39)

99.20 (7; 48;224; 76.10)

3.23 (5;0.3;

14.03;

6.04)

2.4 (5; 1.67;3.33; 0.86)

0.084 (4;0.01; 0.17;

0.084)

QS-2

22.32 (5; 21;23.1;0.82)

19.48 (6; 19;20.2;0.46)

8.81 (6;6.6; 13.2;

2.67)

6.83 (6;6.4;7.6;

0.43)

21.72 (5;4.76;56.7;

21.51)

193.50 (6;69.3; 443.97;

151.09)

0.86 (5;0.53;1.2;

0.28)

3.32 (5; 2;4; 0.82)

0.052 (4;0.01;

0.135;0.057)

QR-1

22.19(2;

21.3;23.08;1.25)

19.35(2; 19.2;

19.5;0.21)

5.99 (2;5.87; 6.1;

0.16)

6.8 (2;

6.75;6.85;0.07)

71.38 (2;23.73;119.03;67.39)

99 (2; 96.33;101.67; 3.78)

0.85 (2;0.63;1.07;0.31)

4 (2; 4; 4; 0) n/a

QR-2

21.6(2;

20.7;22.5;1.27)

19.95

(2; 19.9;20;0.07)

5.97 (2;

4.77; 7.17;1.70)

6.73(2;

6.7;6.75;0.04)

5.29 (2;

4.67; 5.9;0.87)

298.015 (2;

89; 507.03;295.59)

0.4 (2;

0.17;0.63;0.33)

3.67 (2;

3.33; 4;0.47)

n/a

Table 3. Averages for chemical parameters (2009-2010):

0

5

10

15

20

25

   T   e   m   p   e   r   a   t   u   r   e   (   o   C   )

Month

AirTemperature

QC-1

QC-2

QS-1

QS-2

QR-1

QR-2

 Figure 2. Monthly air temperature (Aug 2009-July 2010)

Page 12: Technical Report 2009-2010 Monteverde Adopt-A-Stream

8/3/2019 Technical Report 2009-2010 Monteverde Adopt-A-Stream

http://slidepdf.com/reader/full/technical-report-2009-2010-monteverde-adopt-a-stream 12/30

9

Air Temperature

17

18

19

20

21

22

23

QC-1 QC-2 QS-1 QS-2 QR-1 QR-2

   T  e  m  p  e  r  a

   t  u  r  e

   (  o   C   )

 Figure 3. Average air temperature (August 2009-July 2010).

Water Temperature

0

5

10

15

20

25

  A

  G  U

  S  E  P

  O

  C   T

  N

  O   V

  D

  E  C   J  A  N

  F  E  B

  M

  A  R

  A

  B  R

  M

  A   Y   J  U  N

  J  U  L

Month

   T  e  m  p  e  r  a   t  u  r  e   (  o   C   )

QC-1

QC-2

QS-1

QS-2

QR-1

QR-2

 Figure 4. Monthly water temperature (Aug 2009-July 2010)

Water Temperature

16

16.5

17

17.518

18.5

19

19.5

20

20.5

QC-1 QC-2 QS-1 QS-2 QR-1 QR-2

   T  e  m  p  e  r  a

   t  u  r  e

   (  o   C   )

 Figure 5. Average water temperature (August 2009-July 2010).

Page 13: Technical Report 2009-2010 Monteverde Adopt-A-Stream

8/3/2019 Technical Report 2009-2010 Monteverde Adopt-A-Stream

http://slidepdf.com/reader/full/technical-report-2009-2010-monteverde-adopt-a-stream 13/30

10

Dissolved Oxygen

0

2

4

6

8

10

12

14

  A  G  U

  S  E  P

  O  C   T

  N  O   V

  D  E  C

  J  A  N

  F  E  B  M  A  R   A  B

  R  M  A   Y   J  U

  N  J  U  L

Month

   D   i  s  s  o   l  v  e   d   O  x  y

  g  e  n   (  m  g   /   L   ) QC-1

QC-2

QS-1

QS-2

QR-1

QR-2

 Figure 6. Monthly dissolved oxygen (Aug 2009-July 2010)

Dissolved Oxygen

0

2

4

6

8

10

QC-1 QC-2 QS-1 QS-2 QR-1 QR-2   D   i  s  s  o

   l  v  e

   d   O  x  y  g  e  n

   (  m  g

   /   L   )

 Figure 7. Average dissolved oxygen (August 2009-July 2010).

pH

0

1

2

3

4

5

6

7

8

  A  G  U

  S  E  P

  O  C   T

  N  O   V

  D  E  C

  J  A  N

  F  E  B  M  A  R   A  B

  R  M  A   Y   J  U

  N  J  U  L

Month

  p   H

QC-1

QC-2

QS-1

QS-2

QR-1

QR-2

 Figure 8. Monthly pH (Aug 2009-July 2010)

Page 14: Technical Report 2009-2010 Monteverde Adopt-A-Stream

8/3/2019 Technical Report 2009-2010 Monteverde Adopt-A-Stream

http://slidepdf.com/reader/full/technical-report-2009-2010-monteverde-adopt-a-stream 14/30

11

pH

5.60

5.80

6.00

6.206.40

6.60

6.80

7.00

QC-1 QC-2 QS-1 QS-2 QR-1 QR-2

  p   H

 Figure 9. Average pH (August 2009-July 2010).

Turbidity

0

20

40

60

80

100

120

140

  A  G  U

  S  E  P  O  C   T

  N  O   V

  D  E  C

  J  A  N

  F  E  B  M  A  R   A  B

  R  M  A   Y   J  U

  N  J  U  L

Month

   T  u  r   b   i   d   i   t  y   (   N   T   U   )

QC-1

QC-2

QS-1

QS-2

QR-1

QR-2

 Figure 10. Monthly turbidity (Aug 2009-July 2010)

Turbidity

0

10

20

30

40

50

60

70

80

QC-1 QC-2 QS-1 QS-2 QR-1 QR-2

   T  u  r   b   i   d   i   t  y   (   N   T   U   )

 Figure 11. Average turbidity (August 2009-July 2010).

Page 15: Technical Report 2009-2010 Monteverde Adopt-A-Stream

8/3/2019 Technical Report 2009-2010 Monteverde Adopt-A-Stream

http://slidepdf.com/reader/full/technical-report-2009-2010-monteverde-adopt-a-stream 15/30

12

Conductivity

0

100

200

300

400

500

600

  A  G  U

  S  E  P  O  C   T

  N  O   V

  D  E  C

  J  A  N

  F  E  B  M  A  R   A  B

  R  M  A   Y   J  U

  N  J  U  L

Month

   C  o  n   d  u  c   t   i  v   i   t  y

   (     S   /  c  m   ) QC-1

QC-2

QS-1

QS-2

QR-1

QR-2

 Figure 12. Monthly conductivity (Aug 2009-July 2010).

Conductivity

0

50

100

150

200

250

300

350

QC-1 QC-2 QS-1 QS-2 QR-1 QR-2

   C  o  n   d  u  c   t   i  v   i   t  y   (     S   /  c  m   )

 Figure 13. Average conductivity (August 2009-July 2010).

Nitrates

0

2

4

6

8

10

12

14

16

  A  G  U

  S  E  P

  O  C   T

  N  O   V

  D  E  C

  J  A  N

  F  E  B  M  A  R   A  B

  R  M  A   Y   J  U

  N  J  U  L

Month

   N   i   t  r  a   t  e  s   (  m  g   /   L   )

QC-1

QC-2

QS-1

QS-2

QR-1

QR-2

 Figure 14. Monthly nitrates (Aug 2009-July 2010)

Page 16: Technical Report 2009-2010 Monteverde Adopt-A-Stream

8/3/2019 Technical Report 2009-2010 Monteverde Adopt-A-Stream

http://slidepdf.com/reader/full/technical-report-2009-2010-monteverde-adopt-a-stream 16/30

13

Nitrates

0

0.5

1

1.52

2.5

3

3.5

QC-1 QC-2 QS-1 QS-2 QR-1 QR-2

   N   i   t  r  a   t  e  s   (  m  g   /   L   )

 Figure 15. Average nitrates (August 2009-July 2010).

Phosphates

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

  A  G  U

  S  E  P  O  C   T

  N  O   V

  D  E  C

  J  A  N

  F  E  B  M  A  R   A  B

  R  M  A   Y   J  U

  N  J  U  L

Month

   P   h  o  s  p   h  a   t  e  s   (  m  g   /   L   )

QC-1

QC-2

QS-1

QS-2

QR-1

QR-2

 Figure 16. Monthly phosphates (Aug 2009-July 2010)

Phosphates

0

1

2

3

4

5

QC-1 QC-2 QS-1 QS-2 QR-1 QR-2

   P   h  o  s  p   h  a

   t  e  s   (  m  g   /   L   )

 Figure 17. Average phosphates (August 2009-July 2010).

Page 17: Technical Report 2009-2010 Monteverde Adopt-A-Stream

8/3/2019 Technical Report 2009-2010 Monteverde Adopt-A-Stream

http://slidepdf.com/reader/full/technical-report-2009-2010-monteverde-adopt-a-stream 17/30

14

Stream Discharge

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

  A  G  U

  S  E  P  O  C   T

  N  O   V

  D  E  C

  J  A  N

  F  E  B  M  A  R   A  B

  R  M  A   Y   J  U

  N  J  U  L

Month

   D   i  s  c   h  a  r  g  e   (  m   3   /  s   )

QC-1

QC-2

QS-1

QS-2

QR-1

QR-2

 Figure 18. Monthly stream discharge (Aug 2009-July 2010).

Stream Discharge

0

0.05

0.1

0.15

0.2

QC-1 QC-2 QS-1 QS-2 QR-1 QR-2

   D   i  s  c   h  a  r  g  e   (  m   3   /  s   )

 Figure 19. Average stream discharge (August 2009-July 2010).

Page 18: Technical Report 2009-2010 Monteverde Adopt-A-Stream

8/3/2019 Technical Report 2009-2010 Monteverde Adopt-A-Stream

http://slidepdf.com/reader/full/technical-report-2009-2010-monteverde-adopt-a-stream 18/30

15

References

Clark, K.L., Lawton, R.O., and Butler, P.R. 2000. Monteverde: Ecology and Conservation of a

Tropical Cloud Forest. Nadkarni, N.M., and Wheelwright, N.T. (eds). New York: OxfordUniversity Press.

Guswa, A. J. & Rhodes, A.L., 2008. Meteorology of Monteverde, Costa Rica, 2006: Ttechnical 

 Report submitted to the Monteverde Institute. Retrieved fromhttp://www.science.smith.edu/~aguswa/papers/MetReport2007.pdf  

Laidlaw, Tina., 1996. Adopte Una Quebrada Manual ., A product of her Masters Thesis, Instituteof Ecology, University of Georgia, Athens, GA. Retrieved fromhttp://www.rivercenter.uga.edu/international/wfl/manual_english.htm.

LaMotte Company, Global Rivers Environmental Education, (GREEN), and Earth Force. Code5848. Water Monitoring Kit.

King, S. 2004. Línea Divisoria de Aquas Mapa.

Rhodes, A.L., A.J. Guswa, Dallas, S., Kim, E.M., Katchpole, S., Pufall, A., in press. Water 

quality in a tropical montane cloud forest watershed, Monteverde, Costa Rica. In:Bruijnzeel, L.A., Juvik, J., Scatena, F.N., Hamilton, L.S., and Bubb. P. (eds), Mountains

in the Mist: Science for Conservation and Management of Tropical Montane Cloud Forests, University of Hawaii Press. 

Southwest Florida Water Management District. Water Quality Monitoring. Retrieved fromhttp://www.swfwmd.state.fl.us/education/kids/watermonitoring/measuring.html.

Welch, Justin. 2008. Adopte-Una-Quebrada, Cuenca Río Guacimal, Monteverde, Costa RicaManual.

Page 19: Technical Report 2009-2010 Monteverde Adopt-A-Stream

8/3/2019 Technical Report 2009-2010 Monteverde Adopt-A-Stream

http://slidepdf.com/reader/full/technical-report-2009-2010-monteverde-adopt-a-stream 19/30

Appendices

Appendix 1. Monthly Physical, Chemical and Biological Data

SEP OCT NOV DEC JAN FEB MAR APR M

Date - 10/03/09 11/07/09 12/09/09 - - 13/03/10 28/04/10 18/

Air Temperature (Co) - 19.3 18.1 18.1 - - 19.3 21.3 2

Water Temperature

(Co) - 18.6 17.13 16.7 - -

17.2 17.9 1

  pH -6.49 6.41 7.21 - - 5.84 5.81 4

Conductivity(µS/cm) - 25 100.67 20.33 - -

23 23.33 21

Dissolved Oxygen(mg/L) - 6.6 7.5 7.4 - -

11.8 6.8 6

Turbidity (NTU) - 0 9.83 0.466 - - 0.76 5.17 0

  Nitrate (mg/L) - - - - - - 0.7 0.1 1Phosphate (mg/L) - 1 3 2.66 - - 2.67 2.67 3

Flow (m3/s) - - 0.317 0.152 - - 0.077

Order Diversity - - 3 - - - 4

Family Diversity - - 3 - - - 6

Total Abundance - - 9 - - - 41

Table 4. Q.Cuecha Upper – QC1

SEP OCT NOV DEC JAN FEB MAR APR M

Date22/09/

09

21/10/

09

24/11/

09

8/12/0

9-

16/02/

10 &

23/02/10

26/03/

10

27/04/

10

11

1

18

Air Temperature (Co) - 18.6 20.3 20 - 20.2 20.3 20.7 2

Water Temperature

(Co)

18.3 17.7 17.5 16.6-

17.7 16.8 18.8

 pH 6.6 6.39 6.25 6.09 - 6.02 6.51 6.16 4

Page 20: Technical Report 2009-2010 Monteverde Adopt-A-Stream

8/3/2019 Technical Report 2009-2010 Monteverde Adopt-A-Stream

http://slidepdf.com/reader/full/technical-report-2009-2010-monteverde-adopt-a-stream 20/30

Conductivity

(µS/cm)- 150.13 103 43.17

-29.67 25 40.33 4

Dissolved Oxygen(mg/L)

8.267 - 7.6 7.6-

7.83 6.9 6.57 5

Turbidity (NTU) 9.5 2.87 7.83 1.3 - 0 6.2 21.93 5

 Nitrate (mg/L) - - - - - 0.35 1.27 1Phosphate (mg/L) 2 3.33 2.67 2.3 - 2.33 3.33 2.67

Flow (m3/s) - 0.055 0.271 0.08 - 0.082 0.071 0.016 0.

Order Diversity - 7 - - - 7

Family Diversity - 10 - - - 11

Total Abundance - 60 - - - 31

Table 5. Q.Cuecha Lower – QC2

SEP OCT NOV DEC JAN FEB MAR APR M

Date-

15/10/

09

5/11/0

9-

28/01/

10

4/3/20

10

29/04/

10

05

Air Temperature (Co) - - 18.1 - 20.7 18.76 22.9 2Water Temperature

(Co) -

- 18.25-

17.5 19.1 19.5 1

 pH - - 5.97 - 5.28 6.38 6.15 6

Conductivity(µS/cm) -

- 195.43-

48 64.33 55.67 2

Dissolved Oxygen

(mg/L) -6.63 7.63

-6.86 6.17 6.3 6

Turbidity (NTU) - 11.9 8.03 - 7 8.1 6.5 11

 Nitrate (mg/L) - - - - 14.03 0.3 0

Phosphate (mg/L) - - - - 3.33 2 1.67

Flow (m3/s) - - - - 0.144 0.17 0.012 0

Order Diversity - - 2 - 4

Family Diversity - - 3 - 4

Total Abundance - - 4 - 17

Table 6. Q.Sucia Upper – QS1

Page 21: Technical Report 2009-2010 Monteverde Adopt-A-Stream

8/3/2019 Technical Report 2009-2010 Monteverde Adopt-A-Stream

http://slidepdf.com/reader/full/technical-report-2009-2010-monteverde-adopt-a-stream 21/30

SEP OCT NOV DEC JAN FEB MAR APR M

Date-

05/10/

09

16/11/

09- - -

15/03/

10

26/04/

10

10

Air Temperature (Co) - n/a - - - - 22.7 22.7

Water Temperature(Co) -

19 -- - -

19.7 20.2 1

 pH - 6.997 - - - - 6.4 7.6 6

Conductivity(µS/cm) -

304.37 -- - -

168.67 103.67 44

Dissolved Oxygen(mg/L) -

7.33 -- - -

13.2 11.03 7

Turbidity (NTU) - 4.76 - - - - 28.1 10.53

 Nitrate (mg/L) - - - - - - 0.93 0.6 0

Phosphate (mg/L) - 2 - - - - 3.33

Flow (m3/s) - - 0.046 - - - 0.017 0.135 0

Order Diversity - - 9 - - -Family Diversity - - 9 - - -

Total Abundance - - 28 - - -

Table 7. Q.Sucia Lower – QS2

SEP OCT NOV DEC JAN FEB MAR APR M

Date- - - - - - - -

17

Air Temperature (Co) - - - - - - - - 23

Water Temperature

(Co

) - - - - - - - -

1

 pH - - - - - - - - 6

Conductivity

(µS/cm) - - - - - - - -96

Dissolved Oxygen

(mg/L) - - - - - - - -6

Page 22: Technical Report 2009-2010 Monteverde Adopt-A-Stream

8/3/2019 Technical Report 2009-2010 Monteverde Adopt-A-Stream

http://slidepdf.com/reader/full/technical-report-2009-2010-monteverde-adopt-a-stream 22/30

Turbidity (NTU) - - - - - - - - 11

 Nitrate (mg/L) - - - - - - - - 0

Phosphate (mg/L) - - - - - - - -

Flow (m3/s) - - - - - - - -

17

Order Diversity - - - - - - - - 23Family Diversity - - - - - - - - 1

Total Abundance - - - - - - - - 6

Table 8.Q.Rodriguez Upper – QR1

SEP OCT NOV DEC JAN FEB MAR APR M

Date- - - - - - - -

17

Air Temperature (Co) - - - - - - - - 2

Water Temperature

(Co) - - - - - - - -

1

 pH - - - - - - - - 6Conductivity

(µS/cm) - - - - - - - -50

Dissolved Oxygen(mg/L) - - - - - - - -

4

Turbidity (NTU) - - - - - - - - 5

 Nitrate (mg/L) - - - - - - - - 0

Phosphate (mg/L) - - - - - - - -

Flow (m3/s) - - - - - - - -

17

Order Diversity - - - - - - - -

Family Diversity - - - - - - - - Total Abundance - - - - - - - -

Table 9. Q.Rodriguez Lower – QR2

Page 23: Technical Report 2009-2010 Monteverde Adopt-A-Stream

8/3/2019 Technical Report 2009-2010 Monteverde Adopt-A-Stream

http://slidepdf.com/reader/full/technical-report-2009-2010-monteverde-adopt-a-stream 23/30

Appendix 2. Monthly Macroinvertebrate Data

Month Orders/Groups Families

Aug - - -

Sep - - - Oct - - -

  Nov Coleoptera(7), Ephemeroptera(1), Diptera(1) 3

Ptilodactylidae(7),Leptophlebiidae(1),

Blephariceridae(1)

Dec - - -

Jan - - -

Feb - - -

Mar 

Coleoptera (20), Odonata (9), Ephemoroptera

(10), Tricoptera (2) 4

Ptilodactylidae(20), PerilestidaBaetidae(10), Coenagrionidae

Cibellulidea(1), Hydropsychida

Apr - - - May - - -

Jun - - -

Jul - - -

Table 10. Q. Cuecha Upper – QC1

Month Orders/Groups Families

Aug - - -

Sep - - -

Oct

Crustacea(1), Trichoptera(37), Odonata(9),

Ephemeroptera(10), Hirundinea(1),Oligochaeta(1), Isopoda(1), 7

FreshWater Crab(1),Hydropsychidae(35),

Libellulidae(4), Coenagrionida

Baetidae(7), Leptohyphidae(3

Aquatic Earthworm(1), LeechPilbug(1), Hydrobiosidae(2

  Nov - -

Page 24: Technical Report 2009-2010 Monteverde Adopt-A-Stream

8/3/2019 Technical Report 2009-2010 Monteverde Adopt-A-Stream

http://slidepdf.com/reader/full/technical-report-2009-2010-monteverde-adopt-a-stream 24/30

Dec - - -

Jan - - -

Feb

Odonata(6), Coleoptera(8), Trichoptera(1),Hemiptera(1), Hirudinae(11), Anura(1),

Ephemeroptera(3) 7

Coenagrionidae(4), "Unknow

Beetle"(2), Elmidae(5),

Libellulidae(2), Ptilodactylidae

Hydropsychidae(1), Naucorida"Leech"(11), "Tadpole"(1)

Leptophebiidae(2), Baetidae(

Mar - - -

Apr - - -

May

Gastropoda (15), Hirudinae (7), Odonata (14),

Trichoptera (5), Diptera (3) 5

Hydrobiidae (5), Leech (7)

Coenagrionidae (3),

Calopterygidae (2), Gomphid(1), Hydropsychidae (5),

Chironomidae (2), Psychodid

(1), Libellulidae (8)

Jun - - - Jul - - -

Table 11. Q. Cuecha Lower – QC2 

Month Orders/Groups Families

Aug - - -

Sep - - -

Oct - - -

  Nov Diptera(3), Coleoptera(1) 2Tipulidae(1), Chironomidae(

"Crawling Water Beetle(1)

Dec - - - Jan - - -

Feb

Odonata(1), Coleoptera(9), Diptera(4),

"Unknown Fish"(3) 4

Coenagrionidae(1),

Ptilodactylidae(9), Tipulidae(

"Fish"(3)

Mar - - -

Page 25: Technical Report 2009-2010 Monteverde Adopt-A-Stream

8/3/2019 Technical Report 2009-2010 Monteverde Adopt-A-Stream

http://slidepdf.com/reader/full/technical-report-2009-2010-monteverde-adopt-a-stream 25/30

Apr - - -

May "unknown" (5), crustacea (1) 2 "Fish" (5), Crab (1)

Jun - - -

Jul - - -

Table 12. Q.Sucia Upper – QS1

Month Orders/Groups Families

Aug - - -

Sep - - -

Oct - - -

 Nov

Oligochaeta(1), Diptera(5), Amphipoda(8),Isopoda(2), Gastropoda(4), Trichoptera(1),

Odonta(3), Ephemeroptera(3), Megaloptera(1) 9

Tubifex(1), Tipulidae(5), "Wat

Fleas"(8), "Pillbugs"(2),

Hidrobiidae(4),

Hydropsychidae(1),Coenagrionidae(3), Baetidae(3

Corydalidae(1)

Dec - - - Jan - - -

Feb - - -

Mar - - -

Apr - - -

May

Trichptera (17), Odonata (1), Oligochaeta (1),

Gastropoda (1), Hemiptera (2) 5

Hidropsychidae (17),Coenagrionidae (1), Tubifex (1

Hydroptidae (1), Water Strider

Jun - - -

Jul - - -

Table 13. Q.Sucia Lower – QS2

Month Orders/Groups Families

Aug - - -

Sep - - -

Page 26: Technical Report 2009-2010 Monteverde Adopt-A-Stream

8/3/2019 Technical Report 2009-2010 Monteverde Adopt-A-Stream

http://slidepdf.com/reader/full/technical-report-2009-2010-monteverde-adopt-a-stream 26/30

Oct - - -

  Nov - -

Dec - - -

Jan - - -

Feb - - -

Mar - - - Apr - - -

May - - -

Jun - - -

Jul - - -

Table 14. Q. Rodriguez Upper – QR1

Month Orders/Groups Families

Aug - - -

Sep - - -

Oct - - -

  Nov - - Dec - - -

Jan - - -

Feb - - -

Mar - - -

Apr - - -

May - - -

Jun - - -

Jul - - -

Table 15. Q. Rodriguez Lower – QR2

Page 27: Technical Report 2009-2010 Monteverde Adopt-A-Stream

8/3/2019 Technical Report 2009-2010 Monteverde Adopt-A-Stream

http://slidepdf.com/reader/full/technical-report-2009-2010-monteverde-adopt-a-stream 27/30

24

Appendix 3. Decree Nº 33903-MINAET1 

CAPÍTULO IICLASIFICACIÓN Y MONITOREO DE LOS CUERPOS DE AGUA

SUPERFICIALES.

Artículo 4.- PARÁMETROS FISICOS-QUÍMICOS PARA LACLASIFICACIÓN INICIAL O RECLASIFICACIÓN. Se establecen como parámetros físicos-químicos de análisis requeridos para la clasificación inicial oreclasificación de un cuerpo de agua, el porcentaje de saturación de Oxígeno, la

Demanda Bioquímica de Oxígeno y el Nitrógeno Amoniacal, parámetros contempladosen el Índice Holandés de Valoración de la Calidad para los cuerpos de aguas

superficiales.

Artículo 5.- PARÁMETROS FÍSICOS Y QUÍMICOS COMPLEMENTARIOSAdemás de los parámetros mencionados en el artículo anterior, se establecen como

 parámetros físicos, químicos y biológicos de análisis complementario, junto con sus

valores, los referidos en el Cuadro 1. Estos parámetros se deberán analizar en aquelloscasos en que el Ministerio de Ambiente y Energía o el Ministerio de Salud, lo considerennecesario en resguardo del medio ambiente y/o la salud humana.

Cuadro 1. Parámetros complementarios para la determinación de la calidad de las aguasde cuerpos superficiales para las clases establecidas en el presente Reglamento.

1 La Gaceta No 178-Lunes 17 de setiembre del 2007.

Page 28: Technical Report 2009-2010 Monteverde Adopt-A-Stream

8/3/2019 Technical Report 2009-2010 Monteverde Adopt-A-Stream

http://slidepdf.com/reader/full/technical-report-2009-2010-monteverde-adopt-a-stream 28/30

25

Page 29: Technical Report 2009-2010 Monteverde Adopt-A-Stream

8/3/2019 Technical Report 2009-2010 Monteverde Adopt-A-Stream

http://slidepdf.com/reader/full/technical-report-2009-2010-monteverde-adopt-a-stream 29/30

26

Artículo 6.- CLASIFICACIÓN FÍSICO-QUÍMICA DE LA CALIDADDEL AGUA.

Para la clasificación de la calidad de los cuerpos de agua en una de las cinco categoríasdefinidas en el presente Reglamento se utilizará el Índice Holandés de Valoración de la

Calidad del Agua para Cuerpos Receptores. Los niveles Calidad serán determinados

según la metodología presentada en el Apéndice I.CAPITULO III

CRITERIOS PARA LA DEFINICIÓN DE LOS USOS DE LOSCUERPOS DE AGUA SUPERFICIAL.

Artículo 7.- DE LOS USOSDe acuerdo a la clasificación de la calidad de los cuerpos de agua superficial, se

establecen cinco categorías de usos del agua:

Cuadro 2. Clasificación de los Cuerpos de Agua según el uso potencial, y tratamientoque requiera.

Page 30: Technical Report 2009-2010 Monteverde Adopt-A-Stream

8/3/2019 Technical Report 2009-2010 Monteverde Adopt-A-Stream

http://slidepdf.com/reader/full/technical-report-2009-2010-monteverde-adopt-a-stream 30/30