Tao Adaptive

Embed Size (px)

Citation preview

  • 8/2/2019 Tao Adaptive

    1/35

    9

    8

    6

    7

    Adaptive ControlBasics and Research

    Gang Tao

  • 8/2/2019 Tao Adaptive

    2/35

    19

    8

    6

    7

    Feedback Control System

    -

    Plant

    -

    Controller

    Feedback

    6

    --r(t) e(t) u(t) y(t)

    w(t)

    Reference System- -

    r(t) ym(t)

    Goal of feedback control: limt(y(t) ym(t)) = 0

  • 8/2/2019 Tao Adaptive

    3/35

    29

    8

    6

    7

    Issues of Automatic Feedback Control

    System modeling

    Control objectives

    stability, transient, tracking, optimality, robustness

    Parametric uncertainties

    payload variation, component aging, condition change

    Structural uncertainties

    component failure, unmodeled dynamics

    Environmental uncertainties

    external disturbances

    Nonlinearities

    smooth functions and nonsmooth characteristics

  • 8/2/2019 Tao Adaptive

    4/35

    39

    8

    6

    7

    Adaptive Control Methodology

    Adapting to parametric uncertainties

    Robust to structural and environmental uncertainties

    Aimed at both stability (signal boundedness) and tracking

    Self-tuning of controller parameters

    Systematic design and analysis

    Real-time implementable

    Effective for failures and nonsmooth nonlinearities

    High potential for applications

    Attractive open and challenging issues

  • 8/2/2019 Tao Adaptive

    5/35

    49

    8

    6

    7

    Direct Adaptive Control System

    Adaptive law

    (t)

    PlantController

    C(s;(t))

    Reference model

    -

    -

    -

    6

    -

    66 6

    ?

    ?u(t)r(t) y(t)

    ym(t)

    (t)

  • 8/2/2019 Tao Adaptive

    6/35

    59

    8

    6

    7

    Indirect Adaptive Control System

    Design

    equation

    Parameter estimator

    p(t)

    Plant

    G(s;p)

    Controller

    C(s;c(t))- -

    6

    -

    66

    ?u(t)ym(t) y(t)

    c(t)

    p(t)

  • 8/2/2019 Tao Adaptive

    7/35

    69

    8

    6

    7

    Control System Dynamic Models

    Nonlinear models

    x = f(x, u, w), y = h(x, u, v)

    state vector x Rn, input u, output y, disturbances w, v; or

    x = f(x) + g(x)u + d(x)w, y = h(x, u) + v

    Linear state-variable model

    x = Ax +Bu +Bww, y = Cx +Du + v

    Linear time-invariant input-output model

    y(t) = G(s)[u](t) + d(t)

    G(s) = G0(s)(1 +m(s)) +a(s), G0(s) = kpZ(s)

    P(s)

    a(s), m(s): additive, multiplicative unmodeled dynamics.

  • 8/2/2019 Tao Adaptive

    8/35

    79

    8

    6

    7

    Aircraft Flight Control System Models

    State variables

    x,y,z = position coordinates = roll angleu, v, w = velocity coordinates = pitch anglep = roll rate = yaw angleq = pitch rate = side-slip angler = yaw rate = angle of attack

  • 8/2/2019 Tao Adaptive

    9/35

  • 8/2/2019 Tao Adaptive

    10/35

    99

    8

    6

    7

    Linearized longitudinal equations

    u

    w

    q

    =

    Xu Xw W0 g0 cos0Zu Zw U0 g0 sin0

    Mu Mw Mq 00 0 1 0

    u

    w

    q

    +

    Xe

    Ze

    Me

    0

    e

    output = : pitch angle perturbation

    Linearized lateral equations

    r

    p

    =

    Yv U0 V0 g0 cos0Nv Nr Np 0

    Lv Lr Lp 0

    0 tan0 1 0

    r

    p

    +

    Yr Ya

    Nr Na

    Lr La

    0 0

    r

    a

    output = r: yaw rate perturbation

  • 8/2/2019 Tao Adaptive

    11/35

    109

    8

    6

    7

    Adaptive Control versus Fixed Control

    System

    y(t) = (ap +)y(t) + u(t)

    Reference model

    yr(t) = aryr(t) + r(t), ar > 0

    Ideal controller for = 0

    u(t) = ky(t) + r(t), k = ap ar

    Ideal performance for = 0

    y(t) = ary(t) + r(t), limt

    (y(t) yr(t)) = 0

    Fixed controller for [1,2]

    u(t) = ky(t) + r(t), k< ap 2

  • 8/2/2019 Tao Adaptive

    12/35

    119

    8

    6

    7

    Closed-loop system

    y(t) = ary(t) + (ap ++ k+ ar)y(t) + r(t),

    e(t) = y(t) yr(t) =ap ++ k+ ar

    s + ar

    1

    s ap k[r](t)

    Tracking performance (for r(t) = 1)

    ess = limt

    e(t) = ap ++ k+ arar(ap ++ k)

    Adaptive controller

    u(t) = k(t)y(t) + r(t)

    k(t) = e(t)y(t), > 0

    with k(0) being arbitrary, leading to limt e(t) = 0.

    Observation: an adaptive controller ensures desired stability and

    tracking, despite any large parameter uncertainty .

  • 8/2/2019 Tao Adaptive

    13/35

    129

    8

    6

    7

    Our Recent Work

    G. Tao and P. V. Kokotovic, Adaptive Control of Systems with

    Actuator and Sensor Nonlinearities, John Wiley & Sons, 1996.

    G. Tao and F. L. Lewis, eds., Adaptive Control of Nonsmooth

    Dynamic Systems, Springer, London, 2001.

    A. Taware and G. Tao, Control of Sandwich Nonlinear Systems,Springer, Berlin, 2003.

    G. Tao, Adaptive Control Design and Analysis, John Wiley & Sons,

    Hoboken, New Jersey, 2003.

    G. Tao, S. H. Chen, X. D. Tang and S. M. Joshi, Adaptive Control of

    Systems with Actuator Failures, Springer, 2004.

  • 8/2/2019 Tao Adaptive

    14/35

    139

    8

    6

    7

    Adaptive Control of Aircraft with Synthetic Jet Actuators

  • 8/2/2019 Tao Adaptive

    15/35

    149

    8

    6

    7

    Synthetic Jets for Aircraft Flight Control

    Physics of synthetic jet

    piezo-electric sinusoidal voltage acts on diaphragm

    diaphragm vibrations cause cavity pressure variations

    ejection and suction of air, creating vortices

    jet is synthesized by a train of vortices

    lift is produced on the airfoilvirtual shaping.

  • 8/2/2019 Tao Adaptive

    16/35

    159

    8

    6

    7

    Tailless aircraft with jets (top view)

  • 8/2/2019 Tao Adaptive

    17/35

    169

    8

    6

    7

    Simulation Results

    System state variables

    lateral velocity: x1(t) roll rate: x2(t)

    yaw rate: x3(t) roll angle: x4(t)

    System model

    A =

    0.0134 48.5474 632.3724 32.07560.0199 0.1209 0.1628 0

    0.0024 0.0526 0.0252 0

    0 1 0.0768 0

    , B =

    00.0431

    0.0076

    0

    D. L. Raney, R. C. Montgomery, L. L. Green and M. A. Park, Flight Control

    using Distributed Shape-Change Effector Arrays, AIAA paper No.

    2000-1560, April 3-6, 2000

  • 8/2/2019 Tao Adaptive

    18/35

    179

    8

    6

    7

    Control gain K LQR design with Q = I4, R = 10

    K=

    1.0113 77.1793 115.8959 9.1691

    P =

    0.751 14.980 159.812 8.261714.980 27181.878 138979.668 7843.345

    159.813 138979.668 723352.800 40670.052

    8.262 7843.345 40670.052 2301.187

    Reference signal:

    r(t) =

    1.5sin(t) 0 t 60

    1.5sin(t) + 3sin(2t) t 60

    Adaptation gains: 1 = 1, 2 = 2

  • 8/2/2019 Tao Adaptive

    19/35

  • 8/2/2019 Tao Adaptive

    20/35

    199

    8

    6

    7

    0 50 100 150 20010

    010

    Tracking error e1(t) vs. time (sec)

    ft/sec

    0 50 100 150 2000.2

    0

    0.2

    Tracking error e2(t) vs. time (sec)

    deg/

    sec

    0 50 100 150 2000.05

    0

    0.05

    deg/sec

    Tracking error e3(t) vs. time (sec)

    0 50 100 150 2000.5

    0

    0.5

    deg

    Tracking error e4(t) vs. time (sec)

    Figure 2: State tracking errors.

    20

  • 8/2/2019 Tao Adaptive

    21/35

    209

    8

    6

    7

    Simulation II: Comparison with a fixed inverse

    0 50 100 150 20010

    5

    0

    Tracking error e1(t) vs. time (sec)

    ft/sec

    0 50 100 150 2000.1

    0

    0.1

    Tracking error e2(t) vs. time (sec)

    deg/se

    c

    0 50 100 150 2000.1

    0

    0.1

    deg/sec

    Tracking error e3(t) vs. time (sec)

    0 50 100 150 2001

    0.5

    0

    deg

    Tracking error e4(t) vs. time (sec)

    Figure 3: State tracking errors with a fixed inverse.

    21

  • 8/2/2019 Tao Adaptive

    22/35

    219

    8

    6

    7

    Adaptive Actuator Failure Compensation

    Actuator failures

    common in control systems

    uncertain in failure time, pattern, parameters

    undesirable for system performance

    Adaptive control

    deals with system uncertainties

    ensures desired asymptotic performance

    is promising for actuator failure compensation

    has potential for critical applications

    22

  • 8/2/2019 Tao Adaptive

    23/35

    229

    8

    6

    7

    Effective methods for handling system failures

    multiple-model, switching and tuning

    indirect adaptive control

    fault detection and diagnosis

    robust or neural control

    Direct adaptive failure compensation approach

    use of a single controller structure

    direct adaptation of controller parameters no explicit failure (fault) detection

    stability and asymptotic tracking

    Potential applications include aircraft flight control

    smart structure vibration control

    space robot control

    23

  • 8/2/2019 Tao Adaptive

    24/35

    239

    8

    6

    7

    Systems with Actuator Failures

    System Models

    x = f(x) +m

    j=1

    gj(x)uj, y = h(x)

    x = Ax +m

    j=1bjuj, y = Cx

    state variable vector: x(t) Rn

    output: y(t)

    input vector: u = [u1, . . . , um]T Rm whose components mayfail during system operation

    f(x), gj(x), h(x), A, bj, C with unknown parameters.

    24

  • 8/2/2019 Tao Adaptive

    25/35

    249

    8

    6

    7

    Actuator Failures

    Loss of effectiveness

    uj(t) = kj(t)vj(t), kj(t) (0, 1), t tj

    Lock-in-place

    uj(t) = uj, t tj, j {1, 2, . . . , m}

    Lost control

    uj(t) = uj +k

    djkjk(t) +j(t), t tj, j {1, . . . , m}

    Failure uncertainties

    the failure values kj, uj and djk, failure time tj, pattern j, and

    components j(t) are all unknown.

    How much, how many, which and when the failures happen??

    25

  • 8/2/2019 Tao Adaptive

    26/35

    259

    8

    6

    7

    Examples

    aircraft aileron, stabilizer, rudder or elevator failures

    their segments stuck in unknown positions

    their unknown broken pieces (including wings)

    satellite motion control actuator failures

    MEM actuator/sensor failures on fairing surface

    heating device failures in material growth

    generator failures in power systems

    transmission line failures in power system

    power distribution network failures

    cooperating manipulator failures

    bioagent distribution system failures

    etc.

    26

  • 8/2/2019 Tao Adaptive

    27/35

    9

    8

    6

    7

    Block Diagram

    Controller System

    --

    11

    ..

    .

    ...

    -?

    1-

    -

    1m

    -- ?-

    -

    -

    m-

    ru

    m

    u1

    yu1...

    um

    v1...

    vm

    27

  • 8/2/2019 Tao Adaptive

    28/35

    9

    8

    6

    7

    Research Goals

    Theoretical framework for adaptive control of systems with uncertainactuator (sensor, or component) failures

    Guidelines for designing control systems with guaranteed stability

    and tracking performance despite parameter and failure uncertainties

    Solutions to key issues in adaptive failure compensation: controller

    structures, design conditions, adaptive laws, stability, robustness

    New adaptive control techniques for critical systems (e.g., aircraft) toimprove reliability and survivability.

    28

  • 8/2/2019 Tao Adaptive

    29/35

    9

    8

    6

    7

    Example: Boeing 737 Landing

    System model

    x(t) = Ax(t) +Bu(t), y(t) = , B = [b1, b2]

    T

    x = [Ub,Wb, Qb,]T: forward speed Ub, vertical speed Wb, pitch angle

    , pitch rate Qb; u = [dele1, dele2]T: elevator segment angles

    Study of an aircraft with two elevator segments

    Output feedback output tracking design

    One elevator segment fails during landing at t = 30 sec.

    Simulation results

    response with no compensation (fixed feedback)

    response with adaptive compensation.

    29

  • 8/2/2019 Tao Adaptive

    30/35

    9

    8

    6

    7

    0 10 20 30 40 50 60 70 80 90 1000

    0.02

    0.04

    0.06

    0.08

    time (sec)

    y(t),ym(t)(rad) y(t)

    ym

    (t)

    0 10 20 30 40 50 60 70 80 90 1000

    0.005

    0.01

    0.015

    time (sec)

    e(t)(rad)

    0 10 20 30 40 50 60 70 80 90 1004

    3

    2

    1

    0

    time (sec)

    v(t)

    (deg)

    30

  • 8/2/2019 Tao Adaptive

    31/35

    9

    8

    6

    7

    0 10 20 30 40 50 60 70 80 90 100

    0

    0.02

    0.04

    0.06

    0.08

    time (sec)

    y(t),ym(t)(rad) y(t)

    ym

    (t)

    0 10 20 30 40 50 60 70 80 90 1000.01

    0

    0.01

    0.02

    time (sec)

    e(t)(rad)

    0 10 20 30 40 50 60 70 80 90 1004

    3

    2

    1

    0

    time (sec)

    v(t)(deg)

    31

  • 8/2/2019 Tao Adaptive

    32/35

    9

    8

    6

    7

    Example: Boeing 737 Lateral Motion

    MIMO system model

    x = Ax +Bu, y = Cx

    x = [vb,pb, rb,,]T: lateral velocity vb, roll rate pb, yaw rate rb, roll

    angle , yaw angle

    y = [,]T: roll angle , yaw angle

    u = [dr, da]T: rudder position dr, aileron position da,

    segmented into: dr1, dr2, da1, da2

    Actuator failures

    dr2 fails at t = 50, da2 fails at t = 100 seconds

    Simulation results

    32

  • 8/2/2019 Tao Adaptive

    33/35

    9

    8

    6

    7

    0 20 40 60 80 100 120 140 160 180 2000

    1

    2

    3

    4

    5

    6

    7

    Roll angle (t): , reference outputm(t):

    deg

    0 20 40 60 80 100 120 140 160 180 2000

    2

    4

    6

    8

    10

    Yaw angle(t): , reference outputm(t):

    deg

    33

  • 8/2/2019 Tao Adaptive

    34/35

    9

    8

    6

    7

    Research Interests

    Adaptive control theory

    actuator/sensor/component failure compensation

    multivariable and nonlinear systems actuator and sensor nonlinearity compensation

    Adaptive control applications

    aircraft flight control fairing structure vibration reduction

    space robot cooperative and compensation control

    synthetic jet actuator compensation control

    satellite motion control

    high precision pointing systems

    dynamic sensor/actuator networks

    34

  • 8/2/2019 Tao Adaptive

    35/35

    9

    8

    6

    7

    Some On-Going Research Projects

    Rudder failure compensation by engine differentials

    aircraft model with engine differentials

    adaptive failure compensation control

    Adaptive compensation control for aircraft damages

    dynamic modeling of aircraft damages

    direct adaptive damage compensation control

    Adaptive compensation control for synthetic jet actuators

    Adaptive failure compensation for space robots

    Adaptive compensation of sensor failures

    Adaptive control of spacecraft with fuel slosh.