talk_UK.pdf

Embed Size (px)

Citation preview

  • On Liouville integrable defects

    Anastasia Doikou

    University of Patras

    UK, May 2012

    Work in collaboration with J. Avan.

    Anastasia Doikou On Liouville integrable defects

  • General frame

    Integrable defects (quantum level) impose severe constraints onrelevant algebraic and physical quantities (e.g. scatteringamplitudes) (Delfino, Mussardo, Simonetti, Konic, LeClair, ....)

    In discrete integrable systems there is a systematic description oflocal defects based on QISM

    In integrable field theories a defect is introduced as discontinuityplus gluing conditions (Bowcock, Corrigan, Zambon,...), integrabilityissue not systematically addressed; other attempts (Caudrelier,Kundu, Habibulin,...)

    We developed a systematic algebraic means to investigate integrablefiled theories with point like defects. Integrability is ensured byconstruction

    Anastasia Doikou On Liouville integrable defects

  • Outline

    1 The general frame

    The L matrixThe classical quadratic algebra

    2 Local integrals of motion, and relevant Lax pairs for NLS andsine-Gordon models

    3 Discrete theories and consistent continuum limits

    4 Discussion and future perspectives

    Anastasia Doikou On Liouville integrable defects

  • Classical Integrability

    The Lax pair U, V; the linear auxiliary problem (e.g. Faddeev-Takhtajan):

    (x , t)

    x= U(x , t) (x , t)

    (x , t)

    t= V(x , t) (x , t)

    Compatibility condition leads to

    Zero curvature condition

    U(x , t) V(x , t) +[U(x , t),V(x , t)

    ]= 0

    Gives rise to the equations of motion of the system.

    Anastasia Doikou On Liouville integrable defects

  • The monodromy matrix

    The continuum monodromy matrix

    T (x , y , ) = P exp{ y

    x

    dx U(x)}

    Solution of the differential equation

    T (x , y)

    x= U(x , t) T (x , y)

    U obeys linear classical algebra, T satisfies the:

    Classical algebra{Ta(), Tb()

    }=[rab( ), Ta() Tb()

    ]The classical r -matrix satisfies the CYBE (Sklyanin,Semenov-Tian-Shansky)

    [r12, r13] + [r12, r23] + [r13, r23] = 0.

    Anastasia Doikou On Liouville integrable defects

  • The monodromy matrix

    The continuum monodromy matrix

    T (x , y , ) = P exp{ y

    x

    dx U(x)}

    Solution of the differential equation

    T (x , y)

    x= U(x , t) T (x , y)

    U obeys linear classical algebra, T satisfies the:

    Classical algebra{Ta(), Tb()

    }=[rab( ), Ta() Tb()

    ]The classical r -matrix satisfies the CYBE (Sklyanin,Semenov-Tian-Shansky)

    [r12, r13] + [r12, r23] + [r13, r23] = 0.

    Anastasia Doikou On Liouville integrable defects

  • Classical integrability

    The monodromy matrix T satisfies the classical algebra, thus

    The transfer matrix

    t() = Tr T ()

    provides the charges in involution;{t(), t()

    }= 0

    integrability ensured by construction. ln t() local integrals of motion

    Anastasia Doikou On Liouville integrable defects

  • The defect frame

    The key object, modified monodromy:

    Defect monodromy matrix

    T (L,L, ) = T+(L, x0, ) L(x0, ) T(x0,L, )

    where we define

    T = P exp{

    dx U(x)}

    The defect L matrix obeys{La(1), Lb(2)

    }=[rab(1 2), La(1) Lb(2)

    ]T satisfy the classical algebra, thus T obeys the same algebra,integrability also ensured

    Anastasia Doikou On Liouville integrable defects

  • The defect frame

    Auxiliary linear problem for U, V for the defect theory:

    (x , t)

    x= U (x , t)

    (x , t)

    t= V (x , t)

    The corresponding

    Zero curvature condition

    U(x , t) V(x , t) +[U(x , t),V(x , t)

    ]= 0 x 6= x0

    On the defect point

    Defect zero curvature condition

    dL(x0)

    dt= V+(x0)L(x0) L(x0)V(x0)

    Anastasia Doikou On Liouville integrable defects

  • The defect frame

    Auxiliary linear problem for U, V for the defect theory:

    (x , t)

    x= U (x , t)

    (x , t)

    t= V (x , t)

    The corresponding

    Zero curvature condition

    U(x , t) V(x , t) +[U(x , t),V(x , t)

    ]= 0 x 6= x0

    On the defect point

    Defect zero curvature condition

    dL(x0)

    dt= V+(x0)L(x0) L(x0)V(x0)

    Anastasia Doikou On Liouville integrable defects

  • The NLS model with defect

    The U-operator for the NLS model:

    U =

    2

    (1 00 1

    )+

    (0

    0

    ).

    From the classical algebra for U:

    Poisson structure{(x), (y)

    }= (x y),

    {(x), (y)

    }= 0.

    The classical r -matrix is the Yangian: r() = 1P (Yang)P(a b) = b a.

    Anastasia Doikou On Liouville integrable defects

  • The NLS model with defect

    The generic defect L operator

    L(x0) = I+((x0) (x0)(x0) (x0)

    ).

    From the quadratic classical algebra for L (sl2 algebra):{(x0), (x0)

    }= (x0){

    (x0), (x0)}

    = (x0){(x0), (x0)

    }= 2(x0)

    Establish the Poisson structure!

    Relevant studies: (Corrigan-Zambon)

    Anastasia Doikou On Liouville integrable defects

  • The NLS model: local IM

    First recall that:

    T(x , y , t)x

    = U(x , t) T(x , y , t)

    Based on the latter consider the decomposition ansatz:

    T(x , y ;) = (1 + W(x))eZ(x,y)(1 + W(y))1

    W anti-diagonal, Z diagonal. Also,

    W =n=0

    W(n)

    n, Z =

    n=1

    Z(n)

    n

    Substituting the ansatz to the differential equation above identify

    W(n), Z(n) matrices.

    Anastasia Doikou On Liouville integrable defects

  • The NLS model: local IM

    Substitution leads to Riccati-type:

    Differential equations

    dW

    dx+ WUd UdW + WUa W Ua = 0

    dZ

    dx= Ud + Ua W

    Solving the latter one identifies the W(n), Z(n), hence the charges ininvolution.

    Similar differential equations arise within the inverse scatteringframe.

    Anastasia Doikou On Liouville integrable defects

  • The NLS model: local IM

    The generating function

    G() = ln tr(T+() L(, x0) T())

    which turns to, via the decomposition:

    Generating function

    G() = Z+11() + Z11() + ln[(1 + W +(x0))1L(x0)(1 + W(x0))]11Also,

    G() =n=0

    H(n)n

    Anastasia Doikou On Liouville integrable defects

  • The NLS model: local IM

    The first three integrals of motion:

    The number of particles

    H(1) = x0L

    dx (x)(x) + Lx+0

    dx +(x)+(x) + (x0)

    The momentum

    H(2) = x0L

    dx (x)(x)

    Lx+0

    dx +(x)+(x)

    ++ + + + + + 2

    2

    Anastasia Doikou On Liouville integrable defects

  • The NLS model: local IM

    The Hamiltonian

    H(3) = Lx+0

    dx(++

    + |+|4

    )+

    x0L

    dx(

    + ||4

    )+ (++) + +

    + + + 3

    3

    + (+ + + 2+

    )

    By construction (formally), and also explicitly checked:

    Involution {H1, H2

    }={H1, H3

    }={H2, H3

    }= 0

    No sewing constraints arise or used so far, off-shell integrability.

    Anastasia Doikou On Liouville integrable defects

  • The NLS model: local IM

    The Hamiltonian

    H(3) = Lx+0

    dx(++

    + |+|4

    )+

    x0L

    dx(

    + ||4

    )+ (++) + +

    + + + 3

    3

    + (+ + + 2+

    )By construction (formally), and also explicitly checked:

    Involution {H1, H2

    }={H1, H3

    }={H2, H3

    }= 0

    No sewing constraints arise or used so far, off-shell integrability.

    Anastasia Doikou On Liouville integrable defects

  • The NLS model: Lax pair

    Next step, derive time component of the Lax pair V, and sewingconditions. Explicit expressions (Faddeev-Takhtajan, Avan-Doikou):

    V+(x , , ) = t1tra(

    T+a (L, x)rab( )T+a (x , x0)La(x0)Ta (x0,L))

    V(x , , ) = t1tra(

    T+a (L, x0)La(x0)Ta (x0, x)rab( )Ta (x ,L)

    )V+(x0, , ) = t1tra

    (T+a (L, x0)rab( )La(x0)Ta (x0,L)

    )V(x0, , ) = t1tra

    (T+a (L, x0)La(x0)rab( )Ta (x0,L)

    ).

    Anastasia Doikou On Liouville integrable defects

  • The NLS model: Lax pair

    For the left and right bulk theories, and the defect point:

    V(1)(, x) =(

    1 00 0

    )

    V(2)(, x) =(

    (x)(x) 0

    )V+(2)(, x) =

    ( +(x)

    +(x) 0

    )V(2)(, x0) =

    ( +(x0) + (x0)

    (x0) 0

    )V+(2)(, x0) =

    ( +(x0)

    (x0) + (x0) 0

    )

    Anastasia Doikou On Liouville integrable defects

  • The NLS model: Lax pair

    V(3)(, x) =(2 (x)(x) (x) + (x)(x) (x) (x)(x)

    )V+(3)(, x) =

    (2 +(x)+(x) +(x) + +(x)+(x) +(x) +(x)+(x)

    )

    V(3)(x0) =

    2 (+(x0) + (x0))(x0) (+(x0) + (x0))+ f(x0)(x0) (x0)

    (+(x0) + (x0)

    )(x0)

    V+(3)(x0) =

    (2 +(x0)((x0) + (x0)) +(x0) + +(x0)((x) + (x0)

    )+ g(x0)

    +(x0)((x0) + (x0)

    ))

    where we define

    f(x0) = +(x0) (x0)

    ((x0) + 2

    +(x0))

    g(x0) = (x0) (x0)

    ((x0) + 2

    (x0))

    Anastasia Doikou On Liouville integrable defects

  • The NLS model: Equations of motion

    Derive the equations of motion via the Hamiltonian:

    Equations of motion

    (x , t) = {H(j), (x , t)}, (x , t) = {H(j), (x , t)}e(x0, t) = {H(j), e(x0, t)}, e {, , }, x 6= x0

    The latter lead to the familiar E.M. for H(3)

    (x , t) =2(x , t)

    x2 2|(x , t)|2(x , t)

    (x , t) =2(x , t)

    x2 2|(x , t)|2(x , t)

    Plus E.M. on the defect point. Consistency check via the zero curvature

    condition.

    Anastasia Doikou On Liouville integrable defects

  • The NLS model: Equations of motion

    Derive the equations of motion via the Hamiltonian:

    Equations of motion

    (x , t) = {H(j), (x , t)}, (x , t) = {H(j), (x , t)}e(x0, t) = {H(j), e(x0, t)}, e {, , }, x 6= x0

    The latter lead to the familiar E.M. for H(3)

    (x , t) =2(x , t)

    x2 2|(x , t)|2(x , t)

    (x , t) =2(x , t)

    x2 2|(x , t)|2(x , t)

    Plus E.M. on the defect point. Consistency check via the zero curvature

    condition.

    Anastasia Doikou On Liouville integrable defects

  • The NLS model: sewing conditions

    Due to continuity requirements at the points x+0 , x0 :

    Continuity

    V+(k)(x+0 ) V+(k)(x0), V(k)(x0 ) V(k)(x0), x0 x0

    The following sewing conditions C(k) arise

    C(1) :

    (x0) +(x0) (x0) = 0,C(1)+ :

    +(x0) (x0) (x0) = 0C(2) :

    (x0) +(x0) + (x0)(x0) + 2(x0)+(x0) = 0C(2)+ :

    (x0) +(x0) + (x0)(x0) + 2(x0)(x0) = 0. . .

    Jump across the defect point!

    Anastasia Doikou On Liouville integrable defects

  • The NLS model: sewing conditions

    Due to continuity requirements at the points x+0 , x0 :

    Continuity

    V+(k)(x+0 ) V+(k)(x0), V(k)(x0 ) V(k)(x0), x0 x0The following sewing conditions C

    (k) arise

    C(1) :

    (x0) +(x0) (x0) = 0,C(1)+ :

    +(x0) (x0) (x0) = 0C(2) :

    (x0) +(x0) + (x0)(x0) + 2(x0)+(x0) = 0C(2)+ :

    (x0) +(x0) + (x0)(x0) + 2(x0)(x0) = 0. . .

    Jump across the defect point!

    Anastasia Doikou On Liouville integrable defects

  • The NLS model: sewing conditions

    Main proposition:

    Compatibility

    {H(k), C(m,l)

    }=

    k1i=0

    [C(k,i) , V(m+i,l)(x0 )

    ]+

    k1i=0

    [V(k,i)(x0), C(m+i,l)

    ]

    C(p,l) matrices with entries the constraints. Proof based on the formof V, and the underlying algebra.

    Sub-manifold of sewing conditions (dynamical constraints) invariantunder the Hamiltonian action!

    Anastasia Doikou On Liouville integrable defects

  • The sine-Gordon model with defect

    The U-operator for the sine-Gordon model:

    U(x , t, u) =

    4ipi(x , t)z +

    mu

    4ie

    i4

    z

    yei4

    z mu1

    4ie

    i4

    z

    yei4

    z

    u e, x,y ,z Pauli matrices. The r -matrix (Faddeev-Takhtajan, Sklyanin):

    r() =2

    8 sinh

    (z+12 cosh

    + z+12 cosh

    ).

    U satisfies the linear Poisson algebra leads:{(x), pi(y)

    }= (x y)

    Anastasia Doikou On Liouville integrable defects

  • The sine-Gordon model with defect

    The relevant defect matrix (type II)

    L() =

    (eV eV1 a

    a eV1 eV).

    L satisfies the classical algebra, hence:{V , a

    }=2

    8V a,{

    V , a}

    = 2

    8Va,{

    a, a}

    =2

    4(V 2 V2)

    Relevant studies: (Bowcock-Corrigan-Zambon, Caudrelier,Habibulin-Kundu, Aguirre etal.)

    Anastasia Doikou On Liouville integrable defects

  • The sine-Gordon: local IM

    Recall the generating function of the local IM

    G() = ln tr(T+ L T)

    Generating function

    G() = Z+11 + Z11 + ln[(1 + W +)1(+(x0))1L(x0)(x0)(1 + W)

    ]11

    = ei4 z .

    Expanding the latter expression in powers of u1 we obtain the following:

    G() =m=0

    I(m)um

    Anastasia Doikou On Liouville integrable defects

  • The sine-Gordon: local IM

    The first charge (the u1-expansion) leads to I(1), the u-expansion leadsto I(1):

    I(1)(, pi, V , a, a) = I(1)(, pi, V1, a, a)

    Define the

    Hamiltonian

    H = 2im2

    (I(1) I(1))

    =

    x0L

    dx(1

    2(pi2(x) +

    2(x)) m2

    2cos((x))

    )+

    Lx+0

    dx(1

    2(pi+2(x) + +

    2(x)) m2

    2cos(+(x))

    )+

    4m

    2D cos

    4(+ + )

    (a a

    )+

    2i

    D(+

    + )A

    Anastasia Doikou On Liouville integrable defects

  • The sine-Gordon: local IM

    Also derive the:

    Momentum

    P = 2im2

    (I(1) + I(1)

    )=

    x0L

    dx (x)pi(x) +

    Lx+0

    dx +(x)pi+(x)

    4mi2D sin

    4(+ + )

    (a + a

    )+

    2i

    D(pi+ + pi

    )A

    D = Ve i4 (+) + V1e i4 (+)A = Ve i4 (+) V1e i4 (+)

    Commutativity among the IM will be discussed later.

    Anastasia Doikou On Liouville integrable defects

  • The sine-Gordon: the Lax pair

    From the explicit expression for the V operators we find or the left andright bulk theories:

    VH =

    4iz +

    vm

    4iy ()1 +

    v1m4i

    ()1y

    VP =

    4ipiz +

    vm

    4iy ()1 v

    1m4i

    ()1y

    Computation of the V operators on the defect point leads to

    VH = VH + H

    VP = VP + P

    Anastasia Doikou On Liouville integrable defects

  • The sine-Gordon: sewing conditions

    Continuity requirements around the defect point

    H 0, P 0

    lead to:

    Sewing conditions

    S1 : V = ei4 (

    +)

    S2 : pi+(x0) pi(x0) = im

    cos

    4(+(x0) +

    (x0))(

    a + a)

    S 2 : +(x0) (x0) = m

    sin

    4(+(x0) +

    (x0))(

    a a)

    Jump across the defect point!

    E.M. from Hamiltonian and zero curvature condition coincide.

    Anastasia Doikou On Liouville integrable defects

  • The sine-Gordon: commutativity

    Commutativity among the IM, explicitly checked, formally guaranteed

    Commutativity {H, P

    }= 0

    The latter is proven using the sewing conditions, i.e. Dirac (notPoisson) commutativity! On-shell integrability.

    In NLS off-shell integrability{I1, I2

    }= 0

    no use of constraints. Issue related to suitable continuum limits!

    Anastasia Doikou On Liouville integrable defects

  • The continuum limit

    Integrable continuum limit (see e.g. Avan-Doikou-Sfetsos): The discretemonodromy matrix:

    T0() = L0N() . . . L02() L01()

    L and T satisfy the classical quadratic algebra{La(, Lb(

    )}

    =[rab( ), La()Lb()

    ]Hence, integrability is guaranteed!

    Anastasia Doikou On Liouville integrable defects

  • The continuum limit

    Consider the identifications:

    Ln 1 + U(x), An V(x), An+1 V(x + )

    The discrete zero curvature condition:

    Lj = Aj+1 Lj Lj Ajtakes the familiar continuum form:

    Continuum zero curvature

    U V +[U, V

    ]= 0

    We have kept terms proportional to in the discrete zero curvature

    condition.

    Anastasia Doikou On Liouville integrable defects

  • The continuum limit

    RecallLai = 1 + Uai +O(2) ,

    Then the monodromy matrix is expanded as:

    Ta = 1 + i

    Uai + 2i

  • The continuum limit

    Then the discrete monodromy matrix in the presence of defect:

    Ta() = LaN() . . . Lan() . . . La1()

    according to previous analysis T will be formally expressed at thecontinuum limit:

    The defect monodromy

    T () = P exp( x0L

    dx U(x))

    L(, x0) P exp( L

    x+0

    dx U+(x))

    Anastasia Doikou On Liouville integrable defects

  • The continuum limit

    The zero curvature condition for the left-right bulk theories:

    U V +[U, V

    ]= 0

    The zero curvature condition on the defect point, discrete:

    Ln() = An+1 Ln() Ln() An()

    Recalling the latter identifications obtain:

    Continuum limit

    L(x0, ) = V+(x0, ) L(x0, ) L(x0, ) V(x0, )

    In NLS: (Doikou, Avan-Doikou)

    Anastasia Doikou On Liouville integrable defects

  • The discrete NLS

    The DNLS L-matrix

    L() =

    (1 + 2xX x

    X 1)

    L() = +

    (

    )Introduce:

    xj (x), Xj (x), 1 j n 1, x (L, x0)xj +(x), Xj +(x), n + 1 j N, x (x0, L)

    Obtain the continuum NLS U-matrix.

    Discrete NLS: (Doikou)

    Anastasia Doikou On Liouville integrable defects

  • The discrete NLS

    The first IM for DNLS:

    H(1) = j 6=n

    xjXj + n

    H(2) =

    j 6=n,n1xj+1Xj 1

    2

    j 6=n

    N2j xn+1Xn1 nXn1 + nxn+1 2n2

    Nj = 1 xjXj . The continuum limit immediately leads to the familiarNLS expressions. Extra consistency check!

    Anastasia Doikou On Liouville integrable defects

  • The discrete NLS

    The A-operators:

    A(1)j () =(

    1 00 0

    )A(2)j for j 6= n, n + 1 is given by

    A(2)j () =(

    xjXj1 0

    ),

    whereas

    A(2)n =(

    n + xn+1Xn1 0

    ), A(2)n+1 =

    ( xn+1

    n Xn1 0).

    The continuum limit leads to the familiar NLS expressions for the

    V-operators.

    Anastasia Doikou On Liouville integrable defects

  • The NLS model: Lax pair

    For the left and right bulk theories, and the defect point:

    V(1)(, x) =(

    1 00 0

    )

    V(2)(, x) =(

    (x)(x) 0

    )V+(2)(, x) =

    ( +(x)

    +(x) 0

    )V(2)(, x0) =

    ( +(x0) + (x0)

    (x0) 0

    )V+(2)(, x0) =

    ( +(x0)

    (x0) + (x0) 0

    )

    Anastasia Doikou On Liouville integrable defects

  • Discussion

    Deeper understanding of the off-shell vs on-shell integrability;related to suitable continuum limits.

    Extend the study to other classical integrable models with defectse.g. (an)isotropic Heisenberg chains, sigma models, and higher rankgeneralizations.

    Study of extended (not point like) defects, and defects associated tonon-ultra-local algebras. Investigate also non-dynamical defects.

    At the quantum level: derive the associated transmission amplitudesvia the Bethe ansatz equations.

    Anastasia Doikou On Liouville integrable defects