88
Infocom. 4. ea 2014. 09. 29. 1 Infokommunikációs rendszerek – Infocommunication Systems Lecture 4. előadás Kódolás, nyalábolás, kapcsolás Coding, multiplexing, switching Takács György

Takács György

  • Upload
    nelly

  • View
    31

  • Download
    0

Embed Size (px)

DESCRIPTION

Infokommunikációs rendszerek – Infocommunication Systems Lecture 4 . előadás Kódolás, nyalábolás, kapcsolás Coding, multiplexing, switching. Takács György. Where we are now in study (tele -, info- ) communications systems?. Networks are working systems of terminals, nodes and links - PowerPoint PPT Presentation

Citation preview

Page 1: Takács György

Infocom. 4. ea 2014. 09. 29. 1

Infokommunikációs rendszerek – Infocommunication Systems

Lecture 4. előadás

Kódolás, nyalábolás, kapcsolásCoding, multiplexing, switching

Takács György

Page 2: Takács György

Infocom. 4. ea 2014. 09. 29. 2

Where we are now in study (tele-, info-) communications systems?

• Networks are working systems of terminals, nodes and links

• The basic technologies in links (wireline and wireless) have been discussed

• Node functions (multiplexing, switching, signalling, demultiplexing) will be discussed today

Page 3: Takács György

Infocom. 4. ea 2014. 09. 29. 3

Page 4: Takács György

Infocom. 4. ea 2014. 09. 29. 4

Page 5: Takács György

Infocom. 4. ea 2014. 09. 29. 5

Analog modulation systems- (AM)

• Amplitude modulation• The momentary amplitude of the carrier is

proportional to the momentary amplitude of the modulating signal

Page 6: Takács György

Infocom. 4. ea 2014. 09. 29. 6

Analog modulation systems- (AM)

Page 7: Takács György

Infocom. 4. ea 2014. 09. 29. 7

The spectrum of the AM in the case of discrete fm modulation frequency

Page 8: Takács György

Infocom. 4. ea 2014. 09. 29. 8

Frequency modulation systems- (FM)

• The momentary frequency of the carrier is proportional to the momentary amplitude of the modulating signal

Page 9: Takács György

Infocom. 4. ea 2014. 09. 29. 9

Frequency modulation systems- (FM)

Page 10: Takács György

Infocom. 4. ea 2014. 09. 29. 10

The spectrum of FM modulated signal in the case of discrete fm modulation frequency

 

Page 11: Takács György

Infocom. 4. ea 2014. 09. 29. 11

Digital modulation methods – Amplitude Shift Keying (ASK)

Page 12: Takács György

Infocom. 4. ea 2014. 09. 29. 12

Digital modulation methods – Binary Phase Shift Keying (BPSK)

Page 13: Takács György

Generation of BPSK

Infocom. 4. ea 2014. 09. 29. 13

x

~

Carriersignal

BPSK

t

1 0 0 1 +1

-1

Page 14: Takács György

Infocom. 4. ea 2014. 09. 29. 14

Digital modulation methods – Constellation Diagram / BPSK

Page 15: Takács György

Infocom. 4. ea 2014. 09. 29. 15

Eye diagram as a basis for demodulation of BPSK signal

Received BPSK

signal

x

Carrier

signal

comparator1,0,1,0

Eye diagram

Page 16: Takács György

Infocom. 4. ea 2014. 09. 29. 16

Digital modulation methods –Qadrature Phase Shift Keying (QPSK)

• Two carriers: sine wave (Q) and cosine wave (I)

• The modulated signal is the sum of the two components

• One symbol is two bits

Page 17: Takács György

Infocom. 4. ea 2014. 09. 29. 17

Digital modulation methods –Qadrature Phase Shift Keying (QPSK)

Page 18: Takács György

Infocom. 4. ea 2014. 09. 29. 18

Digital modulation methods –Qadrature Phase Shift Keying (QPSK)

Page 19: Takács György

Infocom. 4. ea 2014. 09. 29. 19

Digital modulation methods –Qadrature Phase Shift Keying (QPSK)

1

Page 20: Takács György

Infocom. 4. ea 2014. 09. 29. 20

Digital modulation methods –Qadrature Amplitude Modulation (QAM)

• Two carriers: sine wave (Q) and cosine wave (I)

• The modulated signal is the sum of the two components

• Different amplitude and differnt phase values for one symbol

• 16QAM means: one symbol is four bits

Page 21: Takács György

Infocom. 4. ea 2014. 09. 29. 21

Digital modulation methods –Qadrature Amplitude Modulation (16QAM)

Page 22: Takács György

Infocom. 4. ea 2014. 09. 29. 22

Digital modulation methods –Qadrature Amplitude Modulation (16QAM)

Page 23: Takács György

Infocom. 4. ea 2014. 09. 29. 23

Digital modulation methods –Qadrature Amplitude Modulation with channel noise

Page 24: Takács György

Infocom. 4. ea 2014. 09. 29. 24

Why to use sophisticated modulations -- like QAM?

• To put more bits into the standard medium – twisted pair cable –ADSL, Gigabit Ethernet, – coaxial cable – digital TV, HDTV, INTERNET, – Radio – GSM, satellite TV and radio program

broadcasting

• Efficient use of spectum (the radio spectrum is a limited resource)

Page 25: Takács György

Bit error rate as a function of signal to noise ratio using BPSK modulation

Infocom. 4. ea 2014. 09. 29. 25

Page 26: Takács György

Channel capacity as a function of signal to ratio at different modulation system. The reference is the BPSK

Infocom. 4. ea 2014. 09. 29. 26

Page 27: Takács György

Infocom. 4. ea 2014. 09. 29. 27

Multiplexing vs. switching

City A City B

105105

103

Trunks for active calls only

Page 28: Takács György

Infocom. 4. ea 2014. 09. 29. 28

Multiplexing principles

• To reduce transmission costs• To utilize higher bandwidth• „Framing” and „packing” of information• TDM -- Time Division Multiplexing• FDM -- Frequency Division Multiplexing• CDMA -- Code Division Multiple Access• WDM -- Wavelength Division Multiplexing• Mixed

Page 29: Takács György

Infocom. 4. ea 2014. 09. 29. 29

TDM principles I. PCM frame

4.50 ábra

(Pulse Code Modulation)

125 µs

Page 30: Takács György

Infocom. 4. ea 2014. 09. 29. 30

TDM principles II. PDH hierarchy

4.51 ábra

Plesiochronous Digital Hierarchy

Page 31: Takács György

Infocom. 4. ea 2014. 09. 29. 31

TDM principles III. PDH hierarchy

4.51 ábra

Page 32: Takács György

Infocom. 4. ea 2014. 09. 29. 32

SDH hierarchy

• SDH – Synchronous Digital Hierarchy• VC – Virtual Container (multiplexing level)• STM-N Synchronous Transport Modules

(line signal level)• POH – path overhead (control and

supervisory information)• POH+Payload=VC• A number of VCs can packaged into a

larger VC

Page 33: Takács György

Infocom. 4. ea 2014. 09. 29. 33

Transport modules

• RSOH – Regenerator Section Overhead

• MSOH – Multiplexer Section Overhead

• AU Pointer – Administrative Unit Pointer (specifies where the payload starts)

• Duration of STM-1 module is 125 µs

Page 34: Takács György

Infocom. 4. ea 2014. 09. 29. 34

General Transport Module

4.56. ábra

Page 35: Takács György

Infocom. 4. ea 2014. 09. 29. 35

Page 36: Takács György

Infocom. 4. ea 2014. 09. 29. 36

Page 37: Takács György

Infocom. 4. ea 2014. 09. 29. 37

SDH Network elementsDXC – Digital Cross ConnectADM – Add-drop MultiplexerTM – Terminal multiplexer

Page 38: Takács György

Infocom. 4. ea 2014. 09. 29. 38

Example of a physical network

Page 39: Takács György

Infocom. 4. ea 2014. 09. 29. 39

FDM principles

Page 40: Takács György

Infocom. 4. ea 2014. 09. 29. 40

TDM/FDM channel architecture as used in GSM

Page 41: Takács György

Infocom. 4. ea 2014. 09. 29. 41

FDM in Cable TV network (US Standard)

Page 42: Takács György

Infocom. 4. ea 2014. 09. 29. 42

Variable bit-rate data transfer within TDM time-slots

Page 43: Takács György

Infocom. 4. ea 2014. 09. 29. 43

The Spread Spectrum Concept

Page 44: Takács György

Infocom. 4. ea 2014. 09. 29. 44

General Model of Spread Spectrum Digital Communication System

Page 45: Takács György

Infocom. 4. ea 2014. 09. 29. 45

Frequency_Hopping Spread Spectrum FHSS

Page 46: Takács György

Infocom. 4. ea 2014. 09. 29. 46

FHSS

• A number of channels are allocated for FH• The transmitter operates in one channel at a time for

fixed time interval (Tc)• During that interval, some number of bits or a fraction of

a bit are transmitted (signal elements)• The time interval of signal elements Ts• The sequence of the channels used is dictated by

spreading code• Both transmitter and receiver use the same code to tune

into a sequence of channels in synchronisation

Page 47: Takács György

Infocom. 4. ea 2014. 09. 29. 47

Transmitter of the FHSS System

Page 48: Takács György

Infocom. 4. ea 2014. 09. 29. 48

Receiver of the FHSS System

Page 49: Takács György

Infocom. 4. ea 2014. 09. 29. 49

Slow FHSS using Multi Frequency Shift Keying Tc>Ts(in this case 4 subfrequencies for 2 bits)

Page 50: Takács György

Infocom. 4. ea 2014. 09. 29. 50

Fast FHSS using Multi Frequency Shift Keying Tc<Ts(in this case 4 subfrequencies for 2 bits)

Page 51: Takács György

Infocom. 4. ea 2014. 09. 29. 51

Example of Direct Sequence Spread Spectrum DSSS

Page 52: Takács György

Infocom. 4. ea 2014. 09. 29. 52

DSSS system Transmitter

Page 53: Takács György

Infocom. 4. ea 2014. 09. 29. 53

DSSS system Transmitter

Page 54: Takács György

Infocom. 4. ea 2014. 09. 29. 54

Comparison of FDM –TDM -- CDM

TDMA FDMA

Page 55: Takács György

Infocom. 4. ea 2014. 09. 29. 55

Principle of WDM

Page 56: Takács György

Infocom. 4. ea 2014. 09. 29. 56

Principle of WDM

Page 57: Takács György

Wavelenght Regions

Infocom. 4. ea 2014. 09. 29. 57

Page 58: Takács György

Infocom. 4. ea 2014. 09. 29. 58

Page 59: Takács György

Infocom. 4. ea 2014. 09. 29. 59

Page 60: Takács György

Prism refraction demultiplexing

Infocom. 4. ea 2014. 09. 29. 60

Page 61: Takács György

DWDM Ring Arhcitecure

Infocom. 4. ea 2014. 09. 29. 61

Page 62: Takács György

Infocom. 4. ea 2014. 09. 29. 62

Switching techniques in public networks

Page 63: Takács György

Infocom. 4. ea 2014. 09. 29. 63

The Group Switch interconnects incoming and outgoing time slots

Page 64: Takács György

Infocom. 4. ea 2014. 09. 29. 64

Time and space switches

Page 65: Takács György

Infocom. 4. ea 2014. 09. 29. 65

The principle of TST switching

Page 66: Takács György

Infocom. 4. ea 2014. 09. 29. 66

Group switch with 512 multiple position

Page 67: Takács György

Infocom. 4. ea 2014. 09. 29. 67

Connections to the local exchange

Page 68: Takács György

Infocom. 4. ea 2014. 09. 29. 68

Node for packet switching

Page 69: Takács György

Infocom. 4. ea 2014. 09. 29. 69

Packet node structure

Page 70: Takács György

Infocom. 4. ea 2014. 09. 29. 70

Connection oriented transfer phases:Connection setup (setup packet with complete address, Logical Channel Number stored in each nodeData transmission (only LCN in the header)Release

Connectionless transport:Destination address in the headerPath selection in the nodesDifferent packets have different delayThe order of received packets has no guarantee

Page 71: Takács György

Infocom. 4. ea 2014. 09. 29. 71

ATM cell switching principleFixed cell (packet) length – 53 bytes

5 octets header, 48 octet payload

Page 72: Takács György

Infocom. 4. ea 2014. 09. 29. 72

Why connection oriented packet switching?

• Connectionless – only best effort quality (www = world wide waiting)

• Connection oriented – QoS guarantee is possible

• Quality measures: delay, jitter, packet loss.

Page 73: Takács György

Infocom. 4. ea 2014. 09. 29. 73

Content of ATM cell header

Page 74: Takács György

Infocom. 4. ea 2014. 09. 29. 74

Segmentation and multiplexing of differentServices in cell based systems

Page 75: Takács György

Infocom. 4. ea 2014. 09. 29. 75

The principle of ATM switching

Page 76: Takács György

Infocom. 4. ea 2014. 09. 29. 76

VP (Virtual Path „coarse level addressing”) and VC (Virtual Channel „fine level addressing”)

Page 77: Takács György

Infocom. 4. ea 2014. 09. 29. 77

The structure of the ATM switch

Page 78: Takács György

Infocom. 4. ea 2014. 09. 29. 78

Signalling principles in circuit switching

Page 79: Takács György

Infocom. 4. ea 2014. 09. 29. 79

Signalling flow in a telephone call

Page 80: Takács György

Infocom. 4. ea 2014. 09. 29. 80

Signalling for distributed supplementary services or a mobile telephone call

Page 81: Takács György

Infocom. 4. ea 2014. 09. 29. 81

Signalling in packet switched networks

Page 82: Takács György

Infocom. 4. ea 2014. 09. 29. 82

Principles of Common Channel Signalling CCS

Page 83: Takács György

Infocom. 4. ea 2014. 09. 29. 83

Page 84: Takács György

Circuit or packet switching???

• A rule of thumb:– Band is cheap: circuit switching– Processing is cheap: packet switching

• Distributed vs. centralized intelligence in the network• Packet processing by 1016 b/s ????

Infocom. 4. ea 2014. 09. 29. 84

Page 85: Takács György

Photonic Fibre Switches

• In free-space devices, the light is focused from the input fibre, deflected by a micro-mirror (typically several times) and finally launched into the output fibre. The Micro-Electro-Mechanical Systems (MEMS) technology is mature and can produce switch matrices with up to hundreds of input and output ports (128x128 or 256x256), low insertion loss (IL), very low cross talk, low power consumption, millisecond switching speed, and broadband operation. The mirrors can typically be controlled electro-magnetically, electro-statically or by piezoelectric actuators.

Infocom. 4. ea 2014. 09. 29. 85

Page 86: Takács György

Operational principle and example of 3D MEMS array

Infocom. 4. ea 2014. 09. 29. 86

collimator

Page 87: Takács György

Infocom. 4. ea 2014. 09. 29. 87

Page 88: Takács György

Infocom. 4. ea 2014. 09. 29. 88