28
Mathematical Tables Composed by Vincent Verdult Department of Electrical Engineering Delft University of Technology e-mail: [email protected] November, 1997 Contents 1 Trigonometric Identities 2 2 Trigonometric Functions 3 3 Hyperbolic Functions 3 4 Series 4 5 Inequalities 6 6 Differential and Integral Calculus 6 7 Integral Table 8 8 Standard Limits 11 9 Convolutions 12 10 Dirac Delta Function 12 11 Fourier Transform 13 12 Laplace Transform 21 13 z-Transform 25

Tables

Embed Size (px)

Citation preview

Page 1: Tables

Mathematical Tables

Composed by Vincent Verdult

Department of Electrical EngineeringDelft University of Technology

e-mail: [email protected]

November, 1997

Contents

1 Trigonometric Identities 2

2 Trigonometric Functions 3

3 Hyperbolic Functions 3

4 Series 4

5 Inequalities 6

6 Differential and Integral Calculus 6

7 Integral Table 8

8 Standard Limits 11

9 Convolutions 12

10 Dirac Delta Function 12

11 Fourier Transform 13

12 Laplace Transform 21

13 z-Transform 25

Page 2: Tables

1 Trigonometric Identities

sin(x± π

2) = ± cosx

cos(x± π

2) = ∓ sinx

sin(x± y) = sinx cos y ± cosx sin y

cos(x± y) = cosx cos y ∓ sinx sin y

tan(x± y) =tanx± tan y

1∓ tanx tan y

2 sinx sin y = cos(x− y)− cos(x+ y)

2 cosx cos y = cos(x− y) + cos(x+ y)

2 sinx cos y = sin(x− y) + sin(x+ y)

sinx+ sin y = 2 sin(x+ y)

2cos

(x− y)2

sinx− sin y = 2 cos(x+ y)

2sin

(x− y)2

cosx+ cos y = 2 cos(x+ y)

2cos

(x− y)2

cosx− cos y = −2 sin(x+ y)

2sin

(x− y)2

tanx± tan y =sin(x± y)cosx cos y

sin 2x = 2 sinx cos y

cos 2x = cos2 x− sin2 x

tan 2x =2 tanx

1− tan2 x

2 sin2 x = 1− cos 2x

2 cos2 x = 1 + cos 2x

2

Page 3: Tables

4 sin3 x = 3 sinx− sin 3x

4 cos3 x = 3 cosx+ cos 3x

8 sin4 x = 3− 4 cos 2x+ cos 4x

8 cos4 x = 3 + 4 cos 2x+ cos 4x

a cosx− b sinx = r cos(x+ θ) where r =√a2 + b2

θ = arctan(ba

)a = r cos θb = r sin θ

2 Trigonometric Functions

sinx =ejx − e−jx

2j

cosx =ejx + e−jx

2

tanx =sinxcosx

cos2 x+ sin2 x = 1

e±jx = cosx± j sinx

3 Hyperbolic Functions

sinhx =ex − e−x

2

coshx =ex + e−x

2

tanhx =sinhxcoshx

cosh2 x− sinh2 x = 1

e±x = coshx± sinhx

arcsinhx = ln(x+√x2 + 1)

arccoshx = ln(x+√x2 − 1), x ≥ 1

arctanhx =12

ln(

1 + x

1− x

), |x| < 1

3

Page 4: Tables

4 Series

Series Expansions

f(x+ a) =∞∑n=0

xn

n!f (n)(a) = f(a) +

x

1!f ′(a) +

x

2!f ′′(a) + . . . Taylor’s series

ex =∞∑n=0

xn

n!= 1 +

x

1!+x2

2!+x3

3!+ . . . , |x| <∞

sinx =∞∑n=0

(−1)nx2n+1

(2n+ 1)!= x− x3

3!+x5

5!− x7

7!+ . . . , |x| <∞

cosx =∞∑n=0

(−1)nx2n

(2n)!= 1− x2

2!+x4

4!− x6

6!+ . . . , |x| <∞

sinhx =∞∑n=0

x2n+1

(2n+ 1)!= x+

x3

3!+x5

5!+x7

7!+ . . . , |x| <∞

coshx =∞∑n=0

x2n

(2n)!= 1 +

x2

2!+x4

4!+x6

6!+ . . . , |x| <∞

arcsinx =∞∑n=0

(2n)!22n(n!)2

x2n+1

2n+ 1= x+

12x3

3+

38x5

5+ . . . , |x| ≤ 1

arccosx =π

2− arcsinx =

π

2−∞∑n=0

(2n)!22n(n!)2

x2n+1

2n+ 1, |x| ≤ 1

arctanx =∞∑n=0

(−1)nx2n+1

2n+ 1= x− x3

3+x5

5− x7

7+ . . . , |x| ≤ 1

arctanhx =∞∑n=0

x2n+1

2n+ 1= x+

x3

3+x5

5+x7

7+ . . . , |x| < 1

ln(1 + x) =∞∑n=1

(−1)n+1xn

n= x− x2

2+x3

3− x4

4+ . . . , |x| ≤ 1

11− x

=∞∑n=0

xn = 1 + x+ x2 + x3 + . . . , |x| < 1

(1 + x)a =∞∑n=0

(a

n

)xn = 1 +

(a

1

)x+

(a

2

)x2 +

(a

3

)x3 + . . . , |x| < 1

where

(a

k

)=a · (a− 1) · (a− 2) · · · (a− k + 1)

k!, a real

4

Page 5: Tables

Infinite Series∞∑n=1

(−1)n+1

n= ln 2

∞∑n=1

(−1)n+1

n2=π2

12

∞∑n=1

1(2n− 1)2

=π2

8

∞∑n=0

(−1)n

n=

1e

∞∑n=1

n

(n+ 1)!= 1

Finite Seriesm∑n=0

(m

n

)xm−nyn = (x+ y)m where

(m

n

)=

m!n! (m− n)!

m∑n=1

n =m(m+ 1)

2

m∑n=1

n2 =m(m+ 1)(2m+ 1)

6

m∑n=1

n3 =m2(m+ 1)2

4

m∑n=0

xn =1− xm+1

1− x

m∑n=1

(2n− 1) = m2

m−1∑n=0

(x+ ny) =m

2[2x+ (m− 1)y]

m∑n=0

ej(x+2ny) =sin [(m+ 1)y]

sin yej(x+my)

5

Page 6: Tables

5 Inequalities

Inequalities for series∣∣∣∣∣m∑n=1

xnyn

∣∣∣∣∣2

≤(

m∑n=1

|xn|2)·(

m∑n=1

|yn|2)

Cauchy-Schwartz inequality

∣∣∣∣∣m∑n=1

xnyn

∣∣∣∣∣ ≤(

m∑n=1

|xn|p)1/p

·(

m∑n=1

|yn|q)1/q

where 1p + 1

q = 1, p > 1, q > 1

Holder’s inequality(m∑n=1

(xn + yn)p)1/p

≤(

m∑n=1

xpn

)1/p

+

(m∑n=1

ypn

)1/p

where xn ≥ 0, yn ≥ 0, p ≥ 1

Minkowski inequality

Inequalities for integrals∣∣∣∣∫ f(x)g(x) dx∣∣∣∣2 ≤ (∫ |f(x)|2 dx

)·(∫|g(x)|2 dx

)Cauchy-Schwartz inequality

∫|f(x)g(x)| dx ≤

(∫|f(x)|p dx

)1/p

·(∫|g(x)|q dx

)1/q

where 1p + 1

q = 1, p > 1, q > 1 Holder’s inequality(∫|f(x) + g(x)|p dx

)1/p

≤(∫|f(x)|p dx

)1/p

+(∫|g(x)|q dx

)1/q

where p > 1

Minkowski inequality

6 Differential and Integral Calculus

d

dx

(f(x)g(x)

)= f(x)g′(x) + f ′(x)g(x), Product rule

d

dx

(f(x)g(x)

)=g(x)f ′(x)− f(x)g′(x)

g2(x), Quotient rule

d

dxf(g(x)

)=df

dg

dg

dx, Chain rule

d

dx

∫ g(x)

f(x)h(x, λ) dλ = h

(x, g(x)

)g′(x)− h

(x, f(x)

)f ′(x) +

∫ g(x)

f(x)

∂xh(x, λ) dλ,

Leibniz’s rule

dm

dxm(f · g) = (f · g)(m) =

m∑n=0

(m

n

)f (n)g(m−n) where

(m

n

)=

m!n! (m− n)!∫

f dg = fg −∫g df, Integration by parts

6

Page 7: Tables

Integral and Derivative Table

∫f(x) dx f(x) f ′(x) =

d

dxf(x) Conditions

1n+ 1

xn+1 xn nxn−1 n 6= −1

ln |x| 1x

− 1x2

x 6= 0

x lnx− x lnx1x

x > 0

ex ex ex

1ln a

ax ax ax ln a a real, a > 0

− cosx sinx cosx

sinx cosx − sinx

− ln | cosx| tanx1

cos2 xx 6= π

2± nπ, n = 0, 1, 2, . . .

x arcsinx+√

1− x2 arcsinx1√

1− x2|x| < 1

x arccosx−√

1− x2 arccosx−1√

1− x2|x| < 1

x arctanx− 12

ln (1 + x2) arctanx1

1 + x2

coshx sinhx coshx

sinhx coshx sinhx

tanhx1

cosh2 x

arcsinhx1√

x2 + 1

arccoshx1√

x2 − 1x > 1

arctanhx1

1− x2|x| < 1

7

Page 8: Tables

7 Integral Table

Indefinite Integrals

a, b, c real unless otherwise stated∫x sin ax dx =

1a2

(sin ax− ax cos ax)

∫x2 sin ax dx =

1a3

(2ax sin ax+ 2 cos ax− a2x2 sin ax)

∫x cos ax dx =

1a2

(cos ax+ ax sin ax)

∫x2 cos ax dx =

1a3

(2ax cos ax− 2 sin ax+ a2x2 sin ax)

∫xeax dx = eax

(x

a− 1a2

), a complex

∫x2eax dx = eax

(x2

a− 2xa2

+2a3

), a complex

∫x3eax dx = eax

(x3

a− 3x2

a2+

6xa3− 6a4

), a complex

∫eax sin bx dx =

eax

a2 + b2(a sin bx− b cos bx)

∫eax cos bx dx =

eax

a2 + b2(a cos bx+ b sin bx)

∫xn ln ax dx =

xn+1

n+ 1ln ax− xn+1

(n+ 1)2

∫ (lnx)n

xdx =

1n+ 1

(lnx)n+1

∫dx

b+ ax=

1a

ln |b+ ax|

∫dx

(b+ ax)n=

−1(n− 1)a(b+ ax)n−1

, n > 1

∫(b+ ax)n =

(b+ ax)n+1

a(n+ 1)n > 0

∫dx√

c+ bx+ ax2=

1√a

ln∣∣∣∣b+ 2ax+ 2

√a(c+ bx+ ax2)

∣∣∣∣ , a > 0

8

Page 9: Tables

∫ √c+ bx+ ax2 dx =

b+ 2ax4a

√c+ bx+ ax2 +

4ac− b2

8a

∫dx√

c+ bx+ ax2, a > 0

∫dx

c+ bx+ ax2=

2√4ac− b2

arctan(

b+ 2ax√4ac− b2

), b2 < 4ac

−2b+ 2ax

, b2 = 4ac

1√b2 − 4ac

ln

∣∣∣∣∣b+ 2ax−√b2 − 4ac

b+ 2ax+√b2 − 4ac

∣∣∣∣∣ , b2 > 4ac

∫x dx

c+ bx+ ax2=

12a

ln |c+ bx+ ax2| − b

2a

∫dx

c+ bx+ ax2

∫dx

a2 + b2x2=

1ab

arctan(bx

a

)∫

x dx

a2 + x2=

12

ln(a2 + x2)

∫x2 dx

a2 + x2= x− a arctan

(x

a

)

∫dx

(a2 + x2)2=

x

2a2(a2 + x2)+

12a3

arctan(x

a

)∫

x dx

(a2 + x2)2=

−12(a2 + x2)∫

x2 dx

(a2 + x2)2=

−x2(a2 + x2)

+12a

arctan(x

a

)

∫dx

(a2 + x2)3=

x

4a2(a2 + x2)2+

3x8a4(a2 + x2)

+3

8a5arctan

(x

a

)∫

x2 dx

(a2 + x2)3=

−x4(a2 + x2)2

+x

8a2(a2 + x2)+

18a3

arctan(x

a

)∫

x4 dx

(a2 + x2)3=

a2x

4(a2 + x2)2− 5x

8(a2 + x2)+

38a

arctan(x

a

)

∫dx

(a2 + x2)4=

x

6a2(a2 + x2)3+

5x24a4(a2 + x2)2

+5x

16a6(a2 + x2)+

516a7

arctan(x

a

)∫

x2 dx

(a2 + x2)4=

−x6(a2 + x2)3

+x

24a2(a2 + x2)2+

x

16a4(a2 + x2)+

116a5

arctan(x

a

)

9

Page 10: Tables

∫x4 dx

(a2 + x2)4=

a2x

6(a2 + x2)3− 7x

24(a2 + x2)2+

x

16a2(a2 + x2)+

116a3

arctan(x

a

)

∫dx

a4 + x4=

14a3√

2ln

(x2 + ax

√2 + a2

x2 − ax√

2 + a2

)+

12a3√

2arctan

(ax√

2a2 − x2

)∫

x2 dx

a4 + x4=−1

4a√

2ln

(x2 + ax

√2 + a2

x2 − ax√

2 + a2

)+

12a√

2arctan

(ax√

2a2 − x2

)

Definite Integrals

∫ ∞0

xa−1e−x dx = Γ(a), a > 0, (by definition)

where Γ(a+ 1) = aΓ(a)Γ(n) = (n− 1)! n = 1, 2, 3, . . .

Γ(

12

)=√π

Γ(n+ 1

2

)=

1 · 3 · 5 · · · (2n− 1)2n

√π, n = 1, 2, 3, . . .

∫ ∞0

xa−1 sin bx dx =Γ(a)ba

sin(πa

2

), 0 < |a| < 1, b > 0

∫ ∞0

xa−1 cos bx dx =Γ(a)ba

cos(πa

2

), 0 < a < 1, b > 0

∫ ∞0

e−ax sin bx dx =b

a2 + b2, a > 0

∫ ∞0

e−ax cos bx dx =a

a2 + b2, a > 0

∫ ∞−∞

e−a2x2+bx dx =

√π

aeb

2/(4a2), a > 0

∫ ∞0

xe−a2x2

dx =1

2a2, a > 0

∫ ∞0

x2e−a2x2

dx =√π

4a3, a > 0

∫ ∞0

xne−a2x2

dx =Γ(n+1

2

)2an+1

, a > 0

∫ ∞0

e−a2x2

cos bx dx =√π

2ae−b

2/(4a2), a > 0

10

Page 11: Tables

∫ ∞0

sinxx

dx =π

2∫ ∞0

(sinxx

)2

dx =π

2∫ ∞0

cos axb2 + x2

dx =π

2be−ab, a > 0, b > 0

∫ ∞0

x sin axb2 + x2

dx =π

2e−ab, a > 0, b > 0

∫ ∞0

xm−1

1 + xndx =

π/n

sin(mπ/n), 0 < m < n

8 Standard Limits

Limits of Series

limn→∞

(1 +a

n)n = ea, a real

limn→∞

nkan = 0, a real, |a| < 1, k = 0, 1, 2, . . .

limn→∞

n√a = 1, a real, a > 0

limn→∞

n√n = 1

limn→∞

n−a = 0, a real, a > 0

Limits of Functions

limx→0

sinxx

= 1

limx→0

ex − 1x

= 1

limx→0

ln(1 + x)x

= 1

limx→0

(1 + ax)1/x = ea, a real

limx↓0

xa lnx = 0, a real, a > 0

limx→∞

lnxxa

= 0, a real, a > 0

limx→∞

xae−x = 0, a real

11

Page 12: Tables

9 Convolutions

Regular Convolution

x(t) ∗ y(t) =∫ ∞−∞

x(t− τ)y(τ) dτ

x[n] ∗ y[n] =∞∑

m=−∞x[n−m]y[m]

Cyclical Convolution

x(t)� y(t) =∫ T

0x((t− τ) mod T

)y(τ) dτ, 0 ≤ t < T

x[n]� y[n] =N−1∑m=0

x[[n−m] mod N

]y[m], n = 0, 1, 2, . . . , N − 1

10 Dirac Delta Function

The Dirac delta function δ(t) is the singular function such that δ(t) = 0 for all t 6= 0 and∫ ∞−∞

δ(t) dx = 1

Note that δ(t)δ(t) is undefined.

Properties of the Dirac Delta Function

Property Expression Conditions

Symmetry δ(−t) = δ(t)

Scaling δ(at) =1|a|δ(t) a real, a 6= 0

Derivative of unit stepd

dtu(t) = δ(t)

Fourier transform δ(t) =1

∫ ∞−∞

e±jωt dω ω real

Multiplication x(t)δ(t− θ) = x(θ)δ(t− θ) θ real

Convolution x(t) ∗ δ(t− θ) = x(t− θ) θ real

Sifting∫ ∞−∞

δ(t− θ)x(t) dt = x(θ) θ real

Multiplication by derivative x(t)δ(m)(t) =m∑n=0

(−1)n(m

n

)x(n)(0)δ(m−n)(t) m = 1, 2, 3, . . .

Sifting with derivative∫ ∞−∞

δ(m)(t)x(t) dt = (−1)mx(m)(0) m = 1, 2, 3, . . .

12

Page 13: Tables

11 Fourier Transform

Continuous-Time Fourier Transform

The Continuous-Time Fourier Transform (CTFT) of a non-periodic function x(t) definedfor t real, is given by

X(ω) = F[x(t)

]=∫ ∞−∞

x(t)e−jωt dt , ω real

The inverse Fourier transform of a non-periodic function X(ω) defined for ω real, is given by

F−1[X(ω)

]=

12π

∫ ∞−∞

X(ω)ejωt dω = x(t) , t real

Parseval’s theorem for the CTFT is given by∫ ∞−∞

x(t)y∗(t) dt =1

∫ ∞−∞

X(ω)Y ∗(ω) dω

Properties of the Continuous-Time Fourier Transform

Property Time signal Fourier transform Conditions

Linearity ax(t) + by(t) aX(ω) + bY (ω) a, b complex

Convolution x(t) ∗ y(t) X(ω)Y (ω)

Converse convolution x(t)y(t)1

2πX(ω) ∗ Y (ω)

Shift x(t− a) e−jωaX(ω) a real

Converse shift ejatx(t) X(ω − a) a real

Differentiationdx(t)dt

jωX(ω)

Converse differentiation −jtx(t)dX(ω)dω

Scaling x(at)1|a|X

a

)a real, a 6= 0

Time-frequency symmetry X(t) 2πx(−ω)

13

Page 14: Tables

Standard Continuous-Time Fourier Transforms

Time signal Fourier transform Conditions

1 2πδ(ω)

u(t) πδ(ω) +1jω

δ(t) 1

δ(t− a) e−jωa a real

ejat 2πδ(ω − a) a real

e−a|t|2a

a2 + ω2a complex, Re(a) > 0

e−atu(t)1

a+ jωa complex, Re(a) > 0

tk−1e−at

(k − 1)!u(t)

1(a+ jω)k

a complex, Re(a) > 0k integer

e−at2

√π

aeω

2/4a a real, a > 0

sin(at) jπδ(ω + a)− jπδ(ω − a) a real

cos(at) πδ(ω + a) + πδ(ω − a) a real

sin(at)u(t) jπ

2δ(ω + a)− j π

2δ(ω − a) +

a

a2 − ω2a real

cos(at)u(t)π

2δ(ω + a)− π

2δ(ω − a) +

a2 − ω2a real

e−at sin(bt)u(t)b

b2 + (a+ jω)2a, b real, a > 0

e−at cos(bt)u(t)a+ jω

b2 + (a+ jω)2a, b real, a > 0

1, |t| ≤ a

0, |t| > a

2 sin(ωa)ω

a real, a ≥ 0

sin atat

π

a, |ω| ≤ a

0, |ω| > a

a real, a ≥ 0

1− |t|

a, |t| ≤ a

0, |t| > a

4 sin2(ωa/2)ω2a

a real, a ≥ 0

14

Page 15: Tables

Discrete-Time Fourier Transform

The Discrete-Time Fourier Transform (DTFT) of a non-periodic function x[n] definedfor n integer, is given by

X(θ) = F[x[n]

]=

∞∑n=−∞

x[n]e−jθn , θ real

with relative frequency θ = ωT where T is the sampling interval.The inverse Fourier transform of a periodic function X(θ) defined for θ real with period 2π,is given by

F−1[X(θ)

]=

12π

∫ π

−πX(θ)ejθn dθ = x[n] , n integer

Parseval’s theorem for the DTFT is given by∞∑

n=−∞x[n]y∗[n] =

12π

∫ π

−πX(θ)Y ∗(θ) dθ

Properties of the Discrete-Time Fourier Transform

Property Time signal Fourier transform Conditions

Linearity ax[n] + by[n] aX(θ) + bY (θ) a, b complex

Convolution x[n] ∗ y[n] X(θ)Y (θ)

Converse convolution x[n]y[n]1

2πX(θ)� Y (θ)

Shift x[n−m] e−jθmX(θ) m integer

Converse shift ejanx[n] X(θ − a) a real

Converse differentiation −jnx[n]dX(θ)dθ

Scaling x[mn]1mX

m

)m = 1, 2, 3, . . .

15

Page 16: Tables

Standard Discrete-Time Fourier Transforms

Time signal Fourier transform Conditions

1 2πδ(θ)

δ[n] 1

δ[n−m] e−jθm m integer

anu[n]1

1− ae−jθa complex, |a| < 1

an, n = 0, 1, . . . ,M − 1

0, otherwise

1− aMe−jθM

1− ae−jθa complex, M = 1, 2, 3, . . .

sin[an] jπδ(θ + a)− jπδ(θ − a) a real

cos[an] πδ(θ + a) + πδ(θ − a) a real

ejan 2πδ(θ − a) a real1, |n| ≤M

0, |n| > M

sin((2M + 1)θ/2

)sin(θ/2)

M = 1, 2, 3, . . .

sin[an]nπ

, n 6= 0

a

π, n = 0

1, |θ| ≤ a

0, |θ| > a

a real, 0 < a ≤ π

Observe that the Fourier transforms are only given for one period i.e. −π ≤ θ < π.

16

Page 17: Tables

Fourier Series

The Fourier Series of a periodic function x(t) defined for t real with period T , are given by

X[k] = F[x(t)

]=

1T

∫ T/2

−T/2x(t)e−j

2πTkt dt , k integer

The inverse Fourier transform of a non-periodic function X[k] defined for k integer, is givenby

F−1[X[k]

]=

∞∑k=−∞

X[k]ej2πTkt = x(t) , t real

Parseval’s theorem for the Fourier series is given by∫ T/2

−T/2x(t)y∗(t) dt =

1T

∞∑k=−∞

X[k]Y ∗[k]

Properties of the Fourier Series

Property Time signal Fourier transform Conditions

Linearity ax(t) + by(t) aX[k] + bY [k] a, b complex

Convolution x(t)� y(t) X[k]Y [k]

Converse convolution x(t)y(t)1TX[k] ∗ Y [k]

Shift x((t− a) mod T

)e−j

2πTkaX[k] a real

Converse shift ej2πTtmx(t) X[k −m] m integer

Differentiationdx(t)dt

jkX[k]

Scaling x(at)1|a|X

[k

a

]a real, a 6= 0

The Trigonometric Form of the Fourier Series is given by

x(t) =a0

2+∞∑k=1

ak cos(

2πTkt

)+∞∑k=1

bk sin(

2πTkt

)where

ak =2T

∫ T/2

−T/2x(t) cos

(2πTkt

)dt k = 0, 1, 2, . . .

bk =2T

∫ T/2

−T/2x(t) sin

(2πTkt

)dt k = 1, 2, 3, . . .

17

Page 18: Tables

The relations between the complex exponential Fourier series and the coefficients of thetrigonometric form are given by

a0 = 2X[0]ak = X[k] +X[−k] k = 1, 2, 3, . . .

bk = j(X[k]−X[−k]

)k = 1, 2, 3, . . .

X[0] =12a0

X[k] =12

(ak − jbk) k = 1, 2, 3, . . .

X[−k] =12

(ak + jbk) k = 1, 2, 3, . . .

Standard Fourier Series

Time signal Fourier transform Conditions

δ(t) 11, |t| ≤ a

0, |t| > a

2aT, k = 0

1πk

sin(

2πTka

), k 6= 0

a real, 0 < a ≤ T2

t

a+ 1, −a ≤ t ≤ 0

− ta

+ 1, 0 < t ≤ a

1T, k = 0

T

π2k2asin2

Tka

), k 6= 0

a real, 0 < a ≤ T2

cos

2at

), |t| ≤ a

0, |t| > a

4aTTπ2 − 16a2k2π

cos(

2πTka

)a real, 0 < a ≤ T

2

Observe that the time signals are only given for one period i.e. −T2 ≤ t <

T2 .

18

Page 19: Tables

Discrete Fourier Transform

The Discrete Fourier Transform (DFT) of a periodic function x[n] defined for n integerwith period N , is given by

X[k] = F[x[n]

]=

N−1∑n=0

x[n]e−j2πNkn , k integer

with k = ωTN2π where T is the sampling interval.

The inverse Fourier transform of a periodic function X[k] defined for k integer with periodN , is given by

F−1[X[k]

]=

1N

N−1∑k=0

X[k]ej2πNkn = x[n] , n integer

Parseval’s theorem for the DFT is given by

N−1∑n=0

x[n]y∗[n] =1N

N−1∑k=0

X[k]Y ∗[k]

Properties of the Discrete Fourier Transform

Property Time signal Fourier transform Conditions

Linearity ax[n] + by[n] aX[k] + bY [k] a, b complex

Convolution x[n]� y[n] X[k]Y [k]

Converse convolution x[n]y[n]1NX[k]� Y [k]

Shift x[[n−m] mod N

]e−j

2πNkmX[k] m integer

Converse shift ej2πNnmx[n] X

[[k −m] mod N

]m integer

Scaling x[mn]1mX

[k

m

]m = 1, 2, 3, . . .

Time-frequency symmetry X[n] Nx[−k]

19

Page 20: Tables

Standard Discrete Fourier Transforms

Time signal Fourier transform Conditions

1 Nδ[k]

δ[n] 1

δ[n−m] e−j2πNkm m integer

an1− aN

1− ae−j2πNk

a complex, |a| < 1an, n = 0, 1, . . . ,M − 1

0, otherwise

1− aMe−j2πNkM

1− ae−j2πNk

a complex, M = 1, 2, 3, . . .

sin[

2πNnm

]jN

2δ[k +m]− jN

2δ[k −m] m integer

cos[

2πNnm

]N

2δ[k +m] +

N

2δ[k −m] m integer

ej2πNnm Nδ[k −m] m integer

Observe that the time signals are only given for one period i.e. 0 ≤ n ≤ N − 1. The Fouriertransforms are also given for one period i.e. 0 ≤ k ≤M − 1.

20

Page 21: Tables

12 Laplace Transform

Two-Sided Laplace Transform

The two-sided Laplace transform of a function x(t) defined for t real, is given by

X(s) = L[x(t)

]=∫ ∞−∞

x(t)e−st dt , s ∈ Ex

The existence region Ex consist of all the complex numbers s for which the integral converges.The inverse two-sided Laplace transform of a function X(s) defined for s ∈ Ex, is given by

L−1[X(s)

]= lim

R→∞

12πj

∫ σ+jR

σ−jRX(s)est ds = x(t) , t real

Where the integral is taken along a vertical line that lies entirely in the existence region Exand all singularities of X(s) are on the left side of this line.

Properties of the Two-Sided Laplace Transform

Property Time signal Laplace transform Existence region Conditions

Linearity ax(t) + by(t) aX(s) + bY (s) Ex ∩ Ey a, b complex

Convolution x(t) ∗ y(t) X(s)Y (s) Ex ∩ Ey

Shift x(t− a) e−saX(s) Ex a real

Converse shift eatx(t) X(s− a) (s− a) ∈ Ex a complex

Differentiationdx(t)dt

sX(s) Ex

Integration∫ t

−∞x(τ) dτ

X(s)s

{s ∈ Ex|Re(s) > 0}

Converse diff. −tx(t)dX(s)ds

Ex

Scaling x(at)1|a|X

(s

a

)s

|a|∈ Ex a real, a 6= 0

21

Page 22: Tables

Standard Two-Sided Laplace Transforms

Time signal Laplace transform Existence region Conditions

u(t)1s

Re(s) > 0

δ(t) 1 s complex

δ(k)(t) sk s complex k = 0, 1, 2, . . .

eatu(t)1

s− aRe(s) > Re(a) a complex

−eatu(−t) 1s− a

Re(s) < Re(a) a complex

tk−1

(k − 1)!u(t)

1sk

Re(s) > 0 k = 0, 1, 2, . . .

tk−1eat

(k − 1)!u(t)

1(s− a)k

Re(s) > Re(a) a complex, k = 0, 1, 2, . . .

− tk−1eat

(k − 1)!u(−t) 1

(s− a)kRe(s) < Re(a) a complex, k = 0, 1, 2, . . .

sin (at)u(t)a

s2 + a2Re(s) > 0 a real

cos (at)u(t)s

s2 + a2Re(s) > 0 a real

eat sin (bt)u(t)b

(s− a)2 + b2Re(s) > a a, b real

eat cos (bt)u(t)s− a

(s− a)2 + b2Re(s) > a a, b real

22

Page 23: Tables

One-Sided Laplace Transform

The one-sided Laplace transform of a function x(t) defined for t ∈ [0,∞), is given by

X(s) = L[x(t)

]=∫ ∞

0x(t)e−st dt , s ∈ Ex

The existence region Ex consist of all the complex numbers s for which the integral converges.The inverse one-sided Laplace transform of a function X(s) defined for s ∈ Ex, is given by

L−1[X(s)

]= lim

R→∞

12πj

∫ σ+jR

σ−jRX(s)est ds =

{x(t) for t ≥ 0

0 for t < 0

Where the integral is taken along a vertical line that lies entirely in the existence region Exand all singularities of X(s) are on the left side of this line.

Properties of the One-Sided Laplace Transform

Property Time signal Laplace transform Existence region Conditions

Linearity ax(t) + by(t) aX(s) + bY (s) Ex ∩ Ey a, b complex

Convolution x(t) ∗ y(t) X(s)Y (s) Ex ∩ Ey

Shift x(t− a)u(t− a) e−saX(s) Ex a real, θ ≥ 0

Converse shift eatx(t) X(s− a) (s− a) ∈ Ex a complex

Differentiationdx(t)dt

sX(s)− x(0+) Ex

Integration∫ t

0x(τ) dτ

X(s)s

{s ∈ Ex|Re(s) > 0}

Converse diff. −tx(t)dX(s)ds

Ex

Scaling x(at)1aX

(s

a

)s

a∈ Ex a real, a > 0

Multiple differentiation: for any integer k ≥ 0

L[dkx(t)dtk

]= skX(s)−

k−1∑i=0

sk−i−1dix(0+)dti

, s ∈ Ex

Initial value property: x(0+) = lims→∞

sX(s)Final value property: lim

t→∞x(t) = lim

s→0sX(s)

23

Page 24: Tables

Standard One-Sided Laplace Transforms

Time signal Laplace transform Existence region Conditions

11s

Re(s) > 0

u(t)1s

Re(s) > 0

δ(t) 1 s complex

δ(k)(t) sk s complex k = 0, 1, 2, . . .

eat1

s− aRe(s) > Re(a) a complex

tk−1

(k − 1)!1sk

Re(s) > 0 k = 0, 1, 2, . . .

tk−1eat

(k − 1)!1

(s− a)kRe(s) > Re(a) a complex, k = 0, 1, 2, . . .

sin (at)a

s2 + a2Re(s) > 0 a real

cos (at)s

s2 + a2Re(s) > 0 a real

eat sin (bt)b

(s− a)2 + b2Re(s) > a a, b real

eat cos (bt)s− a

(s− a)2 + b2Re(s) > a a, b real

24

Page 25: Tables

13 z-Transform

Two-Sided z-Transform

The two-sided z-transform of a function x[n] defined for n integer, is given by

X(z) = Z[x[n]

]=

∞∑n=−∞

x[n]z−n , z ∈ Ex

The existence region Ex consist of all the complex numbers z for which the sum converges.The inverse two-sided z-transform of a function X(z) defined for z ∈ Ex, is given by

Z−1[X(z)

]=

12πj

∮CX(z)zn−1 dz = x[n] , n integer

Where the contour integral is taken along a counterclockwise arbitrary closed path C thatencloses all the finite poles of X(z)zn−1 and lies entirely in the existence region Ex.For the actual calculation of the inverse z-transform complex function theory is used. If thefunction X(z)zn−1 has k finite poles at z = ai, i = 1, 2, . . . , k then the inversion formula isevaluated via the theorem of residues

x[n] =k∑i=1

Resz=ai

[X(z)zn−1

]For a pole of order m at z = a, the residue is evaluated as

Resz=a

[X(z)zn−1

]=

1(m− 1)!

limz→a

[dm−1

dzm−1(z − a)mX(z)zn−1

]

For a simple pole this is equal to

Resz=a

[X(z)zn−1

]= lim

z→a

[(z − a)X(z)zn−1

]

Properties of the Two-Sided z-Transform

Property Time signal Laplace transform Existence region Conditions

Linearity ax[n] + by[n] aX(z) + bY (z) Ex ∩ Ey a, b complex

Convolution x[n] ∗ y[n] X(z)Y (z) Ex ∩ Ey

Multiple shift x[n− k] z−kX(z) Ex k integer

Converse shift anx[n] X(z

a)

z

a∈ Ex a complex

Converse diff. −nx[n] zdX(z)dz

Ex

25

Page 26: Tables

Standard Two-Sided z-Transforms

Time signal z-transform Existence region Conditions

u[n]z

z − 1|z| > 1

δ[n] 1 z complex

δ[n− k] z−k z 6= 0 k = 1, 2, 3, . . .

δ[n+ k] zk z complex k = 0, 1, 2, . . .

nu[n]z

(z − 1)2|z| > 1

n2u[n]z(z + 1)(z − 1)3

|z| > 1

anu[n]z

z − a|z| > |a| a complex

anu[n− 1]a

z − a|z| > |a| a complex

nanu[n− 1]az

(z − a)2|z| > |a| a complex

(n−1k−1

)anu[n− k]

ak

(z − a)k|z| > |a| a complex, k = 0, 1, 2, . . .

−anu[−n− 1]z

z − a|z| < |a| a complex

−anu[−n]a

z − a|z| < |a| a complex

(−1)k(k−n−1k−1

)anu[−n]

ak

(z − a)k|z| < |a| a complex, k = 0, 1, 2, . . .

an

n!u[n] ea/z |z| > |a| a complex

1nu[n− 1] ln

(z

z − 1

)|z| > 1

an sin(bn)u[n]az sin(b)

z2 − 2az cos(b) + a2|z| > |a| a, b real

an cos(bn)u[n]z2 − az sin(b)

z2 − 2az cos(b) + a2|z| > |a| a, b real

an sin(bn+ c)u[n]z2 sin(c) + az sin(b− c)z2 − 2az cos(b) + a2

|z| > |a| a, b, c real

26

Page 27: Tables

One-Sided z-Transform

The one-sided z-transform of a function x(n) defined for n = 0, 1, 2, . . ., is given by

X(z) = Z[x[n]

]=∞∑n=0

x[n]z−n , z ∈ Ex

The existence region Ex consist of all the complex numbers z for which the sum converges.The inverse one-sided z-transform of a function X(z) defined for z ∈ Ex, is given by

Z−1[X(z)

]=

12πj

∮CX(z)zn−1 dz =

{x[n] for n ≥ 0

0 for n < 0

Where the contour integral is taken along a counterclockwise arbitrary closed path C thatencloses all the finite poles of X(z)zn−1 and lies entirely in the existence region Ex.For the evaluation of this integral, see the section on the two-sided z-transform (page 25).

Properties of the One-Sided z-Transform

Property Time signal Laplace transform Existence region Conditions

Linearity ax[n] + by[n] aX(z) + bY (z) Ex ∩ Ey a, b complex

Convolution x[n] ∗ y[n] X(z)Y (z) Ex ∩ Ey

Back shift x[n+ k] zkX(z)−k−1∑i=0

zk−ix(i) Ex k = 0, 1, 2, . . .

Forward shift x[n− k]u[n− k] z−kX(z) Ex k = 0, 1, 2, . . .

Converse shift anx[n] X(z

a)

z

a∈ Ex a complex

Converse diff. −nx[n] zdX(z)dz

Ex

Forward shift without multiplication by a unit step function requires information of the signalx[n] for n < 0. The one-sided Laplace transform for any k = 0, 1, 2, . . . is given by

Z[x[n− k]

]= z−kX(z) +

k∑i=1

z−(k−i)x(−i) , z ∈ Ex

Initial value property: x[0] = lim|z|→∞

X(z)

Final value property: limn→∞

x[n] = limz→1

(z − 1)X(z)

27

Page 28: Tables

Standard One-Sided z-Transforms

Time signal z-transform Existence region Conditions

1z

z − 1|z| > 1

u[n]z

z − 1|z| > 1

δ[n] 1 z complex

δ[n− k] z−k z 6= 0 k = 1, 2, 3, . . .

nz

(z − 1)2|z| > 1

n2 z(z + 1)(z − 1)3

|z| > 1

anz

z − a|z| > |a| a complex

anu[n]z

z − a|z| > |a| a complex

anu[n− 1]a

z − a|z| > |a| a complex

nanu[n− 1]az

(z − a)2|z| > |a| a complex

(n−1k−1

)anu[n− k]

ak

(z − a)k|z| > |a| a complex, k = 0, 1, 2, . . .

−anu[−n] −1 z complex a complex

(−1)k(k−n−1k−1

)anu[−n] (−1)k z complex a complex, k = 0, 1, 2, . . .

an

n!ea/z |z| > |a| a complex

1nu[n− 1] ln

(z

z − 1

)|z| > 1

an sin(bn)az sin(b)

z2 − 2az cos(b) + a2|z| > |a| a, b real

an cos(bn)z2 − az sin(b)

z2 − 2az cos(b) + a2|z| > |a| a, b real

an sin(bn+ c)z2 sin(c) + az sin(b− c)z2 − 2az cos(b) + a2

|z| > |a| a, b, c real

28