10
Task Agnostic Robust Learning on Corrupt Outputs by Correlation-Guided Mixture Density Networks Sungjoon Choi Kakao Brain [email protected] Sanghoon Hong Kakao Brain [email protected] Kyungjae Lee Seoul National University [email protected] Sungbin Lim * UNIST [email protected] Abstract In this paper, we focus on weakly supervised learning with noisy training data for both classification and regres- sion problems. We assume that the training outputs are collected from a mixture of a target and correlated noise dis- tributions. Our proposed method simultaneously estimates the target distribution and the quality of each data which is defined as the correlation between the target and data generating distributions. The cornerstone of the proposed method is a Cholesky Block that enables modeling dependen- cies among mixture distributions in a differentiable manner where we maintain the distribution over the network weights. We first provide illustrative examples in both regression and classification tasks to show the effectiveness of the proposed method. Then, the proposed method is extensively evaluated in a number of experiments where we show that it constantly shows comparable or superior performances compared to existing baseline methods in the handling of noisy data. 1. Introduction Training a deep neural network requires immense amounts of training data which are often collected using crowd-sourcing methods, such as Amazon’s Mechanical Turk (AMT). However, in practice, the crowd-sourced la- bels are often noisy [4]. Furthermore, naive training of deep neural networks is often vulnerable to over-fitting given the noisy training data in that they are capable of memorizing the entire dataset even with inconsistent labels, leading to a poor generalization performance [44]. We address this prob- lem through the principled idea of revealing the correlations between the target distribution and the other (possibly noise) distributions by assuming that a training dataset is sampled from a mixture of a target distribution and other correlated distributions. * This work is done at Kakao Brain Throughout this paper, we aim to address the following two questions: 1) How can we define (or measure) the qual- ity of training data in a principled manner? 2) In the presence of inconsistent outputs, how can we infer the target distribu- tion in a scalable manner? Traditionally, noisy outputs are handled by modeling additive random distributions, often leading to robust loss functions [16] or estimating the struc- tures of label corruptions in classifications tasks [22] (for more details, refer to Section 2). To address the first question, we leverage the concept of a correlation. Precisely, we define and measure the quality of training data using the correlation between the target distribution and the data generating distribution. However, estimating the correct correlation requires access to the target distribution, whereas learning the correct target distribution requires knowing the correlation between the distributions to be known, making it a chicken-and-egg problem. To address the second question, we present a novel method that simultaneously estimates the target distribution as well as the correlation in a fully differentiable manner using stochastic gradient descent methods. The cornerstone of the proposed method is a Cholesky Block in which we employ the Cholesky transform for sam- pling the weights of a neural network that enables us to model correlated outputs. Similar to Bayesian neural net- works [6], we maintain the probability distributions over the weights, but we also leverage mixture distributions to handle the inconsistencies in a dataset. To the best of our knowledge, this is the first approach simultaneously to infer the target distribution and the output correlations using a neural network in an end-to-end manner. We will refer to this framework as ChoiceNet. ChoiceNet is first applied to synthetic regression tasks and a real-world regression task where we demonstrate its robustness to extreme outliers and its ability to distinguish the target distribution and noise distributions. Subsequently, we move on to image classification tasks using a number of benchmark datasets where we show that it shows compara- ble or superior performances compared to existing baseline 3872

Task Agnostic Robust Learning on Corrupt Outputs by ...€¦ · model correlated outputs. Similar to Bayesian neural net-works [6], we maintain the probability distributions over

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Task Agnostic Robust Learning on Corrupt Outputs by ...€¦ · model correlated outputs. Similar to Bayesian neural net-works [6], we maintain the probability distributions over

Task Agnostic Robust Learning on Corrupt Outputs

by Correlation-Guided Mixture Density Networks

Sungjoon ChoiKakao Brain

[email protected]

Sanghoon HongKakao Brain

[email protected]

Kyungjae LeeSeoul National [email protected]

Sungbin Lim∗

[email protected]

Abstract

In this paper, we focus on weakly supervised learning

with noisy training data for both classification and regres-

sion problems. We assume that the training outputs are

collected from a mixture of a target and correlated noise dis-

tributions. Our proposed method simultaneously estimates

the target distribution and the quality of each data which

is defined as the correlation between the target and data

generating distributions. The cornerstone of the proposed

method is a Cholesky Block that enables modeling dependen-

cies among mixture distributions in a differentiable manner

where we maintain the distribution over the network weights.

We first provide illustrative examples in both regression and

classification tasks to show the effectiveness of the proposed

method. Then, the proposed method is extensively evaluated

in a number of experiments where we show that it constantly

shows comparable or superior performances compared to

existing baseline methods in the handling of noisy data.

1. Introduction

Training a deep neural network requires immenseamounts of training data which are often collected usingcrowd-sourcing methods, such as Amazon’s MechanicalTurk (AMT). However, in practice, the crowd-sourced la-bels are often noisy [4]. Furthermore, naive training of deepneural networks is often vulnerable to over-fitting given thenoisy training data in that they are capable of memorizingthe entire dataset even with inconsistent labels, leading to apoor generalization performance [44]. We address this prob-lem through the principled idea of revealing the correlations

between the target distribution and the other (possibly noise)distributions by assuming that a training dataset is sampledfrom a mixture of a target distribution and other correlateddistributions.

∗This work is done at Kakao Brain

Throughout this paper, we aim to address the followingtwo questions: 1) How can we define (or measure) the qual-ity of training data in a principled manner? 2) In the presenceof inconsistent outputs, how can we infer the target distribu-tion in a scalable manner? Traditionally, noisy outputs arehandled by modeling additive random distributions, oftenleading to robust loss functions [16] or estimating the struc-tures of label corruptions in classifications tasks [22] (formore details, refer to Section 2).

To address the first question, we leverage the concept ofa correlation. Precisely, we define and measure the qualityof training data using the correlation between the targetdistribution and the data generating distribution. However,estimating the correct correlation requires access to the targetdistribution, whereas learning the correct target distributionrequires knowing the correlation between the distributionsto be known, making it a chicken-and-egg problem. Toaddress the second question, we present a novel method thatsimultaneously estimates the target distribution as well as thecorrelation in a fully differentiable manner using stochasticgradient descent methods.

The cornerstone of the proposed method is a Cholesky

Block in which we employ the Cholesky transform for sam-pling the weights of a neural network that enables us tomodel correlated outputs. Similar to Bayesian neural net-works [6], we maintain the probability distributions overthe weights, but we also leverage mixture distributions tohandle the inconsistencies in a dataset. To the best of ourknowledge, this is the first approach simultaneously to inferthe target distribution and the output correlations using aneural network in an end-to-end manner. We will refer tothis framework as ChoiceNet.

ChoiceNet is first applied to synthetic regression tasksand a real-world regression task where we demonstrate itsrobustness to extreme outliers and its ability to distinguishthe target distribution and noise distributions. Subsequently,we move on to image classification tasks using a number ofbenchmark datasets where we show that it shows compara-ble or superior performances compared to existing baseline

13872

Page 2: Task Agnostic Robust Learning on Corrupt Outputs by ...€¦ · model correlated outputs. Similar to Bayesian neural net-works [6], we maintain the probability distributions over

methods in terms of robustness with regard to handling dif-ferent types of noisy labels.

2. Related Work

Recently, robustness in deep learning has been activelystudied [11] as deep neural networks are being applied todiverse tasks involving real-world applications such as au-tonomous driving [33] or medical diagnosis [15] where asimple malfunction can have catastrophic results [1].

Existing work for handing noisy training data can be cat-egorized into four groups: small-loss tricks [17, 21, 30, 37],estimating label corruptions [2, 13, 19, 34, 38, 41], usingrobust loss functions [3, 32], and explicit and implicit regu-larization methods [14, 26, 27, 31, 36, 39, 40, 42, 45]. Ourproposed method is mostly related to the robust loss functionapproach but cannot fully be categorized into this group inthat we present a novel architecture, a mixture of correlateddensities network block, for achieving robustness based onthe correlation estimation.

First of all, the small-loss tricks selectively focus on train-ing instances based on a certain criterion, such as havingsmall cost values [17]. [30] proposed a meta-algorithm fortackling the noisy label problem by training two networksonly when the predictions of the two networks disagree,where selecting a proper network from among the two net-works can be done using an additional clean dataset. [37]reweighs the weight of each training instance using a smallamount of clean validation data. MentorNet [21] concen-trated on the training of an additional neural network, whichassigns a weight to each instance of training data to super-vise the training of a base network, termed StudentNet, toovercome the over-fitting of corrupt training data. Recentwork [17] presented Co-teaching by maintaining two sepa-rate networks where each network is trained with small-lossinstances selected from its peer network.

The second group of estimating label corruption infor-mation is mainly presented for classification tasks wheretraining labels are assumed to be corrupt with a possibly un-known corruption matrix. An earlier study in [2] proposed anextra layer for the modeling of output noises. [22] extendedthe approach mentioned above by adding an additional noiseadaptation layer with aggressive dropout regularization. Asimilar method was then proposed in [34] which initiallyestimated the label corruption matrix with a learned classi-fier and used the corruption matrix to fine-tune the classifier.Other researchers [13] presented a robust training methodthat mimics the EM algorithm to train a neural network, withthe label noise modeled as an additional softmax layer, simi-lar to earlier work [22]. A self-error-correcting network wasalso presented [29]. It switches the training labels based onthe learned model at the beginning stages by assuming thatthe deep model is more accurate during the earlier stage oftraining.

Researchers have also focussed on using robust loss func-tions; [32] studied the problem of binary classification in thepresence of random labels and presented a robust surrogate

loss function for handling noisy labels. Existing loss func-tions for classification were studied [12], with the resultsshowing that the mean absolute value of error is inherentlyrobust to label noise. In other work [3], a robust loss func-tion for deep regression tasks was proposed using Tukey’sbiweight function with the median absolute deviation of theresiduals.

The last group focusses on using implicit or explicit regu-larization methods while training. Adding small label noiseswhile training is known to be beneficial to training, as it canbe regarded as an effective regularization method [14, 27].Similar methods have been proposed to tackle noisy out-puts. A bootstrapping method [36] which trains a neuralnetwork with a convex combination of the output of thecurrent network and the noisy target was proposed. [42] pro-posed DisturbLabel, a simple method that randomly replacesa percentage of the labels with incorrect values for each iter-ation. Mixing both input and output data was also proposed[40, 45]. One study [45] considered the image recognitionproblem under label noise and the other [40] focused on asound recognition problem. The temporal ensemble wasproposed in [26] where an unsupervised loss term of fittingthe output of an augmented input to the augmented target up-dated with an exponential moving average. [39] extends thetemporal ensemble in [26] by introducing a consistency costfunction that minimizes the distance between the weights ofthe student model and the teacher model. [31] presented anew regularization method based on virtual adversarial losswhich measures the smoothness of conditional label distri-bution given input. Minimizing the virtual adversarial losshas a regularizing effect in that it makes the model smoothat each data point.

The foundation of the proposed method is a Cholesky

Block where the output distribution is modeled using a mix-ture of correlated distributions. Modeling correlations ofoutput training data has been actively studied in light ofGaussian processes [35]. MTGPP [7] that models the corre-lations of multiple tasks via Gaussian process regression wasproposed in the context of a multi-task setting. [9] proposeda robust learning from demonstration method using a sparseconstrained leverage optimization method which estimatesthe correlation between the training outputs and showed itsrobustness compared to several baselines.

3. Proposed Method

In this section, we present the motivation and the modelarchitecture of the proposed method. The main ingredientis a Cholesky Block which can be built on top of any arbi-trary base network. First, we illustrate the motivations ofdesigning the Cholesky Block in Section 3.1. Section 3.2introduces a Cholesky transform which enables correlatedsampling procedures. Subsequently, we present the overallmechanism of the proposed method and its loss functions forregression and classification tasks in Section 3.3 followedby illustrative synthetic examples in Section 3.4.

23873

Page 3: Task Agnostic Robust Learning on Corrupt Outputs by ...€¦ · model correlated outputs. Similar to Bayesian neural net-works [6], we maintain the probability distributions over

Dtrain<latexit sha1_base64="LF2Qh9b1peOPYIDOa+V2u6UkEFU=">AAACNXicbVDLSsNAFJ20Pmp9tbrTTbAIrkoigi6LunBZwT6gCWEynbRDJ5MwcyOWEPBr3OrOb3HhTtz6C07aLLTtgYHDOfcy5x4/5kyBZX0YpfLa+sZmZau6vbO7t1+rH3RVlEhCOyTikez7WFHOBO0AA077saQ49Dnt+ZOb3O89UqlYJB5gGlM3xCPBAkYwaMmrHTkhhjHBPL3NvNQB+gQpSMxElnm1htW0ZjCXiV2QBirQ9upG2RlGJAmpAMKxUgPbisFNsQRGOM2qTqJojMkEj+hAU4FDqtx0dkRmnmplaAaR1E+AOVP/bqQ4VGoa+noyj6wWvVxc6eWKVIFaaQ5V/ttCNAiu3JSJOAEqyDxZkHATIjOv0BwySQnwqSaYSKaPM8kYS0xAF13VtdmLJS2T7nnTtpr2/UWjdV0UWEHH6ASdIRtdoha6Q23UQQQ9oxf0it6Md+PT+DK+56Mlo9g5RP9g/PwC6u6sIg==</latexit><latexit sha1_base64="LF2Qh9b1peOPYIDOa+V2u6UkEFU=">AAACNXicbVDLSsNAFJ20Pmp9tbrTTbAIrkoigi6LunBZwT6gCWEynbRDJ5MwcyOWEPBr3OrOb3HhTtz6C07aLLTtgYHDOfcy5x4/5kyBZX0YpfLa+sZmZau6vbO7t1+rH3RVlEhCOyTikez7WFHOBO0AA077saQ49Dnt+ZOb3O89UqlYJB5gGlM3xCPBAkYwaMmrHTkhhjHBPL3NvNQB+gQpSMxElnm1htW0ZjCXiV2QBirQ9upG2RlGJAmpAMKxUgPbisFNsQRGOM2qTqJojMkEj+hAU4FDqtx0dkRmnmplaAaR1E+AOVP/bqQ4VGoa+noyj6wWvVxc6eWKVIFaaQ5V/ttCNAiu3JSJOAEqyDxZkHATIjOv0BwySQnwqSaYSKaPM8kYS0xAF13VtdmLJS2T7nnTtpr2/UWjdV0UWEHH6ASdIRtdoha6Q23UQQQ9oxf0it6Md+PT+DK+56Mlo9g5RP9g/PwC6u6sIg==</latexit><latexit sha1_base64="LF2Qh9b1peOPYIDOa+V2u6UkEFU=">AAACNXicbVDLSsNAFJ20Pmp9tbrTTbAIrkoigi6LunBZwT6gCWEynbRDJ5MwcyOWEPBr3OrOb3HhTtz6C07aLLTtgYHDOfcy5x4/5kyBZX0YpfLa+sZmZau6vbO7t1+rH3RVlEhCOyTikez7WFHOBO0AA077saQ49Dnt+ZOb3O89UqlYJB5gGlM3xCPBAkYwaMmrHTkhhjHBPL3NvNQB+gQpSMxElnm1htW0ZjCXiV2QBirQ9upG2RlGJAmpAMKxUgPbisFNsQRGOM2qTqJojMkEj+hAU4FDqtx0dkRmnmplaAaR1E+AOVP/bqQ4VGoa+noyj6wWvVxc6eWKVIFaaQ5V/ttCNAiu3JSJOAEqyDxZkHATIjOv0BwySQnwqSaYSKaPM8kYS0xAF13VtdmLJS2T7nnTtpr2/UWjdV0UWEHH6ASdIRtdoha6Q23UQQQ9oxf0it6Md+PT+DK+56Mlo9g5RP9g/PwC6u6sIg==</latexit><latexit sha1_base64="LF2Qh9b1peOPYIDOa+V2u6UkEFU=">AAACNXicbVDLSsNAFJ20Pmp9tbrTTbAIrkoigi6LunBZwT6gCWEynbRDJ5MwcyOWEPBr3OrOb3HhTtz6C07aLLTtgYHDOfcy5x4/5kyBZX0YpfLa+sZmZau6vbO7t1+rH3RVlEhCOyTikez7WFHOBO0AA077saQ49Dnt+ZOb3O89UqlYJB5gGlM3xCPBAkYwaMmrHTkhhjHBPL3NvNQB+gQpSMxElnm1htW0ZjCXiV2QBirQ9upG2RlGJAmpAMKxUgPbisFNsQRGOM2qTqJojMkEj+hAU4FDqtx0dkRmnmplaAaR1E+AOVP/bqQ4VGoa+noyj6wWvVxc6eWKVIFaaQ5V/ttCNAiu3JSJOAEqyDxZkHATIjOv0BwySQnwqSaYSKaPM8kYS0xAF13VtdmLJS2T7nnTtpr2/UWjdV0UWEHH6ASdIRtdoha6Q23UQQQ9oxf0it6Md+PT+DK+56Mlo9g5RP9g/PwC6u6sIg==</latexit>

Dclean<latexit sha1_base64="SSHXxDqGw+fiUbjO7Ky4iSA5ylo=">AAACNXicbVDLSsNAFJ20Pmp9tbrTTbAIrkoigi6LunBZwT6gCWEynbRDJ5MwcyOWEPBr3OrOb3HhTtz6C07aLLTtgYHDOffeuff4MWcKLOvDKJXX1jc2K1vV7Z3dvf1a/aCrokQS2iERj2Tfx4pyJmgHGHDajyXFoc9pz5/c5H7vkUrFIvEA05i6IR4JFjCCQUte7cgJMYwJ5ult5qUO0CdICadYZJlXa1hNawZzmdgFaaACba9ulJ1hRJKQCiAcKzWwrRjcFEtgemZWdRJFY0wmeEQHmgocUuWmsyMy81QrQzOIpH4CzJn6tyPFoVLT0NeV+cpq0cvFlV6uSBWoleZQ5b8trAbBlZsyESdABZlvFiTchMjMIzSHTFICfKoJJpLp40wyxhIT0EFXdWz2YkjLpHvetK2mfX/RaF0XAVbQMTpBZ8hGl6iF7lAbdRBBz+gFvaI34934NL6M73lpySh6DtE/GD+/vDCsBw==</latexit><latexit sha1_base64="SSHXxDqGw+fiUbjO7Ky4iSA5ylo=">AAACNXicbVDLSsNAFJ20Pmp9tbrTTbAIrkoigi6LunBZwT6gCWEynbRDJ5MwcyOWEPBr3OrOb3HhTtz6C07aLLTtgYHDOffeuff4MWcKLOvDKJXX1jc2K1vV7Z3dvf1a/aCrokQS2iERj2Tfx4pyJmgHGHDajyXFoc9pz5/c5H7vkUrFIvEA05i6IR4JFjCCQUte7cgJMYwJ5ult5qUO0CdICadYZJlXa1hNawZzmdgFaaACba9ulJ1hRJKQCiAcKzWwrRjcFEtgemZWdRJFY0wmeEQHmgocUuWmsyMy81QrQzOIpH4CzJn6tyPFoVLT0NeV+cpq0cvFlV6uSBWoleZQ5b8trAbBlZsyESdABZlvFiTchMjMIzSHTFICfKoJJpLp40wyxhIT0EFXdWz2YkjLpHvetK2mfX/RaF0XAVbQMTpBZ8hGl6iF7lAbdRBBz+gFvaI34934NL6M73lpySh6DtE/GD+/vDCsBw==</latexit><latexit sha1_base64="SSHXxDqGw+fiUbjO7Ky4iSA5ylo=">AAACNXicbVDLSsNAFJ20Pmp9tbrTTbAIrkoigi6LunBZwT6gCWEynbRDJ5MwcyOWEPBr3OrOb3HhTtz6C07aLLTtgYHDOffeuff4MWcKLOvDKJXX1jc2K1vV7Z3dvf1a/aCrokQS2iERj2Tfx4pyJmgHGHDajyXFoc9pz5/c5H7vkUrFIvEA05i6IR4JFjCCQUte7cgJMYwJ5ult5qUO0CdICadYZJlXa1hNawZzmdgFaaACba9ulJ1hRJKQCiAcKzWwrRjcFEtgemZWdRJFY0wmeEQHmgocUuWmsyMy81QrQzOIpH4CzJn6tyPFoVLT0NeV+cpq0cvFlV6uSBWoleZQ5b8trAbBlZsyESdABZlvFiTchMjMIzSHTFICfKoJJpLp40wyxhIT0EFXdWz2YkjLpHvetK2mfX/RaF0XAVbQMTpBZ8hGl6iF7lAbdRBBz+gFvaI34934NL6M73lpySh6DtE/GD+/vDCsBw==</latexit><latexit sha1_base64="SSHXxDqGw+fiUbjO7Ky4iSA5ylo=">AAACNXicbVDLSsNAFJ20Pmp9tbrTTbAIrkoigi6LunBZwT6gCWEynbRDJ5MwcyOWEPBr3OrOb3HhTtz6C07aLLTtgYHDOffeuff4MWcKLOvDKJXX1jc2K1vV7Z3dvf1a/aCrokQS2iERj2Tfx4pyJmgHGHDajyXFoc9pz5/c5H7vkUrFIvEA05i6IR4JFjCCQUte7cgJMYwJ5ult5qUO0CdICadYZJlXa1hNawZzmdgFaaACba9ulJ1hRJKQCiAcKzWwrRjcFEtgemZWdRJFY0wmeEQHmgocUuWmsyMy81QrQzOIpH4CzJn6tyPFoVLT0NeV+cpq0cvFlV6uSBWoleZQ5b8trAbBlZsyESdABZlvFiTchMjMIzSHTFICfKoJJpLp40wyxhIT0EFXdWz2YkjLpHvetK2mfX/RaF0XAVbQMTpBZ8hGl6iF7lAbdRBBz+gFvaI34934NL6M73lpySh6DtE/GD+/vDCsBw==</latexit>

πfW(x) >

1

2<latexit sha1_base64="Ecj4cwOMR/aurr1CcioL/lC3u1E=">AAACSHicbVDLSsNAFJ3Ud321unQzWIS6sCRF0JUU3bhUsA8wIUwmNzo4eTAzUcuQr/Br3OrOP/Av3Ik7JzULbT0wcDjnXubcE2ScSWXb71Ztbn5hcWl5pb66tr6x2WhuDWSaCwp9mvJUjAIigbME+oopDqNMAIkDDsPg7qz0h/cgJEuTKzXOwIvJTcIiRokykt84cDPma/eBhaAYD0EPi6LtxkTdBpF+LPbxCXYjQah2Ct0t/EbL7tgT4FniVKSFKlz4TWvODVOax5AoyomU146dKU8ToRjlUNTdXEJG6B25gWtDExKD9PTkrgLvGSXEUSrMSxSeqL83NImlHMeBmSwTy2mvFP/1SkXISP5rhrL8bSqaio49zZIsV5DQn2RRzrFKcdkqDpkAqvjYEEIFM8dhektMb8p0Xze1OdMlzZJBt+PYHefysNU7rQpcRjtoF7WRg45QD52jC9RHFD2hZ/SCXq0368P6tL5+RmtWtbON/qBW+wZ36LIr</latexit><latexit sha1_base64="Ecj4cwOMR/aurr1CcioL/lC3u1E=">AAACSHicbVDLSsNAFJ3Ud321unQzWIS6sCRF0JUU3bhUsA8wIUwmNzo4eTAzUcuQr/Br3OrOP/Av3Ik7JzULbT0wcDjnXubcE2ScSWXb71Ztbn5hcWl5pb66tr6x2WhuDWSaCwp9mvJUjAIigbME+oopDqNMAIkDDsPg7qz0h/cgJEuTKzXOwIvJTcIiRokykt84cDPma/eBhaAYD0EPi6LtxkTdBpF+LPbxCXYjQah2Ct0t/EbL7tgT4FniVKSFKlz4TWvODVOax5AoyomU146dKU8ToRjlUNTdXEJG6B25gWtDExKD9PTkrgLvGSXEUSrMSxSeqL83NImlHMeBmSwTy2mvFP/1SkXISP5rhrL8bSqaio49zZIsV5DQn2RRzrFKcdkqDpkAqvjYEEIFM8dhektMb8p0Xze1OdMlzZJBt+PYHefysNU7rQpcRjtoF7WRg45QD52jC9RHFD2hZ/SCXq0368P6tL5+RmtWtbON/qBW+wZ36LIr</latexit><latexit sha1_base64="Ecj4cwOMR/aurr1CcioL/lC3u1E=">AAACSHicbVDLSsNAFJ3Ud321unQzWIS6sCRF0JUU3bhUsA8wIUwmNzo4eTAzUcuQr/Br3OrOP/Av3Ik7JzULbT0wcDjnXubcE2ScSWXb71Ztbn5hcWl5pb66tr6x2WhuDWSaCwp9mvJUjAIigbME+oopDqNMAIkDDsPg7qz0h/cgJEuTKzXOwIvJTcIiRokykt84cDPma/eBhaAYD0EPi6LtxkTdBpF+LPbxCXYjQah2Ct0t/EbL7tgT4FniVKSFKlz4TWvODVOax5AoyomU146dKU8ToRjlUNTdXEJG6B25gWtDExKD9PTkrgLvGSXEUSrMSxSeqL83NImlHMeBmSwTy2mvFP/1SkXISP5rhrL8bSqaio49zZIsV5DQn2RRzrFKcdkqDpkAqvjYEEIFM8dhektMb8p0Xze1OdMlzZJBt+PYHefysNU7rQpcRjtoF7WRg45QD52jC9RHFD2hZ/SCXq0368P6tL5+RmtWtbON/qBW+wZ36LIr</latexit><latexit sha1_base64="Ecj4cwOMR/aurr1CcioL/lC3u1E=">AAACSHicbVDLSsNAFJ3Ud321unQzWIS6sCRF0JUU3bhUsA8wIUwmNzo4eTAzUcuQr/Br3OrOP/Av3Ik7JzULbT0wcDjnXubcE2ScSWXb71Ztbn5hcWl5pb66tr6x2WhuDWSaCwp9mvJUjAIigbME+oopDqNMAIkDDsPg7qz0h/cgJEuTKzXOwIvJTcIiRokykt84cDPma/eBhaAYD0EPi6LtxkTdBpF+LPbxCXYjQah2Ct0t/EbL7tgT4FniVKSFKlz4TWvODVOax5AoyomU146dKU8ToRjlUNTdXEJG6B25gWtDExKD9PTkrgLvGSXEUSrMSxSeqL83NImlHMeBmSwTy2mvFP/1SkXISP5rhrL8bSqaio49zZIsV5DQn2RRzrFKcdkqDpkAqvjYEEIFM8dhektMb8p0Xze1OdMlzZJBt+PYHefysNU7rQpcRjtoF7WRg45QD52jC9RHFD2hZ/SCXq0368P6tL5+RmtWtbON/qBW+wZ36LIr</latexit>

W<latexit sha1_base64="1TVbyuzDBxJjFcqnIFsN4ENxmcw=">AAACGnicbVDLSgMxFL1pfdT6anXpJlgEV2VGBF0W3bhswT6gHUomk2lDM5khyQhl6Be41Z1f407cuvFvzLSz0NoDgcM593JPjp8Iro3jfKNSeWt7Z7eyV90/ODw6rtVPejpOFWVdGotYDXyimeCSdQ03gg0SxUjkC9b3Z/e5339iSvNYPpp5wryITCQPOSXGSp3+uNZwms4S+D9xC9KAAu1xHZVHQUzTiElDBdF66DqJ8TKiDKeCLaqjVLOE0BmZsKGlkkRMe9ky6QJfWCXAYazskwYv1d8bGYm0nke+nYyImep1Lxc3ermidKg3moHOr61FM+Gtl3GZpIZJukoWpgKbGOc94YArRo2YW0Ko4vZzmE6JItTYNqu2Nne9pP+kd9V0nabbuW607ooCK3AG53AJLtxACx6gDV2gwOAZXuAVvaF39IE+V6MlVOycwh+grx8GSqBO</latexit><latexit sha1_base64="1TVbyuzDBxJjFcqnIFsN4ENxmcw=">AAACGnicbVDLSgMxFL1pfdT6anXpJlgEV2VGBF0W3bhswT6gHUomk2lDM5khyQhl6Be41Z1f407cuvFvzLSz0NoDgcM593JPjp8Iro3jfKNSeWt7Z7eyV90/ODw6rtVPejpOFWVdGotYDXyimeCSdQ03gg0SxUjkC9b3Z/e5339iSvNYPpp5wryITCQPOSXGSp3+uNZwms4S+D9xC9KAAu1xHZVHQUzTiElDBdF66DqJ8TKiDKeCLaqjVLOE0BmZsKGlkkRMe9ky6QJfWCXAYazskwYv1d8bGYm0nke+nYyImep1Lxc3ermidKg3moHOr61FM+Gtl3GZpIZJukoWpgKbGOc94YArRo2YW0Ko4vZzmE6JItTYNqu2Nne9pP+kd9V0nabbuW607ooCK3AG53AJLtxACx6gDV2gwOAZXuAVvaF39IE+V6MlVOycwh+grx8GSqBO</latexit><latexit sha1_base64="1TVbyuzDBxJjFcqnIFsN4ENxmcw=">AAACGnicbVDLSgMxFL1pfdT6anXpJlgEV2VGBF0W3bhswT6gHUomk2lDM5khyQhl6Be41Z1f407cuvFvzLSz0NoDgcM593JPjp8Iro3jfKNSeWt7Z7eyV90/ODw6rtVPejpOFWVdGotYDXyimeCSdQ03gg0SxUjkC9b3Z/e5339iSvNYPpp5wryITCQPOSXGSp3+uNZwms4S+D9xC9KAAu1xHZVHQUzTiElDBdF66DqJ8TKiDKeCLaqjVLOE0BmZsKGlkkRMe9ky6QJfWCXAYazskwYv1d8bGYm0nke+nYyImep1Lxc3ermidKg3moHOr61FM+Gtl3GZpIZJukoWpgKbGOc94YArRo2YW0Ko4vZzmE6JItTYNqu2Nne9pP+kd9V0nabbuW607ooCK3AG53AJLtxACx6gDV2gwOAZXuAVvaF39IE+V6MlVOycwh+grx8GSqBO</latexit><latexit sha1_base64="1TVbyuzDBxJjFcqnIFsN4ENxmcw=">AAACGnicbVDLSgMxFL1pfdT6anXpJlgEV2VGBF0W3bhswT6gHUomk2lDM5khyQhl6Be41Z1f407cuvFvzLSz0NoDgcM593JPjp8Iro3jfKNSeWt7Z7eyV90/ODw6rtVPejpOFWVdGotYDXyimeCSdQ03gg0SxUjkC9b3Z/e5339iSvNYPpp5wryITCQPOSXGSp3+uNZwms4S+D9xC9KAAu1xHZVHQUzTiElDBdF66DqJ8TKiDKeCLaqjVLOE0BmZsKGlkkRMe9ky6QJfWCXAYazskwYv1d8bGYm0nke+nYyImep1Lxc3ermidKg3moHOr61FM+Gtl3GZpIZJukoWpgKbGOc94YArRo2YW0Ko4vZzmE6JItTYNqu2Nne9pP+kd9V0nabbuW607ooCK3AG53AJLtxACx6gDV2gwOAZXuAVvaF39IE+V6MlVOycwh+grx8GSqBO</latexit>

fW<latexit sha1_base64="FwYMHg6X0VGii0BXah1IQY6m1/k=">AAACJnicbVDLSgMxFE1aH7W+Wl26CRbBVZkRQZdFNy4r2Ae0Q8lk7rShmcyYZJQy9Dvc6s6vcSfizk8x03ahbQ8EDufcyz05fiK4No7zjQvFjc2t7dJOeXdv/+CwUj1q6zhVDFosFrHq+lSD4BJahhsB3UQBjXwBHX98m/udJ1Cax/LBTBLwIjqUPOSMGit5/WcegOEigKwzHVRqTt2ZgawSd0FqaIHmoIqL/SBmaQTSMEG17rlOYryMKsOZgGm5n2pIKBvTIfQslTQC7WWz1FNyZpWAhLGyTxoyU/9uZDTSehL5djKiZqSXvVxc6+WK0qFeawY6v7YUzYTXXsZlkhqQbJ4sTAUxMck7IwFXwIyYWEKZ4vZzhI2ooszYZsu2Nne5pFXSvqi7Tt29v6w1bhYFltAJOkXnyEVXqIHuUBO1EEOP6AW9ojf8jj/wJ/6ajxbwYucY/QP++QWME6XV</latexit><latexit sha1_base64="FwYMHg6X0VGii0BXah1IQY6m1/k=">AAACJnicbVDLSgMxFE1aH7W+Wl26CRbBVZkRQZdFNy4r2Ae0Q8lk7rShmcyYZJQy9Dvc6s6vcSfizk8x03ahbQ8EDufcyz05fiK4No7zjQvFjc2t7dJOeXdv/+CwUj1q6zhVDFosFrHq+lSD4BJahhsB3UQBjXwBHX98m/udJ1Cax/LBTBLwIjqUPOSMGit5/WcegOEigKwzHVRqTt2ZgawSd0FqaIHmoIqL/SBmaQTSMEG17rlOYryMKsOZgGm5n2pIKBvTIfQslTQC7WWz1FNyZpWAhLGyTxoyU/9uZDTSehL5djKiZqSXvVxc6+WK0qFeawY6v7YUzYTXXsZlkhqQbJ4sTAUxMck7IwFXwIyYWEKZ4vZzhI2ooszYZsu2Nne5pFXSvqi7Tt29v6w1bhYFltAJOkXnyEVXqIHuUBO1EEOP6AW9ojf8jj/wJ/6ajxbwYucY/QP++QWME6XV</latexit><latexit sha1_base64="FwYMHg6X0VGii0BXah1IQY6m1/k=">AAACJnicbVDLSgMxFE1aH7W+Wl26CRbBVZkRQZdFNy4r2Ae0Q8lk7rShmcyYZJQy9Dvc6s6vcSfizk8x03ahbQ8EDufcyz05fiK4No7zjQvFjc2t7dJOeXdv/+CwUj1q6zhVDFosFrHq+lSD4BJahhsB3UQBjXwBHX98m/udJ1Cax/LBTBLwIjqUPOSMGit5/WcegOEigKwzHVRqTt2ZgawSd0FqaIHmoIqL/SBmaQTSMEG17rlOYryMKsOZgGm5n2pIKBvTIfQslTQC7WWz1FNyZpWAhLGyTxoyU/9uZDTSehL5djKiZqSXvVxc6+WK0qFeawY6v7YUzYTXXsZlkhqQbJ4sTAUxMck7IwFXwIyYWEKZ4vZzhI2ooszYZsu2Nne5pFXSvqi7Tt29v6w1bhYFltAJOkXnyEVXqIHuUBO1EEOP6AW9ojf8jj/wJ/6ajxbwYucY/QP++QWME6XV</latexit><latexit sha1_base64="FwYMHg6X0VGii0BXah1IQY6m1/k=">AAACJnicbVDLSgMxFE1aH7W+Wl26CRbBVZkRQZdFNy4r2Ae0Q8lk7rShmcyYZJQy9Dvc6s6vcSfizk8x03ahbQ8EDufcyz05fiK4No7zjQvFjc2t7dJOeXdv/+CwUj1q6zhVDFosFrHq+lSD4BJahhsB3UQBjXwBHX98m/udJ1Cax/LBTBLwIjqUPOSMGit5/WcegOEigKwzHVRqTt2ZgawSd0FqaIHmoIqL/SBmaQTSMEG17rlOYryMKsOZgGm5n2pIKBvTIfQslTQC7WWz1FNyZpWAhLGyTxoyU/9uZDTSehL5djKiZqSXvVxc6+WK0qFeawY6v7YUzYTXXsZlkhqQbJ4sTAUxMck7IwFXwIyYWEKZ4vZzhI2ooszYZsu2Nne5pFXSvqi7Tt29v6w1bhYFltAJOkXnyEVXqIHuUBO1EEOP6AW9ojf8jj/wJ/6ajxbwYucY/QP++QWME6XV</latexit>

πfW(x) <

1

2<latexit sha1_base64="27KZrbGls7QoRx8Wx+3kGvKTycQ=">AAACSHicbVDLSsNAFJ3Ud321unQzWIS6sCRF0IWLohuXCvYBJoTJ5EYHJw9mJmoZ8hV+jVvd+Qf+hTtx56Rmoa0HBg7n3Muce4KMM6ls+92qzc0vLC4tr9RX19Y3NhvNrYFMc0GhT1OeilFAJHCWQF8xxWGUCSBxwGEY3J2V/vAehGRpcqXGGXgxuUlYxChRRvIbB27GfO0+sBAU4yHoYVG03Zio2yDSj8U+PsFuJAjVTqG7hd9o2R17AjxLnIq0UIULv2nNuWFK8xgSRTmR8tqxM+VpIhSjHIq6m0vICL0jN3BtaEJikJ6e3FXgPaOEOEqFeYnCE/X3hiaxlOM4MJNlYjntleK/XqkIGcl/zVCWv01FU9Gxp1mS5QoS+pMsyjlWKS5bxSETQBUfG0KoYOY4TG+J6U2Z7uumNme6pFky6HYcu+NcHrZ6p1WBy2gH7aI2ctAR6qFzdIH6iKIn9Ixe0Kv1Zn1Yn9bXz2jNqna20R/Uat90ZLIp</latexit><latexit sha1_base64="27KZrbGls7QoRx8Wx+3kGvKTycQ=">AAACSHicbVDLSsNAFJ3Ud321unQzWIS6sCRF0IWLohuXCvYBJoTJ5EYHJw9mJmoZ8hV+jVvd+Qf+hTtx56Rmoa0HBg7n3Muce4KMM6ls+92qzc0vLC4tr9RX19Y3NhvNrYFMc0GhT1OeilFAJHCWQF8xxWGUCSBxwGEY3J2V/vAehGRpcqXGGXgxuUlYxChRRvIbB27GfO0+sBAU4yHoYVG03Zio2yDSj8U+PsFuJAjVTqG7hd9o2R17AjxLnIq0UIULv2nNuWFK8xgSRTmR8tqxM+VpIhSjHIq6m0vICL0jN3BtaEJikJ6e3FXgPaOEOEqFeYnCE/X3hiaxlOM4MJNlYjntleK/XqkIGcl/zVCWv01FU9Gxp1mS5QoS+pMsyjlWKS5bxSETQBUfG0KoYOY4TG+J6U2Z7uumNme6pFky6HYcu+NcHrZ6p1WBy2gH7aI2ctAR6qFzdIH6iKIn9Ixe0Kv1Zn1Yn9bXz2jNqna20R/Uat90ZLIp</latexit><latexit sha1_base64="27KZrbGls7QoRx8Wx+3kGvKTycQ=">AAACSHicbVDLSsNAFJ3Ud321unQzWIS6sCRF0IWLohuXCvYBJoTJ5EYHJw9mJmoZ8hV+jVvd+Qf+hTtx56Rmoa0HBg7n3Muce4KMM6ls+92qzc0vLC4tr9RX19Y3NhvNrYFMc0GhT1OeilFAJHCWQF8xxWGUCSBxwGEY3J2V/vAehGRpcqXGGXgxuUlYxChRRvIbB27GfO0+sBAU4yHoYVG03Zio2yDSj8U+PsFuJAjVTqG7hd9o2R17AjxLnIq0UIULv2nNuWFK8xgSRTmR8tqxM+VpIhSjHIq6m0vICL0jN3BtaEJikJ6e3FXgPaOEOEqFeYnCE/X3hiaxlOM4MJNlYjntleK/XqkIGcl/zVCWv01FU9Gxp1mS5QoS+pMsyjlWKS5bxSETQBUfG0KoYOY4TG+J6U2Z7uumNme6pFky6HYcu+NcHrZ6p1WBy2gH7aI2ctAR6qFzdIH6iKIn9Ixe0Kv1Zn1Yn9bXz2jNqna20R/Uat90ZLIp</latexit><latexit sha1_base64="27KZrbGls7QoRx8Wx+3kGvKTycQ=">AAACSHicbVDLSsNAFJ3Ud321unQzWIS6sCRF0IWLohuXCvYBJoTJ5EYHJw9mJmoZ8hV+jVvd+Qf+hTtx56Rmoa0HBg7n3Muce4KMM6ls+92qzc0vLC4tr9RX19Y3NhvNrYFMc0GhT1OeilFAJHCWQF8xxWGUCSBxwGEY3J2V/vAehGRpcqXGGXgxuUlYxChRRvIbB27GfO0+sBAU4yHoYVG03Zio2yDSj8U+PsFuJAjVTqG7hd9o2R17AjxLnIq0UIULv2nNuWFK8xgSRTmR8tqxM+VpIhSjHIq6m0vICL0jN3BtaEJikJ6e3FXgPaOEOEqFeYnCE/X3hiaxlOM4MJNlYjntleK/XqkIGcl/zVCWv01FU9Gxp1mS5QoS+pMsyjlWKS5bxSETQBUfG0KoYOY4TG+J6U2Z7uumNme6pFky6HYcu+NcHrZ6p1WBy2gH7aI2ctAR6qFzdIH6iKIn9Ixe0Kv1Zn1Yn9bXz2jNqna20R/Uat90ZLIp</latexit>

πfW(x) >

1

2<latexit sha1_base64="Ecj4cwOMR/aurr1CcioL/lC3u1E=">AAACSHicbVDLSsNAFJ3Ud321unQzWIS6sCRF0JUU3bhUsA8wIUwmNzo4eTAzUcuQr/Br3OrOP/Av3Ik7JzULbT0wcDjnXubcE2ScSWXb71Ztbn5hcWl5pb66tr6x2WhuDWSaCwp9mvJUjAIigbME+oopDqNMAIkDDsPg7qz0h/cgJEuTKzXOwIvJTcIiRokykt84cDPma/eBhaAYD0EPi6LtxkTdBpF+LPbxCXYjQah2Ct0t/EbL7tgT4FniVKSFKlz4TWvODVOax5AoyomU146dKU8ToRjlUNTdXEJG6B25gWtDExKD9PTkrgLvGSXEUSrMSxSeqL83NImlHMeBmSwTy2mvFP/1SkXISP5rhrL8bSqaio49zZIsV5DQn2RRzrFKcdkqDpkAqvjYEEIFM8dhektMb8p0Xze1OdMlzZJBt+PYHefysNU7rQpcRjtoF7WRg45QD52jC9RHFD2hZ/SCXq0368P6tL5+RmtWtbON/qBW+wZ36LIr</latexit><latexit sha1_base64="Ecj4cwOMR/aurr1CcioL/lC3u1E=">AAACSHicbVDLSsNAFJ3Ud321unQzWIS6sCRF0JUU3bhUsA8wIUwmNzo4eTAzUcuQr/Br3OrOP/Av3Ik7JzULbT0wcDjnXubcE2ScSWXb71Ztbn5hcWl5pb66tr6x2WhuDWSaCwp9mvJUjAIigbME+oopDqNMAIkDDsPg7qz0h/cgJEuTKzXOwIvJTcIiRokykt84cDPma/eBhaAYD0EPi6LtxkTdBpF+LPbxCXYjQah2Ct0t/EbL7tgT4FniVKSFKlz4TWvODVOax5AoyomU146dKU8ToRjlUNTdXEJG6B25gWtDExKD9PTkrgLvGSXEUSrMSxSeqL83NImlHMeBmSwTy2mvFP/1SkXISP5rhrL8bSqaio49zZIsV5DQn2RRzrFKcdkqDpkAqvjYEEIFM8dhektMb8p0Xze1OdMlzZJBt+PYHefysNU7rQpcRjtoF7WRg45QD52jC9RHFD2hZ/SCXq0368P6tL5+RmtWtbON/qBW+wZ36LIr</latexit><latexit sha1_base64="Ecj4cwOMR/aurr1CcioL/lC3u1E=">AAACSHicbVDLSsNAFJ3Ud321unQzWIS6sCRF0JUU3bhUsA8wIUwmNzo4eTAzUcuQr/Br3OrOP/Av3Ik7JzULbT0wcDjnXubcE2ScSWXb71Ztbn5hcWl5pb66tr6x2WhuDWSaCwp9mvJUjAIigbME+oopDqNMAIkDDsPg7qz0h/cgJEuTKzXOwIvJTcIiRokykt84cDPma/eBhaAYD0EPi6LtxkTdBpF+LPbxCXYjQah2Ct0t/EbL7tgT4FniVKSFKlz4TWvODVOax5AoyomU146dKU8ToRjlUNTdXEJG6B25gWtDExKD9PTkrgLvGSXEUSrMSxSeqL83NImlHMeBmSwTy2mvFP/1SkXISP5rhrL8bSqaio49zZIsV5DQn2RRzrFKcdkqDpkAqvjYEEIFM8dhektMb8p0Xze1OdMlzZJBt+PYHefysNU7rQpcRjtoF7WRg45QD52jC9RHFD2hZ/SCXq0368P6tL5+RmtWtbON/qBW+wZ36LIr</latexit><latexit sha1_base64="Ecj4cwOMR/aurr1CcioL/lC3u1E=">AAACSHicbVDLSsNAFJ3Ud321unQzWIS6sCRF0JUU3bhUsA8wIUwmNzo4eTAzUcuQr/Br3OrOP/Av3Ik7JzULbT0wcDjnXubcE2ScSWXb71Ztbn5hcWl5pb66tr6x2WhuDWSaCwp9mvJUjAIigbME+oopDqNMAIkDDsPg7qz0h/cgJEuTKzXOwIvJTcIiRokykt84cDPma/eBhaAYD0EPi6LtxkTdBpF+LPbxCXYjQah2Ct0t/EbL7tgT4FniVKSFKlz4TWvODVOax5AoyomU146dKU8ToRjlUNTdXEJG6B25gWtDExKD9PTkrgLvGSXEUSrMSxSeqL83NImlHMeBmSwTy2mvFP/1SkXISP5rhrL8bSqaio49zZIsV5DQn2RRzrFKcdkqDpkAqvjYEEIFM8dhektMb8p0Xze1OdMlzZJBt+PYHefysNU7rQpcRjtoF7WRg45QD52jC9RHFD2hZ/SCXq0368P6tL5+RmtWtbON/qBW+wZ36LIr</latexit>

πfW(x) <

1

2<latexit sha1_base64="27KZrbGls7QoRx8Wx+3kGvKTycQ=">AAACSHicbVDLSsNAFJ3Ud321unQzWIS6sCRF0IWLohuXCvYBJoTJ5EYHJw9mJmoZ8hV+jVvd+Qf+hTtx56Rmoa0HBg7n3Muce4KMM6ls+92qzc0vLC4tr9RX19Y3NhvNrYFMc0GhT1OeilFAJHCWQF8xxWGUCSBxwGEY3J2V/vAehGRpcqXGGXgxuUlYxChRRvIbB27GfO0+sBAU4yHoYVG03Zio2yDSj8U+PsFuJAjVTqG7hd9o2R17AjxLnIq0UIULv2nNuWFK8xgSRTmR8tqxM+VpIhSjHIq6m0vICL0jN3BtaEJikJ6e3FXgPaOEOEqFeYnCE/X3hiaxlOM4MJNlYjntleK/XqkIGcl/zVCWv01FU9Gxp1mS5QoS+pMsyjlWKS5bxSETQBUfG0KoYOY4TG+J6U2Z7uumNme6pFky6HYcu+NcHrZ6p1WBy2gH7aI2ctAR6qFzdIH6iKIn9Ixe0Kv1Zn1Yn9bXz2jNqna20R/Uat90ZLIp</latexit><latexit sha1_base64="27KZrbGls7QoRx8Wx+3kGvKTycQ=">AAACSHicbVDLSsNAFJ3Ud321unQzWIS6sCRF0IWLohuXCvYBJoTJ5EYHJw9mJmoZ8hV+jVvd+Qf+hTtx56Rmoa0HBg7n3Muce4KMM6ls+92qzc0vLC4tr9RX19Y3NhvNrYFMc0GhT1OeilFAJHCWQF8xxWGUCSBxwGEY3J2V/vAehGRpcqXGGXgxuUlYxChRRvIbB27GfO0+sBAU4yHoYVG03Zio2yDSj8U+PsFuJAjVTqG7hd9o2R17AjxLnIq0UIULv2nNuWFK8xgSRTmR8tqxM+VpIhSjHIq6m0vICL0jN3BtaEJikJ6e3FXgPaOEOEqFeYnCE/X3hiaxlOM4MJNlYjntleK/XqkIGcl/zVCWv01FU9Gxp1mS5QoS+pMsyjlWKS5bxSETQBUfG0KoYOY4TG+J6U2Z7uumNme6pFky6HYcu+NcHrZ6p1WBy2gH7aI2ctAR6qFzdIH6iKIn9Ixe0Kv1Zn1Yn9bXz2jNqna20R/Uat90ZLIp</latexit><latexit sha1_base64="27KZrbGls7QoRx8Wx+3kGvKTycQ=">AAACSHicbVDLSsNAFJ3Ud321unQzWIS6sCRF0IWLohuXCvYBJoTJ5EYHJw9mJmoZ8hV+jVvd+Qf+hTtx56Rmoa0HBg7n3Muce4KMM6ls+92qzc0vLC4tr9RX19Y3NhvNrYFMc0GhT1OeilFAJHCWQF8xxWGUCSBxwGEY3J2V/vAehGRpcqXGGXgxuUlYxChRRvIbB27GfO0+sBAU4yHoYVG03Zio2yDSj8U+PsFuJAjVTqG7hd9o2R17AjxLnIq0UIULv2nNuWFK8xgSRTmR8tqxM+VpIhSjHIq6m0vICL0jN3BtaEJikJ6e3FXgPaOEOEqFeYnCE/X3hiaxlOM4MJNlYjntleK/XqkIGcl/zVCWv01FU9Gxp1mS5QoS+pMsyjlWKS5bxSETQBUfG0KoYOY4TG+J6U2Z7uumNme6pFky6HYcu+NcHrZ6p1WBy2gH7aI2ctAR6qFzdIH6iKIn9Ixe0Kv1Zn1Yn9bXz2jNqna20R/Uat90ZLIp</latexit><latexit sha1_base64="27KZrbGls7QoRx8Wx+3kGvKTycQ=">AAACSHicbVDLSsNAFJ3Ud321unQzWIS6sCRF0IWLohuXCvYBJoTJ5EYHJw9mJmoZ8hV+jVvd+Qf+hTtx56Rmoa0HBg7n3Muce4KMM6ls+92qzc0vLC4tr9RX19Y3NhvNrYFMc0GhT1OeilFAJHCWQF8xxWGUCSBxwGEY3J2V/vAehGRpcqXGGXgxuUlYxChRRvIbB27GfO0+sBAU4yHoYVG03Zio2yDSj8U+PsFuJAjVTqG7hd9o2R17AjxLnIq0UIULv2nNuWFK8xgSRTmR8tqxM+VpIhSjHIq6m0vICL0jN3BtaEJikJ6e3FXgPaOEOEqFeYnCE/X3hiaxlOM4MJNlYjntleK/XqkIGcl/zVCWv01FU9Gxp1mS5QoS+pMsyjlWKS5bxSETQBUfG0KoYOY4TG+J6U2Z7uumNme6pFky6HYcu+NcHrZ6p1WBy2gH7aI2ctAR6qFzdIH6iKIn9Ixe0Kv1Zn1Yn9bXz2jNqna20R/Uat90ZLIp</latexit>

πfW(x) >

1

2<latexit sha1_base64="Ecj4cwOMR/aurr1CcioL/lC3u1E=">AAACSHicbVDLSsNAFJ3Ud321unQzWIS6sCRF0JUU3bhUsA8wIUwmNzo4eTAzUcuQr/Br3OrOP/Av3Ik7JzULbT0wcDjnXubcE2ScSWXb71Ztbn5hcWl5pb66tr6x2WhuDWSaCwp9mvJUjAIigbME+oopDqNMAIkDDsPg7qz0h/cgJEuTKzXOwIvJTcIiRokykt84cDPma/eBhaAYD0EPi6LtxkTdBpF+LPbxCXYjQah2Ct0t/EbL7tgT4FniVKSFKlz4TWvODVOax5AoyomU146dKU8ToRjlUNTdXEJG6B25gWtDExKD9PTkrgLvGSXEUSrMSxSeqL83NImlHMeBmSwTy2mvFP/1SkXISP5rhrL8bSqaio49zZIsV5DQn2RRzrFKcdkqDpkAqvjYEEIFM8dhektMb8p0Xze1OdMlzZJBt+PYHefysNU7rQpcRjtoF7WRg45QD52jC9RHFD2hZ/SCXq0368P6tL5+RmtWtbON/qBW+wZ36LIr</latexit><latexit sha1_base64="Ecj4cwOMR/aurr1CcioL/lC3u1E=">AAACSHicbVDLSsNAFJ3Ud321unQzWIS6sCRF0JUU3bhUsA8wIUwmNzo4eTAzUcuQr/Br3OrOP/Av3Ik7JzULbT0wcDjnXubcE2ScSWXb71Ztbn5hcWl5pb66tr6x2WhuDWSaCwp9mvJUjAIigbME+oopDqNMAIkDDsPg7qz0h/cgJEuTKzXOwIvJTcIiRokykt84cDPma/eBhaAYD0EPi6LtxkTdBpF+LPbxCXYjQah2Ct0t/EbL7tgT4FniVKSFKlz4TWvODVOax5AoyomU146dKU8ToRjlUNTdXEJG6B25gWtDExKD9PTkrgLvGSXEUSrMSxSeqL83NImlHMeBmSwTy2mvFP/1SkXISP5rhrL8bSqaio49zZIsV5DQn2RRzrFKcdkqDpkAqvjYEEIFM8dhektMb8p0Xze1OdMlzZJBt+PYHefysNU7rQpcRjtoF7WRg45QD52jC9RHFD2hZ/SCXq0368P6tL5+RmtWtbON/qBW+wZ36LIr</latexit><latexit sha1_base64="Ecj4cwOMR/aurr1CcioL/lC3u1E=">AAACSHicbVDLSsNAFJ3Ud321unQzWIS6sCRF0JUU3bhUsA8wIUwmNzo4eTAzUcuQr/Br3OrOP/Av3Ik7JzULbT0wcDjnXubcE2ScSWXb71Ztbn5hcWl5pb66tr6x2WhuDWSaCwp9mvJUjAIigbME+oopDqNMAIkDDsPg7qz0h/cgJEuTKzXOwIvJTcIiRokykt84cDPma/eBhaAYD0EPi6LtxkTdBpF+LPbxCXYjQah2Ct0t/EbL7tgT4FniVKSFKlz4TWvODVOax5AoyomU146dKU8ToRjlUNTdXEJG6B25gWtDExKD9PTkrgLvGSXEUSrMSxSeqL83NImlHMeBmSwTy2mvFP/1SkXISP5rhrL8bSqaio49zZIsV5DQn2RRzrFKcdkqDpkAqvjYEEIFM8dhektMb8p0Xze1OdMlzZJBt+PYHefysNU7rQpcRjtoF7WRg45QD52jC9RHFD2hZ/SCXq0368P6tL5+RmtWtbON/qBW+wZ36LIr</latexit><latexit sha1_base64="Ecj4cwOMR/aurr1CcioL/lC3u1E=">AAACSHicbVDLSsNAFJ3Ud321unQzWIS6sCRF0JUU3bhUsA8wIUwmNzo4eTAzUcuQr/Br3OrOP/Av3Ik7JzULbT0wcDjnXubcE2ScSWXb71Ztbn5hcWl5pb66tr6x2WhuDWSaCwp9mvJUjAIigbME+oopDqNMAIkDDsPg7qz0h/cgJEuTKzXOwIvJTcIiRokykt84cDPma/eBhaAYD0EPi6LtxkTdBpF+LPbxCXYjQah2Ct0t/EbL7tgT4FniVKSFKlz4TWvODVOax5AoyomU146dKU8ToRjlUNTdXEJG6B25gWtDExKD9PTkrgLvGSXEUSrMSxSeqL83NImlHMeBmSwTy2mvFP/1SkXISP5rhrL8bSqaio49zZIsV5DQn2RRzrFKcdkqDpkAqvjYEEIFM8dhektMb8p0Xze1OdMlzZJBt+PYHefysNU7rQpcRjtoF7WRg45QD52jC9RHFD2hZ/SCXq0368P6tL5+RmtWtbON/qBW+wZ36LIr</latexit>

πfW(x) <

1

2<latexit sha1_base64="27KZrbGls7QoRx8Wx+3kGvKTycQ=">AAACSHicbVDLSsNAFJ3Ud321unQzWIS6sCRF0IWLohuXCvYBJoTJ5EYHJw9mJmoZ8hV+jVvd+Qf+hTtx56Rmoa0HBg7n3Muce4KMM6ls+92qzc0vLC4tr9RX19Y3NhvNrYFMc0GhT1OeilFAJHCWQF8xxWGUCSBxwGEY3J2V/vAehGRpcqXGGXgxuUlYxChRRvIbB27GfO0+sBAU4yHoYVG03Zio2yDSj8U+PsFuJAjVTqG7hd9o2R17AjxLnIq0UIULv2nNuWFK8xgSRTmR8tqxM+VpIhSjHIq6m0vICL0jN3BtaEJikJ6e3FXgPaOEOEqFeYnCE/X3hiaxlOM4MJNlYjntleK/XqkIGcl/zVCWv01FU9Gxp1mS5QoS+pMsyjlWKS5bxSETQBUfG0KoYOY4TG+J6U2Z7uumNme6pFky6HYcu+NcHrZ6p1WBy2gH7aI2ctAR6qFzdIH6iKIn9Ixe0Kv1Zn1Yn9bXz2jNqna20R/Uat90ZLIp</latexit><latexit sha1_base64="27KZrbGls7QoRx8Wx+3kGvKTycQ=">AAACSHicbVDLSsNAFJ3Ud321unQzWIS6sCRF0IWLohuXCvYBJoTJ5EYHJw9mJmoZ8hV+jVvd+Qf+hTtx56Rmoa0HBg7n3Muce4KMM6ls+92qzc0vLC4tr9RX19Y3NhvNrYFMc0GhT1OeilFAJHCWQF8xxWGUCSBxwGEY3J2V/vAehGRpcqXGGXgxuUlYxChRRvIbB27GfO0+sBAU4yHoYVG03Zio2yDSj8U+PsFuJAjVTqG7hd9o2R17AjxLnIq0UIULv2nNuWFK8xgSRTmR8tqxM+VpIhSjHIq6m0vICL0jN3BtaEJikJ6e3FXgPaOEOEqFeYnCE/X3hiaxlOM4MJNlYjntleK/XqkIGcl/zVCWv01FU9Gxp1mS5QoS+pMsyjlWKS5bxSETQBUfG0KoYOY4TG+J6U2Z7uumNme6pFky6HYcu+NcHrZ6p1WBy2gH7aI2ctAR6qFzdIH6iKIn9Ixe0Kv1Zn1Yn9bXz2jNqna20R/Uat90ZLIp</latexit><latexit sha1_base64="27KZrbGls7QoRx8Wx+3kGvKTycQ=">AAACSHicbVDLSsNAFJ3Ud321unQzWIS6sCRF0IWLohuXCvYBJoTJ5EYHJw9mJmoZ8hV+jVvd+Qf+hTtx56Rmoa0HBg7n3Muce4KMM6ls+92qzc0vLC4tr9RX19Y3NhvNrYFMc0GhT1OeilFAJHCWQF8xxWGUCSBxwGEY3J2V/vAehGRpcqXGGXgxuUlYxChRRvIbB27GfO0+sBAU4yHoYVG03Zio2yDSj8U+PsFuJAjVTqG7hd9o2R17AjxLnIq0UIULv2nNuWFK8xgSRTmR8tqxM+VpIhSjHIq6m0vICL0jN3BtaEJikJ6e3FXgPaOEOEqFeYnCE/X3hiaxlOM4MJNlYjntleK/XqkIGcl/zVCWv01FU9Gxp1mS5QoS+pMsyjlWKS5bxSETQBUfG0KoYOY4TG+J6U2Z7uumNme6pFky6HYcu+NcHrZ6p1WBy2gH7aI2ctAR6qFzdIH6iKIn9Ixe0Kv1Zn1Yn9bXz2jNqna20R/Uat90ZLIp</latexit><latexit sha1_base64="27KZrbGls7QoRx8Wx+3kGvKTycQ=">AAACSHicbVDLSsNAFJ3Ud321unQzWIS6sCRF0IWLohuXCvYBJoTJ5EYHJw9mJmoZ8hV+jVvd+Qf+hTtx56Rmoa0HBg7n3Muce4KMM6ls+92qzc0vLC4tr9RX19Y3NhvNrYFMc0GhT1OeilFAJHCWQF8xxWGUCSBxwGEY3J2V/vAehGRpcqXGGXgxuUlYxChRRvIbB27GfO0+sBAU4yHoYVG03Zio2yDSj8U+PsFuJAjVTqG7hd9o2R17AjxLnIq0UIULv2nNuWFK8xgSRTmR8tqxM+VpIhSjHIq6m0vICL0jN3BtaEJikJ6e3FXgPaOEOEqFeYnCE/X3hiaxlOM4MJNlYjntleK/XqkIGcl/zVCWv01FU9Gxp1mS5QoS+pMsyjlWKS5bxSETQBUfG0KoYOY4TG+J6U2Z7uumNme6pFky6HYcu+NcHrZ6p1WBy2gH7aI2ctAR6qFzdIH6iKIn9Ixe0Kv1Zn1Yn9bXz2jNqna20R/Uat90ZLIp</latexit>

(a) Density Estimation (b) Mixture of Classi!ers

Figure 1: A process of binary classification on corrupt data using the mixture of (a) densities and (b) classifiers through (4).

πW(x) is the mixture weight which models the choice probability of W and estimates the corruption probability πcorrupt in (3).

3.1. Motivation

Denote training data with correct (clean) labels by Dclean

whose elements (x, y) ∈ Dclean are determined by a relationy = f(x) for a regression task and y ∈ L for a classificationtask where L is a discrete set. In this paper, we assume thatthe corrupt training data (x, y) ∈ Dtrain is generated by

Regression:

y =

{f(x) + ǫ with 1− p

g(x) + ξ with p(1)

Classification:

y =

{y with 1− p

L \ {y} with p(2)

where g is an arbitrary function. Here ǫ and ξ are het-eroscedastic additive noises and p indicates the corruptionprobability. Then, the above settings naturally employ themixture of the conditional distributions:

P (y|x) = (1−πcorrupt)Ptarget(y|x)+πcorruptPnoise(y|x) (3)

where πcorrupt models the corrupt ratio p. In particular,we model the target conditional density Ptarget(·|·) using aparametrized distribution with a Gaussian distribution witha fixed variance σ2, i.e., P (·|x) = N (fθ(x), σ

2) wherefθ(·) can be any functions, e.g., a feed-forward network,parametrized with θ.

While it may look similar to a Huber’s ǫ-contaminationmodel [20], one major difference is that, our method quanti-fies the irrelevance (or independence) of noise distributionsby utilizing the input-dependent correlation ρ(x) betweenPtarget(·|x) and Pnoise(·|x). To be specific, Pnoise(·|x) will bea function of Ptarget(·|x) and ρ(x).

In the training phase, we jointly optimize Ptarget(·|x) andρ(x). Intuitively speaking, irrelevant noisy data will bemodeled to be collected from a class of Pnoise with relativelysmall or negative ρ which can be shown in Figure 4. Since

we assume that the correlation (quality) is not explicitlygiven, we model the ρ of each data to be a function of aninput x i.e., ρφ(x), parametrized by φ and jointly optimizeφ and θ.

Why correlation matters in mixture modeling? Let ussuppose a binary classification problem L = {−1, 1} and afeature map h : X → F and a (stochastic) linear functionalW : F → R are given. For (x, y) ∈ Dclean, we expect thatW and h will be optimized as follows:

Wh(x) ∼

{N (µ+, σ

2) : y = 1

N (µ−, σ2) : y = −1

, µ+ > 0, µ− < 0

so that −Wh(x) · y < 0 holds. However, if corrupt trainingdata are given by (2), the linear functional W and the featuremap h(·) may have −Wh(x) · y > 0 and using an ordinaryloss function, such as a cross-entropy loss, might lead toover-fitting of the contaminated pattern of Dtrain. Motivatedfrom (3), we employ the mixture density to discriminate the

corrupt data by using another linear classifier W which isexpected to reveal the reverse patterns by minimizing thefollowing mixture classification loss:

−{(1− π

W(x))Wh(x)− π

W(x)Wh(x)

}· y (4)

Here πW(x) is the mixture weight which models the choice

probability of the reverse classifier W and eventually esti-mates the corruption probability πcorrupt in (3). See Figure 1for the illustrative example in binary classification.

However, the above setting is not likely to work in prac-

tice as both W and W may learn the corrupt patterns inde-pendently hence π

W(x) adhere to 1/2 under (4). In other

words, the lack of dependencies between W and W makesit hard to distinguish clean and corrupt patterns. To aidW to learn the pattern of data with a clean label, we needa self-regularizing way to help π

Wto infer the corruption

probability of given data point x by guiding W to learn

33874

Page 4: Task Agnostic Robust Learning on Corrupt Outputs by ...€¦ · model correlated outputs. Similar to Bayesian neural net-works [6], we maintain the probability distributions over

the reverse mapping of given feature h(x). To resolve this

problem, let us consider different linear functional W with

negative correlation with W , i.e., ρ(W ,W ) < 0. Then thisfunctional maps the feature h(x) as follows:

Wh(x) ∼

{N (ρµ+, σ

2) : y = 1

N (ρµ−, σ2) : y = −1

since ρ(W ,W ) = ρ(Wh,Wh) so we have −Wh(x)·y < 0if y = −y. Eventually, (4) is minimized when π

W(x) ≈

1 if output is corrupted, i.e., y = −y, and πW(x) ≈ 0

otherwise. In this way, we can make πW(x) to learn the

corrupt probability for given data point.We provide illustrative examples in both regression and

classification that can support the aforementioned motivationin Section 3.4.

3.2. Cholesky Block for Correlated Sampling

Now we introduce a Cholesky transform that enables mod-eling dependencies among output mixtures in a differentiablemanner. The Cholesky transform is a way of constructinga random variable which is correlated with other randomvariables and can be used as a sampling routine for samplingcorrelated matrices from two uncorrelated random matrices.

To be specific, suppose that w ∼ N (µw, σ2w) and z ∼

N (0, σ2z) and our goal is to construct a random variable w

such that the correlation between w and w becomes ρ. Then,the Cholesky transform which is defined as

Cholesky(w, z, ρ, µw, σw, σz)

:= ρµ+√

1− ρ2(ρσz

σw

(w − µ) + z√1− ρ2

)(5)

is a mapping from (w, z) ∈ R2 to R and can be used to

construct w. In fact, w = Cholesky(w, z, ρ, µw, σw, σz)and we can easily use (5) to construct a feed-forward layerwith a correlated weight matrix which will be referred to asa Cholesky Block as shown in Figure 2.

We also show that the correlation is preserved throughthe affine transformation making it applicable to a singlefully-connected layer where all the derivations and proofscan be found in the supplementary material. In other words,we model correlated outputs by first sampling correlatedweight matrices using Cholesky transfrom in an element-wise fashion and using the sampled weights for an affinetransformation of a feature vector of a feed-forward layer.One can simply use a reparametrization trick [25] for imple-mentations.

3.3. Overall Mechanism of ChoiceNet

In this section we describe the model architecture andthe overall mechanism of ChoiceNet. In the following,τ−1 > 0 is a small constant indicating the expected vari-ance of the target distriubtion. Wh→ρ, Wh→π ∈ R

K×Q

and Wh→Σ0∈ R

D×Q are weight matrices where Q and D

h(x)<latexit sha1_base64="RzpZh/bLKwkKegbyYdAdq53GLNU=">AAACMnicbVDLSgMxFE20aq2vVsGNm2AR6qbMWPGxK7hxWcE+oB1KJpNpQzMPkoxYxvkZt7r0Z3Qnbv0IM9NRtPVA4HDOveTcY4ecSWUYr3BpubCyulZcL21sbm3vlCu7HRlEgtA2CXggejaWlDOfthVTnPZCQbFnc9q1J1ep372jQrLAv1XTkFoeHvnMZQQrLQ3L+wMPq7HtxuOk9k3vk+NhuWrUjQxokZg5qYIcrWEFFgZOQCKP+opwLGXfNEJlxVgoRjhNSoNI0hCTCR7RvqY+9qi04uyABB1pxUFuIPTzFcrU3xsx9qSceraeTDPKeS8V//VSRUhXahMtuo5Mv5vLptwLK2Z+GCnqk1k0N+JIBSjtDzlMUKL4VBNMBNPXITLGAhOlWy5lvV2mOPtpaZF0Tupmo964Oa02m3mDRXAADkENmOAcNME1aIE2IOABPIIn8Axf4Bt8hx+z0SWY7+yBP4CfX/RpqhI=</latexit>

Z<latexit sha1_base64="agK+keGhSwEAzY7NKIHySN6LehE=">AAACJHicbVDLSsNAFL2pVWt9tbp0M1gEVyVV8bEruHFZwT5oG8pkMmmHTiZhZiKU0L9wq0u/xp24cOO3OEmDaOuBgcM593LPHDfiTGnb/rQKa8X1jc3SVnl7Z3dvv1I96KgwloS2SchD2XOxopwJ2tZMc9qLJMWBy2nXnd6mfveRSsVC8aBnEXUCPBbMZwRrI/WHAdYT10/681GlZtftDGiVNHJSgxytUdUqDr2QxAEVmnCs1KBhR9pJsNSMcDovD2NFI0ymeEwHhgocUOUkWeQ5OjGKh/xQmic0ytTfGwkOlJoFrplMI6plLxX/9VJFKl8ZE626nkrPLWXT/rWTMBHFmgqyiObHHOkQpY0hj0lKNJ8Zgolk5neITLDERJtey1lvNykuf1paJZ2zeuO8fn5/UWs28wZLcATHcAoNuIIm3EEL2kBAwBM8w4v1ar1Z79bHYrRg5TuH8AfW1zeDDqTM</latexit>

W∗<latexit sha1_base64="GDbEpDB9KFSvb8dYGTHZa6XNmGc=">AAACKHicbVDLSgMxFE20aq2vVpdugkUQF2XGio9dwY3LCvYB7VgymUwbmskMSUYow/yHW136Ne6kW7/EzHQQbT0QOJxzL/fkuBFnSlvWHK6tlzY2t8rblZ3dvf2Dau2wq8JYEtohIQ9l38WKciZoRzPNaT+SFAcupz13epf5vWcqFQvFo55F1AnwWDCfEayN9DQMsJ64ftJLR8l5OqrWrYaVA60SuyB1UKA9qsHS0AtJHFChCcdKDWwr0k6CpWaE07QyjBWNMJniMR0YKnBAlZPksVN0ahQP+aE0T2iUq783EhwoNQtcM5nFVMteJv7rZYpUvjImWnU9lZ1byqb9GydhIoo1FWQRzY850iHKWkMek5RoPjMEE8nM7xCZYImJNt1W8t5uM1z9tLRKuhcNu9loPlzWW62iwTI4BifgDNjgGrTAPWiDDiBAghfwCt7gO/yAn3C+GF2Dxc4R+AP49Q25q6Zy</latexit>

fWk<latexit sha1_base64="bmT6kKoyYP8/CjKoN1xKRHs6H4Y=">AAACNnicbVDLSsNAFJ3UqrW+Wt3pZrAIrkpqxceu4MZlBfuAppTJ5KYdOnkwM1FKCPg1bnXpr7hxJ279BCdpEG09MHA4517m3GOHnEllmm9GYaW4urZe2ihvbm3v7Faqe10ZRIJChwY8EH2bSODMh45iikM/FEA8m0PPnl6nfu8ehGSBf6dmIQw9MvaZyyhRWhpVDqwH5oBi3IHY8oia2G7cS5JRPE1GlZpZNzPgZdLISQ3laI+qRtFyAhp54CvKiZSDhhmqYUyEYpRDUrYiCSGhUzKGgaY+8UAO4+yIBB9rxcFuIPTzFc7U3xsx8aScebaeTHPKRS8V//VSRUhXahMvu45Mv1vIptzLYcz8MFLg03k0N+JYBTjtEDtMAFV8pgmhgunrMJ0QQajSTZez3q5SnP+0tEy6p/VGs968Pau1WnmDJXSIjtAJaqAL1EI3qI06iKJH9ISe0YvxarwbH8bnfLRg5Dv76A+Mr291+Kxr</latexit>

µW∗<latexit sha1_base64="nmaoDz4evZubyTKQO7eJ7OZ4H2c=">AAACMHicbVDLSsNAFJ3UqrW+WnXnZrAI4qKkVnzsCm5cVrAPaEKYTCbt0MkkzEyEGvIvbnXp1+hK3PoVTtIg2npg4HDOvdwzx40Ylco0343SSnl1bb2yUd3c2t7ZrdX3+jKMBSY9HLJQDF0kCaOc9BRVjAwjQVDgMjJwpzeZP3ggQtKQ36tZROwAjTn1KUZKS07twApiJ7ECpCaunwxSJzlNU6fWMJtmDrhMWgVpgAJdp26ULS/EcUC4wgxJOWqZkbITJBTFjKRVK5YkQniKxmSkKUcBkXaSx0/hsVY86IdCP65grv7eSFAg5Sxw9WSWUy56mfivlylC+lKbcNn1ZHZuIZvyr+yE8ihWhON5ND9mUIUwaw96VBCs2EwThAXVv4N4ggTCSndczXu7znDx09Iy6Z81W+1m++680ekUDVbAITgCJ6AFLkEH3IIu6AEMHsETeAYvxqvxZnwYn/PRklHs7IM/ML6+Aa5PqXQ=</latexit>

ρk<latexit sha1_base64="/oY3fRAFKAm6mLS3lThkQ3RVb9k=">AAACInicbVDLSgMxFE1q1VpfrS7dBIvgqsyo+NgV3LisYB/QDiWTybShmWRIMkIZ+hNudenXuBNXgh9jZjqIth4IHM65l3ty/JgzbRznE5bWyusbm5Wt6vbO7t5+rX7Q1TJRhHaI5FL1fawpZ4J2DDOc9mNFceRz2vOnt5nfe6RKMykezCymXoTHgoWMYGOl/lBN5Cidzke1htN0cqBV4hakAQq0R3VYHgaSJBEVhnCs9cB1YuOlWBlGOJ1Xh4mmMSZTPKYDSwWOqPbSPPAcnVglQKFU9gmDcvX3RoojrWeRbycjbCZ62cvEf71MUTrU1kSrbqCzc0vZTHjtpUzEiaGCLKKFCUdGoqwvFDBFieEzSzBRzP4OkQlWmBjbajXv7SbD5U9Lq6R71nTPm+f3F41Wq2iwAo7AMTgFLrgCLXAH2qADCODgCTyDF/gK3+A7/FiMlmCxcwj+AH59A/TCo/8=</latexit>

ΣW∗<latexit sha1_base64="TkO1yFcX9GpVJUHvOY13vSGfOJQ=">AAACM3icbVDLSsNAFJ3UqrW+Wl24cDNYBHFRUis+dgU3LivaBzQhTCaTduhkEmYmQgn5Gre69GPEnbj1H5ykQbT1wMDhnHuZc48bMSqVab4ZpZXy6tp6ZaO6ubW9s1ur7/VlGAtMejhkoRi6SBJGOekpqhgZRoKgwGVk4E5vMn/wSISkIX9Qs4jYARpz6lOMlJac2oF1T8cBchIrQGri+skgdZLTNHVqDbNp5oDLpFWQBijQdepG2fJCHAeEK8yQlKOWGSk7QUJRzEhatWJJIoSnaExGmnIUEGkn+QUpPNaKB/1Q6McVzNXfGwkKpJwFrp7McspFLxP/9TJFSF9qEy67nsy+W8im/Cs7oTyKFeF4Hs2PGVQhzAqEHhUEKzbTBGFB9XUQT5BAWOmaq3lv1xkuflpaJv2zZqvdbN+dNzqdosEKOARH4AS0wCXogFvQBT2AQQqewDN4MV6Nd+PD+JyPloxiZx/8gfH1DQW3qqE=</latexit>

ΣZ<latexit sha1_base64="+WTjqxfkjy+HNW9Sj8ib2nrlhCI=">AAACL3icbVDLSsNAFJ3UqrW+Wrt0M1gEVyWx4mNXcOOyon1gE8JkMmmHTh7MTIQQ8i1udenXiBtx6184SYNo64GBwzn3cs8cJ2JUSF1/1ypr1fWNzdpWfXtnd2+/0TwYijDmmAxwyEI+dpAgjAZkIKlkZBxxgnyHkZEzv8790SPhgobBvUwiYvloGlCPYiSVZDda5h2d+shOTR/JmeOlD1lmN9p6Ry8AV4lRkjYo0bebWtV0Qxz7JJCYISEmhh5JK0VcUsxIVjdjQSKE52hKJooGyCfCSov0GTxWigu9kKsXSFiovzdS5AuR+I6azDOKZS8X//VyhQtPKBOuuq7Izy1lk96lldIgiiUJ8CKaFzMoQ5iXB13KCZYsUQRhTtXvIJ4hjrBUFdeL3q5ynP+0tEqGpx2j2+nenrV7vbLBGjgER+AEGOAC9MAN6IMBwCABT+AZvGiv2pv2oX0uRitaudMCf6B9fQPALaj7</latexit>

CholeskyTransform<latexit sha1_base64="sJRXm42ziihpQxjIiIrzQu6oyc0=">AAACNnicbVBNS8NAEN34bf2qetPLYhE8lcSKH7dCLx4rWFuwpWw2k3bpZhN2J2IJBX+NVz36V7x4E6/+BDe1iLY+GHi8N8PMPD+RwqDrvjpz8wuLS8srq4W19Y3NreL2zo2JU82hwWMZ65bPDEihoIECJbQSDSzyJTT9QS33m3egjYjVNQ4T6ESsp0QoOEMrdYt7bYR7RMxq/ViCGQyvNVMmjHU06hZLbtkdg84Sb0JKZIJ6d9tZaAcxTyNQyCUz5tZzE+xkTKPgEkaFdmogYXzAenBrqWIRmE42fmJED60SULvZlkI6Vn9PZCwyZhj5tjNi2DfTXi7+6+WKNqGxJp11A5Ovm7oNw/NOJlSSIij+fVqYSooxzTOkgdDAUQ4tYVwL+x3lfaYZR5t0YZzbRY7Tn5Rmyc1x2auUK1cnpWp1kuAK2ScH5Ih45IxUySWpkwbh5IE8kify7Lw4b8678/HdOudMZnbJHzifX5V3rHw=</latexit>

Forward Backward

CorrelationBaseNetCorrelated

Weight Matrix

Figure 2: Illustration of a Cholesky Block. Every blockshares target weight matrix W∗ and auxiliary matrix

Z, and outputs correlated weight matrix Wk throughCholeskyTransform (see (5)) to distinguish the abnormalpattern from normal one which will be learned by W∗.

denote the dimensions of a feature vector h and output y,respectively, and K is the number of mixtures1.

ChoiceNet is a twofold architecture: (a) an arbitrary basenetwork and (b) the Cholesky Block (see Figure 2). Once thebase network extracts features, The Cholesky Block estimatesthe mixture of the target distribution and other correlateddistributions using the Cholesky transform in (5). While itmay seem to resemble a mixture density network (MDN)[5], this ability to model dependencies between mixtures letsus to effectively infer and distinguish the target distributionsfrom other noisy distributions as will be shown in the exper-imental sections. When using the MDN, particularly, it isnot straightforward to select which mixture to use other thanusing the one with the largest mixture probability which maylead to inferior performance given noisy datasets2.

Let us elaborate on the overall mechanism of ChoiceNet.Given an input x, a feature vector h ∈ R

Q is computed fromany arbitrary mapping such as ResNet [18] for images orword embedding [28] for natural languages. Then the net-work computes K − 1 correlations, {ρ1, ρ2(h), ..., ρK(h)},for K mixtures where the first ρ1 = 1 is reserved to modelthe target distribution, In other words, the first mixture be-comes our target distribution and we use the predictions fromthe first mixture in the inference phase.

The mean and variance of the weight matrix, µW ∈R

Q×D and ΣW ∈ RQ×D, are defined and updated for mod-

eling correlated output distributions which is analogous toa Bayesian neural network [6], These matrices can be back-propagated using the reparametrization trick. The Cholesky

Block also computes the base output variance Σ0(h) similarto an MDN.

Then we sample K weight matrices {Wi}Ki=1 from

{µ∗,Σ∗} and {ρ1, ρ2(h), ..., ρK(h)} using the Cholesky

1 Ablation studies regarding changing K and τ−1 are shown in thesupplementary material where the results show that these hyper-parametersare not sensitive to the overall learning results.

2 We test the MDN in both regression and classification tasks and theMDN shows poor performances.

43875

Page 5: Task Agnostic Robust Learning on Corrupt Outputs by ...€¦ · model correlated outputs. Similar to Bayesian neural net-works [6], we maintain the probability distributions over

Algorithm 1: ChoiceNet Algorithm

Input :Dtrain, K, τ , λ, h : X → RQ

Initialize µ∗,Σ∗,ΣZ ∈ RQ×D

Wh→ρ,Wh→π,Wh→Σ0∈ R

K×Q

while True doSample W∗ ∼ N (µ∗,Σ∗), Z ∼ N (0,ΣZ)for k ∈ {1, . . . ,K} do

ρk = tanh(Wh→ρh)k (ρ1 = 1)πk = softmax(Wh→πh)k(Σ0)k = exp(Wh→Σ0

h)kΣk = (1− ρ2k)(Σ0)k + τ−1

Wk = Cholesky(W∗,Z, ρk, µ∗,Σ∗,ΣZ)

µk = Wkhend

Compute L(Dtrain|(πk, µk,Σk)Kk=1)

Update h,Wh→ρ,Wh→π,Wh→Σ0, µ∗,Σ∗

end

return W∗,h

transform (5) so that the correlations between Wi and W∗

becomes ρi(·). Note that the correlation is preserved throughan affine transform. The K sampled feedforward weights,

{Wi}Ki=1, are used to compute K correlated output mean

vectors, {µi}Ki=1. Note that the correlation between µ1 and

µi also becomes ρi(·). We would like to emphasize that, aswe employ Gaussian distributions in the Cholesky transform,the influences of uninformative or independent data, whosecorrelations, ρ, are close to 0, is attenuated as their variancesincrease [23].

The output variances of k-th mixture is computed fromρk(h) and the based output variance Σ0(h) as follows:

Σk = (1− ρ2k(h))Σ0(h) + τ−1 ∈ RD (6)

This has an effect of increasing the variance of the mixturewhich is less related (in terms of the absolute value of a corre-lation) with the target distribution. The Cholesky Block alsocomputes the mixture probabilities of k-th mixture, πk(h),akin to an MDN. The overall process of the Cholesky Block

is summarized in Algorithm 1 and Figure 3. Now, let usintroduce the loss functions for regression and classificationtasks.

Regression For the regression task, we employ both L2-loss and the standard MDN loss ([5, 8, 10])

L(D) =1

N

N∑

i=1

λ1‖yi − µ1(xi)‖22

+1

N

N∑

i=1

λ2 log

(K∑

k=1

πk(xi)N (yi;µk(xi),Σk(xi))

)

(7)

L<latexit sha1_base64="zQIUkzxj08OC0fYWCp0WgTMTdAs=">AAACEXicbZDNSgMxFIXv1L9a/6ou3QSL4KrMiFCXRTcuXFSwP9AOJZNm2tBMMiQZoQx9CnGrz+FO3PoEPoZvYKYdwbZeCHyccy+cnCDmTBvX/XIKa+sbm1vF7dLO7t7+QfnwqKVloghtEsml6gRYU84EbRpmOO3EiuIo4LQdjG8yv/1IlWZSPJhJTP0IDwULGcHGSt1ehM2IYJ7eTfvlilt1Z4NWwcuhAvk0+uXv3kCSJKLCEI617npubPwUK8MIp9NSL9E0xmSMh7RrUeCIaj+dRZ6iM6sMUCiVfcKgmfr3IsWR1pMosJtZRL3sZeK/XqYoHepfE6HFICa88lMm4sRQQeY5woQjI1FWDxowRYnhEwuYKGa/gsgIK0yMLbFkO/KWG1mF1kXVs3x/Walf520V4QRO4Rw8qEEdbqEBTSAg4Rle4NV5ct6cd+djvlpw8ptjWBjn8weXAZ2d</latexit><latexit sha1_base64="zQIUkzxj08OC0fYWCp0WgTMTdAs=">AAACEXicbZDNSgMxFIXv1L9a/6ou3QSL4KrMiFCXRTcuXFSwP9AOJZNm2tBMMiQZoQx9CnGrz+FO3PoEPoZvYKYdwbZeCHyccy+cnCDmTBvX/XIKa+sbm1vF7dLO7t7+QfnwqKVloghtEsml6gRYU84EbRpmOO3EiuIo4LQdjG8yv/1IlWZSPJhJTP0IDwULGcHGSt1ehM2IYJ7eTfvlilt1Z4NWwcuhAvk0+uXv3kCSJKLCEI617npubPwUK8MIp9NSL9E0xmSMh7RrUeCIaj+dRZ6iM6sMUCiVfcKgmfr3IsWR1pMosJtZRL3sZeK/XqYoHepfE6HFICa88lMm4sRQQeY5woQjI1FWDxowRYnhEwuYKGa/gsgIK0yMLbFkO/KWG1mF1kXVs3x/Walf520V4QRO4Rw8qEEdbqEBTSAg4Rle4NV5ct6cd+djvlpw8ptjWBjn8weXAZ2d</latexit><latexit sha1_base64="zQIUkzxj08OC0fYWCp0WgTMTdAs=">AAACEXicbZDNSgMxFIXv1L9a/6ou3QSL4KrMiFCXRTcuXFSwP9AOJZNm2tBMMiQZoQx9CnGrz+FO3PoEPoZvYKYdwbZeCHyccy+cnCDmTBvX/XIKa+sbm1vF7dLO7t7+QfnwqKVloghtEsml6gRYU84EbRpmOO3EiuIo4LQdjG8yv/1IlWZSPJhJTP0IDwULGcHGSt1ehM2IYJ7eTfvlilt1Z4NWwcuhAvk0+uXv3kCSJKLCEI617npubPwUK8MIp9NSL9E0xmSMh7RrUeCIaj+dRZ6iM6sMUCiVfcKgmfr3IsWR1pMosJtZRL3sZeK/XqYoHepfE6HFICa88lMm4sRQQeY5woQjI1FWDxowRYnhEwuYKGa/gsgIK0yMLbFkO/KWG1mF1kXVs3x/Walf520V4QRO4Rw8qEEdbqEBTSAg4Rle4NV5ct6cd+djvlpw8ptjWBjn8weXAZ2d</latexit><latexit sha1_base64="zQIUkzxj08OC0fYWCp0WgTMTdAs=">AAACEXicbZDNSgMxFIXv1L9a/6ou3QSL4KrMiFCXRTcuXFSwP9AOJZNm2tBMMiQZoQx9CnGrz+FO3PoEPoZvYKYdwbZeCHyccy+cnCDmTBvX/XIKa+sbm1vF7dLO7t7+QfnwqKVloghtEsml6gRYU84EbRpmOO3EiuIo4LQdjG8yv/1IlWZSPJhJTP0IDwULGcHGSt1ehM2IYJ7eTfvlilt1Z4NWwcuhAvk0+uXv3kCSJKLCEI617npubPwUK8MIp9NSL9E0xmSMh7RrUeCIaj+dRZ6iM6sMUCiVfcKgmfr3IsWR1pMosJtZRL3sZeK/XqYoHepfE6HFICa88lMm4sRQQeY5woQjI1FWDxowRYnhEwuYKGa/gsgIK0yMLbFkO/KWG1mF1kXVs3x/Walf520V4QRO4Rw8qEEdbqEBTSAg4Rle4NV5ct6cd+djvlpw8ptjWBjn8weXAZ2d</latexit>

Loss function

k ∈ {1, . . . ,K}<latexit sha1_base64="fHjKsA8iHCahZ157qRXc0IrfYkw=">AAACLnicbVDLSgMxFE1aH7W+Wrt0EyyCi1JmRNBl0Y3gpoJ9QGcomUymDc1khiQjDEO/xa3u/BrBhbj1M8y0s9C2BwKHc+7lnhwv5kxpy/qEpfLW9s5uZa+6f3B4dFyrn/RVlEhCeyTikRx6WFHOBO1ppjkdxpLi0ON04M3ucn/wTKVikXjSaUzdEE8ECxjB2kjjWmPmMOFkdsvhfqRV6wE583GtabWtBdA6sQvSBAW64zosO35EkpAKTThWamRbsXYzLDUjnM6rTqJojMkMT+jIUIFDqtxskX6Ozo3ioyCS5gmNFurfjQyHSqWhZyZDrKdq1cvFjV6uSBWojaav8msr0XRw42ZMxImmgiyTBQlHOkJ5d8hnkhLNU0Mwkcx8DpEplpho03DV1GavlrRO+pdt22rbj1fNzm1RYAWcgjNwAWxwDTrgHnRBDxCQghfwCt7gO/yAX/B7OVqCxU4D/AP8+QVfY6eg</latexit><latexit sha1_base64="fHjKsA8iHCahZ157qRXc0IrfYkw=">AAACLnicbVDLSgMxFE1aH7W+Wrt0EyyCi1JmRNBl0Y3gpoJ9QGcomUymDc1khiQjDEO/xa3u/BrBhbj1M8y0s9C2BwKHc+7lnhwv5kxpy/qEpfLW9s5uZa+6f3B4dFyrn/RVlEhCeyTikRx6WFHOBO1ppjkdxpLi0ON04M3ucn/wTKVikXjSaUzdEE8ECxjB2kjjWmPmMOFkdsvhfqRV6wE583GtabWtBdA6sQvSBAW64zosO35EkpAKTThWamRbsXYzLDUjnM6rTqJojMkMT+jIUIFDqtxskX6Ozo3ioyCS5gmNFurfjQyHSqWhZyZDrKdq1cvFjV6uSBWojaav8msr0XRw42ZMxImmgiyTBQlHOkJ5d8hnkhLNU0Mwkcx8DpEplpho03DV1GavlrRO+pdt22rbj1fNzm1RYAWcgjNwAWxwDTrgHnRBDxCQghfwCt7gO/yAX/B7OVqCxU4D/AP8+QVfY6eg</latexit><latexit sha1_base64="fHjKsA8iHCahZ157qRXc0IrfYkw=">AAACLnicbVDLSgMxFE1aH7W+Wrt0EyyCi1JmRNBl0Y3gpoJ9QGcomUymDc1khiQjDEO/xa3u/BrBhbj1M8y0s9C2BwKHc+7lnhwv5kxpy/qEpfLW9s5uZa+6f3B4dFyrn/RVlEhCeyTikRx6WFHOBO1ppjkdxpLi0ON04M3ucn/wTKVikXjSaUzdEE8ECxjB2kjjWmPmMOFkdsvhfqRV6wE583GtabWtBdA6sQvSBAW64zosO35EkpAKTThWamRbsXYzLDUjnM6rTqJojMkMT+jIUIFDqtxskX6Ozo3ioyCS5gmNFurfjQyHSqWhZyZDrKdq1cvFjV6uSBWojaav8msr0XRw42ZMxImmgiyTBQlHOkJ5d8hnkhLNU0Mwkcx8DpEplpho03DV1GavlrRO+pdt22rbj1fNzm1RYAWcgjNwAWxwDTrgHnRBDxCQghfwCt7gO/yAX/B7OVqCxU4D/AP8+QVfY6eg</latexit><latexit sha1_base64="fHjKsA8iHCahZ157qRXc0IrfYkw=">AAACLnicbVDLSgMxFE1aH7W+Wrt0EyyCi1JmRNBl0Y3gpoJ9QGcomUymDc1khiQjDEO/xa3u/BrBhbj1M8y0s9C2BwKHc+7lnhwv5kxpy/qEpfLW9s5uZa+6f3B4dFyrn/RVlEhCeyTikRx6WFHOBO1ppjkdxpLi0ON04M3ucn/wTKVikXjSaUzdEE8ECxjB2kjjWmPmMOFkdsvhfqRV6wE583GtabWtBdA6sQvSBAW64zosO35EkpAKTThWamRbsXYzLDUjnM6rTqJojMkMT+jIUIFDqtxskX6Ozo3ioyCS5gmNFurfjQyHSqWhZyZDrKdq1cvFjV6uSBWojaav8msr0XRw42ZMxImmgiyTBQlHOkJ5d8hnkhLNU0Mwkcx8DpEplpho03DV1GavlrRO+pdt22rbj1fNzm1RYAWcgjNwAWxwDTrgHnRBDxCQghfwCt7gO/yAX/B7OVqCxU4D/AP8+QVfY6eg</latexit>

h(x)<latexit sha1_base64="RzpZh/bLKwkKegbyYdAdq53GLNU=">AAACMnicbVDLSgMxFE20aq2vVsGNm2AR6qbMWPGxK7hxWcE+oB1KJpNpQzMPkoxYxvkZt7r0Z3Qnbv0IM9NRtPVA4HDOveTcY4ecSWUYr3BpubCyulZcL21sbm3vlCu7HRlEgtA2CXggejaWlDOfthVTnPZCQbFnc9q1J1ep372jQrLAv1XTkFoeHvnMZQQrLQ3L+wMPq7HtxuOk9k3vk+NhuWrUjQxokZg5qYIcrWEFFgZOQCKP+opwLGXfNEJlxVgoRjhNSoNI0hCTCR7RvqY+9qi04uyABB1pxUFuIPTzFcrU3xsx9qSceraeTDPKeS8V//VSRUhXahMtuo5Mv5vLptwLK2Z+GCnqk1k0N+JIBSjtDzlMUKL4VBNMBNPXITLGAhOlWy5lvV2mOPtpaZF0Tupmo964Oa02m3mDRXAADkENmOAcNME1aIE2IOABPIIn8Axf4Bt8hx+z0SWY7+yBP4CfX/RpqhI=</latexit>

ρk<latexit sha1_base64="/oY3fRAFKAm6mLS3lThkQ3RVb9k=">AAACInicbVDLSgMxFE1q1VpfrS7dBIvgqsyo+NgV3LisYB/QDiWTybShmWRIMkIZ+hNudenXuBNXgh9jZjqIth4IHM65l3ty/JgzbRznE5bWyusbm5Wt6vbO7t5+rX7Q1TJRhHaI5FL1fawpZ4J2DDOc9mNFceRz2vOnt5nfe6RKMykezCymXoTHgoWMYGOl/lBN5Cidzke1htN0cqBV4hakAQq0R3VYHgaSJBEVhnCs9cB1YuOlWBlGOJ1Xh4mmMSZTPKYDSwWOqPbSPPAcnVglQKFU9gmDcvX3RoojrWeRbycjbCZ62cvEf71MUTrU1kSrbqCzc0vZTHjtpUzEiaGCLKKFCUdGoqwvFDBFieEzSzBRzP4OkQlWmBjbajXv7SbD5U9Lq6R71nTPm+f3F41Wq2iwAo7AMTgFLrgCLXAH2qADCODgCTyDF/gK3+A7/FiMlmCxcwj+AH59A/TCo/8=</latexit>

fWk<latexit sha1_base64="bmT6kKoyYP8/CjKoN1xKRHs6H4Y=">AAACNnicbVDLSsNAFJ3UqrW+Wt3pZrAIrkpqxceu4MZlBfuAppTJ5KYdOnkwM1FKCPg1bnXpr7hxJ279BCdpEG09MHA4517m3GOHnEllmm9GYaW4urZe2ihvbm3v7Faqe10ZRIJChwY8EH2bSODMh45iikM/FEA8m0PPnl6nfu8ehGSBf6dmIQw9MvaZyyhRWhpVDqwH5oBi3IHY8oia2G7cS5JRPE1GlZpZNzPgZdLISQ3laI+qRtFyAhp54CvKiZSDhhmqYUyEYpRDUrYiCSGhUzKGgaY+8UAO4+yIBB9rxcFuIPTzFc7U3xsx8aScebaeTHPKRS8V//VSRUhXahMvu45Mv1vIptzLYcz8MFLg03k0N+JYBTjtEDtMAFV8pgmhgunrMJ0QQajSTZez3q5SnP+0tEy6p/VGs968Pau1WnmDJXSIjtAJaqAL1EI3qI06iKJH9ISe0YvxarwbH8bnfLRg5Dv76A+Mr291+Kxr</latexit>

Cholesky Block

µk<latexit sha1_base64="GJE0Be7KH+RX85AT6ykPU0EcJso=">AAACIHicbVDLSgMxFL1pfdT6anXpJlgEV2VGBF0W3bisYB/QDiWTybShycyQZIQy9CPc6s6vcScu9WvMtLPQtgcCh3Pu5Z4cPxFcG8f5RqXy1vbObmWvun9weHRcq590dZwqyjo0FrHq+0QzwSPWMdwI1k8UI9IXrOdP73O/98yU5nH0ZGYJ8yQZRzzklBgr9YYyHWXT+ajWcJrOAniduAVpQIH2qI7KwyCmqWSRoYJoPXCdxHgZUYZTwebVYapZQuiUjNnA0ohIpr1skXeOL6wS4DBW9kUGL9S/GxmRWs+kbyclMRO96uXiRi9XlA71RjPQ+bWVaCa89TIeJalhEV0mC1OBTYzztnDAFaNGzCwhVHH7OUwnRBFqbKdVW5u7WtI66V41XafpPl43WndFgRU4g3O4BBduoAUP0IYOUJjCC7zCG3pHH+gTfS1HS6jYOYV/QD+/evijMw==</latexit><latexit sha1_base64="GJE0Be7KH+RX85AT6ykPU0EcJso=">AAACIHicbVDLSgMxFL1pfdT6anXpJlgEV2VGBF0W3bisYB/QDiWTybShycyQZIQy9CPc6s6vcScu9WvMtLPQtgcCh3Pu5Z4cPxFcG8f5RqXy1vbObmWvun9weHRcq590dZwqyjo0FrHq+0QzwSPWMdwI1k8UI9IXrOdP73O/98yU5nH0ZGYJ8yQZRzzklBgr9YYyHWXT+ajWcJrOAniduAVpQIH2qI7KwyCmqWSRoYJoPXCdxHgZUYZTwebVYapZQuiUjNnA0ohIpr1skXeOL6wS4DBW9kUGL9S/GxmRWs+kbyclMRO96uXiRi9XlA71RjPQ+bWVaCa89TIeJalhEV0mC1OBTYzztnDAFaNGzCwhVHH7OUwnRBFqbKdVW5u7WtI66V41XafpPl43WndFgRU4g3O4BBduoAUP0IYOUJjCC7zCG3pHH+gTfS1HS6jYOYV/QD+/evijMw==</latexit><latexit sha1_base64="GJE0Be7KH+RX85AT6ykPU0EcJso=">AAACIHicbVDLSgMxFL1pfdT6anXpJlgEV2VGBF0W3bisYB/QDiWTybShycyQZIQy9CPc6s6vcScu9WvMtLPQtgcCh3Pu5Z4cPxFcG8f5RqXy1vbObmWvun9weHRcq590dZwqyjo0FrHq+0QzwSPWMdwI1k8UI9IXrOdP73O/98yU5nH0ZGYJ8yQZRzzklBgr9YYyHWXT+ajWcJrOAniduAVpQIH2qI7KwyCmqWSRoYJoPXCdxHgZUYZTwebVYapZQuiUjNnA0ohIpr1skXeOL6wS4DBW9kUGL9S/GxmRWs+kbyclMRO96uXiRi9XlA71RjPQ+bWVaCa89TIeJalhEV0mC1OBTYzztnDAFaNGzCwhVHH7OUwnRBFqbKdVW5u7WtI66V41XafpPl43WndFgRU4g3O4BBduoAUP0IYOUJjCC7zCG3pHH+gTfS1HS6jYOYV/QD+/evijMw==</latexit><latexit sha1_base64="GJE0Be7KH+RX85AT6ykPU0EcJso=">AAACIHicbVDLSgMxFL1pfdT6anXpJlgEV2VGBF0W3bisYB/QDiWTybShycyQZIQy9CPc6s6vcScu9WvMtLPQtgcCh3Pu5Z4cPxFcG8f5RqXy1vbObmWvun9weHRcq590dZwqyjo0FrHq+0QzwSPWMdwI1k8UI9IXrOdP73O/98yU5nH0ZGYJ8yQZRzzklBgr9YYyHWXT+ajWcJrOAniduAVpQIH2qI7KwyCmqWSRoYJoPXCdxHgZUYZTwebVYapZQuiUjNnA0ohIpr1skXeOL6wS4DBW9kUGL9S/GxmRWs+kbyclMRO96uXiRi9XlA71RjPQ+bWVaCa89TIeJalhEV0mC1OBTYzztnDAFaNGzCwhVHH7OUwnRBFqbKdVW5u7WtI66V41XafpPl43WndFgRU4g3O4BBduoAUP0IYOUJjCC7zCG3pHH+gTfS1HS6jYOYV/QD+/evijMw==</latexit>

πk<latexit sha1_base64="TFkjuKvfJeLbJw7BC5/N12/G5Iw=">AAACIHicbVDLSgMxFL1pfdT6anXpJlgEV2VGBF0W3bisYB/QDiWTybShmcyQZIQy9CPc6s6vcScu9WvMtLPQtgcCh3Pu5Z4cPxFcG8f5RqXy1vbObmWvun9weHRcq590dZwqyjo0FrHq+0QzwSXrGG4E6yeKkcgXrOdP73O/98yU5rF8MrOEeREZSx5ySoyVesOEj7LpfFRrOE1nAbxO3II0oEB7VEflYRDTNGLSUEG0HrhOYryMKMOpYPPqMNUsIXRKxmxgqSQR0162yDvHF1YJcBgr+6TBC/XvRkYirWeRbycjYiZ61cvFjV6uKB3qjWag82sr0Ux462VcJqlhki6ThanAJsZ5WzjgilEjZpYQqrj9HKYTogg1ttOqrc1dLWmddK+artN0H68brbuiwAqcwTlcggs30IIHaEMHKEzhBV7hDb2jD/SJvpajJVTsnMI/oJ9fa3GjKg==</latexit><latexit sha1_base64="TFkjuKvfJeLbJw7BC5/N12/G5Iw=">AAACIHicbVDLSgMxFL1pfdT6anXpJlgEV2VGBF0W3bisYB/QDiWTybShmcyQZIQy9CPc6s6vcScu9WvMtLPQtgcCh3Pu5Z4cPxFcG8f5RqXy1vbObmWvun9weHRcq590dZwqyjo0FrHq+0QzwSXrGG4E6yeKkcgXrOdP73O/98yU5rF8MrOEeREZSx5ySoyVesOEj7LpfFRrOE1nAbxO3II0oEB7VEflYRDTNGLSUEG0HrhOYryMKMOpYPPqMNUsIXRKxmxgqSQR0162yDvHF1YJcBgr+6TBC/XvRkYirWeRbycjYiZ61cvFjV6uKB3qjWag82sr0Ux462VcJqlhki6ThanAJsZ5WzjgilEjZpYQqrj9HKYTogg1ttOqrc1dLWmddK+artN0H68brbuiwAqcwTlcggs30IIHaEMHKEzhBV7hDb2jD/SJvpajJVTsnMI/oJ9fa3GjKg==</latexit><latexit sha1_base64="TFkjuKvfJeLbJw7BC5/N12/G5Iw=">AAACIHicbVDLSgMxFL1pfdT6anXpJlgEV2VGBF0W3bisYB/QDiWTybShmcyQZIQy9CPc6s6vcScu9WvMtLPQtgcCh3Pu5Z4cPxFcG8f5RqXy1vbObmWvun9weHRcq590dZwqyjo0FrHq+0QzwSXrGG4E6yeKkcgXrOdP73O/98yU5rF8MrOEeREZSx5ySoyVesOEj7LpfFRrOE1nAbxO3II0oEB7VEflYRDTNGLSUEG0HrhOYryMKMOpYPPqMNUsIXRKxmxgqSQR0162yDvHF1YJcBgr+6TBC/XvRkYirWeRbycjYiZ61cvFjV6uKB3qjWag82sr0Ux462VcJqlhki6ThanAJsZ5WzjgilEjZpYQqrj9HKYTogg1ttOqrc1dLWmddK+artN0H68brbuiwAqcwTlcggs30IIHaEMHKEzhBV7hDb2jD/SJvpajJVTsnMI/oJ9fa3GjKg==</latexit><latexit sha1_base64="TFkjuKvfJeLbJw7BC5/N12/G5Iw=">AAACIHicbVDLSgMxFL1pfdT6anXpJlgEV2VGBF0W3bisYB/QDiWTybShmcyQZIQy9CPc6s6vcScu9WvMtLPQtgcCh3Pu5Z4cPxFcG8f5RqXy1vbObmWvun9weHRcq590dZwqyjo0FrHq+0QzwSXrGG4E6yeKkcgXrOdP73O/98yU5rF8MrOEeREZSx5ySoyVesOEj7LpfFRrOE1nAbxO3II0oEB7VEflYRDTNGLSUEG0HrhOYryMKMOpYPPqMNUsIXRKxmxgqSQR0162yDvHF1YJcBgr+6TBC/XvRkYirWeRbycjYiZ61cvFjV6uKB3qjWag82sr0Ux462VcJqlhki6ThanAJsZ5WzjgilEjZpYQqrj9HKYTogg1ttOqrc1dLWmddK+artN0H68brbuiwAqcwTlcggs30IIHaEMHKEzhBV7hDb2jD/SJvpajJVTsnMI/oJ9fa3GjKg==</latexit>

Σk<latexit sha1_base64="WO5SIh8TciC48U/AH4D6su/oSAE=">AAACI3icbVDLSgMxFL1pfdT6anXpZrAIrsqMCLosunFZ0T6wHUomzbShSWZIMkIZ+hdudefXuBM3LvwXM+0stO2BwOGce7knJ4g508Z1v1GhuLG5tV3aKe/u7R8cVqpHbR0litAWiXikugHWlDNJW4YZTruxolgEnHaCyW3md56p0iySj2YaU1/gkWQhI9hY6an/wEYCD9LJbFCpuXV3DmeVeDmpQY7moIqK/WFEEkGlIRxr3fPc2PgpVoYRTmflfqJpjMkEj2jPUokF1X46jzxzzqwydMJI2SeNM1f/bqRYaD0VgZ0U2Iz1speJa71MUTrUa82hzq4tRTPhtZ8yGSeGSrJIFibcMZGTFeYMmaLE8KklmChmP+eQMVaYGFtr2dbmLZe0StoXdc+te/eXtcZNXmAJTuAUzsGDK2jAHTShBQQkvMArvKF39IE+0dditIDynWP4B/TzC8LRpGA=</latexit><latexit sha1_base64="WO5SIh8TciC48U/AH4D6su/oSAE=">AAACI3icbVDLSgMxFL1pfdT6anXpZrAIrsqMCLosunFZ0T6wHUomzbShSWZIMkIZ+hdudefXuBM3LvwXM+0stO2BwOGce7knJ4g508Z1v1GhuLG5tV3aKe/u7R8cVqpHbR0litAWiXikugHWlDNJW4YZTruxolgEnHaCyW3md56p0iySj2YaU1/gkWQhI9hY6an/wEYCD9LJbFCpuXV3DmeVeDmpQY7moIqK/WFEEkGlIRxr3fPc2PgpVoYRTmflfqJpjMkEj2jPUokF1X46jzxzzqwydMJI2SeNM1f/bqRYaD0VgZ0U2Iz1speJa71MUTrUa82hzq4tRTPhtZ8yGSeGSrJIFibcMZGTFeYMmaLE8KklmChmP+eQMVaYGFtr2dbmLZe0StoXdc+te/eXtcZNXmAJTuAUzsGDK2jAHTShBQQkvMArvKF39IE+0dditIDynWP4B/TzC8LRpGA=</latexit><latexit sha1_base64="WO5SIh8TciC48U/AH4D6su/oSAE=">AAACI3icbVDLSgMxFL1pfdT6anXpZrAIrsqMCLosunFZ0T6wHUomzbShSWZIMkIZ+hdudefXuBM3LvwXM+0stO2BwOGce7knJ4g508Z1v1GhuLG5tV3aKe/u7R8cVqpHbR0litAWiXikugHWlDNJW4YZTruxolgEnHaCyW3md56p0iySj2YaU1/gkWQhI9hY6an/wEYCD9LJbFCpuXV3DmeVeDmpQY7moIqK/WFEEkGlIRxr3fPc2PgpVoYRTmflfqJpjMkEj2jPUokF1X46jzxzzqwydMJI2SeNM1f/bqRYaD0VgZ0U2Iz1speJa71MUTrUa82hzq4tRTPhtZ8yGSeGSrJIFibcMZGTFeYMmaLE8KklmChmP+eQMVaYGFtr2dbmLZe0StoXdc+te/eXtcZNXmAJTuAUzsGDK2jAHTShBQQkvMArvKF39IE+0dditIDynWP4B/TzC8LRpGA=</latexit><latexit sha1_base64="WO5SIh8TciC48U/AH4D6su/oSAE=">AAACI3icbVDLSgMxFL1pfdT6anXpZrAIrsqMCLosunFZ0T6wHUomzbShSWZIMkIZ+hdudefXuBM3LvwXM+0stO2BwOGce7knJ4g508Z1v1GhuLG5tV3aKe/u7R8cVqpHbR0litAWiXikugHWlDNJW4YZTruxolgEnHaCyW3md56p0iySj2YaU1/gkWQhI9hY6an/wEYCD9LJbFCpuXV3DmeVeDmpQY7moIqK/WFEEkGlIRxr3fPc2PgpVoYRTmflfqJpjMkEj2jPUokF1X46jzxzzqwydMJI2SeNM1f/bqRYaD0VgZ0U2Iz1speJa71MUTrUa82hzq4tRTPhtZ8yGSeGSrJIFibcMZGTFeYMmaLE8KklmChmP+eQMVaYGFtr2dbmLZe0StoXdc+te/eXtcZNXmAJTuAUzsGDK2jAHTShBQQkvMArvKF39IE+0dditIDynWP4B/TzC8LRpGA=</latexit>

Σ0<latexit sha1_base64="NgDglzqb572lAHGJMZf9kePgtIs=">AAACI3icbVDLSgMxFL1pfdT6anXpZrAIrsqMCLosunFZ0T6wHUomzbShSWZIMkIZ+hdudefXuBM3LvwXM+0stO2BwOGce7knJ4g508Z1v1GhuLG5tV3aKe/u7R8cVqpHbR0litAWiXikugHWlDNJW4YZTruxolgEnHaCyW3md56p0iySj2YaU1/gkWQhI9hY6an/wEYCD1J3NqjU3Lo7h7NKvJzUIEdzUEXF/jAiiaDSEI617nlubPwUK8MIp7NyP9E0xmSCR7RnqcSCaj+dR545Z1YZOmGk7JPGmat/N1IstJ6KwE4KbMZ62cvEtV6mKB3qteZQZ9eWopnw2k+ZjBNDJVkkCxPumMjJCnOGTFFi+NQSTBSzn3PIGCtMjK21bGvzlktaJe2LuufWvfvLWuMmL7AEJ3AK5+DBFTTgDprQAgISXuAV3tA7+kCf6GsxWkD5zjH8A/r5BV2kpCU=</latexit><latexit sha1_base64="NgDglzqb572lAHGJMZf9kePgtIs=">AAACI3icbVDLSgMxFL1pfdT6anXpZrAIrsqMCLosunFZ0T6wHUomzbShSWZIMkIZ+hdudefXuBM3LvwXM+0stO2BwOGce7knJ4g508Z1v1GhuLG5tV3aKe/u7R8cVqpHbR0litAWiXikugHWlDNJW4YZTruxolgEnHaCyW3md56p0iySj2YaU1/gkWQhI9hY6an/wEYCD1J3NqjU3Lo7h7NKvJzUIEdzUEXF/jAiiaDSEI617nlubPwUK8MIp7NyP9E0xmSCR7RnqcSCaj+dR545Z1YZOmGk7JPGmat/N1IstJ6KwE4KbMZ62cvEtV6mKB3qteZQZ9eWopnw2k+ZjBNDJVkkCxPumMjJCnOGTFFi+NQSTBSzn3PIGCtMjK21bGvzlktaJe2LuufWvfvLWuMmL7AEJ3AK5+DBFTTgDprQAgISXuAV3tA7+kCf6GsxWkD5zjH8A/r5BV2kpCU=</latexit><latexit sha1_base64="NgDglzqb572lAHGJMZf9kePgtIs=">AAACI3icbVDLSgMxFL1pfdT6anXpZrAIrsqMCLosunFZ0T6wHUomzbShSWZIMkIZ+hdudefXuBM3LvwXM+0stO2BwOGce7knJ4g508Z1v1GhuLG5tV3aKe/u7R8cVqpHbR0litAWiXikugHWlDNJW4YZTruxolgEnHaCyW3md56p0iySj2YaU1/gkWQhI9hY6an/wEYCD1J3NqjU3Lo7h7NKvJzUIEdzUEXF/jAiiaDSEI617nlubPwUK8MIp7NyP9E0xmSCR7RnqcSCaj+dR545Z1YZOmGk7JPGmat/N1IstJ6KwE4KbMZ62cvEtV6mKB3qteZQZ9eWopnw2k+ZjBNDJVkkCxPumMjJCnOGTFFi+NQSTBSzn3PIGCtMjK21bGvzlktaJe2LuufWvfvLWuMmL7AEJ3AK5+DBFTTgDprQAgISXuAV3tA7+kCf6GsxWkD5zjH8A/r5BV2kpCU=</latexit><latexit sha1_base64="NgDglzqb572lAHGJMZf9kePgtIs=">AAACI3icbVDLSgMxFL1pfdT6anXpZrAIrsqMCLosunFZ0T6wHUomzbShSWZIMkIZ+hdudefXuBM3LvwXM+0stO2BwOGce7knJ4g508Z1v1GhuLG5tV3aKe/u7R8cVqpHbR0litAWiXikugHWlDNJW4YZTruxolgEnHaCyW3md56p0iySj2YaU1/gkWQhI9hY6an/wEYCD1J3NqjU3Lo7h7NKvJzUIEdzUEXF/jAiiaDSEI617nlubPwUK8MIp7NyP9E0xmSCR7RnqcSCaj+dR545Z1YZOmGk7JPGmat/N1IstJ6KwE4KbMZ62cvEtV6mKB3qteZQZ9eWopnw2k+ZjBNDJVkkCxPumMjJCnOGTFFi+NQSTBSzn3PIGCtMjK21bGvzlktaJe2LuufWvfvLWuMmL7AEJ3AK5+DBFTTgDprQAgISXuAV3tA7+kCf6GsxWkD5zjH8A/r5BV2kpCU=</latexit>

Variance

Mean

Mixture Prior

Figure 3: Overall mechanism of ChoiceNet. It consists ofK mixtures and each mixture outputs triplet (πk, µk,Σk)via Algorithm 1. ρ1 = 1 is reserved to model the targetdistribution.

where λ1 and λ2 are hyper-parameters and N (·|µ,Σ) is thedensity of multivariate Gaussian:

N (yi;µk,Σk) =D∏

d=1

1√

2πΣ(d)k

exp

(

−|y

(d)i − µ

(d)k |2

2Σ(d)k

)

We also propose the following Kullback-Leibler regular-izer:

KL(ρ‖π) =K∑

k=1

ρk logρk

πk

, ρ = softmax(ρ) (8)

The above KL regularizer encourages the mixture compo-nents with the strong correlations to have high mixture proba-bilities. Note that we use the notion of correlation to evaluatethe goodness of each training data where the first mixturewhose correlation is always 1 is reserved for modeling thetarget distribution.

Classification In the classification task, we suppose eachyi is a D-dimensional one-hot vector. Unlike the regressiontask, (7) is not appropriate for the classification task. Weemploy the following loss function:

L(D) = −1

N

N∑

i=1

K∑

k=1

πk(xi)l(xi,yi) (9)

where

l(xi,yi) = 〈softmax(yk(xi)),yi〉

− λreg log

(

D∑

d=1

exp(y(d)k (xi))

)

.

Here 〈·, ·〉 denotes inner product, yk = (y(1)k , . . . , y

(D)k ),

and y(d)k (xi) = µ

(d)k +

Σ(d)k ε where ε ∼ N (0, 1). Similar

loss function was used in [24] which also utilizes a Gaussianmixture model.

53876

Page 6: Task Agnostic Robust Learning on Corrupt Outputs by ...€¦ · model correlated outputs. Similar to Bayesian neural net-works [6], we maintain the probability distributions over

(a) (b) (c) (d)

Figure 4: Fitting results on datasets with (a) flipped function and (c) uniform corruptions. Resulting correlations of twocomponents with (b) flipped function and (d) uniform corruptions.

3.4. Illustrative Synthetic Examples

Here, we provide synthetic examples in both regressionand classification to illustrate how the proposed method canbe used to robustly learn the underlying target distributiongiven a noisy training dataset.

Regression Task We first focus on how the proposedmethod can distinguish between the target distribution andnoise distributions in a regression task and show empiricalevidence that our method can achieve this by estimating thetarget distribution and the correlation of noise distribution si-multaneously. We train on two datasets with the same targetfunction but with different types of corruptions by replacing50% of the output values whose input values are within 0to 2: one uniformly sampled from −1 to 3 and the otherfrom a flipped target function as shown in Figure 4(a) and4(c). Throughout this experiment, we set K = 2 for bettervisualization.

As shown in Figure 4, ChoiceNet successfully estimatesthe target function with partial corruption. To further under-stand how ChoiceNet works, we also plot the correlation ofeach mixture at each input with different colors. When usingthe first dataset where we flip the outputs whose inputs arebetween 0 and 2, the correlations of the second mixture atthe corrupt region becomes −1 (see Figure 4(b)). This isexactly what we wanted ChoiceNet to behave in that having−1 correlation will simply flip the output. In other words,the second mixture takes care of the noisy (flipped) data byassigning −1 correlation while the first mixture componentreserved for the target distribution is less affected by thenoisy training data.

When using the second dataset, the correlations of the sec-ond mixture at the corrupt region are not −1 but decreases asthe input increase from 0 to 2 (see Figure 4(d)). Intuitivelyspeaking, this is because the average deviations betweenthe noisy output and the target output increases as the inputincreases. Since decreasing the correlation from 1 to 0 willincrease the output variance as shown in (6), the correla-tion of the second mixture tends to decrease as the inputincrease between 0 to 2. This clearly shows the capability ofChoiceNet to distinguish the target distribution from noisydistributions.

(a) (b)

Figure 5: The predictions results of the second mixture oftest inputs whose labels are (a) 0 and (b) 1, respectively.

Binary Classification Task We also provide an illustra-tive binary classification task using label 0 and 1 from theMNIST dataset. In particular, we replaced 40% of the train-ing data with label 0 to 1. To implement ChoiceNet, we usetwo-layer convolutional neural networks with 64 channelsand two mixtures. We trained ChoiceNet for 10 epochswhere the final train and test accuracies are 81.7% and98.1%, respectively, which indicates ChoiceNet successfullyinfers clean data distribution. As the first mixture is deservedfor inferring the clean target distribution, we expect the sec-ond mixture to take away corrupted labels. Figure 5 showstwo prediction results of the second mixture when given testinputs with label 0 and 1. As 40% of training labels whoselabels are originally 0 are replaced to 1, almost half of thesecond mixture predictions of test images whose labels are0 are 1 indicating that it takes away corrupted labels whiletraining. On the contrary, the second mixture predictions oftest inputs whose original labels are 1 are mostly focusingon label 1.

4. Experiments

In this section, we validate the performance of ChoiceNeton both regression problems in Section 4.1 and classificationproblems in Section 4.2 where we mainly focus on evaluatingthe robustness of the proposed method.

4.1. Regression Tasks

Here, we show the regression performances using syn-thetic regression tasks and a Boston housing dataset with

63877

Page 7: Task Agnostic Robust Learning on Corrupt Outputs by ...€¦ · model correlated outputs. Similar to Bayesian neural net-works [6], we maintain the probability distributions over

(a) (b) (c)

(d) (e) (f)

Figure 6: (a-c) Average fitting errors while varying the outlier rates and (e-f) fitting results of the compared methods with 60%outliers using cosexp, linear, and step functions.

outliers. More experimental results using synthetic data andbehavior cloning scenarios in MuJoCo environments wherethe demonstrations are collected and mixed from both ex-pert and adversarial policies as well as detailed experimentalsettings can be found in the supplementary material.

Synthetic Data In order to evaluate the robustness of theproposed method, we use three different 1-D target functions.Particularly, we use the following target functions: cosexp,linear, and step functions as shown in Figure 6(d)-6(f), re-spectively, and collected 1, 000 points per each functionwhile replacing a certain portion of outputs to random valuesuniformly sampled between −1.5 and 2.5. We compared ourproposed method with a mixture density network (MDN) [5]and fully connected layers with an L2-loss (MLP) and a ro-bust loss (Robust) proposed in [3]. We use three-layers with64 units and ReLU activations, and for both the proposedmethod and an MDN, five mixtures are used.

The average absolute fitting errors of three different func-tions are shown in Figure 6(a)-6(c), respectively where wecan see that the proposed method outperforms or show com-parable results with low outlier rates and shows superiorperformances with a high outlier rate (> 50%). Figure 6(d)-6(f) show the fitting results along with training data. Whileour proposed method is built on top of an MDN, it is worth-while noting the severe performance degradation of an MDNwith an extreme noise level (60%). It is mainly becausean MDN fails to allocate high mixture probability on themixture corresponds to the target distribution as there are nodependencies among different mixtures.

Table 1: The RMSEs of compared methods on the BostonHousing Dataset

Outliers ChoiceNet L2 L1 RL LeakyRL MDN

0% 3.29 3.22 3.26 4.28 3.36 3.46

10% 3.99 5.97 5.72 6.36 5.71 6.5

20% 4.77 7.51 7.16 8.08 7.08 8.62

30% 5.94 9.04 8.65 10.54 8.67 8.97

40% 6.80 9.88 9.69 10.94 9.68 10.44

Table 2: Test accuracies on the CIFAR-10 dataset with bysymmetric and asymmetric noises.

Pair-45% Sym-50% Sym-20%

Standard 49.5 48.87 76.25

+ ChoiceNet 70.3 85.2 91.0

MentorNet 58.14 71.10 80.76

Co-teaching 72.62 74.02 82.32

F-correction 6.61 59.83 59.83

MDN 51.4 58.6 81.4

Boston Housing Dataset A Boston housing price datasetis used to check the robustness of the proposed method. Wecompare our method with standard feedforward networksusing four different loss functions: standard L2-loss, L1-losswhich is known to be robust to outliers, a robust loss (RL)function proposed in [3], and a leaky robust loss (LeakyRL)function where the results are shown in Table 1. Implemen-tation details can be found in the supplementary material.

73878

Page 8: Task Agnostic Robust Learning on Corrupt Outputs by ...€¦ · model correlated outputs. Similar to Bayesian neural net-works [6], we maintain the probability distributions over

MNIST FMNIST SVHN CIFAR10 CIFAR100

Data Model 20% 50% 20% 50% 20% 50% 20% 50% 20% 50%

DtestWideResNet 82.19 56.63 82.32 56.55 82.21 55.94 81.93 54.97 80.19 50.48

+ ChoiceNet 99.66 99.03 97.46 95.36 94.40 78.32 96.58 90.28 85.81 68.89

DtrainWideResNet 99.29 92.49 98.62 92.42 99.34 95.91 99.97 99.82 99.96 99.91

+ ChoiceNet 81.99 55.38 80.63 54.45 78.99 48.69 81.88 56.83 26.03 18.14

Expected True Ratio 82% 55% 82% 55% 82% 55% 82 % 55% 80.2% 50.5 %

Table 3: The comparison between naive WideResNet and ChoiceNet on multile benchmark datasets.

4.2. Classification Tasks

Here, we conduct comprehensive classification experi-ments to investigate how ChoiceNet performs on image clas-sification tasks with noisy labels. More experimental resultson MNIST, CIFAR-10, and a natural language processingtask and ablation studies of hyper-parameters can also befound in the supplementary material.

CIFAR-10 Comparison We first evaluate the perfor-mance of our method and compare it with MentorNet [21],Co-teaching [17] and F-correction [34] on noisy CIFAR-10 datasets. We follow three different noise settings from[17]: PairFlip-45%, Symmetry-50%, and Symmetry-20%.On ‘Symmetry‘ settings, noisy labels can be assigned to allclasses, while, on ‘PairFlip‘ settings, all noisy labels fromthe same true label are assigned to a single noisy label. Amodel is trained on a noisy dataset and evaluated on the cleantest set. For fair comparisons, we keep other configurationssuch as the network topology to be the same as [17].

Table 2 shows the test accuracy of compared methodsunder different noise settings. Our proposed method out-performs all compared methods on the symmetric noisesettings with a large margin over 10%p. On asymmetricnoise settings (Pair-45%), our method shows the second bestperformance, and this reveals the weakness of the proposedmethod. As Pair-45% assigns 45% of each label to its nextlabel, The Cholesky Block fails to infer the dominant labeldistributions correctly. However, we would like to note thatCo-teaching [17] is complementary to our method where onecan combine these two methods by using two ChoiceNetsand update each network using Co-teaching.

Generalization to Other Datasets We conduct additionalexperiments to investigate how our method works on otherimage datasets. We adopt the structure of WideResNet [43]and design a baseline network with a depth of 22 and a widenfactor of 4. We also construct ChoiceNet by replacing the lasttwo layers (‘average pooling‘ and ‘linear‘) with the Cholesky

Block. We train the networks on CIFAR-10, CIFAR-100,FMNIST, MNIST and SVHN datasets with noisy labels. Wegenerate noisy datasets with symmetric noise setting andvary corruption ratios from 20% to 50%. We would like toemphasize that we use the same hyper-parameters, which

are tuned for the CIFAR-10 experiments, for all the datasetsexcept for CIFAR-1003.

Table 3 shows test accuracies of our method and the base-line on various image datasets with noisy labels. ChoiceNetconsistently outperforms the baseline in most of the configu-rations except for 80%-corrupted SVHN dataset. Moreover,we expect that performance gains can increase when dataset-specific hyperparameter tuning is applied. The results sug-gest that the proposed ChoiceNet can easily be applied toother noisy datasets and show a performance improvementwithout large efforts.

We would like to emphasize that the training accuracy ofthe proposed method in Table 3 is close to the expected trueratio4. This implies that our proposed Cholesky Block canseparate true labels and false labels from a noisy dataset. Wealso note that training ChoiceNet on CIFAR-100 datasetsrequires a modification in a loss weight. We hypothesize thatthe hyperparameters of our proposed method are sensitive toa number of target classes in a dataset.

5. Conclusion

In this paper, we have presented ChoiceNet that can ro-bustly learn a target distribution given noisy training data.The keystone of ChoiceNet is the mixture of correlated den-sities network block which can simultaneously estimate theunderlying target distribution and the quality of each datawhere the quality is defined by the correlation between thetarget and generating distributions. We have demonstratedthat the proposed method can robustly infer the target dis-tribution on corrupt training data in both regression andclassification tasks. However, we have seen that in the caseof extreme asymmetric noises, the proposed method showedsuboptimal performances. We believe that it could resolvedby combining our method with other robust learning methodswhere we have demonstrated that ChoiceNet can effectivelybe combined with mix-up [45]. Furthermore, one can useChoiceNet for active learning by evaluating the quality ofeach training data using through the lens of correlations.

3 On CIFAR-100 dataset, we found the network underfits with ourdefault hyper-parameters. Therefore, we enlarged λreg to 1e − 3 forCIFAR-100 experiments.

4 Since a noisy label can be assigned to any labels, we can expect 82%,55% true labels on noisy datasets with a corruption probability of 20%,50%, respectively.

83879

Page 9: Task Agnostic Robust Learning on Corrupt Outputs by ...€¦ · model correlated outputs. Similar to Bayesian neural net-works [6], we maintain the probability distributions over

References

[1] AP and REUTERS. Tesla working on ’improvements’ to its

autopilot radar changes after model s owner became the first

self-driving fatality., June 2016.[2] Alan Joseph Bekker and Jacob Goldberger. Training deep

neural-networks based on unreliable labels. In Proc. of IEEE

International Conference on Acoustics, Speech and Signal

Processing, pages 2682–2686. IEEE, 2016.[3] Vasileios Belagiannis, Christian Rupprecht, Gustavo Carneiro,

and Nassir Navab. Robust optimization for deep regression.

In Proc. of the IEEE International Conference on Computer

Vision, pages 2830–2838, 2015.[4] Wei Bi, Liwei Wang, James T Kwok, and Zhuowen Tu. Learn-

ing to predict from crowdsourced data. In UAI, pages 82–91,

2014.[5] Christopher M Bishop. Mixture density networks. 1994.[6] Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and

Daan Wierstra. Weight uncertainty in neural networks. In In-

ternational Conference on Machine Learning (ICML), 2015.[7] Edwin V Bonilla, Kian M Chai, and Christopher Williams.

Multi-task gaussian process prediction. In Proc. of the Ad-

vances in Neural Information Processing Systems, pages 153–

160, 2008.[8] Sungjoon Choi, Kyungjae Lee, Sungbin Lim, and Songhwai

Oh. Uncertainty-aware learning from demonstration using

mixture density networks with sampling-free variance model-

ing. arXiv preprint arXiv:1709.02249, 2017.[9] Sungjoon Choi, Kyungjae Lee, and Songhwai Oh. Robust

learning from demonstration using leveraged Gaussian pro-

cesses and sparse constrained opimization. In Proc. of the

IEEE International Conference on Robotics and Automation

(ICRA). IEEE, May 2016.[10] M Bishop Christopher. PATTERN RECOGNITION AND

MACHINE LEARNING. Springer-Verlag New York, 2016.[11] Alhussein Fawzi, Seyed Mohsen Moosavi Dezfooli, and Pas-

cal Frossard. A geometric perspective on the robustness of

deep networks. IEEE Signal Processing Magazine, 2017.[12] Aritra Ghosh, Himanshu Kumar, and PS Sastry. Robust loss

functions under label noise for deep neural networks. In

Proc. of the AAAI Conference on Artificial Intelligence, pages

1919–1925, 2017.[13] Jacob Goldberger and Ehud Ben-Reuven. Training deep

neural-networks using a noise adaptation layer. In Proc. of

International Conference on Learning Representations, 2017.[14] Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua

Bengio. Deep learning, volume 1. MIT press Cambridge,

2016.[15] Varun Gulshan, Lily Peng, Marc Coram, Martin C Stumpe,

Derek Wu, Arunachalam Narayanaswamy, Subhashini Venu-

gopalan, Kasumi Widner, Tom Madams, Jorge Cuadros, et al.

Development and validation of a deep learning algorithm

for detection of diabetic retinopathy in retinal fundus pho-

tographs. Journal of the American Medical Association,

316(22):2402–2410, 2016.[16] Frank R Hampel, Elvezio M Ronchetti, Peter J Rousseeuw,

and Werner A Stahel. Robust statistics: the approach based

on influence functions, volume 196. John Wiley & Sons,

2011.[17] Bo Han, Quanming Yao, Xingrui Yu, Gang Niu, Miao Xu,

Weihua Hu, Ivor Tsang, and Masashi Sugiyama. Co-teaching:

robust training deep neural networks with extremely noisy

labels. In Proc. of the Advances in Neural Information Pro-

cessing Systems, 2018.[18] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In Proc. of the

IEEE conference on Computer Vision and Pattern Recogni-

tion, pages 770–778, 2016.[19] Dan Hendrycks, Mantas Mazeika, Duncan Wilson, and Kevin

Gimpel. Using trusted data to train deep networks on labels

corrupted by severe noise. arXiv preprint arXiv:1802.05300,

2018.[20] Peter J Huber. Robust statistics. Springer, 2011.[21] Lu Jiang, Zhengyuan Zhou, Thomas Leung, Li-Jia Li, and Li

Fei-Fei. Mentornet: Regularizing very deep neural networks

on corrupted labels. arXiv preprint arXiv:1712.05055, 2017.[22] Ishan Jindal, Matthew Nokleby, and Xuewen Chen. Learning

deep networks from noisy labels with dropout regularization.

In Proc. of IEEE International Conference onData Mining,

pages 967–972. IEEE, 2016.[23] Alex Kendall and Yarin Gal. What uncertainties do we need

in bayesian deep learning for computer vision? In Advances

in Neural Information Processing Systems, pages 5580–5590,

2017.[24] Alex Kendall and Yarin Gal. What uncertainties do we need

in Bayesian deep learning for computer vision? In Proc.

of the Advances in Neural Information Processing Systems,

2017.[25] Diederik P Kingma. Variational inference & deep learning:

A new synthesis. University of Amsterdam, 2017.[26] Samuli Laine and Timo Aila. Temporal ensembling for semi-

supervised learning. In Proc. of International Conference on

Learning Representations, 2017.[27] Dong-Hyun Lee. Pseudo-label: The simple and efficient semi-

supervised learning method for deep neural networks. In

Workshop on Challenges in Representation Learning, ICML,

volume 3, page 2, 2013.[28] Omer Levy and Yoav Goldberg. Neural word embedding as

implicit matrix factorization. In Advances in neural informa-

tion processing systems, pages 2177–2185, 2014.[29] Xin Liu, Shaoxin Li, Meina Kan, Shiguang Shan, and Xilin

Chen. Self-error-correcting convolutional neural network for

learning with noisy labels. In Proc. of IEEE International

Conference on Automatic Face &amp; Gesture Recognition,

pages 111–117. IEEE, 2017.[30] Eran Malach and Shai Shalev-Shwartz. Decoupling" when

to update" from" how to update". In Advances in Neural

Information Processing Systems, pages 961–971, 2017.[31] Takeru Miyato, Shin-ichi Maeda, Shin Ishii, and Masanori

Koyama. Virtual adversarial training: a regularization method

for supervised and semi-supervised learning. IEEE transac-

tions on pattern analysis and machine intelligence, 2018.[32] Nagarajan Natarajan, Inderjit S Dhillon, Pradeep K Raviku-

mar, and Ambuj Tewari. Learning with noisy labels. In Proc.

of the Advances in Neural Information Processing Systems,

pages 1196–1204, 2013.[33] Brian Paden, Michal Cáp, Sze Zheng Yong, Dmitry Yershov,

and Emilio Frazzoli. A survey of motion planning and control

techniques for self-driving urban vehicles. IEEE Transactions

on Intelligent Vehicles, 1(1):33–55, 2016.[34] Giorgio Patrini, Alessandro Rozza, Aditya Krishna Menon,

Richard Nock, and Lizhen Qu. Making deep neural networks

robust to label noise: a loss correction approach. In Proc. of

the Conference on Computer Vision and Pattern Recognition,

volume 1050, page 22, 2017.[35] Carl Edward Rasmussen. Gaussian processes for machine

93880

Page 10: Task Agnostic Robust Learning on Corrupt Outputs by ...€¦ · model correlated outputs. Similar to Bayesian neural net-works [6], we maintain the probability distributions over

learning. 2006.[36] Scott Reed, Honglak Lee, Dragomir Anguelov, Christian

Szegedy, Dumitru Erhan, and Andrew Rabinovich. Train-

ing deep neural networks on noisy labels with bootstrapping.

arXiv preprint arXiv:1412.6596, 2014.[37] Mengye Ren, Wenyuan Zeng, Bin Yang, and Raquel Urta-

sun. Learning to reweight examples for robust deep learning.

In Proc. of International Conference on Machine Learning,

2018.[38] Sainbayar Sukhbaatar, Joan Bruna, Manohar Paluri, Lubomir

Bourdev, and Rob Fergus. Training convolutional networks

with noisy labels. arXiv preprint arXiv:1406.2080, 2014.[39] Antti Tarvainen and Harri Valpola. Mean teachers are better

role models: Weight-averaged consistency targets improve

semi-supervised deep learning results. In Advances in neural

information processing systems, pages 1195–1204, 2017.[40] Yuji Tokozume, Yoshitaka Ushiku, and Tatsuya Harada. Proc.

of international conference on learning representations. 2018.[41] Andreas Veit, Neil Alldrin, Gal Chechik, Ivan Krasin, Abhi-

nav Gupta, and Serge Belongie. Learning from noisy large-

scale datasets with minimal supervision. In Conference on

Computer Vision and Pattern Recognition, 2017.[42] Lingxi Xie, Jingdong Wang, Zhen Wei, Meng Wang, and

Qi Tian. Disturblabel: Regularizing cnn on the loss layer.

In Proc. of the IEEE Conference on Computer Vision and

Pattern Recognition, pages 4753–4762, 2016.[43] Sergey Zagoruyko and Nikos Komodakis. Wide residual

networks. In BMVC, 2016.[44] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht,

and Oriol Vinyals. Understanding deep learning requires re-

thinking generalization. In Proc. of International Conference

on Learning Representations, 2016.[45] Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David

Lopez-Paz. mixup: Beyond empirical risk minimization. In

Proc. of International Conference on Learning Representa-

tions, 2017.

103881