23

Click here to load reader

Table of Contents - trentonk12.org  · Web viewContent Area/Course: Forensics. ... pressure, letter and word spacing, dimensions of letters, connections between letters and words,

  • Upload
    lamminh

  • View
    212

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Table of Contents - trentonk12.org  · Web viewContent Area/Course: Forensics. ... pressure, letter and word spacing, dimensions of letters, connections between letters and words,

TRENTON CENTRAL HIGH SCHOOL CURRICULUM GUIDE

Unit VI Aspects of Arson and Explosion Investigations Pacing: 10 daysContent Area/Course: Forensics

Content Standards/CPI’s Addressed in this Unit

Essential Questions Enduring Understandings

Forensics5

Stage 1- Desired Results

Standard 5.1 Science Practices Science is both a body of knowledge and an evidence-based, model-building enterprise that continually extends, refines, and revises knowledge. The four Science Practices strands encompass the knowledge and reasoning skills that students must acquire to be proficient in science.

A. Understand Scientific Explanations: Students understand core concepts and principles of science and use measurement and observation tools to assist in categorizing, representing, and interpreting the natural and designed world.

12. A.1. Refine interrelationships among concepts and patterns of evidence found in different central scientific explanations.12. A.2. Develop and use mathematical, physical, and computational tools to build evidence-based models and pose

theories.12. A.3. Use scientific principles and theories to build and refine standards for data collection, posing controls, and presenting

evidence.B. Generate Scientific Evidence Through Active Investigations: Students master the conceptual, mathematical, physical, and computational tools that need to be applied when constructing and evaluating claims.

12. B.2. Build, refine, and represent evidence based models using mathematical, physical, and computational tools.12. B.4. Develop quality controls to examine data sets and to examine evidence as a means of generating and reviewing

Standard 5.2 Physical Science: Physical science principles, including fundamental ideas about matter, energy, and motion, are powerful conceptual tools for making sense of phenomena in physical, living, and earth systems science

C. Forms of Energy: Knowing the characteristics of familiar forms of energy, including potential and kinetic energy, is useful in coming to the understanding that, for the most part, the natural world can be explained and is predictable. 12. C.1 Use the kinetic theory to describe and explain the properties of solids, liquids, gases.D. Energy Transfer and Conservation. The conservation of energy can be demonstrated by keeping track of familiar forms of energy as they are transferred from one object to another. 12. D.5 Model the change in rate of reaction by changing a factor.

Big Idea: Fire (Arson), and use of explosives are associated with a large percentage of criminal activity. The role of the forensic investigator or forensic scientist is to find evidence at a crime scene for further investigation.

1. What is oxidation? What is energy?2. What are the different forms of energy?3. What role does heat play in chemical reactions?4. What are heat of combustion? Ignition temperature?5. What is the difference between exothermic and

endothermic reactions?6. What are three mechanisms of heat transfer?7. How is physical evidence treated and collected at a

crime scene of suspected arson?8. What are typical laboratory tests and procedures for

detection and determination of residues from fire?9. How are explosives classified and what are some

examples of these?10. What are some common explosives?11. How is physical evidence treated at a crime scene?12. What are some laboratory procedures used to detect

and identify explosive residues.

1. An arson investigator needs to begin examing a fire scene for sign of arson as soon as the fire has been extinguished; concentrating on the source or finding the fire’s orign.

2. Materials found at the suspected point of origin need to be collected and placed in airtight containers so any volatile substance, like fuel or gasoline, is contained for testing.

3. To initiate and sustain combustion, a. Fuel must be present b. oxygen must be available in sufficient amounts c. heat must be applied to initiate the combustion and d. sufficient heat must be generated to sustain the fire.

4. Heat is transferred by conduction, convection, and radiation.

5. Most arsons are initiated by petroleum distillates a s gasoline and kerosene.

6. Fuel may be identified by gas chromatograph.7. Explosives are classified as being high, like ammonium

nitrate and requires an ignition source; or low, like black powder.

8. Debris from a crime scene may be examined microscopically for evidence or clues.

9. Explosives may be identified by infared spectrophotometry or by X-ray defraction, or mass spectrometry.

Page 2: Table of Contents - trentonk12.org  · Web viewContent Area/Course: Forensics. ... pressure, letter and word spacing, dimensions of letters, connections between letters and words,

TRENTON CENTRAL HIGH SCHOOL CURRICULUM GUIDE

What key knowledge and skills will students acquire as a result of this unit?

What evidence will show that students understand?

What other evidence needs to be collected in light of Stage 1 Desired Results?

Forensics6

Content: 1. Conditions necessary to initiate and sustain

combustion.2. Signs of an accelerant-inititated fire3. How evidence is collected and treated and stored at a

scene of suspected arson.4. Standard laboratory tests and procedures used to

detect, and identify chemical substances used to initiate and fuel fires (like gasoline); explosives and ignitors.

5. Classification of explosives as high or low and examples. The speed at which an explosive decomposes determines this.

6. Explosions are substances that undergo a rapid oxidation reaction with a release of heat and gases caused by build-up of gas pressure.

7. The explosion site must be searched for evidence of detonated material or any other foreign object.

Skills:Students will be able to:1. Give definition of oxidation and example.2. Give examples of fuels used in arson.3. Give signs of what to look for in suspected arson (fire starts

away from main source of heat/electricity in crime scene)4. Give explanation about collection of evidence and its

treatment at a scene of suspected arson.5. Give examples of explosives and classification.6. Give examples of igniters commonly used in explosions.7. Research a historic explosion site to determine how the

evidence was collected, treated, in order to put the crime scene together and verify evidence in order to convict the criminals. (Oklahoma City, Columbine High School, or Lockerbie Scotland).

Stage 2- AssessmentEvidence that will be collected to determine whether or not desired results are achieved.

Suggested Performance Tasks:(complex, real world, authentic applications demonstration of high level thinking, e.g., explain, interpret, apply…)

Lab on “Chemistry of Fire” Zumdahl. Demo on using fire extinguisher and DVD to accompany

Saferstein book activities Chp 13 on forensic investigations of fire, Chp 14 forensic investigations of explosions.

Other Evidence:Prentice Hall Forensic ScienceChp 2-3 Identifying firearms with questions

Casebook of Forensic detectionExplosives and fire p. 70 and assorted case histories in that chapter.

Page 3: Table of Contents - trentonk12.org  · Web viewContent Area/Course: Forensics. ... pressure, letter and word spacing, dimensions of letters, connections between letters and words,

TRENTON CENTRAL HIGH SCHOOL CURRICULUM GUIDE

Student Self-Assessment and Reflection:

Forensics7

Opportunities for self monitoring learning:(e.g., reflection journals, learning logs, pre/post tests, self editing - based on ongoing formative assessments, portfolios)

Case Studies:1. Oklahoma City2. Columbine High School

E nglish language Arts Standards: RST.11-12.1. Cite specific textual evidence to support analysis of science and technical texts, attending to important distinctions the author makes and to any gaps or inconsistencies in the account. RST.11-12.2. Determine the central ideas or conclusions of a text; summarize complex concepts, processes, or information presented in a text by paraphrasing them in simpler but still accurate terms. RST.11-12.3. Follow precisely a complex multistep procedure when carrying out experiments, taking measurements, or performing technical tasks; analyze the specific results based on explanations in the text.RST.11-12.4. Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 11–12 texts and topics. Common Core Standards for Mathematics:

4.5 A. Problem Solving 3. Select and apply a variety of appropriate problem-solving strategies to solve problems.

4.5 B. Communication1. Use communication to organize and clarify their mathematical thinking2. Communicate their mathematical thinking coherently and clearly to peers, teachers, and others, both orally and in writing.3. Analyze and evaluate the mathematical thinking and strategies of others.

4.5 C Connections 2. Use connections among mathematical ideas to explain concepts.

3. Recognize that mathematics is used in a variety of contexts outside of mathematics.4. Apply mathematics in practical situations and in other disciplines.

4.5 D Reasoning4. Rely on reasoning, rather than answer keys, teachers, or peers, to check the correctness of their problem solutions.

5. Make and investigate mathematical conjectures4.5 E Representations 1. Create and use representations to organize, record, and communicate mathematical ideas as pictorial or symbolic.

2.Select, apply, and translate among mathematical representations to solve problems. 4.5 F. Technology

6. Use computer-based laboratory technology for mathematical applications in the sciences..

Internet search In Library Webquest: Forensics Power Point

Suggested Strategies/Resources (See Appendix B)

Cross Curricular Connections

Technology IntegrationThe ability to responsibly use appropriate technology to communicate, solve problems,

and access manage, integrate, evaluate, and create information

Page 4: Table of Contents - trentonk12.org  · Web viewContent Area/Course: Forensics. ... pressure, letter and word spacing, dimensions of letters, connections between letters and words,

TRENTON CENTRAL HIGH SCHOOL CURRICULUM GUIDE

Unit VII : Forensic Serology Pacing:10 daysContent Area: Forensics

Content Standards/CPI’s Addressed in this Unit (See Appendix A)

Essential Questions Enduring Understandings

Forensics8

Stage 1- Desired Results

Standard 5.1 Science Practices Science is both a body of knowledge and an evidence-based, model-building enterprise that continually extends, refines, and revises knowledge. The four Science Practices strands encompass the knowledge and reasoning skills that students must acquire to be proficient in science.

A. Understand Scientific Explanations: Students understand core concepts and principles of science and use measurement and observation tools to assist in categorizing, representing, and interpreting the natural and designed world.

12. A.1. Refine interrelationships among concepts and patterns of evidence found in different central scientific explanations.12. A.2. Develop and use mathematical, physical, and computational tools to build evidence-based models and pose theories.12. A.3. Use scientific principles and theories to build and refine standards for data collection, posing controls, and presenting

evidence.B. Generate Scientific Evidence Through Active Investigations: Students master the conceptual, mathematical, physical, and computational tools that need to be applied when constructing and evaluating claims.

12. B.2. Build, refine, and represent evidence based models using mathematical, physical, and computational tools.12. B.4. Develop quality controls to examine data sets and to examine evidence as a means of generating and reviewing

Standard 5.3 Life Science: Life science principles are powerful conceptual tools for making sense of the complexity, diversity, and interconnectedness of life on earth. Order in natural systems arises in accordance with rules that govern the physical world, and the order of natural systems can be modeled and predicted through the use of mathematics.

A Organization and Development: Living organisms are composed of cellular units (structures) that carry out functions required for life. Cellular units are composed of molecules, which also carry out biological functions.

12.A.1 Represent and explain the relationship between the structure and function of each class of complex molecules using a variety of models.12.A.2 Demonstrate the properties and functions of enzymes by designing and carrying out an experiment.12.A.3 Predict a cell’s response in a given set of environmental conditions .

Big Idea : Due to the nature and diversity of the human blood type, blood stains are a piece of physical evidence that may easily link the criminal to the crime.

1. What are antigens and antibodies?2. How are the four blood types different? A,B,AB, O?3. What is the RH factor? 4. What is agglutination and why does it occur?5. How is blood typed?6. What is the makeup of blood?7. How is blood identified at a crime scene as “blood”?8. What is the precipitin test?9. How are seminal fluids identified and collected?10. How is physical evidence collected and what tests are

performed from a rape victim?11. How can bloodstain patterns aid in a criminal

investigation?

1. An antigen is located on a surface of a cell; and is a protein that stimulates the body to produce antibodies against it. Every cell has antigens that can be grouped into systems to determine blood type.

2. Most whole blood is typed for it A-B-O identify. Type O blood is the most common; type AB is the least common.

3. Blood typing is used to identify both a victim and a suspect.

4. When blood is tested with an antigen, it produces a series of antibodies, all of which will attack the surface.

5. Blood must first be: identified as blood with a luminal test, identified a being human associated with a particular individual before it is tested

for the DNA6. The location, distribution, shape, and appearance of the

blood stains/spatters must be documented because it may be used to reconstruct the crime and connect the victim(s) with the suspect.

7. A rape victim must undergo an examination as soon as possible after the assault, and tested for fluids before the samples degrade.

8. The suspect of the rape victim must be apprehended and tested within 24 hours of the crime in order to obtain the victim’s DNA.

Page 5: Table of Contents - trentonk12.org  · Web viewContent Area/Course: Forensics. ... pressure, letter and word spacing, dimensions of letters, connections between letters and words,

TRENTON CENTRAL HIGH SCHOOL CURRICULUM GUIDE

What key knowledge and skills will students acquire as a result of this unit?

What evidence will show that students understand?

What other evidence needs to be collected in light of Stage 1 Desired Results?

Student Self-Assessment and Reflection:

Forensics9

Content:1. List A-B-O antigens and antibodies found in blood of each

of four blood types: A, B, AB, O.2. Explain blood typing using punnet squares of genotype

and phenotype of each blood type.3. Agglutination occurs from reaction of antigens and

antibodies of each type.4. Describe tests to characterize a stain as blood.5. Explain precipitin tests6. Lab tests are used to identify DNA from seminal fluid

obtained from rape victims.7. Blood samples and fluids from a rape victim must be

preserved and refrigerated in order to preserve samples for testing. Blood is like meat and will rot at room temperatures.

8.

Skills: 1. List the ABO antigens and antibodies found in the blood for

each of the four blood types2. Explain why agglutination occurs.3. Explain how whole blood is typed.4. Describe tests used to characterize a stain as blood.5. Describe how the angle , shape and size blood stains

occurred from the victim may help determine the impact, weapon, and distance of the crime.

6. Describe viscosity and how it will affect the shape the blood takes on impact of a surface.

7.

Stage 2- AssessmentEvidence that will be collected to determine whether or not desired results are achieved.

Suggested Performance Tasks:(complex, real world, authentic applications demonstration of high level thinking, e.g., explain, interpret, apply…)

Labs: Walker Wood Lab 3-8 Blood type Lab 3-9 Blood

Saferstein Lab 11 Blood spatterLab 12 Blook stain analysis

Bertino Lab 8-1 Test bloodLab 8-3 Blood spatterLab 8-4 Impact angleLab 8-5 Convergence

Other Evidence:(e.g., tests, quizzes, prompts, work samples, observations)

Opportunities for self monitoring learning:(e.g., reflection journals, learning logs, pre/post tests, self editing - based on ongoing formative assessments, portfolios)

Page 6: Table of Contents - trentonk12.org  · Web viewContent Area/Course: Forensics. ... pressure, letter and word spacing, dimensions of letters, connections between letters and words,

TRENTON CENTRAL HIGH SCHOOL CURRICULUM GUIDE

Prentice Hall Forensic Science

Chp 3-2 blood with questions

Casebook of Forensic detectionSerology p. 197

Unit VIII : Handwriting Analysis Pacing: 10 daysForensics

10

English language Arts Standards:RST.11-12.1. Cite specific textual evidence to support analysis of science and technical texts, attending to important distinctions the author makes and to any gaps or inconsistencies in the account. RST.11-12.2. Determine the central ideas or conclusions of a text; summarize complex concepts, processes, or information presented in a text by paraphrasing them in simpler but still accurate terms. RST.11-12.3. Follow precisely a complex multistep procedure when carrying out experiments, taking measurements, or performing technical tasks; analyze the specific results based on explanations in the text.RST.11-12.4. Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 11–12 texts and topics. Common Core Standards for Mathematics:

4.5 A. Problem Solving 3. Select and apply a variety of appropriate problem-solving strategies to solve problems.

4.5 B. Communication1. Use communication to organize and clarify their mathematical thinking2. Communicate their mathematical thinking coherently and clearly to peers, teachers, and others, both orally and in

writing.3. Analyze and evaluate the mathematical thinking and strategies of others.

4.5 C Connections 2. Use connections among mathematical ideas to explain concepts.

3. Recognize that mathematics is used in a variety of contexts outside of mathematics.4. Apply mathematics in practical situations and in other disciplines.

4.5 D Reasoning4. Rely on reasoning, rather than answer keys, teachers, or peers, to check the correctness of their problem solutions.

5. Make and investigate mathematical conjectures4.5 E Representations 1. Create and use representations to organize, record, and communicate mathematical ideas as pictorial or symbolic.

2.Select, apply, and translate among mathematical representations to solve problems. 4.5 F. Technology

6. Use computer-based laboratory technology for mathematical applications in the sciences.

Software for Blood typing: ABO Demonstration using computer and projector.Websites for blood typingTutorials using powerpoint for blood typing and identification of blood cells.

Suggested Strategies/Resources

Cross Curricular Connections

Technology IntegrationThe ability to responsibly use appropriate technology to communicate, solve problems,

and access manage, integrate, evaluate, and create information

Page 7: Table of Contents - trentonk12.org  · Web viewContent Area/Course: Forensics. ... pressure, letter and word spacing, dimensions of letters, connections between letters and words,

TRENTON CENTRAL HIGH SCHOOL CURRICULUM GUIDE

Content Area/Course: Forensics

Content Standards/CPI’s Addressed in this Unit (See Appendix A)

Essential Questions Enduring Understandings

Forensics11

Stage 1- Desired Results

Standard 5.1 Science Practices Science is both a body of knowledge and an evidence-based, model-building enterprise that continually extends, refines, and revises knowledge. The four Science Practices strands encompass the knowledge and reasoning skills that students must acquire to be proficient in science.

A Understand Scientific Explanations: Student s understand core concepts and principles of science and use measurement and observation tools to assist in categorizing, representing, and interpreting the natural and designed world.

12.A.3 Use scientific principles and theories to build and refine standards for data collection, posing controls, and presenting evidence.

B. Generate Scientific Evidence Through Active Investigations: Students master the conceptual, mathematical, physical, and computational tools that need to be applied when constructing and evaluating claims.

12.B.1 Design investigations, collect evidence, analyze data, and evaluate evidence to determine measures of central tendencies, causal/correlation relationships, and anomalous data.

12.B.3 Revise predictions and explanations using evidence, and connect explanations/arguments to established scientific knowledge, models, and theories.

C. Reflect on Scientific Knowledge: Scientific knowledge builds on itself over time. 12.C.3. Consider alternative theories to interpret and evaluate evidence-based arguments.

D. Participate Productively in Science: The growth of scientific knowledge involves critique and communication, which are social practices that are governed by a core set of values and norms.

12.D.1 Engage in multiple forms of discussion in order to process, make sense of , and learn from others’ ideas, observations, and experience.

12.D.2 Represent ideas using literal representations, such as graphs, tables, journals, concept maps, and diagrams.Standard 5.2 Physical Science: All students will understand that physical science principles, including fundamental ideas about matter, energy, and motion, are poserful conceptual tools for making sense of phenomnena in physical, living, and Earth systems science.

A. Properties of Matter: All objects and substances in the natural world are composed of matter. Matter has two fundamental properties: matter takes up space, and matter has inertia.

12.A.2. Account for the differences in the physical properties of solids, liquids, and gases.12.A.5.. Describe the process by which solutes dissolve in solvents.

Big Idea: People have a distinct handwriting style that cannot be copied accurately and distinctly.

1. Name some characteristics of handwriting which are different and distinct between individuals.

2. Why is handwriting analysis important to forensics?3. What are some characteristics that can add variability to

an individuals’ handwriting.4. What are some distict characteristics of typewriters and

printing devices?5. What are some common ways that documents are

changed?6. How isink tested?7. How are documents collected and preserved as evidence

in a criminal investigation?

1. Handwriting analysis includes: speed, pressure, letter and word spacing, dimensions of letters, connections between letters and words, pen, writing skill, angularity and hand dexterity.

2. Crimes involving forgery and falsification of documents require skill of the examiner to identify and recognize the characteristics of the writing and documents in question.

3. Some of the variations of non-writing characteristics include margins, crowding, insertions, alignment, spelling, punctuation, legibility, and grammar.

4. Variations between printing devices include ink, type of paper used, variations in alignment of letters, alignment of paper to machine, and defects in type. Copiers include patterns from the glass platen and impression rollers.

5. In additions to individual handwriting differences; examiners may identify documents that have been altered by clues including erasures, white-out, pen differences, and handwriting.

6. Ink is tested using chromatography.

Content:1. Any object with handwriting or print which is in doubt of

authenticity is a questioned document.2. Document examiners gather documents of know authorship

to compare them to individual characteristics of questioned document.

3. Handwriting of two different individuals may never be identical. However, it may be altered under influence of drugs or alcohol.

4. Examiners identify the make and model of printing devices of the questioned document.

5. Document examiners deal with evidence that may have been changed in several ways, as through alterations, erasure, and obliterations.

6. Studying chemical composition of writing ink present on documents may verify whether known and questioned documents were prepared by the same pen.

Skills:1. Students will know basic handwriting characteristics distinct

to individuals involved; in addition to other characteristics distinct to the crime itself.

2. Students will be able to identify vocabulary in identification of documents.

3. List some of the techniques document examiners use to uncover alterations, erasure, obliterations, and variations in pen and paper.

4. Recognize individual characteristics of typewriters, printers and copiers.

Page 8: Table of Contents - trentonk12.org  · Web viewContent Area/Course: Forensics. ... pressure, letter and word spacing, dimensions of letters, connections between letters and words,

TRENTON CENTRAL HIGH SCHOOL CURRICULUM GUIDE

What key knowledge and skills will students acquire as a result of this unit?

What evidence will show that students understand?

What other evidence needs to be collected in light of Stage 1 Desired Results?

Student Self-Assessment and Reflection:

Forensics12

Stage 2- AssessmentEvidence that will be collected to determine whether or not desired results are achieved.

Suggested Performance Tasks:(complex, real world, authentic applications demonstration of high level thinking, e.g., explain, interpret, apply…)

Labs: Walker Wood Lab 1-1 ForgeryLab 1-2 typewriter

Saferstein Lab 8 Handwriting analysis

Bertino Activity 10-1 Handwriting analysis10-2 Analysis ransom note10-3 US currency forgery

Other Evidence:(e.g., tests, quizzes, prompts, work samples, observations)

Packet of information on counterfeiting supplied by US Mint and website ID of currency Resources:Prentice Hall Forensic Science (Legal system and courts) Chp 4-1 through 4-4 with questions

Casebook of Forensic detectionDisputed documents p. 41Voiceprints p. 291

Page 9: Table of Contents - trentonk12.org  · Web viewContent Area/Course: Forensics. ... pressure, letter and word spacing, dimensions of letters, connections between letters and words,

TRENTON CENTRAL HIGH SCHOOL CURRICULUM GUIDE

Unit IX: Forensic Anthropology / Time of Death Pacing: 10 days

Forensics13

Opportunities for self monitoring learning:(e.g., reflection journals, learning logs, pre/post tests, self editing - based on ongoing formative assessments, portfolios)

Keep journal of handwriting.

Web quest Video Projector

English language Arts Standards:RST.11-12.2. Determine the central ideas or conclusions of a text; summarize complex concepts, processes, or information presented in a text by paraphrasing them in simpler but still accurate terms. RST.11-12.3. Follow precisely a complex multistep procedure when carrying out experiments, taking measurements, or performing technical tasks; analyze the specific results based on explanations in the text.RST.11-12.4. Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 11–12 texts and topics. Common Core Standards for Mathematics:

4.5 A. Problem Solving 3. Select and apply a variety of appropriate problem-solving strategies to solve problems.

4.5 B. Communication1. Use communication to organize and clarify their mathematical thinking2. Communicate their mathematical thinking coherently and clearly to peers, teachers, and others, both orally and in writing.3. Analyze and evaluate the mathematical thinking and strategies of others.

4.5 C Connections 4. Apply mathematics in practical situations and in other disciplines.4.5 D Reasoning

4. Rely on reasoning, rather than answer keys, teachers, or peers, to check the correctness of their problem solutions. 5. Make and investigate mathematical conjectures4.5 E Representations 1. Create and use representations to organize, record, and communicate mathematical ideas as pictorial or symbolic.

2.Select, apply, and translate among mathematical representations to solve problems. 4.5 F. Technology

6. Use computer-based laboratory technology for mathematical applications in the sciences.

.

Computer Projector

Strategies/Resources (See Appendix B)

Cross Curricular Connections

Technology IntegrationThe ability to responsibly use appropriate technology to communicate, solve problems,

and access manage, integrate, evaluate, and create information

Page 10: Table of Contents - trentonk12.org  · Web viewContent Area/Course: Forensics. ... pressure, letter and word spacing, dimensions of letters, connections between letters and words,

TRENTON CENTRAL HIGH SCHOOL CURRICULUM GUIDE

Content Area/Course: Forensics

Content Standards/CPI’s Addressed in this Unit (See Appendix A)

Essential Questions Enduring Understandings

What key knowledge and skills will students acquire as a result of this unit?Forensics

14

Stage 1- Desired Results

Standard 5.1 Science Practices Science is both a body of knowledge and an evidence-based, model-building enterprise that continually extends, refines, and revises knowledge. The four Science Practices strands encompass the knowledge and reasoning skills that students must acquire to be proficient in science.

A. Understand Scientific Explanations: Students understand core concepts and principles of science and use measurement and observation tools to assist in categorizing, representing, and interpreting the natural and designed world.

12. A.1. Refine interrelationships among concepts and patterns of evidence found in different central scientific explanations.12. A.2. Develop and use mathematical, physical, and computational tools to build evidence-based models and pose

theories.12. A.3. Use scientific principles and theories to build and refine standards for data collection, posing controls, and presenting

evidence.B. Generate Scientific Evidence Through Active Investigations: Students master the conceptual, mathematical, physical, and computational tools that need to be applied when constructing and evaluating claims.

12. B.2. Build, refine, and represent evidence based models using mathematical, physical, and computational tools.12. B.4. Develop quality controls to examine data sets and to examine evidence as a means of generating and reviewing

Standard 5.3 Life Science: Life science principles are powerful conceptual tools for making sense of the complexity, diversity, and interconnectedness of life on earth. Order in natural systems arises in accordance with rules that govern the physical world, and the order of natural systems can be modeled and predicted through the use of mathematics.

A Organization and Development: Living organisms are composed of cellular units (structures) that carry out functions required for life. Cellular units are composed of molecules, which also carry out biological functions.

12.A.1 Represent and explain the relationship between the structure and function of each class of complex molecules using a variety of models.12.A.2 Demonstrate the properties and functions of enzymes by designing and carrying out an experiment.

12.A.3 Predict a cell’s response in a given set of environmental conditions .

Big Idea: The body and skeletal system have built in indicators that can tell us the manner of death, the cause of death. Bones can tell us race, sex, habitat and age.

1. What is the definition of death?2. What is the difference between cause, manner,

mechanism of death? Distinguish between the three manners.

3. What are algor, livor and rigor mortis.4. Describe the decomposition stages of a corpse.5. Define forensic entomology.6. Define forensic anthropology.7. What can bones tell us about sex, age, race, and

nature of the victim? What indicators do we observe?

1. Recognize the eight basic signs of life from Biology.2. Definitions of cause, manner and mechanism of death

are all different and students must know than the cause may be secondary to the actual crime; even if it occurs at a later date.

3. Algor mortis is death temperature4. Livor mortis is death color5. Rigor mortis is stiffness or if past the point of rigor mortis

then breakdown of tissues. All these can determine how long the victim has been dead.

6. The corpse undergoes a critical series of stages that will identify how long the person has been dead; based upon studies conducted in various measured conditions. These indicate to an expert the crime. That is why the crime scene investigation must be done in a critical and timely manner. Later, all evidence is destroyed and there will be nothing to investigate if not conducted properly.

7. Forensic entomology is the life cycle of the various insects that inhabit the body after death.

8. Forensic anthropology is the study of the breakdown of the body in various conditions after death.

9. The bone size is very important in a criminal investigation involving a murder suspect. Bone size and shape different between race and sex

Page 11: Table of Contents - trentonk12.org  · Web viewContent Area/Course: Forensics. ... pressure, letter and word spacing, dimensions of letters, connections between letters and words,

TRENTON CENTRAL HIGH SCHOOL CURRICULUM GUIDE

What evidence will show that students understand?

What other evidence needs to be collected in light of Stage 1 Desired Results?

Student Self-Assessment and Reflection

Forensics15

Content:1. Explain how time of death is determined from

insects.2. Discuss the sucession of insects found on a body

and the life cycle of each. What does each tell you about the time of death of the victim?

3. Describe how environmental factors influence the signs of death.

4. Describe forensic facial reconstruction.Draw a composite facial picture of your lab partner.

5. Know how to measure a body after death by practicing on your lab partners.

6. Definition of death and the stages a body goes through as it decomposes.

7. Know about the Science of Forensic Entomology.8. Know about the Science of Forensic

Anthropology.

Skills: 1. Construct a human skeleton from memory using cutouts of the

major bones of the body.2. Measure and calculate the relationship between major bones of

the body using the tables in the book.3. Describe the decomposition of a corpse.

Stage 2- AssessmentEvidence that will be collected to determine whether or not desired results are achieved.

Suggested Performance Tasks: Labs: Walker Wood Lab 4-1 Bones

Lab 4-2 A and B; BonesSaferstein Lab 2

Lab 9 Paper chromatographyLab 10 Thin paper chromatographyLab 16 Forensic AnthropologyLab 17 Forensic Entomology

Other Evidence:(e.g., tests, quizzes, prompts, work samples, observations)

Resources:Prentice Hall Forensic ScienceChp 3.3 with questions

Casebook of Forensic detectionForensic Anthropology p. 122Time of death p. 217Identification of remains p. 166Odontology p.142

Page 12: Table of Contents - trentonk12.org  · Web viewContent Area/Course: Forensics. ... pressure, letter and word spacing, dimensions of letters, connections between letters and words,

TRENTON CENTRAL HIGH SCHOOL CURRICULUM GUIDE

Unit 10 : Ballistics Pacing: 10 Days

Forensics16

Opportunities for self monitoring learning:(e.g., reflection journals, learning logs, pre/post tests, self editing - based on ongoing formative assessments, portfolios)

Bertino and Bertino: Chp 11: Death: Meaning, Manner, Mechanism, Cause, and Time.Chp 13: Forensic Anthropology.

English language Arts Standards:RST.11-12.1. Cite specific textual evidence to support analysis of science and technical texts, attending to important distinctions the author makes and to any gaps or inconsistencies in the account. RST.11-12.2. Determine the central ideas or conclusions of a text; summarize complex concepts, processes, or information presented in a text by paraphrasing them in simpler but still accurate terms. RST.11-12.3. Follow precisely a complex multistep procedure when carrying out experiments, taking measurements, or performing technical tasks; analyze the specific results based on explanations in the text.RST.11-12.4. Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 11–12 texts and topics. Common Core Standards for Mathematics:

4.5 A. Problem Solving 3. Select and apply a variety of appropriate problem-solving strategies to solve problems.

4.5 B. Communication1. Use communication to organize and clarify their mathematical thinking2. Communicate their mathematical thinking coherently and clearly to peers, teachers, and others, both orally and in writing.3. Analyze and evaluate the mathematical thinking and strategies of others.

4.5 C Connections 2. Use connections among mathematical ideas to explain concepts.

3. Recognize that mathematics is used in a variety of contexts outside of mathematics.4. Apply mathematics in practical situations and in other disciplines.

4.5 D Reasoning4. Rely on reasoning, rather than answer keys, teachers, or peers, to check the correctness of their problem solutions.

5. Make and investigate mathematical conjectures4.5 E Representations 1. Create and use representations to organize, record, and communicate mathematical ideas as pictorial or symbolic.

2.Select, apply, and translate among mathematical representations to solve problems. 4.5 F. Technology

6. Use computer-based laboratory technology for mathematical applications in the sciences.

Computer Power point Transparency Overhead projector Calculator

Cross Curricular Connections

Technology IntegrationThe ability to responsibly use appropriate technology to communicate, solve problems,

and access manage, integrate, evaluate, and create information

Page 13: Table of Contents - trentonk12.org  · Web viewContent Area/Course: Forensics. ... pressure, letter and word spacing, dimensions of letters, connections between letters and words,

TRENTON CENTRAL HIGH SCHOOL CURRICULUM GUIDE

Content Area/Course: Forensics

Content Standards/CPI’s Addressed in this Unit (See Appendix A)

Essential Questions Enduring Understandings

What key knowledge and skills will students acquire as a result of this unit?Forensics

17

Stage 1- Desired Results

Standard 5.1 Science Practices Science is both a body of knowledge and an evidence-based, model-building enterprise that continually extends, refines, and revises knowledge. The four Science Practices strands encompass the knowledge and reasoning skills that students must acquire to be proficient in science.

A. Understand Scientific Explanations: Student s understand core concepts and principles of science and use measurement and observation tools to assist in categorizing, representing, and interpreting the natural and designed world.12.A.2. Develop and use mathematical, physical, and computational tools to build evidence-based models and pose theories.12.A.3 Use scientific principles and theories to build and refine standards for data collection, posing controls, and presenting evidence.

Standard 5.2 Physical Science: Physical science principles, including fundamental ideas about matter, energy, and motion, are powerful conceptual tools for making sense of phenomena in physical, living, and earth systems.

E. Forces and Motion: It takes energy to change the motion of objects. The energy change is understood in terms of forces.12.E.1. Compare the calculated and measure speed, average speed, and acceleration of an object in motion, and account for differences that may exist between calculated and measured values.

12.E.4. Measure and describe the relationship between the force acting on an object and the resulting acceleration. Standard 5.3 Life Science: Life science principles are powerful conceptual tools for making sense of the complexity, diversity, and interconnectedness of life on earth. Order in natural systems arises in accordance with rules that govern the physical world, and the order of natural systems can be modeled and predicted through the use of mathematics.

A Organization and Development: Living organisms are composed of cellular units (structures) that carry out functions required for life. Cellular units are composed of molecules, which also carry out biological functions.

12.A.1 Represent and explain the relationship between the structure and function of each class of complex molecules using a variety of models.

Big Idea: Weapons and bullets; tools and firearms leave trace evidence behind a crime.

1. What are main characteristics a bullet will shown after passing through the barrel of a gun.

2. What is the importance of ballistics?3. What is rifling?4. How are bullets identified?5. What are lands and groove s in a gun?6. What is the difference between handguns and rifles?7. What is the difference between a shotgun and a rifle?8. What is comparison microscopy?9. What is the IBIS database?10. What is the Greiss test?

1. A bullet undergoes structural changesand markings as it passes through the chamber. The role of the forensic ballistic expert is to identify and match these markings.

2. Ballistics experts are trained in to match, identify any ammunition and/or gun to a crime scene, suspect, or victim. They use the markings on guns, markings imparted by guns, shells, cartridges, a bullet casings as a means to identify and link evidence to a crime scene.

3. Gun barrels are manufactured with spiral grooves which propel and aim the bullet when the gun is triggered.

4. No two guns are identical and their rifling is different and distict with each gun.

5. Lands and grooves are the high and low points of a gun barrel which impart distict and unique markings on a bullet as it passes through the barrel of the chamber.

6. Handguns are not able to shoot a bullet with the same force as a rifle. They are more easily hidden, and faster to load.

7. A shotgun shoots a cluster of shot with powder which vary in gauge(diameter) and are measured in the number of shot per cartridge. A rifle has bullets which are measured in mm or inches.

8. A comparison microscope is a side/side comparison of bullets and markings in order to identify, line-up, and match the markings imparted by the same gun. This is an important tool in a criminal investigation.

9. The IBIS database is a national database for bullet identification.10. The Greiss test is a chemical test used to develop patterns of

gunpowder residues around bullet holes.

Page 14: Table of Contents - trentonk12.org  · Web viewContent Area/Course: Forensics. ... pressure, letter and word spacing, dimensions of letters, connections between letters and words,

TRENTON CENTRAL HIGH SCHOOL CURRICULUM GUIDE

What evidence will show that students understand?

What other evidence needs to be collected in light of Stage 1 Desired Results?

Student Self-Assessment and Reflection

Forensics18

Content:1. The role of ballistics experts in a criminal investigation.2. The training a forensic scientist (specialized in ballistics)

undergoes in order to do his job.3. Explain the use of comparison microscope with examples.4. Explain the Greiss test.5. Explain the IBIS database.6. The procedure for determining how far a weapon was fired from a

target.7. Laboratory tests used by forensic experts to identify and determine

whether a suspect as fired a gun.8. Recognize class and individual characteristics of bullets and

cartridge cases.

1. Describe the tests used to determine if an individual fired a weapon, emphasizing the limitations of the tests.

2. Explain why it may be possible to restore an obliterated serial number.

3. List procedures for the proper collection and preservation of firearm evidence.

4. Discuss famous cases in which a criminal is linked to a crime, where they were incriminated by evidence used by gun identification (Thorn and Nack).

5. Explain and write about the importance of ballistics experts in a criminal investigation involving ammunition.

Stage 2- AssessmentEvidence that will be collected to determine whether or not desired results are achieved.

Suggested Performance Tasks:(complex, real world, authentic applications demonstration of high level thinking, e.g., explain, interpret, apply…)

Other Evidence:(e.g., tests, quizzes, prompts, work samples, observations). Resources:Bertino Chp 17 and questionsCasebook of Forensic detectionBallistics p. 3

Opportunities for self monitoring learning:(e.g., reflection journals, learning logs, pre/post tests, self editing - based on ongoing formative assessments, portfolios)

Bertino and Bertino: Chp 17

Cross Curricular Connections

Page 15: Table of Contents - trentonk12.org  · Web viewContent Area/Course: Forensics. ... pressure, letter and word spacing, dimensions of letters, connections between letters and words,

TRENTON CENTRAL HIGH SCHOOL CURRICULUM GUIDE

Unit 11 : DNA Pacing: 5 DaysForensics

19

English language Arts Standards:RST.11-12.1. Cite specific textual evidence to support analysis of science and technical texts, attending to important distinctions the author makes and to any gaps or inconsistencies in the account. RST.11-12.2. Determine the central ideas or conclusions of a text; summarize complex concepts, processes, or information presented in a text by paraphrasing them in simpler but still accurate terms. RST.11-12.3. Follow precisely a complex multistep procedure when carrying out experiments, taking measurements, or performing technical tasks; analyze the specific results based on explanations in the text.RST.11-12.4. Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 11–12 texts and topics. Common Core Standards for Mathematics:

4.5 A. Problem Solving 3. Select and apply a variety of appropriate problem-solving strategies to solve problems.

4.5 B. Communication1. Use communication to organize and clarify their mathematical thinking2. Communicate their mathematical thinking coherently and clearly to peers, teachers, and others, both orally and in writing.3. Analyze and evaluate the mathematical thinking and strategies of others.

4.5 C Connections 2. Use connections among mathematical ideas to explain concepts.

3. Recognize that mathematics is used in a variety of contexts outside of mathematics.4. Apply mathematics in practical situations and in other disciplines.

4.5 D Reasoning4. Rely on reasoning, rather than answer keys, teachers, or peers, to check the correctness of their problem solutions.

5. Make and investigate mathematical conjectures4.5 E Representations 1. Create and use representations to organize, record, and communicate mathematical ideas as pictorial or symbolic.

2.Select, apply, and translate among mathematical representations to solve problems. 4.5 F. Technology

6. Use computer-based laboratory technology for mathematical applications in the sciences.

Computer Power point Transparency Overhead projector Calculator

Technology IntegrationThe ability to responsibly use appropriate technology to communicate, solve problems,

and access manage, integrate, evaluate, and create information

Page 16: Table of Contents - trentonk12.org  · Web viewContent Area/Course: Forensics. ... pressure, letter and word spacing, dimensions of letters, connections between letters and words,

TRENTON CENTRAL HIGH SCHOOL CURRICULUM GUIDE

Content Area/Course: Forensics

Content Standards/CPI’s Addressed in this Unit (See Appendix A)

Essential Questions Enduring Understandings

Forensics20

Stage 1- Desired Results

Standard 5.1 Science Practices Science is both a body of knowledge and an evidence-based, model-building enterprise that continually extends, refines, and revises knowledge. The four Science Practices strands encompass the knowledge and reasoning skills that students must acquire to be proficient in science.

A. Understand Scientific Explanations: Students understand core concepts and principles of science and use measurement and observation tools to assist in categorizing, representing, and interpreting the natural and designed world.

12. A.1. Refine interrelationships among concepts and patterns of evidence found in different central scientific explanations.12. A.2. Develop and use mathematical, physical, and computational tools to build evidence-based models and pose theories.12. A.3. Use scientific principles and theories to build and refine standards for data collection, posing controls, and presenting

evidence.B. Generate Scientific Evidence Through Active Investigations: Students master the conceptual, mathematical, physical, and computational tools that need to be applied when constructing and evaluating claims.

12. B.2. Build, refine, and represent evidence based models using mathematical, physical, and computational tools.12. B.4. Develop quality controls to examine data sets and to examine evidence as a means of generating and reviewing

Standard 5.3 Life Science: Life science principles are powerful conceptual tools for making sense of the complexity, diversity, and interconnectedness of life on earth. Order in natural systems arises in accordance with rules that govern the physical world, and the order of natural systems can be modeled and predicted through the use of mathematics.

A Organization and Development: Living organisms are composed of cellular units (structures) that carry out functions required for life. Cellular units are composed of molecules, which also carry out biological functions.

12.A.1 Represent and explain the relationship between the structure and function of each class of complex molecules using a variety of models.12.A.2 Demonstrate the properties and functions of enzymes by designing and carrying out an experiment.12.A.3 Predict a cell’s response in a given set of environmental conditions .

Big Idea: DNA has become the Indispensable forensic science diagnostic tool.

1. What is the basic structure of DNA?2. How are proteins formed? 3. What is the connection between DNA and proteins?4. What is the difference between DNA and RNA ?5. How is DNA extracted from samples? 6. What is the sampling requirement and identification? How

are samples preserved?7. What is electrophoresis and how is it used as a diagnostic

tool to extract DNA?8. What is PCR (polymerase chain reaction) technology?9. What is STR (short tandem repeat) DNA analysis?

1. DNA is a large polymer molecule made of repeating links called nucleotides. Four bases are Adenine, guanine, cytosine, and thymine

2. The gene is a fundamental unit of heredity. Each gene is made of DNA sequences to control the genetic code of cells. Portions of DNA are unique to each individual.

3. In the laboratory, DNA is cut by a restriction enzyme and fragments are separated by electrophoresis. Each molecule has a positive end and a negative end; therefore, each segment has as well.

4. Polymerase chain reaction PCR is used to understand how DNA replicates.

5. Short tandem repeat (STR) is the most successful and wide y used DNA –profiling procedure. It is derived from the cell’s nucleus.

6. The other method used is mitochondrial DNA which is outside of the cell’s nucleus. It is derives from samples as hair when STR is not possible.

7. DNA evidence should not be packaged in an airtight container because of moisture that may cause bacteria and mold growth. Instead, it needs well ventilated box or paper container.

Page 17: Table of Contents - trentonk12.org  · Web viewContent Area/Course: Forensics. ... pressure, letter and word spacing, dimensions of letters, connections between letters and words,

TRENTON CENTRAL HIGH SCHOOL CURRICULUM GUIDE

What key knowledge and skills will students acquire as a result of this unit?

What evidence will show that students understand?

What other evidence needs to be collected in light of Stage 1 Desired Results?

Forensics21

English language Arts Standards:RST.11-12.1. Cite specific textual evidence to support analysis of science and technical texts, attending to important distinctions the author makes and to any gaps or inconsistencies in the account. RST.11-12.2. Determine the central ideas or conclusions of a text; summarize complex concepts, processes, or information presented in a text by paraphrasing them in simpler but still accurate terms. RST.11-12.3. Follow precisely a complex multistep procedure when carrying out experiments, taking measurements, or performing technical tasks; analyze the specific results based on explanations in the text.RST.11-12.4. Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 11–12 texts and topics. Common Core Standards for Mathematics:

4.5 A. Problem Solving 3. Select and apply a variety of appropriate problem-solving strategies to solve problems.4.5 B. Communication1. Use communication to organize and clarify their mathematical thinking2. Communicate their mathematical thinking coherently and clearly to peers, teachers, and others, both orally

and in writing.3. Analyze and evaluate the mathematical thinking and strategies of others.

4.5 C Connections 2. Use connections among mathematical ideas to explain concepts.3. Recognize that mathematics is used in a variety of contexts outside of mathematics.4. Apply mathematics in practical situations and in other disciplines.4.5 D Reasoning4. Rely on reasoning, rather than answer keys, teachers, or peers, to check the correctness of their problem

solutions. 5. Make and investigate mathematical conjectures4.5 E Representations 1. Create and use representations to organize, record, and communicate mathematical ideas as pictorial or

symbolic.2.Select, apply, and translate among mathematical representations to solve problems. 4.5 F. Technology6. Use computer-based laboratory technology for mathematical applications in the sciences.

Content:1. Learn the components of DNA and the structure of the

molecule2. Describe base-pairing rules3. Explain how DNA sequence determine protein structure4. Describe DNA replication5. Understand how DNA can be spliced into a foreign DNA

strand6. Describe commercial applications of recombinant DNA

technology7. Compare coding and noncoding DNA

1. Compare nuclear DNA and mitochondrial DNA2. Discuss the application of a DNA computerized

database to a criminal investigation3. List the procedures to be taken for the proper

preservation of blood stain evidence for laboratory DNA analysis

Stage 2- AssessmentEvidence that will be collected to determine whether or not desired results are achieved.

Suggested Performance Tasks:(complex, real world, authentic applications demonstration of high level thinking, e.g., explain, interpret, apply…)

Students will be able to write about the testing requirements for a famous case. Examples include the following:1. James Brown- establishment of paternity2. O.J. Simpson- to establish a connection between suspect and the evidence.3. Marie Antoinette- to establish paternity of person claiming to be her son and heir to the throne; and who escaped prison during the

revolution.4. Thomas Jefferson- to establish the rights of heirs to his estate through Sally Hemmings; a mistress.

Other Evidence:(e.g., tests, quizzes, prompts, work samples, observations)

Bertino Chp 7 and questionsCasebook of Forensic detection

Cross Curricular Connections

Page 18: Table of Contents - trentonk12.org  · Web viewContent Area/Course: Forensics. ... pressure, letter and word spacing, dimensions of letters, connections between letters and words,

TRENTON CENTRAL HIGH SCHOOL CURRICULUM GUIDE

Forensics22

Books Used for curriculum development

Page 19: Table of Contents - trentonk12.org  · Web viewContent Area/Course: Forensics. ... pressure, letter and word spacing, dimensions of letters, connections between letters and words,

TRENTON CENTRAL HIGH SCHOOL CURRICULUM GUIDE

Bertino and Bertino Forensic Science; Fundamentals and InvestigationsMason, OH; South-Western Cengage learning, 2008.

Cocroft, Clarence Forensic ScienceUpper Saddle River, NJ; Pearson Education,Inc. 2009.

Ehrenfreund, Norbert You be the Judge: 20 True Crimes and Cases to SolveNaperville, IL; Sphinx Publishing, 2008.

Evans, Colin Casebook of Forensic DetectionNY; John Wiley and Sons, 1996.

Richard Saferstein Forensic Science an Introduction (1st Ed., Prentice Hall 2006)

Richard Saferstein Criminalistics: An Introduction to Forensic Science (8th Ed., Prentice Hall 2004)

Walker, Wood Crime Scene InvestigationsWest Nyack, NY; The Center for Applied Research in Education; 1998.

Resources for Teachers Managing Death Investigation (USDOJ)Prentice Hall (Criminalistics) Forensic Shows; Discovery, TLC, A&ECRC Press (Intro to Forensic Science) Court TV

Loosleaf Law (NYS Penal Law) FirearmsID.comAmerican Academy of Forensic Science Arson Resources

Practical Guide to Homicide Investigation ISBN 0-8493-8160-6

The Casebook of Forensic Detection                       ISBN 0-471-07650-3

Forensics23