41
System of Ecological Forecasting (SEF): Users' Manual Pegov, S., Khomyakov, B., Kroutko, V., Nikitin, E. and Nikolayenko, E. IIASA Working Paper WP-83-086 August 1983

System of Ecological Forecasting (SEF): Users' Manual · (SEF) : USERS ' MANUAL INTRODUCTION The system of ecological forecasting (SEF) created at the All-Union Research Institute

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

  • System of Ecological Forecasting (SEF): Users' Manual

    Pegov, S., Khomyakov, B., Kroutko, V., Nikitin, E. and Nikolayenko, E.

    IIASA Working Paper

    WP-83-086

    August 1983

  • Pegov, S., Khomyakov, B., Kroutko, V., Nikitin, E. and Nikolayenko, E. (1983) System of Ecological Forecasting (SEF):

    Users' Manual. IIASA Working Paper. IIASA, Laxenburg, Austria, WP-83-086 Copyright © 1983 by the author(s).

    http://pure.iiasa.ac.at/2226/

    Working Papers on work of the International Institute for Applied Systems Analysis receive only limited review. Views or

    opinions expressed herein do not necessarily represent those of the Institute, its National Member Organizations, or other

    organizations supporting the work. All rights reserved. Permission to make digital or hard copies of all or part of this work

    for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial

    advantage. All copies must bear this notice and the full citation on the first page. For other purposes, to republish, to post on

    servers or to redistribute to lists, permission must be sought by contacting [email protected]

    mailto:[email protected]

  • NOT FOR QUOTATION WITHOUT PERMISSION OF THE AUTHOR

    SYSTEM OF ECOLOGICAL FORECASTING (SEF) : USERS ' MANUAL

    S. Pegov P. Khomyakov V. Kroutko E. Nikitin E. Nikolayenko

    A d a p t i v e R e s o u r c e P o Z i c i e s P r o j e c t , I IASA

    August 1983 WP- 8 3- 8 6

    Working Papers are interim reports on work of the International Institute for Applied Systems Analysis and have received only limited review. Views or opinions expressed herein do not necessarily repre- sent those of the Institute or of its National Member Organizations.

    INTERNATIONAL INSTITUTE FOR APPLIED SYSTEMS ANALYSIS A-2361 Laxenburg, Austria

  • CONTENTS

    INTRODUCTION, 1

    1. OVERVIEW OF THE MODEL, 1

    2. GENERAL DESCRIPTION OF THE SYSTEM, 4

    3. MODELLING STAGES, 5

    REFERENCES, 26

    APPENDIX 1 , 27

    APPENDIX 2, 29

    APPENDIX 3, 31

  • SYSTEM OF ECOLOGICAL FORECASTING (SEF) : USERS ' MANUAL

    INTRODUCTION

    The sys tem o f e c o l o g i c a l f o r e c a s t i n g (SEF) c r e a t e d a t t h e

    All-Union Research I n s t i t u t e f o r Systems S t u d i e s (VNIISI) i n

    Moscow, i s des igned f o r a n a l y z i n g and f o r e c a s t i n g changes i n

    l o c a l env i ronmenta l c o n d i t i o n s , which may r e s u l t from human

    a c t i v i t i e s w i t h i n a r e g i o n , n a t u r a l c a l a m i t i e s , o r g l o b a l changes.

    The b a s i c p o r t i o n o f t h e sys tem is an i n t e g r a t e d model o f env i ron-

    menta l ad jus tment . Access t o t h e model i s ach ieved through

    an i n t e r a c t i v e procedure des igned t o meet t h e requ i rements of

    u s e r s w i t h . d i f f e r e n t backgrounds i n eco logy and programming.

    A l l programs a r e w r i t t e n i n FORTRAN 77 . The model h a s been

    s u c c e s s f u l l y a p p l i e d f o r p r o j e c t i n g t h e outcomes o f v a r i o u s

    p o l i c y o p t i o n s i n f o r e s t r y and r e g i o n a l development.

    1. OVERVIEW OF THE MODEL

    The model d e a l s w i t h env i ronmenta l l y homogeneous a r e a s

    ( r e g i o n s ) n o t less t h a n 10,000 km2 i n s i z e . The s p e c i f i c a t i o n

    o f t h e equa t i ons i nc l uded i n t h e model i s based on t h e h i s t o r i c

    e v o l u t i o n o f p a r a g e n e t i c s e t s o f l a n d s . The model c o n s i s t s o f

    3 submodels ( s e c t o r s ) , devoted t o t h e ad jus tment o f d i f f e r e n t

    sets of env i ronmenta l pa ramete rs : t h e b i o t i c s e c t o r , t h e wa te r

    s e c t o r , and p o l l u t i o n s e c t o r .

  • The b i o t i c s e c t o r covers t h e rep roduc t i on o f v e g e t a t i o n

    (b iomass) , a s w e l l a s changes i n t h e amount o f dead biomass

    and s o i l f e r t i l i t y . * The model d i s t i n g u i s h e s 3 t ypes o f l ands :

    - l a n d s no t used f o r a g r i c u l t u r a l pu rposes ; - l a n d s used f o r a g r i c u l t u r a l purposes; and - wet lands

    and a v a r i e t y of v e g e t a t i o n t y p e s , such a s t u n d r a , t a i g a , d i f f e r -

    e n t k i nds of f o r e s t s , e t c . The model a l s o accoun ts f o r p o s s i b l e

    s h i f t s from one t y p e of v e g e t a t i o n t o ano the r a s a r e s u l t o f

    changes i n env i ronmenta l c o n d i t i o n s .

    The b i o t i c pa ramete rs o f t h e model a r e r e s p o n s i b l e t o

    exogenous d i s t u r b a n c e s ( p o l i c y measures, n a t u r a l c a l a m i t i e s ,

    g l o b a l changes a s w e l l a s i n p u t s from o t h e r s e c t o r s of t h e model ) .

    The fo l l ow ing o p t i o n s may be i nc l uded i n t h e user -de f ined

    s c e n a r i o :

    - changes i n tempera tu re t r e n d - changes i n p r e c i p i t a t i o n t r e n d - changes i n t h e amount of p o l l u t a n t s and f e r t i l i z e r s - changes i n i r r i g a t i o n - changes i n t h e amount o f biomass caused by f i r e s on

    l ands n o t used f o r a g r i c u l t u r a l purposes

    - new f o r e s t p l a n t a t i o n s on l a n d s n o t used f o r a g r i c u l t u r a l purposes

    - new s h e l t e r b e l t s

    The wa te r s e c t o r o f t h e model covers su r face-wate r f l ows ,

    ground-water f lows (upper and deeper l a y e r s ) , and wa te r reser-

    v o i r s . The o u t p u t of t h i s s e c t o r i n c l u d e s t h e d e n s i t y o f e r o s i o n

    fur rows, t h e r a t e s of ground-water f l ows , s o i l s a l i n i t y , and

    o t h e r h y d r o l o g i c a l p a r a n e t e r s . * *

    *The r e a d e r w i l l f i n d a more d e t a i l e d d e s c r i p t i o n o f t h i s s e c t o r i n Kroutko e t a l . ( 1982a ,b ) .

    **The model does n o t g i v e t h e r a t e s o f su r face-wate r f l ows , s i n c e t h i s i s l a r g e l y a s p a t i a l problem, which cannot be reso l ved by means of a s t r u c t u r a l model.

  • The i n p u t s t o t h i s s e c t o r inc lude :

    - user s p e c i f i e d changes i n dra inage i n t e n s i t y and i n t h e amount of l and , covered wi th r e s e r v o i r ( l a k e s , ponds, e t c . )

    - user s p e c i f i e d chanqes i n t h e qround-water s tock (a rount o f water pupped f o r i r r i g a t i o n purposes)

    - user s p e c i f i e d changes i n t h e amount of land used f o r a g r i c u l t u r a l purposes; water de lays i n i r r i g a t i o n

    - c l i m a t i c changes (g loba l , s p e c i f i e d by t h e u s e r ) - o t h e r changes i n eco log i ca l parameters of t h e reg ion ,

    which a r e ou tpu ts from t h e b i o t i c and p o l l u t i o n s e c t o r s

    of t h e model

    The p o l l u t i o n s e c t o r i s , i n a sense, a s u p e r s t r u c t u r e

    designed f o r t h e d e t a i l e d a n a l y s i s of one of t h e major anthro-

    pogenic f a c t o r s , i . e . , p o l l u t i o n . The p o l l u t a n t s which a r e

    inc luded i n t h e model f a l l i n t o the fo l lowing c a t e g o r i e s :

    - s u l f u r ox ides - n i t rogen ox ides - n i t rogen , phosphorous, and organ ic combinat ions

    The l a t t e r a r e a c t u a l l y f e r t i l i z e r s , bu t a s they a r e dampened

    i n water , they a r e p o l l u t a n t s and we have t h e r e f o r e included

    them i n t h e p o l l u t i o n s e c t o r .

    The type of chemical t ransformat ion of t h e p o l l u t a n t s depends

    upon t h e environment, t h e r e f o r e t h e p o l l u t i o n of a i r , s o i l ,

    and water a r e t r e a t e d s e p a r a t e l y ( t h i s i s a l s o t r u e f o r d i f f e r -

    e n t t ypes of l a n d s ) . The t ransformat ion of f e r t i l i z e r s which

    form durab le combinat ions wi th s o i l components a r e n o t cons idered,

    though t h e model accounts f o r t h e improvement of s o i l due t o

    f e r t i l i z a t i o n .

    The p o l l u t i o n submodels assumes two k inds of c o n t r o l :

    - changes i n p o l l u t i o n r a t e s by type of environment ( a i r , water , s o i l )

    - changes i n t h e r a t e s of chemical t rans fo rmat ion of t h e p o l l u t a n t s , which a r e a r e s u l t of changes i n water f low

    and depend on t h e c u r r e n t s t a t e of t h e ecosys te rs (which

    i s an ou tpu t from t h e o t h e r submodels)

  • The t h r e e submodels mentioned above form an i n t e g r a t e d

    model of l o c a l environmental development. The system a l s o

    inc ludes a number of s e r v i c e modules, which w i l l be d iscussed

    below. Here we s h a l l on ly mention t h e i n i t i a l i z a t i o n module

    which au tomat ica l l y s e t s t h e va lues of t h e environmental param-

    e t e r s corresponding t o an aggregated (mostly v e r b a l ) d e s c r i p t i o n

    of t h e reg ion s p e c i f i e d by t h e use r .

    The approach i s based on t h e assumption t h a t t h e quan t i -

    t a t i v e c h a r a c t e r i s t i c s of t h e reg ion c l o s e l y c o r r e l a t e t o a

    l i m i t e d number of aggregated reg iona l c h a r a c t e r i s t i c s such a s

    c l i m a t i c zone, type of topography, type of l i t h o l o g y , so t h a t th.e

    d isaggregated va lues may be def ined wi th a reasonable degree

    of accuracy on t h e b a s i s of t h e ve rba l c h a r a c t e r i s t i c s of t h e

    environment s p e c i f i e d by t h e user . However, t h i s approach

    imp l ies a r a t h e r h igh degree of aggregat ion. A l l t h e use r

    s p e c i f i e d c h a r a c t e r i s t i c s should r e l a t e t o t h e reg ion a s a

    whole, i . e . , r ep resen t average va lues . S im i la r l y t o i n p u t s ,

    t h e ou tpu ts of t h e model r e f e r only t o t h e genera l t r end of

    reg iona l development. The r e s u l t s , however, a r e by no means

    t r i v i a l . Computer exper iments have shown t h a t t h e model suc-

    c e s s f u l l y copes wi th t h e e f f e c t s o f : s o i l d e t e r i o r a t i o n , f o r e s t

    degradat ion caused by a c i d r a i n s , var ious changes i n t h e compo-

    s i t i o n of s o i l and water a s a r e s u l t of a g r i c u l t u r a l development,

    and changes i n p o t e n t i a l product ion of va r i ous c rops , r e s u l t i n g

    from c l ima te changes.

    2 . GENERAL DESCRIPTION OF THE SYSTEM

    We hope t h a t t h e u s e r w i l l f i n d t h e system easy and con-

    ven ien t t o work wi th . It was designed t o s a t i s f y t h e requ i re -

    ments of t h e u s e r s wi th l i t t l e o r no background i n programming

    and computers. Inpu t mis takes ( i f t r a c e d by t h e system) a r e

    ignored. The most f requen t d i s p l a y is a l i s t of op t i ons ; t h e

    use r has only t o spec i f y t h e op t ion number which does no t

    usua l l y r e q u i r e much e f f o r t .

  • Other advantages of t h e system inc lude t h e fo l lowing:

    - i n t e r a c t i v e access t o t h e model - t h e s p e c i f i c a t i o n of t h e reg ion can be saved f o r f u t u r e use - t h e s p e c i f i c a t i o n of scenar ios can be saved and r e s t o r e d

    i n case t h e use r wishes t o make a l t e r a t i o n s

    - in format ion on t h e c u r r e n t s t a t e of t h e system i s a v a i l - a b l e upon t h e reques t of t h e use r

    - t h e r e s u l t s may be presented i n p l o t t e d o r t a b u l a r form

    3 . MODELLING STAGES

    A user may t e s t an un l imi ted number of d i f f e r e n t p o l i c i e s

    o r scenar ios i n t h e course of a sess ion . However, h i s moves on

    each po l i cy o r scenar io vers ion invo lve s i x s t e p s a s fo l lows:

    1 . spec i f y reg ion

    2 . a d j u s t t h e model t o reg iona l d a t a

    3 . spec i f y scenar io

    4 . s e t t ime i n t e r v a l ; run t h e model

    5 . observe ou tpu t

    6 . choose nex t s tage

    The sess ion always s t a r t s wi th s t a g e 1 , al though t h e sequence

    of s tages a s they may be encountered i n t h e course of t h e

    i n t e r a c t i o n i s not n e c e s s a r i l y numerical ( s e e F igure 1 ) . Before d i scuss ing each s t a g e of t h e model l ing sess ion i n

    g r e a t e r d e t a i l , we s h a l l make a few t e c h n i c a l remarks:

    - i n response t o t h e prompt: ANY ALTERATIONS? (yes = 1 ; no = 2 )

    type 1 f o r "yes" , and 2 f o r "no"

    - when you spec i f y t h e va lue of a c e r t a i n v a r i a b l e , make c e r t a i n t h a t it i s measured i n t h e u n i t s i n d i c a t e d i n

    t h e prompt

    - when a l i s t of op t ions i s d isp layed, t h e use r i s expected t o i npu t t h e number

    - i n case an i npu t mistake should occur , t h e system w i l l r e p e a t i t s ques t i on and ignore t h e previous i npu t

  • An example of an interactive session is presented in A ~ ~ e n d i x 3. - ..

    start 1 region

    specification

    model adjustment to regional data

    end of session I

    scenario specification

    v

    Figure 1. Session stages.

    b model run

    t

    L output

    v choose next stage

  • 3.1 How t o S t a r t t h e Sess ion

    To run t h e model t ype SEF on your t e r m i n a l . The s e s s i o n

    opens w i t h t h e fo l low ing message:

    YOU ARE WELCOME TO THE SYSTEM OF ECOLOGICAL FORECASTING

    you w i l l have t o w a i t f o r a few seconds-the t i m e needed t o

    i n s t a l l t h e t a s k and i n i t i a l i z e t h e system.

    3.2 Spec i f y Region

    The s t a g e opens w i t h a heading

    SPECIFY REGION

    The u s e r w i l l be reques ted t o s p e c i f y t h e e c o l o g i c a l c h a r a c t e r -

    i s t i c s of t h e r e g i o n t h a t he has chosen t o work w i t h . The i n p u t

    v a l u e s shou ld be long-term averages r a t h e r t han c u r r e n t param-

    eters. I f t h e u s e r i s i n t e r e s t e d i n t h e behav io r of t h e system

    under some unusual c i r cumstances he shou ld s p e c i f y a l l t h e

    e x t e r n a l d i s t u r b a n c e s a t t h e s t a g e of s c e n a r i o s p e c i f i c a t i o n .

    There a r e s e v e r a l ways i n which t h e u s e r may s p e c i f y t h e

    reg ion. These a r e l i s t e d i n t h e f i r s t d i s p l a y of t h i s s t a g e :

    Modes of s p e c i f i c a t i o n

    1. o p t i o n a l

    2. au tomat i c

    3. s e l e c t s t a n d a r d reg ion

    4 . r e t u r n t o p rev ious reg ion

    5 . pass on t o n e x t s t a g e

    Opt ions 1-4 a r e c l o s e d i n t h e sense t h a t a f t e r t h e u s e r h a s reached

    t h e end of any p a t h ( r o o t e d i n t h e s e op t i ons ) t h e system r e t u r n s

    t h e i n i t i a l d i s p l a y s o t h a t i f any a l t e r a t i o n s a r e necessa ry

    t h e u s e r may go through t h e procedure aga in .

    3.2.1 Opt ion 1: Op t i ona l S p e c i f i c a t i o n

    The u s e r i s r eques ted t o s p e c i f y d e t a i l e d r e g i o n a l c h a r a c t e r -

    i s t i c s by answering t o systems prompts.

  • The whole procedure is divided into several substages,

    each of which ends with a question:

    Any alterations? (yes = 1 , no = 2)

    If the answer is "yes", the user is offered a chance to

    make input corrections within the current portion of the list.

    The full list of specifications is as follows:

    f 2 - filtration from transit rivers (mm/km ) (water infiltrated

    into ground-water horizon (within the boundaries of

    major transit rivers)/total area)

    - maximum of monthly surface water flow rates/annual rate of surface water flow ( % )

    - depth of first ground-water plane (n) - depth of second ground-water plane (m) - depth of first aquiclud-e (m) - depth of second aquiclude (n) - depth of second water-bearing horizon roof - depth of permafrost (m) (in case there is no permafrost,

    input 150) 2 - total dissectment (km/km )

    2 - dissectment by transit rivers (km/km ) - maximum cut (m) - average cut (m) - X of total area, covered with lakes - average surface slope (tangens) - average width of river valleys - downward infiltration of ground-water ( % ) - infiltration of ground-water, second layer, into rivers ( % ) - ground-water salinity (grams/liter) - deep ground-water salinity (grams/liter)

    Any alterations? (yes = 1 , no = 2)

    Second substage. The user is expected to specify the biotic

    parameters by three types of lands:

  • Biomass, average ( t o n s p e r h e c t a c r e ) :

    1 - l a n d s n o t used f o r a g r i c u l t u r a l purposes 2 - l a n d s used f o r a g r i c u l t u r a l purposes 3 - wet lands

    Mortmass, average ( t o n s p e r h e c t a r e ) :

    1 - l a n d s n o t used f o r a g r i c u l t u r a l purposes 2 - l a n d s used f o r a g r i c u l t u r a l purposes 3 - wet lands S o i l Index

    1 - l a n d s n o t used f o r a g r i c u l t u r a l purposes 2 - l a n d s used f o r a g r i c u l t u r a l purposes 3 - wet lands

    The s o i l i ndex i s a measure of s o i l f e r t i l i t y . The lowest

    va lue of t h e i ndex i s 0 , t h e h i g h e s t i s 2 0 . Th.e fo l l ow ing approx-

    ima te e s t i m a t e s may prove h e l p f u l : podzo ls - 4 ; grey f o r e s t s o i l - 9 ; s i l i c e o u s s o i l s - 9 ; brown, savanna s o i l - 1 2 / 1 5 ; b lack s o i l - 18/19.

    S o i l s a l i n i t y ( z ) 1 - l a n d s n o t used f o r a g r i c u l t u r a l purposes 2 - l ands used f o r a g r i c u l t u r a l purposes

    S tep 3 opens w i t h a message:

    " ~ t t e n t i o n ! The v a l u e s of t h e s p e c i f i e d paramete rs

    shou ld be c o n s i s t e n t w i t h t h e a l t i t u d e of t h e a r e a

    i n ques t i on . "

    The u s e r i s r e q u e s t e d t o i n p u t average annua l v a l u e s accoun t ing

    f o r t h e c l i m a t i c d i f f e r e n c e s i n mountain a r e a s and p l a i n s .

    - p r e c i p i t a t i o n (mm) - t empera tu re ( c e n t i g r a d e ) - wind v e l o c i t y (m/sec. ) - d i f f e r e n c e i n t empera tu re f o r v a l l e y s and uplands

    ( c e n t i g r a d e )

  • Substage 4 . The u s e r has t o s p e c i f y t h e p r e v a i l i n g t ype

    of l i t h o l o g y :

    1 - sand 2 - loamy sand 3 - loam 4 - c l a y 5 - mar l 6 - compact sed imentary rocks 7 - i n t r u s i v e and metamorphic rocks 8 - s h i n g l e beds 9 - k a r s t rocks

    Th is t e r m i n a t e s t h e o p t i o n a l procedure and t h e system r e t u r n s

    t o t he i n i t i a l l i s t . The u s e r r a y e i t h e r pass on t o t h e next

    s t a g e o r change t h e s p e c i f i c a t i o n s .

    3 . 2 . 2 Option 2 : Automatic S p e c i f i c a t i o n

    Th is mode does n o t r e q u i r e a s much i n p u t in fo rn -a t ion a s t h e

    p rev ious one. The u s e r shou ld answer on ly 6 q u e s t i o n s ( i n con-

    t r a s t t o 38 i n c a s e of o p t i o n a l mode). A l l t h e necessary d a t a

    w i l l be a u t o m a t i c a l l y r e c o n s t r u c t e d by t h e system on t h e b a s i s

    of v e r b a l d e s c r i p t i o n . The f i r s t two l i s ts d e a l w i th t h e t y p e s

    of geograph ica l b e l t s and p r e v a i l i n g type o f vege ta t i on :

    t ype of geograph ica l b e l t :

    1 - a r c t i c 2 - temperate 3 - temperate b e l t of c e n t r a l s e c t o r 4 - s u b t r o p i c a l 5 - t r o p i c a l 6 - e q u a t o r i a l i n p u t o p t i o n number -

    t ype of vege ta t i on :

    1 - a r c t i c l i c h e n tundra 2 - moss - l i c h e n tund ra 3 - low bush tund ra 4 - subtundra i n p u t o p t i o n number -

  • The conten t of t h e second l i s t depends upon t he response of

    the user t o t h e prev ious one. The above l i s t appears i n case of

    opt ion 1 of t he f i r s t l i s t ( a r c t i c ) . Option 2 ( temperate b e l t )

    would be fol lowed by

    type of vegeta t ion :

    5 - t a i g a 6 - mixed f o r e s t 7 - broad l e a f f o r e s t 8 - meadow steppe 9 - steppe

    1 0 - dry s teppe 1 1 - subdeser t 1 2 - d e s e r t

    Option 3 ( c e n t r a l p a r t of temperate b e l t ) would be fol lowed by

    tvDe of veueta t ion :

    13 - t a i g a 1 4 - southern t a i g a 15 - mixed f o r e s t 1 6 - steppe 17 - dry s teppe 18 - subdeser t

    Option 4 ( sub t r op i ca l ) l eads t o

    type of vegeta t ion :

    1 9 - sub t rop i ca l d e s e r t 20 - sub t rop i ca l s teppe 2 1 - sub t rop i ca l p r a i r i e 2 2 - sub t rop ica l sc le rophy l lous f o r e s t 23 - sc le rophy l lous f o r e s t , sparse growth o f t r e e s 2 4 - sub t rop i ca l monsoon f o r e s t

    Option 5 ( t r o p i c a l ) - type of vegeta t ion :

    25 - t r o p i c a l subdeser t 26 - t r o p i c a l d e s e r t 2 7 - t r o p i c a l savanna

  • 28 - t r o p i c a l monsoon f o r e s t 29 - t r o p i c a l f o r e s t

    and f i n a l l y , o p t i o n 6 ( e q u a t o r i a l ) - t ype o f v e g e t a t i o n :

    30 - s u b e q u a t o r i a l savanna 31 - s u b e q u a t o r i a l monsoon f o r e s t 32 - e q u a t o r i a l f o r e s t

    The second l i s t t e r m i n a t e s t h i s sequence and t h e u s e r i s r eques ted

    t o s p e c i f y t h e t ype of topology:

    t ype of topo logy:

    1 - low l and 2 - p l a i n s 3 - upland 4 - low mountains 5 - p l a t e a u 6 - mountains, medium h e i g h t 7 - t ab le - l and

    The nex t l i s t c o n t a i n s d i f f e r e n t t y p e s of l i t h o l o g y and i s equiva-

    l e n t t o t h e r e l e v a n t l i s t of t h e o p t i o n a l mode:

    t ype o f l i t h o l o g y :

    1 - sand 2 - loamy sand 3 - loam 4 - c l a y 5 - mar l 6 - compact sed imentary rocks 7 - i n t r u s i v e and metamorphic rocks 8 - s h i n g l e beds 9 - k a r s t rocks

    The fo l low ing l i s t c o n t a i n s va r i ous i n t e n s i t i e s of marsh iness

    f o r d i f f e r e n t t ypes of hyd ro log i ca l l and s t r u c t u r e . High l e v e l o f

    marsh iness o f t y p i c a l f o r aquiclud-e - 0.5-2 n e t e r s deep; medium f o r 2.5-3.5 meters deep; low f o r 3.5-5 meters deep.

  • The d i s p l a y i s :

    marsh iness r e s u l t i n g from sha l low aqu i c l ude :

    1 - i s a b s e n t 2 - s t r o n g 3 - medium 4 - weak

    Th is t e r m i n a t e s t h e au tomat i c s p e c i f i c a t i o n mode.

    3.2.3 Opt ion 3: S e l e c t S tandard Region

    NO a d d i t i o n a l i n f o rma t i on i s r e q u i r e d o f t h e u s e r who has

    chosen t o work w i th a s t a n d a r d reg ion . The s p e c i f i c a t i o n of t h e

    r e g i o n i n t h i s c a s e i s a s f o l l ows :

    t ype o f geog raph i ca l b e l t - 2 - t empera te t ype of v e g e t a t i o n - 7 - broad l e a f f o r e s t t y p e of r e l i e f - 2 - p l a i n s t y p e o f l i t h o l o g y - 2 - loamy sand marsh iness - 1 - i s a b s e n t f i l t r a t i o n from t r a n s i t r i v e r s - 0 - i s a b s e n t

    Having e n t e r e d t h i s i n f o rma t i on i n t h e system d i s p l a y s t h e p re -

    v i ous ( i n i t i a l ) l i s t o f o p t i o n s and prompts t h e u s e r t o con t i nue

    t h e i n t e r a c t i o n .

    3.2.4 Opt ion 4 : Return t o Prev ious Region

    I n c a s e t h e u s e r has chosen t o work w i t h t h e p rev ious

    r e g i o n t h e sys tem r e s t o r e s t h e s p e c i f i c a t i o n of t h e r e g i o n a s

    i t was immediate ly a f t e r t h e l a s t r eg ion s p e c i f i c a t i o n p rocedure .

    Th i s mode o f s p e c i f i c a t i o n , however, may be chosen on ly i n c a s e

    t h e p rev ious reg ion was a c t u a l l y s p e c i f i e d by t h e u s e r .

    3.2.5 Opt ion 5: Pass on t o Next S tage

    I n response t o o p t i o n 5 t h e s c r e e n d i s p l a y s t h e f o l l ow ing

    message :

  • INPUT COPIPLETED

    THE MODEL IS B E I N G ADJUSTED TO REGIONAL DATA

    This i n d i c a t e s t h a t t h e s p e c i f i c a t i o n of t h e r e g i o n i s completed

    and t h e c o n t r o l was t r a n s m i t t e d t o t h e n e x t s t a g e - model a d j u s t - ment t o r e g i o n a l d a t a , which i s performed a u t o ~ a t i c a l l y .

    3 . 3 Model Adjustment

    Model ad jus tment does n o t r e q u i r e t h e p a r t i c i p a t i o n o f t h e

    u s e r . Once t h e procedure i s ove r , t h e s c r e e n d i s p l a y s t h e fo l low-

    i n g message:

    MODEL ADJUSTMENT COMPLETED

    Inpu t p r o p o r t i o n of l ands used f o r a g r i c u l t u r a l purposes ( % ) -

    and w a i t s f o r an answer. Having rece i ve? i t , t h e s y s t e r passes

    c o n t r o l t o t h e n e x t s t a g e . I f t h e answer i s i n c o n s i s t e n t w i t h

    t h e p rev ious l y de f i ned c h a r a c t e r i s t i c s , t h e s e s s i o n i s t e r ~ ~ i n a t e d .

    To change t h e answer t h e u s e r w i l l have t o i n i t i a t e t h e model

    once aga in .

    3 . 4 Spec i f y Scena r i o

    Th is s t a g e s t a r t s w i t h a prompt:

    SPECIFY SCENARIO

    0 - con t i nue 1 - r e t u r n t o p rev ious s c e n a r i o 2 - show system s t a t e 3 - tempera tu re t r e n d 4 - p r e c i p i t a t i o n t r e n d 5 - p o l l u t i o n and f e r t i l i z a t i o n r a t e s 6 - i r r i g a t i o n regime 7 - d ra inage i n t e n s i t y 8 - f i r e s on l a n d s n o t used f o r a g r i c u l t u r a l purposes 9 - a r t i f i c i a l d e s t r u c t i o n o f biorrass

    10 - i n c r e a s e o r decrease o f l ands used f o r a q r i c u l t u r a l purposes

  • 1 1 - new p l a n t a t i o n s on lands no t used f o r a g r i c u l t u r a l purposes

    1 2 - new s h e l t e r b e l t s on lands used f o r a g r i c u l t u r a l purposes

    13 - changes i n t h e amount of wood caused by lumbering

    I t i s assumed t h a t t h e po l i cy /scenar io op t i ons w i l l remain

    unchanged over t h e nex t s imu la t ion per iod . Any po l i cy change

    may be in t roduced on ly a f t e r t h i s per iod i s over . A user may

    de f i ne a s many success ive p o l i c i e s of r e g i o n a l development a s

    he wishes, provided t h a t he does n o t su rpass t h e upper l i m i t

    of t o t a l s imu la t ion t ime, which i s 200 years .

    I t should be noted t h a t t h e model does no t extend t h e

    e f f e c t s of prev ious p o l i c y dec i s ions t o t h e success ive per iods

    so t h a t i n case t h e use r wishes t o t r a c e them, he should formulate

    h i s po l i cy op t i ons r e s p e c t i v e l y .

    We s h a l l i l l u s t r a t e t h e procedure of scenar io formulat ion

    wi th t h e fo l lowing example, devoted t o t h e evo lu t i on of a f o r e s t

    over t he per iod of 25 y e a r s , assuming t h a t 10 years a f t e r t h e

    beginning of t h i s per iod t h e r e i s a f o r e s t f i r e .

    Having de f ined t h e reg ion we go on t o spec i f y t h e scenar io ,

    t h a t inc ludes a s e t of po l i cy v a r i a b l e s and changes due t o

    n a t u r a l causes. The f i r s t t ime per iod w i l l be 9 years . A f te r t h e run i s over we s h a l l r e f o r m l a t e t h e scenar io t o inc lude the

    e f f e c t of a f o r e s t f i r e . The second t ime per iod would l a s t on ly

    1 year s i n c e f o r e s t f i r e s do no t usua l l y happen 2 years i n a row.

    Then we s h a l l have t h e scenar io aga in , leav ing o u t t h e f o r e s t

    f i r e op t ion t o t r a c e t h e e f f e c t s of t h e i n i t i a l po l i cy dec i s ions

    over t h e fo l lowing 15 yea rs .

    The i n t e r a c t i v e procedure a t t h e s t a g e of scenar io spec i -

    f i c a t i o n i s very s i m i l a r t o t h a t of reg ion s p e c i f i c a t i o n . The

    system prompts t h e u s e r wi th a l i s t of 1 4 op t ions , of which a l l

    b u t t h e zero op t i on a r e c losed .

    I t should be noted t h a t op t i on 13 r e f e r s only t o f o r e s t

    a r e a s .

  • 3.4.1 Option 0 : Continue Modeling

    I f t h e u s e r has s p e c i f i e d op t ion 0 , t h e system responds with

    s e t t ime i n t e r v a l (max number of years - * ) which i n d i c a t e s t h a t t h e c o n t r o l passes t o t h e next ( f o u r t h )

    s tage . The scenar io , which was s e l e c t e d a t s tage 3 i s s t o r e d

    i n a f i l e f o r p o s s i b l e f u t u r e uses.

    3.4.2 Option 1 : Return t o Previous Scenar io

    This op t ion t e l l s t h e system t o r e s t o r e t h e prev ious

    scenar io . While it does so , t h e sc reen d i s p l a y s t h e l i s t of

    s c e n a r i o op t i ons and t h e answer of t h e use r . A s soon a s t h e

    prev ious scenar io i s r e s t o r e d , t h e system w i l l d i s p l a y t h e l i s t

    anew, prompting t h e use r t o i n d i c a t e h i s op t ion . This procedure

    enab les t h e use r t o formulate new scenar ios by a l t e r i n g t h e

    prev ious ones.

    3.4.3 Option 2 : Show Systems S t a t e

    I n response t o op t ion 2 t h e system d i s p l a y s a t a b l e , which

    inc ludes t h e c u r r e n t va lue of a l l t h e major v a r i a b l e s , r e f e r r i n g

    t o t h e 3 types of l ands , water , and c l ima te . The u n i t s of t h e

    v a r i a b l e s a r e i n d i c a t e d i n t h e b racke ts :

    SYSTEM STATE

    L L; P.liT t : T= ; c . L l c / o / L.= Z c o . t l / n r / ------------------------------------- ! ! L A K E S ( 7 : ) = 0.00 L G h L T Y P E ! L C ! &l;F.ICLL. !\..ETLAI,,CS. ! !

    2V c : " ) ! 1 4 ! 1'. I ;.;z5C ! ! ------------------ i i F V ! 1 5 i . c 9 ! L C . ! l u 7 . 2 7 ! ! F l c t u p a r a m e t e r s : C L V I i . 7 ~ ~ I L. I 1. ;~ : ! ! FL (nnr) = 1 9 9 . 9 7 5 CPLL ! I . C C L C L ! l . c C : ~ L c ! l . i C C O L ! ! C F k V ( 1 ) = 4 c . 0 0 ~ S P k V ( m c > ! 2 . 1 5 1 5 ! C . 1 4 1 1 ! L . C I ~ ! ! L F W V ( 2 1 = 3 7 . 6 7 ~ I ! O.LLCL ! I .IL"L ! c.C553 ! ! CF1,V ( 3 ) ( 7 ; ) = 1 3 . 3 1 8 F i L ! L' . ! C. ! C . C ; C C I ! ! F1 :.: C V ( 91 ) = 1 5 . 5 4 7 h V I 1 ! L ! 1 ! ! HG1i ( ;n> = 7 .398

    I 2 ( x f i / t - , > ! 1 4 . 7 ~ ! C . S . i l ! ! HP1 ( T I = 2rJ .C lGO G r l ( r n / n > ! C. I c . I C . ! ! 4 G L J C (r;) = 4 1 . 3 9 2

    . , 3'); ( ~ n / h > ! ~ i . & ~ l t ! C . I C.ic: ! ! ( G I = 5 1 . h O G S i T V , ! I ! ' _ . 1 7 4 L ! C,.,7c5 ! ! F F F ( n l =15ij.COG 5 V ! 1 o . L 7 7 ! c .711 ! 4 . ? C Z ! ! h E X ( a ) = 53.00C. --------------------------------------- . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ! !

    - - , - ~ P . ( I ; m / l \ n ~ c ) = i . 2 7 0 ~ 21°F ( ~ r ( 1 lkm;>= 1. L~~ 5 - ZLSV(./;;= L.L;7c :\..I V ( c , / l ) = C . 3 7 7 1 S l . Z v ( ~ / l ) = 1 . 3 6 1 1

    So ;o " ~ a r , t :c s a v e t b , e p r r ~ n ~ e t e r s c t s y s t ~ f i s : a t e ? ( y e s = l / n c = ; ) -

  • Do you want t o save SYSTEMS STATE? (yes = 1 , no = 2 )

    A l i s t of f u l l names of t h e v a r i a b l e s i s i n Appendix 1 .

    I n c a s e a u s e r wants t o save t h e parameters of t h e c u r r e n t s t a t e

    o f t h e system, t h e system w i l l s t o r e them i n t h e " s t a t e . d M f i l e .

    A f t e r t h e system has rece i ved t h e answer, t h e . l i s t o f s c e n a r i o

    o p t i o n s w i l l be d i sp layed .

    3.4.4 Opt ion 3: Temperature Trend

    The system d i s p l a y s t h e fo l low ing prompt:

    Rate o f tempera tu re change ( i n degrees c e n t i g r a d e pe r y e a r )

    The use r i s expected t o i n p u t t h e annual r a t e o r tempera tu re

    change w i t h i n a reg ion . The tempera tu re t r e n d s , s p e c i f i e d by

    t h e u s e r w i l l main ta in over t h e p rev ious l y s p e c i f i e d pe r i od .

    3 .4 .5 Option 4 : P r e c i p i t a t i o n Trend

    The system d i s p l a y s t h e fo l low ing phrase :

    Rate o f p r e c i p i t a t i o n change (mm/year)

    The u s e r shou ld i n p u t t h e annual r a t e of p r e c i p i t a t i o n change

    t h a t w i l l main ta in ove r t h e p rev ious l y s p e c i f i e d t i m e pe r i od .

    3.4.6 Opt ion 5: P o l l u t i o n and F e r t i l i z a t i o n Rates

    The system d i s p l a y s t h e fo l low ing l is t :

    POLLUTION AND FERTILIZATION

    P o l l u t a n t s ( t o n s p e r h e c t a r e ) :

    1 - sox 2 - NOx 3 - CxHy 4 - Pb 5 - Hg 6 - Cd 7 - n i t r o g e n f e r t i l i z e r s 8 - phosphorous f e r t i l i z e r s

  • 9 - muck 10 - e x i t

    I n p u t o p t i o n number -

    Opt ions 1-9 w i l l r e t u r n t h e system t o t h e same l i s t . To

    r e t u r n t o t h e l i s t of s c e n a r i o o p t i o n s i n d i c a t e o p t i o n 10. I f

    any number from t h e range 1-6 was chosen, t h e u s e r w i l l have t o

    s p e c i f y t h e d i s t r i b u t i o n o f t h e r e l e v a n t p o l l u t a n t between d i f -

    f e r e n t t y p e s o f environment by answering t o prompts:

    - o n l a n d s n o t used f o r a g r i c u l t u r a l purposes

    - o n l a n d s used f o r a g r i c u l t u r a l purposes

    - a i r p o l l u t i o n

    - w a t e r p o l l u t i o n

    Opt ions 7 and 8 of t h e p rev ious l i s t w i l l r e q u i r e answers on ly

    t o t h e f i r s t two q u e s t i o n s o f t h e above l i s t ; o p t i o n 9 w i l l

    r e q u i r e answer ing prompts 1 , 2 , and 4 .

    Having s p e c i f i e d t h e d i s t r i b u t i o n of p o l l u t a n t s and f e r -

    t i l i z e r s t h e u s e r shou ld i n d i c a t e o p t i o n 10. Th is i s fo l lowed

    by ano the r prompt:

    Thermal p o l l u t i o n ( i n degrees c e n t i g r a d e )

    Thermal p o l l u t i o n , a s it i s assumed h e r e , i s t h e annual increment

    of average annual tempera tu re due t o thermal was tes . Th i s va lue

    h a s t o be i n d i c a t e d on ly once. I f t h e use r chooses t o a l t e r

    t h e r a t e of thermal p o l l u t i o n , he shou ld i n d i c a t e t h e a n t i c i p a t e d

    d e v i a t i o n of t h e p rev ious l y de f i ned t r e n d .

    3.4.7 Opt ion 6: I r r i g a t i o n Regime

    The u s e r i s r eques ted t o s p e c i f y t h e sou rces and t h e i n t e n s i t y

    o f wa te r ing i n t h e reg ion

    sou rces o f wa te r used f o r i r r i a a t i o n DurDoses:

    -ground-water (mm)

    -deep ground-water (mm)

    - a r t e s i a n wate r (mm)

    - r i v e r s and l a k e s (mm)

    - t r a n s i t r i v e r s (mm)

  • Water de lay on l ands used f o r a g r i c u l t u r a l purposes:

    1 - s i g n i f i c a n t 2 - moderate 3 - i s absen t

    Inpu t op t i on number -

    The u s e r i s expected t o s p e c i f y water de lay on ly once a t

    t h e beginning of t h e s e s s i o n . I f l a t e r he chooses t o cons ider

    any changes i n t h e water de lay , he should s p e c i f y t h e d e v i a t i o n

    from t h e p rev ious value.

    3.4.8 Option 7: Drainage I n t e n s i t y

    The fo l lowing t e x t i s d isp layed

    Drainaae :

    1 - i n t e n s i v e 2 - moderate 3 - i n s i g n i f i c a n t 4 - i s absen t

    Inpu t op t i on number - I nc rease of a r e a covered w i th l a k e s i n r e s u l t o f hydro techn ica l works -

    3.4.9 Option 8: F i r e s on Lands Not Used f o r A g r i c u l t u r a l Purposes

    The system w i l l r e q u e s t t h e use r t o s p e c i f y t h e damage done

    by f i r e s by d i s p l a y i n g t h e fo l lowing prompt:

    Damage done by f i r e s :

    1 - s i g n i f i c a n t 2 - medium 3 - smal l

    I npu t op t i on number -

    I t should be kep t i n mind t h a t i f f o r e s t f i r e s a r e inc luded

    i n t h e s c e n a r i o , t h e system au tomat i ca l l y runs t h e model over a

    1-year per iod and passes t h e c o n t r o l t o t h e f i f t h s t a g e .

  • 3.4 . 10 Op t ion 9 : A r t i f i c i a l d e s t r u c t i o n o f b iomass

    The d i s p l a y is :

    D e s t r u c t i c n o f b iomass by v e h i c l e compact ion - P a s t u r a g e i s

    0 - a b s e n t 1 - weak 2 - modera te 3 - i n t e n s i v e 4 - v e r y i n t e n s i v e I n p u t o p t i o n number -

    3.4.11 Op t ion 10: I n c r e a s e o r d e c r e a s e o f t h e Arount o f Lands Used f o r A g r i c u l t u r a l Purposes

    The u s e r i s r e q u e s t e d t o s p e c i f y t h e a n n u a l i n c r e a s e o r

    d e c r e a s e o f t h e a r e a o f a g r i c u l t u r a l l a n d s a s % o f t h e p r e v i o u s

    y e a r , t o t a l :

    Change i n t h e amount o f l a n d s used f o r a g r i c u l t u r a l p u r p o s e s

    d e c r e a s e -

    3.4.12 Opt ion 1 1 : New P l a n t a t i o n s on Lands Not Used f o r A g r i c u l t u r a l Pu rposes

    The d i s p l a y i s :

    New p l a n t a t i o n s on l a n d s n o t used f o r a g r i c u l t u r a l p u r p o s e s , % o f t o t a l a r e a -

    3.4 .13 Opt ion 12: N e w S h e l t e r B e l t s

    A s w a s a l r e a d y men t ioned , t h i s o p t i o n r e l a t e s o n l y t o t h e

    r e g i o n s where f o r e s t s occupy a s i g n i f i c a n t p a r t o f t h e a r e a .

    The u s e r i s r e q u e s t e d t o answer t o t h e f o l l o w i n g prompt:

    New s h e l t e r b e l t s ( % o f t o t a l a r e a ) -

  • 3.5 S e t Time I n t e r v a l ; Run t h e Model

    This s t a g e opens w i th t h e fo l lowing reques t :

    S e t t ime i n t e r v a l (maximum number of yea rs - * ) - where t h e a s t e r i s k s tands f o r t h e number of yea rs l e f t be fo re

    t h e s imu la t ion t ime e x p i r e s . The t o t a l l eng th of s imu la t ion

    per iod should n o t exceed 200 years .

    A f te r t h e system has rece ived an answer it d i s p l a y s t h e

    fo l lowing message:

    Model run

    When t h e run i s over , t h e system passes on t o t h e next s t a g e .

    3.6 Output Modes

    The f i f t h s t a g e opens wi th a l i s t of ou tpu t modes:

    Output modes:

    1 - s tandard ou tpu t 2 - o p t i o n a l ou tpu t 3 - cont inue

    (However, i f t h e t o t a l number of yea rs t h a t have passed s i n c e

    t h e beginning of t h e s imu la t ion per iod i s l e s s than 5 , t h i s

    s t a g e i s skipped and t h e c o n t r o l au tomat ica l l y passes t o t h e

    next s t a g e . )

    3.6.1 Standard Output

    Option 1 i s fo l lowed by t h e d i s p l a y of s e t s of t h e major

    v a r i a b l e s , inc luded i n t h e model.

    The f i r s t l i s t i s a s fo l lows:

    B i o t i c parameters:

    1 - s o i l - vege ta t i on 2 - s o i l p r o d u c t i v i t y - s o i l index - danpness 3 - s o i l - f e r t i l i z e r s

  • Water ~arameters:

    4 - total flow 5 - surface dissectment 6 - ground-water flow 7 - deep ground-water flow Salinity parameters:

    8 - soil - ground-water 9 - ground-waters - river waters

    10 - pollution parameters

    Input option number-

    If option 10 were chosen, then the second list would be displayed,

    PCLLLTIC!: PAEAFIETCES/BY TYPE OF EPIVI;,C!,~,,E~JTAL CCI.!PCr.tfiT L PCLLLTAPJT

    P o l l b t l o n o f 1 - p l ~ , n ~ s / b l t h t o x l c m e t c i s L - s o 1 1 1 kith toxic m e t a l s - 2 - s i r 4 - s ~ r f t c e ~ a t e r S / ~ i t P , K e t G i s 5 - s u r f ~ ~ c e h a t e r s / ~ l t h P , y c r o c ~ , r b c n s /

    n l t r o , o n ~ n o p h c s b h c r ~ s G - h r c ~ r i c - ~ t t e r s ~ L l t h m e t z l s 7 - ~ r o ~ n o - ~ a t e r s / ~ l t h P , ; c r o c a r ~ c n s / r ~ ~ t r o ~ ~ n s n u p k 8 0 s p h c r u s 5 - U E G ~ ~ r c u n o - ~ c ~ t e r s / w l ? h metz.:s 9 - a e e ~ ~ r c u c c l - ~ , t e r s / ~ l t h h y c ~ r c c z r b o n s / n l t r o ~ ~ n a n d p h c s p h o r ~ s

    Option 10 of the second list indicates return to the previous

    list. Options 1 and 3 of the first list and 1-2 of the second

    require additional information, which is prompted by the following

    display:

    Type of land:

    1 - lands not used for agricultural purposes 2 - lands used for agricultural purposes 3 - wetlands

  • A f t e r t h e system has rece ived t h e r e q u i r e d i n fo rma t i on , a

    l i s t of o u t p u t forms i s d i sp layed . I t should be no ted t h a t

    o p t i o n s 2 and 4-9 from t h e f i r s t l i s t do n o t r e q u i r e any add i -

    t i o n a l i n fo rma t i on on t h e type of s c a l i n g f o r p l o t t e d o u t p u t .

    3 .6 .2 Opt iona l Output

    Opt ion 2 i m p l i e s t h a t t h e u s e r shou ld s p e c i f y t h e numbers

    of t h e o u t p u t v a r i a b l e s on h i s t e rm ina l . The prompt i s

    I npu t v a r i a b l e number - The l i s t of v a r i a b l e s i s i nc luded i n Appendix 2 . The prompt i s

    r epea ted f o u r t i m e s , s i n c e . t h e number of ou tpu t v a r i a b l e s cannot

    exceed 4 . I n c a s e t h e number i s less t han 4 , t h e u s e r should

    i n p u t 0 t o i n d i c a t e t h a t t h e l i s t i s exhausted. A f t e r t h i s

    t h e system w i l l d i s p l a y a l i s t of o u t p u t forms.

    3 . 7 Output Forms

    A t t h i s s t a g e t h e u s e r i s reques ted t o s p e c i f y t h e form

    of o u t p u t f o r t h e s e l e c t e d v a r i a b l e s . The d i s p l a y i s :

    Output forms :

    1 - t a b u l a r 2 - p l o t t e d

    I npu t o p t i o n number -

    Opt ion 1 i s fo l lowed by a t a b l e of o u t p u t va lues . An example

    of such a t a b l e can be found i n Appendix 3 . I n c a s e t h e u s e r

    s p e c i f i e d o p t i o n 2 , h e w i l l be reques ted t o s p e c i f y t h e t ype of

    s c a l i n g procedure. The d i s p l a y i s :

    S c a l i n g modes:

    1 - automat i c , s i n g l e s c a l e f o r a l l v a r i a b l e s 2 - automat i c , s e p a r a t e s c a l e f o r eve ry v a r i a b l e 3 - manual, s i n g l e s c a l e f o r a l l v a r i a b l e s 4 - manual, s e p a r a t e s c a l e f o r every v a r i a b l e

    I npu t o p t i o n number -

  • Option 1 : The system initializes a procedure f o r de f i n ing the minimum ( Y min) and t h e maximum ( Y max) va lues among a l l t h e

    va lues of t h e ou tpu t v a r i a b l e s ( t h i s may be done on ly i n case

    t h e ou tpu t v a r i a b l e s a r e measured i n t h e same u n i t s ) . These

    va lues then se rve a s t h e upper and t h e lower boundary of t h e

    p l o t t e d ou tpu t a long t h e Y a x i s .

    i Option 2 : The system de f i nes t h e minimum (y min) and i t h e maximum (y nax) va lues f o r each o f t h e ou tpu t v a r i a b l e s

    (where i i s t h e index of t h e ou tpu t v a r i a b l e ) . A l l t h e ou tpu t

    curves a r e then sca led s e p a r a t e l y t o f i t i n t o t h e same box.

    Option 3 : The minimum ( Y min) and t h e maximum ( Y max)

    among a l l t h e va lues of t h e o u t p u t v a r i a b l e a r e s p e c i f i e d by t h e

    use r i n response t o a prompt

    Marginal va lues of v a r i a b l e s

    I n case some va lues of an output v a r i a b l e exceed ( o r a r e l e s s

    than) t h e upper ( o r lower) l i m i t de f ined by the u s e r , t h e system

    c u t s o f f t h e p ro t rud ing p a r t o f ' t h e curve t o make it f i t i n t o t h e

    box.

    i Option 4 : The user i s requested t o spec i f y t h e Y min and

    Yi max va lues f o r each of t h e ou tpu t v a r i a b l e s (i = index of t h e

    ou tpu t v a r i a b l e ) by answering t o a sequence of prompts

    M I N of 1

    MAX of 1

    M I N of 2

    MAX of 2

    M I N of 3

    MAX of 3

    M I N of 4

    MAX of 4

    v a r i a b l e - v a r i a b l e - v a r i a b l e s - v a r i a b l e s - v a r i a b l e s - v a r i a b l e s - v a r i a b l e s - v a r i a b l e s -

    I n case t h e va lues of any v a r i a b l e should exceed t h e spec i -

    f i e d l i m i t s , t h e p ro t rud ing p a r t of t h e curve i s c u t o f f i n

    t h e same way a s i n op t ion 3 above.

  • I n c a s e t h e va lues of any v a r i a b l e shou ld exceed t h e

    s p e c i f i e d l i m i t s , t h e p r o t r u d i n g p a r t o f t h e cu rve i s c u t o f f

    i n t h e same way a s i n o p t i o n 3 above.

    3 .8 Choose Next S tage

    When t h e u s e r h a s reached t h i s l a s t s t a g e he i s o f f e r e d

    t h e fo l l ow ing l i s t o f o p t i o n s t o choose from:

    Sess ion c o n t i n u a t i o n o p t i o n s :

    0 - t e r m i n a t e s e s s i o n 1 - d e f i n e r e g i o n 2 - d e f i n e s c e n a r i o 3 - con t i nue mode l l i ng 4 - o u t p u t r e s u l t s 5 - show c u r r e n t s y s t e n s t a t e

    I n p u t o p t i o n number - Opt ion 0 t e r m i n a t e s t h e s e s s i o n . T h e r e s u l t s , i . e . ,

    pa ramete rs of t h e sys tems s t a t e , t a b l e s and/or p l o t s , w i l l be

    s t o r e d i n f i l e s " s t a t e . d W , " f i g u r e . d W , t a b l e . d W , r e s p e c t i v e l y .

    Opt ions 1-4 t r a n s f e r c o n t r o l t o t h e c u r r e n t s t a g e o f t h e

    s i m u l a t i o n p rocedure . I n c a s e o p t i o n 5 i s s p e c i f i e d , t h e

    system w i l l d i s p l a y paramete rs o f c u r r e n t sys tems s t a t e .

  • REFERENCES

    Kroutko, V . N . , S.A. Pegov, and B.M. Khomyakov (1982a) The E v a l u a t i o n o f t h e Q u a l i t y o f Environmental Components. P r e p r i n t . Moscow: The All-Union I n s t i t u t e f o r Systems S t u d i e s ( V N I I S I ) ( i n Russ ian ) .

    Kroutko, V . N . , S.A. Pegov, and B.M. Khomyakov (1982b) A Dynamic Model o f Environmental Development. P r e p r i n t . Moscow: The All-Union I n s t i t u t e f o r Systems S t u d i e s ( W I I S I ) .

  • APPENDIX 1

    T h e t i e s c r i c t i o n o f v ~ ~ r i s b l ~ s u s e s t h e f o l l o t u i n g n o t a t i o n 1 . T h e ~ r t l t s o f n e z ~ s u r e r n e n t a r e l n c i i c a t e u l n b r z c k e t s a f t e r

    t h e f ~ l l n z m E o f he v t r l a k l e . 2. I n d e x ' i ' a G p e a r i n s i n t h 2 n a m e o f c e r t ~ ~ i n v z r i a b l e s

    s h o u i a b e l n t e r ~ r e t e c a s f o l l o c s : i = l - l a n c r s n o t ~ s e d f c r t ; ~ r l c c r l t u r t l ~ ; u r p o s e s i i = 2 - l a n o s u s e d f c r a g r l c ~ l t u r s l ~ u r p o s e s ; i = j - L e t l z n ~ s . . ' 3. Z n d e x i n o r c s t e s different k l n c s o f ~ o l l ~ t s n t s a n d

    f e r t l l i s e r s : ;=I - s ~ l f u r c o m p o s i t i o n s ; - j = ~ - n i t r o s e n c o o y o s l t l c ~ n s ; j = 3 - h y o r o c z r b o n s , ;=4 - c o m y o s l t i o n s c f Pb; ;=5 - c o m ~ o s l t i o n s o f kc,; ;=o - c o r i ~ o s l t ~ o n s o f C d , j = 7 - n i t r o b e n f e r t l l l z e r s ; j = i 3 - f i h c s p h c r ~ s f e r t i l i z e r s ; ; = 9 - c r g a n l c f e r t i l i i e r s ; j = I C : l : - r e s e r v e o i n u e x e r . E l o t l c p a r a m e t e r s . -------------------

    6 (1) - k i o n ~ s s ( t o r s p e r k e c t s r e l . b M ( i 1 - c e a c , b l o r n z s s ( t o n s ~ e r h e c t z r c ) . C L V ( 1 ) - c l i n ; a t e i n ~ e x .

    -, . C P B L ( 1 1 - c ~ - i ~ t ; o n ~ n c a x . 12 ( i ) - p r o b o r t ; c n o f t k e 1 - t h t y b e c f l ~ , r , a s l n t k e t c t a l a r e s

    ( l c l k ~ s r , o t ~ r , c ? ~ c ! e c i I ( 2 1 . G V ( 1 1 - p r c c ~ r t i c n c f t t - e 1-ti- t y p e c f i a n u s ~ n t k e t c t a l z , r e a

    ( i e t k e c ~ n c i ~ c ~ c . 1 ( > , I .

    -27-

  • L k k V ( i 1 - ~ i r ~ d e r c s i o r , r s t e ( m ~ / y e z ; r l . F I S ( 1 l - i n c r e m e n t o f s c l l q ~ a l i t y l n c a e x u c e t o f s r t l l l s a t i o n . G H ( 1 l - s c l l ~ r c c i b c t i v i t y ( t o n s p e r h e c t a r e ) . t i F F ( 1 l - h ~ m i d i t b . H F V ( 1 1 - h ~ r n i c ~ t y i c r 1 - t h t y ~ e c f l a n c s . K V - v e ~ e t a t l o n t y k e :

    K V = 1 - , r c , s s ; K V = ~ - f o r e s t - s t e p p e ; K V = 3 - f o r e s t ; K V = 4 - m o s s - l i c h e n .

    S L T V ( i 1 - s o i i s s l i n i t y ( 2 1 . S P k V ( i ) - r a t e o f s u r f z c e e r r o s i o n b y t y p e c f l a n a ( r n r / y e ~ r l .

    . - S V ( i ) - S c l r i n d e x .

    L r a i n a ~ e p a r a m e t e r s . ....................

    C F W V ( 1 l - p r c p o r t l o n c f s b r f c c a c i r a l n a g e i n t o t z l a r s i n a s e (::la C F W V ( 2 ) - G r c p o r t i o n o f d r a i n a g e f r o m u p p e r ~ r c u n d l z y e r i n

    t c t a l c r a i n s s e ( 2 1 . C F W V ( 3 ) - b r c p o r t i o n c f a r a l n a ~ e f r c n i l o ~ e r s r o u n d l a y e r i n

    t o t a l c r ~ i r , s ~ e ( ; : I . G Pi - t o t s 1 c l s s e c t n e n t ( k m / k m ? ) . U k R - ~ l s s e c t m e n t ~ l t h r l v e r s ( I < m / k n Z l . F L - t o t a l c r a i n z g e r z t e ( r n m / y e s r ) . F L 1 - s u r f z c e a r a i n a y e r a t e ( m r n / y e a r l . F L 2 - r t t s o f c r a i n a ~ e f r c n i u p ~ e r s r c b n c i l ~ y e r ( r n r n / y e a r l . F L 3 - r ~ t ~ o f d r s l n a g e i r c n l o w e r ~ r c c n c i l a y e r ( r n m / y e a r l . F L ~ + F L ; - s u n o f F L 1 a n d F L Z ( ; n r n / y e s r ) . F L 1 2 + F L 3 - s L m o f F L 1 , F L Z 2 n d F L 3 ( n i r n i y e s r ) . H E X - m z x i n i b n i c u t (m!. H G W - c e ~ t h o f ; - s t G r o u n d ~ a t ? r p l ~ n e (m). HGkG - c , e b t h c f 2 - n c s r o ~ n c ~ a t s r p l s n e (m). H P I - d e p t h ~ f 1-s t E ~ ~ L ~ C ~ L ~ G C ' u i t k t h e i n f l ~ s n c e o f p ~ r m a -

    f r o s t (rnl. HPF - c e ~ t h c f G e r c i z i f r o s t p l a n e ( n l . H k P - c e b t h o f 1-s t a q ~ l c l ~ a c ( r n : . HkPD - d e p t h o f 2 - n d a q b i c l u c e ( ~ l . R M D V - e f f c - c t l v e s u r f z c c - c r n i n a , e (::I. SWlV - w a t ~ r s a l i n i t y , 1 - s t g r o ~ n u - c a t e r ~ l z r ~ e ( s / l l . S h 2 V - l uz ter s z , l i n i t y , 2.-nd s r o u n u - ~ z , t e r y i ~ . n e ( 5 4 1 1 . RCSV - r i v e r ~ a t e r 5 , l i n i t y ( ~ / 1 ? .

    P a r s r n e t s r s o f k o l l u t a n t s s n c f e r t l l l z e r s ( t o n s p e r t ; e c t z . r e ) . ...........................................................

  • APPENDIX 2

    SEF GLTPLT V A L I A Z L E I:LC:EERS

    2 G1.R 5 L ( 3 1 & CFh'V(2)

    11 L P C L ( 3 1 1 4 C h ( 2 ) 1 7 hLLlI. L C h F F ( 1 1 23 ECSV ;CJ S L T V ( 1 ) 2 9 S ' . ' ( 1 ) 3 2 P ~ k ( 1 ) 35 P L A ( 4 1 3a P L L ( ~ ) 4 1 P L A ( 1 L ) 4 4 P L G ( 1 2 ) 4 7 P L C d ( 1 1 Z C P L L N ( L * ) 5 3 P L 3 r ; ( 7 1 5 6 P L E W ( ~ C I 5 9 P L C h ( 1 2 1 t; PLCI.:(11 t 5 PLGLb(4) GE: PLSv. (7) 7 1 F L G k ( 1 C ) 7 4 P L G k ( 1 3 ) 7 7 P L P ( l / l > LC P L P ( 4 / 1 1 L 3 P L P ( ? / I > L C P L P ( l L / l I

    3 t ( l 1 c CFI ,~V(1 1 9 CPLlL(11

    1 2 FL I f G H ( 3 ) I ? HhP 2 1 H F F ( 2 ) 2 4 S I~ r l v 2 7 S L T V ( 2 ) 3C S V ( 2 ) 3 3 ~ ~ a ( 2 1 It P L A ( ~ ) 3 9 P L A ( 8 ) 4 2 P L A ( 1 1 1 4 5 P L A ( 1 4 ) r S PLCIJ(Z1 5 1 P L L k ( 5 1 5 s FL2k ' cE) 5 7 PLCi-l (1 1 ) oC1 ?LC11(14) t 3 PLrJI.i ( 2 t c PLGL., ( 5 ) cS) FLGI..(S) 7 2 P ~ s 1 . ( 1 1 1 75 PL31.d (I 4 1 7: P L P ( 2 / 1 1 5 1 P L P ( S / I I :4 F L P ( 8 / 1 1 2 7 P L ~ ( l l / l 1

  • C 9 P L P ( 1 3 / 1 1 S i P L P ( 1 / 2 1 9 5 F L P ( C / Z I 5 8 P L P ( 7 , L I

    1 L 1 P L P ( l C / L I 1 L S P L ? ( 1 3 / 2 1 1 L 7 P L F ( l / Z I 1 1 C P L P ( 4 / 3 1 1 1 3 P L P ( 7 / 3 1 1 1 6 P L P ( l L / J ) 1 1 9 P L P ( 1 3 / 3 1 1 ; 2 P L S ( 1 / 1 1 1 2 5 P L S ( 4 / 1 1 1 2 2 P L S ( 7 / 1 ! 131 P L S (1 C / 1 1 1 3 4 P ~ S ( 1 3 / 1 1 1 3 7 P L S ( 1 / 2 1 ' I 4 C F L S ( 4 / 2 1 1 4 ; P L S ( 7 / 2 ) 1 4 6 P L S ( 1 1 / 2 1 14O P L S ( 1 ; / 2 1 1 5 2 P L S ( 1 / 3 1 1 5 5 P L S ( 4 / 3 1 1 5 s P L S ( 7 / 3 1 l c l P L S ( l L / 3 ) 1 0 4 P L S ( 1 3 / 3 ) l c 7 P L h T ( 1 1 1 7 C F L k T ( k 1 1 7 3 PLLiT (71 1 7 c F L L . T ( l C ) 1 7 0 P L L T (1 3 ) I t 2 F L 1 l b 5 F L l i + F L 3

    Y O P L P ( 1 4 / 1 1 9 3 P L P ( 2 / 2 1 9 c P L P ( 5 / 2 1 9 9 P L P ( E / Z I

    1 b 2 F L ? ( 1 1 / 2 1 1 L S P L P ( 1 4 / Z I 1 L E P L P ( 2 / 3 1 111 P L P ( 5 / 3 1 1 1 4 P L P ( 8 / 3 1 117 P L P ( 1 1 / 3 1 1 2 c P L P ( 1 4 / 3 1 1 2 3 P L S ( 2 / 1 1 1 2 6 P L 5 ( 5 / 1 1 1 2 9 P L S ( 8 / 1 1 1 3 2 P L S ( 1 1 / 1 ) 1 3 5 P L S ( 1 4 / 1 1 1 3 8 P L S ( 2 / 2 1 1 4 1 P L S ( 5 / 2 1 1 4 4 P L S ( 8 / 2 1 1 4 7 P L S ( 1 1 / 2 > 1 5 0 P L S ( 1 4 / 2 > 1 5 3 P L S ( 2 / 3 > 1 5 6 P L S ( 5 / 3 > 1 5 9 P L S ( 8 / 3 1 1 6 2 P L 5 ( 1 1 / 3 ) 1 6 5 F L S ( 1 4 / 3 1 l c 8 P L h T ( 2 ) 171 P L h T ( S > 1 7 4 PLWT ( S 1 1 7 7 PL!:T ( 1 1 1 1 C O P L C T ( 1 4 1 l i 3 F L 2

  • APPENDIX 3

    T k , l s s p c ~ r ; c ; ~ x ~ ~ ( C ~ L C L - C , t P : c : E X E E ~ ~ P ~f t r , ~ S E S S ; C ~ . k i t h t t , ~ 5 f F U e V o T G d t c & r , G l ; s i S L ? t h ~ Z C C ~ ~ ~ ; G " C o n s e q ~ e n C e s O f 1 u m k e r l f i j i n t e m p e r a t e i b l t " .

  • PRcV,;L; i . i T Y P E L F V E G t T h T I C f . 5 - t 3 1 5 i 5 - m i x c a f c r ~ s t 7 - breed l t t f i o r k ~ t L - n e ; c c ~ s t e ~ b e Y - s t c - b b t I v - C r y S t e ~ b ~ 1 1 - s u L c t s e r t 1; - c e L c r t

  • i n g ~ t c r o ( , c r t : c r , i f l ; , r ,cs ~ c e n f o r a ~ r l c ~ l t ~ r ~ l ~ ~ r ; ~ s e s ( f ; l - P.

    J - LLh?, I .LE 1 - h i f ~ ~ , i . T C ~';;L:/-L' - ,, c Z C ' i I . - F I L ; - - C t , L h ; y L T ' i i L T L T E 3 - t e l r , b c r i . t ~ r e t r e n ~ 4 - b r k c ~ b i t u t ; c r , f r e n c 5 - ~ u i l ~ t : c r I r r i c f ~ r t , l ~ c c . t : o r i r c t e s 6 - l r r i h C . * . l G l i r t ~ : r : l k 7 - C T G L ~ ~ L ~ E ~ ~ ' t t ~ ~ ~ i t y 5 - tirc-:, i n , i a n c z r,c: c z ~ c : f c r c , ~ r ~ c ~ 1 t c ; r c . l F L ~ Q C S E S

    . - 7' - ; r t ; i~c :z , - tic-s;r ~ c y l c r , c f I- i c r * : ; 5s. 1; - r n c r G r s e i r c ~ c r ~ s s ~ c i l c . r . c !c L S E C f ~ r c j r ; c ~ l t ~ r c ; 1 p ~ r ~ 2 s e s 15 - n e ~ ~ l t r ~ t ; ; : c r ~ c cr, l ; . r . cs r c t ~ s e r f c r a ; r i i u ; ? ~ r ; l ~ b r p c s ~ s 1' - R E L ~ h . ~ l t e r i : e l t ~ c c l ; .nCs L S ~ C f o r i . c r : i t i l t u r z l ~ ~ r c o s ~ s 1; - ct-.;~-~,c-c- ;r ; + I . L ~,I:;GLTI: c f L C C L , L ~ C J ~ ' ,,c; b ; i~;;:~r;r., j

  • u - C C I . T l I . L L i - h k T i l . 1 . T L F k t V 1 L L S : L E I . A ? I L 2 - S H L b S Y S T E I I : ? A T E

    - t ~ f i i h ~ r ~ t h r e t r ~ r ~ ~ 4 - ~ r c - c ; l - ~ t ~ t ; o r ~ t r e r : ~ 5 - p o > ; ~ r ; o n ~ n c f e r t ~ l l s z : t : c r , r a t e s 0 - ; r r i ~ ~ , ~ i ~ r ~ ~ C ~ L K I G 7 - a r ~ ~ i r ~ ~ ~ , e I n t e r , c l t ) 6 - t i r e s c n l ; r , c c n o t U S E L f c r z . ~ r i c ~ l t h r z , l p ~ r p c s e s Y - t r r i f ~ c l a l c e s ; r ~ c t ; c n of t l c r , : a s s l u - 1 r a ~ r e ~ 5 s o r L E C ~ ~ B S ~ o f I L C C ; S u s s c f t r ~ ~ ~ r 1 c u l t ~ r z l p u r p c s e s 1 1 - r , e ~ b l c n t a c ~ o r ~ s c n l a r i c s n c t ~ s c c t o r i d s r i ~ u l t ~ r c l ~ ~ r p c s e s 1; - EL st--c l :er t ~ l t s c n l ~ n d s h s c a f c r a s r l c ~ l r u r a ; p u r a o s e s 1 ': - c h a r i b k s i n t h ~ z a c ~ n ; o f ~ c o a c z , u s e o b y l u a k e r ~ n ~

  • 1 - i a r i c s n o t ~ s e ~ f o r o , r ; c u i t ~ r z l ~ ~ r ~ o s e s 2 - i ~ n c s sea t o r a j r l c ~ l t ~ r a l L ~ r ~ c s e s 2 - ~ c t l t r ~ a s

  • S T A I . C A E L L L T F C T

    1 - l a n c c r l c t L S E C f o r ~ . ; r i c u ? t ~ r : . l p ~ r b o z ~ z ; -. L L T I C I S L L Z C T C T ~ & T ~ c L ~ ~ L T s ~ / ; l r T b G S C C 7 . - ~ t t > ; n c s

  • 1 ' - : & L T L ~ , ' , ' , ~ ; C / C ; ~ ~ . ~ ~ C . 5 ~ ~ 1 6 f o r c.11 V L T ~ C , ~ ~ C S i - ; ~ t o c ~ t i c ; s e c , r , t c scale f c r e v e r y v a r z a b l f 3 - r n o r ; ~ ; l ; s i r , i l e s c a l ~ f c r ~ 1 1 v ~ r i ~ , i ; l k s 4 - n l a r i ~ & - / ~ ; ; ~ r Z t c :c ; le f c r every v , r i S b l e