59
TDI longitudinal impedance simulation with CST PS A.Grudiev 20/03/2012

TDI longitudinal impedance simulation with CST PS A.Grudiev 20/03/2012

Embed Size (px)

Citation preview

Page 1: TDI longitudinal impedance simulation with CST PS A.Grudiev 20/03/2012

TDI longitudinal impedance simulation with CST PS

A. Grudiev20/03/2012

Page 2: TDI longitudinal impedance simulation with CST PS A.Grudiev 20/03/2012

GeometryAll metal and dielectric parts are from PEC. No losses.No ferrites are included.Magnetic wall BC is applied at the horizontal planePML BCs are applied at the up/downstream ends

Page 3: TDI longitudinal impedance simulation with CST PS A.Grudiev 20/03/2012

Mesh, sigma_z=500mm

Page 4: TDI longitudinal impedance simulation with CST PS A.Grudiev 20/03/2012

Longitudinal Wake, sigma_z=500mm

Page 5: TDI longitudinal impedance simulation with CST PS A.Grudiev 20/03/2012

Longitudinal impedance, sigma_z=500mm

Page 6: TDI longitudinal impedance simulation with CST PS A.Grudiev 20/03/2012

Longitudinal impedance, sigma_z=500mm

Page 7: TDI longitudinal impedance simulation with CST PS A.Grudiev 20/03/2012

Mesh, sigma_z=200mm

Page 8: TDI longitudinal impedance simulation with CST PS A.Grudiev 20/03/2012

Longitudinal Wake, sigma_z=200mm

Page 9: TDI longitudinal impedance simulation with CST PS A.Grudiev 20/03/2012

Longitudinal impedance, sigma_z=200mm

Page 10: TDI longitudinal impedance simulation with CST PS A.Grudiev 20/03/2012

Longitudinal impedance, sigma_z=200mm

Page 11: TDI longitudinal impedance simulation with CST PS A.Grudiev 20/03/2012

Mesh, sigma_z=100mm

Page 12: TDI longitudinal impedance simulation with CST PS A.Grudiev 20/03/2012

Longitudinal Wake, sigma_z=100mm

Page 13: TDI longitudinal impedance simulation with CST PS A.Grudiev 20/03/2012

Longitudinal impedance, sigma_z=100mm

Page 14: TDI longitudinal impedance simulation with CST PS A.Grudiev 20/03/2012

Longitudinal impedance, sigma_z=100mm

Page 15: TDI longitudinal impedance simulation with CST PS A.Grudiev 20/03/2012

Mesh, sigma_z=50mm

Page 16: TDI longitudinal impedance simulation with CST PS A.Grudiev 20/03/2012

Longitudinal Wake, sigma_z=50mm

Page 17: TDI longitudinal impedance simulation with CST PS A.Grudiev 20/03/2012

Longitudinal impedance, sigma_z=50mm

Page 18: TDI longitudinal impedance simulation with CST PS A.Grudiev 20/03/2012

Mesh, sigma_z=20mm

Page 19: TDI longitudinal impedance simulation with CST PS A.Grudiev 20/03/2012

Longitudinal Wake, sigma_z=20mm

Page 20: TDI longitudinal impedance simulation with CST PS A.Grudiev 20/03/2012

Longitudinal impedance, sigma_z=20mm

Page 21: TDI longitudinal impedance simulation with CST PS A.Grudiev 20/03/2012

Longitudinal Wake, Summary plots

Page 22: TDI longitudinal impedance simulation with CST PS A.Grudiev 20/03/2012

Longitudinal Wake, Summary plots

Page 23: TDI longitudinal impedance simulation with CST PS A.Grudiev 20/03/2012

Longitudinal Impedance, Summary plots

Page 24: TDI longitudinal impedance simulation with CST PS A.Grudiev 20/03/2012

Longitudinal Impedance, Summary plots

Page 25: TDI longitudinal impedance simulation with CST PS A.Grudiev 20/03/2012

Longitudinal Impedance, Summary plots

Page 26: TDI longitudinal impedance simulation with CST PS A.Grudiev 20/03/2012

Longitudinal Impedance, Summary plots

Page 27: TDI longitudinal impedance simulation with CST PS A.Grudiev 20/03/2012

Different beam locations: b0, b1, b2

b0;X=0

b1;X=-8mm

b2;X=-68mm

Page 28: TDI longitudinal impedance simulation with CST PS A.Grudiev 20/03/2012

Longitudinal Wake, σz=100mm: b0, b1, b2

Page 29: TDI longitudinal impedance simulation with CST PS A.Grudiev 20/03/2012

Longitudinal Impedance, σz=100mm: b0, b1, b2

Page 30: TDI longitudinal impedance simulation with CST PS A.Grudiev 20/03/2012

Longitudinal Impedance, real part, σz=100mm: b0, b1, b2

Page 31: TDI longitudinal impedance simulation with CST PS A.Grudiev 20/03/2012

Longitudinal Impedance, imaginary part, σz=100mm: b0, b1, b2

Half gap = 8mmb0: Z/n = 155 Ohm/250MHz * 400.8MHz/35640 = 7.0 mOhmb1: Z/n = 150 Ohm/250MHz * 400.8MHz/35640 = 6.7 mOhmb2: Z/n = 70 Ohm/200MHz * 400.8MHz/35640 = 3.9 mOhm

Page 32: TDI longitudinal impedance simulation with CST PS A.Grudiev 20/03/2012

Longitudinal Wake, σz=100mm: b0 PML8 -> PML16

Page 33: TDI longitudinal impedance simulation with CST PS A.Grudiev 20/03/2012

Longitudinal Impedance, real part, σz=100mm: b0, PML8 -> PML16

Almost no difference

Page 34: TDI longitudinal impedance simulation with CST PS A.Grudiev 20/03/2012

Longitudinal Wake, σz=100mm: b0 beam pipe length: 200mm -> 100mm and 300mm

Page 35: TDI longitudinal impedance simulation with CST PS A.Grudiev 20/03/2012

Longitudinal Impedance, σz=100mm: b0, beam pipe length 200mm -> 100mm and 300mm

Page 36: TDI longitudinal impedance simulation with CST PS A.Grudiev 20/03/2012

Longitudinal Impedance, σz=100mm: b0, beam pipe length 200mm -> 100mm and 300mm

Beam pipe length of 300 mm is better, but the difference is only at f ~ 0And the negative offset of the ReZl is always there at the same level.

Page 37: TDI longitudinal impedance simulation with CST PS A.Grudiev 20/03/2012

Ti coating of hBN blocksDear all, Here is a coating report from Wil (please follow the link), for a batch of BN coated in 2010. The specifications we had been asked to meet were Rsquare<0.5 Ohm.For a thickness of about 5 µm that means a resistivity of about 250 e-8 Ohm.m , larger than the nominal Ti value. This is likely due to the large amount of outgassing from the porous BN material. Cheers,Sergio & Wil See EDMS link https://edms.cern.ch/document/1085514/1

For this coating skin depth in the range from 10 MHz to 1 GHz is 250 um to 25 um which is bigger than the coating thickness of 5 um.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 20

0.2

0.4

0.6

0.8

1

f [GHz]

Tra

nsm

issi

on:

Etr

/Ein

10um Cu

5um Ti flash

Page 38: TDI longitudinal impedance simulation with CST PS A.Grudiev 20/03/2012

Longitudinal Wake, σz=100mm: b0 PEC -> hBN

Page 39: TDI longitudinal impedance simulation with CST PS A.Grudiev 20/03/2012

Longitudinal Impedance real part, σz=100mm: b0, PEC -> hBN

Page 40: TDI longitudinal impedance simulation with CST PS A.Grudiev 20/03/2012

Longitudinal Impedance, imaginary part, σz=100mm: b0, PEC hBN

Half gap = 8mmb0, PEC: Z/n = 155 Ohm/250MHz * 400.8MHz/35640 = 7.0 mOhmb0, hBN: Z/n = 2620 Ohm/400MHz * 400.8MHz/35640 = 73.7 mOhm

Page 41: TDI longitudinal impedance simulation with CST PS A.Grudiev 20/03/2012

Longitudinal Impedance, real part, : b0, hBN, σz=100 - > 50 mm

Page 42: TDI longitudinal impedance simulation with CST PS A.Grudiev 20/03/2012

Influence of the ferrite 4S60

Page 43: TDI longitudinal impedance simulation with CST PS A.Grudiev 20/03/2012

Influence of the ferrite 4S60

Page 44: TDI longitudinal impedance simulation with CST PS A.Grudiev 20/03/2012

Longitudinal impedance gap 16mm hBN, with and w/o 4S60

NO DIFFERENCE

Page 45: TDI longitudinal impedance simulation with CST PS A.Grudiev 20/03/2012

Influence of Mask for RF fingers region

Page 46: TDI longitudinal impedance simulation with CST PS A.Grudiev 20/03/2012

Longitudinal impedance gap 16mm hBN, σz = 100 mm , with and w/o Mask

No big difference in CST wakefield solverBUTSaves a lot of mesh in HFSS eigenmode solver

Page 47: TDI longitudinal impedance simulation with CST PS A.Grudiev 20/03/2012

Longitudinal impedance gap 16mm hBN, σz = 50 mm , with and w/o Mask

No big difference in CST wakefield solver BUT saves a lot of mesh in HFSS eigenmode solver

Page 48: TDI longitudinal impedance simulation with CST PS A.Grudiev 20/03/2012

R/Q estimate from PEC impedance

00

)(4)0(;)cos()(2

)( dffZWdcsZsW RR

Reminder from classicalP. Wilson, SLAC-PUB-4547

For impedance of N modes with Q >> f/df, where df=c/s_max, for PEC Q~∞

N

nnR

N

n

dff

dff

R

N

nn

N

nn dffZdffZkWW

n

n1111

)(4)(42)0()0(

n

nRn

n

nRn

f

dffZk

Q

R

dffZk

)(44

)(2

Page 49: TDI longitudinal impedance simulation with CST PS A.Grudiev 20/03/2012

R/Q estimated from longitudinal impedance, hBN, b0, σz = 50 mm

4(Zl-Zl0)*df/πf is plotted where Zl0 = 71 Ohm to make the real part positive

0 0.5 1 1.5 2 2.5 3 3.510

-4

10-2

100

102

104

f [GHz]

R/Q

[O

hm]

Page 50: TDI longitudinal impedance simulation with CST PS A.Grudiev 20/03/2012

Go to HFSS results

Page 51: TDI longitudinal impedance simulation with CST PS A.Grudiev 20/03/2012

Power estimated from ReZl, hBN, hgap=8mm, σz = 85 mm, same HWHH: b0,b1,b2

0 0.5 1 1.5 2 2.5 3 3.510

-1

100

101

102

103

104

f [GHz]

P [

W]

Beam: Mb = 2808, Nb = 2.2e+011, shape: Gaussian

b0

b1

b2Q

S

0 0.5 1 1.5 2 2.5 3 3.510

-1

100

101

102

103

104

f [GHz]

P [

W]

Beam: Mb = 1404, Nb = 3.5e+011, shape: Gaussian

b0

b1

b2Q

S

0 0.5 1 1.5 2 2.5 3 3.510

-1

100

101

102

103

104

f [GHz]

P [

W]

Beam: Mb = 1404, Nb = 3.5e+011, shape: cos2

b0

b1

b2Q

S

0 0.5 1 1.5 2 2.5 3 3.510

-1

100

101

102

103

104

f [GHz]

P [

W]

Beam: Mb = 2808, Nb = 2.2e+011, shape: cos2

b0

b1

b2Q

S

Page 52: TDI longitudinal impedance simulation with CST PS A.Grudiev 20/03/2012

Power estimated from ReZl, hBN, hgap=20mm, σz = 85 mm, same HWHH : b0,b1,b2

0 0.5 1 1.5 2 2.5 3 3.510

-1

100

101

102

103

104

f [GHz]

P [

W]

Beam: Mb = 2808, Nb = 2.2e+011, shape: cos2

b0

b1

b2Q

S

0 0.5 1 1.5 2 2.5 3 3.510

-1

100

101

102

103

104

f [GHz]

P [

W]

Beam: Mb = 2808, Nb = 2.2e+011, shape: Gaussian

b0

b1

b2Q

S

0 0.5 1 1.5 2 2.5 3 3.510

-1

100

101

102

103

104

f [GHz]

P [

W]

Beam: Mb = 1404, Nb = 3.5e+011, shape: Gaussian

b0

b1

b2Q

S

0 0.5 1 1.5 2 2.5 3 3.510

-1

100

101

102

103

104

f [GHz]

P [

W]

Beam: Mb = 1404, Nb = 3.5e+011, shape: cos2

b0

b1

b2Q

S

Page 53: TDI longitudinal impedance simulation with CST PS A.Grudiev 20/03/2012

Power estimated from ReZl, hBN, hgap=55mm, σz = 85 mm, same HWHH : b0,b1,b2

0 0.5 1 1.5 2 2.5 3 3.510

-1

100

101

102

103

104

f [GHz]

P [

W]

Beam: Mb = 1404, Nb = 3.5e+011, shape: Gauss

b0

b1

b2Q

S

0 0.5 1 1.5 2 2.5 3 3.510

-1

100

101

102

103

104

f [GHz]

P [

W]

Beam: Mb = 2808, Nb = 2.2e+011, shape: Gauss

b0

b1

b2Q

S

0 0.5 1 1.5 2 2.5 3 3.510

-1

100

101

102

103

104

f [GHz]

P [

W]

Beam: Mb = 2808, Nb = 2.2e+011, shape: cos2

b0

b1

b2Q

S

0 0.5 1 1.5 2 2.5 3 3.510

-1

100

101

102

103

104

f [GHz]

P [

W]

Beam: Mb = 1404, Nb = 3.5e+011, shape: cos2

b0

b1

b2Q

S

Page 54: TDI longitudinal impedance simulation with CST PS A.Grudiev 20/03/2012

0 0.5 1 1.5 2 2.5 3 3.510

-1

100

101

102

103

104

f [GHz]

P [

W]

Beam: Mb = 2808, Nb = 2.2e+011, shape: cos2

b0

b1

b2Q

S

0 0.5 1 1.5 2 2.5 3 3.510

-1

100

101

102

103

104

f [GHz]

P [

W]

Beam: Mb = 2808, Nb = 2.2e+011, shape: cos2

b0

b1

b2Q

S

0 0.5 1 1.5 2 2.5 3 3.510

-1

100

101

102

103

104

f [GHz]

P [

W]

Beam: Mb = 2808, Nb = 2.2e+011, shape: cos2

b0

b1

b2Q

S

Power estimated from ReZl, hBN, hgap=8->20->55mm, cos^2 bunch, HL-LHC 25 ns beam : b0,b1,b2

hgap=8mm

hgap=20mm

hgap=55mm

The impedance of the low frequency modes (<200MHz) weakly (far from linear) depends on the gap! At fully open jaws position a few 100s of Watts can be dissipated mainly on the block keepers and beam screen.

The impedance of the higher frequency modes (> 1 GHz) depends on the gap, roughly linear with the gap. Power dissipation is reduced from a few kilowatts down to the level of 100 Watts.

Page 55: TDI longitudinal impedance simulation with CST PS A.Grudiev 20/03/2012

Transverse impedance

Page 56: TDI longitudinal impedance simulation with CST PS A.Grudiev 20/03/2012

Transverse impedance dy=2mm, hgap=8mm, b0different materials for the hBN blocks: PEC and hBN

PEC+PEC(pure geometrical): Im{Zy}(f->0) = 600Ω/2mm = 300 kΩ/mPEC+hBN(geometrical+dielactric): Im{Zy}(f->0) = 5400Ω/2mm = 2.7 MΩ/mNon coataed hBN blocks result in 9 times higher transverse BB impedance

Page 57: TDI longitudinal impedance simulation with CST PS A.Grudiev 20/03/2012

Transverse impedance dy=2mm, hgap=8mm, b0hBN blocks with and without ferrite 4S60

No significant difference. Ferrite does not damp transverse modes significantly. Its location is not optimal.

Page 58: TDI longitudinal impedance simulation with CST PS A.Grudiev 20/03/2012

Some conclusions

• The ferrite 4S60 are not very effective in its present location• Imaginary part of the Broad band impedance both

longitudinal and transverse is increased by ~ factor 9 if no coating is assumed on the hBN blocks

• Parameters (f0, Q, R/Q) of all significant trapped modes has been calculated in FD using HFSS. R/Q and f0 agree rather well with CST estimate.

• RF heating estimate based on the CST results for half gap of 8, 20 and 55 mm are made for HL-LHC beam parameters. For cos^2 bunch shape it can reach few kW level if no coating is assumed on the hBN blocks

Page 59: TDI longitudinal impedance simulation with CST PS A.Grudiev 20/03/2012

Recommendations

• Maximum LHC beam parameters are assumed to be 2808 b x 1.15e+11 p/b for the operation between LS1 and LS2

1. Cu coating of hBN blocks of at least 10 um or more if possible

2. Improve cooling of the jaws to be adequate to the RF heating of the absorber block keepers which can reach 1 kW level at injection (half gap 8 mm) or 100 W level at collisions (half gap 55 mm)

3. The stainless steel beam screen must be coated with at 100-200 um of Cu. Adequate cooling if necessary has to be implemented in order to evacuate the RF heating power load of 100 W all along the screen.