86
Tagungsband Die 22. Kalorimetrietage Braunschweig 7. – 9. Juni 2017 ISBN: 978-3-944659-05-3

Tagungsband Die 22. Kalorimetrietage · and how to distinguish them by ITC 17:00 P. Schmidt, M. Reschke, A. Wolf, A. Efi mova (Cottbus) ThermoPhIL: Thermochemical Investigations

  • Upload
    ngodung

  • View
    212

  • Download
    0

Embed Size (px)

Citation preview

Tagungsband

Die 22.KalorimetrietageBraunschweig7. – 9. Juni 2017

ISBN: 978-3-944659-05-3

Anton Paar GmbHAnton Paar Strasse 208054 GrazAustriaTelefon: +43 316 257 0Telefax: +43 316 257 [email protected]

C3 PROZESS- UND ANALYSENTECHNIK GmbH Peter-Henlein-Str. 20D-85540 Haar b. MünchenTelefon: 089/45 60 06 70Telefax: 089/45 60 06 [email protected]

DR. KRAUSE GmbHAhornstraße 28 – 32Haus 5514482 PotsdamTelefon: 0331 740 01 05Telefax: 0331 704 66 29dr.krause.software@isafem.dewww.isafem.dewww.selbstentzuendung.com

Wiley-VCH Verlag GmbH & Co. KGaABoschstraße 12,69469 WeinheimTelefon: +49 (0) 62 01 - 60 60Telefax: +49 (0) 62 01 - 60 63 [email protected]

Linseis Messgeraete GmbHVielitzerstr. 4395100 SelbTelefon: +49 (0) 9287/880 0Telefax: +49 (0) 9287/704 [email protected]

Malvern Instruments GmbH Rigipsstr. 1971083 HerrenbergTelefon: + 49 (0) 7032 97770Telefay: + 49 (0) 7032 77854 [email protected]://www.malvern.com

Mettler-Toledo GmbHOckerweg 335396 GießenTelefon: +49 (0)641 507-444www.mt.com/TA-FDSC

Die 22. Kalorimetrietage werden unterstützt von:

Tagungsband

Die 22.KalorimetrietageBraunschweig7. – 9. Juni 2017

Die 22. Kalorimetrietage | 7. – 9. Juni 2017 | Braunschweig Die 22. Kalorimetrietage | 7. – 9. Juni 2017 | Braunschweig2 / 162 3/ 162

Die 22. Kalorimetrietage werden unterstützt von: . . . . . . . . .Umschlag

Impressum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2

Inhaltsverzeichnis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3

Grußwort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4

Allgemeine Hinweise und Lageplan . . . . . . . . . . . . . . . . . . . . . . . . . .6

Busplan – Linie 433 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8

Busplan – Linie 461 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9

Tagungsprogramm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10

Rahmenprogramm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19

Liste der Vorträge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21

Kurzfassungen der Vorträge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27

Firmenanzeigen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .84

Liste der Posterbeiträge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .97

Kurzfassungen der Posterbeiträge . . . . . . . . . . . . . . . . . . . . . . . . .101

Autorenliste . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .149

Ankündigung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .159

Die 22. Kalorimetrietage werden unterstützt von: . . . . . . . . .Umschlag

Inhaltsverzeichnis

Veranstalter• Gesellschaft für Thermische Analyse e. V.• Physikalisch-Technische Bundesanstalt

Programmkomitee• Prof. Dr. H. Bunjes,

Braunschweig• Dr. M. Feist, Berlin• Prof. Dr. H. Heerklotz• Dr. J. Lerchner, Freiberg• Prof. Dr. F. Mertens, Freiberg• Dr. S. Neuenfeld, Darmstadt

• Dr. S. Sarge, Braunschweig• Prof. Dr. C. Schick, Rostock• Dr. J. Seidel. Freiberg• Prof. Dr. med. D. Singer,

Hamburg• Prof. Dr. G. Wolf, Freiberg

Lokale OrganisationD. KlausPhysikalisch-Technische BundesanstaltBundesallee 10038116 Braunschweig

VeranstaltungsortPhysikalisch-Technische BundesanstaltSeminarzentrumBundesallee 10038116 Braunschweig

TagungsbüroTelefon: (0531) 592-9784Fax: (0531) 592-3305E-Mail: [email protected]: www.kalorimetrietage.ptb.de

Impressum

Herausgeber und Verlag:Physikalisch-Technische BundesanstaltISNI: 0000 0001 2186 1887Bundesallee 10038116 Braunschweig

Die 22. Kalorimetrietage | 7. – 9. Juni 2017 | Braunschweig Die 22. Kalorimetrietage | 7. – 9. Juni 2017 | Braunschweig4 / 162 5/ 162

Aber wir dürfen nicht die Fähigkeiten anderer Methoden, die ebenfalls thermodynamische Eigenschaften zu ermitteln erlauben, unterschätzen, wie der Vortrag von Prof. Span über die Ermittlung kalorischer Eigenschaften aus Zustandsgleichungen eindrucksvoll zeigt. Auch sonst stellen wir fest, dass modellbasierte Rechenverfahren zur Ermittlung thermodynamischer und kinetischer Daten an Popularität gewinnen. Lassen Sie uns aber nicht vergessen, dass diese Verfahren im besten Fall als semi-empirisch anzusehen sind, vollständige ab-initio-Verfahren sind weiterhin sehr aufwendig und unzuverlässig. Und am Ende entscheidet immer das Experiment. Deshalb lassen Sie uns zuversichtlich in die Zukunft schauen und der Wissenschaft, Industrie und Gesellschaft weiterhin durch die Ermittlung richtiger und zuverlässiger Informationen für den Energieumsatz in biologischen, chemischen, physikalischen und technischen Systemen dienen.In diesem Sinne wünschen wir allen Teilnehmern der 22. Kalorimetrietage einen interessanten und lehrreichen Aufenthalt in Braunschweig.

Grußwort

Die 22. Kalorimetrietagevom 7. bis 9. Juni 2017 in Braunschweig

Mit den diesjährigen 22. Kalorimetrietagen wollen wir einen weiteren Schritt in die Zukunft machen. Sie werden bemerken, dass die Mehrzahl der Vorträge und Poster, auch die sonstige Kommunikation – mit Ausnahme dieses Grußwortes – in der aktuellen universellen Wissenschaftssprache, in Englisch, präsentiert werden. In gewisser Weise ist dies bedauerlich, weil es unseren muttersprachlich englisch aufgewachsenen Kollegen einen grundsätzlichen Vorteil in Diskussionen, Auseinandersetzungen und Rechtsstreitigkeiten gibt. Insofern begrüßen wir den Vorschlag eines Kollegen der Bundesanstalt für Materialforschung und -prüfung, sprachlich zwei Schritte zurückzugehen und Latein wieder als universelle Wissenschaftssprache zu etablieren, wie es bis ca. 1800 auch tatsächlich der Fall war. Latein ist eine mächtige und fl exible Sprache, wie über mehr als 2000 Jahre bewiesen wurde, und würde es erlauben, wie in Frankreich und Island für die dortigen Sprachen üblich, neue Ideen, neue Konzepte, neue Sachverhalte und neue Produkte präzise abzubilden oder durch intelligente Wortschöpfungen auszudrücken. Damit wäre auf der sprachlichen Ebene Chancengleichheit hergestellt.Leider eine Utopie.Deswegen gehen wir den Weg, zunächst beide Sprachen, Deutsch und Englisch, gleichberechtigt zu behandeln und zu beobachten, wohin die Kalorimetrietage steuern.

Keine Utopie ist, dass diesmal mit den angemeldeten 42 mündlichen und 28 Postervorträgen ein besonders vielfältiger Eindruck in das Potential unseres Arbeitsgebietes vermittelt wird. Insbesondere die Anwendung kalorimetrischer Methoden in der Biologie, Medizin und Pharmazie erscheint zukunftsträchtig.

Die 22. Kalorimetrietage | 7. – 9. Juni 2017 | Braunschweig Die 22. Kalorimetrietage | 7. – 9. Juni 2017 | Braunschweig6 / 162 7/ 162

HörsaalVorträge

Empfang

Eingang

Seminarraum AVorträge

Seminarraum BPoster

Thas

s

Setaram

TA Instruments

C3

Anton P

aar

Union I

nstru

ments

Prosen

se

Mettler

Toled

o

Netzsch

Dr. Krause

Perkin Elmer

Linseis

Malvern

Allgemeine Hinweise und Lageplan

Die Plenar- und Hauptvorträge sowie ein Teil der Kurzvorträge fi nden im Hörsaal statt, der andere Teil der Kurzvorträge im Seminarraum A. Die Firmenpräsentationen und die Posterausstellung befi nden sich im Foyer des Seminarzentrums bzw. im Seminarraum B.

Das Mittagessen kann in der Kantine der PTB eingenommen werden.

Parkplätze befi nden sich ausreichend unweit des Seminarzentrums auf dem Gelände. Für Mittwoch- und Donnerstagabend ist ein Bustransfer von der PTB in die Innenstadt eingerichtet.Die Linien 433 und 461 bedienen tagsüber die PTB im 30-Minuten Takt.

Ausfahrt

A

B

C

EinfahrtBundesallee nach Lehndorf

Bund

esal

lee

nach

Wat

enbü

ttel

Anmeldung

Kantine

Seminarzentrum

P

Die 22. Kalorimetrietage | 7. – 9. Juni 2017 | Braunschweig Die 22. Kalorimetrietage | 7. – 9. Juni 2017 | Braunschweig8 / 162 9/ 162

Busplan – Linie 461

- PTB- Bundesallee- Paracelsusstraße- Pfleidererstraße- von Pawelsches Holz- Saarbrückener Straße- Saarplatz- Ottweilerstraße- Hildesheimer Straße- Rudolfplatz- Kälberwiese- Maienstraße- Madamenweg- Johannes-Selenka-Platz- Cyriaksring- Luisenstraße- Europaplatz- Am Wassertor (Volkswagen-Halle)- John-F.-Kennedy-Platz- Campestraße- Braunschweig Hauptbahnhof

6.136.156.166.176.186.196.206.216.236.256.266.276.286.296.316.326.336.346.366.376.40

6.43 18.43alle30Min

6.45 18.456.46 18.466.47 18.476.48 18.486.49 18.496.50 18.506.51 18.516.53 18.536.55 18.556.56 18.566.57 18.576.58 18.586.59 18.597.01 19.017.02 19.027.03 19.037.04 19.047.06 19.067.07 19.077.10 19.10

PTB – Hauptbahnhof

Hauptbahnhof – PTB- Braunschweig Hauptbahnhof- Campestraße- John-F.-Kennedy-Platz- Fr.-Wilhelm-Platz- Europaplatz- Luisenstraße- Cyriaksring- Johannes-Selenka-Platz- Madamenweg- Maienstraße- Kälberwiese- Hildesheimer Straße- Ottweilerstraße- Saarplatz- Saarbrückener Straße- von Pawelsches Holz- Pfleidererstraße- Paracelsusstraße- Bundesallee- PTB

5.325.335.35

6.246.256.27

6.206.216.236.256.266.276.296.306.316.326.336.366.376.386.396.406.416.426.436.45

6.50 19.20alle30Min

6.51 19.216.53 19.236.55 19.256.56 19.266.57 19.276.59 19.297.00 19.307.01 19.317.02 19.327.03 19.337.06 19.367.07 19.377.08 19.387.09 19.397.10 19.407.11 19.417.12 19.427.13 19.437.15 19.45

PTB – Pockelsstraße

Pockelsstraße – PTB

Busplan – Linie 433

- PTB

- Paracelsusstraße

- Saarplatz

- Hildesheimer Straße

- Amalienplatz

- Hamburger Straße

- Hans-Sommer-Straße

5.43

5.47

5.50

5.54

5.57

6.00

6.10

6.13

6.17

6.20

6.24

6.27

6.30

6.40

6.43

6.47

6.50

6.54

6.57

7.00

7.10

7.13

7.17

7.20

7.24

7.27

7.30

7.40 alle alle

7.43

7.47

7.50

7.54

7.57

8.00

8.10

8.13

8.17

8.20

8.40 11.40

8.43 11.43

8.47 11.47

8.50 11.50

8.54 11.54

8.57 11.57

9.00 12.00

18.10

18.13

18.17

18.20

18.24

18.27

18.30

- von Pawelsches Holz 5.45 6.15 6.45 7.15 7.45 8.15 8.45 11.45 18.15

- Bundesallee 6.12 6.42 7.12 60 307.42 8.12 8.42 11.42 18.12

- Pfleidererstraße 5.44 6.14 6.44 7.14Min Min

7.44 8.14 8.44 11.44 18.14

- Saarbrückener Straße

- Ottweilerstraße

- Rudolfplatz

5.46

5.48

5.52

6.16

6.18

6.22

6.46

6.48

6.52

7.16

7.18

7.22

7.46

7.48

7.52

8.16

8.18

8.22

8.46 11.46

8.48 11.48

8.52 11.52

18.16

18.18

18.22

- Maschplatz

- Pockelsstraße

5.55

5.58

6.25

6.28

6.55

6.58

7.25

7.28

7.55

7.58

8.55 11.55

8.58 11.58

18.25

18.28

- Bültenweg- Pockelsstraße- Hamburger Straße- Maschplatz- Amalienplatz- Rudolfplatz- Hildesheimer Straße- Ottweilerstraße- Saarplatz- Saarbrückener Straße- von Pawelsches Holz- Pfleidererstraße- Paracelsusstraße- Bundesallee- PTB

6.006.016.046.056.076.096.116.126.136.146.156.166.176.186.20

6.30 8.00alle30min

alle60min

alle30min

6.31 8.016.34 8.046.35 8.056.37 8.076.39 8.096.41 8.116.42 8.126.43 8.136.44 8.146.45 8.156.46 8.166.47 8.176.48 8.186.50 8.20

12.0012.0112.0412.0512.0712.0912.1112.1212.1312.1412.1512.1612.1712.1812.20

18.3018.3118.3418.3518.3718.3918.4118.4218.4318.4418.4518.4618.4718.4818.50

Die 22. Kalorimetrietage | 7. – 9. Juni 2017 | Braunschweig Die 22. Kalorimetrietage | 7. – 9. Juni 2017 | Braunschweig10 / 162 11/ 162

Tagungsprogramm

Thursday, 08.06.2017

Lecture hall

Chair: E. Wilhelm

09:00J. Orava (Cambridge, UK)

Chalcogenides for Phase-Change Memory Applications

09:45

S. H. Dürrstein, C. Kappler, I. Neuhaus, M. Malow, H. Michael-Schulz, M. Gödde (Ludwigshafen/Bonn)

Vergleich verschiedener Messmethoden zum thermischen Verhalten von Dicumylperoxid (40 %) in Ethylbenzol – modellbasierte Vorhersage adiabater Induktionszeiten sowie der SADT und Vergleich mit dem UN H.1-Test

10:15 Instrument presentation / Poster presentation / Coffee break

Tagungsprogramm

Wednesday, 07.06.2017

Lecture hall

13:00 Welcome address

Chair: W. Hemminger

13:30A. Nicolaus (Braunschweig)

The SI unit kilogram: the new defi nition and it’s realization on the basis of fundamental constants

14:15N. Barros (Santiago de Compostela, Spain)

The role of calorimetry in assessing the impact of climate change on the global carbon cycle

15:00 Instrument presentation / Poster presentation / Coffee break

Chair: N. Barros

16:00R. Span (Bochum)

Caloric Properties from Empirical Fundamental Equations of State

16:30H.Y. Fan, H. Heerklotz (Freiburg)

Three types of biomembrane effects of surfactants and how to distinguish them by ITC

17:00P. Schmidt, M. Reschke, A. Wolf, A. Efi mova (Cottbus)

ThermoPhIL: Thermochemical Investigations of Phase Formation Processes in Ionic Liquids

17:30S. Vidi, M. Brütting, S. Hiebler, C. Rathgeber (Würzburg)

Calorimetric Measurements of Phase Change Materials (PCM)

18:00 Transfer to city

20:00 Informal meeting at Rheinische Republik

Die 22. Kalorimetrietage | 7. – 9. Juni 2017 | Braunschweig Die 22. Kalorimetrietage | 7. – 9. Juni 2017 | Braunschweig12 / 162 13/ 162

Tagungsprogramm

Thursday, 08.06.2017

Seminar room A

Tagungsprogramm

Thursday, 08.06.2017

Lecture hall

Energetics (Chair: F. Mertens) Materials (Chair: W. Kunze)

11:00N. Gorodylova, P. Šulcová (Pardubice, Czech Republic)

Reactivity of ZrOCl2∙8H2O and its application for the synthesis of NASICON framework phosphates

11:00G. Kaiser, C. Straßer (Selb)

Einfl uss von Nukleierungsmitteln auf die Kristallisation von Polypropylen (PP)

11:20F. Taubert, R. Hüttl, J. Seidel, F. Mertens (Freiberg)

Determination of thermodynamic properties of lithium monosilicide based on calorimetric and hydrogenation experiments

11:20

E. Hempel, J.E.K. Schawe, St. Ziegelmeier (Schwerzenbach, Switzerland)

Determination of the thermal short time stability of polymers by fast scanning calorimetry

11:40

C. Thomas, G. Balachandran, N. Mayer, R. Hüttl, J. Seidel, F. Mertens (Freiberg)

Determination of the enthalpy of mixing in the binary system LiFePO4–FePO4 at 25 °C

11:40

R. Androsch, C. Schick (Rostock)

Interplay between the Relaxation of the Glass of Random L/D Lactide Copolymers and Homogeneous Crystal Nucleation: Evidence for Segregation of Chain Defects

12:00

V. Becattini, T. Motmans, A. Zappone, C. Madonna, A. Haselbacher, A. Steinfeld (Zurich, Switzerland)

Determination of specifi c heat capacity of rocks by DSC before and after high-temperature thermal cycling

12:00B. Yang, Y. Gao, C. Schick (Rostock)

Can homogenous nucleation be controlled in a metallic glass?

12:20 Lunch break 12:20 Annual meeting of GEFTA members

Chair: H. Heerklotz

13:50

O. Braissant, A. Solokhina, D. Brueckner, G. Bonkat, D. Wirz (Allschwil, Switzerland)

Combination of tunable diode laser absorption spectroscopy and isothermal microcalorimetry for life sciences

14:20T. Maskow (Leipzig)

Calorimetry of Microbial Utilization of Electrical and Photon Energy

14:50U. Schröder (Braunschweig)

Electrifi ed Microbiology – Bacteria full of Potential!

15:20 Instrument presentation / Poster presentation / Coffee break

Die 22. Kalorimetrietage | 7. – 9. Juni 2017 | Braunschweig Die 22. Kalorimetrietage | 7. – 9. Juni 2017 | Braunschweig14 / 162 15/ 162

Tagungsprogramm

Thursday, 08.06.2017

Seminar room A

Tagungsprogramm

Thursday, 08.06.2017

Lecture hall

Biology (Chair: T. Maskow) Safety Assessment (Chair: S. Neuenfeld)

16:20C. Ortmann (Eschborn)

Die Mikrokalorimetrie als nicht-invasive Methode zur Charakterisierung des Metabolismus

16:20

M. Lünne, A. Knorr, K.-D. Wehrstedt (Berlin)

Vorhersage der selbstbeschleunigenden Zersetzungstemperatur (SADT) für organische Peroxide aus DSC-Messungen

16:40J. Lerchner, C. Lanaro, P.L.O. Volpe, F. Mertens (Freiberg)

A chip calorimetry based method for the real-time monitoring of red blood cell sickling

16:40T. Willms, H. Kryk, J. Oertel, U. Hampel (Dresden)

The decomposition of tert.-butyl hydroperoxide studied by differential scanning calorimetry

17:00E. Roese, H. Bunjes (Braunschweig)

Investigating Drug Release from Triglyceride Nanoparticles into Physiological Media by DSC

17:00J. Burelbach, U. Hess (München)

Tests with Adiabatic Calorimeters

17:20

M. Marenchino (Herrenberg)

Turning up the heat on protein stability characterization. Differential Scanning Calorimetry for the regulated environment

17:20G. Krause (Potsdam)

DSC Validierung. Vergleich der Meßwerte mit der Auswertung

17:40A. Abdelaziz, D.H. Zaitsau, T. Mukhametzyanov, S.P. Verevkin, C. Schick (Rostock)

Flash DSC study of the melting behavior of Cytosine17:40

S. Stones (Bletchley, England)

Micro Reaction Calorimetry. Newer Applications for the Chemical & Pharmaceutical Industry

18:00 Transfer to city

19:00 Guided city tour or guided visit to Herzog Anton Ulrich-Museum

20:30 Conference dinner with presentation by G. Krause: Der wahre Grund, warum die Titanic untergehen mußte

Die 22. Kalorimetrietage | 7. – 9. Juni 2017 | Braunschweig Die 22. Kalorimetrietage | 7. – 9. Juni 2017 | Braunschweig16 / 162 17/ 162

Tagungsprogramm

Friday, 09.06.2017

Seminar room A

Tagungsprogramm

Friday, 09.06.2017

Lecture hall

New Methods (Chair: C. Schick) Thermodynamics (Chair: P. Schmidt)

09:00G. Bartl (Braunschweig)

Interferometric determination of thermal expansion on material measures

09:00E. Wilhelm (Wien, Österreich)

Solubility Parameters: A Versatile Concept

09:20C. Bläker, C. Pasel, M. Luckas, F. Dreisbach, D. Bathen (Duisburg)

Kopplung von kalorimetrischen und volumetrischen Adsorptionsmessungen

09:20

D.H. Zaitsau, S.P. Verevkin (Rostock)

Through solution to the gas phase: Evaluation of the enthalpy of vaporization for thermally unstable ionic compounds with the help of solution calorimetry

09:40

T. Husemann, S. Schwarz, G. Henriques, N. Bertram, J.K. Krüger (Seelze-Letter)

Thermal excitation, optical response: Sheds a new light on thermal analysis by TORC

09:40D. Walter, E. Haibel (Gießen)

Carbonate formation in oxidic lanthanum compounds – Isothermal calorimetry

10:00A. Omelcenko, H. Wulfmeier, H. Fritze (Clausthal)

Thin-Film Calorimeter Based on High-Temperature Stable Piezoelectric Resonators

10:00

T. Haug (Karlsruhe)

Thermodynamische Modellierung eines Prozesskalorimeters zur kontinuierlichen Bestimmung des Wobbe-Index von Brenngasen

10:20H.K. Cammenga (Braunschweig)

Thermochemische Erkenntnisse über die Sorption, das Rösten und das Quenchen von Kaffeebohnen

10:20F.J. Perez-Sanz (Braunschweig)

Comparison of Calorifi c Value Measurements of Biogas Reference and Field Calorimeters

10:40 Instrument presentation / Poster presentation / Coffee break

Die 22. Kalorimetrietage | 7. – 9. Juni 2017 | Braunschweig Die 22. Kalorimetrietage | 7. – 9. Juni 2017 | Braunschweig18 / 162 19/ 162

Wednesday, 07.06.2017

20:00 Informal meeting at Rheinische RepublikNeue Straße 10, 38100 Braunschweig (self-paying basis)

Thursday, 08.06.2017

19:00Guided city tour or guided visit to Herzog Anton Ulrich-MuseumMeeting points: Burgplatz and museum entrance, resp.

20:30 Conference dinner at restaurant Al DuomoRuhfäutchenplatz 1, 38100 Braunschweig

RahmenprogrammTagungsprogramm

Friday, 09.06.2017

Lecture hall

Chair: D. Walter

11:30P. Dumas (Illkirch-Graffenstaden)

Kinetic ITC methods in the fi eld of biology

12:00R. Leithner (Braunschweig)

Druckluftspeicherkraftwerke

12:45 Farewell address Burgplatz, Al Duomo

Schloss

Bohlweg

Magnitorwall

Münzstraße

Steinweg

Theater

Rheinische Republik

Herzog A. U.-Museum

Die 22. Kalorimetrietage | 7. – 9. Juni 2017 | Braunschweig 21/ 162

Liste der Vorträge

Abdelaziz, Amir (Rostock)

Flash DSC study of the melting behavior of Cytosine(A. Abdelaziz, D.H. Zaitsau, T. Mukhametzyanov, S.P. Verevkin, C. Schick)

Barros, Nieves (Santiago de Compostela, Spain)

The role of calorimetry in assessing the impact of climate change on the global carbon cycle

Bartl, Guido (Braunschweig)

Interferometric determination of thermal expansion on material measures

Becattini, Viola (Zurich, Switzerland)

Determination of specifi c heat capacity of rocks by DSC before and after high-temperature thermal cycling(V. Becattini, T. Motmans, A. Zappone, C. Madonna, A. Haselbacher, A. Steinfeld)

Bläker, Christian (Duisburg)

Kopplung von kalorimetrischen und volumetrischen Adsorptionsmessungen(C. Bläker, C. Pasel, M. Luckas, F. Dreisbach, D. Bathen)

Braissant, Olivier (Allschwil, Switzerland)

Combination of tunable diode laser absorption spectroscopy and isothermal microcalorimetry for life sciences(O. Braissant, A. Solokhina, D. Brueckner, G. Bonkat, D. Wirz)

Bunjes, Heike (Braunschweig)

Investigating Drug Release from Triglyceride Nanoparticlesinto Physiological Media by DSC(E. Roese, H. Bunjes)

Cammenga, Heiko K. (Braunschweig)

Thermochemische Erkenntnisse über die Sorption, das Rösten und das Quenchen von Kaffeebohnen

Die 22. Kalorimetrietage | 7. – 9. Juni 2017 | Braunschweig Die 22. Kalorimetrietage | 7. – 9. Juni 2017 | Braunschweig22 / 162 23/ 162

Liste der Vorträge

Kaiser, Gabriele (Selb)

Einfl uss von Nukleierungsmitteln auf die Kristallisation von Polypropylen (PP)(G. Kaiser, C. Straßer)

Knorr, Annett (Berlin)

Vorhersage der selbstbeschleunigenden Zersetzungstemperatur (SADT) für organische Peroxide aus DSC-Messungen(M. Lünne, A. Knorr, K.-D. Wehrstedt)

Krause, Gerhard (Potsdam)

Der wahre Grund, warum die Titanic untergehen mußte

Krause, Gerhard (Potsdam)

DSC Validierung. Vergleich der Meßwerte mit der Auswertung

Lerchner, Johannes (Freiberg)

A chip calorimetry based method for the real-time monitoring of red blood cell sickling(J. Lerchner, C. Lanaro, P.L.O. Volpe, F. Mertens)

Leithner, Reinhard (Braunschweig)Druckluftspeicherkraftwerke

Marenchino, Marco (Herrenberg)

Turning up the heat on protein stability characterization. Differential Scanning Calorimetry for the regulated environment

Maskow, Thomas (Leipzig)

Calorimetry of Microbial Utilization of Electrical and Photon Energy

Nicolaus, Arnold (Braunschweig)

The SI unit kilogram: the new defi nition and it’s realization on the basis of fundamental constants

Liste der Vorträge

Dumas, Philippe (Illkirch-Graffenstaden)

Kinetic ITC methods in the fi eld of biology

Gödde, Markus (Ludwigshafen)

Vergleich verschiedener Messmethoden zum thermischen Verhalten von Dicumylperoxid (40%) in Ethylbenzol – modellbasierte Vorhersage adiabater Induktionszeiten sowie der SADT und Vergleich mit dem UN H.1-Test(S. Dürrstein, C. Kappler, I. Neuhaus, M. Malow, H. Michael-Schulz, M. Gödde)

Gorodylova, Nataliia (Pardubice, Czech Republic)

Reactivity of ZrOCl2∙8H2O and its application for the synthesis of NASICON framework phosphates(N. Gorodylova, P. Šulcová)

Haug, Torsten (Karlsruhe)

Thermodynamische Modellierung eines Prozesskalorimeters zur kontinuierlichen Bestimmung des Wobbe-Index von Brenngasen

Heerklotz, Heiko (Freiburg)

Three types of biomembrane effects of surfactants and how to distinguish them by ITC(H.Y. Fan, H. Heerklotz)

Hempel, Elke (Schwerzenbach, Switzerland)

Determination of the thermal short time stability of polymers by fast scanning calorimetry(E. Hempel, J.E.K. Schawe, St. Ziegelmeier)

Hess, Uwe (München)

Tests with Adiabatic Calorimeters(J. Burelbach, U. Hess) Husemann, Tobias (Seelze-Letter)

Thermal excitation, optical response: Sheds a new light on thermal analysis by TORC(T. Husemann, S. Schwarz, G. Henriques, N. Bertram, J.K. Krüger)

Die 22. Kalorimetrietage | 7. – 9. Juni 2017 | Braunschweig Die 22. Kalorimetrietage | 7. – 9. Juni 2017 | Braunschweig24 / 162 25/ 162

Taubert, Franziska (Freiberg)

Determination of thermodynamic properties of lithium monosilicide based on calorimetric and hydrogenation experiments(F. Taubert, R. Hüttl, J. Seidel, F. Mertens)

Thomas, Christian (Freiberg)Determination of the enthalpy of mixing in the binary system LiFePO4–FePO4 at 25 °C(C. Thomas, G. Balachandran, N. Mayer, R. Hüttl, J. Seidel, F. Mertens)

Vidi, Stephan (Würzburg)

Caloric Measurements of Phase Change Materials (PCM)(S. Vidi, M. Brütting, S. Hiebler, C. Rathgeber) Walter, Dirk (Gießen)

Carbonate formation in oxidic lanthanum compounds – Isothermal calorimetry(D. Walter, E. Haibel)

Wilhelm, Emmerich (Wien, Österreich)

Solubility Parameters: A Versatile Concept

Willms, Thomas (Dresden)

The decomposition of tert.-butyl hydroperoxide studied by differential scanning calorimetry(T. Willms, H. Kryk, J. Oertel, U. Hampel)

Yang, Bin (Rostock)

Can homogenous nucleation be controlled in a metallic glass?(B. Yang, Y. Gao, C. Schick)

Zaitsau, Dzmitry H. (Rostock)

Through solution to the gas phase: Evaluation of the enthalpy of vaporization for thermally unstable ionic compounds with the help of solution calorimetry(D.H. Zaitsau, S.P. Verevkin)

Liste der Vorträge

Omelcenko, Alexander (Clausthal)

Thin-Film Calorimeter Based on High-Temperature Stable Piezoelectric Resonators(A. Omelcenko, H. Wulfmeier, H. Fritze )

Orava, Jiri (Cambridge, UK)Chalcogenides for Phase-Change Memory Applications

Ortmann, Christian (Eschborn)

Die Mikrokalorimetrie als nicht-invasive Methode zur Charakterisierung des Metabolismus

Pérez-Sanz, Fernando J. (Braunschweig)

Comparison of Calorifi c Value Measurements of Biogas Reference and Field Calorimeters

Schick, Christoph (Rostock)

Interplay between the Relaxation of the Glass of Random L/D Lactide Copolymers and Homogeneous Crystal Nucleation: Evidence for Segregation of Chain Defects(R. Androsch, C. Schick)

Schmidt, Peer (Cottbus)

ThermoPhIL: Thermochemical Investigations of Phase Formation Processes in Ionic Liquids

Schröder, Uwe (Braunschweig)

Electrifi ed Microbiology – Bacteria full of Potential!

Span, Roland (Bochum)

Caloric Properties from Empirical Fundamental Equations of State

Stones, Steve (Bletchley, England)

Micro Reaction Calorimetry. Newer Applications for the Chemical & Pharmaceutical Industry

Liste der Vorträge

Die 22. Kalorimetrietage | 7. – 9. Juni 2017 | Braunschweig 27/ 162

Tagungsband

Die 22.Kalorimetrietage

Kurzfassungen der Vorträge

Die 22. Kalorimetrietage | 7. – 9. Juni 2017 | Braunschweig Die 22. Kalorimetrietage | 7. – 9. Juni 2017 | Braunschweig28 / 162 29/ 162

Flash DSC study of the melting behavior of Cytosine

A. Abdelaziz1,2, D.H. Zaitsau2,3; T. Mukhametzyanov4 S.P. Verevkin2,3, C. Schick1,2,4

1 University of Rostock, Institute of Physics, Albert-Einstein-Str. 23-24, 18051 Rostock,

Germany2 University of Rostock, Faculty of Interdisciplinary Research,

Competence Centre CALOR, Albert-Einstein-Str. 25, 18051 Rostock, Germany3 University of Rostock, Institute of Chemistry, Dr-Lorenz-Weg 1, 18051 Rostock,

Germany4 Kazan Federal University, 18 Kremlyovskaya Street, Kazan 420008,

Russian Federation

We report, for the first time, the melting

behavior of cytosine, one of the nucleo-

bases, building blocks of DNA and RNA

sequences.

Cytosine is known to decompose during

the melting process, this makes the appli-

cation of conventional calorimetric meth-

ods meaningless for investigation of the

melting of this thermally instable biomole-

cule.

With the help of Mettler Toledo flash

DSC1, the sample of solid cytosine was

heated with a scanning rate of 6000 K·s-1

above the proposed temperature of fusion.

No obvious evidence of cytosine decom-

position was observed. Upon quenching,

with high cooling rate a partial verification

was observed.

Several experiments were carried out in

order to get reliable values of fusion tem-

perature, fusion enthalpy, as well as the

glass transition temperature and the spe-

cific heat capacity of liquid cytosine - re-

ported for the first time.

Amir Abdelaziz

BD

A

Die 22. Kalorimetrietage | 7. – 9. Juni 2017 | Braunschweig Die 22. Kalorimetrietage | 7. – 9. Juni 2017 | Braunschweig30 / 162 31/ 162

Interferometric determination of thermal expansion on

material measures

Guido Bartl

Physikalisch-Technische Bundesanstalt (PTB), Bundesallee 100, 38116 Braunschweig,

Germany

The realisation and dissemination of the

SI base unit metre is part of the legal as-

signment of a national metrology institute

like PTB. Therefore the length of material

measures (usually in the form of gauge

blocks) is determined with high precision

by special imaging interferometers which

have been developed for this purpose.

The focus of the research activities is on

the reduction of the measurement uncer-

tainty in order to meet the demands of in-

dustry with regard to decreasing produc-

tion tolerances. Consequently the temper-

ature as an important parameter has to be

monitored precisely when the absolute

length of a sample body is measured. The

measurement of the absolute length of a

material depending on the temperature (or

time) allows the determination of its ther-

mal expansion (or stability over time). In-

stead of measuring differential length

changes the absolute length as a function

of temperature in the interval from 7 K up

to 330 K can be investigated with a result-

ing uncertainty on the order of 10-9/K.

Such high-accuracy knowledge of the

temperature-dependent thermal expan-

sion is required for the development and

characterisation of ultra-stable materials,

for instance in the semiconductor industry,

precision optics, or aerospace applica-

tions. The capabilities – and limitations –

of the available interferometers will be pre-

sented.

The role of calorimetry in assessing the impact of climate

change on the global carbon cycle.

Nieves Barros

Dept. Applied Physics, Faculty of Physics, University of Santiago de Compostela, Spain

Climate change is one of the biggest chal-

lenges facing scientists worldwide nowa-

days. Interdisciplinary knowledge is of

paramount importance to climate change

research, because climate directly affects

all aspects of life on earth: from natural

and experimental sciences, to economics,

social sciences and human health.

The research needed to adapt life on

earth to the predicted effect of climate on

our planet, and to mitigate to some extent

its impact on human life and on human

society, will require many different scien-

tific disciplines working together in close

collaboration.

The predictions are worrisome. According

to the European Environmental Agency

(EEA 2008), the Intergovernmental Panel

on Climate Change (IPCC), and the World

Health Organization (WHO) the global

average surface temperature is projected

to increase between 1.4 and 5.8 ºC this

century. The Artic sea ice is melting at a

rate of 2.7 % per decade, and mountain

glaciers are contracting. Both impact sea

levels, which have increased 1.8 mm per

year since 1961.

The number of people at risk of flooding

by coastal storms is projected to increase

from the current 75 million to 200 million.

But this is not all. All these issues directly

impact human health due to extreme heat

and cold, changes in air and water quality,

and changes in the ecology of infectious

diseases. At the core of these threats to

human health lies the effect of

temperature on two of the vital primary

resources on earth: soil and water.

On the face of the aforementioned impact

of climate change on all living systems, we

should be measuring the effect of temper-

atures on life. We should monitor what

happens to a certain living system with

increasing or decreasing temperatures,

when those temperatures hit extreme cold

or hot levels, and when the exposure time

to such extreme temperatures raises. This

measuring and monitoring is the object of

biocalorimetry.

Latest calorimetric devices allow us to

monitor changes in the metabolic rates of

living systems under changing tempera-

tures continuously and in real time, mak-

ing these experimental phases faster and

easier than other methods, and opening a

wide range of useful scientific applications

in this age of changing global climate.

These applications not only involve the

study of soil, plants, microorganisms and

pathogens that threat human food sup-

plies. They also involve studying how to

fight such pathogens and the role of tem-

perature on them.

On the whole, calorimetry can and should

make key contributions to our knowledge

about the real impact of temperature on

life. This basic knowledge is essential to

provide the best strategies to preserve

human welfare and safety under the cli-

mate change conditions.

Guido BartlNieves Barros

A

DF

B

Die 22. Kalorimetrietage | 7. – 9. Juni 2017 | Braunschweig Die 22. Kalorimetrietage | 7. – 9. Juni 2017 | Braunschweig32 / 162 33/ 162

Kopplung von kalorimetrischen und volumetrischen

Adsorptionsmessungen

M. Sc. C. Bläker1* , Dr. rer. nat. C. Pasel1, Dr. Ing. M. Luckas1,

Dr.-Ing. Frieder Dreisbach2, Prof. Dr.-Ing. Dieter Bathen1,3,

1 Thermische Verfahrenstechnik Universität Duisburg-Essen, Duisburg, Deutschland2 Rubotherm GmbH, Bochum, Deutschland3 Institut für Energie- und Umwelttechnik e.V. (IUTA), Duisburg, Deutschland

* E-Mail: [email protected]

Die Auslegung von technischen Adsorpti-

onsprozessen basiert im Wesentlichen auf

der Messung von Reinstoffisothermen und

Durchbruchskurven. Da Temperaturände-

rungen einen starken Einfluss auf die

Durchbruchskurven haben, erfordert die

Modellierung und Auslegung von Adsorp-

tionsprozessen eine möglichst genaue

Kenntnis der Adsorptionswärme. Diese ist

eine Funktion des Bedeckungsgrads, so-

dass eine simultane Messung von Adsorp-

tionsenthalpie und Beladung wünschens-

wert ist.

Ziel dieses Projektes ist daher die Ent-

wicklung eines Messverfahrens zur Kopp-

lung von kalorimetrischen und volumetri-

schen Gleichgewichtsmessungen in ei-

nem Gerät.

Ein volumetrisches Adsorptionsmessgerät

wird durch einen kalorimetrischen

Messaufbau erweitert, mit dem die Druck-

differenz zwischen zwei identischen Gas-

volumina in einem Wasserbad mit defi-

nierter Temperatur gemessen wird. Bei

der Adsorption steigt in der Messzelle

aufgrund der Sorptionswärme die Tempe-

ratur. Der resultierende Wärmestrom

durch das Gasvolumen in das Wasserbad

induziert einen einseitigen Temperatur-

und Druckanstieg im Gasvolumen. Aus

der Druckdifferenzkurve lässt sich nach

einer Kalibrierung die Sorptionswärme

berechnen.

Die simultane Messung von volumetri-

schen und kalorimetrischen Adsorptions-

messungen ist eine zeitsparende Metho-

de, welche konsistente Werte liefert. Ab-

bildung 1 zeigt beispielhaft die simultan

gemessenen Adsorptionsisothermen

(links) und Adsorptionsenthalpien (rechts)

der n-Alkane Ethan bis n-Hexan an einem

13X Zeolithen bei 25°C. Diese Studie un-

terstreicht die Beladungsabhängigkeit der

Adsorptionsenthalpie und erlaubt Rück-

schlüsse auf die Wechselwirkungen sowie

die Mechanismen bei der Adsorption.

Determination of specific heat capacity of rocks by DSC

before and after high-temperature thermal cycling

Viola Becattini1, Thomas Motmans1, Alba Zappone2, Claudio Madonna2,

Andreas Haselbacher1, Aldo Steinfeld1

1 Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich,

Switzerland2 Department of Earth Sciences, ETH Zurich, 8092 Zurich, Switzerland

Rocks are considered an attractive stor-

age material for thermal-energy storage

(TES) at high temperatures. However, the

literature lacks detailed experimental data

on the effects of thermal cycling on the

thermophysical and mechanical properties

of rocks. The first objective of our study

was to fill this gap in the literature through

a quantitative assessment of the effects of

thermal cycling on the specific heat capac-

ity of selected rocks using a temperature

range and a heating rate that are repre-

sentative of a TES at steady cycling.

Six types of rocks of Alpine origin were in-

vestigated, five of which were previously

used in experiments with a lab-scale and

a pilot-scale TES. The rocks were classi-

fied as mafic rocks, felsic rocks, calcare-

ous sandstones, limestones, quartz-rich

conglomerates, and serpentinite. The

rocks were thermally cycled between

about 100 and 600 °C with a heating rate

of 2.6 °C/min. Measurements of the spe-

cific heat capacity were performed by

differential scanning calorimetry (DSC) be-

fore thermal cycling as well as after 20 cy-

cles.

Thermal cycling was found to lead to de-

crease in the specific heat capacity of the

rocks. This effect is explained by chemical

reactions such as mineral dehydration

starting at about 400 °C, decarbonation of

calcite, and deserpentinization above

about 600°C, leading to a loss of volatiles

(H2O and CO2) from rock samples. The

different extents in the decrease of the

specific heat capacity of each rock are at-

tributed to its initial mineralogical content

(i.e., abundance of hydrate minerals

and/or calcite). Establishing a quantitative

correlation between the amount of vola-

tiles lost and the decrease in the specific

heat capacity was not feasible due to the

heterogeneity of the rock population. The

development of such correlation will be

the goal of a future study on homogene-

ous standard rocks.

Christian Bläker

A

DF

B

Viola Becattini

Abb. 1:Adsorptionsisothermen (links) und Adsorptionsenthalpie (rechts) von n-Alkanen

an einem 13X Zeolithen bei 25°C

Die 22. Kalorimetrietage | 7. – 9. Juni 2017 | Braunschweig Die 22. Kalorimetrietage | 7. – 9. Juni 2017 | Braunschweig34 / 162 35/ 162

Combination of tunable diode laser absorption spectroscopy

and isothermal microcalorimetry for life sciences.

Olivier Braissant1*, Anna Solokhina1, David Brueckner1,2, Gernot Bonkat1,3, Dieter Wirz1

1 Center of Biomechanics & Biocalorimetry, University Basel, Gewerbestr. 14,

CH-4123 Allschwil, Switzerland2 F. Hoffmann – La Roche, Ltd., Sterile Drug Product Manufacturing, Wurmisweg,

CH-4303 Kaiseraugst, Switzerland3 Alta Uro AG, Centralbahnplatz 6, CH-4051 Basel, Switzerland

* E-Mail: [email protected]

Isothermal microcalorimetry (IMC) is a

very sensitive technique to assess mi-

cro-organisms metabolism and monitor

their growth when even at low concentra-

tion. Isothermal microcalorimetry provides

re-al-time insights on the metabolic activity

or microbes and is very useful to assess

shift in metabolism for example. However

due to the label-free nature of the meas-

urement performed mostly using sealed

vials (except for flow-through instruments),

it is sometime difficult to get additional

insights.

In this context tunable diode laser absorp-

tion spectroscopy (TDLAS) is a valuable

addition to the conventional IMC meas-

urement as it allows to monitor the

head-space concentration of gases in the

calorimetry vials. In our recent laboratory

work we have investigated the two

technologies separately to perform sterility

assessment of pharmaceutical products.

In addition, we used these techniques in

combination to perform calorespirometric

analyses on liquid culture and biofilms

grown on nylon membranes.

Our work indicate that metabolism can be

investigated accurately using the two

methodologies in parallel to combine

metabolic heat production data with oxy-

gen consumption and carbon dioxide

production data. In addition, it appears that

combining the 2 methods is valuable as

less work is needed compared to the

conventional use of the NaOH or chro-

mogenic CO2 traps. For biofilms and liquid

cultures gas measurement and metabolic

heat measurements fitted with each other

and with the biology of the investigated

microorganisms.

Investigating Drug Release from Triglyceride Nanoparticles

into Physiological Media by DSC

Elin Roese, Heike Bunjes

Technische Universität Braunschweig, Institut für Pharmazeutische Technologie &

Zentrum für Pharmaverfahrenstechnik, Mendelssohnstr. 1, 38106 Braunschweig

Colloidal aqueous dispersions of triglycer-

ides can be used as carriers for poorly

water-soluble, lipophilic drugs in order to

make such drugs available for the patient,

e.g. by intravenous injection. Beside the

drug incorporation capacity of the triglyc-

eride particles their drug release proper-

ties after injection are of high importance

with regard to their use as intravenous

carrier systems. In order to characterize

the release behavior in vitro, adequate

release conditions have to be established

that should resemble the physiological

situation as closely as possible. For ex-

ample, useful aqueous media to study the

release behavior of lipophilic drugs after

intravenous injection should contain lipo-

philic acceptor components (mimicking,

e.g., lipoproteins or other colloidal ingredi-

ents of blood) that can take up released

drug. In practice, however, release inves-

tigations with such particle-containing re-

lease media are often complicated by the

similar size of drug carrier and acceptor

particles making separation of these two

particle fractions difficult. Using a newly

developed DSC method, it is possible to

study drug release from colloidal carrier

particles without separation of donor and

acceptor particles if certain preconditions

are fulfilled. The method relies on measur-

ing the crystallization temperature of

trimyristin carrier nanoparticles. The crys-

tallization temperature of these particles

decreases linearly with increasing concen-

tration of incorporated drug and thus in-

creases upon drug release. Supercooled

liquid trimyristin nanoparticles loaded with

the lipophilic drug substances fenofibrate,

orlistat, tocopherol acetate or

ubidecarenone were investigated in three

release media with increasing complexity

and similarity to physiological conditions: a

rapeseed oil nanoemulsion, porcine serum

and blood. A clear correlation between the

release behavior and the lipophilicity of

the incorporated drug substance was ob-

served. The higher the logP value, the

slower was the drug release. The extent of

drug release was controlled by partition

phenomena as reflected in a more pro-

nounced release into the rapeseed oil

emulsion compared to serum and blood.

Roese E., Bunjes H., Drug release studies from lipid nanoparticles in physiological media

by a new DSC method, J. Control. Rel. 256 (2017) 92–100.

Heike BunjesOlivier Braissant

A

DF

B

Die 22. Kalorimetrietage | 7. – 9. Juni 2017 | Braunschweig Die 22. Kalorimetrietage | 7. – 9. Juni 2017 | Braunschweig36 / 162 37/ 162

Kinetic ITC methods in the field of biology

P. Dumas

Institut de génétique et de biologie moléculaire et cellulaire (IGBMC),

1 Rue Laurent Fries, 67400 Illkirch-Graffenstaden, France

E-Mail: [email protected]

Classical ITC experiments involve

multiple injections of a molecule B

into a cell containing a molecule A.

Upon interaction of A and B follow-

ing A + B C (characterized by

the equilibrium constant

Ka = kon / koff), there is emission or

absorption of heat and the calorim-

eter measures in real time the cor-

responding heat power (in µcal / s).

We have developed a method to

recover kon and koff from the shape

of each injection curve of a classi-

cal ITC titration experiment [1]. By

using ITC in a classical way, this

kind of information is systematically

lost by the integration of the injec-

tion power curves. However, by

using kinetic equations one can

relate the kinetics of the reaction to

the heat power produced or ab-

sorbed during the reaction. Several

technical problems need to be

solved to take into account the fi-

nite injection and mixing times of

compound B into the measurement

cell, as well as the finite response

time of the instrument (see illustra-

tion at http://www-ibmc.u-

strasbg.fr:8080/webMathematica/ki

nITCdemo/).

Ideally, kinITC experiments are

performed at different tempera-

tures. Using of the van ’t Hoff equa-

tion allows to link the measured ΔH

to the temperature variation of the

corresponding equilibrium con-

stant Ka.. This is also a link to the

kinetic parameters to be deter-

mined since Ka = kon /koff.

We also developed a simplified,

and yet very efficient version of this

method using data at a single tem-

perature [2]. It is based on the vari-

ation from injection to injection of

the time needed to return to base-

line. The resulting ‘Equilibration

Time Curve’ (ETC) allows deriv-

ing kon and koff as soon as Ka is

known from the classical pro-

cessing of the ITC experiment. The

method is now available in the

software AFFINImeter

(http://www.affinimeter.com).

Importantly, the full kinITC tech-

nique can cope with two-step kinet-

ic schemes. This will be illustrated

with the binding of a ligand to an

RNA followed by complete RNA

folding. Both thermodynamic and

kinetic information could be derived

for each individual step [3].

Thermochemische Erkenntnisse über die Sorption,

das Rösten und das Quenchen von Kaffeebohnen

Heiko K. Cammenga

Technische Universität Braunschweig

Rohkaffeebohnen kommen aus den Er-

zeugerländern schon viele Jahre zu uns

nicht mehr in „atmungsaktiven“ Jutesä-

cken, sondern in Containern. An Deck der

Riesenfrachter durchlaufen die Kaffee-

bohnen die unterschiedlichen Klimazonen,

und die Temperaturwechsel während der

Schiffspassage führen zu Desorption

(warme Umgebung) und Resorption (kalte

Umgebung) von Wasser. Das kann zu

ungleicher Feuchteverteilung der Bohnen

im Container (unten besonders feucht!)

und schließlich zu einer Schimmelbildung

führen (mit Aflatoxin-Entstehung!). Wir

haben darum die H2O-Sorptionsiso-

thermen und -kinetik als Funktion von

Temperatur und Feuchte erstmals sehr

genau ermittelt.

Rohkaffee wird vor dem Einsatz als Ge-

nussmittel bekanntlich geröstet, ein Pro-

zess, der komplexe chemische und ther-

mische Effekte in der Bohne zur Folge

hat, die wir detailliert untersucht haben.

Neben dem Verlust von sorbierten und im

weiteren Verlauf auch chemisch gebun-

denen Wassers (endotherme Prozesse)

führen chemische (endotherme und

exotherme) Vorgänge zu Reaktionen, aus

denen die große Geschmacks- und Aro-

mafülle erlesener Röstkaffees resultiert.

Dabei fungiert die einzelne, intakt bleiben-

de Kaffeebohne als ein Mini-Reaktions-

kessel, den nur wenige Röstreaktionspro-

dukte verlassen können (z.B. H2O, CO2,

CO, Essig- und Propionsäure, u.a.m),

wohingegen selbst so leichtflüchtige In-

haltsstoffe wie das Coffein die Bohne nur

zum ganz geringen Anteil verlassen kön-

nen. Wir haben die Thermochemie des

Röstvorgangs untersucht, wobei wir viele

äußere Parameter variiert haben (Heizra-

te, Temperaturbereich, Umgebung: Luft

oder Stickstoff, …). Früher haben wir die

Prozesse im Bohneninneren („Autoklav“)

nur im Hinblick auf die thermisch bedingte

Veränderung der Zellstruktur hin interpre-

tiert, heute meine ich, dass das komplexe

Stoffgemisch schließlich einen plastischen

Zustand erreicht, aus dem beim schnellen

Abschrecken der Bohne, Quenchen ge-

nannt, eine amorphe Matrix entsteht. Ers-

te Hinweise lieferte der Temperaturverlauf

der Wärmekapazität von der grünen bis

zur durchgerösteten Kaffeebohne. Ferner

haben wir zur Interpretation u.a. REM-

und NMR-Aufnahmen herangezogen.

Nach dem Röstvorgang müssen die Kaf-

feebohnen (ähnlich wie weichgekochte

Eier) möglichst schnell abgekühlt werden,

um ein unkontrolliertes Nachrösten zu

unterbinden. Dieses Quenchen erfolgte

früher in der Regel durch Übersprühen mit

kaltem Wasser unter Umwälzung des

Röstguts. Eine thermodynamische Bilan-

zierung zeigte jedoch, dass es effektiver

sein sollte, mit siedendem Wasser abzu-

kühlen - und so ist es tatsächlich!

Philippe Dumas

BC

GH

D

A

Heiko K. Cammenga

Die 22. Kalorimetrietage | 7. – 9. Juni 2017 | Braunschweig Die 22. Kalorimetrietage | 7. – 9. Juni 2017 | Braunschweig38 / 162 39/ 162

Vergleich verschiedener Messmethoden zum thermischen

Verhalten von Dicumylperoxid (40%) in Ethylbenzol –

modellbasierte Vorhersage adiabater Induktionszeiten sowie

der SADT und Vergleich mit dem UN H.1-Test

Steffen H. Duerrstein1, Claudia Kappler1, Isabel Neuhaus1, Marcus Malow2,

Heike Michael-Schulz2, Markus Gödde*1

1 BASF SE, GCP/RS, 67056 Ludwigshafen, Germany2 BAM Bundesanstalt für Materialforschung und –prüfung, Unter den Eichen 87,

12205 Berlin, Germany

* E-Mail: [email protected]

Experimentelle Basis für die sicherheits-

technische Beurteilung exothermer Reak-

tionen sind je nach Fragestellung ver-

schiedene thermoanalytische Messverfah-

ren wie DSC, Reaktionskalorimetrie (RC),

adiabate Kalorimetrie, Calvetkalorimetrie

(z.B. C80), Mikrokalorimetrie (z.B. TAM).

Um eine hohe Verlässlichkeit der Aussa-

gen zu garantieren, sind regelmäßige Ka-

librierungen unerlässlich. Nach ISO 17025

für akkreditierte Prüflaboratorien müssen

regelmäßig Eignungsprüfungen und Teil-

nahmen an Ringversuchen nachgewiesen

werden.

Normalerweise werden kalorische Mess-

verfahren durch Schmelzen von Reinstof-

fen, Referenzreaktionen und elektrische

Heizer kalibriert. Die BASF Sicherheits-

technik verwendet seit Jahren eine 40%-

ige Lösung von Dicumylperoxid (DCP) in

Ethylbenzol zur Ermittlung der Leistungs-

kenngrößen eigener adiabater Kalorime-

ter.

Im Rahmen der vorliegenden Studie

wurde das thermische Verhalten der Per-

oxidlösung mit weiteren kalorimetrischen

Methoden untersucht und die Ergebnisse

untereinander verglichen. Als Messtechni-

ken wurden neben der adiabaten Kalori-

metrie verschiedene Messungen in DSC,

C80, TAM und RC herangezogen. Der

Vergleich der Messmethoden untereinan-

der erfolgte anhand der Arrheniusauftra-

gung des jeweils (maximal) detektierten

Wärmestroms im Temperaturbereich von

80°C bis 130°C. Abbildung 1 zeigt zum ei-

nen die gute Übereinstimmung der Mess-

größen aus DSC, C80, RC bei 120°C und

130°C. Zum anderen wird deutlich, dass

auch die Extrapolierbarkeit der Wärme-

ströme zu höheren und tieferen Tempera-

turen zulässig ist, wie die Resultate aus

TAM und dem adiabaten Experiment bele-

gen.

Zusätzlich zu den experimentellen Unter-

suchungen, wurde auf Basis dynamischer

Wärmestromkurven aus DSC und C80 ein

formalkinetisches Modell entwickelt (Soft-

ware: Netzsch Thermokinetics 3.1). Die

gemessenen Kurven bei unterschiedlichen

Heizraten wurden mit einem formalkineti-

schen Modell beschrieben. Die abgeleite-

ten kinetischen Größen wurden im Fol-

genden herangezogen, um Wärmeströme

und adiabate Induktionszeiten für ver-

schieden Temperaturen zu simulieren und

mit den verschiedenen Experimenten zu

vergleichen. Aus den Ergebnissen wird

deutlich, dass sich das kinetische Modell

[1] Burnouf D, Ennifar E, Guedich S, Puffer-Enders B, Hoffmann G,

Bec G., Disdier F., Baltzinger M., Dumas P (2012) JACS 134, 559-565

[2] Dumas P., Ennifar E., Da Veiga C. et al. (2016) Methods in

Enzymology, Vol. 567, Chap. 7, 157-179

[3] Guedich S., Puffer-Enders B., Baltzinger M. et al. (2016) RNA Biology,

13, 373-390

Markus Gödde

DC

HK

G

B

Philippe Dumas (Forts.)

Die 22. Kalorimetrietage | 7. – 9. Juni 2017 | Braunschweig Die 22. Kalorimetrietage | 7. – 9. Juni 2017 | Braunschweig40 / 162 41/ 162

Reactivity of ZrOCl2∙8H2O and its application for the

synthesis of NASICON framework phosphates

Nataliia Gorodylova*, Petra Šulcová

Department of Inorganic Technology, University of Pardubice, Pardubice, Czech Republic

* E-Mail: [email protected]

This contribution is devoted to the reactivi-

ty of zirconium oxychloride octahydrate,

ZrOCl2∙8H2O, and its application for the

synthesis of a series of framework NA-

SICON phosphates Li1+xCrxZr2-x(PO4)3. In

particular, thermal transformation of indi-

vidual ZrOCl2∙8H2O and its complex inter-

action with phosphate, carbonate and ox-

ide mixtures will be discussed.

Experimental: Thermal transformation of

the individual components and the reac-

tion mixtures was investigated using TG-

DTA analysis (20-1200 °C). Evolution of

the phase composition during heating was

analysed using powder XRD analysis.

Combination of both techniques helped to

understand the mechanism of the for-

mation of the solid solutions and the

chemical processes taking place in the

mixtures during heating.

Results: Typically, decomposition of indi-

vidual ZrOCl2∙8H2O starts at 70 °C with

elimination of eight molecules of its crys-

talline water, while above 230 °C it under-

goes thermal hydrolysis leading to elimi-

nation of HCl and formation of ZrO2. The

temperature range and kinetics of the

mentioned processes highly depends on

the experimental conditions (i.e. atm.

pressure, humidity).

Thermal behaviour of ZrOCl2∙8H2O and

(NH4)2HPO4 mixture changes dramatically

in comparison with the typical behaviour of

the individual compounds. The typical

features of thermal behaviour of this mix-

ture are the following: dehydration of

ZrOCl2∙8H2O (endothermic effect at

160 °C, step-like mass loss between

70-230 °C) accompanied with interaction

between ZrOCl2∙8H2O and (NH4)2HPO4 in

molar ratio 1:2 leading to the formation of

NH4Cl, NH4H2PO4 and ZrO2; release of

ammonia and dehydration of NH4H2PO4

starts above 200 °C (gradual mass loss);

sublimation and decomposition of NH4Cl

(endothermic effect at 350 °C, step-like

mass loss between 310 and 410 °C).

When additional carbonate and oxide are

included in the mixture composition, its

thermal behaviour becomes even more

complex and at the same time it still highly

depends on the ratio between the

ZrOCl2∙8H2O and (NH4)2HPO4 compo-

nents. Accordingly, with increase of sub-

stitution degree x in the (0.5+x/2)Li2CO3-

(2-x)ZrOCl2∙8H2O-(x/2)Cr2O3-3(NH4)2HPO4

mixture from 0 to 2, the mechanism of the

formation of the solid solutions changes

dramatically. In particular, the mixtures

with x < 2, undergo similar interaction as

two-component ZrOCl2∙8H2O-

2(NH4)2HPO4 mixture leading to the for-

mation of NH4Cl, NH4H2PO4 and ZrO2 at

low temperatures (< 160 °C), which in-

volves lesser and lesser part of the mix-

ture with increase of x and the corre-

sponding decrease in ZrOCl2∙8H2O con-

tent. However, with increase of x and the

corresponding decrease of ZrOCl2∙8H2O

content in the mixture, the indicated pro-

cess becomes less dominant. In other

hervorragend eignet, um das reale Verhal-

ten der Probe über einen weiten Tempera-

turbereich hinweg hinreichend genau zu

beschreiben.

Ferner wurde auf Basis der kinetischen In-

formationen die SADT (self-accelerating

decomposition temperature) für ein

200-Liter Fass nach Semenov und mittels

zeitabhängiger Rechnungen (CFD) vor-

hergesagt und anschließend mit einem

1:1- Durchgehexperiment verglichen

(UN H.1-Test).

Zusammenfassend ergibt sich ein konsis-

tentes Bild zwischen den einzelnen mess-

verfahren und der Simulation.

Damit qualifiziert sich die Lösung von Di-

cumylperoxid in Ethylbenzol als Referenz-

substanz für Eignungsprüfungen verschie-

denster kalorischer Messverfahren in si-

cherheitstechnischen Prüflaboratorien.

80 100 120 1400,01

0,1

1

10

100

1000C80DSCRCTAMadiab. Exp.Simulation (DSC,C80)lineare Extrapolation

ma

xim

ale

rW

ärm

est

rom

[W/k

g]

Temperatur [°C]

Abbildung 1: Arrhenius-Auftragung des Wärmestroms gegen die Temperatur für die

exotherme Zersetzung von Dicumylperoxid (40%) in Ethylbenzol aus Simulation und Ex-

periment. Als experimentelle Werte wurden die maximalen Wärmeströme der Messungen

aus DSC, C80, TAM, RC sowie der Wärmestromverlauf einer adiabaten Messungen her-

angezogen.

Markus Gödde (Forts.) Nataliia Gorodylova

DC

HK

G

B

Die 22. Kalorimetrietage | 7. – 9. Juni 2017 | Braunschweig Die 22. Kalorimetrietage | 7. – 9. Juni 2017 | Braunschweig42 / 162 43/ 162

Thermodynamische Modellierung eines Prozesskalorimeters

zur kontinuierlichen Bestimmung des Wobbe-Index von

Brenngasen

Torsten Haug

UNION Instruments GmbH, Zeppelinstrasse 42, 76185 Karlsruhe

Die größten Probleme bei der kontinuierli-

chen Messung des Wobbe-Index von Ga-

sen sind die Einflüsse von Umgebungs-

bedingungen wie Temperatur und Druck.

Diese beeinflussen die Messung und kön-

nen zu großen Messfehlern führen.

Durch eine Modellierung des Systems

können sowohl temperaturbedingte Mess-

fehler stark reduziert werden als auch die

Ansprechzeit der Messung stark be-

schleunigt werden.

hand, unreacted amount of (NH4)2HPO4 is

increased and the corresponding effect of

elimination of its ammonia becomes more

and more prominent. The mixture with x =

2 can be characterised with typical behav-

iour of the mixtures of (NH4)2HPO4 with

oxides or carbonates. Thus, it can be con-

cluded, when both ZrOCl2∙8H2O and

(NH4)2HPO4 are present in the reaction

mixture, the interaction between these two

components became the dominant feature

of the thermal transformation, while other

processes play the minor role.

In most cases, calcination at 1200 °C dur-

ing 6 h was sufficient for the formation of

solid solutions; formation of LiZr2(PO4)3

required calcination at 1300 °C,

Li3Cr2(PO4)3 - 1150 °C.

Acknowledgment: The authors would like to thank for the financial support to Grant

Agency of Czech Republic (No. 16-06697S).

Nataliia Gorodylova (Forts.) Torsten Haug

GC

KL

H

D

Die 22. Kalorimetrietage | 7. – 9. Juni 2017 | Braunschweig Die 22. Kalorimetrietage | 7. – 9. Juni 2017 | Braunschweig44 / 162 45/ 162

Three types of biomembrane effects of surfactants and how

to distinguish them by ITC

H.Y.Fan1, H. Heerklotz1,2

1 Leslie Dan Faculty of Pharmacy, University of Toronto2 Inst. Pharmaceutical Sciences, University of Freiburg

Lipid-detergent-systems have important

applications, for example in pharmaceu-

tics and membrane protein studies. Fur-

thermore, principal phenomena observed

in such systems (e.g., membrane curva-

ture stresses, nonlamellar phases, etc.)

play key roles also for drugs and biomole-

cules interacting with cell membranes.

Detergents that can “flip” across the mem-

brane spontaneously follow the scenario

described by the three-stage-model, typi-

cally. It has been shown long ago that ITC

is the superior method to characterize

such systems (Heerklotz et al., Chem.

Phys. Lett., 1995). Detergents that do not

cross the membrane built up asymmetry

stress by inserting into the outer leaflet

only. This stress can lead to transient

membrane failure or, “cracking in” of the

detergent, which again is detected by ITC

(Heerklotz, Biophys. J. 2001) and followed

by the well-known 3-stage behaviour. Al-

ternatively, the stress can oppose further

insertion of surfactant. For example, do-

decyl-lysophosphatidylcholine (Fan et al.,

Langmuir 2016) and digitonin (Fan and

Heerklotz, J. Coll. Interf. Sci., 2017) are

staying out of the membrane beyond a

certain stress and form micelles that do

not equilibrate with the liposomes for

hours.

Heiko Heerklotz

Determination of the thermal short time stability of polymers

by fast scanning calorimetry

E. Hempel1*, J.E.K. Schawe1, St. Ziegelmeier2

1Mettler-Toledo GmbH, Sonnenbergstrasse 74, CH-8603 Schwerzenbach, Switzerland2 Rapid Technologies Center, BMW Group, Knorrstrasse 147, D-80788 Munich, Germany

* E-Mail: [email protected]

Thermogravimetric analysis (TGA) is a

standard technique to measure the ther-

mal stability of polymeric materials. This

technique is not sensitive for degradation

steps which are not related to mass loss.

However, such reactions can significantly

influence the mechanical behavior of ma-

terial. In this contribution we introduce the

technique of stability estimation by crystal-

lization analysis (SECA) and pseudo TGA

which uses differential scanning calorime-

try (DSC). SECA measures the influence

of decomposition on crystallization kinet-

ics. This technique is very sensitive to

decomposition. Using fast scanning calo-

rimetry, SECA determines the short time

thermal stability of semi-crystalline poly-

mers. This property is essential for fast

polymer processing like selective laser

sintering or welding [1].

[1] J.E.K. Schawe, St. Ziegelmeier, Thermochimica Acta 623 (2016) 80–85.

Elke Hempel

GC

KL

H

D

Die 22. Kalorimetrietage | 7. – 9. Juni 2017 | Braunschweig Die 22. Kalorimetrietage | 7. – 9. Juni 2017 | Braunschweig46 / 162 47/ 162

Tests with Adiabatic Calorimeters

James Burelbach1, Uwe Hess2

1 Fauske and Associates, Burr Ridge, IL, USA, E-Mail: [email protected] Prosense GmbH, München, E-Mail: [email protected]

Various types of calorimeters with signif-

icant design differences are used for

different applications. DSCs, for in-

stance, are scanning twin-cells heat-flow

calorimeters that are widely used for

material testing and chemical reaction

screening. But their application range is

limited because of relatively small sam-

ple sizes. Reaction calorimeters, on the

other hand, are made to determine heat

flow characteristics of liquid phase reac-

tions under various experimental condi-

tions. Sample containers are not relative-

ly small sample pans but reactors that

offer sufficient volume for process devel-

opment related investigations and space

for corresponding peripheral devices like

additional sensors or dosing devices.

Usually, reaction calorimeters are heat

flow calorimeters without reference cells

and are run more or less isothermally.

Results obtained in lab environments by

DSCs and reaction calorimeters, how-

ever, can not be simply scaled up. In so

called upset scenarios (e.g. loss of cool-

ing) nearly all heat of reaction is kept in

the reaction mixture and none is dissi-

pated. In order to represent such a situa-

tion in a lab experiment, sample contain-

ers may accumulate almost no heat.

Consequently, they must be low weight

(phi factor ~ 1) and heat flows have to be

suppressed (adiabatic conditions). Adia-

batic calorimeters are designed to fulfill

these conditions. Typical adiabatic calo-

rimeters have maximum heating rates of

600 K/min allowing test cell surroundings

to heat up as rapidly as run away reac-

tions. Fast pressure tracking prevents

light weight test cells from rupturing.

Adiabatic calorimeters measure adia-

batic temperature rises. With a proper

design they allow tests under various

experimental conditions as well as the

characterization of flow characteristics in

case of emergency venting. Subsequent

calculations determine heats of reac-

tions, kinetic parameters (e.g. activation

energy) and chemical safety parameters

(e.g. TMR). Measured self heating rates

are used in vent sizing calculations for

emerging relief systems (ERS).

C. Askonas and J. Burelbach, North American Thermal Analysis Society, 28th Annual

Conference, Orlando, 2000, “The versatile VSP 2: A tool for adiabatic thermal analysis

and vent sizing applications”

J.L. Leung, H.K. Fauske and H.G. Fisher, Thermochimica Acta 1986, 104, 13 - 29

Uwe Hess

Thermal excitation, optical response: Sheds a new light on

thermal analysis by TORC

T. Husemann1, S. Schwarz, G. Henriques1, N. Bertram1, J.K. Krüger

1 Anton Paar OptoTec GmbH, Lise-Meitner-Str. 6, 30926 Seelze-Letter, Germany

Phase transitions play a key role in many

industrial applications: For example glass

transitions and melting points govern the

production of plastics and also determine

the mechanical properties of adhesives

and coatings.

Several phase transitions are easily

measurable with commercially available

instruments. Other phase transitions –

typically second order phase transitions or

glass transitions – are more difficult to

detect.

However, scientists are faced with exper-

imental challenges such as complicated

sample preparation, choice of matching

crucibles for sample and reference, ther-

mal contact of crucibles, and limitation of

sample properties. The novel technique

TORC (thermo-optical oscillating refrac-

tion characterization) is not subject to the

above obstacles. The revolutionary tech-

nique utilizes a modulated thermal excita-

tion and analysis the optical response in

the refractive index [1]. This sheds light on

temperature- and time-dependent pro-

cesses e.g. melting, glass transition, as

well as curing. Furthermore it grants ac-

cess to one of the fundamental suscepti-

bilities, namely the thermal expansion co-

efficient by using the Lorentz-Lorenz rela-

tion [2,3].

By discussing adhesive and polymer ap-

plications of the innovative measuring

principle at the example of epoxy curing

and the glass transition of polyvinyl ace-

tate, we demonstrate the potential of the

technique for research and development,

as well as quality management.

[1] Müller, U., Philipp, M., Thomassey, M., Sanctuary, R., Krüger, J. K. (2013). Tempera-

ture modulated optical refractometry: A quasiisothermal method to determine the dy-

namic volume expansion coefficient. Thermochimica Acta, 555, 17-22.

[2] Lorentz, H. A. (1880). Ueber die Beziehung zwischen der Fortpflanzungsgeschwin-

digkeit des Lichtes und der Körperdichte. Annalen der Physik, 245(4), 641-665.

[3] Lorenz, L. (1880). Ueber die Refractionsconstante. Annalen der Physik, 247(9),

70-103.

Tobias Husemann

GC

KL

H

D

Die 22. Kalorimetrietage | 7. – 9. Juni 2017 | Braunschweig Die 22. Kalorimetrietage | 7. – 9. Juni 2017 | Braunschweig48 / 162 49/ 162

Einfluss von Nukleierungsmitteln auf die Kristallisation von

Polypropylen (PP)

Dr. Gabriele Kaiser, Claire Straßer

NETZSCH-Gerätebau, Selb

Nukleierungsmittel werden Polypropylen

in geringer Konzentration zugesetzt, um

ein früheres Erstarren der Polymer-

schmelze zu erreichen. Dadurch kann z.B.

das entsprechende Formteil schneller aus

dem Spritzgießwerkezug entnommen wer-

den. Des Weiteren sind Nukleierungsmit-

tel in der Lage, die Größe der entstehen-

den Kristallite des Polymerwerkstoffs zu

beeinflussen und wirken sich so auch auf

seine mechanischen Eigenschaften aus.

Durch den Zusatz von sogenannten

Clarifiern werden die entstehenden Sphä-

rulite so klein, dass sichtbares Licht nicht

mehr gestreut wird; das teilkristalline Po-

lypropylen erscheint transparent.

Um das Verhalten eines isotaktischen Po-

lypropylens mit und ohne Nukleierungs-

mittel während des Abkühlens zu untersu-

chen, wurden sowohl dynamische als

auch isotherme Kristallisations-experi-

mente mittels DSC vorgenommen. Die in

den Isothermphasen gewonnenen DSC-

Kurven wurden anschließend einer kineti-

schen Auswertung (unter Verwendung

des Software-Moduls NETZSCH Thermo-

kinetics) unterworfen. Auf deren Basis las-

sen sich Vorhersagen für das Kristallisati-

onsverhalten der Materialien bei definier-

ten Isothermtemperaturen ableiten und

Rückschlüsse auf die Verarbeitungsbedin-

gungen ziehen.

Für isotherme Kristallisationsexperimente

wird der Kunststoff zunächst aufgeschmol-

zen und dann sehr rasch auf eine vorge-

wählte Temperatur abgekühlt. Derartige

Messungen stellen einen hohen Anspruch

an die eingesetzte DSC, da zu niedrige

Kühlraten bereits zu einer vorzeitigen Kris-

tallisation führen können. Durch Einsatz

eines Ofens mit niedriger thermischer

Masse lassen sich die notwendigen, ho-

hen Kühlraten auch in einer Wärmestrom-

DSC realisieren.

Gabriele Kaiser

HC

LM

K

G

Vorhersage der selbstbeschleunigenden Zersetzungstempe-ratur (SADT) für organische Peroxide aus DSC-Messungen

M. Lünne, A. Knorr, K.-D. Wehrstedt

Bundesanstalt für Materialforschung und -prüfung, BAM Unter den Eichen 87, 12205 Berlin

Für den sicheren Transport eines ther-misch instabilen Stoffes oder Stoffgemi-sches in der vorgesehenen Verpackung ist die selbstbeschleunigende Zerset-zungstemperatur (Self-Accelerating De-composition Temperature, SADT) ein we-sentlicher sicherheitstechnischer Parame-ter. Sie ist nicht nur vom Stoff selbst, son-dern auch von der Umgebungstemperatur, der Zersetzungskinetik, der Versand-stückgröße und den Wärmeübertragungs-eigenschaften aus der Kombination von Stoff und Verpackung abhängig. Die SADT, bestimmt für ein 50-kg Ver-sandstück, ist ebenso eine Entschei-dungshilfe, ob es sich bei einem Stoff um einen selbstzersetzlichen Stoff handelt. Für die Bestimmung der SADT werden in den Empfehlungen für die Beförderung gefährlicher Güter, speziell im Handbuch über Prüfungen und Kriterien [1], vier ver-schiedene Prüfverfahren vorgeschlagen. Alle Prüfungen erfordern einen Zeitauf-wand von mindestens einem Tag bis zu mehreren Tagen, wenn nicht Wochen, um die Prüfkriterien zu erfüllen. Es kann des-halb wünschenswert sein, schon in einem frühen Stadium von sicherheitstechni-schen Untersuchungen die SADT eines potentiell thermisch instabilen Stoffes oh-ne großen zeitlichen Aufwand zu bestim-men.

Ein klassisches Screening-Verfahren, um Stoffe mit geringem Material- und Zeitauf-wand zu charakterisieren ist die Differenti-al Scanning Calorimetry (DSC). Wie be-reits Malow und Wehrstedt [2] für einige flüssige organische Peroxide zeigen konn-ten, kann bei Anwendung eines definier-ten Kriteriums für die Bestimmung der Onset-Temperatur in der DSC eine SADT berechnet werden, die im Vergleich zum experimentell bestimmten Wert geringe Abweichungen besitzt. In der vorliegenden Arbeit wird die Metho-dik für weitere organische Peroxide ange-wendet, wobei nicht nur flüssige Stoffe, sondern auch Feststoffe einbezogen wer-den. Im Ergebnis zeigt sich unter Berück-sichtigung eines zusätzlichen Sicherheits-abstandes von 5 K bis auf eine Ausnahme ein gutes Abbild zur gemessenen SADT. Zudem wird der Einfluss möglicher Fehler der für die Berechnung notwendigen Ein-gangsgrößen betrachtet. Dazu zählen neben der Bestimmung der Onset-Temperatur, die Aktivierungsenergie und die Dichte oder Schüttdichte. Es bleibt zu prüfen, ob die Berechnung auch für verdünnte Lösungen anwendbar ist. Zudem wäre es wünschenswert, die Berechnung auf potentiell selbstzersetzli-che Stoffe zu erweitern.

Annett Knorr

Die 22. Kalorimetrietage | 7. – 9. Juni 2017 | Braunschweig Die 22. Kalorimetrietage | 7. – 9. Juni 2017 | Braunschweig50 / 162 51/ 162

[1] UN Recommendations on the Transport of Dangerous Goods, Manual of Tests and Criteria, section 28, 6th revised ed., United Nations, New York and Geneva 2015. Deutsche Übersetzung: Empfehlungen für die Beförderung gefährlicher Güter - Handbuch über Prüfungen und Kriterien, urn:nbn:de:kobv:b43-393162

[2] M. Malow, K. D. Wehrstedt, Prediction of the self-accelerating decomposition tem-perature (SADT) for liquid organic peroxides from differential scanning calorimetry (DSC) measurements, J. Haz. Mat., A 120 (2005) 21-24.

Annett Knorr (Forts.)

Der wahre Grund, warum die Titanic untergehen mußte Dr.-Ing. G. Krause

Dr. Krause GmbH, Ahornstr. 28-32, Haus 55, D-14482 Potsdam Tel.: +49 331 740 01 05, Fax: +49 331 704 66 29, E-Mail: [email protected]

Am 14. April 1912 kollidierte die Titanic um 23:40 ca. 300 Seemeilen südöstlich von Neufundland mit einem Eisberg. Die als unsinkbar geltende Titanic verschwand 2 Stunden und 40 Minuten später in den Fluten des Nordatlantiks. Die eigentliche Ursache für den Untergang ist schon vor der Abfahrt der Titanic aus dem Hafen von Southampton zu suchen. Dies geht aus alten Unterlagen hervor. Hier spielt die Aussage eines

Überlebenden eine große Rolle, der als Feuerwehrmann auf der Titanic Dienst hatte. Der Vortrag beschäftigt sich auf wissenschaftlicher Grundlage mit Vorkommnissen auf der Titanic und betreibt sozusagen Unfallforschung im Nachherein und gibt Anregungen zur Vermeidung derartiger Unfälle in der Zukunft.

Gerhard Krause

HC

LM

K

G

Die 22. Kalorimetrietage | 7. – 9. Juni 2017 | Braunschweig Die 22. Kalorimetrietage | 7. – 9. Juni 2017 | Braunschweig52 / 162 53/ 162

Druckluftspeicherkraftwerke

Reinhard Leithner

TU Braunschweig – Institute of Energy and Process Systems Engineering Franz-Liszt-Straße 35, 38106 Braunschweig

Gerhard Krause Reinhard Leithner

DSC Validierung

Vergleich der Meßwerte mit der Auswertung

Dr.-Ing. G. Krause

Dr. Krause GmbH, Ahornstr. 28-32, Haus 55, D- 14482 Potsdam

Tel.: +49 331 740 01 05, Fax: +49 331 704 66 29, E-Mail: [email protected]

Kalorimetrische Messungen dienen zur

experimentellen Bestimmung physikali-

scher und kinetischer Parameter einer

chemischen Substanz. Aus diesen Stoff-

werten werden sicherheitstechnische

Schlußfolgerungen gezogen, die für die

Produktion, Lagerung und Transport der

Substanz von großer Bedeutung sind.

Zu den etablierten Versuchsmethoden

gehört u.a. DSC. Die Versuchsdauer ist

bei DSC aufgrund der hohen Heizraten

gering und die eingesetzte Probenmasse

beträgt nur einige Milligramm. Die Ver-

suchsauswertungen unterscheiden sich.

DSC Versuche werden üblicherweise

nach der Modellvorstellung von Friedmann

und/oder nach Ozawa-Flynn-Wall (OFW)

ausgewertet. Das führt zur sog. modell-

freien Analyse.

An Hand eines praktischen Beispiels wer-

den diese Unterschiede in der Auswertung

erläutert. Ein chemischer Stoff wurde DSC

Versuchen mit fünf unterschiedlichen

Heizraten unterworfen. Die Versuchser-

gebnisse werden nach beiden Methoden

ausgewertet. Das wesentliche Auswer-

teergebnis besteht in dem sog. Energie-

plot, der die Abhängigkeit der scheinbaren

Aktivierungsenergie E/R und des präex-

ponentiellen Faktors k0 vom Umsatzgrad

zeigt. Diese Parameter fallen je nach

Auswertemethode deutlich unterschiedlich

aus.

Mit den so ermittelten kinetischen Para-

metern wird zum Schluß eine Validierung

der Auswertung unternommen. Es wird

versucht, mit Hilfe der gewonnenen kineti-

schen Parameter die Meßwerte zu repro-

duzieren. Die Reproduktion wird den ex-

perimentellen Ergebnissen gegenüberge-

stellt.

Die 22. Kalorimetrietage | 7. – 9. Juni 2017 | Braunschweig Die 22. Kalorimetrietage | 7. – 9. Juni 2017 | Braunschweig54 / 162 55/ 162

A chip calorimetry based method for the real-time monitoring of red blood cell sickling J. Lerchner1, C. Lanaro2, P.L.O. Volpe3, F. Mertens1

1 TU Bergakademie Freiberg, Institute Physical Chemistry, Germany 2 University of Campinas, Center of Hematology, Brazil 3 University of Campinas, Instituto de Quimica, Brazil

Keywords: segmented-flow chip calorimetry; erythrocytes; sickle cell disease

Sickle-cell disease is a hereditary blood disorder characterized by an abnormality in the oxygen-carrying hemoglobin mole-cule in red blood cells. The hemoglobin protein HbS in sickle cell erythrocytes (SS-RBCs) has an abnormality in the ami-no acid sequence of the ß-globulin chain. The hydrophilic glutamic acid is replaced by the hydrophilic valine residual. As a consequence, hydrophilic interactions led to the polymerization of HbS molecules during deoxygenation forming helical fi-bers which group together and induce the characteristic sickle shape of the cells [1]. The formation of the polymer fibers trig-gers a cascade of cellular abnormalities which influence the energy balance of the cells. As recently demonstrated [2], segmented-flow chip calorimetry combines ad-vantages of batch calorimetry (small, spa-tially restricted samples of few micro-liters) and flow-through calorimetry (defined am-bient conditions). In particular, the possi-bility to move and manipulate aggregated sample material inside the system is an attractive feature of this technique which offers new and unique options for a

defined treatment of samples during the measuring process and for the real-time measurement of treatment effects. In the presented contribution we demon-strate a new experimental technique which allows the controlled sickling and de-sickling of SS-RBCs by non-invasive oxygen-nitrogen gas treatment of cell samples in parallel with the calorimetric measuring process. To investigate heat rate changes caused by cell sickling the following experiments have been per-formed: (1) Test of the capability of red blood

cells to sickle caused by anoxic treatment of the samples inside the calorimeter.

(2) Analysis of the short-term response of the cell metabolism to deoxygenation of the sample in order to identify the relevance of the aerobic catabolism of reticulocytes existing in the samples.

(3) Comparison of the heat production rate of sickle cell erythrocyte samples after anoxic treatment and after re-oxygenation.

[1] Goodman, S. R., Daescu, O., et al., Exp. Biol. Medicine 238 (2013) 509 – 518. [2] Lerchner, J.; David, K.; Unger, F.; J. Thermal. Anal. Cal. (2017) 127(2), 1307-1317.

Johannes Lerchner

KC

MN

L

H

Reinhard Leithner (Forts.)

Die 22. Kalorimetrietage | 7. – 9. Juni 2017 | Braunschweig Die 22. Kalorimetrietage | 7. – 9. Juni 2017 | Braunschweig56 / 162 57/ 162

Calorimetry of Microbial Utilization of Electrical and

Photon Energy

T. Maskow

Department of Environmental Microbiology, WG Biocalorimetry/Ecothermodynamics,

Helmholtz Centre for Environmental Research-UFZ, 04318 Leipzig, Germany

E-Mail: [email protected]

The most microbial organisms grow

chemoorganoheterotrophically, which

means they use the energy that is chemi-

cally linked to nutrients for biosynthesis,

maintenance of the structures, replication

and growth. The maximum possible

growth efficiencies [1] as well as the

growth rates [2] are determined by ther-

modynamic rules and can be calorimetri-

cally monitored in real time. This is of

great practical importance if, for example,

microorganisms are to be used as pro-

ducers in the chemical industry or for con-

taminant degradation in ecosystems. In-

terestingly, despite the successes of bio-

thermodynamics and calorimetry in the

area of microbial utilization of chemical

sources of energy, non-chemical energy

sources for microbial growth (e.g. light and

electricity) were so far rarely considered.

Here, the energy of photons and electrons

allows the microbial reduction of CO2 and

make bio-reactions feasible which are

thermodynamically not allowed. Potential

reasons for this surprising lack of

knowledge are challenges to develop the

required tailor-made calorimeters and to

quantify very low energy conversion effi-

ciencies in case of photosynthesis.

For these reasons, new photocalorimeters

and bioelectrocalorimeters were devel-

oped and tested. In the case of light ener-

gy, it is now possible to determine the

efficiency of energy conservation as a

function of environmental conditions in

real time with an accuracy and throughput

which is not accessible by other methods.

The measuring principle is demonstrated

at the example of microalgae of industrial

importance (i.e. Chlamydomonas rein-

hardtii). In the case of electrical energy,

we succeeded with our tailor-made calo-

rimeter in quantifying previously unknown

energetic burden for growth on electrodes

(i.e. microbial electrochemical Peltier heat)

[3]. Scheme 1 shows exemplarily the prin-

ciple of a bioelectrocalorimeter. Numerous

applications of the new two calorimetric

techniques are conceivable.

Turning up the heat on protein stability characterization.Differential Scanning Calorimetry for the regulated environment

Dr. Marco Marenchino, Bioscience Consultant

MicroCal, Malvern Instruments

There is an ever-widening range of

biophysical assays which play important

roles in biopharmaceutical development,

but using Differential Scanning

Calorimetry (DSC) to characterize thermal

stability gives reliable and reproducible

gold standard data throughout the

development pipeline.

Due to its versatile nature, DSC finds

multiple uses in stability profiling,

formulation development, manufacturing

support, and biopharmaceutical

comparability and biosimilarity analysis.

Protein HOS characterization is also

becoming expected in regulatory

submissions for new biopharmaceutical

drugs and biosimilars.

This presentation will introduce PEAQ-

DSC, a new generation of MicroCal DSC

systems designed for biopharmaceutical

and core labs, and will detail some case

study examples of the use of MicroCal

DSC in formulation development and

biosimilarity and biocomparability analysis

applications.

Thomas Maskow

KC

MS

L

JL

C

NO

M

K

Marco Marenchino

Die 22. Kalorimetrietage | 7. – 9. Juni 2017 | Braunschweig Die 22. Kalorimetrietage | 7. – 9. Juni 2017 | Braunschweig58 / 162 59/ 162

The SI unit kilogram: the new definition and its realization on

the basis of fundamental constants

Arnold Nicolaus

Physikalisch-Technische Bundesanstalt (PTB), Bundesallee 100, 38116 Braunschweig,

Germany

At present, the International Prototype of

the Kilogram, IPK, a 125 years old small

cylinder of platinum-iridium, still defines

the SI unit of mass. For 2018 it is pro-

posed to redefine four of the seven SI

units, in fact on the base of fundamental

constants. This is e.g. already done with

the length unit meter which is referred to c,

the velocity of light. For the kilogram the

Avogadro experiment provides an oppor-

tunity to link the kilogram to the atomic

mass constant mu by counting atoms in a

given amount of mass – here a kilogram of

a 28Si single crystal. And Avogadro’s num-

ber which is the number of entities in a

mole would be the related fundamental

constant. But how to “count” 1025 atoms as

the age of the universe is only 1017 sec-

onds? The solution is a crystal – a very

good crystal of best purity, highest quality

and perfection of crystalline order. With

this it is possible to calculate the number

of atoms if we only know the distance of

the atoms in the crystal and if we know the

macroscopic dimension of an artifact of

this crystal. For the determination of Avo-

gadro’s constant, a sphere made from a

silicon crystal was chosen. Silicon crys-

tals, which occur face-centered cubic, in

high perfection are available since the

early seventies due to semiconductor in-

dustries and the form of a sphere was se-

lected as the obvious form of a cube failed

because of the stability of its edges.

Fig. 1 National Pt-Ir kilogram prototype and 28Si single crystal sphere

Scheme 1: Illustration of the

bioelectrocalorimeter and a

simplified flow of metabolites,

electrons, ions and heat during

Geobacter biofilm growth on

acetate (Ac-). Details are given

in [3].

[1] Liu, J. S.; Vojinović, V.; Patiño, R.; Maskow, T.; von Stockar, U. Thermochim. Acta

2007, 458, 38-46.

[2] Desmond-Le Quemener, E.; Bouchez, T. ISME J 2014.

[3] Korth, B.; Maskow, T.; Picioreanu, C.; Harnisch, F. Energy Environ. Sci. 2016, 9,

2539-2544.

Thomas Maskow (Forts.) Arnold Nicolaus

KC

MS

L

JM

C

OS

N

L

Die 22. Kalorimetrietage | 7. – 9. Juni 2017 | Braunschweig Die 22. Kalorimetrietage | 7. – 9. Juni 2017 | Braunschweig60 / 162 61/ 162

From each crystal of about 5 kg two

spheres can be produced. They are manu-

factured with outstanding perfection – they

reach small deviations from roundness, at-

tain extreme small roughness and show

no subsurface damage of the crystal lat-

tice. These spheres have to be measured

for mass and volume. For the mass the

sphere is compared to the national proto-

type of kilogram, a Pt-Ir cylinder. As vol-

ume, surface and material of sphere and

cylinder is distinctly different, numerous

measurements against sorption artifacts

and transfer standards are necessary. For

the volume of the sphere an

optical interferometer is used. It consists in

the main of two high performance objec-

tives with spherical reference faces which

spacing is determined. In a second step

the sphere is inserted in this spherical

spacing and the resulting gaps between

sphere and the respective objective are

measured. This interferometer resolves

deviations from roundness in the sub-nm

range and yields full topographies of the

silicon spheres. As this interferometer is

unique rare and interesting images of the

high precision spheres of the Avogadro

project will be presented.

In a first step it is necessary to measure

the Avogadro constant, NA, with best un-

certainty so that, after fixing this value, in

future the mass of an artifact will be deter-

mined through the fixed value of NA.

For the measurement of the Avogadro

constant four quantities are to be deter-

mined:

=ெ∙౩౦౨

∙௩౫ౙ∙౩౦౨,

with n = 8 the number of atoms per cubic

unit cell.

Herein the quotient of macroscopic vol-

ume Vsphere and the volume of the unit cell

vuc of silicon atoms gives the number of at-

oms of that sphere, and molar mass MSi

and mass of the sphere msphere taking into

account the mass of the entity so that the

number of atoms per mole is derived.

The measurements are divided into crystal

measurements which determine parame-

ters typical for the whole silicon crystal,

here the molar mass and the volume of

the unit cell, and the properties which are

related to the artifact produced from the

crystal, here mass and volume of a test

sphere.

To determine the molar mass with a reso-

lution of better than 10-7 it is necessary to

use isotope enriched material. In natural

resources silicon consists of 92.23% 28Si,

4.67% 29Si and 3.1% 30Si, so it was de-

cided to strike up a cooperation with Rus-

sian institutes to obtain silicon better than

99.99% 28Si – with the drawback of a price

of about 1 Mio € per 1 kg sphere. For this

material a new method, the isotope dilu-

tion mass spectrometry IDMS, could re-

duce the uncertainties for the molar mass

determination to some few parts in 109.

For the volume of the unit cell of silicon

the lattice parameter is determined by

combined X-ray and optical interferometry.

Three thin probes of the crystal are ar-

ranged in a Laue interferometer where an

X-ray beam is split and recombined from

the first two plates so that the X-ray inter-

ference can be observed with the third

plate, the analyzer. For this the analyzer is

moved and its movement measured with

an optical interferometer. The uncertainty

for the unit cell volume reached 7×10-9.

Fig. 2 28Si single crystal sphere in the sphere interferometer of PTB

Arnold Nicolaus (Forts.) Arnold Nicolaus (Forts.)

KC

MS

L

JM

C

OS

N

L

Die 22. Kalorimetrietage | 7. – 9. Juni 2017 | Braunschweig Die 22. Kalorimetrietage | 7. – 9. Juni 2017 | Braunschweig62 / 162 63/ 162

which cover almost the whole area of the electrodes, are used to precisely deter-mine the fR response to defined heating pulses thereby calibrating the system. The use of such energy pulses directly

simulates temperature effects of PT and enables extensive thermodynamic charac-terization of heat transfer mechanisms in the resonators.

Fig. 1: Scheme of system setup (left);

resonator with heating structure (middle top); sample holder (mid-dle bottom); photograph of TFC setup (right).

Fig. 2: Resonance frequency of an LGS resonator after heating pulse ap-plication; cooling data fitted with an exponential decay function

Thin-Film Calorimeter Based on High-Temperature Stable Piezoelectric Resonators

Alexander Omelcenko, Hendrik Wulfmeier, Holger Fritze

Technische Universität Clausthal, Institut für Energieforschung und Physikalische Technologien

Thin-Film Calorimetry (TFC) is a meas-urement technique which allows for in-situ analysis of thermal properties such as phase transformation temperatures and enthalpies of thin films and thin-film sys-tems. The key component of the TFC sys-tem presented here are piezoelectric res-onators of langasite (La3Ga5SiO14, LGS) or catangasite (Ca3TaGa3Si2O14, CTGS) single crystals. They are operated as high-ly sensitive temperature sensor. In addi-tion, the resonators also enable gravimet-ric investigations via crystal microbalance technique. The piezoelectric resonators are operated in thickness shear mode at their reso-nance frequency fR which is ~5 MHz. Their resonance frequency is strongly tempera-ture dependent which can be approximat-ed by a parabolic function for LGS. Here, temperature coefficients αT,LGS of ~100 Hz K-1 and ~400 Hz K-1 at 200 °C and 1000 °C are observed, respectively. For CTGS a linear decrease for CTGS with αT,CTGS ~190 Hz K-1 is observed. These strong temperature dependencies enable highly precise determination of temperature fluctuations caused by e.g. phase transformations of thin films depos-ited onto the resonators. Precisely controlled heating ramps of 1-10 K min-1 (deviations of ±0.05 K) are applied via a tube furnace from room temperature up to 1000 °C. As the temperature of the furnace increases, the temperature of the resonators, follows closely the heating

ramp. An S-type thermocouple, located 0.5 mm underneath the resonator ensures precise temperature control. Any genera-tion or consumption of heat by a thin film induces changes with respect to the undis-turbed resonance frequency. The vibrating volume of the resonator shows either en-hanced decrease of fR in the case of an exothermic phase transformation (PT) or a reduced decrease in the case of an endo-thermic PT. This frequency deviation ΔfR in the case of a PT is used to calculate the absolute temperature change ΔT and to determine the enthalpy ΔH of the deposit-ed thin films. For this purpose the deposit-ed mass on the resonator has to be known precisely. As the fR of the resonator is also sensitive to the mass load on the electrode, crystal microbalance technique is used to determine the mass of a thin film. It is calculated directly from the fR before and directly after deposition at a given temperature. The effect can be used during high-temperature analysis, too. Mass loss or gain of a thin film, e.g. due to sublimation or oxidation is observable as an increase or decrease of fR, which dif-fers from the otherwise undisturbed fre-quency. The described thermodynamic system capabilities are demonstrated using Sn films which are deposited on LGS and CTGS resonators. The underlying elec-trodes are insulated by an Al2O3 (400 nm) diffusion barrier from the active material. Furthermore, platinum heating structures,

Alexander Omelcenko Alexander Omelcenko (Forts.)

KC

MS

L

JN

C

ST

O

M

Die 22. Kalorimetrietage | 7. – 9. Juni 2017 | Braunschweig Die 22. Kalorimetrietage | 7. – 9. Juni 2017 | Braunschweig64 / 162 65/ 162

Chalcogenides for Phase-Change Memory Applications

Jiri Orava

Department of Materials Science and Metallurgy, University of Cambridge,

27 Charles Babbage Rd., Cambridge CB3 0FS, UK

E-Mail: [email protected]

Chalcogenide phase-change (PC) mate-

rials, exemplified by Ge2Sb2Te5 (GST)

and (Ag,In)-doped Sb2Te3 (AIST), have

been widely studied for their use in opti-

cal (DVD, Blu-ray™) and electrical

(phase-change random-access memory,

PC-RAM) data recording. More recently,

displays and synaptic switches, exploit-

ing respectively the high contrast in re-

flectance and resistance upon reversible

glass-to-crystal transitions, have been at-

tracting increasing attention. In the case

of PC-RAM, a single long and low-power

electrical pulse heats the glass above its

glass-transition temperature, Tg, crystal-

lizing it, which is a rate-limiting step of

the memory operation taking <100 ns

(Fig. 1). Glass is obtained by heating the

crystal with short and high-power pulse

and consequent rapid quenching of the

liquid (critical cooling rates

1091011 K s1).

For the memory to be commercially suc-

cessful, several conflicting requirements

must be met. Focus of the talk is mainly

on crystallization, which must be fast, but

the glass should not crystallize sponta-

neously at elevated temperatures. This

requirement can be met by the presence

of a fragile-to-strong crossover on cool-

ing the liquid [1,2]. The glass should also

not undergo structural relaxations, which

would for example influence the interme-

diate states during long-term depression

in synaptic switching.

While there is on-going research to find

the ‘best-performance’ composition,

priming of the supercooled liquid (Fig. 2),

in other words a pre-structural ordering

by an auxiliary pulse before the main

crystallization voltage (SET), has been

shown to be a promising alternative in

reducing crystallization times to less than

10‒9 s [3].

We will discuss a theoretical description

of pre-bias priming. While priming may

look contradicting the classical nuclea-

tion theory (CNT) from studies of silicate-

based glasses, it can be shown that

priming can be well described in terms of

CNT with the particular thermodynamic

properties of PC chalcogenides. An at-

tempt is made to link crystallization kinet-

ics from atomistic simulations and exper-

iments using thermodynamic and time-

dependent CNT descriptions. Two chal-

cogenide PC systems are considered,

each with distinct input parameters for

the temperature-dependent viscosity in

the calculations of transient and steady-

state nucleation rates. Firstly, GST is

taken to exemplify a high-fragility liquid

with crystal growth partly decoupled from

viscosity. Secondly, the influence of a

fragile-to-strong crossover on crystalliza-

tion will be considered in liquid AIST. We

also hint on the origin of fading of such

effect, i.e. the priming effects relaxes

when there is an unbiased period be-

tween the auxiliary and the main pulse.

Jiri Orava Jiri Orava (Forts.)

KC

MS

L

JN

C

ST

O

M

We may show that photocrystallization,

at temperatures which are just fraction of

Tg, a reversible growth of crystalline

phase, which may be difficult to obtain

by traditional thermal annealing from su-

percooled liquid, can be induced. This is

unlike the thermal crystallization in opti-

cal disks (CD-RW, DVD), where alike in

PC-RAM the glass is heated with a laser

above its Tg to crystallize it, and above

its Tm to amorphize it.

Understanding and controlling the tem-

perature dependence of atomic mobility,

i.e. the kinetic term in nucleation and

crystal-growth rates, can pave the way

for trimming the PC-RAM switching times

to less than 1 ns, ultimately leading to

devices that are more power-efficient.

Fig. 1 Schematic of the phase-change pro-

cesses in PCM and optical disk me-

dia with the corresponding atomic ar-

rangements (Tx is the crystallization

temperature, and Tm is the melting

temperature).

Fig. 2 Schematic of a pre-bias priming in

PC-RAM. A variety of combinations

of pulse lengths and powers have

been used, with or without a delay

time, t, which is the period without

any applied bias. ‘LO’ and ‘HI’ stand

for low- and high-power pulses, re-

spectively.

[1] J. Orava, D.W. Hewak and A.L. Greer, “Fragile-to-strong crossover in supercooled

liquid Ag-In-Sb-Te studies by ultrafast calorimetry”, Adv. Funct. Mater. 25 (2015)

4851.

[2] J. Orava, H. Weber, I. Kaban and A.L. Greer, “Viscosity of liquid Ag-In-Sb-Te: Evi-

dence of a fragile-to-strong crossover”, J. Chem. Phys. 144 (2016) 194503.

[3] T. Lee, D. Loke, K.-J. Huang, W.-J. Wang, and S.R. Elliott, “Tailoring transient-amor-

phous states: Towards fast and power-efficient phase-change memory and neuro-

morphic computing”, Adv. Mater. 26 (2014) 7493.

Die 22. Kalorimetrietage | 7. – 9. Juni 2017 | Braunschweig Die 22. Kalorimetrietage | 7. – 9. Juni 2017 | Braunschweig66 / 162 67/ 162

Comparison of Calorific Value Measurements of

Biogas Reference and Field Calorimeters

Fernando José Pérez-Sanz

Physikalisch-Technische Bundesanstalt (PTB), Bundesallee 100, 38116 Braunschweig,

Germany

Biogas is a valuable energy source more

often used either directly as fuel or fed into

a biomethane upgrade plant for latter

injection into the natural gas grid. For a fair

trade, a better performance and to improve

the efficiency of the different processes

where biogas is involved is important to

know the calorific value of the gas mixture.

Techniques like gas chromatographic

analysis are too expensive for small and

medium biogas producers and other

affordable techniques like infrared

spectroscopy are lacking of accuracy. That

leave the way open for direct calorimetry

measurements.

Two commercial field calorimeters (Union

Instrument CWD2005 and Cuttler-Hammer

recording calorimeter) were under study.

Different reference mixtures were designed

to study the effect of different

thermodynamic properties (density,

viscosity, calorific value, composition…) on

the measurement process. Two different

calibration standard (ISO 6143 and DIN

51899) were applied and compared to find

the best strategy attending the calibration

procedure, time of calibration, number of

calibration gases and algorithm of

calibration.

A biogas sample was measured using the

LNE reference calorimeter and the two field

calorimeters with the two calibration

standards and the results are compared.

Fernando J. Pérez-Sanz

KC

MS

L

JO

C

TW

S

N

Die Mikrokalorimetrie als nicht-invasive Methode zur

Charakterisierung des Metabolismus

Christian Ortmann

TA Instruments - Helfmann Park 10, 65760 Eschborn

Seit langem ist die Kalorimetrie bekannt

und bewährt als direktester Zugang zum

Energiebedarf lebender Organismen, zur

Bestimmung der Stoffwechselraten höhe-

rer Organismen ebenso wie zum Wachs-

tum von Mikroorganismen. Moderne Kalo-

rimeter erreichen eine früher nie geglaub-

te Sensitivität, so dass heute nicht nur der

Metabolismus kleiner (Insekten, Crusta-

ceen) und kleinster Tiere wie parasiti-

schen Egeln (u.a. Schistosoma, Fasciola)

mittels Mikrokalorimetrie untersucht wird,

sondern auch Mikroorganismen und deren

Wachstum (Protozoen, Bakterien oder

Pilze). Inzwischen kann man nicht nur

sehr kleine Wärmeflüsse rasch detektie-

ren, aktuelle Kalorimeter ermöglichen

auch einen hohen Probendurchsatz. Dies

hat insbesondere klinische Relevanz auf-

grund immer weiter fortschreitender Re-

sistenzen, so dass neben den notwendi-

gen Kontrollen stets auch gleich mehrere

Pharmazeutika auf Wirksamkeit und Effi-

zienz simultan getestet werden können. In

allen Disziplinen ist ein hoher Probenum-

fang Voraussetzung für eine bessere sta-

tistische Absicherung der Ergebnisse. In

der Praxis kann dies manche Arbeit um

Monate verkürzen.

Allen kalorimetrischen Anwendungen ist

gemeinsam, dass sie als nicht-invasive

Methode erlauben, die Organismen an-

schließend weiteren Untersuchungen zu-

zuführen. Im Anschluss an die Bestim-

mung von Stoffwechselleistungen können

so beispielsweise später Metabolite extra-

hiert werden und die verbleibenden Nähr-

lösungen untersucht werden, so dass man

umfassende Bilanzen erstellen kann. Kein

Wunder also, dass in zahlreichen wissen-

schaftlichen Disziplinen wieder vermehrt

auf die Kalorimetrie zurückgegriffen wird.

Dieser Vortrag wird einige Beispiele dazu

aufzeigen.

Christian Ortmann

Die 22. Kalorimetrietage | 7. – 9. Juni 2017 | Braunschweig Die 22. Kalorimetrietage | 7. – 9. Juni 2017 | Braunschweig68 / 162 69/ 162

ThermoPhIL: Thermochemical Investigations of Phase Formation Processes in Ionic Liquids Peer Schmidt*, Monika Reschke, Adrian Wolf, Anastasia Efimova

BTU Cottbus - Senftenberg / Faculty of Environment and Sciences * E-Mail: [email protected]

During the last decade, a great progress has been achieved in the variety of appli-cation of ionic liquids in inorganic synthe-sis [1, 2]. The advantage of ionic liquid based synthesis is mainly founded on low melting temperatures of IL. Despite the low temperature, high reactivity of inorgan-ic solids in ILs can be observed. Thus, soft synthesis conditions can be applied in synthesis and even low temperature met-astable materials are attainable [3]. Never-theless, systematic investigations with the conception of ionic liquids and ionic liquid mixtures as flux systems with temperature and composition dependent physico-chemical properties are lacking to date. As a main topic, the formation of element allotropes and compounds of group XV and XVI elements is presented. As almost all the elemental syntheses succeeded by an electrochemical reduction of the binary oxides, the idea grew to estimate electro-chemical potentials [4] of oxidic precursors for directed reduction towards the ele-ments. For this purpose, complex Cal-PhaD modeling has been realized to ac-count for both complex gas phase equilib-ria which lead to defining p(O2), and pos-sible sublimation reactions of elements or compounds (p(i)). In accordance to ther-mochemical modeling, the reduction of the oxides of As, Sb, Bi, Se, and Te succeeds by application of the reaction system NaBH4/[C4mim]BF4. The reduction also proceeded also without reduction agent in

the temperature range 9 = 225 °C ... 300 °C. Thus, the ionic liquid itself func-tioned as a reduction agent. Referring to this finding, we analyzed the thermal behavior of the applied IL. Prob-lematically, commonly applied methods for determination of thermal decomposition temperature (TG/DSC) vary in a range of up to 50 K. Thus, we have applied and optimized a kinetic model for determina-tion of time dependent thermal stability of ionic liquids: Maximum Operation Tem-perature (MOT) [5]. The MOT value de-scribes the maximum temperature (with a mass loss less than 1%) for application of an ionic liquid in a given period of time. As a conclusion, the thermal stability of IL is much lower as expected based on stand-ard TG experiments and the thermal de-composition of IL can influence the reac-tion mechanism of materials synthesis. Furthermore, reaction systems in IL’s have been investigated, where the optimum reaction temperature is determined by the composition of the flux system and the melting temperature of the respective mix-ture. Thus, reaction systems of ionic liquid halido metalates (here [C4mim]AlCl4) with higher contents of the metal salt (AlCl3) usually require higher reaction tempera-ture. Almost equimolar mixtures ([C4mim]AlCl4) are applicable near room temperature, due to their low melting point.

Peer Schmidt

KC

MS

L

JO

C

TW

S

N

Interplay between the Relaxation of the Glass of Random L/D

Lactide Copolymers and Homogeneous Crystal Nucleation:

Evidence for Segregation of Chain Defects

Rene Androsch1, Christoph Schick2,3

1 Center of Engineering Sciences, Martin Luther University Halle-Wittenberg,

06099 Halle/Saale2 Institute of Physics and Competence Center CALOR, University of Rostock,

Albert-Einstein-Str. 23-24, 18051 Rostock3 Kazan Federal University, 18 Kremlyovskaya street, Kazan 420008, Russian Federation

Random L isomer rich copolymers of

poly(lactic acid) containing up to 4% D

isomer co units have been cooled from the

molten state to obtain glasses free of

crystals and free of homogeneous crystal

nuclei. The kinetics of enthalpy relaxation

and the formation of homogeneous crystal

nuclei have then been analyzed using fast

scanning chip calorimetry. It has been

found that the relaxation of the glass

toward the structure/enthalpy of the

supercooled liquid state is independent of

the presence of D isomer co units in the

chain. Formation of homogeneous crystal

nuclei in the glassy state requires the

completion of the relaxation of the glass.

However, nucleation is increasingly

delayed in the random copolymers with

increasing D isomer chain defect

concentration. The data show that the

slower formation of homogeneous crystal

nuclei in random L/D lactide copolymers,

compared to the homopolymer, is not

caused by different chain segment

mobility in the glassy state but by the

segregation of chain defects in this early

stage of the crystallization process.

Christoph Schick

Die 22. Kalorimetrietage | 7. – 9. Juni 2017 | Braunschweig Die 22. Kalorimetrietage | 7. – 9. Juni 2017 | Braunschweig70 / 162 71/ 162

Electrified Microbiology – Bacteria full of Potential!

Uwe Schröder

Institute for Environmental and Sustainable Chemistry, TU Braunschweig, Hagenring 30,

38106 Braunschweig, Germany.

E-Mail: [email protected]

Bacteria that can conduct produce,

consume and electrons? This is not just a

fancy idea, but it is the basis for novel

microbial electrochemical technologies.

The last decade has seen tremendous

progress in the development of these

technologies: Microbial fuel cells produce

electricity from wastewater, microbial

electrosynthesis may provide access to

the reduction of carbon dioxide. A central

role play electrochemically active

microbial biofilms, in which extracellular

electron transfer wires the microbial

metabolism to electrodes.

How does microbial extracellular electron

transfer work? And what is needed to

bring the idea of microbial electrochemical

technologies to application? This lecture

gives an overview about new insights and

developments in the field of microbial

electrochemistry, highlights recent trends

and discusses future needs.

Uwe Schröder

KC

MS

L

JO

C

TW

S

N

Acknowledgement: This work has been supported by the priority program 1708 of Ger-man Research Foundation – DFG. Experimental equipment has been funded by the Eu-ropean Regional Development Fund, EFRE-Brandenburg, Project No. 80155970).

[1] D. Freudenmann, S. Wolf, M. Wolff, C. Feldmann, Angew. Chem. Int. Ed. 2011, 50, 11050.

[2] E. Ahmed, M. Ruck, Coord. Chem. Rev. 2011, 255, 2892. [3] M. Heise, M. Ruck, Z. Anorg. Allg. Chem. 2012, 638, 1568. [4] M. Schöneich, A. Hohmann, P. Schmidt, F. Pielnhofer, F. Bachhuber, R. Weihrich, O.

Osters, M. Köpf, T. Nilges, Z. Krist. 2016, DOI 10.1515/zkri-2016-1966. [5] A. Efimova, L. Pfüzner, P. Schmidt, Thermochim. Acta 2015, 604, 129.

Peer Schmidt (Forts.)

Die 22. Kalorimetrietage | 7. – 9. Juni 2017 | Braunschweig Die 22. Kalorimetrietage | 7. – 9. Juni 2017 | Braunschweig72 / 162 73/ 162

Experience shows that fundamental equa-

tions of state based on highly accurate

density and speed of sound data describe

caloric properties like heat capacities

more accurately than the available experi-

mental data. For diluted gas states this

statement and its limits can easily be

proven. However, for higher density and

correspondingly large residual effects

these relations become more complex. To

date it is not possible to base traceable

uncertainty statements for caloric proper-

ties on deviations observed for densities

or speeds of sound. Mathematical ap-

proaches can be derived, but to verify or

to falsify their applicability, comprehensive

sets of highly accurate data for heat ca-

pacities or enthalpy differences would be

required at least for some reference fluids.

[1] R. Span and W. Wagner: A new equation of state for carbon dioxide covering the

fluid region from the triple point temperature to 1100 K at pressures up to 800 MPa.

J. Phys. Chem. Ref. Data 25, 1509 - 1596 (1996).

[2] R. Span, E. W. Lemmon, R. T Jacobsen, W. Wagner and A. Yokozeki: A reference

equation of state for the thermodynamic properties of nitrogen for temperatures from

63.151 K to 1000 K and pressures to 2200 MPa. J. Phys. Chem. Ref. Data, 29,

1361 - 1433 (2000).

[3] W. Wagner and A. Pruß: The IAPWS formulation 1995 for the thermodynamic prop-

erties of ordinary water substance for general and scientific use. J. Phys. Chem. Ref.

Data 31, 387 - 535 (2002).

[4] E. W. Lemmon and R. T Jacobsen: A new functional form and new fitting techniques

for equations of state with application to pentafluoroethane (HFC-125). J. Phys.

Chem. Ref. Data 34, 69 - 108 (2005).

[5] O. Kunz and W. Wagner: The GERG-2008 wide-range equation of state for natural

gases and other mixtures: An expansion of GERG-2004. J. Chem. Eng. Data 57,

3032 - 3091(2012).

[6] J. Gernert and R. Span: EOS–CG: A Helmholtz energy mixture model for humid

gases and CCS mixtures. J. Chem. Thermodyn. 93, 274 - 293 (2016).

[7] International Association for the Properties of Water and Steam (IAPWS): Revised

release on the IAPWS formulation 1995 for the thermodynamic properties of ordinary

water substance for general and scientific use (2014).

[8] International Organization for Standardization (ISO): ISO 20765-2:2015, Natural gas

– Calculation of thermodynamic properties – Part 2: Single-phase properties (gas, liq-

uid, and dense fluid) for extended ranges of application (2015).

[9] E. W. Lemmon, M. L. Huber, and M. O. McLinden: NIST Standard Reference Data-

base 23: Reference fluid thermodynamic and transport properties – REFPROP, ver-

sion 9.1. National Institute of Standards and Technology, Standard Reference Data

Program, Gaithersburg, 2013.

[10] R. Span and W. Wagner: On the extrapolation behavior of empirical equations of

state. Int. J. Thermophys., 18, 1415 - 1443 (1997).

Roland Span (Forts.)

KC

MS

L

JO

C

TW

S

N

Caloric Properties from Empirical Fundamental

Equations of State

Roland Span

Ruhr-Universität Bochum

For well measured, technically and scien-

tifically relevant fluids and fluid mixtures

empirical multiparameter formulations in

form of fundamental equations of state

have been established as reference for

thermodynamic properties. Well known

examples for reference equations of state

are those for carbon dioxide [1], nitrogen

[2], and water [3] – equations of state for

fluids with excellent data sets, which are

frequently applied not only in technical ap-

plications but also for calibration pur-

poses. A number of fluids that are only rel-

evant for technical applications are de-

scribed with very high accuracy today, too;

in particular this is true for some refriger-

ants [4]. Among the mixture models, the

development of accurate property models

based on multiparameter fundamental

equations of state has focused on natural

gas [5] and CO2-rich [6] mixtures. Some of

these models were formally accepted as

international standards [7, 8], others have

been established as de facto standards by

the scientific community and by interna-

tionally used software products [9].

The drawback of empirical multiparameter

equations of state is that they can only

achieve high accuracy for fluids, for which

accurate experimental data are available.

Studies on suitable mathematical struc-

tures for fundamental equations of state,

the use of algorithms optimizing their

mathematical structure, and finally the use

of constraints in nonlinear fitting [4] have

significantly improved the numerical stabil-

ity of multiparameter equations of state

[10]. They extrapolate well and yield

reasonably accurate results in (limited) re-

gions without data as well. However, mul-

tiparameter equations of state still depend

on the availability of accurate experi-

mental data in broad ranges of states, and

estimates for the uncertainty of property

values calculated from such equations can

only be established by comparison to ex-

perimental data.

A crucial advantage of fundamental equa-

tions of state is that values for all thermo-

dynamic properties are calculated from

derivatives or from a combination of deriv-

atives of a single surface spanning over

temperature and density, respectively over

temperature, density and composition for

mixtures. Different properties calculated

from a fundamental equation of state are

not necessarily accurate, but they are al-

ways consistent to each other. As a con-

sequence, fundamental equations of state

can be based on data for those properties

that can be measured with highest accu-

racy.

Today, multiparameter fundamental equa-

tions of state are mostly based on density

and speed of sound data at homogeneous

states. Highly accurate equipment for den-

sity [11, 12],and speed of sound [13, 14]

measurements has been developed to

provide the required data for pure fluids

and mixtures. Beside this, accurate infor-

mation on vapour-liquid equilibria is man-

datory to precisely describe the location of

the phase boundary. Extensive data sets

have been provided for pure reference flu-

ids and a number of mixtures.

Roland Span

Die 22. Kalorimetrietage | 7. – 9. Juni 2017 | Braunschweig Die 22. Kalorimetrietage | 7. – 9. Juni 2017 | Braunschweig74 / 162 75/ 162

THT UK THT INC THT CHINA THT INDIAThermal Hazard Technology Thermal Hazard Technology Thermal Hazard Technology Thermal Hazard Technology1 North House, Bond Avenue 49 Boone Village # 130 Rm 1115, 775 Long, No 1 Si Ping Road 808, Eighth Floor, Tower-IBletchley, Milton Keynes MK1 1SW Zionsville, IN 46077 Shanghai 200092 Pearls Omaxe, NetaJi Subhash PlaceUnited Kingdom USA P.R. China PitamPura, Delhi-110034, IndiaPhone: +44 1908 646800 Phone: +1 317 222 1904 Phone: + 86 21 58362582 Phone: +91 11 4701 0775Fax: +44 1908 645209 Fax: +1 317 660 2092 Fax: +86 21 58362581 Fax: +91 11 4701 0775

E-mail: [email protected] Web: www.thermalhazardtechnology.com

Micro Reaction CalorimetryNewer Applications for the Chemical & Pharmaceutical Industry

Steve Stones

Thermal Hazard Technology

A micro reaction calorimeter has applica-

tions far beyond scale-up and reaction

calorimetry itself. A micro reaction calo-

rimeter is also a scanning calorimeter (a

large volume DSC), an isothermal calo-

rimeter (sensitive enough for stability

studies), a properties calorimeter (for

heat of solution, mixing and specific

heats) and an isothermal titration

calorimeter.

Data from heat capacity measurements

and heat production from microbes will

be presented. The gas flow option to

study Carbon Capture involving the exo-

thermic reaction that occurs when CO2

gas is absorbed by an amine solution will

also be discussed.

Steve Stones

KC

MS

L

JS

C

WY

T

O

[11] R. Kleinrahm and W. Wagner: Measurement and correlation of the equilibrium liquid

and vapour densities and the vapour pressure along the coexistence curve of me-

thane. J. Chem. Thermodynamics 18, 739 – 760 (1986).

[12] M. Richter, R. Kleinrahm, R. Lentner, and R. Span: Development of a special single-

sinker densimeter for cryogenic liquid mixtures and first results for a liquefied natural

gas (LNG). J. Chem. Thermodyn. 93, 205 - 221 (2016).

[13] J.P.M. Trusler and M. Zarari: The speed of sound and derived thermodynamic prop-

erties of methane at temperatures between 275 K and 375 K and pressures up to

10 MPa. J. Chem. Thermodyn. 24, 973 – 991 (1992).

[14] K. Meier and S. Kabelac: Speed of sound instrument for fluids with pressures up to

100 MPa. Rev. Scien. Instrum. 77, 123903 - 123908 (2006).

Roland Span (Forts.)

Die 22. Kalorimetrietage | 7. – 9. Juni 2017 | Braunschweig Die 22. Kalorimetrietage | 7. – 9. Juni 2017 | Braunschweig76 / 162 77/ 162

Determination of the enthalpy of mixing in the binary

system LiFePO4–FePO4 at 25 °C

C. Thomas1, G. Balachandran2, N. Mayer3, R. Hüttl1, J. Seidel1, F. Mertens1

1 Institute of Physical Chemistry, TU Bergakademie Freiberg, Leipziger Str. 29,

D-09599 Freiberg2 Institute for Applied Materials – Energy Storage Systems, Karlsruhe Institute of

Technology, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen3 Institute for Applied Materials – Applied Materials Physics, Karlsruhe Institute of

Technology, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen

Lithium iron phosphate (LiFePO4) is

known for its capability to deintercalate

lithium ions reversibly [1] as well as for its

high thermal stability. Thus, LiFePO4 is

discussed to be a promising cathode ma-

terial for the application in lithium ion bat-

teries (LIB). In comparison with other

cathode materials, such as LiCoO2 and

Li(Co1/3Ni1/3Mn1/3)O2 [2], lithium iron phos-

phate possesses several benefits: low

price, low toxicity, small volume change of

about 7 % and a high theoretic specific

capacity of 170 mA h g–1.

During the cycling process of a battery

LiFePO4 undergoes a sequence of com-

plex chemical reactions. The group of

Yamada [3] proved that LiFePO4 and

FePO4 are partly miscible into each other

at room temperature. Thus, solid solution

phases are formed while charging (delithi-

ation cathode reaction) or discharging

(lithiation cathode reaction) a LIB [4] until

phase separation takes place. The width

of the miscibility gap in this system de-

pends on both temperature [5] and the

primary crystallite size [6, 7]. Ne-

vertheless, besides these phenomenolog-

ical considerations a detailed calorimetric

investigation focussed on the thermody-

namics of the mixing behaviour of this

binary system is still missing.

This contribution focuses on the determi-

nation of the enthalpy of mixing in the sys-

tem LiFePO4–FePO4 via isothermal titra-

tion calorimetry (ITC) by applying a ther-

mal activity monitor system (TAM 2277)

from Thermometric at 25 °C. In order to

account for the influence of the particle

size on the mixing enthalpy, two samples

with significantly different particle size dis-

tributions are investigated. The lithiation

reaction of FePO4 is carried out by adding

of the dissolved reducing agent lithium

iodide stepwise into a dispersion of the

solid in acetonitrile. All of the calorimetric

results are generally in good accordance

with additionally conducted equilibrium cell

potential measurements.

The ITC method turns out to be a new

promising research tool in order to investi-

gate redox reaction induced phase transi-

tion processes of lithium intercalating

compounds as well as the enthalpy of mix-

ing in the LiFePO4–FePO4 system. Com-

pared to cell potential measurements, it

offers an opportunity to access enthalpic

changes directly. Thus, it complements

results gained by electrochemical studies

and provides new insights for a better un-

derstanding of electrode reactions in LIB.

Christian Thomas

KC

MZ

L

JS

C

WT

O

Determination of thermodynamic properties of lithium mono-

silicide based on calorimetric and hydrogenation experiments

Franziska Taubert, Regina Hüttl, Jürgen Seidel, Florian Mertens

TU Bergakademie Freiberg, Institute of Physical Chemistry, Leipziger Str. 29,

09599 Freiberg

Key words: LiSi, heat capacity, entropy, hydrogenation equilibrium, enthalpy of formation

The increasing demand for more efficient

energy sources in portable devices and

electric vehicles represents a major chal-

lenge for battery research and technology.

Silicon and the lithium silicides have at-

tracted increasing attention for use as an-

ode material in future Lithium-Ion-Batter-

ies (LIB) in view of costs and capacity. A

consistent thermodynamic description of

the Li-Si-system including phase and elec-

trochemical equilibria is of great im-

portance for the battery development as

well as for the basic understanding of the

system.

The phase diagram has been studied in

literature for a very long time, but only few

reliable experimental thermodynamic data

was reported. Motivated by this situation

we reported the heat capacities and entro-

pies of the five stable phases Li17Si4,

Li16.42Si4, Li13Si4, Li7Si3 und Li12Si7 [1,2]

and determined recently the enthalpy of

formation of Li7Si3 und Li12Si7 by linking of

the hydrogen equilibrium pressures

peq(H2) from hydrogenation measurements

in a Sievert´s type apparatus with the pre-

cise heat capacity and entropy data of the

appropriate lithium silicides [3].

The aim of this study is the experimental

determination of the heat capacity, en-

tropy and enthalpy of formation of LiSi.

These measurements require a phase

pure sample that was synthesized by me-

chanical alloying. The LiSi was character-

ized by means of XRD, DSC and chemical

analysis. The heat capacity of LiSi was

measured using two different calorimeters.

In the low temperature region from 2 K to

300 K a Physical Properties Measurement

System (PPMS, Quantum Design) based

on a relaxation technique was used,

whereas the measurements at higher tem-

perature (300 K to 740 K) were performed

in a DSC 111 (Setaram) applying the Cp-

by-step method. The measurements at

low temperature permit the calculation of

the standard entropies, as well as elec-

tronic and lattice contributions to the heat

capacity. The enthalpy of formation of LiSi

was computed based on the combination

of hydrogenation investigations in a Sie-

verts apparatus with the heat capacity and

entropy data. The results of this work rep-

resent a significant contribution towards a

reliable thermodynamic data set for the Li-

Si-system.

[1] D. Thomas, M. Abdel-Hafiez, T. Gruber, R. Hüttl, J. Seidel, A. U. B. Wolter, B. Büch-

ner, J. Kortus, F. Mertens, J. Chem. Thermodyn. 2013, 64, 205–225.

[2] D. Thomas, M. Zeilinger, D. Gruner, R. Hüttl, J. Seidel, A. U. Wolter, T. F. Fässler, F.Mertens, J Chem Thermodyn 2015, 85, 178–190.

[3] D. Thomas, N. Bette, F. Taubert, R. Hüttl, J. Seidel, F. Mertens, Journal of Alloys and

Compounds 2017, 704, 398–405.

Franziska Taubert

Die 22. Kalorimetrietage | 7. – 9. Juni 2017 | Braunschweig Die 22. Kalorimetrietage | 7. – 9. Juni 2017 | Braunschweig78 / 162 79/ 162

Calorimetric Measurements of Phase Change Materials

(PCM)

Stephan Vidi, Michael Brütting, Stefan Hiebler, Christoph Rathgeber

Bavarian Center for Applied Energy Research (ZAE Bayern)

Phase change materials (PCM) are play-

ing an increasing role on our way to a

more energy efficient society. In buildings,

where they are used in encapsulated form

or in composite building materials, they

can act as a short time temperature buffer

or as a thermal energy storage, thus act-

ing as passive conditioning elements.

Similar usage can be found in the automo-

tive sector. PCM do also increase energy

efficiency when used as thermal storages

in non-continuous industrial processes.

Other uses for PCM are the buffering of

temperature peaks in electronic devices

and the transport of perishable goods,

where they again act as a temperature

buffer. In all these applications the exact

knowledge of the thermal properties of

PCMs will allow for the design of applica-

tions with a higher energy efficiency and

lower costs.

One of the essential parameters is the la-

tent heat of the PCM, i.e. the amount of

heat stored or released during the phase

change. When using differential scanning

calorimetry (DSC), the most widespread

caloric measuring technique, to measure

PCM, some problems arise. These are

strong supercooling in many cases due to

small sample sizes, difficulties in the prep-

aration of small, representative samples

(e.g. hygroscopic salt hydrates) and corro-

sion with hermetic tight crucibles. Also

hysteresis in the enthalpy-temperature

curves due to the thermal conductivity of

the samples and depending on the speed

of the measurement, is problematic. In-

creased efforts were made to minimize

these problems on different levels. First

measuring recipes have been developed

within the framework of the PCM RAL

quality assurance RAL-GZ 896 in order to

minimize uncertainties in the measured

enthalpy values and to improve tempera-

ture accuracy for DSC measurements on

weakly supercooling PCM. These include

the preparation of the samples and set

rules for the determination of a suitable

heating and cooling rate. The IEA task 42

/ Annex 29 then expanded on the rules

given by the RAL procedure adding a cali-

bration of the DSC, suggestions for sam-

ple preparation and suggestions for an im-

proved analysis.

Finally different measuring methods have

been developed in the last years focusing

on the measurement of larger samples,

with sizes close to the ones in applications

and with different geometries. The most

prominent new method in the PCM com-

munity is the T-History method, due to its

relatively simple setup and evaluation.

Other methods have also been examined,

such as the macro-DSC method, heat-flow

meter calorimetry and bath calorimeters.

This expands the measurement capabili-

ties to encapsulated materials, strongly in-

homogeneous materials and samples with

almost arbitrary shapes and most im-

portantly to application sized samples.

Stephan Vidi

KC

L

JT

C

ZW

S

[1] A. K. Padhi, K. S. Nanjundaswamy, J. B. Goodenough, J. Electrochem. Soc. 1997,

144, 1188– 1194.

[2] J. W. Fergus, J. Power Sources 2010, 195, 939–954.

[3] A. Yamada, H. Koizumi, S.-I. Nishimura, et al., Nat. Mater. 2006, 5, 357.

[4] Y. Orikasa, T. Maeda, Y. Koyama, H. Murayama, K. Fukuda, H. Tanida, H. Arai, E.

Matsubara,Y. Uchimoto,Z. Ogumi, J. Am. Chem. Soc. 2013, 135, 5497-5500.

[5] J. L. Dodd, B. Fultz, R. Yazami, ECS Transactions 2006, 1, 27–38.

[6] G. Kobayashi, S.-I. Nishimura, M.-S. Park, R. Kanno, M. Yashima, T. Ida, A. Yama-

da, Adv. Funct. Mater. 2009, 19, 395–403.

[7] M. Wagemaker, D. P. Singh, W. J. H. Borghols et al., J. Am. Chem. Soc. 2011, 133,

10222-10228.

Christian Thomas (Forts.)

Die 22. Kalorimetrietage | 7. – 9. Juni 2017 | Braunschweig Die 22. Kalorimetrietage | 7. – 9. Juni 2017 | Braunschweig80 / 162 81/ 162

[1] G. Ertl, H. Knözinger, Handbook of heterogeneous catalysis, Wiley-VCH,

Weinheim, 1997.

[2] D. Walter, Z. Anorg. Allg. Chem. 2006, 632, 2165.

[3] A. Neumann, D. Walter, Thermochim. Acta. 2006, 445, 200-204.

[4] E. Füglein, D. Walter, J. Therm. Anal. Calorim. 2012, 110, 199-202.

Dirk Walter (Forts.)

KC

L

JT

C

ZW

S

Carbonate formation in oxidic lanthanum compounds –

Isothermal calorimetry

D. Walter*, E. Haibel

Gefahrstofflaboratorien Chemie und Physik, Institut für Arbeitsmedizin,

Justus-Liebig-Universität, Aulweg 129, D-35392 Gießen

* E-Mail: [email protected]

Lanthanumoxide (La2O3) can be used as

catalysis material for a variety of reactions

[1]. The preparation of La2O3 is usually

performed from lanthanum hydroxide

(La(OH)3) due to a two-step thermal con-

version of lanthanum oxide hydroxide

(LaOOH) [2, 3]. Together with water,

La2O3 again forms the starting product

La(OH)3. Undesirable carbonaceous con-

stituents can arise in a humidified CO2-

containing atmosphere (e.g. air), which

will have influence on the catalytically ac-

tivity [4]. Isothermal calorimetric meas-

urement in a humidified CO2-atmosphere

were performed, to specify the chronologi-

cal development of carbonation for differ-

ent oxidic lanthanum compounds (La2O3,

LaOOH und La(OH)3). The results show,

that the carbonation of La(OH)3, La2O3 as

well as LaOOH is an exothermal reaction

(Fig. 1).

Measurements of La(OH)3 in a humidified

CO2-containing atmosphere result in a

heatflow-maximum after ~3 h (T = 40 °C).

After 20 h the CO2 uptake is finished.

Whereas the measurements of La2O3

reach in a humidified CO2-containing at-

mosphere the heatflow-maximum after

~2 h with considerably greater amounts of

heat compared to La(OH)3. The reason for

this behaviour is two overlapping exo-

thermal reactions: for one La(OH)3 is

formed by an exothermal reaction of

La2O3 with water and, additionally a CO2

incorporation takes place.

Fig. 1: Isothermal calorimetry of La2O3,

La(OH)3, LaOOH and Al2O3

(reference) in a humidified CO2-

containing atmosphere; T = 40 °C

The conversion is finished after 36 h. The

reaction of LaOOH to La(OH)3 and the

incorporation of CO2 happens so quickly

that under the chosen experimental condi-

tions (stable phase = 45 min; T = 40 °C)

the reaction process can not be recorded

completely. The conversion is finished

after 6 h already. Thermogravimetric anal-

ysis confirm that after 40 h at 40 °C in a

humidified CO2-containing atmosphere

La(OH)3 and LaOOH convert completely

into lanthanum carbonate (La2(CO3)3),

whereas La2O3 converts into carbonate

containing La(OH)3

La2O

3+ H

2O + CO

2

La(OH)3

+ H2O + CO

2

LaOOH + H2O + CO

2

Al2O

3+ H

2O + CO

2

Dirk Walter

Die 22. Kalorimetrietage | 7. – 9. Juni 2017 | Braunschweig Die 22. Kalorimetrietage | 7. – 9. Juni 2017 | Braunschweig82 / 162 83/ 162

The decomposition of tert.-butyl hydroperoxide studied by

differential scanning calorimetry.

Dr. Thomas Willms*1, Dr. Holger Kryk1, Dr. Jana Oertel², Prof. Dr. Uwe Hampel1

1 Helmholtz-Zentrum Dresden - Rossendorf, Institute of Fluid Dynamics,

Bautzner Landstraße 400, 01328 Dresden, Germany

² Helmholtz-Zentrum Dresden - Rossendorf, Institute of Resource Ecology,

Bautzner Landstraße 400, 01328 Dresden, Germany

* Email-Address of the presenting author: [email protected]

In the frame of the investigation of the

oxidation of isobutane to t-butyl hydroper-

oxide (TBHP), which has been investigat-

ed for the first time as a two-phase pro-

cess in a capillary reactor at high tempera-

tures and pressures, the prevention of

decomposition of TBHP was an important

subject. The observed products di-

tert.butyl peroxide, tert.butanol, acetone,

and methanol are due to the thermal de-

composition of TBHP, which is also influ-

enced by wall effects. Therefore, the de-

composition of TBHP has been studied by

Differential Scanning calorimetry (DSC) at

higher temperatures using for the first time

different DSC conditions (several crucible

types and pressure conditions, heating

rate, substance mass etc.). An aluminium

crucible, a medium pressure and different

high pressure stainless steel crucibles

(steel, gilded, silicon coated) have been

used to show the influence of the crucible

on the DSC curve. The influence of a pro-

tection of the sample against the gilded

copper blowout disk by aluminium foil on

the DSC has been investigated. It has

been found that the blowout-disk has an

important influence on the DSC curve.

The reaction mechanism of the decom-

position of TBHP and its kinetics at differ-

ent conditions has been discussed. It has

been shown mathematically for the first

time that, despite the complex mecha-

nism, a first order kinetics can actually

describe the reaction at low temperature

conditions. Kinetics has been investigated

by evaluation of the DSC curves using an

nth order approach and a model free ki-

netics approach.

Thomas Willms

Solubility Parameters: A Versatile Concept

Emmerich Wilhelm

Institute of Materials Chemistry & Research/Institute of Physical Chemistry,

Universität Wien, Währinger Straße 42, A-1090 Wien, Österreich

E-Mail: [email protected]

The main objectives of this contribution

are (I) providing a brief overview of the

evolution of the solubility parameter ( i )

concept, (II) presentation of the key physi-

cochemical aspects of popular i -related

models in solution chemistry, and (III) a

concise survey of a few selected applica-

tions in physical chemistry and chemical

engineering [1]. Prediction of thermody-

namic properties of liquid nonelectrolyte

solutions from properties of the pure con-

stituents has come a long way since the

classic studies of Scatchard and Hilde-

brand [2,3] leading to regular solution the-

ory for which i is the pivotal property [4]:

r,L, L,, , ,i i iT P U T P V T P ,

where r,L,iU denotes the molar residual

internal energy of pure liquid component i,

and L,iV is its molar volume, i.e. i is the

square root of the cohesive energy

density.

The frequently neglected temperature and

pressure dependence of i will be dis-

cussed, for instance via a generalized

corresponding states theory approach:

0 1 21 2 2c, r, r, r, r, r, r,i i i i i i i i i iP T T T

2 3r, r, r, r, r,

p p p p pi i i i iT a b T c T d T

p = 0, 1 or 2,

where all the symbols have their custom-

ary significance.

Finally, extensions to multi-dimensional

solubility parameter models will be indi-

cated [5], which quantities are used with

mixtures containing strongly polar and/or

hydrogen-bonded substances. The most

widely used three-dimensional solubility

parameter was introduced by Hansen in

1967 [6], and the 50th Anniversary HSP

Conference took place at the University of

York, UK, 5 – 7 April 2017.

[1] E. Wilhelm, Solubility Parameters: A Brief Review, in: Enthalpy and Internal Energy:

Liquids Solutions and Vapours, E. Wilhelm and T. M. Letcher, eds., The Royal

Society of Chemistry/IACT, Cambridge, UK, 2017.

[2] G. Scatchard, Chem. Rev. 8, 321-333 (1931).

[3] J. H. Hildebrand and S. E. Wood, J. Chem. Phys. 1, 817-822 (1933).

[4] J. H. Hildebrand and R. L. Scott, The Solubility of Nonelectrolytes, 3rd edn, Reinhold

Publishing Corporation, New York, USA, 1950.

[5] A. F. M. Barton, CRC Handbook of Solubility Parameters and other Cohesion

Parameters, CRC Press, Boca Raton, Florida, USA, 2nd edn, 1991.

[6] (a) C. M. Hansen, J. Paint. Techn. 39, No. 505, 104-117 (1967);

(b) C. M. Hansen, J. Paint. Techn. 39, No. 511, 505-510 (1967);

(c) C. M. Hansen and K. Skaarup, J. Paint. Techn. 39, No. 511, 511-514 (1967).

Emmerich Wilhelm

KC

L

JT

C

ZW

S

Die 22. Kalorimetrietage | 7. – 9. Juni 2017 | Braunschweig Die 22. Kalorimetrietage | 7. – 9. Juni 2017 | Braunschweig84 / 162 85/ 162

Through solution to the gas phase: Evaluation of the enthalpy

of vaporization for thermally unstable ionic compounds with

the help of solution calorimetry

Dzmitry H. Zaitsau, Sergey P. Verevkin

Department of Physical Chemistry, University of Rostock, D-18059 Rostock, Germany

Ionic liquids (ILs) are acknowledged as a

new perspective “green” solvents and re-

action media. The successful application

of ILs in industrial processes can’t be

achieved without recycling of such novel

media. ILs are known as compounds with

extremely low vapor pressures. Determi-

nation of the enthalpy of vaporization for

ILs is a challenging task and even the

most sensitive devices are often not ca-

pable of determining their vapor pressure.

Another approach for evaluation of vapori-

zation enthalpy is going through the ther-

modynamic cycle from liquid or solid state

to gas. Such approach is used not only as

an independent technique but also as a

robust test protocol for experimental en-

thalpies of vaporization. But even in this

case, the complicated chemical composi-

tion is against the precise investigation of

ILs vaporization enthalpy. As a rule, en-

thalpies of formation in the liquid or crystal

phase are determined by using the com-

bustion calorimetry. However, this method

is not well developed for compounds with

a combination of P, B, S, and F elements

yet.

The solution calorimetry opens the door

for determination of liquid phase en-

thalpies of formation for ILs. At the infinite

dilution in water, the close ion pairs of ILs

separates back to solvated cation and

anion. The same way the enthalpy of for-

mation of solvated ILs separates to the

contributions of cation and anion. Thus,

the sum of enthalpies of formation in

aqueous solution for cation and anion to-

gether with experimental dissolution en-

thalpy provides the experimental enthalpy

of formation in the condensed state. The

alternative way is the synthesis of ILs dur-

ing dissolution experiments. The combina-

tion of the enthalpy of synthesis of IL in

water together with the corresponding

solution enthalpy also leads to the liquid

phase enthalpy of formation.

The final part of the thermodynamic cycle

is the high-level quantum-chemical calcu-

lations which provide the enthalpy of for-

mation for isolated ion pairs of ILs in the

ideal gas conditions. We applied this “non-

linear” thermodynamic studies for the

most complicated ILs, when the results of

other techniques were suspicious are oth-

er experimental techniques just failed.

Dzmitry H. Zaitsau

W

Z

T

Can homogenous nucleation be controlled in a

metallic glass?

Bin Yang1,2, Yulai Gao3, Christoph Schick1,2

1 Institute of Physics, University of Rostock, Albert-Einstein Str. 23-24,

18051 Rostock, Germany2 Competence Centre CALOR, Faculty of Interdisciplinary Research,

University of Rostock, Albert-Einstein-Str. 25, 18059 Rostock, Germany.3 State Key Laboratory of Advanced Special Steels, Shanghai University,

149 Yanchang Road, 200072 Shanghai, PR China

Fast scanning chip calorimetry was suc-

cessfully employed to not only suppress

crystallization but also bypass homogene-

ous nucleation of an Au-based bulk metal-

lic glass on controlled fast quenching. A

truly amorphous metallic glass without ho-

mogeneous nucleation was acquired. Fol-

lowing the rapid quenching, annealing at

different temperatures from 0.001 s to

10000 s was realized, in which homoge-

neous nucleation was allowed and various

local-configurations were obtained conse-

quently. Its effect on crystallization was

quantified based on the evolution of en-

thalpy employing nuclei development ap-

proach. Finally, a C-curve illustrating the

homogeneous nucleation kinetics was ob-

tained and added to the conventional TTT

diagram, by which a truly amorphous state

and the kinetics of homogeneous nuclea-

tion can be estimated. The art to control

homogeneous nucleation and the science

to uncover the corresponding mechanism

provide new insights how to tune the

micro- to nano-structure of metallic

glasses, and facilitates the understanding

of solidification and glass forming ability

both in engineering and scientific fields.

Bin Yang

Der optische Weg zur thermischen Analyse

Get in touch: www.anton-paar.com

TORC 5000Thermo-optical

Oscillating Refraction Characterization

- Revolutionärer Zugang zur thermischen Analyse mit einer optischen Messung

- Sehr tolerant gegenüber Probeneigenschaften (Flüssigkeiten, Gele, Feststoffe) und praktisch ohne Probenvorbereitung

- Überwachung zeit- und temperaturabhängiger Prozesse, z. B. Polymerisation, Aushärtung, Phasen- und Glasübergänge

- Mathematische Modelle zur Bestimmung des thermischen Ausdehnungskoeffizienten ohne mechanische Störeinflüsse

TORC5000_210x297_DE.indd 1 11.04.17 12:49

aus unserem Produktprogramm: Kalorimetrie / Thermische Größen Hot Disk - schnelle und simultane Bestimmung von Wärmeleitfähigkeit, Temperaturleitfähigkeit und spezifischer Wärmekapazität Messbereich 0,005 bis 1.800 W/m K nach ISO 22007-2:2015 (TPS 1500, TPS 2200, TPS 2500 S und TPS 3500) Typische Applikationen und Proben: Polymere, Metalle, Legierungen, Baustoffe, Textilien Pulver, Schüttgut, Schäume, Gele, Pasten, Flüssigkeiten Dünne Schichten/Folien (0.01 bis 2 mm) anisotrope Werkstoffe (z.B. Faserstrukturen, “composites”)

EV-ARC Adiabatisches Kalorimeter für sichere Batterietests

über 20 Jahre Erfahrung im Bereich Kalorimetrie an Batterien Typische Applikationen:

Messungen an Batterien und Batteriepacks bis 50cm x 50cm Bestimmung der adiabatischen Temperatur-und

Druckerhöhung bei der Zersetzung sowie Ermittlung von Zersetzungstemperaturen von Batteriekomponenten Sicherheitstests zu Kurzschluss, Be- und Entladungszyklen,

Überladung, Abuse Tests (Nail Penetration usw.) MC CAL - Isothermes Mehrkanal-Kalorimeter zur online- Ermittlung der Wärmefreisetzung für bauchemische und biologische Applikationen Typische bauchemische Applikationen: Untersuchung des Abbindeverhaltens von hydraulischen Bindemitteln (Batch/Admix) Untersuchung der Wechselwirkung von Bindemittel und Zusatzmittel (Verzögerer/Beschleuniger/Fließmittel) Quantitative Bestimmung der Hydratationswärmen (z.B. an NW- Zementen) und Bestimmung des Hydratationsgrades

Das Mikro-Reaktionskalorimeter uRC – für die Untersuchung biologischer und sicherheitstechnischer Fragestellungen

Typische Applikationen:

Stabilitäts- und Kompatibilitätsstudien Bestimmung der Spezifischen Wärmekapazität

Ermittlung von Reaktionskinetiken Mikrobiologisches Wachstum

Proteindenaturierung Nahrungsmittel / Landwirtschaft / Umwelt Dosierung / Titration und Feststoffzugabe

Rühren und Mischen Gasdosierung und Druckmessung

biologischer und sicherheitstechnischer Fragestellungen

DR. KRAUSE G MBHSicherheitstechnisches Prüflabor Potsdam

Sicherheitstechnische Analysen

Finite Elemente Berechnungen

AHORNSTR. 28-32HAUS 5514482 POTSDAM

TEL : 0331 740 01 05

WWW.ISAFEM.DE /WWW.SELBSTENTZUENDUNG.COME-MAIL : [email protected]

FAX : 0331 704 66 29

www.linseis.com

T H E R M A L A N A L Y S I S

DIL Dilatometer

TG Thermogravimetry

LFA Thermal Conductivity

EGA Evolved Gas Analysis

TMA Thermomechanical Analysis

DTA Differential Thermal Analysis

STA Simultaneous Thermal Analysis

DSC Differential Scanning Calorimetry

LSR Seebeck Coefficient

GSA Gravimetric Sorbtion Analysis

TFA Thin Film Analysis

-260°C up to 2800°C

NEW: MicroCal PEAQ-DSCStep up productivity in stability studies

• In-solution, label-free testing • Confident decision making • Faster results

MicroCal PEAQ-ITCDetermine all binding parameters quickly

• Minimal assay development • Label-free, in-solution analysis • Bioactivity explained and assessed

TURNING UP THE HEAT ON STABILITY & BINDING

Jetzt mehr erfahren: www.malvern.com Material relationships

NEW: MicroCal PEAQ-DSCStep up productivity in stability studies

• In-solution, label-free testing • Confident decision making• Faster results

Mettler-Toledo GmbH, Ockerweg 3, 35396 Gießen | T +49 (0)641 507 444 | E [email protected] www.mt.com/TA-FlashDSC

Nutzen Sie die Messergebnisse der Flash DSC 1 in der Entwicklung moderner Materialien

•  Sehr hohe Heiz- und Kühlraten (2.400.000 K/min bis − 400.000 K/min)• Detaillierte Analyse von Strukturbildungsprozessen in Materialien• Direkte Messung von schnellen Kristallisationsprozessen• Bestimmung der Reaktionskinetik von schnellen Reaktionen• Ermittlung von relevanten Daten für Simulationsrechnungen

Thermische Analysemit Chip-Kalorimetrie

NETZSCH-Gerätebau GmbH www.netzsch.com

Make your life easier Let the all new automatic sample changer for up to 204 samples do the work for you

DSC 204 F1 Phoenix®

Now with One Click results

thanks to AutoEvaluation

and Identify software

Author:Hua ChengPerkinElmer, Inc. Shanghai, China

Guido Lohkamp-SchmitzPerkinElmer GmbH, Rodgau, Germany

In-situ Evolved Gas Analysis During the 3D Printing Procedure (extract)Three-dimensional (3D) printing technology has recei-ved tremendous interests due to its capability of generating complex-shaped structures, unparalleled high effi ciency and zero residual feedstock. Normally, thermoplastic materials are utilized as the raw material of 3D printers, while more advanced and sophisticated solutions uses the precursor of thermoset materials (or a prepreg) as source. Due to the reaction nature of the precursor, various unpleasant gases could emit during the printing procedure which may include regulation prohibited chemicals.PerkinElmer provides effective solutions for in-situ studies separate and characterize the evolved gas. Furthermore it enables a reverse-engineer on target products, regardless if it is already fully cured up to an additive included prepreg.

For the qualitativication of potential unpleasant gas evolved a time/ temperature controlled 100µl portion was further analyzed by GC separation of the multiple evolving compounds for a clear single compound MSD identifi cation.

For a complete listing of our global offices, visit www.perkinelmer.com/ContactUs

Copyright ©2017, PerkinElmer, Inc. All rights reserved. PerkinElmer® is a registered trademark of PerkinElmer, Inc. All other trademarks are the property of their respective owners.

PerkinElmer, Inc.940 Winter StreetWaltham, MA 02451 USA P: (800) 762-4000 or (+1) 203-925-4602www.perkinelmer.com

Figure 1: PerkinElmer TL8500 TG-GC/MSD system

The new high sensitive TGA 8000™ is linear program-med from RT to 800°C and the evolved gas is transfer-red via a multiple mass fl ow controlled suction Helium atmosphere from sample up the fi nal MS detection. In order to understand the rough distribution of the evolved mixing gas debris, the online TGA-MS mode is applied fi rstly.

Figure 2: Thermogramm with TG-MSD TIC and SIC overlay

The 3D-printed polymer starts to degrade at 585.2ºC under helium atmosphere. It gives a hint that this po-lymer belongs to the high performance engineering polymer category.The primary pyrolytic products are phenol, biphenyl de-rivative and other aromatic derivatives, this is the cha-racteristic fi ngerprints of aramid group polymers (such as Kevlar or Nomex).The evolved “unpleasant gas” during the 3D printing procedure are mostly azoic compounds as revealed by the TG-GC/MS data, and they are most likely used as the initiator of the chain extension reaction.

Figure 3: TG-GC-MSD evolved gas separation example @315°C azoic compound library identifi cation

N

Flyer print A5.indd 1 27.04.2017 13:28:13

ADIATISCHES KALORIMETER für Untersuchungen zur chemischen Sicherheit

TESTZELLEN für AdiabatischeKalorimeter

PREVENT für die Dimensionierung von Druckentlastungsanlagen

KALIBRIERUNGSFREIEREAKTIONKALORIMETER

HOCHDRUCK-KALORIMETRIE, 100bar

KALORIMERTIE MIT HÖCHSTER EMPFINDLICHKEIT, 1mW/l

AUTOKLAVENSYSTEME, 50mL bis 50l

PROSENSE GMBH ARETINSTRASS 24 81545 MÜNCHEN T.++49-89-21025852 [email protected]

by Setaram

reIMAGINE thermal analysis with the new THEMYS

SETARAM Instrumentation rewrites the sector’s traditional codes and invites researchers to reIMAGINE the concept for thermal analysis with THEMYS. The THEMYS is the NEW benchmark for modular thermogravimetric analysis.

A trademark of KEP Technologies group

www.setaram.com - [email protected]

Operating temperatures up to 1750 °C at atmospheric conditions or under vacuum, or up to 1 200 °C under pressures as high as 150 bar (2175 PSI).

Gas flow management options varying from single inert gas flow up to highly complex blends with up to 4 mass flow controllers, gas switching and blending devices, vacuum pumps and gauges

Three types of balances: HIGH SENSITIVITY, HIGH CAPACITY and HIGH VERSATILITY

TWIST & LOCK thermocouple connections, EASY FIT DTA/DSC rods, AUTO-TARE and many other features

The THEMYS is available in various platforms: Standard Thermogravimetric Analysis (TGA), high pressure TGA, Simultaneous Thermal Analysis (STA) TG/DSC, Differential Thermal Analysis / Differential Scanning Calorimetry (DTA/DSC), and Evolved Gas Analysis (EGA).

The design of the THEMYS is to provide our users with the following: better experimental control, quality results, versatility and ease of use.

FEATURES & BENEFITS :

Die 22. Kalorimetrietage | 7. – 9. Juni 2017 | Braunschweig Die 22. Kalorimetrietage | 7. – 9. Juni 2017 | Braunschweig96 / 162 97/ 162

HOW SUITE IT IS

tainstruments.com

SDT650

TGA5500

DSC2500

DISCOVER the BEST DSC, TGA & SDT

systems EVER designed.

Highest sensitivity and flattest baselines

Most accurate temperature control

Most flexible and efficient atmosphere control

Rugged and reliable automation

Best sample-atmosphere interaction

Most versatile control and analysis software

German A5 Suite ad eng.indd 1 5/25/17 10:06 AM

TA 7000 seriesThermal Analyzer Line-Up

DSC7020Differential Scanning Calorimeter

STA7000 seriesSimultaneous Thermal Analyzer

DMA7100Dynamic Mechanical Analyzer

TA 7000 Software

Thermal Analysis & Surface Solutions GmbH

DSC7000XHighSensitivityDifferential Scanning Calorimeter

Real View DSC RV-1DReal Time Sample Obervation System

UV Irradiation Unit PDC-7Photochemical Reaction DSC System

Hitachi Thermal Analysis & Rheology System

TA 7000 seriesTA 7000 series, with a wide range of products from thermal analysis to

viscoelastic measurements, provide complete solutions for the characterization of the thermal properties of any material.

TMA7000 seriesThermo Mechanical Analyzer

Die 22. Kalorimetrietage | 7. – 9. Juni 2017 | Braunschweig 99/ 162

Liste der Posterbeiträge

Abdelaziz, Amir (Rostock)

Fast scanning calorimetry - Convenient technic for vaporization study of aprotic and protic ionic liquid(D.H. Zaitsau, A. Abdelaziz, S.P. Verevkin, C. Schick)

Aeby, Christian (Basel, Switzerland)

Ermittlung des Detonationsbereichs von Nitrierungsreaktionsmassen im Mini-Autoklaven nach Whitmore

Anhalt, Klaus (Berlin)

Using a modifi ed laser fl ash apparatus to measure spectral emissivity(K. Anhalt, D. Urban)

Bauerecker, Sigurd (Braunschweig)

Critical Radius of Supercooled Water Droplets: On the Transition toward Dendritic Freezing(T. Buttersack, S. Bauerecker)

Brown, Robert K. (Braunschweig)

Preconditioning electroactive biofi lms to improve substrate turnover and cathode research to improve energetic effi ciency of microbial electrochemical technologies(S. Riedl, R. K. Brown, U. Schröder)

Feja, Steffen (Dresden)

Moderne Fluide der Kältetechnik(S. Feja, C. Hanzelmann)

Feja, Steffen (Dresden)

Methoden der thermischen Analyse an modernen Fluiden der Kältetechnik(S. Feja, C. Hanzelmann)

Heinemann, Robert (Senftenberg)

Thermodynamic analysis of crystal growth of zinc oxide by CVT under addition of group XV elements(R. Heinemann, P. Schmidt)

WIRMESSENGASE

Prozesskalorimeter zur kontinuierlichen Bestimmung des Wobbe-Index von Brenngasen.

PTB Zulassung für Erdgas

Anwendungsbereiche: • Erdgasmessung • Biogaseinspeisung • Flüssiggas-Luft-Mischanlagen

UNION Instruments GmbHZeppelinstraße 42, 76185 KarlsruheTelefon: +49 (0) 721-68 03 81 20Telefax: +49 (0) 721-68 03 81 33E-Mail: [email protected]

www.union-instruments.com

7.63108.64

CWD_Thermodynamische Modellierung_148x210_Layout 1 29.05.17 15:18 Seite 1

Die 22. Kalorimetrietage | 7. – 9. Juni 2017 | Braunschweig Die 22. Kalorimetrietage | 7. – 9. Juni 2017 | Braunschweig100 / 162 101/ 162

Heinsch, Stefan (Braunschweig)

Energy Metering of Raw Biogas(S. Heinsch, S. Sarge)

Helmig, Simone (Gießen)

Characterization of a precipitate from the reaction between aluminium sulfate and cell culture medium(S. Helmig, N. Haibel, J. Schneider, D. Walter)

Krause, Gerhard (Potsdam)

Self-Ignition caused by Solar Radiation

Lemke, Thomas (Haar)

The Performance and Safety of 20 Ah Secondary Lithium cells; testing with the Accelerating Rate Calorimeter (ARCTM)(T. Lemke, D. Montgomery, I. Hutchins)

Lemke, Thomas (Haar)

Micro Reaction Calorimetry: Newer Applications for the Chemical & Pharmaceutical Industry(S. Stones, M. Ottaway)

Lerchner, Johannes (Freiberg)

Unconventional Calorimetry Using Segmented-Flow Technique. Solid Samples in Flow-Through & Dispersion Free Reaction Calorimetry(J. Lerchner, F. Mertens)

Maskow, Thomas (Leipzig)

Thermodynamic Feasibility Analysis – a Suitable Tool for Systems Biology?(H. Kohrt, C. Held, S. Verevkin, T. Maskow)

Mishina, Karina (St. Petersburg, Russia)

The reference calorimeter system for metrological assurance of combustion energy measurements(E.N. Korchagina, I.V. Kazartsev, D.Yu. Yanovskiy)

Liste der Posterbeiträge

Nopens, Martin (Hamburg)

Water-bonding and sorption enthalpy in nanoporous biopolymer composites(M. Nopens, U. Sazama, M. Fröba, A. Krause)

Pinnau, Sebastian (Dresden)

Untersuchung des Schmelz- und Kristallisationsverhaltens von Phase Change Materials für Latentwärmespeicher(S. Pinnau, C. Breitkopf)

Prozeller, Domenik (Mainz)

Beyond the Protein Corona – Lipids Matter for Biological Response of Nanocarriers(J. Müller, D. Prozeller, A. Ghazaryan, M. Kokkinopoulou, V. Mailänder S. Winzen, . Landfester)

Reschke, Monika (Senftenberg)

Thermochemical modeling and synthesis of elements and compounds of groups 15 and 16 from the element oxides in [C4mim]BF4(M. Reschke, J. Thiesler, P. Schmidt)

Sauter, Waldemar (Braunschweig)

Sustainable electrochemical synthesis of regenerative transportation fuels(W. Sauter, U. Schröder)

Schick, Christoph (Rostock)

Crystallization of polyethylene at large undercooling(E. Zhuravlev, V. Madhavi, A. Lustiger, R. Androsch, C. Schick)

Taubert, Franziska (Freiberg)

Thermodynamic description of the Li-Si-System based on calorimetric and hydrogenation measurements(F. Taubert, R. Hüttl, J. Seidel, F. Mertens)

Die 22. Kalorimetrietage | 7. – 9. Juni 2017 | Braunschweig Die 22. Kalorimetrietage | 7. – 9. Juni 2017 | Braunschweig102 / 162 103/ 162

Tagungsband

Die 22.Kalorimetrietage

Kurzfassungen der Posterbeiträge

Thomas, Christian (Freiberg)

Isobaric heat capacity data of orthorhombic FePO4 in the temperature range between 223 K to 773 K(C. Thomas, T. Zienert, R. Hüttl, J. Seidel, F. Mertens)

Wels, Martin (Senftenberg)

Evaluation of eutectic mixtures for use as PCM. Thermodynamic modeling and experimental methods(M. Wels, A. Efi mova, P. Schmidt)

Wolf, Adrian (Senftenberg)

Micro reaction calorimetry for investigation of phase formation processes in ionic liquid fl ux systems(A. Wolf, A. Fandrey, P. Schmidt)

Zimmerer, Stefan (Caluire, France)

Recent improvements in the high pressure DSC method applied to the study of gas hydrates(R. André, P. Le Parlouër, L. Marlin, F. Plantier, J.-P. Torre)

Zimmerer, Stefan (Caluire, France)

Combined calorimetric and manometric measurements for the study of sorption properties of porous materials(R. André, J. Francois, P. Le Parlouër)

Die 22. Kalorimetrietage | 7. – 9. Juni 2017 | Braunschweig Die 22. Kalorimetrietage | 7. – 9. Juni 2017 | Braunschweig104 / 162 105/ 162

Fast scanning calorimetry - Convenient technique for

vaporization study of aprotic and protic ionic liquid

D.H. Zaitsau2,3, A. Abdelaziz1,2, S.P. Verevkin2,3, C. Schick1,2

1 University of Rostock, Institute of Physics, Albert-Einstein-Str. 23-24, 18051 Rostock,

Germany2 University of Rostock, Faculty of Interdisciplinary Research,

Competence Centre CALOR, Albert-Einstein-Str. 25, 18051 Rostock, Germany3 University of Rostock, Institute of Chemistry, Dr.-Lorenz-Weg 2, 18059 Rostock,

Germany

The experimental determination of the

absolute vapor pressure for such extreme-

ly low volatile compounds as ionic liquids

(ILs) is still a challenging task. The con-

ventional methods used to study such

materials have a limited temperature

range since they are limited towards low

temperatures and low vapor pressures by

sensitivity and towards high temperatures

by stability of the compounds. So the de-

termination becomes very time-consuming

and also less reliable due to the possible

decomposition of ILs at elevated tempera-

tures.

The recently developed ultra-fast scanning

calorimetry method was applied to deter-

mine the absolute vapor pressures of ionic

liquids. This technic allows heat capacity

measurements of nanogram samples at

heating rates up to 106 K s-1 giving the

possibility to determine the vaporization

rate even at high temperature range and

to decrease drastically the experimental

time. The DFSC-technique has

shown reliable absolute vapor pressure

data for ionic liquids over a temperature

range from 400 to 780 K.

The study was performed under different

inert atmospheres (N2, He, SF6), which

one needs to distinguish between evapo-

ration and decomposition of the ILs. The

mass loss rates per unit of area were

compared for the different gases since the

decomposition is independent of the am-

bient gas unlike the evaporation process,

and it has been proofed the absence of

decomposition during the evaporation.

The thermodynamic parameters of vapori-

zation of these ILs were also calculated

from the corresponding vapor pressures

data, the agreement of the vapor pressure

and the evaporation enthalpies with the

literature data is remarkably good and

proofs the reliability of the device to de-

termine vapor pressures and evaporation

enthalpies.

Amir Abdelaziz

Die 22. Kalorimetrietage | 7. – 9. Juni 2017 | Braunschweig Die 22. Kalorimetrietage | 7. – 9. Juni 2017 | Braunschweig106 / 162 107/ 162

[1] “Investigation of the use of a closed pressure vessel test for estimating condensed phase explosive properties of organic compounds” M.W. Whitmore, G.P. Baker; Journal of Loss Prevention in the Process Industries 12 (1999)

[2] “A closed pressure vessel test (CPVT) screen for explosive properties of energetic organic compounds” A Knorr, H. Koseki, X.-R. Li, M. Tamura, K. D. Wehrstedt, M. W. Whitmore; Journal of Loss Prevention in the Process Industries 20 (2007)

Ermittlung des Detonationsbereichs von Nitrierungsreaktions-massen im Mini-Autoklaven nach Whitmore

Christian Aeby

TÜV SÜD Schweiz AG, Mattenstrasse 24, CH-4002 Basel, Schweiz

Das Explosionsverhalten von Reaktions-gemischen z.B. aus Nitrierungen wird häu-fig mittels Stahlrohr Tests o.ä. untersucht (z.B. BAM 50/60, UN Gap Test, Koenen Test). Diese Tests sind umständlich und können oft nicht in unmittelbarer Nähe des Syntheselabors durchgeführt werden. Bei-spielsweise benötigt der UN Gap Test mehrere hundert Gramm Reaktionsmasse und der Versuch muss auf einem speziel-len Gelände, das für Sprengungen geeig-net ist, durchgeführt werden. Als Alternative bieten sich thermische Prü-fungen im Mini-Autoklaven nach Whitmore an [1]. Bei dieser Prüfung wird nur ein Gramm der Reaktionsmasse kontinuierlich auf ca. 400°C erwärmt. Die Zersetzungs-reaktionen werden hierbei mittels

hochauflösender Druckmessung (im kHz-Bereich) aufgezeichnet. Anhand der maxi-malen Druckanstiegsgeschwindigkeit und der Zersetzungstemperatur kann entschie-den werden ob ein Reaktionsgemisch de-tonationsfähig, deflagrationsfähig oder nicht explosiv ist. Die Entscheidungskrite-rien werden durch Vergleichsmessungen mit Stoffen, welche im Orange book - Ma-nual of Tests and Criteria beschrieben sind, gemäss [2] validiert. Im präsentierten Fall wurden die Detonati-onsgrenzen einer Nitrierungsreaktions-masse in Abhängigkeit des Mischverhält-nisses von organischem Stoff zu Nitrier-säure ermittelt. Diese Werte werden mit Literaturwerten verglichen und diskutiert.

-10000

-5000

0

5000

10000

15000

20000

25000

30000

35000

0

50

100

150

200

250

300

350

400

450

3824 3824.5 3825 3825.5 3826 3826.5 3827 3827.5 3828

Time [s]

Pres

sure

incr

ease

[bar

/s]

Pres

sure

[bar

]

Detonation of a nitration FRM

Pressure [bar] 1kHz Pressure [bar] 2Hz (dp/dt) [bar/s]

Christian Aeby (Forts.)Christian Aeby

Die 22. Kalorimetrietage | 7. – 9. Juni 2017 | Braunschweig Die 22. Kalorimetrietage | 7. – 9. Juni 2017 | Braunschweig108 / 162 109/ 162

Critical Radius of Supercooled Water Droplets:

On the Transition toward Dendritic Freezing

Tillmann Buttersack, Sigurd Bauerecker*

Institut für Physikalische und Theoretische Chemie, Technische Universität

Braunschweig, Hans-Sommer-Strasse 10, D-38106 Braunschweig, Germany

E-Mail: [email protected]

The freezing of freely suspended

supercooled water droplets with a

diameter of bigger than a few micrometers

splits into two rather different freezing

stages, because the freezing enthalpy

cannot completely be stored in the droplet

in the first freezing run and has to be

released to the environment during an

about 1000 times longer time span. In the

present work the distribution of the ice

portion in the droplet directly after the

dendritic freezing phase as well as the

evolution of the ice and temperature

distribution has been investigated in

dependence of the most relevant

parameters as droplet diameter, dendritic

freezing velocity (which correlates with the

supercooling) and supercooling

temperature. On the experimental side

acoustically levitated droplets in climate

chambers have been investigated in

combination with high-speed cameras to

study the correlation between

supercooling temperature and freezing

speed. The obtained results have been

used for finite element method (FEM)

simulations of the dendritic freezing phase

under consideration of the beginning

second, much slower heat-transfer

dominated freezing phase. A theoretical

model covering 30 layers and 5 shells of

the droplet has been developed which

allows us to describe the evolution of both

freezing phases at the same time. The

simulated results are in good agreement

with experimental as well as with

calculated results exploiting the heat

balance equation. The most striking result

of this work is the critical radius of the

droplet which describes the transition of

one-stage freezing of the supercooled

water droplet toward the

thermodynamically forced dendritical two-

stage freezing in which the droplet cannot

sufficiently get rid of the formation heat

anymore. Depending on the parameters

named above this critical radius was found

to be in the range of 0.1 to 10 micrometers

by FEM simulations.

Further, in our presentation we adopt the

hypercooling temperature as a concept

which is common in the materials

sciences to water ice research. The

hypercooling temperature is defined by

the highest temperature at which the

freezing enthalpy can completely be

stored within the freezing system. This

means that the liquid droplet can

completely freeze in one run without heat

release to the environment. We

emphasize that the heat capacity of the

supercooled water strongly depends on

the temperature, and also the freezing

enthalpy is temperature dependent. This

leads to a considerably higher hyper-

cooling temperature compared to the

value found in the literature.

Using a modified laser flash apparatus to measure spectral emissivity

K. Anhalt, D. Urban

Physikalisch-Technische Bundesanstalt (PTB), Abbestraße 2-12, D-10587 Berlin, Germany

The precise knowledge of the spectral emissivity is essential for industrial radia-tion thermometry and the design of high temperature applications and the model-ling of radiative heat transfer. It becomes increasingly important at elevated temper-atures above 1000 K where the heat transfer is dominated by radiation. In recent years, the PTB developed a new measurement technique for the spectral emissivity, the so called dynamic emissiv-ity measurement (AdεM) [1]. The meas-urement is based on a laser flash set-up – a well-established method for determining the thermal diffusivity [2]. The setup is modified to measure in situ the absolute

laser energy, used to pulse heat the sam-ple, and the absolute temperature rise of the rear side of the sample. Recently, the conventional tube furnace was replaced with an inductive heating system, which allows for the sample to be heated in a cold environment. Any interre-flections between hot furnace walls and sample are therefore minimized, which al-lows to reduce the measurement uncer-tainty especially for samples with a reflect-ing surface (i.e. smaller emissivity). In this set-up, a characterised array spec-trometer allows for a spectral emissivity measurement in the spectral range be-tween 550 nm to 1100 nm.

[1] Krenek, S., Gilbers, D., Anhalt, K., Taubert, D. R., Hollandt, J. (2015). A Dynamic Method to Measure Emissivity at High Temperatures. International Journal of Thermo-physics,36(8), 1713-1725.

[2] Parker, W. J., Jenkins, R. J., Butler, C. P., Abbott, G. L. (1961). Flash method of deter-mining thermal diffusivity, heat capacity, and thermal conductivity. Journal of applied physics, 32(9), 1679-1684.

Sigurd BauereckerKlaus Anhalt

Die 22. Kalorimetrietage | 7. – 9. Juni 2017 | Braunschweig Die 22. Kalorimetrietage | 7. – 9. Juni 2017 | Braunschweig110 / 162 111/ 162

Moderne Fluide der Kältetechnik

Steffen Feja, Christian Hanzelmann

ILK Dresden gGmbH, Bertolt-Brecht-Allee 20, 01309 Dresden

Tel.: 0351-4081767, E-Mail: [email protected]

Für die Kälteerzeugung werden heutzu-

tage zum Großteil Kompressionskältema-

schinen eingesetzt. Der Kältetechniker be-

dient sich dabei je nach Anwendungsfall

bei den natürlichen Kältemitteln oder syn-

thetisch hergestellten Kältemitteln. Seit

Einführung der Sicherheitskältemittel, je-

doch spätestens seit Inkrafttreten des

Montreal Protokolls, steht ihm dabei ein

umfangreiches Potpourri von derzeit mehr

als 300 als Refrigerant (Abkürzung: R) ge-

listeten Chemikalien und deren Mischun-

gen zur Verfügung (Tabelle 1).

Alternativ zur beschriebenen Kompressi-

onskälte kann Kälte auch aus Wärme

durch den Absorptionskälteprozess er-

zeugt werden. Auch hierfür sind eine

beliebige Kombination aus Kältemitteln

und Absorptionsmitteln denkbar. Neuer-

dings halten Nanofluide und Ionische

Flüssigkeiten in der Kältetechnik Einzug.

Für die obengenannte Kompressionskälte

kommen zudem noch Kältemaschinenöle

zur Schmierung der bewegten Teile hinzu.

Auch hier steht dem Anwender eine Reihe

von speziellen Schmierstoffen zur Verfü-

gung.

Im Rahmen der Präsentation wird auf die

Neuentwicklungen im Sektor der Kälteer-

zeugung und Wärmeübertragung einge-

gangen, wobei auf umweltpolitische und

energetische Fragestellungen eingegan-

gen wird.

Tabelle 1 Entwicklung von Kältemitteln

(Zeitstrahl und verbesserte Umwelteigenschaften)

Vor 1900 1930‘s 1950‘s 1990‘s 2011 Trend

Natürliche KM;andere

CFCs HCFCs HFCs HFOsNatürlicheKM

Eis, CO2, SO2,NH3, Ether

R11, R12,R13

R22R134a; R404A(Gemisch)

R1234yfKWs, CO2,

NH3, H2O

Chlor-methan

CCl3F,CCl2F2,CClF3

CHClF2 CF3CH2F CF3CF=CH2

Chlorgehalt Hoch Gering - „-“ -

ODP Hoch Gering - „-“ -

GWP Hoch Hoch Hoch (>1000) Gering (< 50) ~ 1

Montreal Protokoll Phase Out Kyoto Protokoll + F-Gase VO Phase Out

Verbesserte Umwelteigenschaften

Preconditioning electroactive biofilms to improve substrate

turnover and cathode research to improve energetic

efficiency of microbial electrochemical technologies

Sebastian Riedl, Robert Keith Brown, Uwe Schröder*

Institute for Environmental and Sustainable Chemistry,

Technical University of Braunschweig, Hagenring 30, 38106 Braunschweig

* Author of correspondence; E-Mail: [email protected], Tel.: +49 531 391 8425

Microbial fuel cells and microbial electroly-

sis cells (MEC) are part of a developing

and widely diversified microbial electro-

chemical technology platform [1]. All of these

technologies utilize electrochemically active

microorganisms (EAM) to catalyze one or

both of the reduction as well as oxidation

half-reactions at the anode and/or cath-

ode. MECs use EAMs at the anode to

convert e.g. organic carbon in a

wastewater stream into a current flow to

the cathode, at which an inorganic mole-

cule e.g. hydrogen gas, is formed.

This study mainly focuses on two aims:

Firstly, on approaches for sophisticated

biofilm growth or preconditioning proce-

dures, which lead to enhanced and sus-

tained electrocatalytic biofilm turnover

rate [2] at an improved efficiency, in a

complex artificial wastewater. Secondly,

on the dimensioning of a MEC by balanc-

ing the required amount – surface area of

the – cathode, based on its electrocatalytic

properties, against the current flow from

the EAMs at the anode. This study also

addresses the transfer of these laboratory

results to real wastewater applications

both in terms of the possible increase in

effective treatment capacity [3] as well as

the associated energetic considerations.

[1] Schröder, U., Harnisch, F., Angenent, L.T. Microbial electrochemistry and technology:

terminology and classification. Energy Environ. Sci. 2015, 8, 513–519. DOI:

10.1039/C4EE03359K.

[2] Baudler, A., Riedl, S., Schröder, U. Long-Term Performance of Primary and

Secondary Electroactive Biofilms Using Layered Corrugated Carbon Electrodes.

Front. Energy Res. 2014, 2. (30). DOI: 10.3389/fenrg.2014.00030.

[3] Brown, R.K., Harnisch, F., Wirth, S., Wahlandt, H., Dockhorn, T., Dichtl, N., Schröder,

U. Evaluating the effects of scaling up on the performance of bioelectrochemical systems

using a technical scale microbial electrolysis cell. Bioresour. Technol. 2014, 163,

206 – 213. DOI: 10.1016/j.biortech.2014.04.044.

Steffen FejaRobert K. Brown

Die 22. Kalorimetrietage | 7. – 9. Juni 2017 | Braunschweig Die 22. Kalorimetrietage | 7. – 9. Juni 2017 | Braunschweig112 / 162 113/ 162

Thermodynamic analysis of crystal growth of zinc oxide

by CVT under addition of group XV elements

R. Heinemann*, P. Schmidt

BTU Cottbus – Senftenberg, Universitätsplatz 1, 01968 Senftenberg, Germany

* E-Mail: [email protected]

Beside its possible use as TCO or sub-

strate for crystal growth of GaN, applica-

tion of ZnO in optoelectronics is highly

discussed. Therefore, one of the key as-

pects is the growth of p-doped single crys-

tal phases. Group XV elements such as

phosphorus, arsenic and antimony are

currently discussed as promising dopants.

Chemical vapor transport (CVT [1]) using

CO(g) as transport agent proved its worth

as a well suited method for growth of ZnO

single crystals. Thermodynamic modelling

with TRAGMIN software package [2] (see

figure 1) revealed that addition of P, As

and Sb do not impair the transport equilib-

rium between ZnO and CO(g) in the tem-

perature range in which CVT is performed.

Furthermore, it is shown that the gaseous

species Sb4, Sb2 and As4, respectively,

are involved as transport agent as well.

First attempts of chemical vapor transport

with zinc oxalate, graphite and the regard-

ed group XV element as transport additive

provided ZnO crystals up to 700 µm in

length. The choice of the used group XV

element affects the morphology of the

grown crystals significantly. Transport

attempts with P and As more likely pro-

duced crooked crystals with inclusions.

Whereas addition of Sb to the initial mix-

ture results rather in growth of well-formed

hexagonal columns. Further optimization

of transport conditions, especially the use

of temperature profiles containing two

deposition zones, results into an im-

provement of the crystals’ morphology and

size (more than 1 mm in length) as well as

the yield of single crystals.

Fig. 1: Composition of the gas phase, calculated by TRAGMIN and ZnO crystals grown

by CVT for initial mixtures of zinc oxide, zinc oxalate, graphite, and addition of: A)

phosphorus, B) arsenic, C) antimony

Methoden der thermischen Analyse an modernen

Fluiden der Kältetechnik

Steffen Feja, Christian Hanzelmann

ILK Dresden gGmbH, Bertolt-Brecht-Allee 20, 01309 Dresden

Tel.: 0351-4081767, E-Mail: [email protected]

In der Kältetechnik und Energietechnik

werden derzeitig in jedem Sektor Spezial-

fluide zur Kälte- und Energieerzeugung,

Wärmeübertragung oder als Hilfswerk-

stoffe, wie zum Beispiel als Schmierstoffe

entwickelt. Diese spezialisierten Hochleis-

tungsfluide sind in der jeweiligen Anwen-

dung in direkten Kontakt mit den Dicht-

und Prozesswerkstoffen. Als Beispiel für

die Werkstoffe seien hier genannt: Elasto-

mere für Dichtungen, Metalle als Kon-

struktionswerkstoffe, Glas für Schauglä-

ser, aber auch Klebwerkstoffe, Isolations-

werkstoffe und Schlauchmaterialien kom-

men in der Kältetechnik zum Einsatz.

Zum einen bietet die thermische Analyse

eine Vielzahl von Möglichkeiten zur Beur-

teilung der Flüssigkeiten selbst und der

Wechselwirkungen der Fluide mit den ge-

nannten Werkstoffen. Die Bestimmung der

Wärmeleitfähigkeit und der Wärmekapazi-

tät der Fluide ist beispielsweise eine

Grundvoraussetzung für die

Auslegungsberechnung kältetechnischer

Anlagen. Schmelztemperaturen und Pha-

sendiagramme von Flüssig-Flüssig- oder

Flüssig-Feststoff-Gemischen bilden die

Grundlage zum Verständnis des physikali-

schen Verhaltens von Kühl- und Absorpti-

onssolen. Die Veränderung der Werkstof-

feigenschaften von Kunststoffen unter

dem Einfluss der Fluide kann durch ther-

mische Analyse, zum Beispiel durch die

Glasübergangstemperatur oder Schmelz-

und Zersetzungstemperaturen gut be-

schrieben werden.

Der Beitrag beschäftigt sich mit der Mes-

sung der thermischen Eigenschaften

durch Erweiterung handelsüblicher Appa-

raturen oder neuentwickelten Apparaturen

und Prozeduren (Abb. 1) zu speziell auf

die Kältetechnik zugeschnittenen Hoch-

druckmessmöglichkeiten. Ergebnisse zur

Messung bis zu 160 bar und bei Tempera-

turen von -90 °C bis 140 °C werden ge-

zeigt.

Abb. 1 Apparatur und Prozedur zur Befüllung von Hochdrucktiegeln für die DSC Q200

Robert HeinemannSteffen Feja

Die 22. Kalorimetrietage | 7. – 9. Juni 2017 | Braunschweig Die 22. Kalorimetrietage | 7. – 9. Juni 2017 | Braunschweig114 / 162 115/ 162

Energy Metering of Raw Biogas

Stefan Heinsch, Stefan M. Sarge

Physikalisch-Technische Bundesanstalt (PTB), Bundesallee 100, 38116 Braunschweig,

Germany

Biogas is regarded as one possible re-

newable energy carrier for solar energy. It

is produced from organic waste, manure

or energy crops. The resulting biogas is

used either on-side to produce electricity

and heat or upgraded and fed into the

natural gas grid. Although the efficiency of

the conversion of solar radiation into or-

ganic material by plants is rather low

(0.5 % … 2 %) and the conversion into

biogas (mostly methane, carbon dioxide

and water vapour) costs another 50 % in

efficiency, the big advantage compared to

most other so-called renewable energies

is its possibility for disconnecting produc-

tion from use by storage of the gas either

in dedicated biogas storage facilities or –

after upgrading to pipeline quality – in nat-

ural gas storage facilities.

Biogas production offers a number of ad-

vantages which makes it promotion attrac-

tive:

reduction of the use of fossil fuels

reduction of greenhouse gas emissions

(CO2, CH4, N2O)

closing the nutrient cycle (digestate as

bio-fertiliser)

reduction of nitrification of soil and

water

reduction of health risks connected to

inhalating high amounts of ammonia

avoidance of unpleasant odour

creation of added value in rural areas

offering farmers new income opportuni-

ties

Traditionally, the energy content of natural

gas is determined by measuring the vol-

ume flow of the gas under metering condi-

tions, converting this volume to standard

conditions, subtracting the amount of wa-

ter and multiplying the result with the su-

perior calorific value of the gas. However,

our current research in energy metering

aims at qualifying an instrument for relia-

ble, cost-effective, robust and accurate

measurement of the energy content of raw

biogas.

The biggest challenge here is the water

content of the raw biogas (up to 100 %

relative humidity at 40 °C, about 6 % ab-

solute humidity) which makes traditional

measurement techniques for calorific val-

ue like gas chromatography or infrared

spectroscopy unreliable. Calorimetry, on

the other hand, is in principle not influ-

enced by any component of the biogas as

long as it is in the gaseous phase, there-

fore, this technique is employed here.

Many modern calorimeter on the market

employ instead of an open flame with dif-

ferential temperature measurement a

catalytic combustion chamber with deter-

mination of the residual oxygen concentra-

tion in combination with metering of the

fuel gas by pressure controlled nozzles.

Both technologies add additional complex-

ity to the calorimeter, because now an

assumption is made about the stochiome-

try of the combustion process and the

metered volume depends on the density

of the fuel gas.

In our research it is shown that with the

calorimeter employed here, the stochiom-

etry of the combustion can be taken into

[1] M. Binnewies, R. Glaum, M. Schmidt, P. Schmidt, Chemical Vapor Transport Reac-

tions, De Gruyter, Berlin (2012), ISBN 978-3-11-025465-5.

[2] G. Krabbes, W. Bieger, K.-H. Sommer, T. Söhnel, U. Steiner GMIN Version 5.0b,

package TRAGMIN for calculations of thermodynamic equilibrium, Dresden (2008)

Stefan HeinschRobert Heinemann (Forts.)

Die 22. Kalorimetrietage | 7. – 9. Juni 2017 | Braunschweig Die 22. Kalorimetrietage | 7. – 9. Juni 2017 | Braunschweig116 / 162 117/ 162

Characterization of a precipitate from the reaction

between aluminium sulfate and cell culture medium

Simone Helmig, Natalia Haibel, Joachim Schneider, Dirk Walter

Institut für Arbeitsmedizin, Justus-Liebig-Universität, Aulweg 129, D-35392 Gießen

E-Mail: [email protected]

Background: In vitro analyses make it

possible to investigate complex biochemi-

cal processes and toxicological effects on

cellular level. Cell culture experiments,

besides epidemiological and animal stud-

ies, are an important source of information

in particular for risk assessments of haz-

ardous substances. Nevertheless an ac-

curate interpretation of the results can be

hampered by chemical interactions be-

tween non bio-persistent metal-containing

dusts and the ingredients of the cell cul-

ture medium. Therefore it is necessary to

gain knowledge about these reactions and

to define their resulting products. Espe-

cially soluble metal ions can change their

substance specific properties completely

by such undesirable reactions. As an

example we describe and characterise the

resulting product of a reaction with soluble

aluminium containing dusts and the cell

culture medium RPMI.

Method: Aqueous stock solution (5 mg/ml)

of aluminium sulphate (Al2SO4∙nH2O) was

dissolved in 10 ml RPMI cell culture medi-

um (final concentrations from 1 µg/ml to

100 µg/ml). Then the solutions were fil-

trated. The initial as well as the final sub-

stance products were analysed by elec-

tron microscopy (REM, EDX) and thermal

analysis (TG, DSC).

Results: Soluble Al3+-Ions of non bio-

persistent aluminium-containing dusts and

RPMI cell culture medium form aluminium

phosphate concentration dependently.

The solubility of aluminium phosphate

depends on the number of water mole-

cules integrated into the structure. TG and

DSC analysis show the content of crystal

water and provide the transformation en-

thalpy for the dehydration reaction There-

fore these results provide knowledge on

the solubility of the formed aluminium

phosphate and contribute to correct inter-

pretation of further “in vitro” results.

account by computation and the metering

issue by using adequate calibration gases.

This results in an instrument for the de-

termination of the energy content of raw

biogas fulfilling the requirements of legal

metrology worldwide as laid down in OIML

Recommendation R140 “Measuring Sys-

tems for Gaseous Fuels”.

Simone HelmigStefan Heinsch (Forts.)

Die 22. Kalorimetrietage | 7. – 9. Juni 2017 | Braunschweig Die 22. Kalorimetrietage | 7. – 9. Juni 2017 | Braunschweig118 / 162 119/ 162

Self-Ignition caused by Solar Radiation

Dr. G. Krause

Dr. Krause GmbH, Ahornstr. 28-32 Haus 55, D-14482 Potsdam

A palette loaded with hard coal dust is stored outside and exposed to solar radiation

Auto-Ignition caused by Solar Radiation

Neglecting Solar Radiation

Dr. Krause GmbHE-Mail: [email protected]: www.selbstentzuendung.com

The Performance and Safety of 20Ah Secondary Lithium cells;

testing with the Accelerating Rate Calorimeter (ARCTM)

Thomas Lemke1, Danny Montgomery2, Ian Hutchins2

1 C3-Analysentechnik2 Thermal Hazard Technology

1. Introduction

The Accelerating Rate Calorimeter (ARC)

gives adiabatic data on electrochemical

cells. These tests fall under two main cate-

gories: Performance (non-destructive) test-

ing and safety testing.

The advantage of the ARC is in its adapta-

bility. An EV or EV+ ARC system with ap-

propriate options can evaluate cells for both

performance and safety.

This poster covers a range of tests carried

out on two cells from different manufactur-

ers using differing chemistries. Although

both cells have the same amp-hour capaci-

ty, total stored energy (watt-hours) between

the cells varies due to the difference in volt-

age resulting from the particular chemis-

tries.

The two cells investigated here are both

20 Ah. One cell is a 20 Ah lithium NMC type

manufactured by EIG while the other is a

20 Ah lithium iron phosphate type produced

by A123. The general industry consensus

regarding these two cells is that iron phos-

phate is a “safer” chemistry than NMC,

however the trade-off is a reduction in cell

cycling performance.

2. Heat capacity

Specific heat capacity is applicable to a ho-

mogenous material, however the heat ca-

pacity of composites can also be measured.

In this case the result is a combination of

the specific heat of the materials making up

the composite sample. The sample in ques-

tion is an electrochemical cell. Heat capacity

measurements on soft-case pouch cells,

used in automotive applications, are simple

to carry out in the ARC. Two cells are

placed either side of a thin kapton-insulated

heating element. The shape of the heater is

rectangular and should approximately

match the cell dimensions. The test protocol

is straight forward – the ARC electronics will

control the power supply, giving an appro-

priate power level in order to heat the cells

at the specified temperature rate.

Thomas LemkeGerhard Krause

Die 22. Kalorimetrietage | 7. – 9. Juni 2017 | Braunschweig Die 22. Kalorimetrietage | 7. – 9. Juni 2017 | Braunschweig120 / 162 121/ 162

3. Performance (cycling) tests

With knowledge of the cell average heat

capacity, cycling tests carried out in the

ARC become more useful because the heat

generation of the cell during charging or

discharging can be quantified. For real

world applications, lower heat generation is

generally preferred. This means a more

efficient cell and a reduction in the cooling

requirements for the battery system. Cycling

tests in the ARC are carried out on a single

cell. The cell terminals are secured with

large aluminium clamps to ensure effective

current transfer while the cell is held secure-

ly within a metal frame inside the calorime-

ter chamber. Cables enter the chamber via

a special collar or through current connect-

ors built into the calorimeter. In this case, a

simple C/5 (4 A) charge (CCCV), 1C (20 A)

and C/3 ( 6.7A) discharge (CC) for both

cells was compared. Larger currents can be

applied using appropriate cables. Integrated

cyclers may be provided with the

The calorimeter chamber matches the cell

temperature, so all heat from the element

heats the cells, and no heat is lost from the

cells to the environment. The temperature

rise is therefore approximately linear:

Heat capacity data from the ARC is shown

above. Simple visual inspection of the tem-

perature graph is not useful for analyzing

the results because the mass of the cells

and the input power to the heating element

varies. Taking these two parameters into

consideration gives results of heat capacity

against temperature. The graph then gives

a discrete Cp value for data averaged for

every 2 °C temperature increase. At 35 °C

the Cp values of the cells are:

LiFePO4: 1.03 J/gK; Li NMC: 1.04 J/gK

Graphical Cp values versus temperature are

shown below:

Thomas Lemke (Forts.)Thomas Lemke (Forts.)

Die 22. Kalorimetrietage | 7. – 9. Juni 2017 | Braunschweig Die 22. Kalorimetrietage | 7. – 9. Juni 2017 | Braunschweig122 / 162 123/ 162

Each cell is heated then held at the starting

temperature for around 45 minutes to check

for self heating. If self-heating exceeds the

sensitivity threshold, the ARC tracks the

reaction. If it does not, the temperature is

increased again and the process is repeat-

ed. The starting temperature was 50 °C, the

temperature step was 50 °C and the ex-

otherm sensitivity was 0.02 °C/min. The cell

was held in a steel frame suspended from

the calorimeter lid with small diameter wires

connected to the cell terminals to monitor

the voltage during the test. The test finishes

when the decomposition reaction is com-

plete. Below – Iron phosphate cell on the

left, NMC in the middle. Comparative data is

shown on the right:

There was a considerable difference be-

tween the response of the two cells in these

tests. Above right is the ARC temperature

data of each test plotted together. The

LiFePO4 cell is in blue and the Li NMC cell

is in red.

The height of the peak is proportional to the

energy released in decomposition. There-

fore the NMC cell decomposition is more

energetic. Although somewhat difficult to

see on the above graph, the NMC cell ex-

ceeded the 0.02 °C/min sensitivity threshold

at 90 °C, however slower self-heating

(0.002 °C/min) was seen from temperatures

as low as 65 °C. In contrast the Iron

Phosphate cell exhibited no self heating

until the very rapid decomposition reaction

at 135 °C. Self-heating rate versus tempera-

ture for the NMC cell is plotted to the right.

5. Further Work – 18650 comparison

Comparison between cell chemistries is a

particular area of study where the ARC can

work as a useful evaluation tool, the instru-

ment’s sensitivity and accuracy allows the

detection of subtle difference between cells.

For example, the effect of repeated cycles

on a cell’s thermal stability may be analysed

using the heat-wait- seek protocol to evalu-

ate how stability changes with the age of the

cell. Examining the effect of cell scale-up is

also possible. Will an 18650 cell have the

same thermal profile as a much larger au-

tomotive-size cell? Below is the heat capaci-

calorimeter system. Any stand-alone cycler

can be used in conjunction with ARC but

data from the two instruments must be

manually synchronized in time. Below is the

charging and discharging data from both

cells plotted together for comparison. In all

cases the lithium iron phosphate cell from

A123 produced more heat (greater tempera-

ture rise) during the electrical process. The

difference in results is examined in greater

detail in the tables below.

4. Cell Safety Testing

The next stage is to use the ARC to carry

out safety tests on both cells. These tests

can simulate conditions that may occur in

real world use if there is a failure in the con-

trol systems of the battery pack, or if there is

major physical damage to the pack. Heat

generated from one cell cannot pass to ad-

jacent cells as there is a uniform tempera-

ture throughout the pack. Data obtained is

in adiabatic conditions. The most fundamen-

tal ARC safety test is a heat-wait-seek test

which establishes the onset of self- heating

in the cell by increasing the cell temperature

in uniform steps. The various components

that make up the cell may begin to react at

different temperatures. Different chemistries

can have different onset temperatures and

“safer” chemistries should have higher on-

set temperatures, as well as giving out less

energy during decomposition. Differences in

speed of reaction (kinetics) are also im-

portant when evaluating safety.

The testing carried out on these two cells

used a standard heat-wait-seek methodolo-

gy. Both cells are charged to 100 % SoC.

Thomas Lemke (Forts.)Thomas Lemke (Forts.)

Die 22. Kalorimetrietage | 7. – 9. Juni 2017 | Braunschweig Die 22. Kalorimetrietage | 7. – 9. Juni 2017 | Braunschweig124 / 162 125/ 162

Micro Reaction Calorimetry: Newer Applications for the

Chemical & Pharmaceutical Industry

Steve Stones, Martyn Ottaway

Thermal Hazard Technology, 1 North House • Bond Avenue • Bletchley MK1 1SW •UK

Tel.: +44 1908 646700, E-Mail: [email protected]

Introduction

All chemical, physical and biological reac-

tions are accompanied by heat change.

These reactions, though sometimes sub-

tle, can be measured using calorimetry.

This poster aims to show capabilities of

the THT µRC [micro Reaction Calorime-

ter].

The calorimeter consists of a sample and

reference cell designed to accomodate

2ml disposible HPCL glass vials. Optional

pressure cells rated to 10 bar are also

available.

Titration measurements can be made us-

ing the automated syringe tower delivering

µL injections to the magnetically stirred

sample vial.

The in-built peltier allows for experimental

temperatures in the range -5°C to 150°C.

Scan rates up to 2°C/min are also feasi-

ble.

Heat Capacity Measurement

Measurement of heat cpacity is an inte-

grated function of the µRC. Cp is deter-

mined by directly measuring the amount of

heat required to shift the sample tempera-

ture.

A small temperature step (usually in the

order of 0.5-1°C) is applied to the system

and the heat is measured. The experiment

is then repeated in reverse to verify the

measurement. The results from each shift

direction are averaged to give the final re-

sult. Measurement with empty vials was

conducted first to ensure that any differ-

ences between the heat capacity of the vi-

als is accounted for.

ty result for metal-oxide 18650 cells. The

results from this test and others carried out

in the ARC indicate these cells have a 10-

20 % lower heat capacity value over their

operational temperature range compared to

pouch cells of the same chemistry. The test

on both sizes of cells were carried out in the

same calorimeter.

The graph below is a comparison of ARC

thermal runaway data from a commercially

available high-capacity 18650 cell and the

EIG 20 Ah pouch cell detailed earlier.

There are several key differences resulting

from the variations in cell design. The pouch

cell shows a more pronounced internal short

when the separator layer melts, however

cell decomposition occurs at a higher tem-

perature for the pouch cell. The 18650 de-

composition is linked to the cell venting

which is designed to occur through the burst

disk when significant pressure builds up

inside the cell. The pouch cell has no dedi-

cated vent so the entire cell is blown apart

by the decomposition. The graph below is a

comparison of ARC thermal runaway data

from a commercially available high- capacity

18650 cell and the EIG 20 Ah pouch cell

detailed earlier.

Thomas LemkeThomas Lemke (Forts.)

Die 22. Kalorimetrietage | 7. – 9. Juni 2017 | Braunschweig Die 22. Kalorimetrietage | 7. – 9. Juni 2017 | Braunschweig126 / 162 127/ 162

Heat of reaction under controlled gas

flow

The Gas Flow Option (GFO) gives added

versatility to the instrument making meas-

urement of the heat of reaction at different

flow rates and gas pressures possible.

The option has been used to good effect

to study Carbon Capture involving the ex-

othermic reaction that occurs when CO2

gas is absorbed by an amine solution. The

GFO consists of a flow controller to regu-

late the flow rate of CO2 into the cell con-

taining the amine solution. Weighing the

vial before and after the test is used to cal-

culate the rate of CO2 update.

Methylethanolamine (MEA) was added to

water in 30 % concentration by weight

CO2 absorption was monitored at three

different flow rates.

The new Gas Flow option accurately con-

trols CO2 dosing and allows direct calcula-

tion of CO2 loading in the solvent. The

ability of the µRC Micro Reaction Calorim-

eter to quickly carry out heat of absorption

and heat capacity measurements using

micro litre volumes of reagents makes it

ideal for routine carbon capture studies.

Results

The data in the table below show the re-

sults from Cp measurement of pure materi-

als. The values all agree well with the liter-

ature data which was obtained from NIST.

The largest error was 1.2% which shows

the accuracy of the instrument using sam-

ple quantity 1g or less.

This very simple approach makes the

THTµRC ideal for rapid (less than 1 hour)

measurement of heat capacity of liquids,

solids or mixtures.

Cp / J/gK

(Measured)

Cp / J/gK

(Lit.)

Error /

%

Acetone 2.157 2.130 1.2

Toluene 1.722 1.704 1.1

Soya Oil 1.970 1.970 0.0

NaCl (s) 0.864 0.854 1.2

Heat Production from Microbes

The sensitivity of the µRC is such that mi-

crobial activity can be accurately moni-

tored. Rate of heat production of rumen

microbes was successfully studied at

39°C in the calorimeter. Rumen fluid was

collected from Jersey cows and the cell

suspension (1 mL) added to the sample

vial against a reference cell filled with wa-

ter (1 mL).

The titration syringe was used to deliver

250 µL of 5 mM glucose.

Heat production measured at 1 second in-

tervals. Data courtesy of Timothy J. Hack-

mann, The Ohio State University. USA.

Thomas Lemke (Forts.)Thomas Lemke (Forts.)

Die 22. Kalorimetrietage | 7. – 9. Juni 2017 | Braunschweig Die 22. Kalorimetrietage | 7. – 9. Juni 2017 | Braunschweig128 / 162 129/ 162

Unconventional Calorimetry Using Segmented-Flow

TechniqueSolid Samples in Flow-Through & Dispersion Free Reaction

Calorimetry

Johannes Lerchner, Florian Mertens

TU Bergakademie Freiberg, Institute Physical Chemistry, Freiberg, Germany

The adaptation of the segmented-flow

technology (SFT) to chip calorimetry ex-

tends its application range considerably, in

particular for the study of

(micro-)biological materials. Primarily, the

SFT was developed to handle samples of

picoliters or nanoliters in microfluidic sys-

tems. Samples dissolved or suspended in

aqueous droplets are forced through the

fluidic channels by a water-immiscible

carrier liquid. Due to the interface tension,

plug flow characteristic is achieved which

is the precondition for an increased

throughput. Moreover, the formation of

spatially limited plugs enables the defined

transport of solid or aggregated samples

through the measuring device. As an ef-

fect of the viscous entrainment of the car-

rier liquid and the capillary pressure inside

the droplets, a thin lubricant film is present

between the droplets and the walls. The

thin film protects the walls against contam-

ination by the sample

(e. g. biofilm formation) and prevents

cross-talking.

In the presented work, we demonstrate

the capability of a segmented flow chip

calorimeter to analyze drug effects on

cancer tissues in real-time. Samples of 1

mm3 of colorectal cancer tissue were

treated with 5-Fluorouracil or staurospor-

ine and subsequently analyzed by seg-

mented flow chip calorimetry. The

observed dynamics of the drug effects is

characterized by defined inflection points

in the heat rate curves.

The investigation of the effect of adrenalin

and noradrenalin on the metabolism of

daphnia demonstrated the excellent real-

time capabilities of the used segmented

flow chip calorimeter. The small thermal

time constant of the calorimeter of only

25 s enabled the detection of drug caused

changes in the motility of the daphnia in a

frequency band-width of 0.02 Hz.

The growth of biofilms at the specifically

prepared surface of small aluminum cylin-

ders which were transported in segments

containing nutrient medium was studied.

The influence of the properties of the nu-

trient medium on the growth rate could be

analyzed.

The controlled fusion of segments inside

the measuring chamber offers opportuni-

ties for the design of new procedures for

high-throughput reaction calorimetry. In

case of an appropriate parameterization of

the segmented flow regarding segment

size and carrier flow rate, separate seg-

ments containing the reactants can be

sequentially transported to the measuring

chamber and merged therein at a defined

position. First application examples will be

presented.

Enthalpy calculated by:

ݐݎݏܣ��ݕℎݐܧ =ݐܪ

ݎݏଶ�ܥ��ݏ��ݎݑ௦ܪ∆ =

ܬ�222.4

ቀ0.12

44.01ቁ

= ଵܬ81.55�

Sample Flow rate of

CO2 feed

(ml/min)

CO2

Absorbed

(g)

CO2

Absorbed

(mmol)

Energy

released

(J)

Enthalpy

(kJ/mol)

MEA 0.3 (wt) 0.98 0.12 2.7 222.4 81.55

1.11 0.12 2.7 226.0 82.87

0.56 0.11 2.5 209.0 83.60

0.26 0.12 2.7 224.0 81.13

Average 0.73 0.12 2.7 220.4 81.54

Adsorption: CO2 and N2 Gas Flow

Through Zeolite

The Micro Reaction Calorimeter from THT

can perform isothermal enthalpy measure-

ments on the exothermic reactions that

occur when gas is absorbed by Zeolites or

other adsorbents.

A comparison of the adsorption capacity

of an adsorbent with saturated or unsatu-

rated active sites can be made. Using the

Zeolite without prior preparation means

that it will already have adsorbed atmos-

pheric species and thus its adsorption ca-

pacity will be lower than that of regener-

ated Zeolite. This is demonstrated in the

following graph.

In the two tests shown, 100 mg of regen-

erated Zeolite was measured for heat of

adsorption in the µRC with a constant CO2

flow. The test was then repeated with 100

mg of unprepared Zeolite. As expected,

the unprepared Zeolite with partially-occu-

pied active sites had a measurably lower

adsorption capacity than the regenerated

Zeolite.

Johannes LerchnerThomas Lemke (Forts.)

Die 22. Kalorimetrietage | 7. – 9. Juni 2017 | Braunschweig Die 22. Kalorimetrietage | 7. – 9. Juni 2017 | Braunschweig130 / 162 131/ 162

Fig. 1: Research Areas

[1] Maskow, T.; von Stockar, U. Biotechnol. Bioeng. 2005, 92, 223-230.

[2] von Stockar, U.; Maskow, T.; Vojinovic, V. Thermodynamic Analysis of Metabolic

Pathways; EPFL Press Distributed by CRC Press., 2013.

Thermodynamic Feasibility Analysis – a Suitable Tool for

Systems Biology?

H. Kohrt1, C. Held2, S. Verevkin3, T. Maskow1*

1 Department of Environmental Microbiology, WG Biocalorimetry/Ecothermodynamics,

Helmholtz Centre for Environmental Research-UFZ, 04318 Leipzig, Germany2 Laboratory of Thermodynamics, Department of Biochemical and Chemical Engineering,

Technische Universität Dortmund, 44227 Dortmund, Germany3 Institute of Chemistry, Department of Physical Chemistry, University of Rostock,

18051 Rostock, Germany

* E-Mail: [email protected]

Metabolic Flux Analysis (MFA) is a power-

ful tool of systems biology in describing

the functioning of an entire biological cell.

MFA by applying mass balances as well

as kinetic relations results unfortunately in

huge undetermined equation systems.

Thermodynamics might help in reducing

solution space by eliminating solutions

that fulfill mass balances but violate sec-

ond law of thermodynamics. For this rea-

son an algorithm called Thermodynamic

Feasibility Analysis (TFA) has already

been tested on well-known glycolysis

pathway [1]. Unfortunately, even glycoly-

sis pathway has been estimated thermo-

dynamically unfeasible. Neglecting activity

coefficients, poor thermodynamic basic

data as well as neglecting the influence of

special conditions in the cytosol of the cell

(e.g. macromolecular crowding, ionic

strength etc.) have been detected as pos-

sible reasons of the unexpected outcome

[2].

Within the algorithm of TFA, ΔRg is calcu-

lated for each single reaction of a certain

metabolic pathway as well as for combina-

tions of consecutive reactions using the

measured concentration range of the

metabolites. Reactions that will reveal a

positive value of ΔRg will be considered as

thermodynamically unfeasible and desig-

nated as localized bottlenecks. Combina-

tions of consecutive reactions with a posi-

tive value of ΔRg for the total reaction re-

sult in so called distributed bottlenecks.

Both, the occurrence of localized and dis-

tributed bottlenecks, will make a given

metabolic pathway unfeasible.

In the current work, the applicability of

TFA on glycolysis will be explored using

state of the art thermodynamic data and

models. Three areas will be researched

(Fig. 1). First, physical and thermochemi-

cal basic data of selected pure metabo-

lites will be determined. Second, the reac-

tion equilibria of these metabolites under

real cytoplasmic conditions (e.g. ionic

strength, molecular crowing) are deter-

mined and modelled with e-PC-SAFT. Fi-

nally, the pure component data as well as

the reaction data are applied to a dynamic

metabolic network. This project will help to

clarify the potential role of thermodynam-

ics to enlighten complex intra-cellular

metabolic networks.

Thomas Maskow (Forts.)Thomas Maskow

Die 22. Kalorimetrietage | 7. – 9. Juni 2017 | Braunschweig Die 22. Kalorimetrietage | 7. – 9. Juni 2017 | Braunschweig132 / 162 133/ 162

Diesen Vortrag bitte unter dem Autor Karina Mishina

«KATET» – heat pipe based calorimeter, the «В-06АК» – calorimeter-comparator. Obtained measurement results confirm the declared accuracy (see table 1). Accu-racy of the CAPG has also been re-searched by means of testing various imi-tators of APG (see table 2), and estimated by a limit of 0,3%. Accuracy of the CLPG is currently being researched and approx-imately estimated at 0,5%. The technical task to implement the pos-sibility of burning various gases in a range of (3 – 90) MJ/m3 with a relative accuracy

of less than 0,5% has been successfully completed. Now the priority is to create the certified standards of gas mixtures with different calorific values. That will be used for cali-bration and verification of industrial gas calorimeters. The production of the reference calorime-ter system is being carried out by the do-mestic scientific enterprise – JSC «Teplofizicheskie pribory (Thermo-physical equipment)» (Russia, Saint-Petersburg).

Fig. 1: The Reference Calorimeter Sys-

tem (CAPG / CLCG) Fig. 2: Scheme of CAPG / CLCG:

1 – control and regulation unit (em-bedded computer); 2 – PID-regulation unit; 3 – electronic communication line; 4 – comparative cell (with electric heater inside); 5 – thermal unit with air thermostat; 6 – heat flow sensor; 7 – measuring cell (with gas burner inside); 8 – pressure sensor system (absolute and gauge); 9 – gas pipe-line; 10, 11 – cylinders, forcers; 12 – step engines; 13 – gas bottle

Diesen Vortrag bitte unter dem Autor Karina Mishina

The Reference Calorimeter System for Metrological Assurance of Combustion Energy Measurements

E.N. Korchagina1, I.V.Kazartsev1, D.Yu. Yanovskiy2

1 Russian Federation, St. Petersburg, D.I. Mendeleyev Institute for Metrology (VNIIM) 2 Russian Federation, St. Petersburg, JSC «Teplofizicheskie pribory»

Recently the Calorimetric Laboratory of D.I. Mendeleyev Institute for Metrology (VNIIM) has been focusing on improving the national system of metrological assur-ance of combustion energy measure-ments of gaseous fuels (gas calorimetry), solid and liquid fuels (bomb calorimetry). The State Primary Standard of the units of combustion energy, specific combustion energy and volumetric combustion energy «GET 16-2010» makes the basis for en-suring the uniformity of measurements and providing traceability in the most im-portant industrial fields of the country – fuel and energy complex, petrochemical, coal, metal and chemical industries. D.I. Mendeleyev Institute for Metrology has been improving the State Primary Standard in the area of combustion calo-rimetry «GET 16-2010» since 2015 (last time it was improved in 2010). This work is performed in accordance with the State Government Assignment and is directed to expand the measurement range from 50 to up to 90 MJ/m3 and decrease the lower range from 10 to 3 MJ/m3. Finally it will allow to develop the metro-logical assurance for precision measure-ments of calorific value of associated pe-troleum gas (APG), natural gas (NG), low-calorific gases (LCG): coke gas, blast-furnace gas, biogas and its mixes using modern calorimeters and chromatographs. The reference calorimeter system (fig. 1) has been assembled, launched and re-

searched by specialists of the Calorimetric Laboratory of VNIIM. The calorimeter sys-tem includes 2 reference calorimeters, which implement a direct calorimetric method of measurements of inferior heat of combustion: in the range of 25 to 90 MJ/m3 – typical for the different types of NG and APG (the calorimeter for APG – CAPG), in the range of 3 to 25 MJ/m3 – typical for the different types of LCG (the calorimeter for LCG – CLCG). The calorimeter system is intended for long-term continuous measurement. Scheme and work principles (fig. 2) are based on a comparison of the gas calorific value with the velocity of its feed rate. The calorimeter contains a gas burner and an electrical heater inside the thermal unit. Heat balance between these parts is con-stantly maintained during combustion pro-cess (compensation method). The CLCG contains additional gas mixing system for combustion of gases with low calorific value: gases in the range of (3 − 10) MJ/m3) are diluted by pure methane in a volume ratio of 3/1 (60% of LCG and 30% of methane) for continuous and steady burning. Calibration of the calorimeters is per-formed using high-purity gases – me-thane, ethane and propane, hydrogen, hydrogen-helium mix. Interlaboratory comparisons have been performed using a NG imitator and 2 other types of reference gas calorimeters: the

Karina Mishina (Forts.)Karina Mishina

Die 22. Kalorimetrietage | 7. – 9. Juni 2017 | Braunschweig Die 22. Kalorimetrietage | 7. – 9. Juni 2017 | Braunschweig134 / 162 135/ 162

Water-bonding and sorption enthalpy in nanoporous

biopolymer composites

Martin Nopens, Uta Sazama, Michael Fröba, Andreas Krause

Universität Hamburg, Fakultät für Mathematik, Informatik und Naturwissenschaften,

Fachbereich Biologie, Zentrum Holzwirtschaft Holzphysik,

Leuschnerstr. 91 c, 21031 Hamburg

Transport phenomena and material be-

havior of porous biopolymer composites

like wood are mainly influenced by the

water sorption and the chemical structure

of the material. Information in this field

provides possibilities for a better usage of

lignocellulosic materials in classical con-

struction, actual modification and high

advanced products.

The structure of such biopolymer compo-

sites like wood is not understood com-

pletely yet. Circumstances in different ana-

lytical fields are caused by the absence or

the presence of water. Especially bound

water which does not freeze but is rea-

sonable for the swelling and shrinking of

the material is one main problem.

Actual theories indicate a tightly bound

interaction of the water to the OH-groups

of the material as main reason for the be-

havior of this water type.

The Poster will focus on past and actual

research results regarding the under-

standing of the porous structures of wood

and bound water as well as own actual

research in this field. These investigations

are going on to explain the relationship

between the change of mechanical prop-

erties at different moisture contents and

the chemical structure of the materials.

This is done by studying the thermody-

namically behavior and the porosity of the

materials with different experimental

methods.

Diesen Vortrag bitte unter dem Autor Karina Mishina

Table 1: Interlaboratory comparison results

CAPG / CLCG «KATET» heat pipe based calorimeter

«В-06АК» calorimeter-comparator

Developed / approved as a standard at:

by the end of 2017 2010 2010

Measurement range, MJ/m3

3 ÷ 90 10 ÷ 50 25 ÷ 50

Expanded relative uncertainty, %

0,30 ÷ 0,50 0,14 0,20

Measuring results of NG imitator (Hinf

ref = 32,05 MJ/m3, according to ISO 6976:1995)

32,06 (CAPG) 32,06 32,08

Table 2: Measurement results in APG range (calibrated within ethane & propane)

Hinfref,

MJ/m3 Hinf

measured, MJ/m3

(Hinfmeasured-Hinf

ref) / Hinf

ref, %

APG imitator № 1 (methane – 46,37, ethane – 40,35, propane – 10,13,

n–butane – 2,55, n–pentane – 0,6 mol. %)

51,97 51,91 -0,12

APG imitator № 2 (methane – 25,55, ethane – 54,57, propane – 10,13,

n–butane – 3,96 mol. %) 59,28 59,34 0,10

APG imitator № 3 (methane – 1,57, ethane – 75,00, propane – 18,72,

butane – 4,69 mol. %) 66,82 66,84 0,02

APG imitator № 4 (methane – 11,43, ethane – 55,0, propane – 20,0, butane – 8,0, pentane – 4,05, hexane – 1,5, nitrogen – 0,01, carbon dioxide – 0,01 mol. %)

71,03 70,98 -0,08

Note: calculation results are obtained according to ISO 6976:1995. All of the gases are prepared by a gravimetric method. Its component composition is exactly known

Martin NopensKarina Mishina (Forts.)

Die 22. Kalorimetrietage | 7. – 9. Juni 2017 | Braunschweig Die 22. Kalorimetrietage | 7. – 9. Juni 2017 | Braunschweig136 / 162 137/ 162

Beyond the Protein Corona – Lipids Matter for Biological

Response of Nanocarriers

Julius Müller1,2, Domenik Prozeller1, Artur Ghazaryan1, Maria Kokkinopoulou1,

Volker Mailänder1,2, Svenja Winzen1, Katharina Landfester1

1 Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany2 Dermatology Clinic, University Medical Center Mainz, Langenbeckstraße 1,

55131 Mainz, Germany

In order to use nanomaterials for biomedi-

cal applications in a predictable manner

(e.g. as systems for targeted drug delivery

in the blood stream), their interactions with

the different components of the organism

need to be understood and controlled.

While adsorption processes of different

proteins of the human blood onto nanocar-

rier systems have been investigated thor-

oughly in the past [1-2], the interactions of

lipids and lipid-like molecules in the blood

with nanocarriers are still widely unknown.

Usually, phospholipids, cholesterol, tri-

glycerides and cholesteryl esters are dis-

tributed in the body though the blood

stream in the form of lipoprotein clusters

with a concentration depending on food

intake and physical constitution. These

micelle-like lipoproteins are held together

by protein components, the so called

apolipoproteins. If interaction occurs, the

question arises whether the lipoproteins

will disintegrate upon contact with the na-

nomaterial's surface or if complete lipopro-

tein cluster will interact with the nanoparti-

cles [3]. Following this, we examined in-

teractions of different lipoproteins and

their components with polystyrene nano-

particles as model systems for nanocarri-

ers via isothermal titration calorimetry

(ITC) in order to determine the thermody-

namic adsorption parameters of the inter-

action process and to address the mode

and consequences of their interaction.

Our data indicate that lipoproteins will dis-

integrate upon direct contact with polysty-

rene nanoparticles and that all compo-

nents including the hydrophobic molecules

adsorb on the surface, while excessive

lipoproteins remain intact after surface

saturation of the nanoparticles is reached.

This can most dominantly be observed in

the large change of enthalpy (relative to

complete lipoprotein clusters) during inter-

actions between all lipoprotein classes

and the nanoparticles via ITC. Additional-

ly, this could be imaged by using trans-

mission electron microscopy. As a result

of the lipoprotein adsorption, cell uptake

into macrophages was significantly re-

duced, which means that the biological

behavior of nanocarriers could be greatly

influenced by external factors such as

nutrition.

Untersuchung des Schmelz- und Kristallisationsverhaltens

von Phase Change Materials für Latentwärmespeicher

Sebastian Pinnau, Cornelia Breitkopf

Technische Universität Dresden, Professur für Technische Thermodynamik

Der Wärme- und Kältebedarf von Gebäu-

den und die Verfügbarkeit regenerativer

Energien weisen starke Lastschwankun-

gen auf. Der Einsatz von thermischen

Energiespeichern bietet ein großes Po-

tential zur Erhöhung der Effizienz von

Energieversorgungsanlagen sowie zur

Integration von erneuerbaren Energien.

Latentwärme- und Kältespeicher ermögli-

chen dabei durch die Nutzung von fest-

flüssig Phasenumwandlungen hohe

Speicherdichten. Da aber für jeden An-

wendungsfall ein Phase Change Material

(PCM) mit angepasster Schmelztempera-

tur zur Verfügung stehen muss, besteht

hier ein großer Forschungs- und Entwick-

lungsbedarf.

Häufige Probleme bei der Entwicklung

von PCM sind die bei der Kristallisation

auftretende Unterkühlung sowie

Phasenseparationen bei inkongruent

schmelzenden Gemischen. Diese Effekte

können durch die Zugabe geeigneter

Keimbildner und Verdickungsmittel redu-

ziert oder beseitigt werden.

In der vorgestellten Arbeit wird das

Schmelz- und Kristallisationsverhalten

potentieller PCM charakterisiert. Dazu

werden experimentelle Untersuchungen

mittels simultaner kalorimetrischer und

optischer Analyse mit DSC und Lichtmik-

roskopie durchgeführt. Schwerpunkte

sind die Untersuchung des Einflusses

verschiedener Keimbildner auf die Unter-

kühlung sowie die Kristallisation von

Mehrkomponentengemischen. Der me-

thodische Ansatz und Ergebnisse für

ausgewählte Systeme werden präsen-

tiert.

DSC-Messung mit verschiedenen Heizraten und Mikroskopaufnahme für ein Paraffin

Domenik ProzellerSebastian Pinnau

Die 22. Kalorimetrietage | 7. – 9. Juni 2017 | Braunschweig Die 22. Kalorimetrietage | 7. – 9. Juni 2017 | Braunschweig138 / 162 139/ 162

Thermochemical modeling and synthesis of elements and

compounds of groups15 and 16 from the element oxides in

[C4mim]BF4

Monika Reschke*, Johnny Thiesler, Peer Schmidt**

Institute of Applied Chemistry, BTU Cottbus-Senftenberg, 01968 Senftenberg, Germany

* E-Mail: [email protected], ** E-Mail: [email protected]

Innovative synthesis strategies for the

formation of elements of group 15

(phosphorus, arsenic, antimony, bismuth)

and group 16 (selenium, tellurium) or

chalcogenides of group 15 metals for

example Bi2Te3 can be realized by use of

ionic liquids. This can be achieved both

with and without using of an additional

reducing agent.

Using complex CalPhaD modeling [1] and

the resulting electromotive series of oxides

according to SCHMIDT [2], rational synthesis

planning can be carried out before the actual

material synthesis. The electromotive series

allows the clear representation of existence

ranges (pi, Ei)T of present compounds i

and the assessment and prediction of the

course of redox reactions (Fig. 1). In order

to verify this theoretical approach,

experiments with group 15 and 16 element

oxides dissolved in the ionic liquid 1-butyl-3-

methylimidazolium tetrafluoroborate

([C4mim]BF4) were carried out by means

of differential scanning calorimetry (DSC)

with and without a reducing agent in a

temperature range from −30 °C to 300 °C.

The values of the thermochemical stability

(decomposition temperatures) of

[C4mim]BF4 vary widely in the literature:

from 360 °C [3] to 424 °C [4]. However,

since the knowledge of thermal stability is

essential for synthesis planning, the

calculation of the maximum operation

temperature (MOT) (Fig. 2) based on a

kinetic model using non-isothermal TG-

measurements has been performed

before synthesis of investigated systems

[5, 6].

Fig. 1: Electromotive series of solid oxides

for the elements of groups 15 and 16,

calculated at T = 400 K

Fig. 2: Calculation of the maximum operation

temperature (MOT) of [C4mim]BF4

depending on the operating time

[1] S. Winzen, et al., Complementary analysis of the hard and soft protein corona:sample preparation critically effects corona composition, Nanoscale 2015, 7,

2992-3001.

[2] E. Vogler, Protein adsorption in three dimensions, Biomaterials 2012, 33, 1201-1237.

[3] E. Hellstrand, et al., Complete high-density lipoproteins in nanoparticle corona, FEBS

Journal 2009, 276, 3372 – 3381.

Monika ReschkeDomenik Prozeller (Forts.)

Die 22. Kalorimetrietage | 7. – 9. Juni 2017 | Braunschweig Die 22. Kalorimetrietage | 7. – 9. Juni 2017 | Braunschweig140 / 162 141/ 162

Sustainable electrochemical synthesis of regenerative

transportation fuels

Waldemar Sauter, Uwe Schröder*

Institute for Environmental and Sustainable Chemistry, Technical University of

Braunschweig, Hagenring 30, 38106 Braunschweig

* Author of correspondence; E-Mail: [email protected], Tel.: +49 531 391 8425

In times of declining fossil fuel resources,

new pathways to sustainable transporta-

tion fuels are more important than ever.

Research on methods like Power-to-liquid

are a necessity for the establishment of a

new generation of liquid fuels. Electro or-

ganic synthesis is one possible way to

produce these new fuels, but to fully utilize

the potential of the method, it is most im-

portant that precursor molecules and the

energy used for the process, are renewa-

ble sources.

Photovoltaic and wind energy are weather

depended sources of energy. The fluctua-

tion of electricity is difficult to compensate

in conventional methods of fuel genera-

tion. A fully electrified one-pot process is a

lot more flexible and simplifies mainte-

nance as well as leads to easier scalabil-

ity.

We have demonstrated the principal fea-

sibility of the ElectroFuels approach by

means of the electrochemical conversion

of levulinic acid to octane, the electrocata-

lytic hydrogenation of 5-HMF and furfural

to dimethylfuran and methylfuran, re-

spectively, and the conversion of fatty

acids and oils to alkanes/alkenes [1-4].

[1] Nilges, P.; dos Santos, T.; Harnisch, F.; Schröder, U.: Electrochemistry for biofuel

generation: Electrochemical conversion of levulinic acid to octane. Energy and Envi-

ronmental Science 2012, 5 5231-5235

[2] Nilges, P., Schröder, U.: Electrochemistry for biofuel generation: Production of fu-

rans by electrocatalytic hydrogenation of furfurals. Energy and Environmental Sci-

ence. 2013, 6, 2925-293

[3] Harnisch, F.; Blei, I.; dos Santos, T.R.; Möller, M.; Nilges, P.; Eilts, P.; Schröder, U.:

From the test-tube to the testengine: Assessing the suitability of prospective liquid

biofuel compounds. RCS Advances 2013, 3, 9594-9605

[4] dos Santos, T.; Nilges, P.; Schröder, U.: Electrochemistry for biofuel generation: Trans-

formation of fatty acids and triglycerides to "diesel -like" olefin/ether mixture and ole-

fins. ChemSusChem, 2015, 8 886-893

[1] GMIN Version 5.0b, package TRAGMIN for calculation of thermodynamic equilibrium, G.

Krabbes, W. Bieger, K.-H. Sommer, T. Söhnel, U. Steiner, Dresden, 2008.

[2] P. Schmidt: Thermodynamische Analyse der Existenzbereiche fester Phasen -

Prinzipien der Syntheseplanung in der anorganischen Festkörperchemie, Habilitation,

Technische Universität Dresden, 2007.

[3] J. D. Holbrey, K. R. Seddon, J. Chem. Soc., Dalton Trans. , 1999, 2133–2139.

[4] M. E. Van Valkenburg, R. L. Vaughn, M. Williams, J. S. Wilkes, Thermochim. Acta, 2005,

425, 181–188.

[5] A. Seeberger, A.-K. Andresen, A. Jess, Phys. Chem. Chem. Phys, 2009, 11,

9375–9381.

[6] A. Efimova, L. Pfützner, P. Schmidt, Thermochim. Acta, 2015, 604, 129–136.

Waldemar SauterMonika Reschke (Forts.)

Die 22. Kalorimetrietage | 7. – 9. Juni 2017 | Braunschweig Die 22. Kalorimetrietage | 7. – 9. Juni 2017 | Braunschweig142 / 162 143/ 162

Thermodynamic description of the Li-Si-System based on calorimetric and hydrogenation measurements

Franziska Taubert, Regina Hüttl, Jürgen Seidel, Florian Mertens

TU Bergakademie Freiberg, Institute of Physical Chemistry, Leipziger Str. 29, 09599 Freiberg

Key words: lithiumsilicides, heat capacity, entropy, enthalpy of formation, hydrogenation

The dominating anode material in Lithium-Ion-Batteries (LIB) is graphite with a spe-cific capacity of 372 mAh g-1. An attractive alternative in few of costs and capacity is silicon. The formation of Li17Si4 leads to a theoretical specific capacity of 4054 mAh gSi

-1 [1]. A basic understanding of the un-derlying phase and electrochemical equi-libria based on reliable thermodynamic data in the Li-Si-system is essential for the battery development. For this reason, our group performed extensive experimental studies on lithium silicides using calorime-try and hydrogenation equilibrium meas-urements in the ternary system Li-Si-H. Currently, five stable phases Li17Si4, Li16.42Si4, Li13Si4, Li7Si3 und Li12Si7 are dis-cussed in literature, as well as the so-called high-pressure phase LiSi and the metastable phase Li15Si4. The heat capac-ities of the five stable phases [2,3] and the enthalpies of formation of Li7Si3 and Li12Si7 based on hydrogen sorption investigations have already been reported by our group [4].

The focus of this contribution is directed to the experimental determination of the heat capacities and entropies of LiSi and Li15Si4 and the determination of the enthalpies of formation of the stable phases by combin-ing the heat capacity and entropy results with the hydrogenation equilibrium pres-sure data determined by recording pres-sure-composition-isotherms in a Sieverts type apparatus at 450°C, 475°C and 500°C. The heat capacities were meas-ured using two different calorimeters: a Physical Properties Measurement System (Quantum Design) in the temperature range from 2 K to 300 K and a DSC111 (Setaram) in the temperature region from 300 K to 600 K. The measurements at low temperatures allow the calculation of the standard entropy of the lithium silicides. Applying the resulting new thermodynamic data set, completely based on experi-mental data, the phase diagram of the Li-Si-system has been calculated with excel-lent quality by the CALPHAD method.

[1] M. Zeilinger, D. Benson, U. Häussermann, T. F. Fässler, Chem. Mater. 2013, 25, 1960–1967.

[2] D. Thomas, M. Abdel-Hafiez, T. Gruber, R. Hüttl, J. Seidel, A. U. B. Wolter, B. Büch-ner, J. Kortus, F. Mertens, J. Chem. Thermodyn. 2013, 64, 205–225.

[3] D. Thomas, M. Zeilinger, D. Gruner, R. Hüttl, J. Seidel, A. U. Wolter, T. F. Fässler, F. Mertens, J Chem Thermodyn 2015, 85, 178–190.

[4] D. Thomas, N. Bette, F. Taubert, R. Hüttl, J. Seidel, F. Mertens, Journal of Alloys and Compounds 2017, 704, 398–405.

Crystallization of polyethylene at large undercooling

Evgeny Zhuravlev1, Vadlamudi Madhavi2, Arnold Lustiger2, René Androsch3,

Christoph Schick1

1 University of Rostock, Institute of Physics, Wismarsche Str. 43-45, 18051 Rostock,

Germany2 ExxonMobil Research & Engineering Company, 1545 Route 22 East,

LD 152, Annandale, New Jersey 08801, USA3 Martin-Luther-University Halle-Wittenberg, Center for Engineering Sciences,

06099 Halle/S., Germany

Extremely fast crystallization of high-den-

sity polyethylene and random copolymers

of ethylene with up to 16 mol% 1-octene

was observed for the first time by ultra-fast

scanning calorimetry. In order to account

for the inherently high crystallization rate

of polyethylenes, in non-isothermal and

isothermal crystallization experiments

cooling rates up to 1,000,000 K/s and

crystallization times as short as 10 µs, re-

spectively, were employed. It was possible

to supercool the melt of high-density poly-

ethylene down to 57 °C, and the melt of a

random ethylene/1-octene copolymer with

16 mol% 1-octene down to -33 °C, without

prior crystallization. At these tempera-

tures, the characteristic time of the

primary crystallization process is of the or-

der of magnitude of 100 µs. Complete vit-

rification of the liquid would require cooling

even faster than 1,000,000 K/s. Compared

to the homopolymer, the cooling-rate de-

pendence of the crystallization tempera-

tures and the temperature dependence of

the characteristic time of primary crystalli-

zation of random ethylene/1-octene copol-

ymers both are nearly parallel shifted to

lower temperatures. Fast crystallization

under condition of reduced linear crystal

growth rate is possibly caused by boosting

homogeneous nuclei density up to

1027 m-3 and urgently requires further in-

vestigation.

Franziska TaubertChristoph Schick

Die 22. Kalorimetrietage | 7. – 9. Juni 2017 | Braunschweig Die 22. Kalorimetrietage | 7. – 9. Juni 2017 | Braunschweig144 / 162 145/ 162

Evaluation of eutectic mixtures for use as PCM.

Thermodynamic modeling and experimental methods

Martin Wels*, Anastasia Efimova, Peer Schmidt**

Institute of Applied Chemistry, BTU Cottbus-Senftenberg, 01968 Senftenberg, Germany

* E-Mail: [email protected], ** E-Mail: [email protected]

The investigation and optimization of the

thermochemical properties of phase

change materials (PCM) is very complex.

Since there are currently no suitable con-

cepts for the rational planning of PCM sys-

tems, procedures for the efficient screen-

ing of these systems have to be estab-

lished.

With the help of thermochemical calcula-

tion methods (CalPhaD method) [1] on the

one hand, extended insights into the

phase equilibria of eutectic systems are

obtained, on the other hand,

time-consuming calorimetric measure-

ments can be specified and a ‘trail-and-er-

ror’ procedure avoided.

Within the eutectic system of the salt hy-

drates Mn(NO3)2·4H2O and

Zn(NO3)2·6H2O a large number of DSC

measurements have already been carried

out for the determination of characteristic

temperatures and latent heats [2]. The

modeling of the phase diagram is intended

to support these measurements as well as

other measurements used to clarify the

system.

Fig. 1: a) Designation of the eutectic point based on the enthalpy contributions of the mix-

tures (TAMMAN-Plot) and b) predicted phase diagram of the salt hydrates

Isobaric heat capacity data of orthorhombic FePO4 in the

temperature range between 223 K to 773 K

C. Thomas1, T. Zienert2, R. Hüttl1, J. Seidel1, F. Mertens1

1 Institute of Physical Chemistry, TU Bergakademie Freiberg, Leipziger Str. 29,

D-09599 Freiberg2 Institute of Materials Science, TU Bergakademie Freiberg, Gustav-Zeuner-Str. 5,

D-09599 Freiberg

The orthorhombic iron(III)-phosphate

(FePO4) with the space group Pmna re-

versibly intercalates lithium ions under re-

ducing conditions. Hence, FePO4 raised a

lot of attention since 1997 [1] because of

its potential application as cathode mate-

rial in lithium ion batteries (LIB). Despite

its huge relevance to industry and re-

search the availability of reliable thermo-

dynamic data of FePO4 is presently limited

to the low temperature range of 2K to

300 K.

This contribution focuses on the experi-

mental determination of precise isobaric

heat capacity values cp between 223 K

and 773 K using two different types of cal-

orimeters. A power compensation twin-

type calorimeter DSC 8000 from Perkin-

Elmer equipped with the external cooling

unit IntraCooler II was applied in the tem-

perature range from 223 K to 553 K. The

sample was pressed manually to a flat pel-

let in order to gain a good thermal conduc-

tivity inside the sample. The measurement

was continuously performed in intervals of

100 K each. In the temperature range be-

tween 298 K and 773 K the heat flux calo-

rimeter Sensys DSC from Setaram was

utilised and the sample was densely

packed into a stainless steel crucible,

which was tightly crimped with a nickel

sealing ring. In contrast to the measure-

ment with the DSC 8000, the heat capac-

ity was determined via the cp-by-step ap-

proach with temperature steps ΔT of 10 K.

Prior to the measurements, both calorime-

ters were calibrated with a sapphire stand-

ard.

The resulting cp-data of both calorimeters

are identical within the experimental error

of 1 % to 2 % and fit perfectly to the low

temperature heat capacity data of Wood-

field et al. [2]. Consequently, the pre-

sented results for cp of orthorhombic

FePO4 are very reliable and can improve

the quality of further CALPHAD calcula-

tions in the temperature interval from

300 K to 773 K.

[1] A. K. Padhi, K. S. Nanjundaswamy, J. B. Goodenough, J. Electrochem. Soc. 1997,

144, 1188–1194.

[2] Q. Shi, L. Zhang, M. E. Schlesinger, J. Boerio-Goates, B. F. Woodfield, J. Chem.

Thermdynamics 2013, 62, 35-42.

Martin WelsChristian Thomas

Die 22. Kalorimetrietage | 7. – 9. Juni 2017 | Braunschweig Die 22. Kalorimetrietage | 7. – 9. Juni 2017 | Braunschweig146 / 162 147/ 162

Micro reaction calorimetry for investigation of phase formation

processes in ionic liquid flux systems

Adrian Wolf*, Andrea Fandrey, Peer Schmidt**

Institute of Applied Chemistry, BTU Cottbus-Senftenberg, 01968 Senftenberg, Germany

* E-Mail: [email protected], ** E-Mail: [email protected]

The formation of Te4[AlCl4]2 from tellurium,

TeCl4, AlCl3 [1] has been used as a model

system for the establishment of a new

measurement method in ionic liquids (IL)

using a micro reaction calorimeter (µRC,

Thermal Hazard Technology).

With the IL flux system 1-butyl-3-

methylimidazolium chloride / aluminium

chloride as a source material, different

compositions and amounts of solid reac-

tants have been added. Thus various sub-

reactions could be analyzed, such as dis-

solution processes, oxidation, and phase

formation reaction. Applying the solid addi-

tion system the reaction can be analyzed,

even if the reaction starts immediately at

ambient temperature. Using the micro

reaction calorimeter isothermal, time de-

pendent measurements can be realized

with distinction of the quantity of different

sub-reactions. Finally, the reaction course

of various isothermal runs can be evaluat-

ed.

As assistant method Raman spectroscopy

was applied to identify the reactive spe-

cies in the system and to get a better in-

sight of the reaction [2-4].

Fig. 1: setup and principle of µRC Fig. 2: measurement of heat of reaction

with µRC

[1] E. Ahmed et al., Z. Anorg. Allg. Chem. 2010, 636, 2602–2606.

[2] C. J. Dymek et al., Polyhedron 1988, 7, 13, 1139–1145.

[3] W. Brockner et al., Z. Anorg. Allg. Chem. 1980, 461, 205–210.

[4] P. J. Hendra et al., J. Chem. Soc. (A) 1968, 600–602.

[1] C. W. Bale, E. Bélisle, P. Chartrand, S. A. Decterov, G. Eriksson, K. Hack, I. H. Jung,

Y. B. Kang, J. Melançon, A. D. Pelton, C. Robelin and S. Petersen, FactSage Ther-

mochemical Software and Databases - Recent Developments, Calphad, vol. 33

(2009) 295-31.

[2] S. Pinnau, A. Efimova, P. Schmidt, M. Mischke, Identifikation technischer Salze als

Latentspeichermaterialien im Temperaturbereich von 4 bis 15 °C und deren Verkap-

selung. BMWi-Forschungsbericht, Bundesministerium für Wirtschaft und Technologie

(2013) 1-92, DOI: 10.2314/GBV:786966173.

Adrian WolfMartin Wels (Forts.)

Die 22. Kalorimetrietage | 7. – 9. Juni 2017 | Braunschweig Die 22. Kalorimetrietage | 7. – 9. Juni 2017 | Braunschweig148 / 162 149/ 162

Autor hier: Stefan Zimmerer

Combined calorimetric and manometric measurements for the study of sorption properties of porous materials

Rémi Andre1, Julien Francois, Pierre Le Parlouër1

1 SETARAM Instrumentation, 7 rue de l’Oratoire, Caluire 69300, France

The gas sorption Sievert’s technique has proven to have many advantages for the evaluation of the ad- or ab-sorbed amount of gas by porous materials in a wide range of temperature and pressure. In addition, there is a total freedom in the size and shape of the sample holder in the volu-metric technique, enabling the coupling of techniques and in-situ measurements of various chemical and physical parame-ters. X-rays and neutrons diffractomers, gas chromatographs or mass spectrome-ters have already been successfully tested and allow having simultaneous PCT iso-therms and kinetic measurement with structural or gas composition data. The thermodynamics of the adsorption are essential for the practical application and among all the heat of adsorption (or de-sorption) is a key parameter. Practically there are two ways to determine it. The first one is an indirect method, where it is derived from adsorption isotherms at dif-ferent temperatures. The second one is a

direct method, where the enthalpy is measured via calorimetric techniques. When used on its own, the biggest disad-vantage of calorimetry is that it gives a heat output per mole of solid sample and not per mole of gas. The combination of manometric technique (to quantify the amount of hydrogen absorbed/released) and calorimetry was successfully applied to overcome this issue and the direct measurement of enthalpy of formation per mole of gas was reported [1-3]. The presentation will give some new re-sults on combinations of calorimetric and volumetric technique, especially on MOF-5, selected as an example of Metal Organ-ic Framework that is available commer-cially. But also on different other porous materials such as amine modified meso-porous silica and hydrotalcite based cata-lysts. It will give an overview of the state-of-the art possibility of combined calori-metric analysis together with the Sievert’s technique.

[1] M. R. Mello, D. Phanon, G. Q. Silveira, P. L. Llewellyn, C. M. Ronconi, Microporous and Mesoporous Materials 143 (2011) 174–179

[2] A. Auroux et al, “Calorimetry and Thermal Methods in Catalysis”, Springer Series in Materials Science (2013), Vol. 154

[3] R. Bulanek, K. Frolich, E. Frydova, P. Cicmanec, Top Catal 53 (2010) 1349–1360

Autor hier: Stefan Zimmerer

Recent improvements in the high pressure differential calorimetry method applied to the study of gas hydrates

Rémi Andre1, Pierre Le Parlouër1, Laurent Marlin2, Frédéric Plantier2, Jean-Philippe Torre2

1 SETARAM Instrumentation, 7 rue de l’Oratoire, Caluire 69300, France 2 Univ. Pau & Pays Adour, CNRS, TOTAL – UMR 5150 – LFC-R – Laboratoire des

Fluides Complexes et leurs Réservoirs, Avenue de l'Université, BP 1155 – PAU, F-64013, France

Calorimetry and especially High Pressure Differential Scanning Calorimetry (HP-DSC) applied to the study of gas hydrates has originally been developed and patent-ed (US6571604) by a collaborative work lead by the French Institute of Petroleum – New Energies. It was found to be a rele-vant tool for investigating the thermody-namics of formation and dissociation of gas hydrates as it is able to simulate the temperature and pressure conditions of their formation. Originally applied to fields related to oil and gas production and flow assurance [1], then extended to the study of oil-water-gas systems and the emulsion sta-bility of oils with hydrate [2], it has now been involved in several new studies. In-deed, carbon dioxide sequestration by CO2/CH4 exchange in natural gas hy-drates present in marine sediments, car-bon dioxide hydrates reversible for-mation/dissociation for refrigeration loops, hydrogen storage system through the for-mation of hydrogen hydrates [3], and many other studies involve the use of HP-DSC.

However, the technique still has some lim-itations which are linked to the fact that the gas hydrate formation in the calorimet-ric cell occurs at the gas-liquids interface. It leads to problems such as inefficient gas dissolution, long induction times, formation of a hydrate crust covering the gas/liquid interface, low hydrate to water conversion, etc. Thus it makes for example difficult or impossible the accurate determination of heat capacities or of kinetics of for-mation/dissociation (except when water-in-oil emulsions are involved). The presented work will cover these new fields of application of the technique and will include the description of a new high pressure, mechanically stirred calorimetric cell which overcomes the existing limita-tions. This cell has been developed by the Laboratory of Complex Fluids and their Reservoirs of the University of Pau and Pays de l’Adour (patent #FR/2012/57319 UPPA-CNRS) and has been industrialized and commercialized by SETARAM Instrumentation.

[1] L. Ma, Z. Chen, J. Therm. Anal. Calorim., 87 (2009) 1567. [2] A. Ionescu, V. Alecu, “Thermal properties of solids”, Expert Publishing House, (2008)

1356–1364. [3] W. Weselowski, A. Kartuj, F. Laam, J. Therm. Anal. Calorim., 81 (2008) 1237.

Stefan ZimmererStefan Zimmerer

Die 22. Kalorimetrietage | 7. – 9. Juni 2017 | Braunschweig 151/ 162

Abdelaziz, AmirUniversität RostockAlbert-Einstein-Straße 23-2418059 [email protected]

Aeby, ChristianTÜV SÜD Schweiz AGMattenstrasse 244002 [email protected]

André, RémiSETARAM Instrumentation7 rue de l’Oratoire69300 Caluire [email protected]

Anhalt, KlausPhysikalisch-Technische Bundesanstalt (PTB) - AG 7.31Abbestr. 2-1210587 [email protected]

Barros, NievesUniversity of Santiago de Compostela Dept. Applied Physics, Faculty of Physics15782 Santiago de [email protected]

Bartl, GuidoPhysikalisch-Technische Bundesanstalt (PTB)Bundesallee 10038116 [email protected]

Bauerecker, SigurdInstitut für Physikalische und Theoretische Chemie - TU BraunschweigGaußstraße 1738106 [email protected]

Autorenliste

Die 22. Kalorimetrietage | 7. – 9. Juni 2017 | Braunschweig Die 22. Kalorimetrietage | 7. – 9. Juni 2017 | Braunschweig152 / 162 153/ 162

Feja, SteffenInstitut für Luft- und Kältetechnik Dresden gGmbHBertolt-Brecht-Allee 201309 [email protected]

Gödde, MarkusBASF SE GCP/RS-L511 SicherheitstechnikCarl-Bosch-Straße 3867056 [email protected]

Gorodylova, NataliiaUniversity of PardubiceStudentska 9553210 [email protected]

Haug, TorstenUNION Instruments GmbHMaria-Goeppert-Straße 2223562 Lü[email protected]

Heerklotz, HeikoUniversität FreiburgHermann-Herder Str. 979104 [email protected]

Heinemann, RobertBrandenburgische Technische Universität Cottbus - SenftenbergUniversitätsplatz 101968 [email protected]

Heinsch, StefanPhysikalisch-Technische Bundesanstalt (PTB)Bundesallee 10038116 [email protected]

Autorenliste

Becattini, ViolaETH ZurichSonneggstrasse 38092 [email protected]

Bläker, ChristianThermische Verfahrenstechnik - Universität Duisburg-EssenLotharstraße 147057 [email protected]

Braissant, OlivierUniversity of Basel - Center for Biomechanics and BiocalorimetryGewerbestarsse 14-16CH-4123 [email protected]

Brown, Robert K.Technische Universität Braunschweig - Institut für Ökologische und Nachhaltige ChemieHagenring 338106 [email protected]

Bunjes, HeikeTU Braunschweig - Institut für Pharmazeutische TechnologieMendelssohnstr. 138106 [email protected]

Cammenga, Heiko K.Universitätsplatz 2Johanniterstraße 7A38106 [email protected]

Dumas, PhilippeInstitut de génétique et de biologie moléculaire et cellulaire (IGBMC)1 Rue Laurent Fries67400 [email protected]

Autorenliste

Die 22. Kalorimetrietage | 7. – 9. Juni 2017 | Braunschweig Die 22. Kalorimetrietage | 7. – 9. Juni 2017 | Braunschweig154 / 162 155/ 162

Krause, GerhardDr. Krause GmbH - Sicherheitstechnisches Prüfl abor PotsdamAhornstr. 28-3214482 [email protected]

Leithner, ReinhardTU Braunschweig – Institute of Energy and Process Systems EngineeringFranz-Liszt-Straße 3538106 [email protected]

Lemke, ThomasC3 Prozess- und Analysentechnik GmbHPeter-Henlein-Str. 285540 [email protected]

Lerchner, JohannesTU Bergakademie Freiberg - Inst. Physikalische ChemieLeipziger Str. 2909599 [email protected]

Marenchino, MarcoMalvern Instruments GmbHRigipsstr. 1971083 [email protected]

Maskow, ThomasHelmholtz-Zentrum für Umweltforschung (UFZ)Permoserstr. 1504318 [email protected]

Mishina, KarinaD.I. Mendeleyev All-Russian Scientifi c and Research Institute for Metrology (VNIIM)Moskovskiy pr-t, 19190005 Saint [email protected]

Autorenliste

Helmig, SimoneInstitut für Arbeits- und Sozialmedizin - Justus-Liebig-UniversitätAulweg 12935392 Gieß[email protected]

Hempel, ElkeMettler-Toledo GmbH - Business Unit AnalyticalSonnenbergstrasse 7408603 [email protected]

Hess, UweProsense GmbHAretinstraße 2481545 Mü[email protected]

Husemann, TobiasAnton Paar OptoTec GmbHLise-Meitner-Str. 630926 [email protected]

Kaiser, GabrieleNETZSCH-Gerätebau GmbHWittelsbacherstraße 4295100 [email protected]

Kazartsev, IaroslavD.I. Mendeleyev All-Russian Scientifi c and Research Institute for Metrology (VNIIM)Moskovskiy pr-t, 19190005 Saint Petersburg [email protected]

Knorr, AnnettBundesanstalt für Materialforschung und -prüfung (BAM) - FB 2.2Unter den Eichen 8712205 [email protected]

Autorenliste

Die 22. Kalorimetrietage | 7. – 9. Juni 2017 | Braunschweig Die 22. Kalorimetrietage | 7. – 9. Juni 2017 | Braunschweig156 / 162 157/ 162

Prozeller, DomenikMax-Planck-Institut für PolymerforschungAckermannweg 155128 [email protected]

Reschke, MonikaBrandenburgische Technische Universität Cottbus – SenftenbergUniversitätsplatz 101968 [email protected]

Sauter, WaldemarInstitut für Ökologische und Nachhaltige Chemie - TU BraunschweigHagenring 338106 [email protected]

Schick, ChristophUniversität Rostock - Institut für PhysikAlbert-Einstein-Str. 23-2418051 [email protected]

Schmidt, PeerBTU Cottbus-Senftenberg - Institut für Angewandte ChemieUniversitätsplatz 101968 [email protected]

Schröder, UweTU Braunschweig - Institute for Environmental and Sustainable ChemistryHagenring 338106 [email protected]

Span, RolandRuhr-Universität Bochum - Fakultät für MaschinenbauUniversitätsstraße 15044801 [email protected]

Autorenliste

Nicolaus, ArnoldPhysikalisch-Technische Bundesanstalt (PTB)Bundesallee 10038116 [email protected]

Nopens, MartinUniversität Hamburg - Fakultät für Mathematik, Informatik und Naturwissenschaften - Fachbereich Biologie - Zentrum Holzwirtschaft HolzphysikLeuschnerstr. 91 c21031 [email protected]

Omelcenko, AlexanderClausthal University of Technology - Institute of Energy Research and Physical Technologies (IEPT)Am Stollen 19 B38640 [email protected]

Orava, JiriUniversity of CambridgeCharles Babbage RoadCB3 0FS [email protected]

Ortmann, ChristianTA InstrumentsHelfmann-Park 165760 [email protected]

Pérez-Sanz, Fernando J.Physikalisch-Technische Bundesanstalt (PTB)Bundesallee 10038116 [email protected]

Pinnau, SebastianTechnische Universität Dresden - Institut für Energietechnik - Professur für Technische ThermodynamikHelmholtzstraße 1401062 [email protected]

Autorenliste

Die 22. Kalorimetrietage | 7. – 9. Juni 2017 | Braunschweig158 / 162

Stones, Stevethermal hazard technology1 North House, Bond AvenueMK1 1 SW [email protected]

Taubert, FranziskaTU Bergakademie Freiberg - Institut für Physikalische ChemieLeipzigerstraße 2909599 [email protected]

Thomas, ChristianInstitute of Physical Chemistry - TU Bergakademie FreibergLeipziger Straße 2909599 [email protected]

Vidi, StephanBavarian Center for Applied Energy Research (ZAE Bayern)Magdalene-Schoch-Straße 397074 Wü[email protected]

Walter, DirkGefahrstoffl aboratorien Chemie und Physik-Institut für Arbeitsmedizin - Justus-Liebig-UniversitätAulweg 12935392 Gieß[email protected]

Wels, MartinBrandenburgische Technische Universität Cottbus – Senftenberg - Fakultät 2 - Umwelt und Naturwissenschaften - Institut für Angewandte ChemieUniversitätsplatz 101968 [email protected]

Wilhelm, EmmerichInstitute of Materials Chemistry & Research-Institute of Physical Chemistry - Universität WienWähringer Straße 42A-1090 [email protected]

Autorenliste Autorenliste

Willms, ThomasHelmholtz-Zentrum Dresden Rossendorf - Institut für experimentelle Fluiddynamik.Bautzner Landstraße 4001328 [email protected]

Wolf, AdrianBrandenburgische Technische Universität Cottbus - Senftenberg - Fakultät 2 - Umwelt und Naturwissenschaften - Institut für Angewandte ChemieUniversitätsplatz 101968 [email protected]

Yang, BinUniversity of Rostock - Institute of PhysicsAlbert-Einstein-Str. 23-2418051 [email protected]

Zaitsau, DzmitryUniversität Rostock - Institut für ChemieAlbert-Einstein-Str. 2518059 [email protected]

Zimmerer, StefanSETARAM Instrumentation7, rue de l'Oratoire69300 [email protected]

Die 22. Kalorimetrietage | 7. – 9. Juni 2017 | Braunschweig Die 22. Kalorimetrietage | 7. – 9. Juni 2017 | Braunschweig160 / 162 161/ 162 Die 22. Kalorimetrietage | 7. – 9. Juni 2017 | Braunschweig 161/ 162

Ankündigung

Die 23.KalorimetrietageBraunschweig12. – 14. Juni 2019(vorbehaltlich des CeBIT-Termins)

NETZSCH-Gerätebau GmbHWittelsbacherstraße 42 95100 [email protected]/n21479

Perkin Elmer LAS (Germany) GmbHFerdinand-Porsche-Ring 1763110 RodgauTelefon: 06106 610-0www.perkinelmer.com/hyphenation

PROSENSE GMBHAretinstraße 2481545 MünchenTelefon: +49 (0)89 210 258 52Telefax: +49 (0)89 210 258 51www.prosense.net

SETARAM Instrumentation7 rue de l‘Oratoire69300 CaluireFrancewww.setaram.com

TA Instrumentsein Unternehmensbereich der Waters GmbHHelfmann-Park 1065760 EschbornTelefon: 06196/400-7060Telefax: 06196/[email protected]

THASS GmbHThermal Analysis & Surface Solutions GmbHPfi ngstweide 2161169 FriedbergTelefon: +49-6031-16223-1Telefax: [email protected]

UNION Instruments GmbHZeppelinstraße 4276185 KarlsruheTelefon: +49 (0) 721-68 03 81 20Telefax: +49 (0) 721-68 03 81 [email protected]

Die 22. Kalorimetrietage werden unterstützt von:

Herausgeber und Verlag:Physikalisch-Technische BundesanstaltISNI: 0000 0001 2186 1887Bundesallee 10038116 Braunschweig