289
Synthesis, Structural Elucidation, Biocidal and Preliminary DNA Interaction Studies of Organotin(IV) Complexes with [O,O] and [O,N,O] Donor Ligands ISLAMABAD A Thesis Submitted to the Department of Chemistry, Quaid-i-Azam University, Islamabad, in partial fulfillment of the requirement for the degree of Doctor of Philosophy in Inorganic/Analytical Chemistry by Shaukat Shujah Department of Chemistry Quaid-i-Azam University Islamabad, Pakistan (2009)

Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

Synthesis, Structural Elucidation, Biocidal and Preliminary DNA Interaction Studies

of Organotin(IV) Complexes with [O,O] and [O,N,O] Donor Ligands

ISLAMABAD

A Thesis Submitted to the Department of Chemistry, Quaid-i-Azam University, Islamabad, in partial fulfillment of

the requirement for the degree of

Doctor of Philosophy

in

Inorganic/Analytical Chemistry

by

Shaukat Shujah

Department of Chemistry Quaid-i-Azam University

Islamabad, Pakistan (2009)

Page 2: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,
Page 3: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

Dedicated

to

my loving parents, wife and daughter Attiya

Page 4: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

CONTENTS

Acknowledgements i

Abstract iii

List of Tables v

List of Figures xi

Chapter 1 INTRODUCTION 1−37

1.1 Organotin compounds 1

1.2 Organotin compounds-a brief review 2

1.3 Principle coordination geometries at the tin centre in organotin compounds 4

1.4 Organotin(IV) complexes with [O,O] donor ligands or carboxylates 5

1.4.1 Methods of preparation 5

1.5 Structural diversity of organotin(IV) carboxylates 7

1.6 Organotin(IV) complexes with [O,N,O] donor ligands 10

1.6.1 Structure of diorganotin(IV) complexes with [O,N,O] donor

ligands 10

1.7 Structure elucidation techniques 12

1.7.1 Infrared spectroscopy 12

1.7.2 NMR spectroscopy 13

1.7.2.1 1H NMR spectroscopy 13

1.7.2.2 13C NMR spectroscopy 14

1.7.2.3 119Sn NMR spectroscopy 15

1.7.3 Mass spectrometry 16

1.7.4 X-Ray crystallography 19

1.7.4.1 Crystal structure determination 19

1.8 Applications of organotin compounds 19

1.8.1 Non-Biological applications 19

Page 5: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

1.8.1.1 Polymer stabilizer 20

1.8.1.2 Fire retardants 20

1.8.1.3 Catalysts 20

1.8.1.4 Water repellents 21

1.8.1.5 Natural fiber treatment 21

1.8.1.6 Glass melting 21

1.8.1.7 Precursors for forming SnO2 films on glass 22

1.8.1.8 Electroplating 22

1.8.2 Biological applications 22

1.8.2.1 Leishmanicidal agent 22

1.8.2.2 Larvicidal agents 23

1.8.2.3 Antiviral agents 23

1.8.2.4 Veterinary application 23

1.8.2.5 Dentistry 23

1.8.2.6 Antifouling coatings 24

1.8.2.7 Crop protection 24

1.8.2.8 Antitumor activity 24

References 27

Chapter 2 EXPERIMENTAL 38−106

2.1 Chemicals 38

2.2 Instrumentation 38

2.3 General procedure for the synthesis of ligand 39

2.3.1 From Tranexamic acid 39

2.3.2 From Hydrazides 40

2.3.3 From Dihydrazides 41

2.3.4 Synthesis of noval ligands 42

Page 6: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

2.4 General procedures for synthesis of organotin(IV) complexes 47

2.4.1 Di- and triorganotin(IV) complexes of [O,O] donor ligands 47

2.4.1.1 Procedure (I) 47

2.4.1.2 Procedure (II) 47

2.4.2 Diorganotin(IV) complexes of [O,N,O] donor ligands 48

2.4.2.1 Procedure (III) 48

2.4.2.2 Procedure (IV) 49

2.4.2.3 Procedure (V) 49

2.5 Synthesis of noval organotin(IV) complexes 50

2.6 Biological studies 102

2.6.1 Cytotoxicity 102

2.6.2 Antifungal activity 102

2.6.3 Antibacterial activity 103

2.6.4 Antiurease activity 103

2.6.5 Leishmanicidal activity 104

2.6.6 DNA binding studies 105

References 106

Chapter 3 RESULTS AND DISCUSSIONS 107−200

3.1 Synthesis of organotin(IV) complexes 107

3.2 Infrared spectra 107

3.3 NMR Spectroscopy 109

3.3.1 1H NMR spectroscopy 109

3.3.2 13C NMR spectroscopy 129

3.3.3 119Sn NMR spectroscopy 130

3.4 Mass spectrometry 151

3.5 Biological activity 156

3.5.1 Cytotoxicity 156

Page 7: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

3.5.2 Antifungal activity 160

3.5.3 Antibacterial activity 172

3.5.4 Antiurease activity 184

3.5.5 Leishmanicidal activity 185

3.5.6 Evaluation of DNA binding parameters 186

3.5.6.1 Cyclic voltammetry of selected compounds

and their DNA adducts 186

3.5.6.2 UV-vis absorption studies of diorganotin(IV)

complex-DNA interactions 192

References 197

Chapter 4 CRYSTALLOGRAPHIC ANALYSIS 201−262

4.1 X-ray crystal structure of ligands 201

4.1.1 X-ray crystal structure of H2La 201

4.1.2 X-ray crystal structure of H2Le 202

4.1.3 X-ray crystal structure of H2Lf 205

4.1.4 X-ray crystal structure of H2Lh 206

4.1.5 X-ray crystal structure of H2Lj 209

4.2 X-ray Crystal structure of organotin(IV) complexes 213

4.2.1 X-ray crystal structure of complex (2) 213

4.2.2 X-ray crystal structure of complex (9) 215

4.2.3 X-ray crystal structure of complex (22) 218

4.2.4 X-ray crystal structure of complex (25) 220

4.2.5 X-ray crystal structure of complex (32) 225

4.2.6 X-ray crystal structure of complex (36) 227

4.2.7 X-ray crystal structure of complex (37) 233

4.2.8 X-ray crystal structure of complex (39) 235

4.2.9 X-ray crystal structure of complex (48) 239

Page 8: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

4.2.10 X-ray crystal structure of complex (50) 241

4.2.11 X-ray crystal structure of complex (51) 246

4.2.12 X-ray crystal structure of complex (61) 247

4.2.13 X-ray crystal structure of complex (68) 251

4.2.14 X-ray crystal structure of complex (69) 252

4.2.15 X-ray crystal structure of complex (85) 255

4.2.16 X-ray crystal structure of complex (86) 256

References 261

Conclusions 263

Publication list 265

Page 9: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

i

ACKNOWLEDGEMENTS

I owe my profound thanks and deepest sense of gratitude to Almighty

ALLAH, Who blessed me with an opportunity for Ph. D. and then gave me the

strength, determination and ability to complete this tough task.

I wish to express my sincere and cordial thanks to my affectionate supervisor,

Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University, Islamabad,

for his inspiring guidance and dedicated supervision. His generous help, good

manners and thought provoking discussions enabled me to complete my research

work within the stipulated time.

It is also my pleasure to thank my co-supervisor, Dr. Nasir Khalid, DCS,

Chemistry Division, PINSTECH, Islamabad, for his immense help, cooperation

and guidance through out this research work.

I am grateful to Prof. Dr. Helen S. Evans and Dr. Muhammad Altaf,

Institute of Microtechnology, University of Neuchatel, Switzerland, Dr. A. Meetsma,

of Crystal Structure Centre, Chemical Physics Zernike Institute for Advance Material,

University of Groningen, The Netherlands, Dr. E. R. T. Tiekink, Department of

Chemistry, The University of Texas at San Antonio, USA and Prof. Dr. Nawaz

Tahir, Sargodha University, Pakistan, for single crystal X-ray analyses.

Thanks are due to Prof. Dr. B. Wrackmeyer and Dr. Ezzat Khan University

of Bayreuth, Germany for 119Sn NMR studies. The cooperation of Mr. Afzal Shah

and Dr. Rumana Qureshi for DNA binding studies is also acknowledged.

I highly appreciate Prof. Dr. S. Sakhawat Shah, Chairman, Department of

Chemistry, Quaid-i-Azam University, Islamabad, for providing Laboratory facilities

during research work. Prof. Dr. Amin Badshah and Prof. Dr. M. Mazhar, are

highly acknowledged for their help.

A special word of thanks is due to Dr. Zia-ur-Rehma, Mr. Niaz

Muhammad, Dr. Aziz-ur-Rehman, Dr. M. Hanif, Dr. Mukhtiar Hussain Mr.

Muhammad Tariq and Prof. Ejaz Ahmed for their nice company, encouragement

and continuous support throughout this work. I would also like to express my deepest

appreciation to all members of Lab. No. 38 and 42.

I would like to appreciate the cooperation of all employees of the department

of chemistry especially Mr. Shamas Pervaiz and Mr. Sharif Chohan.

Page 10: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

ii

I am also thankful to the Federal Directorate of Education, Islamabad, for

the grant of study leave and to Higher Education Commission of Pakistan for

financial support under the Indigenous Scholarship Scheme.

Last but not least, my heartfelt gratitude and appreciation goes to my parents,

without their encouragement and prayers, I would have not been able to accomplish

this task. I am also grateful to my wife and daughter Attiya for their patience

during my Ph. D research work.

Shaukat Shujah

Page 11: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

iii

ABSTRACT

In the present study, thirteen novel [O,O] and [O,N,O] potential donor ligands

were synthesized by reaction of salicylaldehyde and substituted salicylaldehyde with

tranexamic acid, hydrazides and dihydrazides in ethanol. The di- and triorganotin(IV)

derivatives of these compounds have also been obtained in good yields by refluxing

the compound or its sodium/triethylammonium salt and the respective organotin(IV)

chlorides/oxides/dihydroxidechloride in dry toluene for 8-10 hours. The ligands were

4-((5-bromo-2-hydroxybenzylideneamino)methyl)cyclohexanecarboxylic acid (H2La)

4-((1-(2-hydroxyphenyl)ethylideneamino)methyl)cyclohexanecarboxylic acid (H2Lb),

4-((1-(5-bromo-2-hydroxyphenyl)ethylideneamino)methyl)cyclohexanecarboxylic

acid (H2Lc), N′-(2-hydroxybenzylidene)formohydrazide (H2Ld), N′-(5-bromo-2-

hydroxybenzylidene)formohydrazide (H2Le), N′-(2-hydroxy-3-methoxybenzylid-

ene)formohydrazide (H2Lf), N′-(4-(diethylamino)-2-hydroxybenzylidene)formohyd-

razide (H2Lg), N′-(2-hydroxynaphthalen-1-yl)methylene)formohydrazide (H2Lh), N′-

(1-(5-bromo-2-hydroxyphenyl)ethylidene)formohydrazide (H2Li), N′-(2-hydroxyben-

zylidene)-4-tert-butylbenzohydrazide (H2Lj), N1′, N6′-bis(2-hydroxyben-zylidene)-

adipohydrazide (H4Lk), N1′, N6′-bis(5-bromo-2-hydroxybenzylidene)adipohydrazide

(H4Ll), N1′, N6′-bis(2-hydroxy-3-methoxybenzylidene)adipohydrazide (H4Lm) and

N1′, N4′-bis(2-hydroxybenzylidene)succinohydrazide (H4Ln).

A variety of spectroscopic techniques like FT-IR, multinuclear NMR

spectroscopy (1H, 13C and 119Sn) and mass spectrometry were used to ascertain the

structure, coordination mode of ligands and geometry of tin in the synthesized

complexes. The solid state structures were also studied by performing single crystal

X-ray analyses.

The results revealed that in case of [O,O] donor ligands, the coordination to

the tin atom is through the COO moiety. The triorganotin(IV) derivatives demonstrate

trigonal bipyramidal geometry in the solid and tetrahedral in the solution state with

few exceptions. All diorganotin(IV) derivatives with [O,N,O] donor ligands retain

their geometry as trigonal bipyramid in solid as well as in solution.

The complexes were screened for cytotoxicity, antifungal, antibacterial,

antiurease, and leishmanicidal activities. The triorganotin(IV) derivatives of [O,O]

donor ligands and dibutyl(IV) complexes in case of [O,N,O] donor ligands exhibit

Page 12: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

iv

reasonable biocidal activities. Most complexes were more active than the

corresponding free ligands.

The interaction of R2SnLd (R = −CH3, n−C4H9, and −C6H5) with DNA were

investigated by cyclic voltammetry (CV) and UV-Vis spectroscopy. The diffusion

coefficient of the free and DNA bound complexes were determined by the

Randles-Sevcik equation. The positive peak potential shift in CV suggests an

intercalative mode of interaction for these complexes with DNA. The CV results

revealed the following decreasing order of binding strengths:

(C4H9)2SnLd (1.69 x 104) > (C6H5)2SnLd (1.10 x 104) > (CH3)2SnLd (9.61 x 103) M-1.

The results are also supported by the UV-Vis spectroscopic data. The negative values

of ∆G indicate the spontaneous nature of this interaction.

Page 13: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

v

List of Tables

Table Title Page

2.1 Physical data of organotin(IV) complexes of 4-((5-bromo-2-hydroxy- benzylideneamino)methyl)cyclohexanecarboxylic acid (H2La)

81

2.2 Physical data of organotin(IV) complexes of 4-((1-(2-hydroxyphenyl) ethylideneamino)methyl)cyclohexanecarboxylic acid (H2Lb)

82

2.3 Physical data of organotin(IV) complexes of 4-((1-(5-bromo-2-hydroxy-phenyl)ethylideneamino)methyl)cyclohexanecarboxylic acid (H2Lc)

83

2.4 Physical data of diorganotin(IV) complexes of N′-(2-hydroxy benzylidene) formohydrazide (H2Ld)

84

2.5 Physical data of diorganotin(IV) complexes of N′-(5-bromo-2-hydroxy- benzylidene)formohydrazide (H2Le)

85

2.6 Physical data of diorganotin(IV) Complexes of N′-(2-hydroxy-3-methoxy- benzylidene)formohydrazide (H2Lf)

86

2.7 Physical data of diorganotin(IV) complexes of N′-(4-(diethylamino)-2-hydroxybenzylidene)formohydrazide (H2Lg)

88

2.8 Physical data of diorganotin(IV) complexes of N′-(2-hydroxynaphthalen-1-yl)methylene)formohydrazide (H2Lh)

89

2.9 Physical data of diorganotin(IV) complexes of N′-(1-(5-bromo-2-hydroxy- phenyl)ethylidene)- formohydrazide (H2Li)

90

2.10 Physical data of diorganotin(IV) complexes of N′-(2-hydroxybenzyli-dene)-4-tert-butylbenzohydrazide (H2Lj)

91

2.11 Physical data of diorganotin(IV) complexes of N1′, N6′-bis(2-hydroxy-benzylidene)adipohydrazide (H4Lk)

93

2.12 Physical data of diorganotin(IV) complexes of N1′, N6′-bis(5-bromo-2-hydroxybenzylidene)adipohydrazide (H4Ll)

95

2.13 Physical data of diorganotin(IV) complexes of N1′, N6′-bis(2-hydroxy-3-methoxybenzylidene)adipohydrazide (H4Lm)

97

2.14 Physical data of diorganotin(IV) complexes of N1′, N4′-bis(2-hydroxy-benzylidene)succinohydrazide (H4Ln)

99

2.15 Physical data of mixed ligand dimethyltin(IV) Complexes 101

3.1 1H NMR data of 4-((5-bromo-2-hydroxybenzylideneamino)methyl) cyclohexanecarboxylic acid (H2La) and its organotin(IV) derivatives

112

3.2 1H NMR data of 4-((1-(2-hydroxyphenyl)ethylideneamino) methyl)- 113

Page 14: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

vi

cyclohexanecarboxylic acid (H2Lb) and its organotin(IV) derivatives

3.3 1H NMR data of 4-((1-(5-bromo-2-hydroxyphenyl)ethylideneamino) methyl)cyclohexanecarboxylic acid (H2Lc) and its organotin(IV) complexes

114

3.4 1H NMR data of N′-(2-hydroxybenzylidene)formohydrazide (H2Ld) and its organotin(IV) derivatives

115

3.5 1H NMR data of N′-(5-bromo-2-hydroxybenzylidene)formohydrazide (H2Le) and its organotin(IV) derivatives

116

3.6 1H NMR data of N′-(2-hydroxy-3-methoxybenzylidene)formohydrazide (H2Lf) and its organotin(IV) derivatives

117

3.7 1H NMR data of N′-(4-(diethylamino)-2-hydroxybenzylidene)formo-hydrazide (H2Lg) and its organotin(IV) derivatives

118

3.8 1HNMR data of N′-(2-hydroxynaphthalen-1-yl)methylene)formohydrazide (H2Lh) N′-(1-(5-bromo-2-hydroxyphenyl) ethylidene)formo-hydrazide (H2Li) and their organotin(IV) derivatives

119

3.9 1H NMR data of N′-(2-hydroxybenzylidene)-4-tert-butylbenzohydrazide (H2Lj) and its organotin(IV) derivatives

120

3.10 1H NMR data of N1′, N6′-bis(2-hydroxybenzylidene)adipohydrazide (H4Lk) and its organotin(IV) derivatives

121

3.11 1H NMR data of N1′, N6′-bis(5-bromo-2-hydroxybenzylidene) adipohydrazide (H4Ll) and its organotin(IV) derivatives

122

3.12 1H NMR data of N1′, N6′-bis(2-hydroxy-3-methoxybenzylidene) adipo-hydrazide (H4Lm) and its organotin(IV) derivatives

123

3.13 1H NMR data of N1′, N4′-bis(2-hydroxybenzylidene) succinohydrazide (H4Ln) and its organotin(IV) derivatives

124

3.14 1H NMR data of mixed ligand complexes 125

3.15 13C NMR data of 4-((5-bromo-2-hydroxybenzylideneamino)methyl)-cyclohexanecarboxylic acid (H2La) and its organotin(IV) derivatives

131

3.16 13C NMR data of 4-((1-(2-hydroxyphenyl)ethylideneamino)methyl)-cyclohexanecarboxylic acid (H2Lb) and its organotin(IV) derivatives

132

3.17 13C NMR data of 4-((1-(5-bromo-2-hydroxyphenyl)ethylidene amino)-methyl)cyclohexanecarboxylic acid (H2Lc) and its organotin(IV) derivatives

133

3.18 13C NMR data of N′-(2-hydroxybenzylidene)formohydrazide (H2Ld) and its organotin(IV) derivatives

134

3.19 13C NMR data of N′-(5-bromo-2-hydroxybenzylidene) formohydrazide (H2Le) and its organotin(IV) derivatives

135

Page 15: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

vii

3.20 13C NMR data of N′-(2-hydroxy 3-methoxybenzylidene)formohydrazide (H2Lf) and its organotin(IV) derivatives

136

3.21 13C NMR data of N′-(4-(diethylamino)-2-hydroxybenzylidene)formo-hydrazide (H2Lg) and its organotin(IV) derivatives

137

3.22 13C NMR data of N′-(2-hydroxynaphthalen-1-yl)methylene)formohydrazide (H2Lh), N′-(1-(5-bromo-2-hydroxyphenyl)ethylidene)formohydrazide (H2Li) and their organotin(IV) derivatives.

138

3.23 13C NMR data of N′-(2-hydroxybenzylidene)-4-tert-butylbenzohydrazide- (H2Lj) and its organotin(IV) derivatives

139

3.24 13C NMR data of N1′, N6′-bis(2-hydroxybenzylidene) adipohydrazide (H4Lk)

and its organotin(IV) derivatives 140

3.25 13C NMR data of N1′, N6′-bis(5-bromo-2-hydroxybenzylidene)adipo-hydrazide (H4Ll) and its organotin(IV) derivatives

141

3.26 13C NMR data of N1′, N6′-bis(2-hydroxy-3-methoxybenzylidene)adipo-hydrazide (H4Lm) and its organotin(IV) derivatives

142

3.27 13C NMR data of N1′, N4′-bis(2-hydroxybenzylidene) succinohydrazide (H4Ln) and its organotin(IV) derivatives

143

3.28 13C NMR data of mixed ligand complexes 144

3.29 (C-Sn-C) angles (◦) of selective organotin(IV) complexes 145

3.30 Brine shrimp (Artemia salina) lethality bioassay of ligands and their organotin(IV) complexes.

157

3.31 Antifungal activity (% inhibition) of 4-((5-bromo-2-hydroxybenzylidene- amino)methyl)cyclohexanecarboxylic acid (H2La) and its organotin(IV) complexes.

161

3.32 Antifungal activity (% inhibition) of 4-((1-(2-hydroxyphenyl)ethylidene-amino)methyl)-cyclohexanecarboxylic acid (H2Lb) and its organotin(IV) complexes.

162

3.33 Antifungal activity (% inhibition) of 4-((1-(5-bromo-2-hydroxyphenyl)- ethylideneamino)methyl)cyclohexanecarboxylic acid (H2Lc) and its organotin(IV) complexes.

163

3.34 Antifungal activity (% inhibition) of N′-(2-hydroxybenzylidene)formo- hydrazide (H2Ld) and its organotin(IV) complexes.

164

3.35 Antifungal activity (% inhibition) of N′-(5-bromo-2-hydroxybenzyli- dene)formohydrazide (H2Le) and its organotin(IV) complexes.

165

3.36 Antifungal activity (% inhibition) of N′-(2-hydroxy-3-methoxybenzyli-dene)formohydrazide (H2Lf) and its organotin(IV) complexes.

166

Page 16: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

viii

3.37 Antifungal activity (% inhibition) of N′-(4-(diethylamino)-2-hydroxy-benzylidene)formohydrazide (H2Lg) and its organotin(IV) complexes.

167

3.38 Antifungal activity (% inhibition) of N′-(2-hydroxybenzylidene)-4-tert-butylbenzohydrazide (H2Lj) and its organotin(IV) complexes.

168

3.39 Antifungal activity (% inhibition) of N1′, N6′-bis(2-hydroxy benzylidene) adipohydrazide (H4Lk) and its organotin(IV) complexes.

169

3.40 Antifungal activity (% inhibition) of N1′, N6′-bis(5-bromo-2-hydroxy-benzylidene)adipohydrazide (H4Ll) and its organotin(IV) complexes.

170

3.41 Antifungal activity (% inhibition) of N1′, N6′-bis(2-hydroxy-3-methoxy-benzylidene)adipohydrazide (H4Lm) and its organotin(IV) complexes.

171

3.42 Antibacterial activity of 4-((5-bromo-2-hydroxybenzylideneamino)methyl) cyclohexanecarboxylic acid (H2La) and its organotin(IV) complexes.

173

3.43 Antibacterial activity of 4-((1-(2-hydroxyphenyl)ethylidene- amino)methyl) cyclohexanecarboxylic acid (H2Lb) and its organotin(IV) complexes.

174

3.44 Antibacterial activity of 4-((1-(5-bromo-2-hydroxyphenyl)ethylideneamino) methyl)cyclohexanecarboxylic acid (H2Lc) and its organotin(IV) complexes.

175

3.45 Antibacterial activity of N′-(2-hydroxybenzylidene)formohydrazide (H2Ld) and its organotin(IV) complexes.

176

3.46 Antibacterial activity of N′-(5-bromo-2-hydroxybenzylidene)formo-hydrazide (H2Le) and its organotin(IV) complexes.

177

3.47 Antibacterial activity of N′-(2-hydroxy-3-methoxybenzylidene)formo- hydrazide (H2Lf) and its organotin(IV) complexes.

178

3.48 Antibacterial activity of N′-(4-(diethylamino)-2-hydroxybenzylidene)- formohydrazide (H2Lg) and its organotin(IV) complexes.

179

3.49 Antibacterial activity of N′-(2-hydroxybenzylidene)-4-tert-butylbenzo-hydrazide (H2Lj) and its organotin(IV) complexes.

180

3.50 Antibacterial activity of N1′, N6′-bis(2-hydroxybenzylidene)adipo-hydrazide (H4Lk) and its organotin(IV) complexes.

181

3.51 Antibacterial activity of N1′, N6′-bis(5-bromo-2-hydroxybenzylidene) adipohydrazide (H4Ll) and its organotin(IV) complexes.

182

3.52 Antibacterial activity of N1′, N6′-bis(2-hydroxy-3-methoxybenzylidene) adipohydrazide (H4Lm) and its organotin(IV) complexes.

183

3.53 Antiurease activity of representative ligands and their organotin(IV) complexes.

184

3.54 Leishmanicidal activity of selective ligands and their organotin(IV) 185

Page 17: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

ix

complexes.

3.55 Voltammetric parameters of compound (25), (22) and (24) in the absence and presence of DNA

188

3.56 The binding constants and Gibbs free energies of 25-DNA, 22-DNA and 24-DNA adducts as determined by cyclic voltammetry along with the diffusion coefficients of the free and DNA bound species.

189

3.57 The binding constants and Gibbs free energies of 25-DNA, 22-DNA and 24-DNA adducts as determined by UV-Vis. Spectroscopy.

196

4.1 Crystal data and structure refinement parameters for H2La and H2Le 203

4.2 Selected bond lengths (Å) and bond angles (°) for H2La. 204

4.3 Hydrogen-bond geometry (Å, °) for H2La. 204

4.4 Selected bond lengths (Å) and bond angles (o) of H2Le. 204

4.5 Hydrogen-bond geometry (Å, °) for H2Le. 204

4.6 Crystal data and structure refinement parameters for H2Lf and H2Lh 207

4.7 Selected bond lengths (Å) and bond angles (o) of H2Lf. 208

4.8 Hydrogen-bond geometry (Å, °) for H2Lf. 208

4.9 Selected bond lengths (Å) and bond angles (o) of H2Lh 208

4.10 Hydrogen-bond geometry (Å, °) for H2Lh 208

4.11 Crystal data and structure refinement parameters for H2Lj 211

4.12 Selected bond lengths (Å) and bond angles (o) of H2Lj 212

4.13 Hydrogen-bond geometry (Å, °) for H2Lj 212

4.14 Crystal data and structure refinement parameters for compounds (2) and (9) 216

4.15 Selected bond lengths (Å) and bond angles (o) of complex (2). 217

4.16 Selected bond lengths (Å) and bond angles (o) of complex (9). 217

4.17 Crystal data and structure refinement parameters for complexes (22) and (25) 222

4.18 Selected bond lengths (Å) and bond angles (o) of complex (22) 223

4.19 Selected bond lengths (Å) and bond angles (o) of complex (25) 224

4.20 Selected Crystal data and structure refinement parameters for compounds (32) and (36)

229

Page 18: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

x

4.21 Selected bond lengths (Å) and bond angles (o) of compound (32) 230

4.22 Selected bond lengths (Å) and bond angles (o) of dimer di-nuclear molecule 1 of compound (36)

231

4.23 Selected bond lengths (Å) and bond angles (o) of dimer di-nuclear molecule 2 of compound (36)

232

4.24 Crystal data and structure refinement parameters for complex (37) and (39) 236

4.25 Selected bond lengths (Å) and bond angles (o) of complex (37) 237

4.26 Hydrogen-bond geometry (Å, o) of complex (37) 237

4.27 Selected bond lengths (Å) and bond angles (o) of complex (39) 238

4.28 Crystal data and structure refinement parameters for complexes (48) and (50) 243

4.29 Selected bond lengths (Å) and bond angles (o) of molecule (1) of asymmetric unit of compound (48)

244

4.30 Selected bond lengths (Å) and bond angles (o) of molecule (2) of asymmetric unit of complex (48)

244

4.31 Selected bond lengths (Å) and bond angles (o) of complex (50). 245

4.32 Crystal data and structure refinement parameters for complexes (51) and (61) 249

4.33 Selected bond lengths (Å) and bond angles (o) of complex (51) 250

4.34 Selected bond lengths (Å) and bond angles (o) of complex (61) 250

4.35 Crystal data and structure refinement parameters for complexes (68) and (69) 253

4.36 Selected bond lengths (Å) and bond angles (o) of complex (68). 254

4.37 Selected bond lengths (Å) and bond angles (o) of complex (69). 254

4.38 Crystal data and structure refinement parameters for complexes (85) and (86) 258

4.39 Selected bond lengths (Å) and bond angles (o) of complex (85) 259

4.40 Selected bond lengths (Å) and bond angles (o) of complex (86) 260

4.41 Hydrogen-bond geometry (Å, °) for complex (86) 260

Page 19: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

xi

List of Figures

Figure Title Page

1.1 Principle coordination geometries for di- and tetra-valent tin. 5

1.2 Four types of structure for R3SnOCOR′ compounds. 8

1.3 Diorganotin dicarboxylates in the solid state. 9

1.4 Structure of mono organotin tricarboxylates 10

1.5 An overview showing the coordination behaviour of [O,N,O] donor ligands with organotin(IV) moieties.

11

1.6 Structure of DNA showing intercalation and elelctrostatic interaction with tin

25

3.1 Proposed structures of (a) diorganotin(IV) dicarboxylates, (b) triorganotin(IV) carboxylate, (c) polymeric structure of triorganotin(IV) carboxylate.

109

3.2 1H NMR spectrum of complex (2) 126

3.3 1H NMR spectrum of complex (50) 127

3.4 1H NMR spectrum of complex (68) 128

3.5 13CNMR spectrum of complex (2) 147

3.6 13CNMR spectrum of complex (50) 147

3.7 13CNMR spectrum of complex (68) 148

3.8 119Sn NMR spectrum of complex (16) 148

3.9 119Sn NMR spectrum of complex (32) 149

3.10 119Sn NMR spectrum of complex (61) 150

3.11 119Sn NMR spectrum of complex (75) 151

3.12 Mass spectrum of complex (22) 154

3.13 Mass spectrum of complex (39) 155

3.14 Mass spectrum of complex (85) 155

3.15 Antifungal activity of H2La and its organotin(IV) complexes against various fungi.

161

Page 20: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

xii

3.16 Antifungal activity of H2Lb and its organotin(IV) derivatives against various fungi.

162

3.17 Antifungal activity of H2Lc and its organotin(IV) derivatives against various fungi.

163

3.18 Antifungal activity of H2Ld and its organotin(IV) derivatives against various fungi.

164

3.19 Antifungal activity of H2Le and its organotin(IV) derivatives against various fungi.

165

3.20 Antifungal activity of H2Lf and its organotin(IV) derivatives against various fungi.

166

3.21 Antifungal activity of H2Lg and its organotin(IV) derivatives against various fungi.

167

3.22 Antifungal activity of H2Lj and its organotin(IV) derivatives against various fungi.

168

3.23 Antifungal activity of H4Lk and its organotin(IV) derivatives against various fungi.

169

3.24 Antifungal activity of H4Ll and its organotin(IV) derivatives against various fungi.

170

3.25 Antifungal activity of H4Lm and its organotin(IV) derivatives against various fungi.

171

3.26 Antibacterial activity of H2La and its organotin(IV) derivatives against various bacteria.

173

3.27 Antibacterial activity of H2Lb and its organotin(IV) derivatives against various bacteria.

174

3.28 Antibacterial activity of H2Lc and its organotin(IV) derivatives against various bacteria.

175

3.29 Antibacterial activity of H2Ld and its organotin(IV) derivatives against various bacteria.

176

3.30 Antibacterial activity of H2Le and its organotin(IV) derivatives against various bacteria.

177

3.31 Antibacterial activity of H2Lf and its organotin(IV) derivatives against various bacteria.

178

3.32 Antibacterial activity of H2Lg and its organotin(IV) derivatives against various bacteria.

179

3.33 Antibacterial activity of H2Lj and its organotin(IV) derivatives against various bacteria.

180

Page 21: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

xiii

3.34 Antibacterial activity of H4Lk and its organotin(IV) derivatives against various bacteria.

181

3.35 Antibacterial activity of H4Ll and its organotin(IV) derivatives against various bacteria.

182

3.36 Antibacterial activity of H4Lm and its organotin(IV) derivatives against various bacteria.

183

3.37 Cyclic voltammograms of 3.00 mM Ph2SnLd (25) in the absence (a)

and presence of 50 µM DNA (b).

189

3.38 Cyclic voltammograms of 3.00 mM Me2SnLd (22) in the absence(a)

and presence of 50 µM DNA (b).

190

3.39 Cyclic voltammograms of 3.00 mM Bu2SnLd (24) in the absence (a)

and presence of 50 µM DNA (b).

190

3.40 Plots of log (IH-G/(IG-IH-G)) vs. log (1/[DNA]) used to calculate the binding constants of 25-DNA, 22-DNA and 24-DNA adducts.

191

3.41 Plots of I vs. ν1/2, for the determination of diffusion coefficients of the free complex (3.00 mM 25, 22 and 24). Scan rates 0.1−0.6 V/s with a difference of 0.1 V/s.

191

3.42 Plots of I vs. ν1/2, for the determination of the diffusion coefficients of the DNA bound complexes by taking 3.00 mM 25, 22, 24 and 60 µM DNA. Scan rate 0.1-0.6 V/s with a difference of 0.1 V/s.

192

3.43 Absorption spectra of 0.2 mM Ph2SnLd (25) in the absence (a) and presence of 5 µM, (b) 10 µM, (c) 15 µM, (d) 20 µM, (e), and 25 µM DNA (f). The arrow direction indicates increasing concentrations of DNA.

194

3.44 Absorption spectra of 0.2 mM Me2SnLd (22) in the absence (a) and presence of 5 µM, (b) 10 µM, (c) 15 µM, (d) 20 µM, (e), and 25 µM DNA (f). The arrow direction indicates increasing concentrations of DNA.

194

3.45 Absorption spectra of 0.2 mM Bu2SnLd (24) in the absence (a) and presence of 5 µM, (b) 10 µM, (c) 15 µM, (d) 20 µM, (e), and 25 µM DNA (f). The arrow direction indicates increasing concentrations of DNA.

195

3.46 Plots of Ao/(A−Ao) vs.1/[DNA] for the determination of binding constants of Complex-DNA adducts by taking 0.2 mM complex and 5-25 µM DNA with a difference of 5 µM aliquot of DNA.

195

3.47 Numbering scheme for various alkyl and aryl groups attached with tin atom in synthesized organotin(IV) compounds

196

Page 22: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

xiv

4.1 ORTEP drawing of H2La with the atomic numbering scheme. 201

4.2 ORTEP drawing of H2Le with the atomic numbering scheme. 202

4.3 ORTEP drawing of H2Lf with the atomic numbering scheme. 205

4.4 ORTEP drawing of H2Lh with the atomic numbering scheme 206

4.5 ORTEP drawing of H2Lj with the atomic numbering scheme 210

4.6 Chain formation via by N(2)−H.....O(2) intermolecular hydrogen bonds in the crystal structure of ligand H2Lj.

210

4.7 ORTEP drawing of complex (2) with the atomic numbering scheme 214

4.8 Crystal structure of complex (2) showing the polymeric chain 214

4.9 ORTEP drawing of complex (9) with the atomic numbering scheme 215

4.10 ORTEP drawing of complex (22) with the atomic numbering scheme. 219

4.11 The molecular packing of complex (22) showing the arrangement of monomeric units.

219

4.12 ORTEP drawing of complex (25) with the atomic numbering scheme 221

4.13 Chain formation via C—H….O and C—H….π interactions in the crystal structure of compound (25).

221

4.14 ORTEP drawing of complex (32) with the atomic numbering scheme 226

4.15 ORTEP drawing of dimer of complex (36) with the atomic numbering scheme. Where X = 1 or 2

228

4.16 ORTEP drawing of compound (37) with the atomic numbering scheme.

234

4.17 A partial packing diagram of compound (37). 234

4.18 ORTEP drawing of complex (39) with the atomic numbering scheme 235

4.19 ORTEP drawing of compound (48) with the atomic numbering scheme, where X = 1 for molecule 1 and 2 for molecule 2.

240

4.20 ORTEP drawing of complex (50) with the atomic numbering scheme 242

4.21 ORTEP drawing of complex (51) with the atomic numbering scheme 246

4.22 ORTEP drawing of compound (61) with the atomic numbering scheme.

248

4.23 A portion of lattice of complex (61) showing packing of molecules 248

Page 23: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

xv

4.24 ORTEP drawing of complex (68) with the atomic numbering scheme 251

4.25 ORTEP drawing of complex (69) with the atomic numbering scheme 252

4.26 ORTEP drawing of complex (85) with the atomic numbering scheme 255

4.27 ORTEP drawing of complex (86) with the atomic numbering scheme 257

4.28 The unit cell packing diagram of complex (86). 257

Page 24: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

1

Chapter−1 INTRODUCTION

1.1 Organotin compounds

Organotin(IV) compounds are characterized by the presence of at least one

covalent C−Sn bond. The compounds contain a tetravalent Sn center and have the

general formula R4SnX4-n (n = 1−4). Depending on the number of organic moieties,

organotin complexes are classified as mono-, di-, tri-, and tetraorganotin compounds

(RSnX3, R2SnX2, R3SnX, R4Sn), in which R is any alkyl or aryl group and X is an

anionic species (halide, oxide, hydroxide, carboxylate, or thiolate) or a group attached

to tin through oxygen, sulfur, nitrogen, halogen, etc. The synthesis of the first

organotin compound dates back to 1849, when Frankland obtained diethyltin diiodide,

Et2SnI2 [1]. But the commercial application of organotin compounds for use as PVC

stabilizer in the 1940’s marks the real takeoff of organotin chemistry and extensive

studies in the area.

2EtI + Sn o

C150 200−⎯⎯⎯⎯⎯→ Et2SnI2 (1.1)

Although the carbon tin bond (Sn−C) is weaker than the C−C or Si−C bond, it is

relatively non-polar and is therefore, stable in the presence of water, atmospheric O2

and heat at temperatures up to 200 °C. Thermal decomposition has no significance

under environmental conditions as well as many nucleophilic species. The physical

properties of organotin compounds are affected by both the number of Sn-C bonds as

well as the length of the alkyl chains. However, the Sn-C bonds are cleaved by UV

radiation, different agents, including strong acids, halogens, metal halides and

electrophilic agents etc.

R4Sn + Cl2 ⎯→ R3SnCl + RCl (1.2)

R4Sn + SnCl4 ⎯→ 2R2SnCl2 (1.3)

R4Sn + HCl ⎯→ R3SnCl + RH (1.4)

The aryl, allyl or vinyl groups can be cleaved more easily from tin than the alkyl

groups and lower alkyl groups are cleaved more readily than the higher alkyl groups.

Tin in its compounds frequently shows coordination numbers greater than four,

because of the availability of low-lying empty 5do atomic orbitals and large atomic

Page 25: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

2

size. Organotin compounds can be synthesized by standard methods of which the

following are typical:

Grignard: SnCl4 + 4RMgCl ⎯→ R4Sn + 4MgCl2 (1.5)

(R = alkyl, aryl)

Organo Al: 3SnCl4 + 4R3Al ⎯→ 3R4Sn + 4AlCl3 (1.6)

(R = alkyl)

Direct (Rochow): Sn + 2RX ⎯→ R2SnX2 (1.7)

(R = alkyl)

All these routes are used on an industrial scale but the Grignard method (or the

equivalent organolithium reagent) is convenient for laboratory scale. Rather less used

is the modified Wurtz-type reaction.

SnCl4 + 4RCl 8Na⎯⎯⎯→ R4Sn + 8NaCl (1.8)

The conversion of R4Sn to the partially halogenated species is readily achieved by

scrambling reactions with SnCl4. Reduction of R4SnX4-n with LiAlH4 affords the

corresponding hydrides and hydrostannation (addition of Sn−H) to C=C double bonds

and triple bonds is an attractive route to unsymmetric or heterocyclic organotin

compounds.

1.2 Organotin compounds-a brief review

The synthesis of the first organotin compound diethyltin diiodide by Frankland

in 1849 [1] was the beginning of a new era in the field of tin chemistry. Lowig [2]

established that ethyl iodide reacted with a tin/sodium alloy to give what is now

recognized to be oligomeric diethyltin. An alternative indirect route was devised by

Buckton in 1859 [3], who obtained tetraethyltin by treating tin tetrachloride with

Frankland’s diethylzinc. The method was latter developed by Letts and Collie [4],

however, from 1849 to 1900, only 37 papers were published related to organotin

compounds. In 1960, the work on organotin compounds was reviewed with

comprehensive illustrations by Ingham et. al. [5]. In 1962, Kuivila et al., showed that

the reaction of trialkyltin hydrides with alkyl halides (hydrostannolysis) was a radical

chain reaction involving short-living tri alkyl tin radicals, R3Sn+ [6], and in 1964,

Neumann and co-workers showed that the reaction with non-polar alkenes and

alkynes (hydrostannation) followed a similar mechanism [7, 8]. Krause and Grosse

Page 26: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

3

described some early organotin work in ‘Organometallische Chemie’ which was

published first in 1937 [9]. They described examples of tetraalkyl and tetraaryltin and

of the organotin halides, hydrides, carboxylates, hydroxides, oxides, alkoxides,

phenoxides, R2Sn(II) compounds distannanes , (R3SnSnR3) and oligostannanes

(R2Sn)n. Omae published a monograph on organotin chemistry in 1989 [10]. The

biological properties were described as application of these compounds [11].

Yamamoto, edited proceeding of symposia comprising 27 papers on organotin

compounds in organic synthesis [12]. A set of 20 volumes by Gmelin (some only on

tin compounds) appeared giving a comprehensive survey of specified compounds

(1975-1993) [13-19]. A useful source of references for the synthesis, properties,

reactions and applications of about 1000 selected organotin compounds is available in

the Dictionary of Organometallic compounds [20]. In 1903, Pope and Peachey

described the preparation of a number of simple and mixed tetraalkyltin compounds

and of tetraphenyltin, from Grignard reagents and tin tetra chloride or alkyltin halides

[21]. A multi-author work edited by Sawyer [22] was published in 1991 and progress

during the 1970-80 decade was reviewed by Davies and Smith [23]. Zubeita and

Zuckerman reviewed much of the work published before 1978 [24], while in 1989

Saxena and Huber [25] covered the literature dealing with the biological activities,

including anticancer, of most of the compounds studied. In the same year, the results

obtained in the wide field of bioorganotin(IV) compounds were surveyed by Molloy

and Hartley [26]. Later, Tsangaris and Williams [27] published a paper on tin and

organotin(IV) compounds in pharmacy and nutrition. A full listing of reports which

have evaluated organotin(IV) compounds in agriculture is to be found in the two-part

review by Crowe [28]. Blunden et. al [29] and Crow et. al [30] published detailed

discussions on organotin(IV) for wood preservation. In 1985, two independently

published reviews demonstrated the utility of organotin(IV) derivatives of

(poly)alcohols in regioselective manipulations involving indirect acylation, alkylation

and oxidation [31,32], while the work by Grindley dealt with the applications of

organotin(IV)-containing intermediates in carbohydrate chemistry [33]. Strong sugar-

organotin(IV) cation complexation have been discussed by Burger and Nagy [34],

Gyurcsik and Nagy [35], Verchere et al. [36], while Barbieri et al. [37] dealt mainly

with the interactions of organotin(IV) cations and complexes with DNA and their

derivatives. Bruce [38] gave a comprehensive listing of organotin compounds with

their structures determined by electron diffraction or X-ray diffraction. Besides the

Page 27: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

4

periodical report of Royal Society of Chemistry, Tiekink [39] reviewed the structural

aspects of organotin carboxylates in solid state. Smith [40] also presented a

bibliography of X-ray crystal structures of organotin compounds. Holloway and

Melink [41] reviewed the structural chemistry of organotin compounds with more

than 400 references. Martin et. al. reported [42] tin NMR methodologies as applied to

the advanced structure determination of tin compounds in solution. In 2002, Pellerito

and Nagy [43] surveyed the results obtained by means of different equilibrium and

structural methods on the complexes formed with various organotin (IV) compounds

or ions. Mazhar et al. [44] have assessed more than three hundreds organotin

carboxylates, the review highlights various preparation methodologies of organotin

carboxylates, their physical and chemical properties, and latest developments in

molecular structure determination. The organotin-amino acid systems have been

extensively studied, whereas only limited studies have been carried out on the

interaction of organotins with peptides [45−53]. M. Nath has presented a comparative

study of structure− activity relationship of di- and triorganotin(IV) derivatives of

amino acid and peptides [54]. Pellerito et. al. reported the biological activity of

organotin(IV) complexes and also gave a review of the different experimental

procedures used in biological studies [55]. Annual developments were reviewed in the

Royal Society of Chemistry as special periodical reports which include a listing of all

the structures that have been determined by electron and X-ray diffraction methods up

to 1990 [56]. The most significant development in recent years, however, has been the

increasing use of organotin reagents and intermediates in organic synthesis exploiting

both their homolytic and heterolytic reactivity [57, 58].

1.3 Principle coordination geometries at the tin centre in organotin

compounds

Since the empty 5d orbitals of suitable energy may be involved in the

hybridization in divalent and tetravalent tin, higher coordination numbers of tin are

possible. Reactions of alkyltin chloride with appropriate nucleophiles give the

alkyltin, alkoxides, amides, thioalkoxides, carboxylates, etc. The presence of these

electronegative groups on tin renders the metal susceptibility for the coordination by

Lewis bases, simple tetrahedral coordination is the exception rather than the rule.

Hydrolysis of organotin halides gives the organotin oxides and in the case of dihalides

Page 28: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

5

and trihalides, the reaction proceeds through a series of well characterized

intermediate hydrolysis products.

Sn

sp2

Sn

sp3

Sn

sp3d

Sn

sp3d2

Sn(II) Trigonal planar Tetrahedral Trigonal

bi-pyramidal

Octahedral

Sn

sp3

Sn

sp3d

Sn

sp3d2

Sn(IV) Tetrahedral Trigonal bipyramidal Octahedral

Figure 1.1: Principle coordination geometries for di- and tetra-valent tin.

In Figure 1.1 the principal coordination geometries for both divalent and

tetravalent tin are given, while it is assumed that in the case of divalent tin, the lone

pair is also involved in the hybridization.

1.4 Organotin(IV) complexes with [O,O] donor ligands or carboxylates

The organotin(IV) derivatives of [O,O] donor ligands or carboxylates show a

wide structural diversity and are important due to their wide industrial and biological

applications.

1.4.1 Methods of preparation

Organotin carboxylates are commonly prepared by the following methods

a) By the treatment of carboxylic acids with organotin oxides or hydroxides in

boiling toluene or benzene, the water formed as azeotropic mixture removed

by using Dean and Stark separator [59-61]. For aryltin(IV) compounds

molecular sieves are used preferably to avoid the risk of cleaving of the Sn−Ar

bonds [62].

R3SnOH + R′CO2H PhMe-H2O

R3SnOCOR′ (1.9)

Page 29: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

6

(R3Sn)2O + 2R′CO2H PhMe-H2O

2R3SnOCOR′ (1.10)

R2SnO + 2R′CO2H PhMe-H2O

R2Sn(OCOR′)2 (1.11)

RSn(O)OH + 3R′CO2H PhMe-H2O

RSn(OCOR′)3 (1.12)

b) Organotin carboxylates are also prepared by the reaction of organotin

chlorides with a metal carboxylate in a suitable solvent such as acetone,

chloroform toluene or carbon tetrachloride [63-65].

RnSnCl4-n + (4-n)R′CO2M ⎯→ RnSn(OCOR′)4-n + (4-n)MCl (1.13)

R = Ag, Na, K or Tl

c) The reaction of organotin halides with organic acids in the presence of a

suitable base like triethylamine gives the corresponding organotin carboxylate

[66].

R3SnCl + R′CO2H + Et3N ⎯→ R3SnOCOR′ + Et3NHCl (1.14)

R2SnCl2 + 2R′CO2H + 2Et3N ⎯→ R2Sn(OCOR′)2 + 2Et3NHCl (1.15)

d) Organotin esters can also be prepared by the cleavage of one or more organic

groups from tetraorganotin compounds (R4Sn) by carboxylic acids or

mercury(I) or (II) carboxylates. The reaction by cleavage of a Sn−C bond with

a carboxylic acid occurs more readily when R is a vinyl, allyl or aryl group

[67].

R4Sn + nR′CO2H ⎯→ R4-nSn(OCOR′)n + nRH (1.16)

Ph4Sn + 2Cl3CCO2H ⎯→ Ph2Sn(OCOCCl3)2 + 2PhH (1.17)

2Me4Sn + Hg2(OCOMe)2 ⎯→ 2Me3SnOCOMe + 2Hg + C2H6 (1.18)

e) The redistribution reactions between diorganotin dicarboxylates and

diorganotin dichlorides in a suitable organic solvent such as chloroform also

give the required organotin carboxylates [68].

R2SnCl2 + R2Sn(OCOR′)2 ⎯→ 2R2Sn(OCOR′)Cl (1.19)

f) Organotin hydride can also be converted to organotin esters on reaction with

carboxylic acids [69,70] hydrogen gas is evolved during this process.

Bu2SnH2 + 2MeCO2H 4.5 hr

Bu2Sn(OCOMe)2 + 2H2 (1.20)

Page 30: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

7

Et2O60oC, 3 hr

Ph3SnH + EtCO2H Ph3SnOCOEt + H2

g) Trimethyltin chloride reacts with carboxylic acid at elevated temperature to

form diorganochlorotin carboxylates, which may also be synthesized at room

temperature by the exchange reaction between triorganotin carboxylates and

diorgnotin dichlorides in benzene or chloroform [71].

Me3SnCl + RCO2H o

100 C⎯⎯⎯⎯→ Me2Sn(OCOR)Cl + MeH (1.22)

R2SnCl2 + R′3SnOCOR′′ ⎯→ R2Sn(OCOR′′)Cl + R′3SnCl (1.23)

1.5 Structural diversity of organotin(IV) carboxylates

Extensive studies have been made on the wide structural diversity shown by

organotin carboxylates. The triorganotin carboxylates in the solid state show four

types of structures [72, 73].

Type I It is characterized by a four-coordinate distorted tetrahedral tin atom. A

recent example is (4-chloro-3,5-dinitrobenzoato)triphenyltin(IV) [74], in which the

bonding tin-oxygen distance is 2.065(2)Å in close agreement with the value for

triphenyltin salicylate [75].

Type II Type II contains a five-coordinate tin atom with a bidentate

carboxylate moiety. This geometry is based on a distorted trigonal bipyramid with the

carboxylate oxygen atoms spanning one apical and one equatorial position. A typical

example is triphenyltin o-(dimethylamino)benzoate [76], in which the two bonding

tin-oxygen distances are 2.564(7) and 2.115(6)Å, respectively. Both type I and II

structures are monomeric. It is interesting to note that triphenyltin o-aminobenzoate

[77] is characterized by a quite long coordination bond (2.823(3)Å) as compared to

that of the dimethylamino analogue (2.564(7)Å) due, in part, to the presence of an

intermolecular hydrogen bond between the carbonyl oxygen and the o−NH2 group.

Type III The type III compounds exhibit the polymeric trans-R3SnO2 structural

motif, in which adjacent SnR3 moieties are bridged by a single bidentate carboxylate

ligand Each Sn atom has a slightly distorted trigonal bipyramidal coordination

geometry with equatorial alkyl groups and the carboxylate O atoms from two different

carboxylate ligands occupying axial positions [77−79]. A typical example is

trimethyltin(IV) (9-anthracenecarboxylate) [80] with one axial tin–oxygen bond much

(1.21)

Page 31: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

8

longer than the other axial tin–oxygen bond [2.4010(17) and 2.2214(16) A ˚ ]. The

O−Sn−O angle is 170.87(1)o and is very similar to that of trimethyltin(IV) acetate

[81]. The distortion of triorganotin carboxylates from ideal geometry is not only

influenced by the type of organic groups on tin but is also dictated by steric and

electronic effects [82].

Type IV It consists of a macrocyclic tetramer, which contains four units of five-

coordinate tin atoms with bidentate carboxylate moieties. A single example of this

nature is tri-n-butyltin 2,6-difluorobenzoate [83], in which the carboxylate groups

bridge two neighbouring tin atoms such that the Sn−O bonds formed by the bridging

ligands are asymmetric with values of 2.186(4) and 2.514(4)Å, respectively, as are the

comparable bonds in the linear polymers of Type III, the oxygen atoms occupy the

apical positions of the trigonal bipyramidal tin atoms, with O−Sn−O angles of

175.2(1)o. The three equatorial n-butyl groups and the tin atom are nearly coplanar,

the sum of the equatorial C−Sn−C angles being 357.7(4)o. The 2,6-difluorophenyl

groups are planar, displaying a torsional angle of 74.9(8)o with respect to the plane of

the carboxylate moiety. Intermolecular interactions between the tetramers appear to be

exclusively van der Waals in nature.

SnO R

OR

R

R I

O O Sn

R

R

R R

O O Sn

R

R

R R

O

n III

Sn

R

R

R O

O

R

II

O Sn

R

O O

SnR

O

OSn

R

OO

O

Sn R

R

R

R

R

R R

R

R

R R R

R IV

Figure 1.2: Four types of structures for R3SnOCOR′ compounds.

Page 32: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

9

The 119Sn and 13C NMR spectral data of the triorganotin carboxylates in the

solid and solution states indicate that the polymer Type III and cyclotetramer Type IV

dissociate into monomers with a quasitetrahedral geometry on dissolution in non-

polar solvents [83, 84]. A series of tri-n-butyltin carboxylates studied, show in the

solid-state δ 119Sn values in the range of -53 to +45 ppm, indicating a five-coordinate

polymer. But in solution, δ = 109-157 ppm, which is characteristic of a four-

coordinate monomer [85]. The 17O NMR spectra of tri-n-butyltin carboxylates show

that on the NMR time scale, the two oxygens are rendered equivalent by rapid

exchange of tin between the two sites [86]. The diorganotin dicarboxylates in the solid

state have monomeric structures as illustrated in Fig. 1.3, which can be described as

very distorted octahedral or as a bicapped tetrahedron.

OSn

O

O O

R

R

R

R

Figure 1.3: Diorganotin dicarboxylates in the solid state.

Two tin-carbon bonds and two short tin-oxygen bonds form the tetrahedron. As in

dimethyltin dibenzoate, the C−Sn−C angle is 147.2(7)o, and the largest O−Sn−O angle

is 165.3(3)o, while the two short tin-oxygen bond lengths are 2.156(9), 2.128(8) and

two long ones are 2.510(1), 2.510(9)Å, respectively [87]. Again in CDCl3, the 17O

NMR spectra show only one signal, implying a rapid equilibrium of the bonds

between tin and oxygen. Several other structures exhibiting similar geometry around

the tin atom and an anisobidentate mode of coordination of the carboxylate ligands as

found in dimethyltin dibenzoate, are also reported in the literature [88-96].

In the single crystal X-ray structure of methyltin tribenzoate, a mono-

organotin tricarboxylate, all the carboxyl groups are bidentate around a seven-

coordinate tin centre [97].

Page 33: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

10

SnO

O

O

OC C

R

RR

O O

C

R

Figure 1.4: Structure of mono organotin tricarboxylates

1.6 Organotin(IV) complexes with [O,N,O] donor ligands

Most of the diorganotin(IV) complexes resulting from [O,N,O] tridentate

ligands have been synthesized from salicylaldehyde derivatives in combination with

aliphatic amino alcohols, amino acids, aminophenol [98–103] and dihydrazides in the

presence of triethylamine as base [104]. The diorganotin(IV) complexes derived from

tridentate [O,N,O] donor ligands exhibit significant biocidal and toxicological

activities [105]. Usually, tin atoms in complexes derived from [O,N,O] tridentate

ligands are penta-coordinate with a trigonal bipyramidal (TBP) geometry [106].

Generally, in this class of compounds the oxygen atoms occupy the axial positions,

while the nitrogen atom and the two additional organic substituents are in equatorial

positions. In tin derivatives with TBP geometry, the metal center can act as Lewis

acid, which allows to increase its coordination number by the addition of molecules

having electron donating atoms, thus changing the geometry to a distorted octahedral

and pentagonal bipyramid. For that reason, five-coordinate tin complexes frequently

form Sn−O intermolecular bonds in the solid state, thus giving dimeric aggregates

through the formation of a Sn2O2 four-membered ring [107].

1.6.1 Structure of diorganotin(IV) complexes with [O,N,O] donor ligands

Organotin(IV) derivatives of [O,N,O] donor ligands have been found to show

a variety of interesting molecular architectures [108]. The construction of multi-

dimensional architectures depends on the combination of several factors including the

type of organic ligands, organotin moieties, tin coordination geometry preferences and

metal-to-ligand molar ratio. The hydrogen bonding plays a key role in the generation

of a variety of supramolecular structures. Thus [O,N,O] donor ligands are important

Page 34: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

11

building-blocks in the design of extended structures because of the type and position

of the donor atoms that allow tin atoms to be linked together in diverse coordination

modes (Fig. 1.5).

(R = C6H5, X = H, CH3)

I

R = vinyl

II

V

X = H, CH3; Y = H, CH3

IV

VII

X

VIIIa

R = t-C4H9, C6H5; X = H, CH3

VIIIb

R = CH3, C6H5

XI

R = CH3, C4H9

III

X = H, CH3

VI

IX

XII

Figure 1.5: An overview showing the coordination behaviour of [O,N,O] donor ligands with organotin(IV) moieties.

Page 35: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

12

1.7 Structure elucidation techniques

The compounds of tin can be studied by a variety of techniques than any other

element in nature. In the last few decades, the use of IR, NMR (1H, 13C, 119Sn), mass

spectrometry, and single crystal X-ray analysis have gained paramount importance for

the characterization of organotin(IV) compounds and their complexes. These

important techniques are briefly reviewed over here.

1.7.1 Infrared spectroscopy

Omae and Harrison have tabulated the important vibrational frequencies for

organotin compounds [109,110 ]. The band position is not only effected/modified by

the mass of element but also of the nature of ligand, nature of substituents or any other

elements involved in the coordination. For example, the energy required for Sn−H

vibrations in stannyl halide (SnH3X) decreases in the order given below:

Cl (1948 cm−1) > Br (1928 cm−1) > I(1905 cm−1)

Infrared spectra of organotin(IV) complexes provide valuable information

regarding the structures of the compounds in the solid state [111]. They can be used

successfully for distinguishing and identifying organotin esters by a comparison

between the spectra of the complexes and their precursors. If the infrared spectra of

such compounds show a lack of vibrations associated with the COOH group of the

free acid, it can be concluded that the SnR3 or SnR2 groups are bonded through the

carboxyl groups of the acids [112-115]. The nature of the coordination of the

carboxylate groups is decided on the basis of the magnitude of separation (∆ν) of the

νasym(COO) and νsym(COO) bands and is compared with that of salts of the acids. The

lowering of νasym(COO) vibration frequency and rising of νsym(COO) vibrational

frequency of the carboxylate group is indicative for the bidentate nature of the

carboxylate group while the rise of νasym(COO) and the lowering of νsym(COO) of the

carboxylate group show the unidentate nature of the carboxylate group[116-119].

Most organotin carboxylate derivatives involve bridging carboxylate groups in the

solid state unless the organic substituents at tin are bulky or the carboxylate group is

branched at the α-carbon. A band of medium to strong intensity has been assigned to

ν(Sn–C) in the range of 500-600 cm-1 for a series of complexes of thiophenes-2-

carboxylic acid [112]. The occurrence of two frequencies for the Sn−C stretching

vibration in the complexes indicates the non-linear trans configuration of the alkyl

Page 36: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

13

groups around tin(IV). The presence of the band in the region of 300-400 cm-1

indicates the coordination of sulphur to tin(IV). On the other hand, the presence of a

ν(Sn−O) vibrational band in the specified range of 410-490 cm-1 confirms the

coordination to tin(IV) from carboxylate oxygen[78, 120, 121]. The ν(Sn−N) vibratio-

nal band appears in the range of 470-495 cm-1[122].

1.7.2 NMR spectroscopy

NMR spectroscopy is a reliable and powerful tool to obtain information about

the structure, to study changes in a chemical reaction the mechanism of reactions,

intra and inter molecular interactions etc. 1H, 13C and 119Sn NMR analyses

collectively provide highly valuable information and hence are used for the

characterization of organotin compounds.

1.7.2.1 1H NMR spectroscopy

The 1H NMR technique is an important physical method which may be used to

provide information about the hybridization of the tin atom in organotin compounds

[110]. It has been suggested that the values of 2J [119Sn, 1H] coupling constants are

associated with the hybridization of the tin atom in organotin compounds and are

measures of the percentage of s-character in the Sn−C bond [124]. The Sn−C bond in

tetrahedral, trigonal bipyramidal and octahedral arrangements at the tin atom proceed

via different hybridizations. An increase of the s character (s electron participation) in

the Sn−C bond causes an increase in values of the coupling constants, 2J[119Sn,1H]

[123, 124]. The coupling constants, 2J [119Sn, 1H] provide an effectively informative

probe for the assessment of the coordination of tin [125].

Rehybridization of the tin atom is induced if the tin atom is attached to groups

having different electronegativities. A more electronegative group induces greater s

character of the remaining Sn-element hybrid orbitals [126]. The s character in the

Sn−C bond is related to the Fermi contact which is dominating the mechanism for

spin-spin coupling between a proton and the tin nuclei. In methyl tin compounds,

indirect tin-proton coupling may be used to predict the bond hybridization of the tin

atom [127]. The observed 2J [119Sn, 1H] values are used to find out the Me−Sn−Me

bond angle using the Lockhart equations [128].

J coupling parameters can easily be measured in solution while θ can be

calculated by using the following Lockhart equation.

Page 37: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

14

θ = 0.0161 [2J]2 – 1.32[2J] + 133.4 (a)

This equation is used for non-coordinating solvents while for coordinating solvents

the following equation is employed.

θ = 0.0105 [2J]2 – 0.799 [2J] + 122.4 (b)

Similarly on substituting the value of θ in the Lockhart equation (c), 1J[119Sn, 13C] can

be calculated:

1J [119Sn, 13C] = 11.4θ − 875 (c)

1.7.2.2 13C NMR spectroscopy

13C NMR spectroscopy has been successfully utilized along with 1H and 119Sn

NMR spectroscopy for the structural elucidation of organotin compounds. By the

measurement of chemical shifts and coupling constants, comprehensive information

can be obtained. The chemical shift depends upon the following four factors.

1. Position of the carbon atom in alkyl or aryl groups [129].

2. Other substituents attached to the tin atom.

3. Coordination number of tin.

4. Donor ability of the solvents.

The major factors which effect the chemical shift are:

• Electronegativity of the groups attached to the tin atom.

• Geometric distortions which modify the inter bond angles at tin [130].

• Coordination number of tin.

• Effects of ring currents.

• Local electric field.

• Ligand polarization.

• Changes in excitation energy.

Thus the value of 1J [119Sn,13C] increases in the following sequence: Me4Sn; 338 Hz,

Me3SnCl; 380 Hz, Me2SnCl2; 468 Hz. In Me4Sn, each bond is formed due to sp3

hybrid orbital. In Me3SnCl and Me2SnCl2, tin makes an enhanced p contribution to the

polar Sn−Cl bonds and the remaining Sn−C bonds have an enhanced s-character, and

transmit spin polarization by the Fermi mechanism, increasing 1J [119Sn−13C] [131].

Coupling constants are related via a Fermi contact term to the s electron density in the

Page 38: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

15

bond. The magnitudes of coupling constants can be used for correlating electron

distributions, bonding character and structure of the complexes. Both the 1J [119Sn,13C] and 2J [119Sn,1H] coupling constants can help to measure changes of

electron distribution in tin-carbon bonds and are sensitive to slight variations in bond

angles, bond distances and polymorphism [131]. Chemical shifts generally increase

with the coordination number of tin [132]. On the basis of coupling constants

Lockhart et al. [128], proposed a relationship between 1J [119Sn,13C] and the

Me−Sn−Me bond angle:

[1J(119Sn,13C)] = 11.4θ - 875 (d)

This relationship is very useful to estimate the bond geometry of uncharacterized

methyltin(IV) compounds. However, Holecek et al.[133], proposed two relationships

for the structural determination of n-butyl and phenyltin(IV) compounds.

1J(119Sn,13C) = [(9.99 ± 0.73)θ] – [746 ± 100] (e)

1J(119Sn,13C) = [(15.56 ± 0.84)θ] – [1160 ± 101] (f)

They also proved that the 1J[119Sn,13C] coupling constant is dependent on the C−Sn−C

bond angle and the geometric arrangement of the ligands (cis/trans).

1.7.2.3 119Sn NMR spectroscopy

119Sn NMR Spectroscopy is unique and a convenient analytical tool for the

characterization of organotin compounds [134]. Out of the their magnetically active

(I = 1/2) isotopes (115Sn, 117Sn, 119Sn) the natural abundance of 117Sn and 119Sn (7.61%

and 8.58%) is high enough to obtain NMR spectra within a reasonable time both in

solution and in solid state. However, 119Sn is selected for NMR spectroscopic studies

because of its higher abundance and magnetic moment. The NMR receptivity of 119Sn

is 20 times higher than that of 13C. Furthermore, the repetition time of pulses is short

since the relaxation time is also short usually less than one second.

119Sn NMR spectroscopy is favourable because:

• There are no solvent effects unless it coordinates to the tin atom.

• Large shift differences are found even for small differences in electron

density around the tin atom and thus 119Sn NMR may detect

Page 39: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

16

compounds if they are indistinguishable by 1H and 13C NMR

spectroscopy.

• The 119Sn NMR signal is a proton decoupled singlet.

• 119Sn chemical shift of organotin compounds cover a range of over

±600 ppm, Me4Sn is the reference [125].

Highly important and valuable information about the structure of organotin

compounds in solution can be obtained from 119Sn NMR spectroscopic studies. The

chemical shift value depends upon:

• Nature and number of substituents/ multiple substitutions.

• Inter-bond angle at the tin atom.

• Temperature.

• Isotope effects.

An increase in the coordination number of tin atom from four to five, six or

seven causes a large upfield shift of δ(119Sn) [135]. It has been observed that the

increase in the coordination number by one unit can increase the shift by 60-200 ppm

[136]. Organotin compounds (RnSnX4-n) containing electrowithdrawing substituents

have a strong tendency to autoassociation in the solid state and in the solution. Since

the coordination number of the tin atom increases on association, this will increase the 1J[119Sn, 13C] value. This behaviour of organotin compounds can be studied

conveniently by 119Sn NMR Spectroscopy.

Holecek et al. have studied different di-n-butyltin(IV) derivatives such as

halides, alkoxides, carboxylates and chelates etc. They postulated that values of

δ(119Sn) define the regions with different coordination numbers of the central tin

atom. Thus four coordinate tin compounds have δ(119Sn) values ranging from +200 to

-60 ppm, five coordinate compounds from -90 to -190 ppm and six coordinate

compounds from -210 to -400 ppm or -125 to -515 ppm [136].

1.7.3 Mass spectrometry

Mass spectroscopy is unique among the molecular spectrometric methods of

analysis. It can be used successfully for the determination of molecular weights,

molecular formulae and structures of organic compounds. It may also be used for the

analysis of organometallic compounds. The relative abundances are such that in the

Page 40: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

17

mass spectrum these isotopes give rise to the characteristic pattern of peaks, which

makes the identification of tin containing ions very easy. The use of mass

spectrometry is favourable for the structural elucidation and theoretical interpretation

of organotin compounds.

Different techniques are used for ionization of organotin compounds such as

• Chemical Ionization (CI) [137]

• Fast atom bombardment (FAB) [138]

• Field desorption [139]

• Surface Ionization [140]

• Electron Spray Ionization [141]

However, mostly electron impact also called electron ionization (EI) technique is

employed for ionization. A typical mode of fragmentation of organotin compound is

illustrated below:

R4Sn ⎯⎯→ R3Sn+ + R•

Very little of the molecular ion R4Sn+ is detected from R4Sn because parent molecular

ions have mostly very low relative abundance and sometimes are not observed at all.

Fragmentation occurs to give R3Sn+ and R•, and indeed most of the ion current

is carried by metal ions. Parent ions fragmentation occurs by elimination of odd

electrons whereas [R2Sn]+ ions lose even the electron fragment. For odd electron

fragmentation, the major process is elimination of a neutral fragment and hence the

high abundance of [RSn]+ ions from the parent ions is observed e.g.

C3H7−Sn ⎯⎯→ Sn−H+ + C3H6

The larger organotin molecules suffer considerable fragmentation in the mass

spectrometer while smaller organotin molecules often show the molecular ion peak as

well as a characteristic series of fragmentation peaks [142]. The stability of the

molecular ion is a function of π-electrons which can more easily adjust to the loss of

an electron than a σ-bond can do. In cyclic systems also the rupture of bonds does not

necessarily split the molecular ions. Fragmentation is related both to the bond strength

of molecular ions and the stability of possible fragments. In general, the relative

intensities of the parent peak decrease in the following order [143].

Page 41: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

18

Aromatics > conjugated olefins > alicyclics > sulfides > unbranched hydrocarbons >

ketones > amines > esters > ethers > carboxylic acid > branched hydrocarbon >

alcohol

However, in organotin complexes it is somewhat indifferent. When R = phenyl,

sometimes a very weak molecular ion peak is observed, while in most of the cases it is

not observed [139].

The fragmentation pattern of organotin compounds may follow different ways.

As mentioned earlier, the elimination of the neutral radical is a major process for odd

electron ions. The [RSn]+ ions are observed in high abundance from the parent ions. In

unsymmetric (mixed group) organotin(IV) compounds alkyl is lost more readily than

aryl. When the organotin compounds containing alkyl groups larger than methyl, the

ion R3Sn+ can then eliminate an olefin to give R2SnH+.

Thus, the even electron ions containing R−CH2−CH2−Sn groups most

probably involve the elimination of alkenes and this is the predominant process for

ethyltin ions. Since the fragmentation process is expected to follow a β-hydrogen

transfer mechanism and hence the proportion of tinhydride (Sn−H) ions increases

with an increasing number of ethyl groups bonded to tin [144].

CH2

Sn CH2

H

Sn H+ + C2H4

A fragmentation process proceeding via acetylene elimination may also form tin

hydride ions [145].

CH

(CH2.CH2)Sn CH

H

(CH2.CH2)SnH+ + C2H2

An R group such as hydrogen, phenyl or vinyl which cannot eliminate an alkene,

loses instead the dimer R−R. The alkyl and benzyl compounds are reported to show

no molecular ion peak under EI conditions, but do under chemical ionization (CI) in

ammonia at 95.3 eV [146].

R3Sn+ ⎯⎯→ RSn+ + R−R

Page 42: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

19

A mass spectrum represents the masses of the positively charged fragments

including the molecular ion peak. A mass spectrum can be presented both in tabular

form and graphic form. However, the graphic form has the advantage of presenting

fragmentation patterns that can be assigned easily.

1.7.4 X-ray crystallography

X-ray crystallography, particularly a single crystal X-ray diffraction technique

provides a direct way of determining structures of the crystalline materials. This

technique gives precise structural information, atom positions and information about

thermal displacement parameters.

1.7.4.1 Crystal structure determination

A single crystal of a fraction of mm dimension is required for the crystal

structure determination. A suitable crystal is mounted on a glass fibre on a

goniometer, a mechanical device for rotation and tilting the crystal in each direction at

accurately measured angular displacements. The crystal is then bombarded with X-

rays and data is collected. From these data, maps of electron density through various

cross-sections of the crystal are generated. The detailed procedure is available in the

literature [147].

1.8 Applications of organotin compounds

Organotin(IV) compounds show a wide range of industrial [148, 149],

agricultural and biocidal [150,151] applications. All these applications can be broadly

categorized into two groups

i. Non-Biological Applications

ii. Biological Applications

1.8.1 Non-biological applications

Organotin compounds were initially applied as stabilizers of transformer oils

(patented in 1932) and vinyl plastics (patented in 1940 and 1943) [152]. The

systematic research in the following decades, urged the commercial uses of organotin

compounds, which are mainly used nowadays as heat and light stabilizers in polyvinyl

chloride (PVC) processing and as industrial catalysts in a variety of chemical

reactions [153]. Some of the most important non-biological applications of organotin

compounds are given below:

Page 43: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

20

1.8.1.1 Polymer stabilizers

The organotin compounds are excellent stabilizers for polyvinylchloride

(PVC), neoprene and other polymers against degradation by light, oxygen and

decomposition during hot fabrication [154-156]. The addition of 1−1.5% of the

organotin stabilizer to the PVC prevents thermal dehydrochlorination of the polymer

during processing at 180−200 °C and subsequently any long-term breakdown by

sunlight [157]. The most efficient heat stabilizers are those containing Sn−S bonds

particularly dimercaptides such as isooctylthioglycollates and are used often in

combination with corresponding monoalkyltin compounds [158]. While dialkyltin

bis(carboxylates) are usually employed when good light stability is required.

Dialkyltin bis(S,S′-isooctylthioglycollate) heat stabilizers are used as additives

in PVC for food packing, drinking bottles and portable water piping [159]. Di-n-

octyltin maleate and nontoxic monobutyltin sesquisulphide are also approved as

stabilizers for food contact PVC. Organotin compounds may act as suitable stabilizers

for chlorinated polyethylenes, vinyl copolymers, silicones and polyamides [160, 161].

1.8.1.2 Fire retardants

Both organic and inorganic tin compounds show promise as fire retardants

[162,163]. Polystyrene, cellulose acetate and polymethyl methacrylate in the presence

of halogen is necessary to promote the degree of flame retardance. Anhydrous tin(IV)

oxide produces improved flame retardance in unsaturated polyester thermostats when

halogens are present [164, 165].

1.8.1.3 Catalysts

Several tin compounds are used as homogeneous catalysts in the plastic

industry. A homogeneous catalyst is one, which is in the same phase as the reactants

and is usually a liquid. Di-n-butyltin dilaurate and to some extent di-n-butyltin

diacetate and di-n-butyltin di(2-ethylhexoate), also called stannous octoate, are used

as homogeneous catalysts in the manufacturing of polyurethane foams, in the

production of polyesters and in the curing of certain types of silicone resins [166,

167]. Stannous octoate is used in flexible polyurethane foams and di-n-butyltin

dilaurate is employed in specialized ‘high resilience’ flexible foams and also in

certain rigid foams, elastomers and coatings. Certain mono-n-butyltin compounds

have been introduced recently as esterification catalysts, e.g., in the reaction of

Page 44: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

21

phthalic anhydride with isooctanol to form di-n-octyl phthalate [168, 169]. Other

systems in which tin compounds have been used as homogeneous catalysts include

the preparation of organic silicate binders [170], Friedel Crafts alkylation and

acylation and liquid-phase hydrogenation, dehydrogenation and isomerization [171].

Similarly, reduction of aldehyde to alcohols by 1-butanol occurs with high yield in the

presence of triphenyltin formate [168]. Organotin caboxylates have also been

employed as catalysts in some reactions of alcohols [172].

Organotin halides of the general formula R4SnX4-n have been used as catalytic

precursors for dehydration processes. Monoorganotin halides, particularly, n-BuSnCl3

favours esterification of allylic alcohols, cyclization of 2,5-hexanedione, dehydration

of cyclic diols and acetalization of R′CHO using diols or polyols [173].

Another group of catalysts of industrial importance are the tin-platinum and

tin-rhenium systems supported on alumina. They have proved to be effective in the

dehydrogenation, dehydrocyclization, cracking, isomerization and hydrogenation of

hydrocarbons, which are reactions of importance in the petrochemical industry [174].

1.8.1.4 Water repellents

Water repellent properties have been exhibited by certain monoalkyltin

compounds and these have been tested on building materials (limestone) bricks and

concrete [175] and on cellulosic substrates such as cotton, paper and wood. Octyltin

trilaurate has been shown to impart water repellency to limestone comparable to that

shown by a commercial silicon treatment [176].

1.8.1.5 Natural fiber treatment

Tin (II) chloride, ammonium hydrogen fluoride isopropanol and polishing

agents are used to protect the sheepskin wool in the spray treatment process. K2ZrF6,

tin(II) chloride and hydrochloric acid have been used for protection purposes in an

immersion treatment process. Some study has also been conducted on the use of

inorganic tin-based aqueous systems to impart flame resistance to cotton and other

cellulosic materials [177].

1.8.1.6 Glass melting

Tin(IV) oxide electrodes are used in the manufacture of lead-containing

crystal glass by electric melting. As the glass melts they do not become electrically

conductive until the temperature rises above 800oC. The tin(IV) oxide electrodes are

Page 45: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

22

more preferably used as compared to the conventional molybdenum or graphite rod,

because the electrical conductivity of tin(IV) oxide increases with increasing

temperature and in order to enable the electrode to conduct current from the cooler,

outer part to the end immersed in the molten glass [178].

1.8.1.7 Precursors for forming SnO2 films on glass

Thin coating of tin(IV) oxide on glass are used to strengthen glassware and

returnable bottles and jars. Tin(IV) oxide coating also assists in the adherence of

organic lubricant films which improve the scuff resistance of the glassware. The

precursor for tin(IV) oxide films was originally tin(IV) chloride. However, recently

dimethyltin dichloride is employed for the said purpose at a temperature of 500−600

°C. n-Butyltin trichloride and diethyltin dichloride are also showing excellent results

in this field [179-182].

1.8.1.8 Electroplating

The most commonly used compounds in electroplating are tin(IV) sulfate,

tin(II) chloride, tin(II) fluoroborates and sodium/potassium stannates. These are used

to produce a range of deposits containing tin, generally on a metallic surface. Similar

other coatings, which are normally used in tin-alloy plating, are tin-nickel, tin-zinc,

tin-copper, tin-cadmium and tin-cobalt [183].

1.8.2 Biological applications

Organotin(IV) compounds are generally very toxic, even at low concentrations

and display strong biological activities. The biological activity is essentially

determined by the number and nature of the organic groups bound to the central Sn

atom. The trialkyltin(IV) [R3Sn(IV)+] and triaryltin(IV) [Ar3Sn(IV)+] derivatives exert

powerful toxic action on the central nervous system. Within the series of R3Sn(IV)+

compounds the lower homologues (methyl, ethyl) are the most toxic when

administered orally, and the toxicity diminishes progressively from tri-n-propyl to tri-

n-octyl, the latter not being toxic at all. It seems that the nature of the anionic group is

of secondary importance [184]. Some of the important biological applications are

given as under:

1.8.2.1 Leishmanicidal agents

An important pharmaceutical application of organotin(IV) complexes is in the

chemotherapy of leishmaniasis, a parasitic infection of the skin, where Oct2Sn(IV)2+

Page 46: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

23

maleate has shown promisingly high activity. The Bu2Sn(IV)2+ dilaurate, distearate,

diolate, phenylethyl acetate and dipalmitate act as antihelminthic agents in cats

suffering from dipulidiosis [185].

1.8.2.2 Larvicidal agents

Triorganotin(IV) complexes have shown significant larvicidal activities

against various species of mosquitos [186−189]. Some tributyltin complexes were

screened against the fourth larval instar stage of the Aedes aegypti mosquito,

responsible for the transmission of yellow fever, and were found to be more effective

than the triphenyltin derivatives [190]. In another study, a series of azo-butyltin

compounds, viz. tributyltin 5-[(E)-2-(aryl)-1-diazenyl]-2-hydroxybenzoates and

tributyltin 2-[(E)-2-(3-formyl-4-hydroxyphenyl)-1-diazenyl]benzoate have been

investigated and have shown moderate and better activities [191, 192].

1.8.2.3 Antiviral agents

A series of diorganotin compounds, diorganotin dichloride complexes, R2-

SnX2L2, which were modeled after the antitumour agents like cis-platin showed

antitumour activities. Since cisplatin has also shown to possess antiviral activity. The

antiviral activity of the tin complexes was investigated and it has been found that

R2SnX2.L2 complexes exhibited weak in vitro antiviral activity against certain DNA

viruses. Certain organotin complexes also showed in vitro activity towards a few

RNA viruses. However, none of them were effective inhibitors of vesicular stomatits

or para-influenza type virus, only Et2SnBr2phen and Ph2SnBr2phen showed marginal

inhibition against sindbis and semlike forest virus respectively [193].

1.8.2.4 Veterinary application

Organotin compounds have been used as anthelminthic agents for poultry as

well as for animal husbandry and insecticides for sheep and cattle. Dibutyltin dilaurate

is one of the constituents of a commercial product for combating worm infections in

poultry, and this compound has been used as a commercial formulation in

combination with piperazine and phenothiazine [194].

1.8.2.5 Dentistry

Tin chemicals are used in dentistry in different ways for solving various dental

problems. For example, tin(II) fluoride is used in a number of toothpastes as an anti

decaying agent and for a direct application to children’s teeth [195]. Tin(II) fluoride is

Page 47: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

24

also used in dentifrices. Similarly, the effect of amine fluoride/stannous fluoride

containing tooth paste and mouth rinsings on dental plaque, gingivitis, plaque and

enamel F-accumulation has also been reported [196]. It has been observed that tin(II)

hexafluoro-zirconate polishes the teeth as well as reduce enamel solubility and decay.

Di-n-butyltin dilaurate and tin(II) acetate have been used as catalyst in vulcanizing

silicon rubbers used for the protection of dental prosthetic devices [197]. Di-n-butyltin

dilaurate also inhibits the inter-oral growth of candida albicans [198].

1.8.2.6 Antifouling coatings

Triorganotin compounds have been used in antifouling paints to restrict the

attachment of the aquatic organisms such as Salime bacteria, algae or marine animals

such as hydroids, crustanceans, mollusks and tunicates. These microorganisms can

increase the weight of the drag leading to a greater consumption of fuel.

In the early 1960s triorganotin compounds were used for the first time as

active component of antifouling paint. The regular consumption of these compounds

increases with the time [199], and tributyltin fluoride is developed as a toxicant. The

later study showed that tributyltin compounds had deleterious effects on the

development of the pacific oysters [200]. Most of the countries now ban the use of

tributyltin compounds on boats of 25m length or less; however, they are still used

extensively on the large tankers or naval crafts where speed and operating frequency

are of prime importance [201].

1.8.2.7 Crop protection

A number of triorganotin compounds have been developed as agrochemicals

and they are successfully used in specialized applications. As organotin compounds

have a low phyotoxicity, they are less harmful to non-targeted organism and they can

easily degrade in the environment eventually forming harmless tin residues [202].

Therefore the use of organotin compounds in agriculture has been reviewed [203], and

the first compounds to be introduced were triphenyltin acetate and triphenyltin

hydroxide. They showed high fungistatic activity.

1.8.2.8 Antitumor activity

The uncontrolled cellular growth, causing cancer, can be prevented by arrested

DNA replication. Various organometallic compounds have been used in this regard,

however, organotin(IV) complexes exhibit attractive properties like enhanced water

Page 48: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

25

solubility, lower general toxicity than platinum drugs [204], better body clearance,

fewer side effects, and no emetogenesis. The quantitative structure/activity and the

structure/property relationships for organotin compounds have been reviewed [205].

The interaction of organotin compounds with the DNA is mainly of two types: (i)

electrostatic interaction, in which organotin compounds interact with the anionic

phosphate of DNA backbone (ii) intercalation, in which organotin compounds insert

into the stacked base pairs of DNA (fig. 1.6).

Figure 1.6: Structure of DNA showing intercalation and electrostatic interaction with tin

Organotin compounds are very promising for cancer chemotherapy, the large

possibility for variation of the organic moieties and donor ligands linked to the metal

has resulted in several diorganotin and triorganotin(IV) compounds with high

antiproliferative activity in vitro against a variety of solid and hematologic cancers

[206-209]. Organotin derivatives containing oxygen donor ligands were tested against

three (colon, breast, and prostate) and five (glioblastoma, prostate, chronic myelo-

genous leukemia, colon, and breast) human cancer cell lines, respectively, exhibiting,

comparable or slightly higher activity than that of cisplatin [210−212]. Some divinyl-,

di-n-butyl-, tri-n-butyl- and triphenyltin oxinates/carboxylates were also found to be

Page 49: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

26

more active than cis-platin in vitro against the human cell lines of the A204

rhabdomyosarcoma, MCF-7 mammary carcinoma, T24 bladder carcinoma, WiDr

colon carcinoma and lgR-37 melanoma [213−219]. Dialkyltin(IV) fluorouridins as

well as phenonthroline adducts of several organotins exhibit antitumor properties

[220]. A successful agent against solid cancers such as the sarcoma 180 tumor in mice

is dihalo-bis(benzoylacetonato)tin(IV) [221].

Page 50: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

27

REFERENCES

[1] E. Frankland, J. Chem. Soc., 2 (1849) 262.

[2] C. Lowig, Liebigs Ann. Chem., 84 (1852) 308.

[3] G. B. Buckton, Phil. Trans., 149 (1859) 417.

[4] E. A. Letts, J. N. Collie, Phil. Mag., 22 (1886) 41.

[5] R. K. Ingham, S. D. Rosenberg, H. Gilman, Chem. Rev., 60 (1960) 459 .

[6] H. G. Kuivila, L. W. Menapace, C. R. Warner, J. Am. Chem. Soc.,

84 (1962) 3584.

[7] W. P. Neumann, R. Sommer, Liebigs Ann. Chem., 10 (1964) 675.

[8] H. G. Kuivila, Adv. Organomet. Chem., 1 (1964) 47.

[9] E. Krause, A. V. Grosse, ‘Die Chemie der Metalloorganischen Verbindungen’,

Borntraeger, Berlin (1937).

[10] I. Omae, J. Organomet. Chem. Library, 21 (1989) 355.

[11] C. J. Evans, S. Karpel ‘Organotin Compounds in Modern Technology’,

Elsevier,Amsterdam (1985).

[12] Y. Yamamoto, Tetrahedron, 45 (1989) 4909.

[13] Gmelin Handbuch der Anorganischem Chemie, Tin Part 1, Tin Tetraorganyls

SnR4, Springer, Berlin (1975).

[14] Gmelin Handbuch der Anorganischem Chemie, Tin Part 2, Tin Tetraorganyls

R3SnR, Springer, Berlin (1975).

[15] Gmelin Handbuch der Anorganischem Chemie, Tin Part 3, Tin Tetraorganyls

R2SnR′2, R2SnR′R′′, RR′SnR′′R′′. Heterocyclics and Spirances, Springer,

Berlin (1976).

[16] Gmelin Handbuch der Anorganischem Chemie, Tin Part 5, Organotin

Fluorides, Triorganotin Chlorides, Berlin (1978).

[17] Gmelin Handbuch der Anorganichem Chemie, Tin Part 6, Diorganotin

Dichlorides, Orgaotin Trichlorides, Springer, Berlin (1979).

[18] Gmelin Handbuch der Anorganischem Chemie, Tin Part 7, Organotin

Bromides, Springer, Berlin (1980).

[19] Gmelin Handbuch der Anorganischem Chemie, Tin Part 8, Organotin Iodides,

Organotin Pseudohalides, Springer, Berlin (1981).

[20] P. G. Harrison, ‘Dictionary of Organometallic Compounds’ Chapmann and

Hall, London, 2nd Edition (1995).

Page 51: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

28

[21] W. J. Pope, S. J. Peachey, Proc. Chem. Soc., 19 (1903) 290.

[22] A. K. Sawyer, Organotin Compounds, Ed. Dekker, New York 102 (1991)

[23] A. G. Davies, P. J. Smith, Adv. Inorg. Chem. Radiochem., 1 (1989) 23.

[24] J. A. Zubeita, J. J. Zuckerman, Prog. Inorg. Chem., 24 (1978) 251.

[25] A. K. Saxena, F. Huber, Coord. Chem. Rev., 95 (1989) 109.

[26] K. C. Molloy, in: F.R. Hartley (Ed), The Chemistry of Metal-Carbon Bond,

John Wiley and Sons, London Vol. 5 (1989) 465.

[27] J. M. Tsangaris, D. R. Williams, Appl. Organomet. Chem. 6 (1992) 3.

[28] A. J. Crowe, Appl. Organomet. Chem., 1 (1987) 143.

[29] S. J. Blunden, P. A. Cusack, R. Hill, The Industrial Use of Tin Compounds,

Royal Society of Chemistry, London, (1985).

[30] A. J. Crowe, R. Hill, P. J. Smith, Laboratory Evaluation of Tributyltin(IV)

Compounds as Wood Preservatives, Publication 559, International Tin

Research Institute, London, 1979.

[31] S. David, S. Hanessian, Tetrahedron 41 (1985) 643.

[32] A. Patel, R. C. Poller, Rev. Sil. Ger. Tin Lead Comps. 8 (1985) 263.

[33] T. B. Grindley, Adv. Carbohydr. Chem. Biochem. 53 (1998) 17.

[34] K. Burger, L. Nagy, Chapter VI, in: K. Burger (Ed.), Biocoordination

Chemistry, Metal Complexes of Carbohydrates and Sugar-type Ligands, Ellis

Horwood, London, (1990) 236.

[35] B. Gyurcsik, L. Nagy, Coord. Chem. Rev., 203 (2000) 81.

[36] J. F. Verchere, S. Chapelle, F. Xin, D. C. Crans, Prog. Inorg. Chem.,

47 (1998) 837.

[37] R. Barbieri, L. Pellerito, G. Ruisi, A. Silvestri, G. Barone, S. Postane, M.

Rossi, (Eds). Chemical Processes in Marine Environments, Springer, Berlin

(2000) 229.

[38] M. I. Bruce, in: Comprehensive Organometallic Chemistry, 2nd Ed., E.W.

Abel, F. G. A. Stone, G. Wilkinson, Pergamon Oxford (1995).

[39] E. R. T. Tiekink, Trends Organomet. Chem., 1 (1994) 77.

[40] P. J. Smith, J. Organomet. Chem. Lib., 12 (1981) 97.

[41] C. E. Holloway, M. Melink, Main Group Met. Chem., 7 (1998) 371.

[42] J. C. Martin, M. Biesemans, R. Willem, Progress in NMR Spectroscopy,

Chem. Rev., 36 (2000) 271.

[43] L. Pellerito, L. Nagy, Coord. Chem. Rev., 224 (2002) 111.

Page 52: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

29

[44] M. Mazhar, M. A. Choudhary, S. Ali, Q. L. Xie, X. Q. Song, J. Chem. Soc.

Pak., 23 (2001) 103.

[45] B. Y. K. Ho, J. J. Zuckerman, Inorg. Chem., 12 (1973) 1552.

[46] R. Barbieri, L. Pellerito, G. Ruisi, M. T. LoGiudice, F. Huber, G. Atassi,

Inorg. Chim. Acta, 66 (1982) L39.

[47] G. Ruisi, A. Silvestri, M. T. LoGiudice, R. Barbieri, G. Atassi, F. Huber, K.

Graetz, L. Lamartina, J. Inorg. Biochem., 25 (1985) 229.

[48] M. Vornefeld, F. Huber, H. Preut, G. Ruisi, R. Barbieri, Appl.Organomet.

Chem., 6 (1992) 75.

[49] B. M. Glowacki, F. Huber, H. Preut, G. Ruisi, R. Barbieri, Appl. Organomet.

Chem., 6 (1992) 83.

[50] M. A. Girasolo, G. Guli, L. Pellerito, G. C. Stocco, Appl. Organomet. Chem.,

9 (1995) 241.

[51] M. A. Girasolo, L. Pellerito, G. C. Stocco, G. Valle, J. Chem. Soc. Dalton

Trans., (1996) 1195.

[52] A. Jancso, B. Henry, P. Rubini, G. Vanko, T. Gajda, J. Chem. Soc. Dalton

Trans., (2000) 1941.

[53] M. A. Girasolo, T. Pizzino, C. Mansueto, G. Valle, G.C. Stocco, Appl.

Organomet. Chem., 14 (2000) 197.

[54] M. Nath, S. Pokharia, R. Yadav, Coord. Chem. Rev., 215 (2001) 99.

[55] C. Pellerito, L. Nagy, L. Pellerito, A. Szorcsik, J. Organomet. Chem.,

691 (2006) 1733.

[56] D. A. Amitage, ‘Organometallic Chemistry’, Ed. E.W. Abel, Royal Society of

Chemistry, London (1991).

[57] M. Pereyre, J. P. Quintard, A. Rahm, Tin in Organic Synthesis, Butterworth,

London (1987).

[58] J. W. Bruin, G. Schat, O. S. Akkerman, F. Bickelhaupt, J. Organomet. Chem.,

288 (1985) 13.

[59] M. Danish, H. G. Alt, A. Badshah, S. Ali, M. Mazhar, N. Islam, J. Organomet.

Chem., 51 (1995) 486.

[60] M. Danish, S. Ali, M. Mazhar, A. Badshah, M. I. Choudhary, H. G. Alt, G.

Kehr, Polyhedron., 14 (1995) 3115.

[61] J. M. Miller, Y. Luo, I. Wharf, J. Organomet. Chem., 542 (1997) 89.

Page 53: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

30

[62] A. S. Lewis, P. J. Smith, J. H. Aupers, D. Hampson, D. C. Provey,

J. Organomet. Chem., 437 (1992) 131.

[63] S. M. Dhaher, C. Eaborn, J. D. Smith, J. Organomet. Chem., 33 (1988) 355.

[64] M. H. Bhatti, S. Ali, H. Masood, M. Mazhar, S. I. Qureshi, Synth. React.

Inorg. Met.-Org. Chem., 30 (2000) 1715.

[65] S. Ali, F. Ahmad, M. Mazhar, A. Munir and M. T. Masood, Synth. React.

Inorg. Met.-Org. Chem., 32 (2001) 357.

[80] M. Danish, S. Ali, A. Badshah, M. Mazhar, H. Masood, A. Malik, G. Kehr,

Synth. React. Inorg. Met.-Org. Chem., 27 (1997) 863.

[66] G. K. Sandhu, R. Hundal, J. Organomet. Chem., 436 (1992) 287.

[67] N. W. Alcock, S. M. Roe, J. Chem. Soc., Dalton Trans., 08 (1989) 1589.

[68] S. Ali, M. Danish, M. Mazhar, Heteroatom Chem., 8 (1997) 273.

[69] A. K. Sawyer, H. G. Kuivila, J. Org. Chem., 27 (1962) 610.

[70] S. Weber, E. I. Becker, J. Org. Chem., 27 (1962) 1258.

[71] C. S. C. Wang, J. M. Shreeve, J. Organomet. Chem., 38 (1972) 287.

[72] E. R. T. Tiekink, Appl. Organometal. Chem., 5 (1991) 1.

[73] L. E. Khoo, N. K. Goh, L. L. Koh, Y. Xu, D. J. Whale, G. Eng, Appl.

Organomet. Chem., 10 (1996).459.

[74] A. Rehman, M. Helliwell, S. Ali, S. Shahzadi, Acta Cryst., E62 (2006) m1656.

[75] J. F. Vollano, R. O. Day, V. Chandrasekhar, R. R. Holmes, Inorg. Chem.,

23 (1984) 3153.

[76] R. G. Swisher, J. F. Vollano, V. Chandrasekhar, R. O. Day, R. R. Holmes,

Inorg. Chem., 23 (1984) 3147.

[77] M. Parvez, S. Ali, S. Ahmad, M. H. Bhatti, M. Mazhar, Acta Cryst., C58

(2002) m334.

[78] F. Ahmad, S. Ali, M. Parvez, A. Munir, M. Mazhar, K. M. Khan, T. A. Shah,

Heteroatom Chem., 13 (2002) 638.

[79] R. Willem, I. Verbruggen, M. Gielen, M. Biesemans, B. Mahieu, T. S. B.

Baul, E. R. T. Tiekink, Organomettalics, 17 (1998) 5758.

[80] M. M. Amini, A. Azadmeher, H. R. Khavasi , S. W. Ng, J. Organomet. Chem.

692 (2007) 3922.

[81] H. Chin, B. R. Penfold, J. Cryst. Mol. Struct., 3 (1973) 285.

[82] K. C. Molloy, S. J. Blunden, R. Hill, J. Chem. Soc., Dalton Trans.,

(1988) 1259.

Page 54: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

31

[83] M. Gielen, A. El-Khloufi, M. Biesemans, F. Kayser, R. Willem,

Organometallics, 13 (1994) 2849.

[84] J. Holecek, K. Handlir, M. Nadvornik, A. Lycka, J. Organomet. Chem., 258,

(1983) 147.

[85] C. H. Yoder, R. A. Morreall, C. I. Butoi, W. J. Kolwalski, J. N. Spencer, J.

Organomet. Chem., 448 (1993) 59.

[86] A. Lycka, J. Holecek, J. Organomet. Chem., 179 (1985) 294.

[87] E. R. T. Tiekink, J. Organomet. Chem., 408 (1991) 323.

[88] T. P. Lockhart, J. C. Calabrese, F. Davidson, Organomettalics, 6 (1987) 2479.

[89] G. K. Sandhu,N. Sharma, E.R. T. Tiekink, J. Organomet. Chem.,C1(1989)371.

[90] G. K. Sandhu, R. Hundal, E. R. T. Tiekink,J. Organomet. Chem.,412(1991)31.

[91] M. Gielen, A. El-Khloufi, M. Biesemans, R. Willem, J. M. Piret, Polyhedron,

11(1992) 1861.

[92] D. H. Gibson, J. M. Mehta, M. S. Mashuta, J. F. Richardson, Organomettalics,

16 (1997) 4828.

[93] M. Parvez, S. Ali, M. T. Masood, M. Mazhar, M. Danish, Acta Cryst., C53,

(1997) 1211.

[94] D. Dakternieks, K. Dunn, D. J. Henry, C. H. Schiesser, E. R. T. Tiekink,

Organometallics, 18 (1999) 3342.

[95] A. Yahyi, A. Et-Touhami, I. Zidane, N. E. Benchat, D. El-Bali, M. Bolte, Acta

Cryst., E57 (2001) m65.

[96] K. Hans, M. Parvez, F. Ahmed, S. Ali, M. Mazhar, A. Munir, Acta Cryst.,

E58, (2002) m441.

[97] R. R. Holmes, Acc. Chem. Res., 22 (1989) 190.

[98] H. I. Beltran, L. S. Zamunio-Rivera, T. Mancilla, R. Santillan, N. Farfan,

Eur. J. Chem., 9 (2003) 2291.

[99] D. K. Dey, M. K. Saha, M. Gielen, M. Kemmer, M. Biesemans, R. Willem, V.

Gramlich, S. Mitra, J. Organomet. Chem. 590 (1999) 88.

[100] H. D. Yin, Q. B. Wang, S. C. Xue, J. Organomet. Chem. 689 (2004) 2480.

[101] D. Dakternieks, T. S. B. Baul, S. Dutta, E. R. T. Tiekink, Organometallics, 17

(1998) 3058.

[102] J. M. Rivera, H. Reyes, A. Cortes, R. Santillan, P.G. Lacroix, C. Lepetit, K.

Nakatani, N. Farfan, Chem. Mater., 18 (2006) 1174.

Page 55: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

32

[103] C. Pettinari, F. Marchetti, R. Pettinari, D. Martini, A. Drozdov, S. Troyanov,

Inorg. Chim. Acta, 103 (2001) 325.

[104] H. D. Yin , M. Hong, G. Li, D. Q. Wang, J. Organomet. Chem. 690 (2005)

3714

[105] L. S. Z. Rivera, R. G. Tellez, G. L. Mendoza, A. M. Pacheco, E. Flores, H.

Hopfl, V. Barba, F. J. Fernandez, N. Cabirol, H. I. Beltran, Inorg. Chem., 44

(2005) 5370.

[106] N. Farfan, T. Mancilla, R. Santillan, A. Gutierrez, L. S. Z. Rivera, H. I.

Beltran, J. Organomet. Chem., 689 (2004) 3481.

[107] H. Reyes, C. Garcia, N. Farfan, R. Santillan, P. G. Lacroix, C. Lepetit, K.

Nakatani, J. Organomet. Chem., 689 (2004) 2303.

[108] T. S. B. Baul , C. Masharing , G. Ruisi , R. Jirasko, M. Holcapek, D. de Vos,

D. Wolstenholme, A. Linden, J. Organomet. Chem. 692 (2007) 4849.

[109] I. Omae, Orgaotin Chemistry, (J. Organomet. Chem. Library, Vol.21),

Elsevier, Amsterdam (1989).

[110] P. G. Harrison, in Chemistry of Tin, Ed., P. G. Harrison, Blackie, Glasgow

(1989).

[111] K. Nakamoto, Infrared and Raman Spectra of Inorganic and coordination

Compounds, 4th ed.; Wiley: New York, 1986.

[112] G. K. Sandhu, N. S. Boparoy, Synth. React. Met.–Org. Chem., 20 (1990) 975.

[113] G. K. Sandhu, G. Kaur, J. Organomet. Chem., 388 (1990) 63.

[114] M. Danish, S. Ali, A. Badshah, M. Mazhar, H. Masood, A. Malik, G. Kher,

Synth. React. Met.-Org. Chem., 27 (1997) 863.

[115] S. Ahmed, S. Ali, F. Amad, M. H. Bhatti, A. Badshah, M. Mazhar K. M.

Khan, Synth. React. Met.-Org. Chem., 32 (2002) 1521.

[116] G. K. Sandhu, N. S. Boparoy, J. Organomet. Chem., 411 (1991) 89.

[117] A. Badshah, K. Mahmood, S. Anwar, S. Khan, M. Iqbal, B. Muhammad, M.

Danish, S. Ali, J. Chem. Soc. Pak., 20 (1998) 226.

[118] T. Lebl, J. Holecek, A. Lycka, Sci. Pap. Univ. Pardubice Ser., A2, (1996) 5.

[119] Q. Xie, Z. Yang, L. Jian, Main Group Met. Chem., 19 (1996) 509.

[120] G. K. Sandhu, R. Gupta, S. S. Sandhu, R. V. Parish, K. Brown, J. Organomet.

Chem., 373 (1985) 279.

[121] M. A. Choudhary, M. Mazhar, S. Ali, X. Song, G. Eng, Met. Based Drugs, 8

(2002) 275.

Page 56: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

33

[122] M. S. Singh, M. D. Raju, A. K. Singh, P. Narayan, Synth. React. Inorg. Met.-

Org. Chem. 29 (1999) 73.

[123] S. Mahmood, Ph. D. Thesis, Qauid-i-Azam University, Islamabad, Pakistan

(2000) 32.

[124] B. Wrackmeyer, Annu. Rep. NMR Spectrosc., 16 (1985) 73.

[125] A. G. Davis and P. J. Smith, Comprehensive Organometallic Chemistry, The

Synthesis, Reactions and Structure of Organometallic Ccompounds, Ed., G.

Wilkison, F. G. Stone and E. W. Able, Pergamon, Oxford (1982).

[126] H. A. Bent, Chem. Rev., 61 (1961) 275.

[127] J. T. B. H. Jastrzebski, G. V. Koten, Advances in Organometallic Chemistry,

Intramolecular Coordination in Organotin Chemistry, Ed., F. G. A. Stone and

R. West, Academic Press, London, (1993) 241.

[128] T. P. Lockhart, W. F. Manders, E. M. Holts, J. Am. Chem. Soc., 108 (1986)

6611.

[129] M. Bulpitt, W. Kitching, W. Adcock, D. Doddrell, J. Organomet. Chem., 116

(1976) 187.

[130] J. Otera, J. Organomet. Chem., 221 (1981) 57.

[131] G. V. Koten, J. T. B. H. Jastrzebski, J. G. Noltes, W. M. F. G. Pontegel, J.

Kroom, A. L. Spek, J. Am. Chem. Soc., 100 (1978) 5021.

[132] V. Chandrasekhar, C. G. Schmidt, S. D. Burton, J. M. Holmes, R. O. Day, R.

R. Holmes, Inorg. Chem., 26 (1987) 1050.

[133] J. Holecek, K. Handlir, M. Nadvornik, A. Lycka, Z. Chem., 30 (1990) 265.

[134] B. Wrackmeyer, in Encyclopedia of NMR, Ed., R. K. Harris and D. M. Grant.

Wiley, London (1996) 2538.

[135] J. Otera, T. Hinoishi, Y. Kawabe, R. Okawara, Chem. Lett., (1981) 273.

[136] J. Holecek, M. Nadvornik, K. Handlier, A. Lycka, J. Organomet. Chem., 315

(1986) 299.

[137] O. Desponds, M. Schlosser, J. Organomet. Chem., 93 (1991) 409.

[138] J. M. Miller, Adv. Inorg. Chem. Radiochem., 1 (1984) 28.

[139] B. M. Schmidt, M. Drager, J. Organomet. Chem., 339 (1990) 63.

[140] T. Fuji, K. Kakizaki, H. Inshii, Chem. Phys., 147, (1990) 213.

[141] D. Dakternieks, H. Zhu, E. R. T. Tiekink, R. Colton, J. Organomet. Chem.,

476 (1994) 33.

Page 57: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

34

[142] W. P. Neumann, in The Organic Chemistry of Tin, John Wiley and Sons,

Interscience Publishers, London, New York, Sydney, Toronto (1970).

[143] H. C. Hill, Introduction to Mass Spectrometry, 2nd Ed., Reviewed by A. G.

Loudon, Heyder Son, London (1975).

[144] S. Rehman, S. Ali, M. H. Bhatti, K. Shahid, M. Mazhar, M. Kaleem, A.

Badshah, Turk. J. Chem., 26 (2002) 905.

[145] A. Kalsoom, Ph. D. Thesis, Quaid-i-Azam University, Islamabad, Pakistan

(1995) 18.

[146] A. G. Davis, in Organotin Chemistry, Weinheim, New York, Basel,

Cambridge(1996).

[147] E. A. V. Ebsworth, D. W. H. Rankin, S. Cradock, in Structural Methods in

Inorg. Chem., Blackwell Scientific Publ. (1987) 304.

[148] H. D Yin, G. Li, Z. J. Gao, H. L. Xu, J Organomet. Chem., 691 (2006) 1235.

[149] C. J. Evans, S. Karpel, ‘Organotin Compounds in Modern Technology’.,

Chem. Library, 16, Elsevier, Amsterdam, (1985).

[150] C. E. Carraher, Y. Naoshima, C. Butler, V. R. Foster, D. Gill, M. Williams, D.

Giron, P. D. Mykytiuk, Polym. Mater. Sci. Eng., 56 (1987) 186.

[151] C. E. Carraher, L. Reckleben, C. W. Butler, Polym. Mater. Sci. Eng.,

63 (1990) 706.

[152] J. Price, Fresenius, Z. Anal. Chem., 288 (1977) 257.

[153] M. Hoch, Appl. Geochem, 16 (2001) 719.

[154] S. J. Blunden, P. A. Cusack, R. Hill, ‘The Industrial Uses of Tin Chemicals’,

The Royal society of Chemistry, London, (1985).

[155] C. J. Evans, S. Karpel, ‘Organotin Compounds in Modern Technology’,

Chem. Library, 16, Elsevier, Amsterdam, (1985).

[156] C. J. Evans, in ‘Chemistry of Tin’, ed., P. G. Harrison, Blackie, Glasgow,

(1989) 421.

[157] Z. Ahmad, H. U. Rehman, S. Ali, M. I. Sarwar, Int. J. Pol. Mat., 46(2000) 547.

[158] S. J. Blunden, L. A. Hobbs, P. J. Smith, A. G. Davies, S. B. Teo, J.

Organomet. Chem., 282 (1985) 9.

[159] J. R. Caldwell (Eastman Kodak Co.), US Pat. 2, 720, 507 (October 11, 1955),

Chem. Abstr., 50 (1956) 2205.

[160] C. F. Horn, H. Vinyard (Union Carbide Corp.), Brit. Pat. 899, 896 (June 27,

1962), Chem. Abstr., 57 (1962) 11391.

Page 58: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

35

[161] P. A. Cusack, P. J. Smith, Rev. Silicon, Germanium, Tin, Lead, Compd.,

1 (1983) 7.

[162] P. A. Cusack, Fire and Materials, 1 (1993) 17.

[163] F. Andre, P. A. Cusack, A. W. Monk, Polym. Degrad. Stabil., 40 (1993) 267.

[164] P. A. Hornsby, P. Winter, P. A. Cusack, Polym. Degrad. Stabil.,44 (1994) 177.

[165] C. J. Evans, Glass, 51, (1974) 303.

[166] S. Karpel, Tin and its Uses, 6 (1984) 142.

[167] T. Mukaiyama, J. Ichikawa, M. Asami, Chem. Lett., (1983) 683.

[168] J. D. Wuest, B. Zacharie, J. Org. Chem., 49 (1984) 166.

[169] L. A. Hobbs, P. J. Smith, Appl. Organomet. Chem., 6 (1992) 95.

[170] M. H. Gitlitz, M. K. Moran, in ‘ Kirk-Othmer Encyclopedia of Chemical

Technology, 3rd Edn. Vol. 23, Wiley, New York, (1983).

[171] D. Marton, P. Slaviero, G. Tagliavini, Tetrahedron, 45 (1989) 7099.

[172] J. Genz, W. Heitz, W. Ger. Offen., 3, 203, 190; Chem. Abstr.,

99 (1983)139320.

[173] G. Tagliavini, J. Organomet. Chem., , 437 (1992) 15.

[174] M. J. Fuller, Industrial Uses of I norganic Tin Chemicals, ITRI Ltd. Publ. No.,

499 (1974).

[175] H. Plum, Tin and Its Uses, 7 (1981) 127.

[176] L. A. Hobbs, Tin and Its Uses, 10 (1982) 134.

[177] P. A. Cusack, Fire and Materials, 1 (1993) 17.

[178] C. J. Evans, Tin and Its Uses, 1, (1978) 118.

[179] S. Karpel, Tin and Its Uses, 14, (1987) 152.

[180] M & T Chemicals Inc., US Pat. 41, 30 673 (1978); Chem. Abstr.,

85 (1976) 96 32.

[181] S. M. Budd, Thin Solid Films, 13 (1981) 77.

[182] E. Sacher, J. Macromol. Sci. Phys., B16 (1979) 525.

[183] W. Burkhardt, Galvantechnik, 84 (1993) 2922.

[184] C. Pellerito , L. Nagy , L. Pellerito , A. Szorcsik, J. Organomet. Chem.

691 (2006) 1733

[185] W. Peters, E. R. Trotter, B. L. Robinson, Ann. Trop. Med. Parasitol.,

74 (1980) 321.

[186] T. S. B. Baul, K.S. Singh, X. Song, A. Zapata, G. Eng, A. Lycka, A. Linden, J.

Organomet. Chem. 689 (2004) 4702.

Page 59: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

36

[187] T.S. B. Baul, K.S. Singh, M. Holcapek, R. Jirasko, A. Linden, X. Song, A.

Zapata, G. Eng, Appl. Organomet. Chem. 19 (2005) 935.

[188] G. Francois, M. V. Looveren, G. Timperman, B. Chimanuka, L. A. Assi, J.

Holenz, G. Bringmann J. Ethnopharmacol. 54 (1996) 125.

[189] V. G. Kumar Das, L. Y. Kuan, K. I. Sudderuddin, C. K. Chang , Y. Thomas,

C. K. Yap, M. K. Lo, Y. Hoi-sen, Toxicology, 32 (1984) 57.

[190] T. T. Nguyen, N. Ogwuru, G. Eng Appl. Organometal. Chem. 14 (2000) 345.

[191] T. S. B. Baul, S. Dhar , E. Rivarola, F. E. Smith , R. Butcher, X. Song, M.

McCain, G. Eng, Appl. Organomet. Chem. 17 (2003) 261.

[192] T. S. B. Baul, K.S. Singh, X. Song , A. Zapata , G . Eng, A. J. Linden,

J. Organomet. Chem. 689 (2004) 4702.

[193] A. J. Crowe, ITRI Pub, 69 (1990) 709.

[194] C. J. Evans, Tin and Its Uses, 5 (1981) 130.

[195] M. S. Horowitz, J. Public Health Dent., 5 (1991) 20.

[196] J. Banoczy, J. Szoke, P. Kertesz, Z. Toth, P. Zimmermann, Z. Gintner, Caries

Res., 23 (1989) 284.

[197] C. J. Evans, Tin and Its Uses, 3 (1972) 91.

[198] P. S. Wright, J. Dentistry, 8 (1980) 144.

[199] S. J. Blunden, R. Hill, In Surface Coating (Eds. J. W. Nicholson and H. J.

Prosser), Elsevier Applied Science, London – New York (1986).

[200] S. Karpel, Paint and Ink, 1(1988) 10.

[201] D. E. Lay, Plating and Surface Finishing, 26 (1991) 75.

[202] S. J. Blunden, P. A. Cusack, R. Hill, The Industrial Uses of Tin Chemicals,

The Royal Society of Chemistry, London (1985).

[203] A. J. Crowe, Appl. Organomet. Chem., 1 (1987) 331.

[204] F. J. Lascourreges, P. Caumette, X .F. O. Donard, Appl. Organomet. Chem.,

14 (2000) 98 [ 205] X. Song, A. Zapata, G. Eng, J. Organomet. Chem. 691 (2006) 1756.

[206] M. Gielen, E. R. T. Tiekink, Tin compounds and their therapeutic potential. In

Metallotherapeutic Drugs and Metal-Based Diagnostic Agents. The Use of

Metals in Medicine (Gielen, M. and Tiekink, E.R.T., eds), J. Wiley & Sons

(2005) 421.

[207] S. K. Hadjikakou, N. Hadjiliadis, Coord. Chem. Rev. 253 (2008) 235

Page 60: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

37

[208] A. J. Crowe, in ‘Metal Coplexes in Cancer Chemotherapy’, ed., B. K. Keppler,

VCH: Weinheim, (1993) 369.

[209] M. Gielen, Appl. Organomet. Chem., 16 (2002) 481.

[210] G. Barot, J. Inorg. Organomet. Polym. 17 (2007) 595.

[211] C.E. Carraher, J. Inorg. Organomet. Polym., 18 (2008) 180

[212] E. Gomez, Chem. Pharm., Bull. 54 (2006) 54

[213] M. Ross, M. Gielen, P. Lelieveld, D. de Vos, Anticancer Res., 11 (1991) 1089.

[214] M. Gielen, R. Willem, Anticancer Res., 12 (1992) 257.

[215] M. Gielen, R. Willem, J. Holecek, A. Lycka, Main Group Met. Chem.,

16 (1993) 29.

[216] C. C. Cammacho, D. de Vos, B. Mahieu, M. Gielen, M. Kemmer, M.

Biesemans, R. Willem, Main Group Met. Chem., 23 (2000) 381.

[217] M. Gielen, Coord. Chem. Rev., 41 (1996) 151.

[218] M. J. Clarke, F. Zhu, D. R. Frasca, Chem. Rev., 99 (1999) 2511.

[219] M. Nath, S. Pokharsa, R. Yadav, Coord. Chem. Rev., 99 (2001) 215.

[220] S. Ozaki, H. Sakai, Manufacture of 2′,3′-O-dialkyltin-5-fluorouridine,

Japanese Pat., 76, 100, 089, February 28 (1975).

[221] H. J. Keller, B. Keppler, U. Krugger, R. Linder, Eurp. Pat., 49486 (1982).

Page 61: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

38

Chapter−2 EXPERIMENTAL

2.1 Chemicals

Organotin(IV) dichlorides, dioctyltin(IV) oxide, and butyldihydroxidetin(IV)

chloride were procured from Aldrich. Tranexamic acid (Indus Pharma, Karachi) was

purchased from the local market. The organic solvents (toluene, chloroform, hexane,

ethanol, methanol, acetone etc.) were from Merck, Germany. The solvents were dried

in situ using standard procedures [1] and freshly collected prior to use. Following

chemicals, used for the synthesis of ligands were of analytical grade and used as such

without further purification.

2-hydroxyacetophenone (98%) Aldrich

2-hydroxybenzaldehyde (98%) Aldrich

2-hydroxy-1-naphthaldehyde (98%) Aldrich

5-bromo-2-hydroxyacetophenone (98%) Aldrich

5-bromo-2-hydroxybenzaldehyde (98%) Aldrich

3-methoxy-2-hydroxybenzaldehyde (98%) Aldrich

4-(diethylamino)-2-hydroxybenzaldehyde (98%) Aldrich

Adipic dihydrazide (98%) Aldrich

Formic hydrazide (98%) Aldrich

4-tert-butylbenzoic hydrazide (98%) Aldrich

Succinic dihydrazide (98%) Aldrich

Tetra-n-butyl ammonium perchlorate (99 %) Fluka

2.2 Instrumentation

The melting points were determined on an electrothermal melting point

apparatus, model MP-D Mitamura Rieken Kogyo (Japan) by using capillary tubes and

are uncorrected. The infrared (IR) spectra were recorded as neat liquids, using NaCl

cells or as KBr pellets for solids on a Bio-Rad Excaliber FT-IR, model FTS 300 MX

spectrophotometer (USA) in the frequency range of 4000-400 cm-1. Multinuclear

NMR (1H, 13C, and 119Sn) spectra were recorded on a Bruker ARX 300 MHz-FT-

NMR and a Bruker 400 MHz-FT-NMR using CDCl3 as an internal reference [2].

Chemical shifts (δ) are given in ppm and coupling constants (J) are given in Hz. The

Page 62: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

39

multiplicities of signals in the 1H NMR spectra are given in chemical shifts; (s =

singlet, d = doublet, t = triplet, q = quartet, m = multiplet).

The mass spectra were recorded on a MAT-311A Finnigan (Germany). The

m/z values were evaluated assuming that H = 1, C = 12, N = 14, O = 16, Cl = 35 and

Sn = 120. The X-ray diffraction data were collected on a Bruker [3] SMART APEX

CCD diffractometer, equipped with a 4K CCD detector set 60.0 mm from the crystal.

The crystals were cooled to 100 ± 1 K using the Bruker KRYOFLEX low-temperature

device and intensity measurements were performed using graphite monochromated

Mo-Kα radiation from a sealed ceramic diffraction tube (SIEMENS). Generator

settings were 50 kV/ 40 mA. The structure was solved by Patterson methods and

extension of the model was accomplished by direct methods using the program

DIRDIF or SIR2004 [4,5]. Final refinement on F2 carried out by full-matrix least

squares techniques using SHELXL-97 [6], a modified version of the program PLUTO

[7] (preparation of illustrations) and PLATON [8] package.

2.3 General procedures for synthesis of ligands

The different [O,O] and the [O,N,O] potential donor ligands used for the

synthesis of organotin(IV) derivatives were prepared by the following methods.

2.3.1 From Tranexamic acid

Procedure (A)

The [O,O] donor ligands were prepared by dissolving NaOH (10 mmol.) in

methanol (30 mL) and the tranexamic acid (10 mmol) was added to it. The mixture

was stirred at room temperature to obtain a clear solution. Then a 10 mmol. ethanolic

solution of the aromatic carbonyl compound was added. The mixture was stirred and

refluxed for 1 h. The yellow solution formed was cooled, filtered and evaporated to

20% of its original volume and 1 mL of CH3COOH was added. After 3 hours, yellow

crystals appeared (Scheme 2.1). The crystals were filtered and washed with ethanol.

Page 63: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

40

+ COONaH2NOH

R1

O

R2 Methanol COONaN

OH

R1

R2 + H2O

+COOHH2N NaOH

CH3COOH

Methanol+ H2OCOONaH2N

COONaN

OH

R1

R2+

Methanol COOHN

OH

R1

R2+ CH3COONa

Scheme 2.1

Procedure (B)

Stoichiometric amounts of tranexamic acid (4-(aminomethyl)cyclohexane-

carboxylic acid) and aromatic carbonyl compound were mixed in ethanol (100 mL) in

a 250 mL round bottom flask. The reaction mixture was stirred and refluxed for 3 h.

The solution obtained was left undisturbed. Yellowish crystals were obtained after 48

h (Scheme 2.2).

+ COOHH2NOH

R1

O

R2Ethanol

COOHN

OH

R1

R2+ H2O

H2L R1 R2

H2La H 5-Br

H2Lb CH3 H

H2Lc CH3 5-Br

Scheme 2.2

2.3.2 From Hydrazides

Procedure (C)

An ethanolic solution of the aromatic carbonyl compound (0.1 mol) was added

slowly to the solution of hydrazide (0.1 mol) in ethanol with constant stirring at room

temperature. The mixture was refluxed for 1 h and on cooling a crystalline solid was

obtained (Scheme 2.3).

Page 64: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

41

R4 O

R3

+ H2NNH

CO

R5 Ethanol N

HN C

O

R5R4

R3

+ H2O

H2L R3 R4 R5

H2Ld H OH

H

H2Le H OH

Br

H

H2Lf H OHOCH3

H

H2Lg H OH(C2H5)2N

H

H2Lh H

OH

H

H2Li CH3 OH

Br

H

H2Lj H OH

C(CH3)3

Scheme 2.3

2.3.3 From Dihydrazides

Procedure (D)

The dihydrazide (0.1 mol.) was added to an ethanolic solution (100 mL) of

salicylaldehyde or substituted salicyldehyde (0.2 mol) with constant stirring at room

temperature. The mixture was refluxed for 2 h. The white solid product obtained was

filtered and washed several times with ethanol and air dried (Scheme 2.4).

Page 65: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

42

OH

O

H

R6 + H2NNH

CO

X Ethanol N

HN C

O

X

OH

H

R6+ H2ONH2

NH

CO

N

HNC

O

HO

H

R622

H2L R6 X

H2Lk OH

−(CH2)4−

H2Ll OH

Br−(CH2)4−

H2Lm OHOCH3

−(CH2)4−

H2Ln OH

−(CH2)2−

Scheme 2.4

2.3.4 Synthesis of noval ligands

4-((5-Bromo-2-hydroxybenzylideneamino)methyl)cyclohexanecarboxylic acid

(H2La)

Procedure adopted (B)

Quantities used;

Tranexamic acid 1.0 g (6.36 mmol), 2-hydroxybenzaldehyde 0.78 g (6.36

mmol). Yellow crystalline product obtained. m.p. 180-182 ºC. Yield 85 %. Anal.

Calc. for C15H18BrNO3 (M =339): C, 52.96; H, 5.33; N, 4.12 Found: C, 52.92; H,

5.31; N, 4.09%. IR (cm-1): 1691 ν(COO)asy, 1440 ν(COO)sym, 251 ∆ν, 1607 ν(C=N),

3452 ν(OH)phenolic, EI-MS, m/z (%): [C15H18BrNO3]+ 339(45.8), [C14H17BrNO]+

294(7.7), [C8H7BrNO]+ 212(58.1), [C7H5BrNO]+ 198(6.7), [C6H5]+ 77(63.4), [C4H7]+

55(100.0)

Page 66: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

43

4-((1-(2-Hydroxyphenyl)ethylideneamino)methyl)cyclohexanecarboxylic acid

(H2Lb)

Procedure adopted (A)

Quantities used;

Tranexamic acid 1.0 g (6.36 mmol), 2-hydroxyacetophenone 0.86 g (6.36

mmol). Yellow crystalline product obtained. m.p. 206-208 ºC. Yield 80 %. Anal.

Calc. for C16H21NO3 (M =275): C, 69.79; H, 7.69; N, 5.09 Found: C, 69.81; H, 7.66;

N, 5.11%. IR (cm-1): 1701 ν(COO)asy, 1412 ν(COO)sym, 289 ∆ν, 1610 ν(C=N), 3434

ν(OH)phenolic, EI-MS, m/z (%): [C16H21NO3]+ 275(76.3), [C15H20NO]+ 230(48.3),

[C9H10NO]+ 148(100.0), [C8H9NO]+ 135(68.9), [C8H8NO]+ 134(12.0), [C8H9O]+

121(6.6), [C7H7O]+ 107(61.3), [C6H5]+ 77(8.6),

4-((1-(5-Bromo-2-hydroxyphenyl)ethylideneamino)methyl)cyclohexane-

carboxylic acid (H2Lc)

Procedure adopted (A)

Quantities used;

Tranexamic acid 1.0 g (6.36 mmol), 5-bromo-2-hydroxybenzaldehyde 1.37 g

(6.36 mmol). Yellow crystalline product obtained. m.p. 227-229 ºC. Yield 78 %.

Anal. Calc. for C16H20BrNO3 (M =353): C, 54.25; H, 5.69; N, 3.95 Found: C, 54.28;

H, 5.71; N, 3.92%. IR (cm-1): 1699 ν(COO)asy, 1420 ν(COO)sym, 279 ∆ν, 1616

ν(C=N), 3444 ν(OH)phenolic, EI-MS, m/z (%): [C16H20BrNO3]+ 353(69.2), [C15H19Br

NO]+ 308(18.4), [C16H20NO3]+ 274(2.9), [C9H9BrNO]+ 226(100.0), [C8H8BrNO]+

213(87.1), [C8H7BrNO]+ 212(13.4), [C8H8BrO]+ 199(18.9), [C7H6BrO]+ 185(52.2),

[C10H16NO2]+ 182(2.3), [C6H4BrO]+ 170(2.2),

N′-(2-Hydroxybenzylidene)formohydrazide (H2Ld)

Procedure adopted (C)

Quantities used;

Formic hydrazide 1.0 g (16.65 mmol), 2-hydroxybenzaldehyde 2.0 g (16.65

mmol). Yellowish white crystalline product obtained. m.p. 187-189 ºC. Yield 80 %.

Anal. Calc. for C8H8N2O2 (M =164): C, 58.53; H, 4.91; N, 17.06 Found: C, 58.50; H,

4.89; N, 17.01%. IR (cm-1): 1701 ν(C═O), 3184 ν(N–H), 3355 ν(O–H) phenolic, 1613

ν(C═N), 1053 ν(N-N), EI-MS, m/z (%): [C8H8N2O2]+ 164(49.6), [C7H7N2O]+

135(7.8), [C7H5NO]+ 119(100.0), [C7H4N]+ 102(10.1), [C6H5O]+ 93(4.0), [C6H5]+

77(43.8)

Page 67: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

44

N′-(5-Bromo-2-hydroxybenzylidene)formohydrazide (H2Le)

Procedure adopted (C)

Quantities used;

Formic hydrazide 1.0 g (16.65 mmol), 5-bromo-2-hydroxybenzaldehyde 3.35

g (16.65 mmol). Yellowish crystalline product obtained. m.p. 256-258 ºC. Yield 80

%. Anal. Calc. for C8H7BrN2O2 (M =242): C, 39.53; H, 2.90; N, 11.53 Found: C,

39.50; H, 2.89; N, 11.57%. IR (cm-1): 1706 ν(C=O), 3185 ν(NH), 1609 ν(C=N), 3410

ν(OH)phenolic, EI-MS, m/z (%): [C8H7BrN2O2]+ 242(43.4), [C7H6BrN2O]+ 213(3.0),

[C7H4BrNO]+ 197(100.0), [C7H3BrN]+ 180(3.0), [C7H4NO]+ 118(9.0), [C6H5]+

77(30.0)

N′-(2-Hydroxy-3-methoxybenzylidene)formohydrazide (H2Lf)

Procedure adopted (C)

Quantities used;

Formic hydrazide 1.0 g (16.65 mmol), 3-methoxy-2-hydroxybenzaldehyde

2.53 g (16.65 mmol). Yellowish white crystalline product obtained. m.p. 176-177 ºC.

Yield 83 %. Anal. Calc. for C9H10N2O3 (M =194): C, 55.67; H, 5.19; N, 14.43 Found:

C, 55.70; H, 5.21; N, 14.39%. IR (cm-1): 1691 ν(C=O), 3173 ν(NH), 1612 ν(C=N),

3385 ν(OH)phenolic, EI-MS, m/z (%): [C9H10N2O3]+ 194(100.0), [C8H9N2O2]+ 165(3.9),

[C8H7NO2]+ 149(81.3), [C8H6NO]+ 132(9.9), [C7H7O2]+ 123(7.2), [C7H5NO]+ 119

(19.2), [C6H5]+ 77(11.7)

N′-(4-(Diethylamino)-2-hydroxybenzylidene)formohydrazide (H2Lg)

Procedure adopted (C)

Quantities used;

Formic hydrazide 1.0 g (16.65 mmol), 4-(diethylamino)-2-hydroxybenz-

aldehyde 3.92 g (16.65 mmol). Yellowish white crystalline product obtained. m.p.

145-146 ºC. Yield 77 %. Anal. Calc. for C12H17N3O2 (M =235): C, 61.26; H, 7.28; N,

17.86 Found: C, 61.30; H, 7.31; N, 17.83%. IR (cm-1): 1698 ν(C=O), 3180 ν(NH),

1610 ν(C=N), 3376 ν(OH)phenolic,EI-MS, m/z (%): [C12H17N3O2]+ 235(44.0),

[C11H16N3O]+ 206(3.3), [C11H14N2O]+ 190(100.0), [C10H14NO]+ 164(5.6),

[C8H7N2O2]+ 163(12.9), [C11H14N3O2]+ 220(73.4), [C10H11N2O]+ 175(29.1)

Page 68: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

45

N′-(2-Hydroxynaphthalen-1-yl)methylene)formohydrazide (H2Lh)

Procedure adopted (C)

Quantities used;

Formic hydrazide 1.0 g (16.65 mmol), 2-hydroxy-1-naphthaldehyde 2.53 g

(16.65 mmol). Yellowish white crystalline product obtained. m.p. 208-210 ºC. Yield

78 %. Anal. Calc. for C12H10N2O2 (M =214): C, 67.28; H, 4.71; N, 13.08 Found: C,

67.30; H, 4.69; N, 13.11%. IR (cm-1): 1705 ν(C=O), 3180 ν(NH), 1608 ν(C=N), 3405

ν(OH)phenolic, EI-MS, m/z (%): [C12H10N2O2]+ 214(61.9), [C11H9N2O]+ 185(5.2),

[C11H7NO]+ 169(100.0), [C10H8]+ 128(11.5), [C6H5]+ 77(6.5)

N′-(1-(5-Bromo-2-hydroxyphenyl)ethylidene)formohydrazide (H2Li)

Procedure adopted (C)

Quantities used;

Formic hydrazide 1.0 g (16.65 mmol), 1-(5-bromo-2-hydroxyphenyl)ethanone

4.28 g (16.65 mmol). Yellowish white crystalline product obtained. m.p. 160-161 ºC.

Yield 78 %. Anal. Calc. for C9H9BrN2O2 (M =256): C, 42.05; H, 3.53; N, 10.90

Found: C, 42.07; H, 3.50; N, 10.88%. IR (cm-1): 1698 ν(C=O), 3182 ν(NH), 1610

ν(C=N), 3390 ν(OH)phenolic, EI-MS, m/z (%): [C9H9BrN2O2]+ 256(55.7), [C8H8Br

N2O]+ 227(20.4), [C8H8BrNO]+ 213(100.0), [C6H4BrO]+ 171(17.6), [C6H5]+ 77(11.5)

N′-(2-Hydroxybenzylidene)-4-tert-butylbenzohydrazide (H2Lj)

Procedure adopted (C)

Quantities used;

4-tert-Butylbenzoic hydrazide 1.0 g (5.20 mmol), 2-hydroxybenzaldehyde

0.64 g (5.20 mmol). Yellowish white crystalline product obtained. m.p. 194-196 ºC.

Yield 85%. Anal. Calc. for C18H20N2O2 (M =296): C, 72.95; H, 6.80; N, 9.45 Found:

C, 72.91; H, 6.78; N, 9.48%. IR (cm-1): 1686 ν(C=O), 3180 ν(NH), 1608 ν(C=N),

3410 ν(OH)phenolic,EI-MS, m/z (%): [C18H20N2O2]+ 296(7.1), [C8H7N2O2]+ 163(4.1),

[C11H13O]+ 161(100.0), [C7H7N2O]+ 135(2.6), [C10H13]+ 133(2.1), [C7H5NO]+ 119

(7.3), [C6H5]+ 77(14.7), [C4H9]+ 57(14.9)

N1′, N6′-Bis(2-hydroxybenzylidene)adipohydrazide (H4Lk)

Procedure adopted (D)

Quantities used;

Adipic dihydrazide 1.0 g (5.74 mmol), 2-hydroxybenzaldehyde 1.40 g (11.48

mmol). White solid product obtained. m.p. > 300 ºC. Yield 78 %. Anal. Calc. for

Page 69: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

46

C20H22N4O4 (M =382): C, 62.82; H, 5.80; N, 14.65 Found: C, 62.79; H, 5.83; N,

14.61%. IR (cm-1): 1680 ν(C=O), 3220 ν(NH), 1609 ν(C=N), 3442 ν(OH)phenolic,

EI-MS, m/z (%): [C20H22N4O4]+ 382(72.9), [C14H17N4O3]+ 289(3.3), [C8H7N2O2]+

163(17.7), [C7H5NO]+ 119(100.0), [C6H5O]+ 93(24.5), [C6H5]+ 77(18.4)

N1′, N6′-Bis(5-bromo-2-hydroxybenzylidene)adipohydrazide (H4Ll)

Procedure adopted (D)

Quantities used;

Adipic dihydrazide 1.0 g (5.74 mmol), 5-bromo-2-hydroxybenzaldehyde 2.47

g (11.48 mmol). White solid product obtained. m.p. > 300 ºC. Yield 77 %. Anal. Calc.

for C20H20Br2N4O4 (M =538): C, 44.47; H, 3.73; N, 10.37 Found: C, 44.50; H, 3.70;

N, 10.40%. IR (cm-1): 1673 ν(C=O), 3258 ν(NH), 1611 ν(C=N), 3420 ν(OH)phenolic,

EI-MS, m/z (%): [C20H20Br2N4O4]+ 538(20.7), [C13H14BrN2O3]+ 325(81.4), [C8H6Br

N2O2]+ 241(9.1), [C7H4BrNO]+ 197(100.0), [C7H4NO]+ 118(4.5), [C7H3BrN]+ 180

(3.8), [C6H4BrO]+ 171(18.7), [C6H5]+ 77(16.7)

N1′, N6′-Bis(2-hydroxy-3-methoxybenzylidene)adipohydrazide (H4Lm)

Procedure adopted (D)

Quantities used;

Adipic dihydrazide 1.0 g (5.74 mmol), 2-hydroxy-3-methoxybenzaldehyde

1.75 g (11.48 mmol). White solid product obtained. m.p. > 300 ºC. Yield 80 %. Anal.

Calc. for C22H26N4O6 (M =442): C, 59.72; H, 5.92; N, 12.66 Found: C, 59.69; H,

5.94; N, 12.69%. IR (cm-1): 1655 ν(C=O), 3189 ν(NH), 1607 ν(C=N), 3457

ν(OH)phenolic, EI-MS, m/z (%): [C20H20(OCH3)2N4O4]+ 442(45.0), [C14H17N3O4]+

291(10.5), [C13H17N2O3]+ , 249(12.7), [C9H9N2O3]+ 193(14.3), [C8H7NO]+ 149(100),

[C7H7O2]+ 123(12.6), [C6H5]+ 77(8.3)

N1′, N4′-Bis(2-hydroxybenzylidene)succinohydrazide (H4Ln)

Procedure adopted (D)

Quantities used;

Succinic dihydrazide 1.0 g (6.84 mmol), 2-hydroxybenzaldehyde 1.66 g

(13.68 mmol). White solid product obtained. m.p. 214-216 ºC. Yield 78 %. Anal.

Calc. for C18H18N4O4 (M =354): C, 61.01; H, 5.12; N, 15.81 Found: C, 61.06; H,

5.14; N, 15.79%. IR (cm-1): 1669 ν(C=O), 3178 ν(NH), 1609 ν(C=N), 3455

ν(OH)phenolic, EI-MS, m/z (%): [C18H18N4O4]+ 354(10.4), [C18H17N4O3]+ 337(2.6),

Page 70: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

47

[C11H11N2O3]+ 219(2.3), [C10H11N2O2]+ 191(24.5), [C9H9N2O2]+ 177(55.4), [C8H7

N2O2]+ 163(22.6), [C7H5NO]+ 119(100.0), [C6H5O]+ 93(4.0), [C6H6]+ 78(4.3)

2.4 General procedures for synthesis of organotin(IV) complexes

2.4.1 Di- and triorganotin(IV) complexes with [O,O] donor ligands

The different di- and triorganotin(IV) complexes with [O,O] donor ligands

were synthesized by the following procedures.

2.4.1.1 Procedure (I)

In a two necked 100 mL flask fitted with Dean and Stark apparatus,

stoichiometric amounts of carboxylic acid and dioctyltin(IV) oxide were added in 100

mL of dry toluene. The contents were refluxed for 6-7 h with continuous removal of

water and then allowed to cool at room temperature. The solution was filtered and

concentrated under reduced pressure. After complete removal of the solvent, a solid

product was obtained (Scheme 2.5). The product was recrystallized from a chloroform

n-hexane (4:1) mixture.

COOHN

OH

R1

R2 + (C8H17)2SnO TolueneCOON

OH

R1

R2

2

Sn(C8H17)2

R1 = H, CH3 R2 = H, 5-Br

_ H2O

Scheme 2.5

2.4.1.2 Procedure (II)

Sodium salt of acid obtained by procedure A was suspended in dry toluene. To

this solution, diorganotin(IV) dichloride/ triorganotin(IV) chloride was added in 2:1 or

1:1 molar ratio, respectively. This mixture was refluxed for 6-7 h. Later on, mixture

was left for 12 h to settle sodium chloride at the bottom. The salt was removed by

filtration and solution was concentrated by rotary evaporatior the solid product

obtained was recrystallized in chloroform n-hexane (4:1) mixture (Scheme 2.6).

R2SnCl2COONaN

OH

R1

R2

+ + 2NaClToluene

COO SnR2N

OH

R1

R22

2

Page 71: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

48

R1 = H, CH3 R2 = H, 5-Br

R3SnClCOONaN

OH

R1

R2

+ + NaClToluene

COO SnR3N

OH

R1

R2

Scheme 2.6

2.4.2 Diorganotin(IV) complexes with [O,N,O] donor ligands

The diorganotin(IV) complexes with [O,N,O] donor ligands were synthesized

by the following four methods.

2.4.2.1 Procedure (III)

A 250 mL two-necked flask containing 100 mL toluene, equipped with a

reflux condenser was charged with the free ligand and triethylamine in a 1:2 ratio

along with a magnetic bar. To the solution of the triethylammonium salt of the ligand,

diorganotin dichloride (1:1) in dry toluene was added dropwise into the flask with

stirring at room temperature. The solution turned yellow. It was stirred for 5 h at room

temperature. The white precipitate of Et3NHCl, formed during the reaction was

filtered. The filtrate was concentrated by a rotary evaporator to obtain a yellow solid.

The product was recrystallized from a CHCl3/n-hexane (4:1) mixture (Scheme 2.7).

R2SnCl2 + R′OHCHNNHOCR' + 2Et3N ⎯→ R2SnR′OCHNNOCR' + 2Et3NH4Cl

R = -CH3, -C2H5, n-C4H9, tert-C4H9, -C6H5

Br

OCH3

, , ,=R'

Scheme 2.7

A similar procedure was also adopted for the synthesis of diorganotin(IV)

derivatives of [O,N,O] hexadentate ligands using diorganotin(IV) dichloride, triethyl-

amine and the free ligand in a 2:4:1 molar ratio (Scheme 2.8).

Page 72: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

49

TolueneN

HN C

O

X

OH

H

R6+

R6 = H, 5-Br, 3-OCH3

N

HNC

O

HO

H

R6

X = (CH2)2 (CH2)4,

R2SnCl2 + Et3NN

HN C

O X

O

H

R6+N

HNC

OO

H

R6Sn Sn

R R R R

Et3NHCl442

Scheme 2.8

2.4.2.2 Procedure (IV)

The dioctyl and butylchloridetin complexes were synthesized by suspending

stoichiometric amounts of the organotin oxide or dihydroxide and ligand in in dry

toluene. The mixture was refluxed for 3 h and water formed during the reaction was

removed by the Dean and Stark apparatus. Solid yellow product was obtained by

evaporating solvent with rotary evaporator. The product was recrystallized from

CHCl3/n-hexane (4:1) mixture (Scheme 2.9).

TolueneN

HN C

O

X

OH

H

R6+N

HNC

O

HO

H

R6

N

HN C

O X

O

H

R6+N

HNC

OO

H

R6Sn Sn

R R R R

H2O(C8H17)2SnO /C4H9Sn(OH)2Cl

2

R6 = H, 5-Br, 3-OCH3 X = (CH2)2 (CH2)4,

Scheme 2.9

2.4.2.3 Procedure (V)

A 250 ml two-necked flask containing 100 mL toluene, equipped with a reflux

condenser and a magnetic bar was charged with the free ligand and triethylamine in a

1:2 ratio. To the solution of the triethylammonium salt of the free ligand,

dimethylorganotin dichloride and bipyridine (1:1:1) in dry toluene was added

dropwise into the flask with stirring at room temperature. The solution turned yellow

and a precipitate was formed. The solution was stirred for 5 h at room temperature

and filtered off to remove the Et3NHCl formed during the reaction. The filtrate was

concentrated by a rotary evaporator to obtain a yellow solid. The product was

recrystallized from a CHCl3/n-hexane (4:1) mixture (Scheme 2.10).

R2SnCl2 + R′OHCHNNHOCR' + 2Et3N + bipy → R2SnR′OCHNNOCR'bipy + 2Et3NH4Cl

OCH3

,=R'CH3R = ;

Scheme 2.10

Page 73: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

50

2.5 Synthesis of organotin(IV) complexes

Dimethyltin(IV) bis[4-((5-bromo-2-hydroxybenzylideneamino)methyl)cyclohex-

anecarboxylate]; (1)

Procedure adopted (II)

Quantities used;

The sodium salt of 4-((5-bromo-2-hydroxybenzylideneamino)methyl)cyclo-

hexanecarboxylic acid 2.17 g (6.0 mmol) and dimethyltin(IV) dichloride 0.66 g (3.0

mmol) were reacted in a 2:1 ratio. The yellow solid product was recrystallized from a

chloroform n-hexane (4:1) mixture. IR (cm-1): 1635 ν(COO)asy, 1452 ν(COO)sym, 183

∆ν, 1602 ν(C=N), 3457 ν(OH)phenolic, 466 ν(Sn-O), 575 ν(Sn-C), EI-MS, m/z (%):

[(C15H17Br NO3)Sn(CH3)2]+ 488(8.3), [(C15H18BrNO3)]+ 339(9.2), [C14H17BrNO]+

294(5.2), [C8H7BrNO]+ 212(25.7), 165(100), [Sn(CH3)2]+ 150(9.2), [Sn(CH3)]+

135(24.8), [Sn]+ 120(2.5), [C6H5]+ 77(5.5)

Trimethyltin(IV) [4-((5-bromo-2-hydroxybenzylideneamino)methyl)cyclohexa-

necarboxylate]; (2)

Procedure adopted (II)

Quantities used;

The sodium salt of 4-((5-bromo-2-hydroxybenzylideneamino)methyl)cyclo-

hexanecarboxylic acid 1.09 g (3.0 mmol) and trimethyltin(IV) chloride 0.60 g (3.0

mmol) were reacted in a 1:1 ratio. The yellow solid product was recrystallized from a

chloroform n-hexane (4:1) mixture. IR (cm-1): 1633 ν(COO)asy, 1479 ν(COO)sym, 154

∆ν, 1605 ν(C=N), 3468 ν(OH)phenolic, 435 ν(Sn-O), 548 ν(Sn-C), EI-MS, m/z (%):

[(C15H17 BrNO3)Sn(CH3)3]+ 503(11.0), [(C15H17BrNO3)Sn(CH3)2]+ 488(43.2),

[(C15H17BrN O3)]+ 338(5.8), [C14H17BrNO]+ 294(13.7), [C8H7BrNO]+ 212(15.0),

[C7H5BrNO]+ 198(5.4), [Sn(CH3)3]+ 165(100.0), [Sn(CH3)2]+ 150(12.2), [Sn(CH3)]+

135(30.7), [Sn]+ 120(9.6), [C6H5]+ 77(21.7)

Di-n-butyltin(IV) bis[4-((5-bromo-2-hydroxybenzylideneamino)methyl)-

cyclohexanecarboxylate]; (3)

Procedure adopted (II)

Quantities used;

The sodium salt of 4-((5-bromo-2-hydroxybenzylideneamino)methyl)cyclo-

hexanecarboxylic acid 2.17 g (6.0 mmol) and dibutyltin(IV) chloride 0.91 g (3.0

mmol) were reacted in a 2:1 ratio. The yellow solid product was recrystallized from a

Page 74: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

51

chloroform n-hexane (4:1) mixture. IR (cm-1): 1635 ν(COO)asy, 1446 ν(COO)sym, 189

∆ν, 1599 ν(C=N), 3467 ν(OH)phenolic, 463 ν(Sn-O), 554 ν(Sn-C), EI-MS, m/z (%):

[(C15H17BrNO3)Sn(C4H9)2]+ 572(15.7), [(C15H17BrNO3)Sn]+ 458(4.7), [(C15H18Br

NO3)]+ 339(7.6), [Sn(C4H9)2]+ 234(4.6), [C8H7BrNO]+ 212(9.5), [C7H5BrNO]+ 198

(7.0), [Sn(C4H9)]+ 177(14.7), [Sn]+ 120(12.4), [C4H9]+ 57(100.0)

Tri-n-butyltin(IV) [4-((5-bromo-2-hydroxybenzylideneamino)methyl)-

cyclohexanecarboxylate]; (4)

Procedure adopted (II)

Quantities used;

The sodium salt of 4-((5-bromo-2-hydroxybenzylideneamino)methyl)cyclo-

hexanecarboxylic acid 1.09 g (3.0 mmol) and tributyltin(IV) chloride 0.98 g (3.0

mmol) were reacted in a 1:1 ratio. The yellow solid product was recrystallized from a

chloroform n-hexane (4:1) mixture. IR (cm-1): 1632 ν(COO)asy, 1444 ν(COO)sym, 188

∆ν, 1608 ν(C=N), 3475 ν(OH)phenolic, 468 ν(Sn-O), 552 ν(Sn-C), EI-MS, m/z (%):

[(C15H17BrNO3)Sn(C4H9)3]+ 629(6.4), [(C15H17BrNO3)Sn(C4H9)2]+ 572(100.0),

[(C15H17BrNO3)Sn]+ 458(14.0), [(C15H17BrNO3)]+ 338(12.9), [C14H17BrNO]+ 294

(7.3), [Sn(C4H9)3]+ 291(11.3), [Sn(C4H9)2]+ 234(4.3), [C8H7BrNO]+ 212(16.3),

[C7H5BrNO]+ 198(8.7), [Sn(C4H9)]+ 177(40.5), [Sn]+ 120(17.9), [C6H5]+ 77(18.5),

[C4H9]+ 57(69.0)

Diphenyltin(IV) [4-((5-bromo-2-hydroxybenzylideneamino)methyl)cyclohexane-

carboxylate]; (5)

Procedure adopted (II)

Quantities used;

The sodium salt of 4-((5-bromo-2-hydroxybenzylideneamino)methyl)cyclo-

hexanecarboxylic acid 2.17 g (6.0 mmol) and diphenyltin(IV) dichloride 1.03 g (3.0

mmol) were reacted in a 2:1 ratio. The yellow solid product was recrystallized from a

chloroform n-hexane (4:1) mixture. IR (cm-1): 1642 ν(COO)asy, 1458 ν(COO)sym, 184

∆ν, 1599 ν(C=N), 3454 ν(OH)phenolic, 454 ν(Sn-O), EI-MS, m/z (%): [(C15H17BrNO3)

Sn(C6H5)2]+ 612(5.2), [(C15H17BrNO3)Sn]+ 458(6.3), [(C15H17BrN O3)]+ 338(50.2),

[Sn(C6H5)2]+ 274(8.8), [C7H5BrNO]+ 198(5.2), [Sn(C6H5)]+ 197 (12.6), [Sn]+

120(9.9), [C6H6]+ 78(100.0)

Page 75: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

52

Triphenyltin(IV) [4-((5-bromo-2-hydroxybenzylideneamino)methyl)cyclohexane-

carboxylate]; (6)

Procedure adopted (II)

Quantities used;

The sodium salt of 4-((5-bromo-2-hydroxybenzylideneamino)methyl)cyclo-

hexanecarboxylic acid 1.09 g (3.0 mmol) and triphenyltin(IV) chloride 1.16 g (3.0

mmol) were reacted in a 1:1 ratio. The yellow solid product was recrystallized from a

chloroform n-hexane (4:1) mixture. IR (cm-1): 1647 ν(COO)asy, 1425 ν(COO)sym, 222

∆ν, 1604 ν(C=N), 3462 ν(OH)phenolic, 453 ν(Sn-O), EI-MS, m/z (%): [(C15H17

BrNO3)Sn (C6H5)2]+ 612(4.8), [(C15H17BrNO3)Sn]+ 458(7.9), [(C15H17BrNO3)]+

338(12.2), [Sn(C6H5)3]+ 351(100.0), [Sn(C6H5)2]+ 274(5.2), [Sn(C6H5)]+ 197(38.6),

[Sn]+ 120(19.9), [C6H5]+ 77(32.3)

Di-n-octyltin(IV) bis-[4-((5-bromo-2-hydroxybenzylideneamino)methyl)-

cyclohexancarboxylate]; (7)

Procedure adopted (I)

Quantities used;

4-((5-Bromo-2-hydroxybenzylideneamino)methyl)cyclohexanecarboxylic acid

2.04 g (6.0 mmol) and dioctyltin(IV) Oxide 1.09 g (3.0 mmol) were reacted in a 2:1

ratio. The yellow solid product was recrystallized from a chloroform n-hexane (4:1)

mixture. IR (cm-1): 1636 ν(COO)asy, 1450 ν(COO)sym, 186 ∆ν, 1594 ν(C=N), 3449

ν(OH)phenolic, 463 ν(Sn-O), 555 ν(Sn-C), EI-MS, m/z (%): [(C15H17BrNO3)Sn

(C8H17)2]+ 684(3.7), [(C15H17BrNO3)Sn]+ 458(2.5), [C15H18BrNO3]+ 339(2.1),

[Sn(C8H17)]+ 233(9.3), [C8H7BrNO]+ 212(5.7), [C7H5BrNO]+ 198(9.7), [Sn]+

120(6.9), [C8H16]+ 112( 2.7), [C6H5]+ 77(9.2), [C4H9]+ 57(100.0)

Dimethyltin(IV) [4-((1-(2-hydroxyphenyl)ethylideneamino)methyl)cyclohexane-

carboxylate]; (8)

Procedure adopted (II)

Quantities used;

The sodium salt of 4-((1-(2-hydroxyphenyl)ethylideneamino)methyl)cyclo-

hexanecarboxylic acid 1.78 g (6.0 mmol) and dimethyltin (IV) dichloride 0.66 g (3.0

mmol) were reacted in a 2:1 ratio. The yellow solid product was recrystallized from a

chloroform n-hexane (4:1) mixture. IR (cm-1): 1630 ν(COO)asy, 1453 ν(COO)sym, 177

∆ν, 1616 ν(C=N), 3444 ν(OH)phenolic, 438 ν(Sn-O), 527 ν(Sn-C), EI-MS, m/z (%):

Page 76: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

53

[(C16H20NO3)Sn(CH3)2]+ 424(68.6), [(C16H20NO3)Sn]+ 394(9.1), [(C16H20NO3)]+

274(22.3), [C15H20NO]+ 230(79.1), 165(100.0), [Sn(CH3)2]+ 150(14.3), [Sn(CH3)]+

135(24.7), [C8H8NO]+ 134(9.4), [Sn]+ 120(9.9), [C7H7O]+ 107(28.6), [C6H5]+ 77(6.7)

Trimethyltin(IV) [4-((1-(2-hydroxyphenyl)ethylideneamino)methyl)cyclohexane-

carboxylate]; (9)

Procedure adopted (II)

Quantities used;

The sodium salt of 4-((1-(2-hydroxyphenyl)ethylideneamino)methyl)cyclo-

hexanecarboxylic acid 0.89 g (3.0 mmol) and trimethylltin(IV) chloride 0.60 g (3.0

mmol) were reacted in a 1:1 ratio. The yellow solid product was recrystallized from a

chloroform n-hexane (4:1) mixture. IR (cm-1): 1624 ν(COO)asy, 1447 ν(COO)sym, 177

∆ν, 1612 ν(C=N), 3438 ν(OH)phenolic, 492 ν(Sn-O), 546 ν(Sn-C), EI-MS, m/z (%):

[(C16H20NO3)Sn(CH3)3]+ 439(21.6), [(C16H20NO3)Sn(CH3)2]+ 424(84.5), [(C16H20

NO3)Sn]+ 394(5.7), [(C16H20NO3)]+ 274(25.7), [C15H20NO]+ 230(95.4), [Sn(CH3)3]+

165(52.2), [Sn(CH3)2]+ 150(7.1), [C9H10NO]+ 148(100.0), [Sn(CH3)]+ 135(19.3),

[C8H8NO]+ 134(5.9), [C8H9O]+ 121(6.4), [Sn]+ 120(7.2), [C7H7O]+ 107(30.9)

Di-n-butyltin(IV) [4-((1-(2-hydroxyphenyl)ethylideneamino)methyl)cyclohexane-

carboxylate]; (10)

Procedure adopted (II)

Quantities used;

The sodium salt of 4-((1-(2-hydroxyphenyl)ethylideneamino)methyl)cyclo-

hexanecarboxylic acid 1.78 g (6.0 mmol) and dibutyltin(IV) dichloride 0.91 g (3.0

mmol) were reacted in a 2:1 ratio. The yellow solid product was recrystallized from a

chloroform n-hexane (4:1) mixture. IR (cm-1): 1641 ν(COO)asy, 1462 ν(COO)sym, 179

∆ν, 1616 ν(C=N), 3451 ν(OH)phenolic, 458 ν(Sn-O), 554 ν(Sn-C), EI-MS, m/z (%):

[(C16H20 NO3)Sn(C4H9)2]+ 508(5.8), [(C16H20NO3)Sn]+ 394(8.1), [(C16H20NO3)]+ 274

(30.2), [Sn(C4H9)2]+ 234(6.2), [C15H20NO]+ 230(29.4), [Sn(C4H9)]+ 177(18.6),

[C9H10NO]+ 148(66.8), [C8H9NO]+ 135(46.2), [Sn]+ 120(11.4), [C7H7O]+ 107(38.2),

[C4H9]+ 57(100.0)

Page 77: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

54

Tri-n-butyltin(IV) [4-((1-(2-hydroxyphenyl)ethylideneamino)methyl)cyclo-

hexanecarboxylate]; (11)

Procedure adopted (II)

Quantities used;

The sodium salt of 4-((1-(2-hydroxyphenyl)ethylideneamino)methyl)cyclo-

hexanecarboxylic acid 0.89 g (3.0 mmol) and tributyltin(IV) chloride 0.98 g (3.0

mmol) were reacted in a 1:1 ratio. The yellow solid product was recrystallized from a

chloroform n-hexane (4:1) mixture. IR (cm-1): 1639 ν(COO)asy, 1452 ν(COO)sym, 187

∆ν, 1616 ν(C=N), 3440 ν(OH)phenolic, 479 ν(Sn-O), 563 ν(Sn-C), EI-MS, m/z (%):

[(C16H20NO3)Sn(C4H9)3]+ 565(11.4), [(C16H20NO3)Sn(C4H9)2]+ 508(64.0), [(C16H20

NO3)Sn]+ 394(8.1), [(C16H20NO3)]+ 274(22.5), [Sn(C4H9)3]+ 291(24.6), [Sn(C4H9)2]+

234(32.6), [C15H20NO]+ 230(38.2), [Sn(C4H9)]+ 177(44.6), [C9H10NO]+ 148(32.8),

[C8H9NO]+ 135(20.2), [Sn]+ 120(11.8), [C7H7O]+ 107(18.6), [C6H5]+ 77(12.8),

[C4H9]+ 57(100.0)

Diphenyltin(IV) [4-((1-(2-hydroxyphenyl)ethylideneamino)methyl)cyclohexane-

carboxylate]; (12)

Procedure adopted (II)

Quantities used;

The sodium salt of 4-((1-(2-hydroxyphenyl)ethylideneamino)methyl)cyclo-

hexanecarboxylic acid 1.78 g (6.0 mmol) and diphenyltin(IV) dichloride 1.03 g (3.0

mmol) were reacted in a 2:1 ratio. The yellow solid product was recrystallized from a

chloroform n-hexane (4:1) mixture. IR (cm-1): 1639 ν(COO)asy, 1447 ν(COO)sym, 192

∆ν, 1611 ν(C=N), 3448 ν(OH)phenolic, 455 ν(Sn-O), EI-MS, m/z (%):

[(C16H20NO3)Sn(C6H5)2]+ 548(7.4), [(C16H20NO3)Sn]+ 394(6.3), [(C16H21NO3)]+

275(50.2), [Sn(C6H5)2]+ 274 (8.8), [C15H20NO] 230(37.6), [Sn(C6H5)]+ 197(20.4),

[C9H10NO]+ 148(86.1), [C8H9NO]+ 135(36.8), [Sn]+ 120(14.2), [C7H7O]+ 107(32.5),

[C6H6]+ 78(100.0)

Triphenyltin(IV) [4-((1-(2-hydroxyphenyl)ethylideneamino)methyl)cyclohexane-

carboxylate]; (13)

Procedure adopted (II)

Quantities used;

The sodium salt of 4-((1-(2-hydroxyphenyl)ethylideneamino)methyl)cyclo-

hexanecarboxylic acid 0.89 g (3.0 mmol) and triphenyltin(IV) chloride 1.16 g (3.0

Page 78: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

55

mmol) were reacted in a 1:1 ratio. The yellow solid product was recrystallized from a

chloroform n-hexane (4:1) mixture. IR (cm-1): 1632 ν(COO)asy, 1429 ν(COO)sym, 203

∆ν, 1609 ν(C=N), 3432 ν(OH)phenolic, 452 ν(Sn-O), EI-MS, m/z (%): [(C16H20NO3)Sn

(C6H5)3]+ 625(15.4), [(C16H20NO3)Sn(C6H5)2]+ 548(74.0), [(C16H20NO3)Sn]+ 394(7.9),

[(C16H20NO3)]+ 274(25.2), [Sn(C6H5)3]+ 351(100.0), [Sn(C6H5)2]+ 274(25.2),

[C15H20NO]+ 230(41.4), [Sn(C6H5)]+ 197(46.8), [C9H10NO]+ 148(42.8), [C8H9NO]+

135(15.1), [Sn]+ 120(15.8), [C7H7O]+ 107(19.1), [C6H5]+ 77(15.8)

Di-n-octyltin(IV)[4-((1-(2-hydroxyphenyl)ethylideneamino)methyl)cyclohexane-

carboxylate]; (14)

Procedure adopted (I)

Quantities used;

4-((1-(2-Hydroxyphenyl)ethylideneamino)methyl)cyclohexanecarboxylic acid

1.65 g (6.0 mmol) and dioctyltin(IV) Oxide 1.09 g (3.0 mmol) were reacted in a 2:1

ratio. The yellow solid product was recrystallized from a chloroform n-hexane (4:1)

mixture. IR (cm-1): 1630 ν(COO)asy, 1448 ν(COO)sym, 182 ∆ν, 1618 ν(C=N), 3452

ν(OH)phenolic, 440 ν(Sn-O), 552 ν(Sn-C), EI-MS, m/z (%): [(C16H20NO3)Sn(C8H17)2]+

620(44.8), [(C16H20NO3)Sn(C8H17)]+ 507(16.3), [(C16H20NO3)Sn]+ 394(8.6),

[Sn(C8H17)2]+ 346 (7.3), [(C16H20NO3)]+ 274(8.1), [Sn(C8H17)]+ 233(37.5), [C15H20

NO]+ 230(8.5), [C9H10NO]+ 148(9.9), [C8H9NO]+ 135(6.6), [Sn]+ 120(7.8), [C8H16]+

112( 11.4), [C7H7O]+ 107(5.9), [C4H9]+ 57(100.0)

Dimethyltin(IV) [4-((1-(5-bromo-2-hydroxyphenyl)ethylideneamino)methyl)-

cyclohexanecarboxylate]; (15)

Procedure adopted (II)

Quantities used;

The sodium salt of 4-((1-(5-bromo-2-hydroxyphenyl)ethylideneamino)-

methyl)cyclohexanecarboxylic acid 2.26 g (6.0 mmol) and dimethyltin(IV) dichloride

0.66 g (3.0 mmol) were reacted in a 2:1 ratio. The yellow solid product was

recrystallized from a chloroform n-hexane (4:1) mixture. IR (cm-1): 1643 ν(COO)asy,

1458 ν(COO)sym, 185 ∆ν, 1613 ν(C=N), 3424 ν(OH)phenolic, 434 ν(Sn-O), 561 ν(Sn-

C), EI-MS, m/z (%): [(C16H19BrNO3)]+ 352(6.0), [C15H19BrNO]+ 308(16.4), [C9H9Br

NO]+ 226(96.0), [C8H8BrNO]+ 213(84.5), [C8H8BrO]+ 199(19.2), [C7H6BrO]+

185(53.3), [Sn(CH3)2]+ 150(6.8), [Sn(CH3)]+ 135(6.5), [Sn]+ 120(5.7)

Page 79: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

56

Trimethyltin(IV) [4-((1-(5-bromo-2-hydroxyphenyl)ethylideneamino)methyl)-

cyclohexanecarboxylate]; (16)

Procedure adopted (II)

Quantities used;

The sodium salt of 4-((1-(5-bromo-2-hydroxyphenyl)ethylideneamino)-

methyl)cyclohexanecarboxylic acid 1.13 g (3.0 mmol) and trimethylltin(IV) chloride

0.60 g (3.0 mmol) were reacted in a 1:1 ratio. The yellow solid product was

recrystallized from a chloroform n-hexane (4:1) mixture. IR (cm-1): 1636 ν(COO)asy,

1458 ν(COO)sym, 178 ∆ν, 1611 ν(C=N), 3448 ν(OH)phenolic, 434 ν(Sn-O), 550 ν(Sn-

C), EI-MS, m/z (%): [(C16H19BrNO3)Sn(CH3)3]+ 517(8.6), [(C16H19BrNO3)

Sn(CH3)2]+ 502(30.4), [(C16H19BrNO3)]+ 352(6.2), [C15H19BrNO]+ 308(20.4),

[C9H9BrNO]+ 226(45.9), [C8H8BrNO]+ 213(25.4), [C8H8BrO]+ 199(21.1),

[C7H6BrO]+ 185(36.7), [Sn(CH3)3]+ 165(100.0), [Sn(CH3)2]+ 150(15.7), [Sn(CH3)]+

135(41.2), [Sn]+ 120(10.3),

Di-n-butyltin(IV) [4-((1-(5-bromo-2-hydroxyphenyl)ethylideneamino)methyl)-

cyclohexanecarboxylate]; (17)

Procedure adopted (II)

Quantities used;

The sodium salt of 4-((1-(5-bromo-2-hydroxyphenyl)ethylideneamino)-

methyl)cyclohexanecarboxylic acid 2.26 g (6.0 mmol) and dibutyltin(IV) dichloride

0.91 g (3.0 mmol) were reacted in a 2:1 ratio. The yellow solid product was

recrystallized from a chloroform n-hexane (4:1) mixture. IR (cm-1): 1631 ν(COO)asy,

1451 ν(COO)sym, 180 ∆ν, 1616 ν(C=N), 3441 ν(OH)phenolic, 452 ν(Sn-O), 561 ν(Sn-

C), EI-MS, m/z (%): [(C16H19BrNO3)Sn(C4H9)2]+ 586(11.2), [(C16H19BrNO3)Sn]+

472(5.6), [(C16H19 BrNO3)]+ 352(4.6), [Sn(C4H9)2]+ 234(6.1), [C8H8BrO]+ 199(5.0),

[Sn(C4H9)]+ 177 (12.8), [Sn]+ 120(10.8), [C4H9]+ 57(100.0)

Tri-n-butyltin(IV) [4-((1-(5-bromo-2-hydroxyphenyl)ethylideneamino)methyl)-

cyclohexanecarboxylate]; (18)

Procedure adopted (II)

Quantities used;

The sodium salt of 4-((1-(5-bromo-2-hydroxyphenyl)ethylideneamino)-

methyl)cyclohexanecarboxylic acid 1.13 g (3.0 mmol) and tributyltin(IV) chloride

0.98 g (3.0 mmol) were reacted in a 1:1 ratio. The yellow solid product was

Page 80: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

57

recrystallized from a chloroform n-hexane (4:1) mixture. IR (cm-1): 1639 ν(COO)asy,

1451 ν(COO)sym, 188 ∆ν, 1616 ν(C=N), 3450 ν(OH)phenolic, 435 ν(Sn-O), 568 ν(Sn-

C), EI-MS, m/z (%): [(C16H19Br NO3)Sn(C4H9)3]+ 643(5.4),

[(C16H19BrNO3)Sn(C4H9)2]+ 586(23.3), [(C16H19Br NO3)]+ 352(8.4), [Sn(C4H9)3]+

291(3.6), [C9H9BrNO]+ 226(12.5), [C8H8BrNO]+ 213(19.5), [C8H8BrO]+ 199(12.5),

[C7H6BrO]+ 185(9.0), [Sn(C4H9)]+ 177(22.8), [Sn]+ 120(14.4), [C4H9]+ 57(100.0)

Diphenyltin(IV) [4-((1-(5-bromo-2-hydroxyphenyl)ethylideneamino)methyl)-

cyclohexanecarboxylate]; (19)

Procedure adopted (II)

Quantities used;

The sodium salt of 4-((1-(5-bromo-2-hydroxyphenyl)ethylideneamino)-

methyl)cyclohexanecarboxylic acid 2.26 g (6.0 mmol) and diphenyltin(IV) dichloride

1.30 g (3.0 mmol) were reacted in a 2:1 ratio. The yellow solid product was

recrystallized from a chloroform n-hexane (4:1) mixture. IR (cm-1): 1641 ν(COO)asy,

1455 ν(COO)sym, 186 ∆ν, 1612 ν(C=N), 3438 ν(OH)phenolic, 459 ν(Sn-O), no ν(Sn-C),

EI-MS, m/z (%): [(C16H19BrNO3)]+ 352(4.2), [C9H9BrNO]+ 226(17.0), [C8H8BrNO]+

213(14.9), [C8H8BrO]+ 199(10.3), [Sn(C6H5)]+ 197(18.9), [C7H6BrO]+ 185(12.2),

[Sn]+ 120(8.6), [C6H6]+ 78(100.0)

Triphenyltin(IV) [4-((1-(5-bromo-2-hydroxyphenyl)ethylideneamino)methyl)-

cyclohexanecarboxylate]; (20)

Procedure adopted (II)

Quantities used;

The sodium salt of 4-((1-(5-bromo-2-hydroxyphenyl)ethylideneamino)-

methyl)cyclohexanecarboxylic acid 1.13 g (3.0 mmol) and triphenyltin(IV) chloride

1.16 g (3.0 mmol) were reacted in a 1:1 ratio. The yellow solid product was

recrystallized from a chloroform n-hexane (4:1) mixture. IR (cm-1): 1636 ν(COO)asy,

1395 ν(COO)sym, 241 ∆ν, 1601 ν(C=N), 3440 ν(OH)phenolic, 452 ν(Sn-O), no ν(Sn-C),

EI-MS, m/z (%): [(C16H19BrNO3)Sn(C6H5)3]+ 703(6.7), [(C16H19BrNO3)Sn(C6H5)2]+

626(19.2), [(C16 H19BrNO3)]+ 352(22.7), [Sn(C6H5)3]+ 351(67.0), [C15H19BrNO]+

308(8.8), [Sn(C6 H5)2]+ 274(11.2), [C9H9BrNO]+ 226(26.0), [C8H8BrNO]+ 213(20.0),

[C8H8BrO]+ 199(49.3), [Sn(C6H5)]+ 197(100.0), [C7H6BrO]+ 185(21.4), [Sn]+

120(53.8), [C6H5]+ 77(66.5)

Page 81: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

58

Di-n-octyltin(IV) [4-((1-(5-bromo-2-hydroxyphenyl)ethylideneamino)methyl)-

cyclohexanecarboxylate]; (21)

Procedure adopted (I)

Quantities used;

4-((1-(5-Bromo-2-hydroxyphenyl)ethylideneamino)methyl)cyclohexanecarbo-

xylic acid 2.12 g (6.0 mmol) and dioctyltin(IV) Oxide 1.09 g (3.0 mmol) were reacted

in a 2:1 ratio. The yellow solid product was recrystallized from a chloroform n-hexane

(4:1) mixture. IR (cm-1): 1642 ν(COO)asy, 1459 ν(COO)sym, 183 ∆ν, 1611 ν(C=N),

3442 ν(OH)phenolic, 426 ν(Sn-O), 549 ν(Sn-C), EI-MS, m/z (%): [(C16H19BrNO3)Sn

(C8H17)]+ 585(11.3), [(C16H19BrNO3)Sn]+ 472(5.6), [Sn(C8H17)2]+ 346(8.1),

[(C16H19Br NO3)]+ 352(9.4), [Sn(C8H17)]+ 233(32.1), [C15H19BrNO]+ 308(9.2),

[C9H9BrNO]+ 226 (10.1), [C8H8BrNO]+ 213(5.1), [Sn]+ 120(8.6), [C8H16]+ 112( 12.6),

[C4H9]+ 57(100.0)

Dimethyltin(IV) [N′-(2-oxidobenzylidene)-N-(oxidomethylene)hydrazine]; (22)

Procedure adopted (III)

Quantities used;

N′-(2-Hydroxybenzylidene)formohydrazide 0.50 g (3.0 mmol), dimethyl-

tin(IV) dichloride 0.66 g (3.0 mmol) and triethylamine 0.84 mL (6.0 mmol) were

reacted in a 1:1:2 ratio. The solid product was recrystallized from a chloroform n-

hexane (4:1) mixture. IR (cm-1): 1605 ν(C=N), 563 ν(Sn–O), 1072 ν(N-N) 484 ν(Sn–

N), EI-MS, m/z (%): [(C8H6N2O2)Sn(CH3)2]+ 312(84.8), [(C8H6N2O2)Sn(CH3)]+

297(79.8), [(C8 H6N2O2)Sn)]+ 282(100.0), [(C7H4NOSn)]+ 238(26.4), [Sn(CH3)2]+

150(5.3), [SnCH3]+ 135(70.8), [Sn]+ 120(51.3)

Diethyltin(IV) [N′-(2-oxidobenzylidene)-N-(oxidomethylene)hydrazine]; (23)

Procedure adopted (III)

Quantities used;

N′-(2-Hydroxybenzylidene)formohydrazide 0.50 g (3.0 mmol), diethyltin(IV)

dichloride 0.74 g (3.0 mmol) and triethylamine 0.84 mL (6.0 mmol) were reacted in a

1:1:2 ratio. A viscous liquid product was obtained. IR (cm-1): 1602 ν(C=N); 577

ν(Sn–O); 1077 ν(N-N); 475 ν(Sn–N). EI-MS, m/z (%): [(C8H6N2O2)Sn(C2H5)2]+

340(63.8); [(C8H6N2O2)Sn(C2H5)]+ 311(100.0); [(C8H6N2O2)Sn)]+ 282(74.8); [(C7H4

NOSn)]+ 238(32.1); [Sn]+ 120(21.5)

Page 82: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

59

Di-n-butyltin(IV) [N′-(2-oxidobenzylidene)-N-(oxidomethylene)hydrazine]; (24)

Procedure adopted (III)

Quantities used;

N′-(2-Hydroxybenzylidene)formohydrazide 0.50 g (3.0 mmol), dibutyltin(IV)

dichloride 0.91 g (3.0 mmol) and triethylamine 0.84 mL (6.0 mmol) were reacted in a

1:1:2 ratio. A viscous liquid product was obtained. IR (cm-1): 1609 ν(C=N); 565

ν(Sn–O); 1080 ν(N-N); 481 ν(Sn–N), EI-MS, m/z (%): [(C8H6N2O2)Sn(C4H9)2]+

396(32.3); [(C8H6N2O2)Sn(C4H9)]+ 339(76.0); [(C8H6N2O2)Sn)]+ 282(100.0);

[(C7H4NOSn)]+ 238(47.4); [Sn(C4H9)2]+ 234(11.7); [Sn]+ 120(25.5); [C4H9]+ 57(99.7)

Diphenyltin(IV) [N′-(2-oxidobenzylidene)-N-(oxidomethylene)hydrazine]; (25)

Procedure adopted (III)

Quantities used;

N′-(2-Hydroxybenzylidene)formohydrazide 0.50 g (3.0 mmol), diphenyl-

tin(IV) dichloride 1.03 g (3.0 mmol) and triethylamine 0.84 mL (6.0 mmol) were

reacted in a 1:1:2 ratio. The solid product was recrystallized from a chloroform n-

hexane (4:1) mixture. IR (cm-1): 1609 ν(C=N); 567 ν(Sn–O); 1074 ν(N-N); 486

ν(Sn–N). EI-MS, m/z (%): [(C8H6N2O2)Sn(C6H5)2]+ 436(56.1); [(C8H6N2O2)

Sn(C6H5)]+ 359(22.1); [(C8H6N2O2)Sn)]+ 282(6.6); [(C7H4NOSn)]+ 238(4.1);

[SnC6H5]+ 197(100.0); [Sn]+ 120(37.2)

Di-n-octyltin(IV) [N′-(2-oxidobenzylidene)-N-(oxidomethylene)hydrazine]; (26)

Procedure adopted (IV)

Quantities used;

N′-(2-Hydroxybenzylidene)formohydrazide 0.50 g (3.0 mmol) and dioctyl-

tin(IV) dioxide 1.09 g (3.0 mmol) were reacted in a 1:1 ratio. A viscous liquid product

was obtained. IR (cm-1): 1603 ν(C=N); 566 ν(Sn–O); 1082 ν(N-N); 489 ν(Sn–N),

EI-MS, m/z (%): [(C8H6N2O2)Sn(C8H17)2]+ 508(4.0); [(C8H6N2O2)Sn(C8H17)]+

395(14.3); [(C8H6N2O2)Sn)]+ 282(32.2); [(C7H4NOSn)]+ 238(19.9); [SnC8H17]+

233(5.0); [Sn]+ 120(9.4); [C4H9]+ 57(100.0)

Di-tert-butyltin(IV) [N′-(2-oxidobenzylidene)-N-(oxidomethylene)hydrazine]; (27)

Procedure adopted (III)

Quantities used;

N′-(2-Hydroxybenzylidene)formohydrazide 0.50 g (3.0 mmol), di-tert-butyl-

tin(IV) dichloride 0.91 g (3.0 mmol) and triethylamine 0.84 mL (6.0 mmol) were

Page 83: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

60

reacted in a 1:1:2 ratio. A viscous liquid product was obtained. IR (cm-1): 1601

ν(C=N); 561 ν(Sn–O), 1080 ν(N-N); 478 ν(Sn–N); EI-MS, m/z (%): [(C8H6N2O2)

Sn(C(CH3)3)2]+ 396(19.2); [(C8H6N2O2)Sn(C(CH3)3)]+ 339(5.5); [(C8H6N2O2)Sn)]+

282(100.0); [(C7 H4NOSn)]+ 238(15.3); [Sn]+ 120(3.1); [C4H9]+ 57(28.9)

n-Butylchloridetin(IV) [N′-(2-oxidobenzylidene)-N-(oxidomethylene)hydrazine];

(28)

Procedure adopted (IV)

Quantities used;

N′-(2-Hydroxybenzylidene)formohydrazide 0.50 g (3.0 mmol) and butyl-

dihydroxidetin(IV) chloride 0.74 g (3.0 mmol) were reacted in a 1:1 ratio. The solid

product was recrystallized from a chloroform n-hexane (4:1) mixture. IR (cm-1): 1608

ν(C=N); 558 ν(Sn–O), 1086 ν(N-N); 472 ν(Sn–N) EI-MS, m/z (%): [(C8H6N2O2)

Sn(C4H9)Cl]+ 374(28.1); [(C8H6N2O2)Sn(C4H9)]+ 339(9.9); [(C8H6N2O2)Sn)]+

282(100.0); [(C7H4N OSn)]+ 238(21.7); [SnCl]+ 155(65.4); [Sn]+ 120(20.1); [C4H9]+

57(87.8)

Dimethyltin(IV) [N′-(5-bromo-2-oxidobenzylidene)-N-(oxidomethylene)

hydrazine]; (29)

Procedure adopted (III)

Quantities used;

N′-(5-Bromo-2-hydroxybenzylidene)formohydrazide 0.73 g (3.0 mmol),

dimethyltin(IV) dichloride 0.66 g (3.0 mmol) and triethylamine 0.84 mL (6.0 mmol)

were reacted in a 1:1:2 ratio. The solid product was recrystallized from a chloroform

n-hexane (4:1) mixture. IR (cm-1): 1609 ν(C=N), 1079 ν(N-N), 566 ν(Sn–O), 498

ν(Sn–N), EI-MS, m/z (%): [(C8H5BrN2O2)Sn(CH3)2]+ 390(85.7); [(C8H5BrN2O2)Sn

(CH3)]+ 375(55.4); [(C8H5BrN2O2)Sn)]+ 360(100.0); [(C7H3BrNOSn)]+ 316(12.8);

[Sn(C H3)2]+ 150(5.7); [SnCH3]+ 135(73.8); [Sn]+ 120(25.4)

Diethyltin(IV) [N′-(5-bromo-2-oxidobenzylidene)-N-(oxidomethylene)hydrazine];

(30)

Procedure adopted (III)

Quantities used;

N′-(5-Bromo-2-hydroxybenzylidene)formohydrazide 0.73 g (3.0 mmol),

diethyltin(IV) dichloride 0.74 g (3.0 mmol) and triethylamine 0.84 mL (6.0 mmol)

were reacted in a 1:1:2 ratio. The solid product was recrystallized from a chloroform

Page 84: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

61

n-hexane (4:1) mixture. IR (cm-1): 1605 ν(C=N), 1080 ν(N-N), 563 ν(Sn–O), 488

ν(Sn–N), EI-MS, m/z (%): [(C8H5BrN2O2)Sn(C2H5)2]+ 418(66.6); [(C8H5BrN2O2)

Sn(C2H5)]+ 389 (100.0); [(C8H5BrN2O2)Sn)]+ 360(66.3); [(C7H3BrNOSn)]+ 316(14.6);

[Sn]+ 120(5.1)

Di-n-butyltin(IV) [N′-(5-bromo-2-oxidobenzylidene)-N-(oxidomethylene)

hydrazine]; (31)

Procedure adopted (III)

Quantities used;

N′-(5-Bromo-2-hydroxybenzylidene)formohydrazide 0.73 g (3.0 mmol),

dibutyltin(IV) dichloride 0.91 g (3.0 mmol) and triethylamine 0.84 mL (6.0 mmol)

were reacted in a 1:1:2 ratio. A viscous liquid product was obtained. IR (cm-1): 1625

ν(C=N), 1088 ν(N-N), 548 ν(Sn–O), 472 ν(Sn–N), EI-MS, m/z (%): [(C8H5BrN2O2)

Sn(C4H9)2]+ 474(22.4); [(C8H5BrN2O2)Sn(C4H9)]+ 417(30.9); [(C8H5BrN2O2)Sn)]+

360(30.7); [(C7H3BrNOSn)]+ 316 (12.1); [Sn]+ 120(7.8); [C4H9]+ 57(100.0)

Diphenyltin(IV) [N′-(5-bromo-2-oxidobenzylidene)-N-(oxidomethylene)

hydrazine]; (32)

Procedure adopted (III)

Quantities used;

N′-(5-Bromo-2-hydroxybenzylidene)formohydrazide 0.73 g (3.0 mmol),

diphenyltin(IV) dichloride 1.03 g (3.0 mmol) and triethylamine 0.84 mL (6.0 mmol)

were reacted in a 1:1:2 ratio. The solid product was recrystallized from a chloroform

n-hexane (4:1) mixture. IR (cm-1): 1613 ν(C=N), 1073 ν(N-N), 570 ν(Sn–O), 469

ν(Sn–N), EI-MS, m/z (%): [(C8H5BrN2O2)Sn(C6H5)2]+ 514(87.0); [(C8H5BrN2O2)Sn

(C6H5)]+ 437(17.1); [(C8H5BrN2O2)Sn)]+ 360(10.2); [(C7H3BrNOSn)]+ 316(10.7);

[Sn(C6H5)2]+ 274(5.6); [SnC6H5]+ 197(100.0); [Sn]+ 120(51.4)

Di-n-octyltin(IV) [N′-(5-bromo-2-oxidobenzylidene)-N-(oxidomethylene)-

hydrazine]; (33)

Procedure adopted (IV)

Quantities used;

N′-(5-Bromo-2-hydroxybenzylidene)formohydrazide 0.73 g (3.0 mmol) and

dioctyltin (IV) oxide 1.09 g (3.0 mmol) were reacted in a 1:1 ratio. A viscous liquid

product was obtained. IR (cm-1): 1611 ν(C=N), 1082 ν(N-N), 569 ν(Sn–O), 460

ν(Sn–N), EI-MS, m/z (%): [(C8H5BrN2O2)Sn(C8H17)2]+ 586(9.4); [(C8H5BrN2O2)

Page 85: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

62

Sn(C8H17)]+ 473(8.0); [(C8H5BrN2O2)Sn)]+ 360(14.0); [(C7H3BrNOSn)]+ 316(4.7);

[Sn]+ 120(5.4); [C4H9]+ 57(100.0)

Di-tert-butyltin(IV) [N′-(5-bromo-2-oxidobenzylidene)-N-(oxidomethylene)

hydrazine]; (34)

Procedure adopted (III)

Quantities used;

N′-(5-Bromo-2-hydroxybenzylidene)formohydrazide 0.73 g (3.0 mmol), di-

tert-butyltin(IV) dichloride 0.91 g (3.0 mmol) and triethylamine 0.84 mL (6.0 mmol)

were reacted in a 1:1:2 ratio. The solid product was recrystallized from a chloroform

n-hexane (4:1) mixture. IR (cm-1): 1614 ν(C=N), 1088 ν(N-N), 564 ν(Sn–O), 465

ν(Sn–N), EI-MS, m/z (%): [(C8H5BrN2O2)Sn(C(CH3)3)2]+ 474(4.3); [(C8H5BrN2O2)

Sn)]+ 360 (16.0); [Sn]+ 120(7.1); [C4H9]+ 57(40.2)

n-Butylchloridetin(IV) [N′-(5-bromo-2-oxidobenzylidene)-N-(oxidomethylene)

hydrazine]; (35)

Procedure adopted (IV)

Quantities used;

N′-(5-Bromo-2-hydroxybenzylidene)formohydrazide 0.73 g (3.0 mmol) and

butyl-di-hydroxidetin(IV) chloride 0.74 g (3.0 mmol) were reacted in a 1:1 ratio. The

solid product was recrystallized from a chloroform n-hexane (4:1) mixture. IR (cm-1):

1608 ν(C=N), 1080 ν(N-N), 560 ν(Sn–O), 468 ν(Sn–N), EI-MS, m/z (%): [(C8H5Br

N2O2)Sn(C4H9)Cl]+ 452(34.2); [(C8H5BrN2O2)Sn)]+ 360(90.3); [(C7H3BrNOSn)]+

316(6.5), [SnCl]+ 155(83.0); [Sn]+ 120(11.0); [C4H9]+ 57(100.0)

Dimethyltin(IV) [N′-(3-methoxy-2-oxidobenzylidene)-N-(oxidomethylene)

hydrazine]; (36)

Procedure adopted (III)

Quantities used;

N′-(2-Hydroxy-3-methoxybenzylidene)formohydrazide 0.58 g (3.0 mmol),

dimethyltin(IV) dichloride 0.66 g (3.0 mmol) and triethylamine 0.84 mL (6.0 mmol)

were reacted in a 1:1:2 ratio. The solid product was recrystallized from a chloroform

n-hexane (4:1) mixture. IR (cm-1): 1623 ν(C=N), 1072 ν(N-N), 586 ν(Sn–O), 478

ν(Sn–N), EI-MS, m/z (%): [(C9H8N2O3)Sn(CH3)2]+ 342(100.0); [(C9H8N2O3)

Sn(CH3)]+ 327(43.7); [(C9H8N2O3)Sn)]+ 312(96.0); [(C8H6NO2Sn)]+ 268(8.2);

[Sn(CH3)2]+ 150(5.6); [SnCH3]+ 135(28.3); [Sn]+ 120(12.8)

Page 86: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

63

Diethyltin(IV) [N′-(3-methoxy-2-oxidobenzylidene)-N-(oxidomethylene)

hydrazine]; (37)

Procedure adopted (III)

Quantities used;

N′-(2-Hydroxy-3-methoxybenzylidene)formohydrazide 0.58 g (3.0 mmol),

diethyltin(IV) dichloride 0.74 g (3.0 mmol) and triethylamine 0.84 mL (6.0 mmol)

were reacted in a 1:1:2 ratio. The solid product was recrystallized from a chloroform

n-hexane (4:1) mixture. IR (cm-1): 1618 ν(C=N), 1068 ν(N-N), 582 ν(Sn–O), 472

ν(Sn–N), EI-MS, m/z (%): [(C9H8N2O3)Sn(C2H5)2]+ 370(83.0); [(C9H8N2O3)

Sn(C2H5)]+ 341(61.8); [(C9H8N2O3)Sn)]+ 312(100.0); [(C8H6NO2Sn)]+ 268(6.8); [Sn]+

120(5.2)

Di-n-butyltin(IV) [N′-(3-methoxy-2-oxidobenzylidene)-N-(oxidomethylene)

hydrazine]; (38)

Procedure adopted (III)

Quantities used;

N′-(2-Hydroxy-3-methoxybenzylidene)formohydrazide 0.58 g (3.0 mmol),

dibutyltin(IV) dichloride 0.91 g (3.0 mmol) and triethylamine 0.84 mL (6.0 mmol)

were reacted in a 1:1:2 ratio. The solid product was recrystallized from a chloroform

n-hexane (4:1) mixture. IR (cm-1): 1619 ν(C=N), 1080 ν(N-N), 596 ν(Sn–O), 480

ν(Sn–N) EI-MS, m/z (%): [(C9H8N2O3)Sn(C4H9)2]+ 426(38.3); [(C9H8N2O3)

Sn(C4H9)]+ 369(36.6); [(C9H8N2O3)Sn)]+ 312(100); [(C8H6NO2Sn)]+ 268 (10.7); [Sn]+

120(6.7); [C4H9]+ 57(28.3)

Diphenyltin(IV) [N′-(3-methoxy-2-oxidobenzylidene)-N-(oxidomethylene)

hydrazine]; (39)

Procedure adopted (III)

Quantities used;

N′-(2-Hydroxy-3-methoxybenzylidene)formohydrazide 0.58 g (3.0 mmol),

diphenyltin(IV) dichloride 1.03 g (3.0 mmol) and triethylamine 0.84 mL (6.0 mmol)

were reacted in a 1:1:2 ratio. The solid product was recrystallized from a chloroform

n-hexane (4:1) mixture. IR (cm-1): 1604 ν(C=N), 1074 ν(N-N), 589 ν(Sn–O), 450

ν(Sn–N) EI-MS, m/z (%): [(C9H8N2O3)Sn(C6H5)2]+ 466(100.0); [(C9H8N2O3)

Sn(C6H5)]+ 389(13.1); [(C9H8N2O3)Sn)]+ 312(11.4); [(C8H6NO2Sn)]+ 268(3.1);

[Sn(C6H5)2]+ 274(4.1); [SnC6H5]+ 197(39.8); [Sn]+ 120(15.8)

Page 87: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

64

Di-n-octyltin(IV) [N′-(3-methoxy-2-oxidobenzylidene)-N-(oxidomethylene)

hydrazine]; (40)

Procedure adopted (IV)

Quantities used;

N′-(2-Hydroxy-3-methoxybenzylidene)formohydrazide 0.58 g (3.0 mmol) and

dioctyltin(IV) oxide 1.09 g (3.0 mmol) were reacted in a 1:1 ratio. The solid product

was recrystallized from a chloroform n-hexane (4:1) mixture. IR (cm-1): 1618

ν(C=N), 1082 ν(N-N), 590 ν(Sn–O), 480 ν(Sn–N), EI-MS, m/z (%): [(C9H8N2O3)Sn

(C8H17)2]+ 538(39.0); [(C9H8N2O3)Sn(C8H17)]+ 425(15.9); [(C9H8N2O3)Sn)]+ 312

(100.0); [(C8H6NO2Sn)]+ 268(5.9); [Sn]+ 120(4.3); [C4H9]+ 57(36.8)

Di-tert-butyltin(IV) [N′-(3-methoxy-2-oxidobenzylidene)-N-(oxidomethylene)

hydrazine]; (41)

Procedure adopted (III)

Quantities used;

N′-(2-Hydroxy-3-methoxybenzylidene)formohydrazide 0.58 g (3.0 mmol), di-

tert-butyltin(IV) dichloride 0.91 g (3.0 mmol) and triethylamine 0.84 mL (6.0 mmol)

were reacted in a 1:1:2 ratio. The solid product was recrystallized from a chloroform

n-hexane (4:1) mixture. IR (cm-1): 1616 ν(C=N), 1078 ν(N-N), 582 ν(Sn–O), 468

ν(Sn–N) EI-MS, m/z (%): [(C9H8N2O3)Sn(C(CH3)3)2]+ 426(11.6); [(C9H8N2O3)Sn)]+

312(100.0); [(C8H6NO2Sn)]+ 268(7.3); [Sn]+ 120(5.7); [C4H9]+ 57(36.7)

n-Butylchloridetin(IV) [N′-(3-methoxy-2-oxidobenzylidene)-N-(oxidomethylene)

hydrazine]; (42)

Procedure adopted (IV)

Quantities used;

N′-(2-Hydroxy-3-methoxybenzylidene)formohydrazide 0.58 g (3.0 mmol) and

butyldihydroxidetin(IV) chloride 0.74 g (3.0 mmol) were reacted in a 1:1 ratio. The

solid product was recrystallized from a chloroform n-hexane (4:1) mixture. IR (cm-1):

1620 ν(C=N), 1082 ν(N-N), 578 ν(Sn–O), 470 ν(Sn–N), EI-MS, m/z (%):

[(C9H8N2O3) Sn(C4H9)Cl]+ 404(43.2); [(C9H8N2O3)Sn(C4H9)]+ 369(15.2);

[(C9H8N2O3)SnCl]+ 347(4.7); [(C9H8N2O3)Sn)]+ 312(100.0); [(C8H6NO2Sn)]+

268(9.1); [SnCl]+ 155 (29.7); [Sn]+ 120(7.9); [C4H9]+ 57(100.0)

Page 88: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

65

Dimethyltin(IV) [N′-(4-(dietylamino)-2-oxidobenzylidene)-N-(oxidomethylene)

hydrazine]; (43)

Procedure adopted (III)

Quantities used;

N′-(4-(Diethylamino)-2-hydroxybenzylidene)formohydrazide 0.71 g (3.0

mmol), dimethyltin(IV) dichloride 0.66 g (3.0 mmol) and triethylamine 0.84 mL (6.0

mmol) were reacted in a 1:1:2 ratio. Solid product was recrystallized from a

chloroform n-hexane (4:1) mixture. IR (cm-1): 1618 ν(C=N), 1071 ν(N-N), 570 ν(Sn–

O), 468 ν(Sn–N) EI-MS, m/z (%): [(C12H15N3O2)Sn(CH3)2]+ 383(100.0);

[(C12H15N3O2) Sn(CH3)]+ 368(81.3); [(C12H15N3O2)Sn)]+ 353(78.5);

[(C11H13N2OSn)]+ 309(11.6); [SnCH3]+ 135(22.0); [Sn]+ 120(14.7)

Diethyltin(IV) [N′-(4-(dietylamino)-2-oxidobenzylidene)-N-(oxidomethylene)

hydrazine]; (44)

Procedure adopted (III)

Quantities used;

N′-(4-(Diethylamino)-2-hydroxybenzylidene)formohydrazide 0.71 g (3.0

mmol), diethyltin(IV) dichloride 0.74 g (3.0 mmol) and triethylamine 0.84 mL (6.0

mmol) were reacted in a 1:1:2 ratio. Solid product was recrystallized from a

chloroform n-hexane (4:1) mixture. IR (cm-1): 1612 ν(C=N), 1084 ν(N-N), 567 ν(Sn–

O), 465 ν(Sn–N), EI-MS, m/z (%): [(C12H15N3O2)Sn(C2H5)2]+ 411(39.4); [(C12H15

N3O2)Sn (C2H5)]+ 382(9.9); [(C12H15N3O2)Sn)]+ 353(100.0); [(C11H13N2OSn)]+

309(9.3); [Sn C2H5]+ 149(2.1); [Sn]+ 120(7.2)

Di-n-butyltin(IV) [N′-(4-(dietylamino)-2-oxidobenzylidene)-N-(oxidomethylene)

hydrazine]; (45)

Procedure adopted (III)

Quantities used;

N′-(4-(Diethylamino)-2-hydroxybenzylidene)formohydrazide 0.71 g (3.0

mmol), dibutyltin(IV) dichloride 0.91 g (3.0 mmol) and triethylamine 0.84 mL (6.0

mmol) were reacted in a 1:1:2 ratio. The solid product was recrystallized from a

chloroform n-hexane (4:1) mixture. IR (cm-1): 1616 ν(C=N), 1080 ν(N-N), 572 ν(Sn–

O), 463 ν(Sn–N), EI-MS, m/z (%): [(C12H15N3O2)Sn(C4H9)2]+ 467(38.1);

[(C12H15N3O2)Sn(C4H9)]+ 410(19.4); [(C12H15N3O2)Sn)]+ 353(100.0); [(C11H13N2O

Sn)]+ 309(10.3); [Sn]+ 120(4.0); [C4H9]+ 57(40.1)

Page 89: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

66

Diphenyltin(IV) [N′-(4-(dietylamino)-2-oxidobenzylidene)-N-(oxidomethylene)

hydrazine]; (46)

Procedure adopted (III)

Quantities used;

N′-(4-(Diethylamino)-2-hydroxybenzylidene)formohydrazide 0.71 g (3.0

mmol), diphenyltin(IV) dichloride 1.03 g (3.0 mmol) and triethylamine 0.84 mL (6.0

mmol) were reacted in a 1:1:2 ratio. The solid product was recrystallized from a

chloroform n-hexane (4:1) mixture. IR (cm-1): 1610 ν(C=N), 1081 ν(N-N), 568 ν(Sn–

O), 461 ν(Sn–N) EI-MS, m/z (%): [(C12H15N3O2)Sn(C6H5)2]+ 507(100.0);

[(C12H15N3O2)Sn)]+ 353(4.3); [(C11H13N2OSn)]+ 309(8.1); [SnC6H5]+ 197(46.2); [Sn]+

120(22.7)

Di-tert-butyltin(IV) [N′-(4-(dietylamino)-2-oxidobenzylidene)-N-(oxidomethyl-

ene)hydrazine]; (47)

Procedure adopted (III)

Quantities used;

N′-(4-(Diethylamino)-2-hydroxybenzylidene)formohydrazide 0.71 g (3.0

mmol), di-tert-butyltin(IV) dichloride 0.91 g (3.0 mmol) and triethylamine 0.84 mL

(6.0 mmol) were reacted in a 1:1:2 ratio. The solid product was recrystallized from a

chloroform n-hexane (4:1) mixture. IR (cm-1): 1612 ν(C=N), 1078 ν(N-N), 565 ν(Sn–

O), 471 ν(Sn–N) EI-MS, m/z (%): [(C12H15N3O2)Sn(C(CH3)3)2]+ 467(8.6);

[(C12H15N3O2) Sn)]+ 353(32.4); [(C11H13N2OSn)]+ 309(25.8); [Sn]+ 120(2.2); [C4H9]+

57(100.0)

Dimethyltin(IV) [N′-((-2-oxido-1-naphthylidene)-N-(oxidomethylene)hydrazine];

(48)

Procedure adopted (III)

Quantities used;

N'-((2-Hydroxy-1-naphthylidene)formohydrazide 0.64 g (3.0 mmol), dimethyl

tin(IV) dichloride 0.66 g (3.0 mmol) and triethylamine 0.84 mL (6.0 mmol) were

reacted in a 1:1:2 ratio. The solid product was recrystallized from a chloroform n-

hexane (4:1) mixture. IR (cm-1): 1620 ν(C=N), 1080 ν(N-N), 562 ν(Sn–O), 461 ν(Sn–

N), EI-MS, m/z (%): [(C12H8N2O2)Sn(CH3)2]+ 362(100.0); [(C12H8N2O2)SnCH3]+

347(20.3); [(C12H8N2O2)Sn]+ 332(86.3); [C11H6NOSn] + 288(9.8); [SnCH3]+ 135(7.5);

[Sn]+ 120(6.0)

Page 90: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

67

Diphenyltin(IV) [N′-((-2-oxido-1-naphthylidene)-N-(oxidomethylene)hydrazine];

(49)

Procedure adopted (III)

Quantities used;

N'-((2-Hydroxy-1-naphthylidene)formohydrazide 0.64 g (3.0 mmol),

diphenyltin(IV) dichloride 1.03 g (3.0 mmol) and triethylamine 0.84 mL (6.0 mmol)

were reacted in a 1:1:2 ratio. The solid product was recrystallized in chloroform n-

hexane (4:1) mixture. IR (cm-1): 1616 ν(C=N), 1084 ν(N-N), 560 ν(Sn–O), 458 ν(Sn–

N), EI-MS, m/z (%): [(C12H8N2O2)Sn(C6H5)2]+ 486(100.0); [(C12H8N2O2)SnC6H5]+

409(5.6); [(C12H8N2O2)Sn]+ 332(6.1); [C11H6NOSn]+ 288(9.2); [Sn(C6H5)2]+ 274(5.4);

[SnC6H5]+ 197(20.8); [Sn]+ 120(5.1)

Di-tert-butyltin(IV) [N′-((-2-oxido-1-naphthylidene)-N-(oxidomethylene)

hydrazine]; (50)

Procedure adopted (III)

Quantities used;

N'-((2-Hydroxy-1-naphthylidene)formohydrazide 0.64 g (3.0 mmol), di-tert-

butyltin(IV) dichloride 0.91 g (3.0 mmol) and triethylamine 0.84 mL (6.0 mmol.)

were reacted in a 1:1:2 ratio. The solid product was recrystallized from a chloroform

n-hexane (4:1) mixture. IR (cm-1): 1612 ν(C=N), 1082 ν(N-N), 564 ν(Sn–O), 467

ν(Sn–N), EI-MS, m/z (%): [(C12H8N2O2)Sn(C(CH3)3)2]+ 446(33.4); [( C12H8N2O2)

Sn(C(CH3)3)]+ 389(5.3); [(C12H8N2O2)Sn]+ 332(100.0); [C11H6NOSn]+ 288(19.5);

[Sn]+ 120(7.1); [C4H9]+ 57(20.9)

Dimethyltin(IV) [N′-(1-(5-bromo-2-oxidophenyl)ethylidene))-N-(oxidomethylene)

hydrazine]; (51)

Procedure adopted (III)

Quantities used;

N′-(1-(5-Bromo-2-hydroxyphenyl)ethylidene)formohydrazide 0.77 g (3.0

mmol), dimethyltin(IV) dichloride 0.66 g (3.0 mmol) and triethylamine 0.84 mL (6.0

mmol) were reacted in a 1:1:2 ratio. The solid product was recrystallized from a

chloroform n-hexane (4:1) mixture. IR (cm-1): 1608 ν(C=N), 1078 ν(N-N), 565 ν(Sn–

O), 468 ν(Sn–N) EI-MS, m/z (%): [(C9H7BrN2O2)Sn(CH3)2]+ 404(71.7);

[(C9H7BrN2O2) SnCH3]+ 389(91.4); [C9H7BrN2O2Sn]+ 374(100.0); [C7H3BrNOSn]+

316(8.3); [Sn CH3]+ 135 (24.2); [Sn]+ 120(8.8)

Page 91: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

68

Di-n-butyltin(IV) [N′-(1-(5-bromo-2-oxidophenyl)ethylidene))-N-

(oxidomethylene)hydrazine]; (52)

Procedure adopted (III)

Quantities used;

N′-(1-(5-Bromo-2-hydroxyphenyl)ethylidene)formohydrazide 0.77 g (3.0

mmol), dibutyltin(IV) dichloride 0.91 g (3.0 mmol) and triethylamine 0.84 mL (6.0

mmol) were reacted in a 1:1:2 ratio. The solid product was recrystallized from a

chloroform n-hexane (4:1) mixture. IR (cm-1): 1610 ν(C=N), 1080 ν(N-N), 570 ν(Sn–

O), 462 ν(Sn–N), EI-MS, m/z (%): [(C9H7BrN2O2)Sn(C4H9)2]+ 488(32.6);

[(C9H7BrN2O2)Sn C4H9]+ 431(100.0); [C9H7BrN2O2Sn]+ 374(56.2); [C7H3BrNOSn]+

316(5.3); [Sn]+ 120 (5.4); [C4H9]+ 57(69.0)

Diphenyltin(IV) [N′-(1-(5-bromo-2-oxidophenyl)ethylidene))-N-(oxidomethylene)

hydrazine]; (53)

Procedure adopted (III)

Quantities used;

N′-(1-(5-Bromo-2-hydroxyphenyl)ethylidene)formohydrazide 0.77 g (3.0

mmol), diphenyltin(IV) dichloride 1.03 g (3.0 mmol) and triethylamine 0.84 mL (6.0

mmol) were reacted in a 1:1:2 ratio. The solid product was recrystallized from a

chloroform n-hexane (4:1) mixture. IR (cm-1): 1606 ν(C=N), 1072 ν(N-N), 560 ν(Sn–

O), 471 ν(Sn–N) EI-MS, m/z (%): [(C9H7BrN2O2)Sn(C6H5)2]+ 528(100.0);

[(C9H7BrN2O2)Sn C6H5]+ 450(21.7); [C9H7BrN2O2Sn]+ 374(14.5); [C7H3BrNOSn]+

316(5.6); [SnC6H5]+ 197(36.0); [Sn]+ 120(13.3)

Dimethyltin(IV) [N′-(2-oxidobenzylidene)-N-(oxido-(4-tert-butylphenyl)

methylene)hydrazine]; (54)

Procedure adopted (III)

Quantities used;

N′-(2-Hydroxybenzylidene)-4-tert-butylbenzohydrazide 0.89 g (3.0 mmol)

dimethyltin(IV) dichloride 0.66 g (3.0 mmol) and triethylamine 0.84 mL (6.0 mmol)

were reacted in a 1:1:2 ratio. The solid product was recrystallized from a chloroform

n-hexane (4:1) mixture. IR (cm-1): 1608 ν(C=N), 1070 ν(N-N), 562 ν(Sn–O), 461

ν(Sn–N) EI-MS, m/z (%): [(C18H18N2O2)Sn(CH3)2]+ 444(50.1); [(C18H18N2O2)

SnCH3]+ 429(9.1); [(C18H18N2O2)Sn]+ 414(45.0); [C7H4NOSn]+ 238(10.0); [SnCH3]+

135 (28.7); [C11H13O] + 161(100.0); [Sn]+ 120(9.4)

Page 92: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

69

Diethyltin(IV) [N′-(2-oxidobenzylidene)-N-(oxido-(4-tert-butylphenyl)

methylene)hydrazine]; (55)

Procedure adopted (III)

Quantities used;

N′-(2-Hydroxybenzylidene)-4-tert-butylbenzohydrazide 0.89 g (3.0 mmol),

diethyltin(IV) dichloride 0.74 g (3.0 mmol) and triethylamine 0.84 mL (6.0 mmol.)

were reacted in a 1:1:2 ratio. A viscous liquid product was obtained. IR (cm-1): 1606

ν(C=N), 1077 ν(N-N), 569 ν(Sn–O), 458 ν(Sn–N) EI-MS, m/z (%): [(C18H18N2O2)

Sn(C2H5)2]+ 472(25.7); [(C18H18N2O2)SnC2H5]+ 443(20.7); [(C18H18N2O2)Sn]+

414(44.0); [C7H4 NOSn]+ 238(19.6); [SnC2H5]+ 149(2.7); [C11H13O]+ 161(100.0);

[Sn]+ 120(4.6)

Di-n-butyltin(IV) [N′-(2-oxidobenzylidene)- N-(oxido-(4-tert-butylphenyl)

methylene)hydrazine]; (56)

Procedure adopted (III)

Quantities used;

N′-(2-Hydroxybenzylidene)-4-tert-butylbenzohydrazide 0.89 g (3.0 mmol),

dibutyltin(IV) dichloride 0.91 g (3.0 mmol) and triethylamine 0.84 mL (6.0 mmol.)

were reacted in a 1:1:2 ratio. The solid product was recrystallized from a chloroform

n-hexane (4:1) mixture. IR (cm-1): 1610 ν(C=N), 1082 ν(N-N), 570 ν(Sn–O), 465

ν(Sn–N), EI-MS, m/z (%): [(C18H18N2O2)Sn(C4H9)2]+ 528(29.7); [(C18H18N2O2)

SnC4H9]+ 471 (20.1); [(C18H18N2O2)Sn]+ 414(31.6); [C7H4NOSn]+ 238(25.7);

[Sn(C4H9)2]+ 234(6.0); [C11H13O] + 161(100.0); [Sn]+ 120(7.5)

Diphenyltin(IV) [N′-(2-oxidobenzylidene)- N-(oxido-(4-tert-butylphenyl)

methylene)hydrazine]; (57)

Procedure adopted (III)

Quantities used;

N′-(2-Hydroxybenzylidene)-4-tert-butylbenzohydrazide 0.89 g (3.0 mmol),

diphenyltin(IV) dichloride 1.03 g (3.0 mmol) and triethylamine 0.84 mL (6.0 mmol.)

were reacted in a 1:1:2 ratio. The solid product was recrystallized from a chloroform

n-hexane (4:1) mixture. IR (cm-1): 1608 ν(C=N), 1071 ν(N-N), 565 ν(Sn–O), 462

ν(Sn–N) EI-MS, m/z (%): [(C18H18N2O2)Sn(C6H5)2]+ 568(60.8); [(C18H18N2O2)Sn]+

414(2.2); [C7H4NOSn]+ 238(4.9); [SnC6H5]+ 197(32.4); [C11H13O] + 161(100.0); [Sn]+

120(8.9)

Page 93: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

70

Di-n-octyltin(IV) [N′-(2-oxidobenzylidene)- N-(oxido-(4-tert-butylphenyl)

methylene)hydrazine]; (58)

Procedure adopted (IV)

Quantities used;

N′-(2-Hydroxybenzylidene)-4-tert-butylbenzohydrazide 0.89 g (3.0 mmol)

and dioctyltin(IV) oxide 1.09 g (3.0 mmol) were reacted in a 1:1 ratio. A viscous

liquid product was obtained. IR (cm-1): 1606 ν(C=N), 1070 ν(N-N), 566 ν(Sn–O),

463 ν(Sn–N) EI-MS, m/z (%): [(C18H18N2O2)Sn(C8H17)2]+ 640(40.6); [(C18H18

N2O2)SnC8H17]+ 527(28.3); [(C18H18N2O2)Sn]+ 414(34.9); [C7H4NOSn]+ 238(27.0);

[HSnC8H17]+ 234(5.2); [C11H13O]+ 161(87.8); [Sn]+ 120(3.3); [C4H9]+ 57(100.0)

Di-tert-butyltin(IV) [N′-(2-oxidobenzylidene)- N-(oxido-(4-tert-butylphenyl)

methylene)hydrazine]; (59)

Procedure adopted (III)

Quantities used;

N′-(2-Hydroxybenzylidene)-4-tert-butylbenzohydrazide 0.89 g (3.0 mmol), di-

tert-butyltin(IV) dichloride 0.91 g (3.0 mmol) and triethylamine 0.84 mL (6.0 mmol)

were reacted in a 1:1:2 ratio. The solid product was recrystallized from a chloroform

n-hexane (4:1) mixture. IR (cm-1): 1606 ν(C=N), 1075 ν(N-N), 566 ν(Sn–O), 458

ν(Sn–N) EI-MS, m/z (%): [(C18H18N2O2)Sn(C(CH3)3)2]+ 528(5.4); [(C18H18N2O2)

Sn]+ 414(19.9); [C7H4NOSn]+ 238(18.3); [Sn(C(CH3)3)2]+ 234(3.3); [C11H13O]+

161(21.5); [Sn]+ 120(2.2); [C4H9]+ 57(100.0)

n-Butylchloridetin(IV) [N′-(2-oxidobenzylidene)- N-(oxido-(4-tert-butylphenyl)

methylene)hydrazine]; (60)

Procedure adopted (IV)

Quantities used;

N′-(2-Hydroxybenzylidene)-4-tert-butylbenzohydrazide 0.89 g (3.0 mmol)

and butyldihydroxidetin(IV) chloride 0.73 g (3.0 mmol) were reacted in a 1:1 ratio.

The solid product was recrystallized from a chloroform n-hexane (4:1) mixture. IR

(cm-1): 1609 ν(C=N), 1072 ν(N-N), 570 ν(Sn–O), 461 ν(Sn–N), EI-MS, m/z (%):

[(C18H18 N2O2)Sn(C4H9)Cl]+ 506(13.9); [(C18H18N2O2)Sn]+ 414(7.6); [C7H4NOSn]+

238(2.5); [C11H13O]+ 161(100.0); [Sn]+ 120(5.1); [C4H9]+ 57(31.8)

Page 94: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

71

Bis[dimethyltin(IV)] [N1′, N6′-bis(2-oxidobenzylidene)adipohydrazide]; (61)

Procedure adopted (III)

Quantities used;

N1′, N6′-Bis(2-hydroxybenzylidene)adipohydrazide 0.57 g (1.5 mmol),

dimethyltin(IV) dichloride 0.66 g (3.0 mmol) and triethylamine 0.84 mL (6.0 mmol)

were reacted in a 1:2:4 ratio. The solid product was recrystallized from a chloroform

n-hexane (4:1) mixture. IR (cm-1): 1612 ν(C=N), 1084 ν(N-N), 576 ν(Sn–O), 468

ν(Sn–N), EI-MS, m/z (%): [(C8H5N2O2)2C4H8Sn2(CH3)4]+ 678(3.5), [(C8H5N2O2)2

C4H8Sn2(CH3)3]+ 663(85.2), [(C8H5N2O2)2C4H8Sn2(CH3)2]+ 648(4.3), [(C8H5N2O2)

CNC4H8Sn(CH3)2]+ 393(8.8), [(C8H5N2O2)C4H8Sn(CH3)2]+ 367(4.6), [(C8H5N2O2)

CH2Sn(CH3)2]+ 325(23.6), [(C8H6N2O2)Sn(CH3)2]+ 312(4.5), [(C8H5N2O2)Sn(CH3)2]+

311 (16.1) , [(C8H6N2O2)Sn]+ 282(100.0), [C7H4NOSn]+ 238(46.3), [(CH3)2HSn]+

151 (4.0), [CH3Sn]+ 135(25.4), [Sn]+ 120(9.6)

Bis[diethyltin(IV)] [N1′, N6′-bis(2-oxidobenzylidene)adipohydrazide]; (62)

Procedure adopted (III)

Quantities used;

N1′, N6′-Bis(2-hydroxybenzylidene)adipohydrazide 0.57 g (1.5 mmol),

diethyltin(IV) dichloride 0.74 g (3.0 mmol) and triethylamine 0.84 mL (6.0 mmol)

were reacted in a 1:2:4 ratio. The solid product was recrystallized from a chloroform

n-hexane (4:1) mixture. IR (cm-1): 1610 ν(C=N), 1088 ν(N-N), 570 ν(Sn–O), 460

ν(Sn–N), EI-MS, m/z (%):[(C8H5N2O2)2C4H8Sn2(C2H5)3]+ 705(100.0), [C7H4NOSn]+

238(11.0), [Sn]+ 120(5.4)

Bis[di-n-butyltin(IV)] [N1′, N6′-bis(2-oxidobenzylidene)adipohydrazide]; (63)

Procedure adopted (III)

Quantities used;

N1′, N6′-Bis(2-hydroxybenzylidene)adipohydrazide 0.57 g (1.5 mmol),

dibutyltin(IV) dichloride 0.91 g (3.0 mmol) and triethylamine 0.84 mL (6.0 mmol)

were reacted in a 1:2:4 ratio. The solid product was recrystallized from a chloroform

n-hexane (4:1) mixture. IR (cm-1): 1608 ν(C=N), 1076 ν(N-N), 568 ν(Sn–O), 472

ν(Sn–N), EI-MS, m/z (%): [(C8H5N2O2)2C4H8Sn2(C4H9)4]+ 846(5.5), [(C8H5N2O2)2

C4H8Sn2 (C4H9)3]+ 789(100.0), [(C8H5N2O2)2C4H8Sn2(C4H9)2]+ 732(4.3), [(C8H5

N2O2)Sn]+ 281(5.5), [C7H4NOSn]+ 238(30.2), [(C4H9)2Sn]+ 234(7.6), [C4H9Sn]+ 177

(4.2), [Sn]+ 120(4.3)

Page 95: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

72

Bis[diphenyltin(IV)] [N1′, N6′-bis(2-oxidobenzylidene)adipohydrazide]; (64)

Procedure adopted (III)

Quantities used;

N1′, N6′-Bis(2-hydroxybenzylidene)adipohydrazide 0.57 g (1.5 mmol),

diphenyltin(IV) dichloride 1.03 g (3.0 mmol) and triethylamine 0.84 mL (6.0 mmol)

were reacted in a 1:2:4 ratio. The solid product was recrystallized from a chloroform

n-hexane (4:1) mixture. IR (cm-1): 1611 ν(C=N), 1080 ν(N-N), 578 ν(Sn–O), 472

ν(Sn–N), EI-MS, m/z (%): [(C8H5N2O2)2C4H8Sn2(C6H5)4]+ 926(5.6), [(C8H5N2O2)2

C4H8Sn2(C6H5)3]+ 849(100.0), [(C8H5N2O2)2C4H8Sn2(C6H5)2]+ 772(3.4), [(C8H5N2O2)

CNC4 H8Sn(C6H5)2]+ 517(5.5), [(C8H5N2O2)C4H8Sn(C6H5)2]+ 491(3.9), [(C8H5N2O2)

CH2Sn(C6H5)2]+ 449(10.1), [(C8H6N2O2)Sn(C6H5)2]+ 436(5.3), [(C8H5N2O2)

Sn(C6H5)2]+ 435(5.3), [(C8H5N2O2)Sn]+ 281(4.3), [C7H4NOSn]+ 238(25.3),

[(C6H5)2Sn]+ 274 (3.5), [C6H5Sn]+ 197(36.8), [Sn]+ 120(10.6)

Bis[di-n-octyltin(IV)] [N1′, N6′-bis(2-oxidobenzylidene)adipohydrazide]; (65)

Procedure adopted (IV)

Quantities used;

N1′, N6′-Bis(2-hydroxybenzylidene)adipohydrazide 0.57 g (1.5 mmol) and

dioctyltin(IV) oxide 1.09 g (3.0 mmol) were reacted in a 1:2 ratio. A viscous liquid

product was obtained. IR (cm-1): 1610 ν(C=N), 1077 ν(N-N), 568 ν(Sn–O), 470

ν(Sn–N), EI-MS, m/z (%): [(C8H5N2O2)2C4H8Sn2(C8H17)3]+ 957(87.2), [(C8H5

N2O2)2C4H8Sn2(C8H17)2]+ 844(4.6), [(C8H5N2O2)Sn]+ 281(4.3), [C7H4NOSn]+ 238

(29.8), [Sn]+ 120(3.4); [C4H9]+ 57(100.0)

Bis[n-butylchloridetin(IV)] [N1′, N6′-bis(2-oxidobenzylidene)adipohydrazide];

(66)

Procedure adopted (IV)

Quantities used;

N1′, N6′-Bis(2-hydroxybenzylidene)adipohydrazide 0.57 g (1.5 mmol) and

butyldihydroxidetin(IV) chloride 0.73 g (3.0 mmol) were reacted in a 1:2 ratio. The

solid product was recrystallized from a chloroform n-hexane (4:1) mixture. IR (cm-1):

1606 ν(C=N), 1077 ν(N-N), 568 ν(Sn–O), 451 ν(Sn–N), EI-MS, m/z (%):

[(C8H5N2O2)2C4H8Sn2(C4H9Cl)2]+ 802 (5.05), [(C8H5N2O2)2C4H8Sn2(C4H9)2Cl]+

767(70.5), [(C8H5 N2O2)2C4H8Sn2(C4H9) Cl2]+ 745(10.7), [(C8H5N2O2)CNC4H8Sn

(C4H9)Cl]+ 455(3.3), [(C8H6N2O2)Sn(C4H9) Cl]+ 374(7.4), [(C8H5N2O2)Sn(C4H9) Cl]+

Page 96: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

73

373(8.1), [(C8H5N2O2)Sn(C4H9)]+ 338(5.3), [(C8H5N2O2)SnCl]+ 316(3.9), [(C8H5

N2O2)Sn]+ 281 (14.6), [C7H4NOSn]+ 238 (100.0), [Sn]+ 120(10.5)

Bis[dimethyltin(IV)] [N1′, N6′-bis(5-bromo-2-oxidobenzylidene)adipohydrazide]

(67)

Procedure adopted (III)

Quantities used;

N1′, N6′-Bis(5-bromo-2-hydroxybenzylidene)adipohydrazide 0.81 g (1.5

mmol), dimethyltin(IV) dichloride 0.66 g (3.0 mmol) and triethylamine 0.84 mL (6.0

mmol) were reacted in a 1:2:4 ratio. The solid product was recrystallized from a

chloroform n-hexane (4:1) mixture. IR (cm-1): 1611 ν(C=N), 1079 ν(N-N), 567 ν(Sn–

O), 456 ν(Sn–N), EI-MS, m/z (%): [(C8H4BrN2O2)2C4H8Sn2(CH3)3]+ 819(100.0),

[(C8H4Br N2O2)2C4H8Sn2 (CH3)2]+ 804(7.0), [(C8H4BrN2O2)CNC4H8Sn(CH3)2]+

471(10.8), [(C8H4BrN2O2)CH2Sn(CH3)2]+ 403(14.2), [(C8H4BrN2O2)Sn(CH3)2]+

389(7.9), [(C8H4BrN2O2) Sn(CH3)2]+ 311(16.1), [(C8H4BrN2O2)Sn]+ 359(8.1),

[C7H4NOSn]+ 238(46.3), [CH3 Sn]+ 135(10.6), [Sn]+ 120(7.3)

Bis[diethyltin(IV)] [N1′, N6′-bis(5-bromo-2-oxidobenzylidene)adipohydrazide];

(68)

Procedure adopted (III)

Quantities used;

N1′, N6′-Bis(5-bromo-2-hydroxybenzylidene)adipohydrazide 0.81 g (1.5

mmol), diethyltin(IV) dichloride 0.74 g (3.0 mmol) and triethylamine 0.84 mL (6.0

mmol) were reacted in a 1:2:4 ratio. The solid product was recrystallized from a

chloroform n-hexane (4:1) mixture. IR (cm-1): 1609 ν(C=N), 1079 ν(N-N), 569 ν(Sn–

O), 460 ν(Sn–N), EI-MS, m/z (%): [(C8H4BrN2O2)2C4H8Sn2(C2H5)3]+ 861(100.0),

[(C8H4BrN2O2)Sn(C2H5)2]+ 417(6.3), [(C8H4BrN2O2)Sn(C2H5)]+ 388(6.9), [(C2H5)2

Sn]+ 178 (3.1), [C2H5Sn]+ 149(5.4), [Sn]+ 120(7.1)

Bis[di-n-butyltin(IV)] [N1′, N6′-bis(5-bromo-2-oxidobenzylidene)-

adipohydrazide]; (69)

Procedure adopted (III)

Quantities used;

N1′, N6′-Bis(5-bromo-2-hydroxybenzylidene)adipohydrazide 0.81 g (1.5

mmol), dibutyltin(IV) dichloride 0.91 g (3.0 mmol) and triethylamine 0.84 mL (6.0

mmol) were reacted in a 1:2:4 ratio. The solid product was recrystallized from a

Page 97: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

74

chloroform n-hexane (4:1) mixture. IR (cm-1): 1609 ν(C=N), 1078 ν(N-N), 590 ν(Sn–

O), 453 ν(Sn–N), EI-MS, m/z (%): [(C8H4BrN2O2)2C4H8Sn2(C4H9)3]+ 945(100.0),

[(C8H4Br N2O2)CNC4H8Sn(C4H9)2]+ 555(23.5), [(C8H4BrN2O2)Sn(C4H9)2]+ 473(3.1),

[(C8H4 BrN2O2)Sn (C4H9)]+ 416(6.1), [(C8H4BrN2O2)Sn]+ 281(8.0), [(C4H9)2Sn]+

234(4.3), [C4H9Sn]+ 177(18.4), [Sn]+ 120(7.0), [C6H5]+ 77(3.4), [C4H9]+ 57(74.5)

Bis[diphenyltin(IV)] [N1′, N6′-bis(5-bromo-2-oxidobenzylidene)adipohydrazide];

(70)

Procedure adopted (III)

Quantities used;

N1′, N6′-Bis(5-bromo-2-hydroxybenzylidene)adipohydrazide 0.81 g (1.5

mmol), diphenyltin(IV) dichloride 1.03 g (3.0 mmol) and triethylamine 0.84 mL (6.0

mmol) were reacted in a 1:2:4 ratio. The solid product was recrystallized in

chloroform n-hexane (4:1) mixture. IR (cm-1): 1607 ν(C=N), 1074 ν(N-N), 576 ν(Sn–

O), 450 ν(Sn–N), EI-MS, m/z (%): [(C8H4BrN2O2)2C4H8Sn2(C6H5)3]+ 1005(6.3),

[(C8H4 BrN2O2)2C4H8Sn2(C6H5)2]+ 928(6.4), [(C8H4BrN2O2)CNC4H8Sn(C6H5)2]+

595(6.1), [(C8H4BrN2O2)C4H8Sn(C6H5)2]+ 567(5.4), [(C8H4BrN2O2)CH2Sn(C6H5)2]+

527(17.2), [(C8H4BrN2O2)Sn(C6H5)2]+ 513(5.6), [(C6H5)2Sn]+ 274(13.0), [C6H5Sn]+

197 (78.7), [Sn]+ 120(18.9)

Bis[di-n-octyltin(IV)] [N1′, N6′-bis(5-bromo-2-oxidobenzylidene)adipohydrazide];

(71)

Procedure adopted (IV)

Quantities used;

N1′, N6′-Bis(5-bromo-2-hydroxybenzylidene)adipohydrazide 0.81 g (1.5

mmol) and dioctyltin(IV) oxide 1.09 g (3.0 mmol) were reacted in 1:2 ratio. A viscous

liquid product was obtained. IR (cm-1): 1621 ν(C=N), 1082 ν(N-N), 578 ν(Sn–O),

466 ν(Sn–N) EI-MS, m/z (%):[(C8H4BrN2O2)CNC4H8Sn(C8H17)2]+ 667(4.8),

[(C8H4BrN2O2)Sn(C8H17)]+ 472 (4.5), [(C8H4BrN2O2)Sn]+ 359(3.9), [C7H4NOSn]+

238(29.8), [Sn]+ 120(6.5), [C4H9]+ 57(100.0)

Page 98: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

75

Bis[n-butylchloridetin(IV)] [N1′, N6′-bis(5-bromo-2-oxidobenzylidene)adipo-

hydrazide]; (72)

Procedure adopted (IV)

Quantities used;

N1′, N6′-Bis(5-bromo-2-hydroxybenzylidene)adipohydrazide 0.81 g (1.5

mmol) and butyldihydroxidetin(IV) chloride 0.73 g (3.0 mmol) were reacted in a 1:2

ratio. The solid product was recrystallized from a chloroform n-hexane (4:1) mixture.

IR (cm-1): 1609 ν(C=N), 1072 ν(N-N), 560 ν(Sn–O), 451 ν(Sn–N) EI-MS, m/z (%):

[(C8H4Br N2O2)2C4H8Sn2(C4H9)2Cl]+ 923(73.8), [(C8H4BrN2O2)2C4H8Sn2(C4H9)Cl2]+

901 (32.2), [(C8H4BrN2O2)2C4H8Sn2(C4H9)Cl]+ 866(9.1), [(C8H4BrN2O2)CNC4H8Sn

(C4H9)Cl]+ 533(5.6), [(C8H4BrN2O2)Sn(C4H9)Cl]+ 451(7.0), [(C8H4BrN2O2)Sn

(C4H9)]+ 416(5.2), [(C8H4BrN2O2)SnCl]+ 394(3.9), [(C8H4BrN2O2)Sn]+ 359(4.6),

[(C4H9)ClSn]+ 212(8.5), [ClSn]+ 155(23.4), [Sn]+ 120(6.7), [C4H9]+ 57(100.0)

Bis[dimethyltin(IV)] [N1′, N6′-bis(3-methoxy-2-oxido-benzylidene)adipo-

hydrazide]; (73)

Procedure adopted (III)

Quantities used;

N1′, N6′-Bis(2-hydroxy-3-methoxybenzylidene)adipohydrazide 0.66 g (1.5

mmol), dimethyltin(IV) dichloride 0.66 g (3.0 mmol) and triethylamine 0.84 mL (6.0

mmol.) were reacted in a 1:2:4 ratio. The solid product was recrystallized from a

chloroform n-hexane (4:1) mixture. IR (cm-1): 1612 ν(C=N), 1082 ν(N-N), 575 ν(Sn–

O), 474 ν(Sn–N) EI-MS, m/z (%): [(C8H4OCH3N2O2)2C4H8Sn2(CH3)4]+ 738(3.0),

[(C8H4OCH3N2O2)2C4H8Sn2(CH3)3]+ 723(100.0), [(C8H4OCH3N2O2)2C4H8Sn2

(CH3)2]+ 708 (5.3), [(C8H4OCH3N2O2)CNC4H8Sn(CH3)2]+ 423(5.7), [(C8H4OCH3

N2O2)CH2Sn(CH3)2]+ 355(12.3), [(C8H4OCH3N2O2)Sn(CH3)2]+ 341(8.3), [(C8H4O

CH3N2O2)Sn]+ 311(4.6), [CH3Sn]+ 135(6.2), [Sn]+ 120(5.5)

Bis[diethyltin(IV)] [N1′, N6′-bis(3-methoxy-2-oxido-benzylidene)adipo

hydrazide]; (74)

Procedure adopted (III)

Quantities used;

N1′, N6′-Bis(2-hydroxy-3-methoxybenzylidene)adipohydrazide 0.66 g (1.5 mmol),

diethyltin(IV) dichloride 0.74 g (3.0 mmol) and triethylamine 0.84 mL (6.0 mmol.)

were reacted in a 1:2:4 ratio. The solid product was recrystallized from a chloroform

Page 99: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

76

n-hexane (4:1) mixture. IR (cm-1): 1613 ν(C=N), 1086 ν(N-N), 570 ν(Sn–O), 467

ν(Sn–N) EI-MS, m/z (%): [(C8H4OCH3N2O2)2C4H8Sn2(C2H5)3]+ 765(100.0),

[(C8H4OCH3N2O2) Sn(C2H5)]+ 340(6.9), [C2H5Sn]+ 149(7.9), [Sn]+ 120(4.7)

Bis[di-n-butyltin(IV)] [N1′, N6′-bis(3-methoxy-2-oxido-benzylidene)adipo-

hydrazide]; (75)

Procedure adopted (III)

Quantities used;

N1′, N6′-Bis(2-hydroxy-3-methoxybenzylidene)adipohydrazide 0.66 g (1.5

mmol), dibutyltin(IV) dichloride 0.91 g (3.0 mmol) and triethylamine 0.84 mL (6.0

mmol.) were reacted in a 1:2:4 ratio. The solid product was recrystallized from a

chloroform n-hexane (4:1) mixture. IR (cm-1): 1607 ν(C=N), 1080 ν(N-N), 546 ν(Sn–

O), 455 ν(Sn–N), EI-MS, m/z (%): [(C8H4OCH3N2O2)2C4H8Sn2(C4H9)4]+ 906(6.4),

[(C8H4 OCH3N2O2)2C4H8Sn2(C4H9)3]+ 849(100.0), [(C8H4OCH3N2O2)2C4H8Sn2

(C4H9)2]+ 792(9.5), [(C8H4OCH3N2O2)CNC4H8Sn(C4H9)2]+ 507(4.9), [(C8H4OCH3

N2O2)Sn (C4H9)]+ 368(5.5), [(C8H4OCH3N2O2)Sn]+ 311(5.1), [C4H9Sn]+ 177(3.2),

[Sn]+ 120 (6.6), [C4H9]+ 57(12.9)

Bis[diphenyltin(IV)] [N1′, N6′-bis(3-methoxy-2-oxido-benzylidene)adipo-

hydrazide]; (76)

Procedure adopted (III)

Quantities used;

N1′, N6′-Bis(2-hydroxy-3-methoxybenzylidene)adipohydrazide 0.66 g (1.5

mmol), diphenyltin(IV) dichloride 1.03 g (3.0 mmol) and triethylamine 0.84 mL (6.0

mmol.) were reacted in a 1:2:4 ratio. The solid product was recrystallized from a

chloroform n-hexane (4:1) mixture. IR (cm-1): 1605 ν(C=N), 1074 ν(N-N), 567 ν(Sn–

O), 448 ν(Sn–N) EI-MS, m/z (%): [(C8H4OCH3N2O2)2C4H8Sn2(C6H5)2]+ 832(85.5),

[(C8H4OCH3 N2O2)CNC4H8Sn(C6H5)2]+ 547(7.1), [(C8H4OCH3N2O2)C4H8Sn

(C6H5)2]+ 521(5.0), [(C8H4 OCH3N2O2)CH2Sn(C6H5)2]+ 479(9.7), [(C8H4OCH3N2O2)

Sn(C6H5)2]+ 465(5.6), [(C8H4O CH3N2O2)Sn]+ 311(5.4), [(C6H5)2Sn]+ 274(5.8),

[C6H5Sn]+ 197(40.1), [Sn]+ 120(11.0), [C6H6]+ 78(100.0)

Page 100: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

77

Bis[di-n-octyltin(IV)] [N1′, N6′-bis(3-methoxy-2-oxido-benzylidene)adipo-

hydrazide]; (77)

Procedure adopted (IV)

Quantities used;

N1′, N6′-Bis(2-hydroxy-3-methoxybenzylidene)adipohydrazide 0.66 g (1.5

mmol) and dioctyltin(IV) oxide 1.09 g (3.0 mmol) were reacted in a 1:2 ratio. The

solid product was recrystallized from chloroform n-hexane (4:1) mixture. IR (cm-1):

1612 ν(C=N), 1082 ν(N-N), 579 ν(Sn–O), 457 ν(Sn–N) EI-MS, m/z (%):

[(C8H4OCH3N2O2)2 C4H8Sn2(C8H17)2]+ 904(5.7), [(C8H4OCH3N2O2)CNC4H8Sn

(C8H17)2]+ 619(3.0), [(C8 H4OCH3N2O2)Sn]+ 311(4.2), [(C8H17)2Sn]+ 346(3.7),

[C8H17Sn]+ 233(3.3), [Sn]+ 120(4.5), [C4H9]+ 57(100.0)

Bis[n-butylchloridetin(IV)] [N1′, N6′-bis(3-methoxy-2-oxido-benzylidene)adipo-

hydrazide]; (78)

Procedure adopted (IV)

Quantities used;

N1′, N6′-Bis(2-hydroxy-3-methoxybenzylidene)adipohydrazide 0.66 g (1.5

mmol) and butyldihydroxidetin(IV) chloride 0.73 g (3.0 mmol) were reacted in a 1:2

ratio. The solid product was recrystallized from a chloroform n-hexane (4:1) mixture.

IR (cm-1): 1614 ν(C=N), 1081 ν(N-N), 566 ν(Sn–O), 458 ν(Sn–N) EI-MS, m/z (%):

[(C8H4OCH3N2O2)2C4H8Sn2(C4H9Cl)2]+ 862(4.7), [(C8H4OCH3N2O2)2C4H8Sn2(C4

H9)2Cl]+ 827(29.4), [(C8H4OCH3N2O2)2C4H8Sn2(C4H9)Cl2]+ 805(42.3), [(C8H4OCH3

N2O2)2C4H8Sn2(C4H9)Cl]+ 770(18.2), [(C8H4OCH3N2O2)CNC4H8Sn(C4H9)Cl]+ 485

(14.6), [(C8H4OCH3N2O2)Sn(C4H9)Cl]+ 403(5.2), [(C8H4OCH3N2O2)SnCl]+ 346 (3.3),

[(C8H4OCH3N2O2)Sn]+ 311(7.3), [C4H9ClSn]+ 212(13.6), [ClSn]+ 155(37.5), [Sn]+

120(8.8), [C4H9]+ 57(100.0)

Bis[dimethyltin(IV)] [N1′, N4′-bis(2-oxidobenzylidene)succinohydrazide]; (79)

Procedure adopted (III)

Quantities used;

N1′, N4′-Bis(2-hydroxybenzylidene)succinohydrazide 0.53 g (1.5 mmol),

dimethyltin(IV) dichloride 0.66 g (3.0 mmol) and triethylamine 0.84 mL (6.0 mmol)

were reacted in a 1:2:4 ratio. The solid product was recrystallized from a chloroform

n-hexane (4:1) mixture. IR (cm-1): 1609 ν(C=N), 1077 ν(N-N), 563 ν(Sn–O), 457

ν(Sn–N) EI-MS, m/z (%): [(C8H5N2O2)2C2H4Sn2(CH3)4]+ 650(49.1), [(C8H5N2O2)2

Page 101: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

78

C2H4Sn2(CH3)3]+ 635(58.2), [(C8H5N2O2)C2H4Sn(CH3)2]+ 339(100.0), [(C8H5N2O2)

Sn(CH3)2]+ 311(9.5), [(C8H5N2O2)Sn(CH3)]+ 296(5.8), [(CH3)2Sn]+ 150(7.3),

[(CH3)Sn]+ 135 (87.0), [Sn]+ 120(27.1)

Bis[diethyltin(IV)] [N1′, N4′-bis(2-oxidobenzylidene)succinohydrazide]; (80)

Procedure adopted (IV)

Quantities used;

N1′, N4′-Bis(2-hydroxybenzylidene)succinohydrazide 0.53 g (1.5 mmol),

diethyltin(IV) dichloride 0.74 g (3.0 mmol) and triethylamine 0.84 mL (6.0 mmol)

were reacted in a 1:2:4 ratio. The solid product was recrystallized from a chloroform

n-hexane (4:1) mixture. IR (cm-1): 1612 ν(C=N), 1080 ν(N-N), 568 ν(Sn–O), 452

ν(Sn–N) EI-MS, m/z (%): [(C8H5N2O2)2C2H4Sn2(C2H5)4]+ 706(2.5), [(C8H5N2O2)2

C2H4Sn2 (C2H5)3]+ 677(100.0), [(C8H5N2O2)C2H4Sn(C2H5)2]+ 367(6.2), [(C8H5N2O2)

Sn(C2H5)2]+ 339(13.5), [(C8H5N2O2)Sn(C2H5)]+ 310(5.8), [(C8H5N2O2)Sn]+ 281(7.2),

[(C2H5)Sn]+ 149(13.2), [Sn]+ 120(29.6)

Bis[di-n-butyltin(IV)] [N1′, N4′-bis(2-oxidobenzylidene)succinohydrazide]; (81)

Procedure adopted (III)

Quantities used;

N1′, N4′-Bis(2-hydroxybenzylidene)succinohydrazide 0.53 g (1.5 mmol),

dibutyltin(IV) dichloride 0.91 g (3.0 mmol) and triethylamine 0.84 mL (6.0 mmol)

were reacted in a 1:2:4 ratio. The solid product was recrystallized from a chloroform

n-hexane (4:1) mixture. IR (cm-1): 1610 ν(C=N), 1075 ν(N-N), 570 ν(Sn–O),

458ν(Sn–N) EI-MS, m/z (%): [(C8H5N2O2)2C2H4Sn2(C4H9)3]+ 761(96.4), [(C8H5

N2O2)2C2H4Sn2 (C4H9)2]+ 704(2.1), [(C8H5N2O2)Sn(C4H9)]+ 338(6.0), [(C4H9)2 Sn]+

234(8.2), [(C4H9) Sn]+ 177(2.4), [Sn]+ 120(10.4), [C4H9]+ 57(100.0)

Bis[diphenyltin(IV)] [N1′, N4′-bis(2-oxidobenzylidene)succinohydrazide]; (82)

Procedure adopted (III)

Quantities used;

N1′, N4′-Bis(2-hydroxybenzylidene)succinohydrazide 0.53 g (1.5 mmol),

diphenyltin(IV) dichloride 1.03 g (3.0 mmol) and triethylamine 0.84 mL (6.0 mmol)

were reacted in a 1:2:4 ratio. The solid product was recrystallized from a chloroform

n-hexane (4:1) mixture. IR (cm-1): 1608 ν(C=N), 1070 ν(N-N), 568 ν(Sn–O), 451

ν(Sn–N) EI-MS, m/z (%):[(C8H5N2O2)C2H4Sn(C6H5)2]+ 463(3.7), [(C6H5)2 Sn]+

274(8.1), [(C6H5)Sn]+ 197(13.3), [Sn]+ 120(7.5), [C6H6]+ 78(100.0)

Page 102: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

79

Bis[di-n-octyltin(IV)] [N1′, N4′-bis(2-oxidobenzylidene)succinohydrazide]; (83)

Procedure adopted (IV)

Quantities used;

N1′, N4′-Bis(2-hydroxybenzylidene)succinohydrazide 0.53 g (1.5 mmol) and

dioctyltin(IV) oxide 1.09 g (3.0 mmol) were reacted in a 1:2 ratio. The solid product

was recrystallized from a chloroform n-hexane (4:1) mixture. IR (cm-1): 1612

ν(C=N), 1070 ν(N-N), 564 ν(Sn–O), 458 ν(Sn–N) EI-MS, m/z (%): [(C8H5N2O2)2

C2H4Sn2(C8H17)3]+ 929(100.0), [(C8H5N2O2)2C2H4Sn2(C8H17)2]+ 816(8.1), [(C8H17)

Sn]+ 233 (3.1), [Sn]+ 120(4.3), [C4H9]+ 57(65.0)

Bis[di-tert-butyltin(IV)] [N1′, N4′-bis(2-oxidobenzylidene)succinohydrazide]; (84)

Procedure adopted (III)

Quantities used;

N1′, N4′-Bis(2-hydroxybenzylidene)succinohydrazide 0.53 g (1.5 mmol), di-

tert-butyltin(IV) dichloride 0.91 g (3.0 mmol) and triethylamine 0.84 mL (6.0 mmol)

were reacted in a 1:2:4 ratio. The solid product was recrystallized from a chloroform

n-hexane (4:1) mixture. IR (cm-1): 1607 ν(C=N), 1071 ν(N-N), 559 ν(Sn–O), 452

ν(Sn–N) EI-MS, m/z (%): [(C8H5N2O2)2C2H4Sn2(C4H9)3]+ 761(7.6), [(C8H5N2O2)2

C2H4Sn2 (C4H9)2]+ 704(19.9), [(C8H5N2O2)Sn(C4H9)]+ 338(6.5), [(C4H9)2Sn]+ 234

(3.3), [(C4H9)Sn]+ 177(5.2), [Sn]+ 120(6.4), [C4H9]+ 57(100.0)

Dimethyltin(IV) [N′-(2-oxidobenzylidene)-N-(oxidomethylene)hydrazine]

bipyridine; (85)

Procedure adopted (III)

Quantities used;

N′-(2-Hydroxybenzylidene)formohydrazide 0.50 g (3.0 mmol), dimethyl-

tin(IV) dichloride 0.66 g (3.0 mmol), triethylamine 0.84 mL (6.0 mmol) and bipyridyl

0.40 g (3.0 mmol.) were reacted in a 1:1:2:1 ratio. The solid product was

recrystallized from a chloroform n-hexane (4:1) mixture. IR (cm-1): 1608 ν(C=N), 569

ν(Sn–O), 1070 ν(N-N) 477 ν(Sn–N), EI-MS, m/z (%): [(C8H6N2O2)Sn(CH3)2]+

312(64.0), [(C8H6N2O2)Sn(CH3)]+ 297(74.8), [(C8 H6N2O2)Sn)]+ 282(100.0), [(C7H4

NOSn)]+ 238(21.5), [SnCH3]+ 135(22.9), [C8H6N2]+ 130(10.0), [Sn]+ 120(18.4)

Page 103: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

80

Dimethyltin(IV) [N′-(3-methoxy-2-oxidobenzylidene)-N-(oxidomethylene)

hydrazine]bipyridine; (86)

Procedure adopted (III)

Quantities used;

N′-(2-Hydroxy-3-methoxybenzylidene)formohydrazide 0.58 g (3.0 mmol),

dimethyltin(IV) dichloride 0.66 g (3.0 mmol), triethylamine 0.84 mL (6.0 mmol) and

bipyridyl 0.40 g (3.0 mmol.) were reacted in a 1:1:2:1 ratio. The solid product was

recrystallized from a chloroform n-hexane (4:1) mixture. IR (cm-1): 1618 ν(C=N),

1077 ν(N-N), 581 ν(Sn–O), 481 ν(Sn–N). [(C9H8N2O3)Sn(CH3)2]+ 342(36.1);

[(C9H8N2O3)Sn(CH3)]+ 327(11.6); [(C9H8N2O3)Sn)]+ 312(25.8); [(C8H6NO2Sn)]+

268(100.0); [C8H6N2Sn]+ 250(9.5); [SnCH3]+ 135(5.8); [Sn]+ 120(19.8)

Page 104: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

81

Table 2.1: Physical data of organotin(IV) complexes of 4-((5-bromo-2-hydroxybenzylideneamino)methyl)cyclohexanecarboxylic acid (H2La)

Yield(%)

Melting

point °C

Formula

mass

Elemental Analysis % Calculated(Found) Comp.

No. Reactant 1 Reactant 2

Solubility CHCl3, toluene, DMSO

Structural formula

C H N

(1) C15H17BrNO3Na (CH3)2SnCl2 70 195-196 826 Soluble OH

NBr COO

2

Sn(CH3)2

46.46 (46.43)

4.87 (4.90)

3.39 (4.36)

(2) C15H17BrNO3Na (CH3)3SnCl 75 156-158 503 Soluble OH

NBr COO Sn(CH3)3

42.98 (42.95)

5.21 (5.20)

2.78 (2.75)

(3) C15H17BrNO3Na (C4H9)2SnCl2 75 166-168 910 Soluble OH

NBr COO

2

Sn(C4H9)2

50.08 (50.10)

5.75 (5.73)

3.07 (3.10)

(4) C15H17BrNO3Na (C4H9)3SnCl 72 79-81 629 Soluble OH

NBr COO Sn(C4H9)3

51.54 (51.51)

7.05 (7.02)

2.23 (2.24)

(5) C15H17BrNO3Na (C6H5)2SnCl2 74 210-212 950 Soluble OH

NBr COO

2

Sn(C6H5)2

53.03 (52.99)

4.66 (4.69)

2.94 (2.91)

(6) C15H17BrNO3Na (C6H5)3SnCl 77 136-138 689 Soluble OH

NBr COO Sn(C6H5)3

57.51 (57.49)

4.68 (4.70)

2.03 (2.01)

(7) C15H18BrNO3 (C8H17)2SnO 75 120-123 1022 Soluble OH

NBr COO

2

Sn(C8H17)2

53.98 (54.01)

6.70 (6.67)

2.74 (2.69)

Page 105: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

82

Table 2.2: Physcial data of organotin(IV) complexes of 4-((1-(2-hydroxyphenyl)ethylideneamino)methyl)cyclohexanecarboxylic acid (H2Lb)

Yield(%)

Formula

mass

Elemental Analysis % Calculated(Found) Comp.

No. Reactant 1 Reactant 2

Melting point °C

Solubility CHCl3, toluene, DMSO

Structural formula

C H N

(8) C16H20NO3Na (CH3)2SnCl2 68 210-212 698 Soluble OH

NCOO

2

Sn(CH3)2

58.55 (58.51)

6.65 (6.61)

4.02 (3.98)

(9) C16H20NO3Na (CH3)3SnCl 72 182-184 439 Soluble

OH

NCOO Sn(CH3)3

52.08 (52.10)

6.67 (6.66)

3.20 (3.22)

(10) C16H20NO3Na (C4H9)2SnCl2 72 Paste 782 Soluble OH

NCOO

2

Sn(C4H9)2

61.47 (61.45)

7.48 (7.46)

3.58 (3.60)

(11) C16H20NO3Na (C4H9)3SnCl 76 Viscous liquid 565 Soluble

OH

NCOO Sn(C4H9)3

59.59 (59.62)

8.39 (8.41)

2.48 (2.45)

(12) C16H20NO3Na (C6H5)2SnCl2 78 102-105 822 Soluble OH

NCOO

2

Sn(C6H5)2

64.32 (64.29)

6.13 (6.11)

3.41 (3.39)

(13) C16H20NO3Na (C6H5)3SnCl 75 115-118 625 Soluble

OH

NCOO Sn(C6H5)3

65.41 (65.39)

5.65 (5.67)

2.24 (2.27)

(14) C16H21NO3 (C8H17)2SnO 70 Viscous paste 894 Soluble

OH

NCOO

2

Sn(C8H17)2

64.50 (64.48)

8.34 (8.36)

3.13 (3.09)

Page 106: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

83

Table 2.3: Physical data of organotin(IV) complexes of 4-((1-(5-bromo-2-hydroxyphenyl)ethylideneamino)methyl)cyclohexanecarboxylic acid (H2Lc)

Yield(%)

Formula

mass

Elemental Analysis % Calculated(Found) Comp.

No. Reactant 1 Reactant 2

Melting point °C

Solubility CHCl3, toluene, DMSO

Structural formula

C H N

(15) C16H19BrNO3Na (CH3)2SnCl2 73 207-208 854 Soluble OH

NBr COO

2

Sn(CH3)2

47.75 (47.71)

5.19 (5.20)

3.28 (3.31)

(16) C16H19BrNO3Na (CH3)3SnCl 70 220-221 517 Soluble OH

NBr COO Sn(CH3)3

44.14 (44.11)

5.46 (5.49)

2.71 (2.68)

(17) C16H19BrNO3Na (C4H9)2SnCl2 74 176-177 938 Soluble OH

NBr COO

2

Sn(C4H9)2

51.14 (51.17)

6.01 (5.99)

2.98 (3.01)

(18) C16H19BrNO3Na (C4H9)3SnCl 78 65-68 643 Soluble OH

NBr COO Sn(C4H9)3

52.28 (52.30)

7.21 (7.19)

2.18 (2.21)

(19) C16H19BrNO3Na (C6H5)2SnCl2 76 128-130 978 Soluble OH

NBr COO

2

Sn(C6H5)2

53.96 (53.91)

4.94 (4.97)

2.86 (2.89)

(20) C16H19BrNO3Na (C6H5)3SnCl 78 110-114 703 Soluble OH

NBr COO Sn(C6H5)3

58.07 (58.11)

4.87 (4.89)

1.99 (2.01)

(21) C16H20BrNO3 (C8H17)2SnO 76 120-122 1050 Soluble OH

NBr COO

2

Sn(C8H17)2

54.82 (54.79)

6.90 (6.88)

2.66 (2.62)

Page 107: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

84

Table 2.4: Physical data of diorganotin(IV) complexes of N′-(2-hydroxybenzylidene)formohydrazide (H2Ld)

Reactants Elemental Analysis % Calculated(Found) Comp.

No. Reactant 1 Reactant 2 Reactant 3

Yield (%)

Melting point oC

Formula mass

Solubility Toluene, DMSO, CHCl3

Structural formula C H N

22 C8H8N2O2 (CH3)2SnCl2 Et3N 80 116-118 312 Soluble O

NN H

OSnCH3H3C

38.63 (38.59)

3.89 (3.85)

9.01 (9.03)

23 C8H8N2O2 (C2H5)2SnCl2 Et3N 74 Viscous liquid 340 Soluble

O

NN H

OSnC2H5C2H5

42.52 (42.48)

4.76 (4.79)

8.26 (8.23)

24 C8H8N2O2 (C4H9)2SnCl2 Et3N 75 Liquid 396 Miscible O

NN H

OSnC4H9C4H9

48.64 (48.61)

6.12 (6.10)

7.09 (7.06)

25 C8H8N2O2 (C6H5)2SnCl2 Et3N 84 160-162 436 Soluble O

NN H

OSnC6H5C6H5

55.21 (55.19)

3.71 (3.72)

6.44 (6.39)

26 C8H8N2O2 (C8H17)2SnO Et3N 78 Liquid 508 Miscible O

NN H

OSnC8H17C8H17

56.82 (56.79)

7.95 (7.92)

5.52 (5.49)

27 C8H8N2O2 (tert-C4H9)2SnCl2 Et3N 78 Liquid 396 Miscible O

NN H

OSnC(CH3)3(H3C)3C

48.64 (48.59)

6.12 (6.09)

7.09 (7.12)

28 C8H8N2O2 C4H5ClSn(OH)2 Et3N 75 200-201 374 Soluble O

NN H

OSnClC4H9

38.60 (38.62)

4.05 (3.98)

7.50 (7.51)

Page 108: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

85

Table 2.5: Physical data of diorganotin(IV) complexes of N′-(5-bromo-2-hydroxybenzylidene)formohydrazide (H2Le)

Reactants Elemental Analysis % Calculated(Found) Comp.

No. Reactant 1 Reactant 2 Reactant 3

Yield (%)

Melting point oC

Formula mass

Solubility Toluene, DMSO, CHCl3

Structural formula C H N

29 C8H7BrN2O2 (CH3)2SnCl2 Et3N 82 108-110 390 Soluble O

NN H

OSnCH3H3C

Br

30.81 (30.79)

2.84 (2.81)

7.19 (7.21)

30 C8H7BrN2O2 (C2H5)2SnCl2 Et3N 80 83-84 418 Soluble O

NN H

OSnC2H5C2H5

Br

34.49 (34.51)

3.62 (3.59)

6.70 (6.68)

31 C8H7BrN2O2 (C4H9)2SnCl2 Et3N 80 Liquid 474 Miscible O

NN H

OSnC4H9C4H9

Br

40.54 (40.49)

4.89 (4.91)

5.91 (5.92)

32 C8H7BrN2O2 (C6H5)2SnCl2 Et3N 80 146-148 514 Soluble O

NN H

OSnC6H5C6H5

Br

46.74 (46.77)

2.94 (2.89)

5.45 (5.42)

33 C8H7BrN2O2 (C8H17)2SnO Et3N 75 Liquid 586 Miscible O

NN H

OSnC8H17C8H17

Br

49.17 (49.15)

6.71 (6.69)

4.78 (4.82)

34 C8H7BrN2O2 (tert-C4H9)2SnCl2 Et3N 82 77-79 474 Soluble O

NN H

OSnC(CH3)3(H3C)3C

Br

40.54 (40.51)

4.89 (4. 19)

5.91 (5.89)

35 C8H7BrN2O2 C4H5ClSn(OH)2 Et3N 78 215-216 452 Soluble O

NN H

OSnClC4H9

Br

31.86 (31.88)

3.12 (3.10)

6.19 (6.20)

Page 109: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

86

Table 2.6: Physical data of diorganotin(IV) complexes of N′-(2-hydroxy-3-methoxybenzylidene)formohydrazide (H2Lf)

Reactants Elemental Analysis % Calculated(Found) Comp.

No. Reactant 1 Reactant 2 Reactant 3

Yield (%)

Melting point oC

Formula mass

Solubility Toluene, DMSO, CHCl3

Structural formula C H N

36 C9H10N2O3 (CH3)2SnCl2 Et3N 84 140-141 342 Soluble O

NN H

OSnCH3H3C

OCH3

38.75 (38.78)

4.14 (4.12)

8.22 (8.19)

37 C9H10N2O3 (C2H5)2SnCl2 Et3N 88 182-183 370 Soluble O

NN H

OSnC2H5C2H5OCH3

42.31 (42.28)

4.92 (4.90)

7.59 (7.56)

38 C9H10N2O3 (C4H9)2SnCl2 Et3N 78 52-54 426 Soluble O

NN H

OSnC4H9C4H9OCH3

48.03 (47.99)

6.16 (6.13)

6.59 (6.60)

39 C9H10N2O3 (C6H5)2SnCl2 Et3N 82 120-121 466 Soluble O

NN H

OSnC6H5C6H5OCH3

54.23 (54.21)

3.90 (3.91)

6.02 (6.05)

40 C9H10N2O3 (C8H17)2SnO Et3N 75 70-72 538 Soluble O

NN H

OSnC8H17C8H17OCH3

55.88 (55.91)

7.88 (7. 86)

5.21 (5.23)

Continued ………

Page 110: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

87

41 C9H10N2O3 (t-C4H9)2SnCl2 Et3N 80 120-121 426 Soluble O

NN H

OSnC(CH3)3(H3C)3C

OCH3

48.03 (48.06)

6.16 (6.20)

6.59 (6.61)

42 C9H10N2O3 C4H5ClSn(OH)2 Et3N 77 210-212 404 Soluble O

NN H

OSnClC4H9OCH3

38.70 (38.68)

4.25 (4.21)

6.94 (6.91)

Page 111: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

88

Table 2.7: Physical data of diorganotin(IV) complexes of N′-(4-(diethylamino)-2-hydroxybenzylidene)formohydrazide (H2Lg)

Reactants Elemental Analysis % Calculated(Found) Comp.

No. Reactant 1 Reactant 2 Reactant 3

Yield (%)

Melting point oC

Formula mass

Solubility Toluene, DMSO, CHCl3

Structural formula C H N

43 C12H17N3O2 (CH3)2SnCl2 Et3N 84 115-116 383 Soluble O

NN H

OSnCH3H3C

(C2H5)2N

44.01 (43.96)

5.54 (5.57)

11.00 (10.97)

44 C12H17N3O2 (C2H5)2SnCl2 Et3N 88 194-197 411 Soluble O

NN H

OSnC2H5C2H5

(C2H5)2N

46.86 (46.90)

6.14 (6.17)

10.25 (10.22)

45 C12H17N3O2 (C4H9)2SnCl2 Et3N 78 218-220 467 Soluble O

NN H

OSnC4H9C4H9

(C2H5)2N

51.53 (51.50)

7.13 (7.09)

9.01 (8.99)

46 C12H17N3O2 (C6H5)2SnCl2 Et3N 82 166-167 507 Soluble O

NN H

OSnC6H5C6H5

(C2H5)2N

56.95 (56.97)

4.98 (4.95)

8.30 (8.28)

47 C12H17N3O2 (t-C4H9)2SnCl2 Et3N 80 87-88 467 Soluble O

NN H

OSnC(CH3)3(H3C)3C

(C2H5)2N

51.53 (51.49)

7.13 (7.09)

9.01 (9.03)

Page 112: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

89

Table 2.8: Physical data of diorganotin(IV) complexes of N′-(2-hydroxynaphthalen-1-yl)methylene)formohydrazide (H2Lh)

Reactants Elemental Analysis % Calculated(Found) Comp.

No. Reactant 1 Reactant 2 Reactant 3

Yield (%)

Melting point oC

Formula mass

Solubility Toluene, DMSO, CHCl3

Structural formula C H N

48 C12H10N2O2 (CH3)2SnCl2 Et3N 82 119-120 362 Soluble

O

NN H

OSnCH3H3C

46.58 (46.61)

3.91 (3.87)

7.76 (7.73)

49 C12H10N2O2 (C6H5)2SnCl2 Et3N 75 132-134 486 Soluble

O

NN H

OSnC6H5C6H5

59.42 (59.45)

3.74 (3.77)

5.77 (5.73)

50 C12H10N2O2 (C(CH3)3)2SnCl2 Et3N 78 107-109 446 Soluble

O

NN H

OSnC(CH3)3(H3C)3C

53.96 (53.99)

5.89 (5.86)

6.29 (6.31)

Page 113: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

90

Table 2.9: Physical data of diorganotin(IV) complexes of N′-(1-(5-bromo-2-hydroxyphenyl)ethylidene)formohydrazide (H2Li)

Reactants Elemental Analysis % Calculated(Found) Comp.

No. Reactant 1 Reactant 2 Reactant 3

Yield (%)

Melting point oC

Formula mass

Solubility Toluene, DMSO, CHCl3

Structural formula C H N

51 C9H9BrN2O2 (CH3)2SnCl2 Et3N 82 129-131 404 Soluble O

NN H

OSnCH3H3C

Br

32.71 (32.69)

3.24 (3.21)

6.94 (6.97)

52 C9H9BrN2O2 (C4H9)2SnCl2 Et3N 78 94-96 488 Soluble O

NN H

OSnC4H9C4H9

Br

41.84 (41.81)

5.16 (5.18)

5.74 (5.71)

53 C9H9BrN2O2 (C6H5)2SnCl2 Et3N 80 118-123 528 Soluble O

NN H

OSnC6H5C6H5

Br

47.77 (47.75)

3.25 (3.29)

5.31 (5.33)

Page 114: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

91

Table 2.10: Physical data of diorganotin(IV) complexes of N′-(2-hydroxybenzylidene)-4-tert-butylbenzohydrazide (H2Lj)

Reactants Elemental Analysis % Calculated(Found) Comp.

No. Reactant 1 Reactant 2 Reactant 3

Yield (%)

Melting point oC

Formula mass

Solubility Toluene, DMSO, CHCl3

Structural formula C H N

54 C18H20N2O2 (CH3)2SnCl2 Et3N 84 118-120 444 Soluble O

NN

OSnCH3H3C

C(CH3)3

54.21 (54.25)

5.46 (5.49)

6.32 (6.29)

55 C18H20N2O2 (C2H5)2SnCl2 Et3N 88 Paste 472 Soluble O

NN

OSnC2H5C2H5

C(CH3)3

56.08 (56.11)

5.99 (6.03)

5.95 (5.93)

56 C18H20N2O2 (C4H9)2SnCl2 Et3N 78 72-75 528 Soluble O

NN

OSnC4H9C4H9

C(CH3)3

59.22 (59.26)

6.88 (6.84)

5.31 (5.35)

57 C18H20N2O2 (C6H5)2SnCl2 Et3N 82 151-153 568 Soluble O

NN

OSnC6H5C6H5

C(CH3)3

63.52 (63.49)

4.98 (5.01)

4.94 (4.91)

58 C18H20N2O2 (C8H17)2SnO Et3N 75 Viscous liquid 640 Soluble

O

NN

OSnC8H17C8H17

C(CH3)3

63.86 (63.89)

8.20 (8.18)

4.38 (4.41)

Continued ………….

Page 115: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

92

59 C18H20N2O2 (t-C4H9)2SnCl2 Et3N 80 137-138 528 Soluble O

NN

OSnC(CH3)3(H3C)3C

C(CH3)3

59.22 (59.19)

6.88 (6.91)

5.31 (5.28)

60 C18H20N2O2 C4H5ClSn(OH)2 Et3N 77 143-144 506 Soluble O

NN

OSnClC4H9

C(CH3)3

52.26 (52.23)

5.38 (5.34)

5.54 (5.53)

Page 116: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

93

Table 2.11: Physical data of diorganotin(IV) complexes of N1′, N6′-bis(2-hydroxybenzylidene)adipohydrazide (H4Lk)

Reactants Yield (%)

Elemental Analysis % Calculated(Found) ) Comp.

No. Reactant 1 Reactant 2 Reactant 3

Melting point oC

Formula mass

Solubility Toluene, DMSO, CHCl3

Structural formula C H N

61 C20H22N4O4 (CH3)2SnCl2 Et3N 78 201-202 678 Soluble

O

NN

OSn

H3C CH3

O

NN

OSn

CH3H3C

(CH2)4

42.65 (42.61)

4.47 (4.45)

8.29 (8.31)

62 C20H22N4O4 (C2H5)2SnCl2 Et3N 72 144-145 734 Soluble

O

NN

OSn

C2H5 C2H5

O

NN

OSn

C2H5C2H5

(CH2)4

45.94 (45.91)

5.23 (5.22)

7.65 (7.69)

63 C20H22N4O4 (C4H9)2SnCl2 Et3N 75 88-90 846 Soluble

O

NN

OSn

C4H9 C4H9

O

NN

OSn

C4H9C4H9

(CH2)4

51.21 (51.19)

6.45 (6.41)

6.64 (6.60)

Continued………….

Page 117: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

94

64 C20H22N4O4 (C6H5)2SnCl2 Et3N 76 186-188 926 Soluble

O

NN

OSn

C6H5 C6H5

O

NN

OSn

C6H5C6H5

(CH2)4

57.18 (57.21)

4.14 (4.09)

6.06 (6.08)

65 C20H22N4O4 (C8H17)2SnO − 72 Viscous liquid 1070 Soluble

O

NN

OSn

C8H17 C8H17

O

NN

OSn

C8H17C8H17

(CH2)4

58.44 (58.39)

8.11 (8.09)

5.24 (5.27)

66 C20H22N4O4 C4H5ClSn(OH)2 − 75 130-132 802 Soluble

O

NN

OSn

C4H9 Cl

O

NN

OSn

ClC4H9

(CH2)4

41.99 (42.01)

4.53 (4.56)

7.00 (6.98)

Page 118: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

95

Table 2.12: Physical data of diorganotin(IV) complexes of N1′, N6′-bis(5-bromo-2-hydroxybenzylidene)adipohydrazide (H4Ll)

Quantities Used Elemental Analysis % Calculated(Found) Comp.

No. Reactant 1 Reactant 2 Reactant 3

Yield (%)

Melting point oC

Formula mass

Solubility Toluene, DMSO, CHCl3

Structural formula C H N

67 C20H20Br2N4O4 (CH3)2SnCl2 Et3N 80 215-217 834 Soluble

O

NN

OSn

H3C CH3

O

NN

OSn

CH3H3C

(CH2)4

Br

Br

34.57 (34.60)

3.39 (3.41)

6.72 (6.74)

68 C20H20Br2N4O4 (C2H5)2SnCl2 Et3N 78 194-196 890 Soluble

O

NN

OSn

C2H5 C2H5

O

NN

OSn

C2H5C2H5

(CH2)4

Br

Br

37.79 (37.77)

4.08 (4.10)

6.30 (6.32)

69 C20H20Br2N4O4 (C4H9)2SnCl2 Et3N 78 99-101 1002 Soluble

O

NN

OSn

C4H9 C4H9

O

NN

OSn

C4H9C4H9

(CH2)4

Br

Br

43.15 (43.17)

5.23 (5.20)

5.59 (5.61)

Continued ……….

Page 119: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

96

70 C20H20Br2N4O4 (C6H5)2SnCl2 Et3N 77 270-272 1082 Soluble

O

NN

OSn

C6H5 C6H5

O

NN

OSn

C6H5C6H5

(CH2)4

Br

Br

48.84 (48.81)

3.35 (3.38)

5.18 (5.21)

71 C20H20Br2N4O4 (C8H17)2SnO − 76 Viscous liquid 1226 Soluble

O

NN

OSn

C8H17 C8H17

O

NN

OSn

C8H17C8H17

(CH2)4

Br

Br

50.92 (50.89)

6.90 (6.87)

4.57 (4.55)

72 C20H20Br2N4O4 C4H5ClSn(OH)2 − 70 140-143 958 Soluble

O

NN

OSn

C4H9 Cl

O

NN

OSn

ClC4H9

(CH2)4

Br

Br

35.08 (35.05)

3.57 (3.60)

5.84 (5.80)

Page 120: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

97

Table 2.13: Physical data of diorganotin(IV) complexes of N1′, N6′-bis(2-hydroxy-3-methoxybenzylidene)adipohydrazide (H4Lm)

Quantities Used Elemental Analysis % Calculated(Found) Comp.

No. Reactant 1 Reactant 2 Reactant 3

Yield (%)

Melting point oC

Formula mass

Solubility Toluene, DMSO, CHCl3

Structural formula C H N

73 C22H26N4O6 (CH3)2SnCl2 Et3N 75 206-207 738 Soluble

O

NN

OSn

H3C CH3

O

NN

OSn

CH3H3C

(CH2)4

OCH3

OCH3

42.43 (42.46)

4.66 (4.64)

7.61 (7.58)

74 C22H26N4O6 (C2H5)2SnCl2 Et3N 78 180-181 794 Soluble

O

NN

OSn

C2H5 C2H5

O

NN

OSn

C2H5C2H5

(CH2)4

OCH3

OCH3

45.49 (45.44)

5.34 (5.31)

7.07 (7.10)

75 C22H26N4O6 (C4H9)2SnCl2 Et3N 78 108-110 906 Soluble

O

NN

OSn

C4H9 C4H9

O

NN

OSn

C4H9C4H9

(CH2)4

OCH3

OCH3

50.47 (50.49)

6.46 (6.42)

6.20 (6.22)

Continued ……..

Page 121: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

98

76 C22H26N4O6 (C6H5)2SnCl2 Et3N 78 191-194 986 Soluble

O

NN

OSn

C6H5 C6H5

O

NN

OSn

C6H5C6H5

(CH2)4

OCH3

OCH3

56.13 (56.09)

4.30 (4.28)

5.69 (5.70)

77 C22H26N4O6 (C8H17)2SnO − 72 56-60 1130 Soluble

O

NN

OSn

C8H17 C8H17

O

NN

OSn

C8H17C8H17

(CH2)4

OCH3

OCH3

57.46 (57.43)

8.04 (7.99)

4.96 (4.94)

78 C22H26N4O6 C4H5ClSn(OH)2 − 74 152-155 862 Soluble

O

NN

OSn

C4H9 Cl

O

NN

OSn

ClC4H9

(CH2)4

OCH3

OCH3

41.85 (41.89)

4.68 (4.67)

6.51 (6.48)

Page 122: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

99

Table 2.14: Physical data of diorganotin(IV) complexes of N1′, N4′-bis(2-hydroxybenzylidene)succinohydrazide (H4Ln)

Quantities Used Elemental Analysis % Calculated(Found) Comp.

No. Reactant 1 Reactant 2 Reactant 3

Yield (%)

Melting point oC

Formula mass

Solubility Toluene, DMSO, CHCl3

Structural formula C H N

79 C18H18N4O4 (CH3)2SnCl2 Et3N 75 233-235 650 Soluble

O

NN

OSn

H3C CH3

O

NN

OSn

CH3H3C

(CH2)2

40.78 (40.81)

4.04 (4.01)

8.65 (8.68)

80 C18H18N4O4 (C2H5)2SnCl2 Et3N 72 104-108 706 Soluble

O

NN

OSn

C2H5 C2H5

O

NN

OSn

C2H5C2H5

(CH2)2

44.36 (44.39)

4.87 (4.90)

7.96 (7.91)

81 C18H18N4O4 (C4H9)2SnCl2 Et3N 78 Paste 818 Soluble

O

NN

OSn

C4H9 C4H9

O

NN

OSn

C4H9C4H9

(CH2)2

50.03 (49.98)

6.17 (6.20)

6.86 (6.84)

Continued………

Page 123: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

100

82 C18H18N4O4 (C6H5)2SnCl2 Et3N 78 236-238 898 Soluble

O

NN

OSn

C6H5 C6H5

O

NN

OSn

C6H5C6H5

(CH2)2

56.29 (56.31)

3.82 (3.79)

6.25 (6.21)

83 C18H18N4O4 (C8H17)2SnO − 72 Paste 1042 Soluble

O

NN

OSn

C8H17 C8H17

O

NN

OSn

C8H17C8H17

(CH2)2

57.71 (57.68)

7.94 (7.97)

5.38 (5.40)

84 C18H18N4O4 (t-C4H9)2SnCl2 Et3N 70 128-133 818 Soluble

O

NN

OSn

(H3C)3C C(CH3)3

O

NN

OSn

C(CH3)3(H3C)3C

(CH2)2

50.03 (49.98)

6.17 (6.21)

6.86 (6.84)

Page 124: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

101

Table 2.15: Physical data of mixed ligand dimethyltin(IV) Complexes

Quantities Used Elemental Analysis % Calculated(Found) Comp.

No. Reactant 1 Reactant 2 Reactant 3 Reactant 4

Melting point oC

Yield (%)

Structural formula with IUPAC Name C H N

85 C8H8N2O2 (CH3)2SnCl2 Et3N bipy 81-82 70 O

NN

O

H

SnH3CCH3

NN

51.43 (51.40)

4.32 (4.29)

11.99 (11.96)

86 C9H10N2O3 (CH3)2SnCl2 Et3N bipy 115-118 72

O

NN

O

H

SnH3CCH3

OCH3N

N

50.74 (50.77)

4.46 (4.43)

11.27 (11.30)

Page 125: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

102

2.6 Biological studies

2.6.1 Cytotoxicity

The cytotoxicity of the compounds was studies by the Brine shrimp lethality

bioassay [9]. Brine shrimps (Artemia salina) were hatched using brine shrimp eggs in

a vessel, filled with sterile simulated seawater (prepared using sea salt 38 g.L-1and

adjusted to pH 8.5 using 1M NaOH) at room temperature 22−29 °C) under constant

aeration for two days. After hatching, thirty active nauplii were drawn through a glass

capillary and placed in a vial containing 4.5 mL of brine solution and a drop of yeast

suspension. In each experiment, 0.5 mL of the test solution was added to the vial and

maintained at ambient temperature for 24 h, the surviving larvae were counted. All the

experiments with different concentrations (1, 10, 100 µg mL-1) of the test substances

were conducted in triplicate and compared with the control. Data were analyzed with

Finney’s probit analysis to determine the LD50 [10]. Etoppside was used as the

standard drug.

2.6.2 Antifungal activity

The synthesized compounds were also screened for antifungal activity against

six fungi strains [Trichophyton longifusus, Candida albicans, Aspergillus flavis,

Microsporum canis, Fusarium solani, Candida glaberata] using the agar tube dilution

test [11]. Miconazole and Amphotericin B were used as standard drugs for

comparison.

Stock solutions of pure compounds (200 µg/mL) were prepared in sterilized

DMSO. Sabouraud dextrose agar was prepared by mixing Sabouraud (32.5 g),

glucose agar (4%) and agar-agar (20 g) in 500 mL of distilled water followed by

dissolution at 90-95 °C on a water bath. The media (4 ml) was dispensed into screw-

capped tubes and autoclaved at 121°C for 15 min. Known amounts of test compounds

were added from the stock solution to non-solidified Sabouraud agar media (50 °C).

The contents of the tubes were then solidified at room temperature and inoculated

with 4 mm diameter portion of inoculums derived from a 7 days old respective fungal

culture. For non-mycelial growth, an agar surface streak was employed. The tubes

were incubated at 27−29 °C for 7−10 days and growth in the compound containing

Page 126: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

103

media was determined by measuring the linear growth (in mm) and growth inhibition

with reference to the respective control.

2.6.3 Antibacterial activity

The synthesized compounds were tested for antibacterial activity against

different bacterial strains including, Escherichia coli, Bacillus subtilis, Shigella

flexenari, Stephlococcus aureus, Pseudomonas aeruginosa and Salmonella typhi

using the agar well diffusion method [11]. Imipenum was used as standard drug and

the wells (6 mm in diameter) were dug in the media with the help of a sterile metallic

borer. Two to eight hours old bacterial inoculums containing approximately 104−106

colony forming units (CFU)/mL were spread on the surface of a nutrient agar with the

help of a sterile cotton swab. The recommended concentration of the test sample (2

mg/mL in DMSO) was introduced into the respective wells. Other wells

supplemented with DMSO and reference antibacterial drug served as negative and

positive controls, respectively. The plates were incubated immediately at 37 °C for 20

h. The activity was determined by measuring the diameter of the inhibition zone (in

mm), showing complete inhibition. Growth inhibition was calculated with reference

to the positive control.

2.6.4 Antiurease activity

Some representative compounds were also screened for their antiurease

activity. The spectrophotometric continuous rate determination microtiter-plate urease

inhibition assay by the indole method was used for this purpose. Reagent solutions

(A−G) were prepared as given below [11]:

A. 1.141 g potassium phosphate trihydrate, 0.212 g lithium chloride and 0.19

g of ethylenediaminetetraacetic acid tetrasodium salt hydrate were

dissolved in 500 mL of solution, the pH was adjusted to 8.2 at 30 °C.

B. 0.396 g of urea was dissolved in 100 mL of Reagent A to obtain 66 mM

urea solution.

C. Phenol−Nitroprusside solution was prepared by dissolving 1.2 g of phenol

and 0.002 g sodium nitroprusside in 20 mL of de-ionized water.

D. Alkali hypochlorite solution was prepared by dissolving 0.35 mL of

sodium hypochlorite solution and 0.4 g of sodium hydroxide in 50 mL of

water.

Page 127: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

104

E. 2.50 mM ammonia calibration standard solution was prepared in 25 mL

de-ionized water using ammonium sulphate.

F. Urease enzyme solution containing 2 units or 4.08 µg / well of urease was

prepared is reagent A

G. 1 mM solutions of test samples were prepared in DMSO

4 µL of test sample and 40 µL of reagent F were taken into a 96 well

microtiter plate and incubated at 30 °C for 30 minutes. Then 40 µL of reagent B was

added and again incubated at 30 °C for 15 minutes. The 46 µL and 70 µL of reagent C

and D, respectively were added and absorption readings taken after every 2 minutes.

The extinction of developed color at A630 nm for 96-well plate was recorded using

SpectraMax 340 Microplate Reader (Molecular Devices, USA). The ammonia

concentrations were calculated form linear regression curves obtained with each

measurement. The percentage inhibition was calculated using the following formula:

% Inhibition of Enzyme's Activity = 100 – ( A630nm Test / A630nm Blank × 100)

2.6.5 Leishmanicidal activity

Leishmania major (MHOM/PK/88/DESTO) promastigotes, cultivated in bulk

were aseptically sedimented down at 300 rpm, counted with the help of improved

Neubaver chamber under the microscope and diluted with the fresh medium to a final

concentration of 2 x 106 parasites/mL. The compounds to be checked were dissolved

to a final concentration of 1.0 mg in 0.1 mL of PBS (Phosphate Buffered Saline, pH

7.4 containing 0.5% MeOH, 0.5% DMSO). In a 96-well microtiter plate, 90 mL of the

parasite culture (2 x 106 parasites/mL) was added in different wells. 10 mL of the

experimental compound was added in culture and serially diluted so that minimum

concentration of the compound is 0.1 mg/mL. 10 mL of PBS was added as negative

control while glucantime, amphotericin B, pentamidine and ampicilline to a final

concentration of 1.0 mg/mL was added separately as positive control. The plate was

incubated between 21– 22 °C in the dark for 5 days during which control organisms

multiplied 6 times. The culture was examined microscopically on an improved

Neubaver chamber and IC50 values of compounds possessing antileishmanial activity

were calculated [12].

Page 128: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

105

2.6.6 DNA binding studies

The DNA binding parameters of dimethyltin(IV) [N′-(2-oxidobenzylidene)-N-

(oxidomethylene)hydrazine] (22), dibutyltin(IV) [N′-(2-oxidobenzylidene)-N-(oxido-

methylene)hydrazine] (24) and diphenyltin(IV) [N′-(2-oxidobenzylidene)-N-

(oxidometh-ylene)hydrazine] (25) were studied by cyclic voltammetry and electronic

absorption spectroscopy. DNA was extracted from chicken blood by Falcon method

[13].The purity of DNA was spectroscopically determined from the ratio of

absorbance at 260 and 280 nm (A260/A280 = 1.85). The concentration of the stock

solution of DNA (2.5 mM in nucleotide phosphate, NP) was determined by

monitoring the absorbance at 260 nm using the molar extinction coefficient (ε) of

6600 M-1cm-1. Cyclic voltammograms of 3.00 mM of each diorganotin(IV) complex

in 10% aqueous DMSO with 0.1 M Tetra-n-butyl ammonium perchlorate (TBAP) as

supporting electrolyte was obtained in the absence and presence of 50 µM DNA at 25

oC at a scan rate of 100 mV/s. The working electrode (Glassy carbon) with a

geometric area of 0.071 cm2 was used. Absorption spectra of 0.2 mM of each

diorganotin(IV) complex in the absence and presence of 5 µM, 10 µM, 15 µM, 20

µM, and 25 µM DNA were also obtained.

Page 129: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

106

REFERENCES

[1] W. L. F. Armarego, C. L. L. Chai, in “Purification of Laboratory Chemicals”,

5th Edn., Butterworth-Heinemann, London, New York, 2003.

[2] B. Wrackmeyer, Annu. Rep. NMR Spectrosc. 203 (1999) 38.

[3] Bruker, SMART, SAINTPLUS & SADABS. Area Detector Control and

Integration Software. Smart Apex Software Reference Manuals. Bruker

Analytical X-ray Instruments. Inc., Madison, Wisconsin, USA (2007).

[4] P. T. Beurskens, G. Beurskens, R. de Gelder, J. M. M. Smits, S. García-

Granda, R.O. Gould, The DIRDIF-08 program system, Crystallography Labo-

ratory, University of Nijmegen, The Netherlands (2008).

[5] G. M. Sheldrick, Acta Cryst. A64 (2008) 112.

[6] M. C. Burla, R. Caliandro, M. Camalli, , B. Carrozzini, G. L. Cascarano, L. De

Caro, C. Giacovazzo, G. Polidori, R. Spagna, SIR2004. An improved tool for

crystal structure determination and refinement.

[7] A. Meetsma, PLUTO. Molecular Graphics Program. Version of July 2008.

University of Groningen, The Netherlands (2008).

[8] A. L. Spek, PLATON. Program for the Automated Analysis of Molecular

Geometry (A Multipurpose Crystallographic Tool). Version of July 2008.

University of Utrecht, The Netherlands (2008).

[9] B. N. Meyer, N. R. Ferrigni, J. E. Putnam, L. B. Jacobson, D. E. Nichols, J. L.

McLaughlin, Planta Med., 45 (1982) 31.

[10] D. J. Finney, Probit analysis. 3rd Ed. Cambridge: Cambridge University Press,

(1971).

[11]. A. Rahman, M. I. Choudhary, W. J. Thomsen, in ‘Bioassay Techniques for

Drug Development’, Harward Academic Press, Amsterdam, (2001) 14.

[12] K. M. Khan, M. Rasheed, Z. Ullah, S. Hayat, F. Kaukab, M. I. Choudhary,

A. Rahman, S. Perveen, Bioorg. Med. Chem., 11 (2003) 1381.

[13] J. Sambrook, E. F. Fritsch, T. Maniatis, Molecular cloning:a laboratory

manual 2nd Ed. cod. Spring harbour laboratory press New York. 1989.

Page 130: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

107

Chapter−3 RESULTS AND DISCUSSIONS

3.1 Synthesis of organotin(IV) complexes

The organotin(IV) complexes with [O,O] and [O,N,O] potential donor ligands

were synthesized in good yields by the procedures described in section 2.3. All the

synthesized free ligands are crystalline, having sharp melting points and are stable in

open air. The di- and triorganotin(IV) carboxylates (1−21) were synthesized by

adopting schemes 2.5 and 2.6, respectively. All the compounds are crystalline solids

with few exceptions (10, 11 and 14) which are viscous liquids. The diorganotin(IV)

derivatives with [O,N,O] donor tridentate and hexadentate ligands (22−84) were

synthesized by using schemes 2.7−2.9. Two mixed ligand complexes (85, 86) were

also synthesized by adopting scheme 2.10. All complexes are solids except some

dialkyl derivatives. The complexes are stable in air and soluble in common organic

solvents like chloroform, dichloromethane, toluene, DMSO etc. All the synthesized

compounds have been characterized by various analytical techniques such as

elemental analysis, FT-IR, multinuclear NMR (1H, 13C and 119Sn), mass spectrometry

and single crystal XRD, to ascertain their structures. The compounds were screened

for their cytotoxicity, antifungal, antibacterial, antiurease and leishmanicidal

activities. The interaction of some representative organotin(IV) derivatives with

deoxyribonucleic acid (DNA) have been studied using cyclic voltammetric and

ultraviolet spectroscopy. The DNA binding parameters, Gibbs free energies and

diffusion coefficients were also calculated.

3.2 Infrared spectra

Infrared spectra of the synthesized ligands (H2La−H4Ln) and their

organotin(IV) complexes (1−86) have been recorded as KBr pellets or neat liquids in

the range of 4000-400 cm−1. The coordination mode of the [O,O] and [O,N,O] donor

ligands towards the di- and triorganotin(IV) moieties can be inferred by comparing

the infrared spectra of free ligands and their organotin(IV) complexes. Frequencies

assigned to νasym(COO), νsym(COO), ν(OH), ν(C=O) and have been identified in the

synthesized compounds. The data is reported together with bands assigned to

ν(Sn−C), ν(Sn−N) and ν(Sn−O) in the experimental section. The explicit feature

Page 131: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

108

observed in the spectra of complexes (1−22) is the disappearance of the ν(O−H)

(broad band) in the range of 2504−3034 cm−1, due to deprotonation of the carboxylic

group and the subsequent metal-ligand bond formation through this site. However, a

wide and strong band at 3424−3475 cm−1, assigned to the ν(O−H) of salicyldehyde

moiety confirms that the phenolic OH group is not participating in the complex

formation. Several new bands observed in the far−IR region of the tin complexes

around 450 cm−1 and 527−575 cm−1 are assigned to ν(Sn–O) and ν(Sn–C),

respectively. They also support the formation of the complexes [1−9]. In the IR

spectra of free ligands (H2La−H2Lc) and the organotin(IV) complexes (1−22) the

ν(COO)asym and ν(COO)sym vibrational bands can be used to determine the

coordination mode of the carboxylate moiety [10−12]. The variation of coordination

geometry around the tin atom from four to any higher number, changes the

νasym(COO) and νsym(COO) frequencies causing a decrease in the ∆ν [Äí = (íasym-

ísym)] value [13, 14]. The ∆ν values can be divided into three groups:

(i) Äí(COO) > 350 monodentate carboxylate group

(ii) Äí(COO) < 200 bidentate carboxylate group

(iii) Äí(COO) = 200-350 anisobidentate carboxylate group [15].

The carboxylate group in the organotin(IV) derivatives generally adopt a

bridged structure in the solid state unless the organic substituents at tin are bulky or

unless the carboxylate group is branched at the α-carbon [16]. The magnitude of Äí in

the synthesized organotin(IV) derivatives with the [O,O] donor ligands is < 200 cm−1,

indicating the bidentate coordination mode of the carboxylate group. Based on the

crystallographic evidence, it can be concluded that diorganotin(IV) and

triorganotin(IV) derivatives adopt a skewtrapezoidal and distorted trigonal bipyramid

geometry (Fig. 3.1). In the IR spectra of complexes (23−86), the broad band observed

around 3400 cm−1 for the í(O–H) in the free ligands (H2Ld−H2Ln), is absent. Since the

ligands also undergo tautomeric changes before complexation, therefore the single

band in the region of 1680−1701 cm-1 due to í(C=O) in the infrared spectra of ligands

(H2Ld−H2Ln), also disappears. The strong í(CH=N) bands of the ligands at 1631–

1635 cm−1 shift to lower frequencies (1600–1615 cm−1) in the complexes, suggesting

the coordination of the azomethine nitrogen to the tin atom [17]. In the

Page 132: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

109

diorganotin(IV) derivatives of hydrazones and dihydrazones (23−84), the ν(Sn−O)

and ν(Sn−N) bands appear in the range of 550−580 cm−1 and 440−482 cm−1 [18].

Sn

O

O

O

O

CC RR

R

R

Sn

O

O

C R

RR

R

(a) (b)

(c)

Figure 3.1: Proposed structures of (a) diorganotin(IV) dicarboxylates, (b) tri- organotin(IV) carboxylate, (c) polymeric structure of triorgano tin(IV) carboxylate.

3.3 NMR spectroscopy

Nuclear magnetic resonance (NMR) spectroscopy is an established technique

for the structural analysis of organotin compounds, where the values of nJ(119Sn,1H) nJ(119Sn,13C) and δ(119Sn) are especially important for the elucidation of coordination

geometry around tin [19].

3.3.1 1H NMR spectroscopy

The 1H NMR spectra of the [O,O] and [O,N,O] donor ligands along with their

organotin(IV) derivatives have been recorded in DMSO and CDCl3. The signals are

assigned by their distinct multiplicity patterns, resonance intensities, nJ-values and the

satellites. The 1H NMR integration values are consistent with the formulation of the

products. The spectroscopic data of the free ligands and their organotin(IV)

complexes are reported in Tables 3.1−3.14. Representative spectra are given in fig.

3.2−3.4.

O C

O Sn O

C

O Sn

R

R

R

R

R R

R R

Page 133: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

110

In the 1H NMR spectra of the [O,O] donor free ligands (H2La−H2Lc), a single

resonance is observed around 10 ppm which is absent in the spectra of the complexes

(1–21), indicating the replacement of the carboxylic acid proton by an alkyltin moiety

on complex formation. However, the singlet in the region of 12.2−13.41 ppm is

retained in all the complexes, which strongly suggests that the phenolic oxygen is not

involved in the bonding with the tin atom. Similarly the azomethine nitrogen does not

participate in the coordination because there is no shift of the NMR signal of the

azomethine proton [20]. It resonates between 8.2−8.5 ppm both in the free ligands and

in the organotin complexes. Signals for the rest of the protons appear with the same

chemical shift as in the ligands.

In the 1H NMR spectra of the [O,N,O] donor tridentate and hexadentate

ligands the appearance of phenolic –OH, –NH and –CH=N− signals can be observed

in the range of 12.20−13.80, 8.21−8.60 and 8.01−8.95 ppm, which demonstrates that

the carbonyl group is retained and the molecules predominantly exist as hydrazone or

dihydrazone. In the three hydrazones (H2Ld, H2Le and H2Lf) the formyl hydrogen

resonates in the region of 11.0−11.5 ppm. In all organotin(IV) derivatives (22−86) the

–OH, –NH and –CHO signals disappear because the molecules undergo a tautomeric

change and coordinate with the organotin(IV) moiety through the phenolic oxygen,

enolic oxygen and imine nitrogen, forming five membered and six membered chelate

rings. The coordination of the tin atom with the azomethine nitrogen deshields the

azomethinic proton and a downfield shift of the resonance signal is observed. The

coordination is further confirmed by the appearance of tin satellites around the –

CH=N− signals in the region of 8.35−9.58 ppm with 3J[119Sn,1H] values of 37−55 Hz

[21-23]. The observed 3J[119Sn, 1H) coupling indicates that the tin nucleus is located in

a trans position to the azomethine proton [24].

The methyl protons of the dimethyl- and trimethyltin(IV) derivatives with

[O,O] and dimethylorganotin(IV) derivatives with [O,N,O] donor ligands appear as

singlets with well defined satellites in the range of 0.37−0.98, 0.54−0.55 and

0.76−0.88 ppm. The α-CH2 protons of the diethyltin(IV) compounds resonate as a

quartet/multiplet in the range of 1.41-1.54 ppm, while the β-CH3 protons resonate as a

triplet at 1.24−1.32 ppm with 3J(1H,1H) = 7.2−8.1 Hz. The protons of n-butyltin and

phenyltin(IV) derivatives were assigned according to the literature [25,26]. Despite

the complex pattern of the 1H NMR spectra of the di- and tri-n-butyltin(IV)

Page 134: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

111

derivatives, a clear triplet due to the terminal methyl group appears in the range of

0.77−0.93 ppm [27-29]. However, α-CH2 and β-CH2 protons of di-n-butyltin appear

as multiplets in the range of 1.30−1.72 ppm, while the γ-CH2 protons appear as

multiplets or in some cases as pseudo-sextets in the range of 1.22−1.42 ppm with 3J(1H,1H) = 7.2−7.5 Hz. In the tri-n-butyltin(IV) complex, the α-CH2, β-CH2 and γ-

CH2 protons appear as multiplets in the range of 1.22−1.66 ppm. The protons of the

three methyl groups of the di-tert-butyltin(IV) complexes (27, 34, 41, 47, 50, 59, 84)

resonate as singlets in the region of 1.31−1.36 ppm with 3J[119Sn,1H] values of

104−111 Hz. The α-CH2, β-CH2 and γ-CH2 to γ′-CH2 protons of the n-octyltin(IV)

moiety give broad multiplet signals in the region of 1.19−1.77 ppm. These values are

in agreement with the values calculated by the incremental method [30]. The δ′-CH3

protons appear as a triplet in the range of 0.85−0.88 ppm with 3J(1H,1H) = 6.6−7.2 Hz.

The C−Sn−C bond angles for the dimethyl, diethyl and trimethyl derivatives in

solution are based on the 2J[119Sn,1H] coupling constants that have been calculated by

applying Lockhart equation [32]

θ = 0.0161([2J])2 – 1.32([2J]) + 133.4

The coupling constants (nJ) and the calculated C−Sn−C bond angles (θ) of some

representative complexes are provided in Tables 3.27. The data support five and four

coordination geometry around tin in the di- and triorganotin(IV) derivatives in non-

coordinating solvents [32,33]. The coupling constants 2J[119Sn,1H] are higher for the

diorganotin(IV) than for the triorganotin(IV) complexes. This increase from tri- to

diorganotin(IV) derivatives, is in agreement with the decrease of the s-character of the

C–Sn bonds from four to five-coordinated tin [34]. Apparently, the polymeric

triorganotin(IV) carboxylates do not retain their solid state structures in solution and

depolymerize to monomers forming four-coordinated species [35].

Page 135: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

112

Table 3.1: 1H NMR data of 4-((5-bromo-2-hydroxybenzylideneamino)methyl)cyclohexanecarboxylic acid (H2La)*, ɫ, ƚƚ and its organotin(IV) derivatives

Chemical Shift (ppm) Proton

H2La (1) Me2Sn(HLa)2

(2) Me3SnHLa

(3) Bu2Sn(HLa)2

(4) Bu3SnHLa

(5) Ph2Sn(HLa)2

(6) Ph3SnHLa

(7) Oct2Sn(HLa)2

1.03-2.35 (m) 1.03-2.37 (m) 1.04-2.38 (m) 1.00-2.38 (m) 1.05-2.28 (m) 1.05-2.39 (m) 1.04-2.37 (m) 1.01-2.37 (m)

−CH2− 3.50 (d, 6.3) 3.49 (d, 6.3) 3.47 (d, 6.3) 3.48 (d, 6.3) 3.47 (d, 6.3) 3.47 (d, 6.3) 3.46 (d, 6.3) 3.48 (d, 6.3)

−CH=N− 8.24 (s) 8.24 (s) 8.24 (s) 8.24 (s) 8.23 (s) 8.23 (s) 8.23 (s) 8.24 (s)

Br

6.87 (d, 8.4) 7.39

(dd, 2.7, 8.4) 7.37 (s)

6.87 (d, 8.4) 7.39

(dd, 2.4, 8.4) 7.37 (s)

6.86 (d, 8.1) 7.38

(dd, 2.4, 9.0) 7.37 (s)

6.87 (d, 8.4) 7.38

(dd, 2.4, 8.4) 7.37 (s)

6.86 (d, 8.1) 7.38

(dd, 2.4, 8.1)

6.87 (d, 8.7) 7.39

(dd, 2.4, 8.2) 7.37 (s)

6.86 (d, 8.7) 7.43-7.50 (m)

7.37 (s)

6.87 (d, 8.7) 7.39

(dd, 2.4, 8.1) 7.37 (s)

−OH − 13.60 (s) 13.29 (s) 13.70 (s) 13.71 (s) 13.66 (s) 13.80 (s) 13.64 (s)

α − 0.98 (s) [80]

0.54 [58, 56] 1.56-1.68 (m) 1.58-1.63 (m) − − 1.62-1.70 (bs)

β − − − 1.56-1.68 (m) 1.58-1.63 (m) 7.44-7.51 (m) 7.43-7.50 (m) 1.62-1.70 (bs)

γ − − − 1.31-1.38 (m) 1.30-1.37 (m) 7.44-7.51 (m) 7.43-7.50 (m) −

δ − − − 0.90 (t, 7.2) 0.92 (t,7.2) 7.70-7.73 (m) 7.71-7.74 (m) −

γ−γ′ − − − − − − − 1.26 (bs)

R

δ′ − − − − − − − 0.89 (t, 6.9) * Chemical shifts (δ) in ppm. nJ[117/119Sn, 1H], 3J(1H, 1H) in Hz are listed in square brackets and parenthesis, respectively.

ɫ Multiplicity is given as s = singlet, d = doublet, dd = doublet of doublet, m = multiplet, bs = broad signal. ƚƚ See figure 3.47 for α, β, γ, δ, α′, β′, γ′, δ′.

OH

NBr COOH

Page 136: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

113

Table 3.2: 1H NMR data of 4-((1-(2-hydroxyphenyl)ethylideneamino)methyl)cyclohexanecarboxylic acid (H2Lb)*, ɫ, ƚƚ and its organotin(IV) derivatives

Chemical Shift (ppm) Proton

H2Lb (8) Me2Sn(HLb)2

(9) Me3SnHLb

(10) Bu2Sn(HLb)2

(11) Bu3SnHLb

(12) Ph2Sn(HLb)2

(13) Ph3SnHLb

(14) Oct2Sn(HLb)2

1.03-2.10 (m) 0.98- 1.98 (m) 1.05-2.28 (m) 1.00-2.12 (m) 1.01-2.01 (m) 1.02-2.26 (m) 1.07-2.17 (m) 1.00-2.22 (m)

−CH2− 3.41 (d, 6.0) 3.40 (d, 6.0) 3.42 (d, 6.6) 3.40 (d, 6.3) 3.42 (d, 6.3) 3.40 (d, 6.3) 3.41 (d, 6.6) 3.43 (d, 6.3)

6.69-6.76 (m) 6.69-6.76 (m) 7.25 (t, 7.2) 7.62 (d, 7.8)

6.71 (t, 7.2) 6.74(d, 7.2) 7.25 (t, 8.1) 7.61 (d, 8.1)

6.75 (t, 7.5) 6.92 (d, 8.1)

7.26-7.32 (m) 7.51 (d, 8.1)

6.70-6.77 (m) 6.70-6.77 (m) 7.25 (t, 7.6) 7.61 (d, 7.8)

6.69-6.76 (m) 6.69-6.76 (m) 7.26 (t, 7.6) 7.62 (d, 7.8)

6.78 (t, 7.5) 7.21 (d, 7.5)

7.41-7.50 (m) 7.12 (d, 8.4)

6.76 (t, 7.6) 6.92 (d, 8.1) 7.30 (t, 7.6)

7.46-7.54 (m)

6.72 (d, 7.2) 6.81 (t, 7.8) 7.38 (t, 7.8) 7.50 (d, 7.8)

−CH3 2.35 (s) 2.34 (s) 2.35 (s) 2.34 (s) 2.35 (s) 2.33 (s) 2.35 (s) 2.34 (s)

−OH − 12.32 (s) 12.30 (s) 12.28 (s) 12.30 (s) 12.33 (s) 12.28 (s) 12.26 (s)

α − 0.37 (s) [70, 67]

0.54 (s) [59, 56] 1.56-1.67 (m) 1.55-1.66 (m) − − 1.62-1.60 (bs)

β − − − 1.56-1.67 (m) 1.30-1.40 (m) 7.68-7.70 (bs) 7.73-7.78 (bs) 1.62-1.60 (bs)

γ − − − 1.28-1.32 (m) 1.22-1.32 (m) 7.41-7.50 (m) 7.46-7.54 (m) −

δ − − − 0.90 (t, 7.2) 0.85 (t, 7.2) 7.41-7.50 (m) 7.46-7.54 (m) −

γ−γ′ − − − − − − − 1.25 (bs)

R

δ′ − − − − − − − 0.88(t, 6.9) * Chemical shifts (δ) in ppm. nJ[117/119Sn, 1H], 3J(1H, 1H) in Hz are listed in square brackets and parenthesis, respectively.

ɫ Multiplicity is given as s = singlet, d = doublet, dd = doublet of doublet, m = multiplet, q = quintet, bs = broad signal. ƚƚ See figure 3.47 for α, β, γ, δ, α′, β′, γ′, δ′.

OH

NCOOH

Page 137: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

114

Table 3.3: 1H NMR data of 4-((1-(5-bromo-2-hydroxyphenyl)ethylideneamino)methyl)cyclohexanecarboxylic acid (H2Lc)*, ɫ, ƚƚ and its organotin(IV) derivatives

Chemical Shift (ppm) Proton

H2Lc (15) Me2Sn(HLc)2

(16) Me3SnHLc

(17) Bu2Sn(HLc)2

(18) Bu3SnHLc

(19) Ph2Sn(HLc)2

(20) Ph3SnHLc

(21) Oct2Sn(HLc)2

1.01-2.18 (m) 1.10-2.24 (m) 1.05-2.28 (m) 1.10-2.27 (m) 1.14-2.20 (m) 1.03-2.24 (m) 1.06-2.34 (m) 1.05-2.20

−CH2− 3.44 (d, 6.3) 3.41 (d, 6.3) 3.43 (d, 6.3) 3.43 (s) 3.44 (d, 6.3) 3.42 (d, 6.6) 3.41 (d, 6.6) 3.43 (d, 6.3)

Br

6.71 (d, 9.0) 7.37

(dd, 2.7, 9.0) 7.74 (s)

6.80 (d, 8.7) 7.34

(dd, 2.7, 9.0) 7.84 (s)

6.82 (d, 9.0) 7.35

(dd, 2.7, 9.0) 7.60 (s)

6.82 (d, 8.7) 7.34

(dd, 2.7, 9.0) 7.60 (s)

6.83 (d, 8.7) 7.56

(dd, 2.4, 9.0) 7.86 (s)

6.76 (d, 9.0) 7.34

(dd, 2.4, 9.0) 7.85 (s)

6.81 (d, 8.7) 7.35

(dd, 2.4, 9.0) 7.60 (s)

6.81 (d, 8.7) 7.34

(dd, 2.4, 8.7) 7.60 (s)

−CH3 2.37 (s) 2.31 (s) 2.30 (s) 2.34 (s) 2.34 (s) 2.33 (s) 2.33 (s) 2.30 (s)

−OH − 12.16 12.20 12.14 12.20 12.21 12.18 12.20

α − 0.95 (s) 0.54 (s) [57] 1.55-1.66 (m) 1.64 (bs) − − 1.63-1.60 (bs)

β − − − 1.30-1.40 (m) 1.37-1.54 (m) 7.72-7.71 (bs) 7.72-7.74 (bs) 1.63-1.60 (bs)

γ − − − 1.22-1.27 (m) 1.37-1.54 (m) 7.55-7.60 (m) 7.44-7.48 (m) −

δ − − − 0.92 (t, 7.2) 0.93 (t, 7.2) 7.46-7.50 (m) 7.44-7.48 (m) −

γ−γ′ − − − − − − 1.26 (bs)

R

δ′ − − − − − − 0.88(t, 6.9) * Chemical shifts (δ) in ppm. nJ[117/119Sn, 1H], 3J(1H, 1H) in Hz are listed in square brackets and parenthesis, respectively.

ɫ Multiplicity is given as s = singlet, d = doublet, dd = doublet of doublet, m = multiplet, bs = broad signal. ƚƚ See figure 3.47 for α, β, γ, δ, α′, β′, γ′, δ′.

OH

NBr COOH

Page 138: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

115

Table 3.4: 1H NMR data of N′-(2-hydroxybenzylidene)formohydrazide (H2Ld)*, ɫ, ƚƚ and its organotin(IV) derivatives

Chemical Shift (ppm) Proton

H2Ld (22) Me2SnLd

(23) Et2SnLd

(24) n-Bu2SnLd

(25) Ph2SnLd

(26) Oct2SnLd

(27) ter-Bu2SnLd

(28) BuClSnLd

−CH=N− 8.32 (s) 8.62 (s) [46]

8.62 (s) [42]

8.61 (s) [42]

8.65 (s) [51]

8.61 (s) [42]

8.60 (s) [38]

8.72 (s) [40]

−N=CHO− − 7.63 (s) 7.66 (s) 7.66 (s) 7.38-7.51 (m) 7.66 (s) 7.74 (s) 7.81 (s)

6.89 (d, 8.4) 7.24 (t, 7.8) 6.85 (t, 8.1)

7.60 (dd, 1.8, 7.8)

6.77 (d, 7.8) 7.36 (t, 7.8) 6.75 (t, 7.8)

7.17 (dd, 1.8, 7.8)

6.76 (d, 8.4) 7.32 (t, 7.8) 6.70 (t, 7.4,)

7.13 (d, 1.8, 7.8)

6.77 (d, 8.1) 7.35 (t, 7.8) 6.73 (t, 7.8)

7.16 (dd, 1.8, 7.8)

7.12 (d, 8.4) 7.41-7.50 (m)

6.81(t, 7.5) 7.21

(dd, 1.8, 7.5)

6.76 (d, 7.8) 7.35 (t, 7.8) 6.73 (t, 7.4)

7.16 (dd, 1.8, 7.8)

6.83 (d, 8.4) 7.35 (t, 7.8) 6.71(t, 7.4)

6.71 (t, 7.4)

6.82 (d, 8.4) 7.38 (t, 8.1) 6.81(t, 7.8)

7.50 (dd, 1.5, 7.8)

α − 0.83 (s) [76, 79] 1.48 (q, 7.8) 1.60-1.69 (m) − 1.65-1.72 (m) − 1.66-1.76 (m)

β − − 1.27 (t, 7.5) 1.48-1.54 (m) 7.84-7.90 (m) 1.49-1.58 (m)

1.33 (s) [111,106]

1.52-1.56 (m)

γ − − − 1.36 (ps, 7.5) 7.38-7.51 (m) − − 1.43 (m)

δ − − − 0.89 (t, 7.2) 7.38-7.51 (m) − − 0.92 (t, 7.2)

γ−γ′ − − − − − 1.23-1.40 (bs) − −

R

δ′ − − − − − 0.88 (t, 6.8) − −

* Chemical shifts (δ) in ppm. nJ[117/119Sn, 1H], 3J(1H, 1H) in Hz are listed in square brackets and parenthesis, respectively. ɫ Multiplicity is given as s = singlet, d = doublet, dd = doublet of doublet, m = multiplet, q = quintet, bs = broad signal. ƚƚ See figure 3.47 for α, β, γ, δ, α′, β′, γ′, δ′.

OH

N

HN H

O

Page 139: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

116

Table 3.5: 1H NMR data of N′-(5-bromo-2-hydroxybenzylidene)formohydrazide (H2Le)*, ɫ, ƚƚ and its organotin(IV) derivatives

Chemical Shift (ppm) Proton

H2Le (29) Me2SnLe

(30) Et2SnLe

(31) n-Bu2SnLe

(32) Ph2SnLe

(33) Oct2SnLe

(34) ter-Bu2SnLe

(35) BuClSnLe

−CH=N− 8.26 (s) 8.53 (s) [44]

8.55 (s) [41]

8.52 (s) [40]

8.56 (s) [48]

8.51 (s) [40]

8.55 (s) [37] 8.72 (s)

−N=CHO− − 7.64 (s) 7.69 (s) 7.66 (s) 7.89 (s) 7.66 (s) 7.75 (s) 7.76 (s)

Br

6.86 (d, 8.7) 7.37

(dd, 2.7, 8.7) 7.75 (s)

6.66 (d, 9.0) 7.39

(dd, 2.7, 8.9) 7.25 (s)

6.68 (d, 9.0) 7.38

(dd, 2.7, 9.0) 7.26 (s)

6.65 (d, 9.0) 7.36

(dd, 2.7, 9.0) 7.24 (s)

7.01 (d, 9.0) 7.45-7.52 (m)

7.30 (s)

6.64 (d, 8.7) 7.35

(dd, 2.7, 9.0) 7.24 (s)

6.72 (d, 9.0) 7.37

(dd, 2.7, 9.0) 7.24 (s)

6.79 (d, 9.0) 7.47

(dd, 2.4, 9.0) 7.25 (s)

α − 0.83 (s) [76, 79] 1.49 (m) 1.57-1.65 (m) − 1.60-1.67 (m) − 1.66-1.75 (m)

β − − 1.29 (t, 7.5) 1.47-1.51 (m) 7.81-7.84 (m) 1.47-1.52 (m) 1.32(s) [107, 112] 1.52-1.58 (m)

γ − − − 1.34 (q, 7.2) 7.45-7.52 (m) − − 1.42 (q, 7.5)

δ − − − 0.88 (t, 7.2) 7.45-7.52 (m) − − 0.91 (t, 7.2)

γ−γ′ − − − − − 1.22-1.36 (bs) − −

R

δ′ − − − − − 0.87 (t, 6.9) − − * Chemical shifts (δ) in ppm. nJ[117/119Sn, 1H], 3J(1H, 1H) in Hz are listed in square brackets and parenthesis, respectively.

ɫ Multiplicity is given as s = singlet, d = doublet, dd = doublet of doublet, m = multiplet, q = quintet, bs = broad signal. ƚƚ See figure 3.47 for α, β, γ, δ, α′, β′, γ′, δ′.

OH

N

HN H

O

Br

Page 140: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

117

Table 3. 6: 1H NMR data of N′-(2-hydroxy-3-methoxybenzylidene)formohydrazide (H2Lf)*, ɫ, ƚƚ and its organotin(IV) derivatives

Chemical Shift (ppm) Proton

H2Lf (36) Me2SnLf

(37) Et2SnLf

(38) n-Bu2SnLf

(39) Ph2SnLf

(40) Oct2SnLf

(41) ter-Bu2SnLf

(42) BuClSnLf

−CH=N− 8.36 (s) 8.62 (s) [46]

8.64 (s) [42]

8.61 (s) [42]

8.64 (s) [51]

8.61 (s) [41]

8.63 (s) [38] 8.70

−N=CHO− − 7.62 (s) 7.68 (s) 7.66 (s) 7.63 (s) 7.66 (s) 7.72 (s) 7.81 (s)

7.22 (dd, 1.5, 7.8) 6.79 (t,8.1)

6.97 (dd, 1.2, 8.1)

6.94 (d, 7.8)

6.70 (t, 7.8) 6.82

(d, 7.8)

6.93 (dd, 1.5, 7.8) 6.66 (t, 7.8)

6.79 (dd, 1.5, 7.8)

6.94 (dd, 1.8, 7.8) 6.67 (t, 8.0)

6.80 (dd, 1.5, 8.1)

7.06 (dd, 1.5, 7.8) 6.74 (t, 7.8)

6.84 (dd, 1.5, 7.8)

6.93 (dd, 1.5, 7.8) 6.67 (t, 7.8)

6.79 (dd, 1.5, 7.8)

6.95 (dd, 1.5, 7.8) 6.63 (t, 7.8)

6.80 (dd, 1.5, 8.1)

7.10 (d, 8.1)

6.74 (t, 7.8) 7.06

(d, 8.1)

−OCH3 3.80 (s) 3.87 (s) 3.87 (s) 3.86 (s) 3.98 (s) 3.86 (s) 3.86 (s) 3.76 (s)

α − 0.88 (s) [80, 76]

1.54 (q, 7.5) [72] 1.51-1.67 (m) − 1.50-1.57 (m) − 1.66-1.76 (m)

β − − 1.28 (t, 7.8) 1.51-1.67 (m) 7.87-7.90 (m) 1.50-1.57 (m) 1.34 (s) [111, 106] 1.52-1.57 (m)

γ − − − 1.34 (q, 7.2) 7.40-7.49 (m) − − 1.40 (q, 7.2)

δ − − − 0.87 (t, 7.2) 7.40-7.49 (m) − − 0.92 (t, 7.2)

γ−γ′ − − − − − 1.21-1.27 (bs) − −

R

δ′ − − − − − 0.86 (t, 6.8) − − * Chemical shifts (δ) in ppm. nJ[117/119Sn, 1H], 3J(1H, 1H) in Hz are listed in square brackets and parenthesis, respectively.

ɫ Multiplicity is given as s = singlet, d = doublet, dd = doublet of doublet, m = multiplet, q = quintet, bs = broad signal.

OH

N

HN H

O

OCH3

Page 141: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

118

ƚƚ See figure 3.47 for α, β, γ, δ, α′, β′, γ′, δ′.

Table 3.7: 1H NMR data of N′-(4-(diethylamino)-2-hydroxybenzylidene)formohydrazide (H2Lg)*, ɫ, ƚƚ and its organotin(IV) derivatives

Chemical Shift (ppm) Proton

H2Lg (43) Me2SnLg

(44) Et2SnLg

(45) n-Bu2SnLg

(46) Ph2SnLg

(47) ter-Bu2SnLg

−CH=N− 8.01 (s) 8.35 (s) [51]

8.47 (s) [50]

8.35 (s) [43]

8.37 (s) [54]

8.37 (s) [43]

−N=CHO− − 7.50 (s) 7.55 (s) 7.54 (s) 7.73 (s) 7.61 (s)

6.12 (dd, 2.4, 8.7) 6.92 (d, 8.7)

6.03 (s)

6.16 (dd, 2.4, 9.0) 6.96 (d, 9.0)

5.93 (s)

6.27 (dd, 2.4, 8.4) 7.11 (d, 8.7)

6.23 (s)

6.27 (dd, 2.4, 8.7) 7.11 (d, 8.7)

6.24 (s)

6.21 (dd, 2.4, 9.0) 6.99 (d, 9.0)

6.26 (s)

6.27 (dd, 2.4, 8.7) 6.94 (d, 9.0)

6.23 (s)

−C2H5 3.31-3.43 (m) 1.19-1.21 (m)

3.35-3.42 (m) 1.18-1.24 (m)

3.41 (q, 7.1) 1.22 (t, 7.2)

3.40 (q, 7.2) 1.22 (t, 7.2)

3.46 (q, 7.2) 1.27 (t, 7.2)

3.36-3.44 (m) 1.22 (t, 7.2)

α − 0.78 (s) [76, 79] 1. 42-1.50 (m) 1.61-1.67 (m) − −

β − − 1.30 (t, 7.2) 1.61-1.67 (m) 7.85-7.88 (m) 1.34 (s) [104, 108]

γ − − − 1.32-1.38 (m) 7.39-7.47 (m) −

δ − − − 0.90 (t, 7.5) 7.39-7.47 (m) −

γ−γ′ − − − − − −

R

δ′ − − − − − − * Chemical shifts (δ) in ppm. nJ[117/119Sn, 1H], 3J(1H, 1H) in Hz are listed in square brackets and parenthesis, respectively.

ɫ Multiplicity is given as s = singlet, d = doublet, dd = doublet of doublet, m = multiplet, q = quintet, bs = broad signal. OH

N

HN H

O(C2H5)2N

Page 142: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

119

ƚƚ See figure 3.47 for α, β, γ, δ, α′, β′, γ′, δ′. Table 3.8: 1HNMR data of N′-(2-hydroxynaphthalen-1-yl)methylene)formohydrazide (H2Lh)*, ɫ, ƚƚ, N′-(1-(5-bromo-2-hydroxyphenyl)ethyli -dene)formohydrazide (H2Li) and their organotin(IV) derivatives

Chemical Shift (ppm) Proton

H2Lh (48) Me2SnLh

(49) Ph2SnLh

(50) ter-Bu2SnLh H2Li (51)

Me2SnLi (52)

Bu2SnLi (53)

Ph2SnLi Carbon

−CH=N− 8.95 9.58 (s) [50]

9.62 (s) [55]

9.61 (s) [42] 7.69 (s) 7.66 (s) 7.73 (s) 7.75-7.84

(m) −N=CHO−

−N=CHO− - 7.63 (s) 7. 85-7.91 (m) 7.73 (s) 2.75 (s) 2.69 (s) 2.72 (s) 2.81 (s) -CH3

7.21 (d, 9.0) 7.37 (t, 7.2) 7.40(t, 7.8) 7.55 (t, 8.4)

7.84-7.94 (m)

6.93 (d, 9.3) 7.34 (t, 7.4) 7.53 (t, 7.8) 7.71 (d, 8.1) 7.79 (d, 9.3) 8.01 (d, 8.7)

7.27 (d, 9.0) 7.35 (t, 7.4) 7.53 (t, 7.6) 7.74 (d, 7.5)

7.85-7.91 (m) 8.00 (d, 8.7)

7.01 (d, 9.0) 7.31 (t, 7.5) 7.52 (t, 7.6) 7.70 (d, 7.8) 7.78 (d, 9.0) 8.02 (d, 8.4)

6.85 (d, 8.7) 7.37

(dd, 2.7, 8.7) 7.75 (s)

6.67 (d, 9.0) 7.35

(dd, 2.7, 9.0) 7.65 (s)

6.66 (d, 8.7) 7.36

(dd, 2.4,8.8) 7.66 (s)

7.04 (d, 8.7) 7.39-7.50

(m) 7.63 (s)

Br

α − 0.85 (s) [79, 75] − − − 0.55 (s)

[87, 91] 1.50-1.62

(m) − α

β − − 7. 85-7.91 (m) 1.36 (s) [110, 106] − − 1.41-1.47

(m) 7.75-7.84

(m) β

γ − − 7.42-7.50 (m) − − − 1.15-1.34 (m)

7.39-7.50 (m) γ

R

δ − − 7.42-7.50 (m) − − − 0.77 (t, 7.2) 7.39-7.50 (m) δ

R

* Chemical shifts (δ) in ppm. nJ[117/119Sn, 1H], 3J(1H, 1H) in Hz are listed in square brackets and parenthesis, respectively. ɫ Multiplicity is given as s = singlet, d = doublet, dd = doublet of doublet, m = multiplet, bs = broad signal. ƚƚ See figure 3.47 for α, β, γ, δ, α′, β′, γ′, δ′.

OH

NHN H

O

OH

N

HN H

O

Br

Page 143: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

120

Table 3.9: 1H NMR data of N′-(2-hydroxybenzylidene)-4-tert-butylbenzohydrazide (H2Lj)*, ɫ, ƚƚ and its organotin(IV) derivatives

Chemical Shift (ppm) Proton

H2Lj (54) Me2SnLi

(55) Et2SnLi

(56) Bu2SnLi

(57) Ph2SnLi

(58) Oct2SnLi

(59) ter-Bu2SnLi

(60) BuClSnLi

−CH=N− 8.64 (s) 8.78 (s) [46]

8.79 [43]

8.78 (s) [43]

8.79 [52]

8.77 (s) [42]

8.80 [39]

8.86

7.89 (d, 8.4)

8.02 (d, 8.4)

8.03 (d, 8.4)

8.05 (d, 8.7)

8.23 (d, 8.7)

8.04 (d, 8.7)

8.09 (d, 8.7)

8.01 (d, 8.4)

7.56 (d, 8.1)

7.46 (d, 8.4)

7.46 (d, 8.7)

7.48 (d, 8.4)

7.55 (d, 8.7)

7.47 (d, 8.4)

7.49 (d, 8.4)

7.52 (d, 8.4)

−C(CH3)3 1.32 (s) 1.37 (s) 1.36 (s) 1.38 (s) 1.42 (s) 1.38 (s) 1.38 (s) 1.32 (s)

6.95 (d,9.0) 7.30 (t, 8.4) 6.92 (t, 8.4) 7.22 (d, 7.8)

6.80 (d, 7.8) 7.35 (t, 8.0) 6.76 (t, 7.2)

7.20 (dd, 1.5, 7.8)

6.81 (d, 8.4) 7.34 (t, 7.8) 6.73 (t, 7.4)

7.18 (d, 1.8, 7.8)

6.80 (d, 8.4) 7.34 (t, 7.8) 6.74 (t, 7.5)

7.19 (dd, 1.8, 7.8)

6.80 (d, 8.4) 7.36 (t, 7.8) 6.76 (t, 7.4) 7.15 (d, 8.1)

6.81 (d, 8.4) 7.34 (t, 7.5) 6.74 (t, 7.5)

7.18 (dd, 1.8, 8.1)

6.86 (d, 8.1) 7.34 (t, 7.8) 6.72 (t, 7.5) 7.18 (d, 7.8)

6.84 (d, 8.1) 7.36 (t, 8.1) 6.82 (t, 7.2) 7.20 (d, 7.8)

α − 0.85 (s) [79, 76] 1. 40-1.51 (m) 1.64-1.72 (m) − 1.65-1.77 (m) − 1.76-1.84

(m)

β − − 1.32 (t, 7.2) 1.52-1.59 (m) 7.92-7.96 (m) 1.53-1.58 (m) 1.36

[109, 104] 1.61-1.67

(m)

γ − − − 1.35-1.42(m) 7.40-7.50 (m) − − 1.45-1.57

(m)

δ − − − 0.90 (t, 7.2)

7.40-7.50 (m) − − 0.97

(t, 7.2) γ−γ′ − − − − − 1.23-1.29 (bs) − −

R

δ′ − − − − − 0.88 (t, 6.6) − −

Page 144: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

121

* Chemical shifts (δ) in ppm. nJ[117/119Sn, 1H], 3J(1H, 1H) in Hz are listed in square brackets and parenthesis, respectively. ɫ Multiplicity is given as s = singlet, d = doublet, dd = doublet of doublet, m = multiplet, bs = broad signal. ƚƚ See figure 3.47 for α, β, γ, δ, α′, β′, γ′, δ′.

Table 3.10: 1H NMR data of N1′, N6′-bis(2-hydroxybenzylidene)adipohydrazide (H4Lk)*, ɫ, ƚƚ and its organotin(IV) derivatives

Chemical Shift (ppm) Proton

H4Lk (61) (Me2Sn)2Lk

(62) (Et2Sn)2Lk

(63) (n-Bu2Sn)2Lk

(64) (Ph2Sn)2Lk

(65) (Oct2Sn)2Lk

(66) (BuClSn)2Lk

−CH=N− 8.34 (s) 8.59 (s) [47]

8.61 (s) [43]

8.58 (s) [43]

8.52 (s) [52]

8.57 (s) [43] 8.71 (s)

2.26 (bs) 2.35 (bs) 2.36 (bs) 2.35 (bs) 2.53 (bs) 2.33 (bs) 2.30 (bs) −(CH2)4−

1.54 (bs) 1.73 (bs) 1.75 (bs) 1.75 (bs) 1.93 (bs) 1.74 (bs) 1.74 (bs)

6. 90 (d, 7.5) 7.27 (t, 7.8) 6.89 (t, 7.2)

7.20 (d, 7.8)

6.77 (d, 8.4) 7.33 (t, 7.8) 6.74 (t, 7.5)

7.13 (dd, 1.8, 7.8)

6.77 (d, 8.4) 7.32 (t, 7.8) 6.71 (t, 7.4)

7.13 (d, 1.8, 7.8)

6.76 (d, 8.7) 7.31(t, 7.8) 6.71(t, 7.5)

7.12 (dd, 1.8, 7.8)

7.11 (d, 8.4) 7.37-7.50 (m) 6.79 (t, 7.8)

7.19 (d, 8.7)

6.75 (d, 8.4) 7.30 (t, 7.8) 6.70 (t, 7.5)

7.11 (dd, 1.5, 7.8)

6.89 (d, 8.1) 7.37 (t, 7.8) 6.82 (t,7.2)

7.17 (d, 7.2)

α − 0.79 (s) [75, 79] 1.46 (q, 7.5) 1.58-1.65 (m) − 1.60-1.68 (m) 1.66-1.76 (m)

β − − 1.27 (t, 7.2) 1.44-1.49 (m) 7.82-7.86 (m) 1.44-1.49 (m) 1.46-1.57 (m)

γ − − − 1.34 (ps, 7.4) 7.37-7.50 (m) − 1.43 (q, 7.2)

δ − − − 0.88 (t, 7.5) 7.37-7.50 (m) − 0.92 (t.7.2)

γ−γ′ − − − − − 1.22-1.31 (bs) −

R

δ′ − − − − − 0.87 (t, 6.9) −

OH

N

HN

O

C(CH3)3

Page 145: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

122

* Chemical shifts (δ) in ppm. nJ[117/119Sn, 1H], 3J(1H, 1H) in Hz are listed in square brackets and parenthesis, respectively. ɫ Multiplicity is given as s = singlet, d = doublet, dd = doublet of doublet, m = multiplet, q = quintet, bs = broad signal. ƚƚ See figure 3.47 for α, β, γ, δ, α′, β′, γ′, δ′.

Table 3.11: 1H NMR data of N1′, N6′-bis(5-bromo-2-hydroxybenzylidene)adipohydrazide (H4Ll)*, ɫ, ƚƚ and its organotin(IV) derivatives

Chemical Shift (ppm) Proton

H4Ll (67) (Me2Sn)2Ll

(68) (Et2Sn)2Ll

(69) (n-Bu2Sn)2Ll

(70) (Ph2Sn)2Ll

(71) (Oct2Sn)2Ll

(72) (BuClSn)2Ll

−CH=N− 8.31 (s) 8.49 (s) [45]

8.49 (s) [41]

8.48 (s) [41]

8.57 (s) [51]

8.46 (s) [41] 8.51 (s)

2.25 (bs) 2.35 (bs) 2.34 (bs) 2.35 (bs) 2.36 (bs) 2.32 (bs) 2.37 (bs) −(CH2)4−

1.61 (bs) 1.72 (bs) 1.72 (bs) 1.74 (bs) 1.72 (bs) 1.71 (bs) 1.72 (bs)

Br

6.87 (d, 8.7) 7.40

(dd, 2.7, 8.7) 7.72 (s)

6.65 (d, 9.0) 7.36

(dd, 2.4, 9.0) 7.22 (s)

6.64 (d, 9.0) 7.32

(dd, 2.5, 9.0) 7.18 (s)

6.65 (d, 9.0) 7.35

(dd, 2.7, 9.0) 7.20 (s)

6.83 (d, 9.0) 7.25-7.41 (m) 7.25-7.41 (m)

6.62 (d, 8.7) 7.30

(dd, 2.7, 9.0) 7.17 (s)

6.81 (d, 9.0) 7.41 (bs) 7.21 (s)

α − 0.79 (s) [75 ,78] 1.42 (q, 7.2) 1.57-1.67 (m) − 1.57-1.64 (m) 1.68-1.72 (m)

β − − 1.24 (t, 7.5) 1.44-1.49 (m) 7.52-7.58 (m) 1.42-1.47 (m) 1.43-1.50 (m)

γ − − − 1.28-1.40 (m) 7.25-7.41 (m) − 1.34-1.41(m)

δ − − − 0.88 (t, 7.2) 7.25-7.41 (m) − 0.94 (t.7.5)

γ−γ′ − − − − − 1.20-1.29 (bs) −

R

δ′ − − − − − 0.85 (t, 7.2) −

OH

NHN

O

O

HNN

OH

(CH2)4

Page 146: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

123

* Chemical shifts (δ) in ppm. nJ[117/119Sn, 1H], 3J(1H, 1H) in Hz are listed in square brackets and parenthesis, respectively. ɫ Multiplicity is given as s = singlet, d = doublet, dd = doublet of doublet, m = multiplet, q = quintet, bs = broad signal.

ƚƚ See figure 3.47 for α, β, γ, δ, α′, β′, γ′, δ′. Table 3.12: 1H NMR data of N1′, N6′-bis(2-hydroxy-3-methoxybenzylidene)adipohydrazide (H4Lm)*, ɫ, ƚƚ and its organotin(IV) derivatives

Chemical Shift (ppm) Proton

H4Lm (73) (Me2Sn)2Lm

(74) (Et2Sn)2Lm

(75) (n-Bu2Sn)2Lm

(76) (Ph2Sn)2Lm

(77) (Oct2Sn)2Lm

(78) (BuClSn)2Lm

−CH=N− 8.35 (s) 8.60 (s) [47]

8.61 [43]

8.58 (s) [43]

8.60 (s) [52]

8.56 (s) [42] 8.64

2.26 (bs) 2.34 (bs) 2.35 (bs) 2.33 (bs) 2.54 (bs) 2.32 (bs) 2.51 (bs) −(CH2)4−

1.63 (bs) 1.73 (bs) 1.75 (bs) 1.76 (bs) 1.93 (bs) 1.73 (bs) 1.76 (bs)

7.10 (d, 7.8)

6.82 (t, 8.1) 6.98 (d, 7.8)

6.92 (dd, 1.5, 7.5) 6.68 (t, 7.8)

6.77 (dd,1.5, 8.1)

6.90 (dd, 1.5, 7.8) 6.64 (t, 7.8)

6.75 (dd, 1.8, 8.1)

6.90 (dd, 1.5, 7.8) 6.64 (t, 7.8)

6.75 (dd, 1.8, 8.1)

7.03 (dd, 1.5, 7.8) 6.72 (t, 7.8)

6.80 (dd, 1.8, 8.1)

6.89 (dd, 1.5, 7.8) 6.63 (t, 7.8)

6.74 (dd, 1.5, 7.8)

7.05 (d, 7.6)

6.71 (t, 7.8) 6.88 (d, 7.8)

−OCH3 3.80 (s) 3.86 (s) 3.85 (s) 3.85 (s) 3.99 (s) 3.83 (s) 3.76 (s)

α − 0.85 (s) [79, 76] 1.44 (m) 1.56-1.65 (m) − 1.46-1.65 (m) 1.42-1.56 (m)

β − − 1.25 (t, 7.8) 1.46-1.54 (m) 7.85-7.88 (m) 1.46-1.65 (m) 1.42-1.56 (m)

γ − − − 1.30 (ps, 7.2) 7.36-7.48 (m) − 1.42-1.56 (m)

δ − − − 0.85 (t, 7.2) 7.36-7.48 (m) − 0.92 (t, 7.5)

R

γ−γ′ − − − − − 1.19-1.26 (bs) −

OH

NHN

O

O

HNN

OH

(CH2)4BrBr

Page 147: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

124

δ′ − − − − − 0.85 (t, 6.6) − * Chemical shifts (δ) in ppm. nJ[117/119Sn, 1H], 3J(1H, 1H) in Hz are listed in square brackets and parenthesis, respectively.

ɫ Multiplicity is given as s = singlet, d = doublet, dd = doublet of doublet, m = multiplet, ps = pseudo-sextet, bs = broad signal.

ƚƚ See figure 3.47 for α, β, γ, δ, α′, β′, γ′, δ′. Table 3.13: 1H NMR data of N1′, N4′-bis(2-hydroxybenzylidene)succinohydrazide (H4Ln)*, ɫ, ƚƚ and its organotin(IV) derivatives

Chemical Shift (ppm) Proton

H4Ln (79) (Me2Sn)2Ln

(80) (Et2Sn)2Ln

(81) (n-Bu2Sn)2Ln

(82) (Ph2Sn)2Ln

(83) (Oct2Sn)2Ln

(84) (t-Bu2Sn)2Ln

−CH=N− 8.28 (s) 8.58 (s) [46]

8.60 (s) [43]

8.58 (s) [43]

8.55 (s) [52]

8.57 (s) [43]

8.58 [39]

6.89 (t, 7.1) 6.90 (d, 7.2) 7.49 (d, 8.1) 7.27 (t, 7.8)

6.74 (d, 8.0) 6.72 (t, 8.1) 7.14 (d, 7.5) 7.32 (t, 7.6)

6.70 (t, 7.2) 6.76 (d, 8.4) 7.11 (d, 7.8) 7.31 (t, 7.2)

6.70 (t, 7.8) 6.76 (d, 8.4) 7.12 (d, 7.8) 7.31 (t, 7.0)

6.78 (t, 7.5) 7.10 (d, 8.4)

7.15 (dd, 1.5, 7.8) 7.37-7.42 (m)

6.70 (t, 7.2) 6.75 (d, 8.4)

7.11 (dd, 1.5, 7.2) 7.30 (t, 7.2)

6.67 (t, 7.5) 6.81 (d, 8.1)

7.10 (dd, 1.5, 7.8) 7.30 (t, 7.6)

−(CH2)2− 2.58 (s) 2.65 (s) 2.69 (s) 2.67 (s) 2.97 (s) 2.66 (s) 2.72 (s)

α − 0.76 (s) [76, 78] 1.41-1.51 (m) 1.60-1.67 (m) 7.81-7.87 (m) 1.63-1.67 (m) -

β − − 1.26 (t, 8.1) 1.46-1.54 (m) 7.33-7.42 (m) 1.44-1.48 (m) 1.31 (s) [105, 109)

γ − − − 1.30-1.41 (m) 7.33-7.42 (m) − −

δ − − − 0.87 (t, 7.2) − − −

γ−γ′ − − − − − 1.22-1.36 (bs) −

R

δ′ − − − − − 0.87 (t, 6.9) − * Chemical shifts (δ) in ppm. nJ[117/119Sn, 1H], 3J(1H, 1H) in Hz are listed in square brackets and parenthesis, respectively.

OH

NHN

O

O

HNN

OH

(CH2)4

OCH3

OCH3

OH

NHN

O

O

HNN

OH

(CH2)2

Page 148: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

125

ɫ Multiplicity is given as s = singlet, d = doublet, dd = doublet of doublet, m = multiplet, bs = broad signal.

ƚƚ See figure 3.47 for α, β, γ, δ, α′, β′, γ′, δ′.

Table 3. 14: 1H NMR data of mixed ligand complexes

Chemical Shift (ppm) Proton

H2Ld (85) Me2SnLdbipy H2Lf (86)

Me2SnLfbipy Proton

−CH=N− 8.32 (s) 8.61 (bs) 8.36 (s) 8.60 (s) [42] −CH=N−

−N=CHO− − 7.62 (s) − 7.61 (s) −N=CHO−

6.89 (d, 8.4) 7.24 (t, 7.8) 6.85 (t, 8.1)

7.60 (dd, 1.8, 7.8)

6.77 (d, 7.8) 7.34 (m)

6.74 (t, 7.8) 7.16

(dd, 1.8, 7.8)

7.22 (dd, 1.5, 7.8) 6.79 (t,8.1)

6.97 (dd, 1.2, 8.1)

6.93 (d, 7.8)

6.68 (t, 7.8) 6.79

(d, 7.8)

− 7.82 (t 7.8) 8.39 (d, 8.1)

8.72 (bs)

− 7.83 (t 7.8) 8.40 (d, 8.1)

8.71 (bs) 3.80 (s) 3.87 (s) −OCH3

R α 0.81 (s) [76, 79] 0.87 (s)

[77, 80] α R * Chemical shifts (δ) in ppm. nJ[117/119Sn, 1H], 3J(1H, 1H) in Hz are listed in square brackets and parenthesis, respectively. ɫ Multiplicity is given as s = singlet, d = doublet, dd = doublet of doublet, m = multiplet, q = quintet, bs = broad signal.

OH

N

HN H

O

OCH3

Page 149: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

126

ƚƚ See figure 3.47 for α.

OH

N

HN H

O

Page 150: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

126

Figure 3.2: 1H NMR spectrum of complex (2)

Page 151: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

127

Figure 3.3: 1H NMR spectrum of complex (50)

Page 152: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

128

Figure 3.4: 1H NMR spectrum of complex (68)

Page 153: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

129

3.3.2 13C NMR spectroscopy

The 13C NMR spectra of the free ligands and their respective di- and

triorganotin(IV) derivatives were taken in CDCl3 solution. The discrete 13C signals for

all the individual carbon atoms were identified and the data are given in Tables

3.15−3.28. Representative spectra are provided in fig. 3.5−3.7. The (COO) resonance

in the 13C NMR spectra of complexes (1−21) with a down field shift were observed in

the range of 179.4−186.4 ppm, indicating the coordination of the carboxyl group

(COO) to the organotin(IV) moiety [36]. In triorganotin(IV) carboxylates, the (COO)

carbon usually undergo a minor downfield shift due to:

(i) electron donating effect of three R groups.

(ii) shielding of the carboxylate carbon, compared to their diorganotin(IV)

counterparts, caused by the disappearance of the Sn…O=C interaction in

non-coordinating solvents.

The 1J[119Sn, 13C] coupling constant values for the organotin(IV) complexes

with [O,O] donor ligands are given in Table 3.29. These values are used for the

structural characterization of organotin(IV) complexes in solution. For

triorganotin(IV) complexes, the magnitude of the 1J[119Sn, 13C] coupling suggests

tetrahedral geometry around the tin atom in solution [37,38]. However, the geometry

of the diorganotin dicarboxylates in non-coordinating solvents is uncertain due to the

fluxional behavior of the carboxylate oxygens in their coordination with the tin atom

[39]. However, based on the literature evidence, the geometry between penta- and

hexa-coordination can be suggested [40,41].

In the 13C-NMR spectra of the [O,N,O] donor ligands and their

diorganotin(IV) complexes, the signals of the azomethine carbon appear in the ranges

of 141.2−148.6 and 156.1–163.5 ppm. Comparing the 13C NMR spectra of the free

ligands (H2Ld−H2Ln) and their tin complexes (22−86), the most important difference

appears in the resonance of the phenolic and enolic C–O carbon atoms. A downfield

chemical shift of the signals is observed due to the formation of covalent Sn–O bonds

[42]. The 1J[119Sn, 13C] coupling constants of the diorganotin(IV) compounds are

reported in Table 3.29. These values are consistent with those generally observed for

five-coordinated tin species [43,44]. Despite some discrepancy between the C−Sn−C

angle from X-ray data and the empirical estimation in solution, the similarity of the

Page 154: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

130

solid and solution state tin(IV) suggests no major change of the structure upon

dissolution. The 13C NMR spectral data for the R groups attached to the tin atom,

where R = Me, Et, n-Bu, Ph and Oct were assigned by a comparison with related

analogues as model compounds, combined with their nJ[119Sn,13C] values [45−49].

3.3.3 119Sn NMR spectroscopy

The 119Sn chemical shifts values give tentative indications of the environment

around the tin atom. All spectra were recorded in non-coordinating solvents in order

to preclude possible changes in the coordination number of tin. The δ (119Sn) shifts do

not only depend upon the electron-releasing power of the alkyl and aryl groups but

also on the nature of X in RnSnX4-n, as the electron-releasing power of the alkyl group

increases or the electronegativity of X decreases, the tin atom becomes progressively

more shielded and the δ (119Sn) value moves to higher field [50]. A very important

property of the 119Sn chemical shift is that an increase in the coordination number of

tin from four to five, six or seven usually produces a large upfield shift of δ(119Sn).

Holecek et. al, and others suggested the δ values from +200 to −60 for four-

coordinated, −90 to −190 for five-coordinated and −210 to −400 ppm for six-

coordinated tin atoms relative to tetra-methyltin as reference [51−54]. The δ (119Sn)

values for the synthesized organotin(IV) complexes are listed in Tables 3.15−3.28.

Some representative spectra are given in fig. 3.8−3.11. The 119Sn NMR spectra of all

the complexes show only a sharp singlet indicating the formation of a single species.

However, these values are strongly dependent on the nature and orientation of the

organic groups bonded to tin. The shifts observed in complexes can be explained

quantitatively in terms of an increase in electron density on the tin atom as the

coordination number increases. The 119Sn chemical shift values measured in non-

coordinating solvents for triorganotin(IV) derivatives of [O,O] donor ligands lie in the

tetrahedral region, whereas the diorganotin(IV) carboxylates exhibit a higher

coordination, probably a skew trapezoidal geometry with a coordination between five

and six [55−57]. The 119Sn NMR spectra of diorganotin(IV) derivatives of [O,N,O]

donor tridentate and hexadentate ligands (22−35, 39−84) suggest penta-coordination

around tin. It can be inferred from the results that the geometry around tin in the solid

and solution state is the same.

Page 155: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

131

Table 3.15: 13C NMR data of 4-((5-bromo-2-hydroxybenzylideneamino)methyl)cyclohexanecarboxylic acid (H2La)*,ɫ and its organotin(IV) derivatives

Chemical Shift (ppm) Carbon

H2La (1) Me2Sn(HLa)2

(2) Me3SnHLa

(3) Bu2Sn(HLa)2

(4) Bu3SnHLa

(5) Ph2Sn(HLa)2

(6) Ph3SnHLa

(7) Oct2Sn(HLa)2

−COOH 181.9 186.4 181.7 186.2 181.4 181.8 186.2 186.1

43.0, 38.1, 30.0, 28.3

42.9, 38.1, 30.2, 29.1

43.6, 38.2, 30.3, 29.0

43.2, 38.1, 30.2, 28.9

43.9, 38.3, 30.4, 29.3

42.9, 38.1, 30.2, 29.7

43.2, 38.2, 30.3, 29.1

43.1, 38.1, 30.2, 29.1

−CH2− 65.7 65.9 66.0 66.0 66.1 65.9 65.6 66.0

−CH=N− 163.8 163.7 163.6 163.7 163.6 163.7 163.7 163.7 Br

160.6, 135.0, 133.3, 120.0, 119.2, 109.9

160.5, 134.9, 133.3, 120.0, 119.1, 109.9

160.6, 134.8, 133.3, 120.1, 119.1, 109.8

160.4, 134.8, 133.3, 120.0, 119.1, 109.9

160.5, 134.8, 133.2, 120.1, 119.1, 109.8

160.5, 134.9, 133.3, 120.0, 119.1, 109.9

160.6, 134.8, 133.3, 120.0, 119.1, 109.8

160.4, 134.8, 133.3, 120.1, 119.1, 109.9

α − 1.03 -2.4 [398, 380] 24.8 16.6 136.5 138.2 27.3

β − − − 26.6 [38]

27.8 [20] 135.6 136.6

[49] 24.5 [40]

γ − − − 26.2 [96]

27.0 [63]

129.1 [63]

129.0 [62] −

δ − − − 13.6 13.5 130.3 [16]

130.2 [14] −

γ−γ′ − − − − − − − 33.2 [96], 29.1, 29.0, 31.8, 22.7

R

δ′ − − − − − − − 14.1 119Sn − -120.7 129.0 -149.4 103.6 − -115.6 -149.8

* Chemical shifts (δ) in ppm. nJ[117/119Sn, 13C]; nJ[119Sn, 13C] in Hz are listed in parenthesis. ɫ See figure 3.47 for α, β, γ, δ, α′, β′, γ′, δ′.

OH

NBr COOH

Page 156: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

132

Table 3.16: 13C NMR data of 4-((1-(2-hydroxyphenyl)ethylideneamino)methyl)cyclohexanecarboxylic acid (H2Lb)*, ɫ and its organotin(IV) derivatives

Chemical Shift (ppm) Carbon

H2Lb (8) Me2Sn(HLb)2

(9) Me3SnHLb

(10) Bu2Sn(HLb)2

(11) Bu3SnHLb

(12) Ph2Sn(HLb)2

(13) Ph3SnHLb

(14) Oct2Sn(HLb)2

−COOH 176.0 182.6 181.5 182.8 179.4 182.0 182.6 182.8

43.6, 38.5, 30.6, 29.6

44.8, 38.4, 30.5, 29.6

43.8, 38.2, 30.6, 29.2

43.4, 38.4, 30.2, 29.1

45.0, 38.4, 30.5, 29.7

43.3, 38.2, 30.3, 29.1

43.2, 38.1, 30.5, 29.2

43.3, 38.6, 30.4, 29.3

−CH2− 55.0 55.1 55.4 55.4 55.0 55.2 55.3 55.3

NC 173.0 172.9 171.6 171.8 173.0 171.3 171.7 171.2

−CH3 14.7 14.7 14.2 14.3 14.7 14.1 14.3 14.2

165.3, 132.9, 129.2, 119.0, 118.9, 116.6

165.1, 132.9, 129.1, 119.0, 118.9, 116.6

165.2, 132.7, 128.7, 119.2, 118.8, 116.6

163.6, 132.2, 129.3, 119.8, 119.2, 116.6

165.2, 132.9, 129.2, 120.1, 118.9, 116.6

165.2, 135.1, 130.2, 121.1, 120.8, 117.1

165.1, 132.7, 128.6, 119.2, 118.9, 116.6

163.7, 132.8, 129.3, 120.0, 119.1, 116.4

α − 0.7 [518, 500]

-2.4 [361] 25.6 16.7 137.0 138.6 25.3

β − − − 26.7 27.6 [20] 135.7 136.8

[47] 24.3 [40]

γ − − − 26.4 27.3 [63] 128.7 128.9

[62] -

δ − − − 13.5 13.4 130.7 130.0 -

γ−γ′ − − − − − − − 33.1 [96], 29.1, 29.0, 31.8, 22.6

R

δ′ − − − − − − − 14.1 119Sn − -121.2 128.0 -158 − − -109 −

* Chemical shifts (δ) in ppm. nJ[117/119Sn, 13C]; nJ[119Sn, 13C] in Hz are listed in parenthesis.

ɫ See figure 3.47 for α, β, γ, δ, α′, β′, γ′, δ′. OH

NCOOH

Page 157: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

133

Table 3.17: 13C NMR data of 4-((1-(5-bromo-2-hydroxyphenyl)ethylideneamino)methyl)cyclohexanecarboxylic acid (H2Lc)*, ɫ and its organotin(IV) derivatives

Chemical Shift (ppm) Carbon

H2Lc (15) Me2Sn(HLc)2

(16) Me3SnHLc

(17) Bu2Sn(HLc)2

(18) Bu3SnHLc

(19) Ph2Sn(HLc)2

(20) Ph3SnHLc

(21) Oct2Sn(HLc)2

−COOH 177.2 182.5 181.4 181.2 181.3 184.1 182.5 186.1

43.0, 37.9, 30.0, 28.8

43.2, 38.0, 30.3, 29.0

43.7, 38.0, 30.5, 29.2

43.6, 38.1, 30.4, 29.1

43.8, 38.0, 30.5, 29.3

43.1, 38.2, 30.1, 29.4

43.1, 37.9, 30.4, 29.1

43.2, 37.9, 30.3, 29.4

−CH2− 54.4 55.3 55.4 55.2 55.3 55.1 55.2 55.4

NC 172.8 170.9 170.8 170.7 170.9 171.0 171.0 170.9

−CH3 14.8 14.3 14.3 14.4 14.4 14.3 14.4 14.4 Br

165.6, 135.6, 131.3, 121.8, 120.0, 106.8

164.4, 135.4, 130.4, 121.2, 120.9, 107.8

164.6, 135.4, 130.4, 121.3, 120.0, 107.8

164.6, 134.3, 130.2, 121.2, 119.8, 107.6

164.8, 134.4, 130.4, 121.4, 119.9, 107.7

165.0, 135.4, 130.4, 121.3, 120.9, 107.5

164.7, 135.5, 130.4, 121.4, 120.5, 107.8

164.3, 135.4, 130.4, 121.2, 120.1, 107.9

α − 4.4 -2.5 [370] 25.6 16.4

[359] 139.1 138.4 25.1

β − − − 27.0 27.8 [20] 135.6 136.8

[48] 24.5

γ − − − 26.6 27.0 [63] 128.9 128.9

[63] −

δ − − − 13.9 13.7 130.4 130.1 −

γ−γ′ − − − − − − − 33.2, 29.1, 29.0, 31.8,

22.7

R

δ′ − − − − − − − 14.1 119Sn − -184.1 128.9 -134 103.9 − -115.8 -149.9

*Chemical shifts (δ) in ppm. nJ[117/119Sn, 13C]; nJ[119Sn, 13C] in Hz are listed in parenthesis. ɫ See figure 3.47 for α, β, γ, δ, α′, β′, γ′, δ′. OH

NBr COOH

Page 158: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

134

Table 3.18: 13C NMR data of N′-(2-hydroxybenzylidene)formohydrazide (H2Ld)*, ɫ and its organotin(IV) derivatives

Chemical Shift (ppm) Carbon

H2Ld (22) Me2SnLd

(23) Et2SnLd

(24) n-Bu2SnLd

(25) Ph2SnLd

(26) Oct2SnLd

(27) ter-Bu2SnLd

(28) BuClSnLd

−CH=N− 148.1 162.8 162.9 162.7 163.0 162.6 162.4 162.9

−N=CHO− 165.2 166.6 167.1 167.2 167.5 168.2 167.1 166.4

157.4, 132.3, 131.6, 120.1 119.1, 116.8

163.7, 135.8, 134.5, 121.8, 117.3, 116.2

164.0, 135.6, 134.5, 121.7, 117.0, 116.2

164.0, 135.6, 134.5, 121.7, 117.0, 116.2

163.6, 135.8, 134.7, 122.2, 117.1, 116.3

164.0, 135.6, 134.5, 121.8, 117.0, 116.2

164.0, 135.4, 134.3, 121.8, 116.6, 116.3

165.1, 136.6, 135.3, 123.5, 118.6, 116.8

α − 1.6 [650, 620]

14.5 [616, 589]

22.4 [600, 575] 139.0 22.1 40.8

[586, 559] 25.4 [615]

β − − 9.2 [44]

26.8 [36]

136.7 [56]

24.6 [36] 29.6 28.1

γ − − − 26.2 [90]

129.0 [97, 89] − − 27.1

δ − − − 13.6 130.7 [17] − − 14.3

γ−γ′ − − − − − 33.4 [82], 29.2, 29.1, 31.8, 22.7

− −

R

δ′ − − − − − 14.1 − −

119Sn − -163.2 -198 -201 -337.1 − − − * Chemical shifts (δ) in ppm. nJ[117/119Sn, 13C]; nJ[119Sn, 13C] in Hz are listed in parenthesis. ɫ See figure 3.47 for α, β, γ, δ, α′, β′, γ′, δ′.

OH

N

HN H

O

Page 159: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

135

Table 3.19: 13C NMR data of N′-(5-bromo-2-hydroxybenzylidene)formohydrazide (H2Le)*, ɫ and its organotin(IV) derivatives

Chemical Shift (ppm) Carbon

H2Le (29) Me2SnLe

(30) Et2SnLe

(31) n-Bu2SnLe

(32) Ph2SnLe

(33) Oct2SnLe

(34) ter-Bu2SnLe

(35) BuClSnLe

−CH=N− 141.1 161.5 161.5 161.4 161.6 161.3 161.0 162.8

−N=CHO− 165.5 165.5 166.3 166.1 166.3 166.3 167.1 165.4

Br

156.0, 133.8, 128.4, 121.7, 118.9, 111.0

164.1, 138.1, 135.7, 123.8, 117.6, 108.2

164.4, 138.0, 135.7, 123.7, 117.6, 107.8

164.3, 138.0, 135.7, 123.7, 117.7, 107.8

164.2, 138.2, 135.9, 124.1, 117.7, 108.6

164.3, 138.0, 135.6, 123.7, 117.8, 107.8

164.4, 137.8, 135.5, 123.8, 117.7, 107.4

165.0, 137.0, 135.9, 124.5, 118.9, 108.3

α − 1.6 [646, 618]

14.6 [609, 578]

22.5 [596, 571]

138.4 [639]

22.9 [595, 568]

45.0 [566]

25.6 [615]

β − − 9.4 [42 Hz]

27.0 [36]

136.1 [56, 55]

24.6 [36] 29.5 28.3

γ − − − 26.5 [89]

129.0 [89, 85] − − 27.3

δ − − − 13.6 130.9 [17] − − 14.1

γ−γ′ − − − − −

33.4 [82],

29.1, 29.0, 31.8, 22.6

− −

R

δ′ − − − − − 14.5 − −

119Sn − -162.8 -201.1 -200.7 -342.2 -201.0 -291.6 -200.1 * Chemical shifts (δ) in ppm. nJ[117/119Sn, 13C]; nJ[119Sn, 13C] in Hz are listed in parenthesis. ɫ See figure 3.47 for α, β, γ, δ, α′, β′, γ′, δ′.

OH

N

HN H

O

Br

Page 160: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

136

Table 3.20: 13C NMR data of N′-(2-hydroxy 3-methoxybenzylidene)formohydrazide (H2Lf)*, ɫ and its organotin(IV) derivatives

Chemical Shift (ppm) Carbon

H2Lf (36) Me2SnLf

(37) Et2SnLf

(38) n-Bu2SnLf

(39) Ph2SnLf

(40) Oct2SnLf

(41) ter-Bu2SnLf

(42) BuClSnLf

−CH=N− 143.3 156.9 157.8 157.7 158.0 157.7 159.5 156.6

−N=CHO− 165.2 163.7 164.1 164.0 163.7 164.0 163.9 162.2

146.4, 148.4, 120.7, 119.6, 118.4, 113.4

163.1, 151.2, 126.0, 116.6, 115.9, 115.7

162.9, 151.2, 126.1, 116.2, 115.9, 115.8

162.7, 151.3, 126.0, 116.2, 116.5, 115.9

163.1, 151.8, 126.1, 117.0, 116.7, 116.2

162.8, 151.3, 126.0, 116.2, 116.0, 115.8

162.5, 151.6, 126.3, 117.8 116.4, 115.9

159.5, 151.5, 126.5, 117.4, 117.2, 116.7

−OCH3 56.3 56.1 56.2 56.2 56.5 56.2 57.1 56.4

α − 2.6 [657, 627]

15.7 [621, 593]

22.9 [616] 138.5 23.3

[595, 571] 40.9

[581, 556] 25.6

β − − 9.2 [46]

26.8 [23]

136.2 [57]

24.7 [38] 29.6 28.5

γ − − − 26.5 [92]

129.0 [98] − − 27.4

δ − − − 13.6 130.7 [18] − − 14.2

γ−γ′ − − − − − 33.4 [86], 29.2, 29.1, 31.8, 22.7

− −

R

δ′ − − − − − 14.1 − −

119Sn − -164.1 -199.7 − -338.0 -200.3 -289.5 − * Chemical shifts (δ) in ppm. nJ[117/119Sn, 13C]; nJ[119Sn, 13C] in Hz are listed in parenthesis. ɫ See figure 3.47 for α, β, γ, δ, α′, β′, γ′, δ′.

OH

N

HN H

O

OCH3

Page 161: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

137

Table 3.21: 13C NMR data of N′-(4-(diethylamino)-2-hydroxybenzylidene)formohydrazide (H2Lg)*, ɫ and its organotin(IV) derivatives

Chemical Shift (ppm)

Proton H2Lg (43)

Me2SnLg (44)

Et2SnLg (45)

n-Bu2SnLg (46)

Ph2SnLg (47)

ter-Bu2SnLg

−CH=N− 143.5 161.1 161.0 161.4 161.2 161.0

−N=CHO− 164.3 168.3 169.1 168.6 169.3 169.9

162.4, 153.0, 131.6, 108.4, 104.8 100.5

161.4, 154.0, 136.6, 106.4, 103.8 100.4

161.7, 151.2, 136.5, 106.9, 103.6, 100.4

160.9, 151.1, 136.5, 106.9, 103.9, 100.4

161.5, 154.2, 136.7, 106.6, 104.0, 100.9

161.7, 153.8, 136.2, 106.9, 104.0, 100.4

−N(C2H5)2 44.5, 12.6 44.6, 12.8 44.6, 12.8 44.6, 12.8 44.7, 12.8 44.6, 12.8

α − 1.4 [654, 624] 14.0 22.0 139.6 39.9

β − − 9.2 27.0

136.2 [55] 29.6

γ − − − 26.5 128.7 [83] −

R

δ − − − 13.7 130.3 [18] −

119Sn − -160 − -202 -336 − * Chemical shifts (δ) in ppm. nJ[117/119Sn, 13C]; nJ[119Sn, 13C] in Hz are listed in parenthesis. ɫ See figure 3.47 for α, β, γ, δ, α′, β′, γ′, δ′.

OH

N

HN H

O(C2H5)2N

Page 162: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

138

Table 3.22: 13C NMR data of N′-(2-hydroxynaphthalen-1-yl)methylene)formohydrazide (H2Lh)*, ɫ, N′-(1-(5-bromo-2-hydroxyphenyl)ethyli- dene)formohydrazide (H2Li) and their organotin(IV) derivatives.

Chemical Shift (ppm) Carbon

H2Lh (48) Me2SnLh

(49) Ph2SnLh

(50) ter-Bu2SnLh H2Li (51)

Me2SnLi (52)

Bu2SnLi (53)

Ph2SnLi Carbon

−CH=N− 144.8 158.4 158.5 157.9 145.1 163.5 163.2 162.4 −CH=N−

−N=CHO− 165.1 169.1 170.0 170.6 165.4 167.6 168.6 171.1 −N=CHO−

14.8 14.5 14.7 15.0 -CH3

157.4, 137.4, 133.5, 129.4, 128.3, 128.2, 124.0, 123.1, 118.8, 109.0

162.6, 137.2, 133.7, 129.2, 128.3, 127.2, 124.2, 123.3, 118.9, 106.6

162.7, 137.7, 133.8, 129.3, 128.4, 127.4, 124.4, 123.5, 119.1, 106.9

162.9, 136.9, 133.9, 129.2, 128.1, 127.1, 124.5, 123.0, 118.9, 106.5

156.0, 133.8, 128.4, 121.7, 118.9, 111.0

163.7, 135.8, 133.0, 124.9, 122.6, 107.8

164.4, 135.9, 133.0, 124.8, 122.1, 107.7

164.5, 135.9, 132.9, 125.1, 120.8, 109.1

Br

α − 1.4 [657, 627] 138.5 40.6

[581, 556] − 4.6 [787, 752] 23.5 138.1 α

β − − 136.1 [54] 29.6 − − 27.1

[36] 136.2 [54] β

γ − − 129.0 [88] − − − 26.2

[99] 128.9 [87] γ

R

δ − − 130.7 [17] − − − 13.9 130.7

[18] δ

R

119Sn − − -326 − − -168 − -330 119Sn *Chemical shifts (δ) in ppm. nJ[117/119Sn, 13C]; nJ[119Sn, 13C] in Hz are listed in parenthesis. ɫ See figure 3.47 for α, β, γ, δ, α′, β′, γ′, δ′.

OH

NHN H

O OH

N

HN H

O

Br

Page 163: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

139

Table 3.23: 13C NMR data of N′-(2-hydroxybenzylidene)-4-tert-butylbenzohydrazide (H2Lj)*, ɫ and its organotin(IV) derivatives

Chemical Shift (ppm) Carbon H2Lj (54)

Me2SnLj (55)

Et2SnLj (56)

Bu2SnLj (57)

Ph2SnLj (58)

Oct2SnLj (59)

ter-Bu2SnLj (60)

BuClSnLj −CH=N− 148.6 161.1 161.2 160.9 161.2 160.8 160.7 158.1

CON

163.2 169.3 169.7 169.6 169.2 169.6 169.4 166.6

155.4, 130.5, 128.0, 125.8,

154.6, 130.4, 127.4, 125.2,

154.5, 130.5, 127.4, 125.2,

154.4, 130.6, 127.4, 125.2

154.8, 130.5, 127.7, 125.3

154.4, 130.6, 127.8, 125.1

154.3, 130.8, 127.4, 125.2

154.7, 130.6, 127.5, 125.7

−C(CH3)3 35.2, 31.4 34.9, 31.2 34.9, 31.2 34.9, 31.3 35.0, 31.2 34.9, 31.2 34.9, 31.3 35.2, 31.4

158.0, 131.8, 130.0, 119.8, 119.1, 116.9

166.3, 135.1, 134.1, 121.7, 117.2, 116.8

167.1, 135.0, 134.1, 121.6, 116.9, 116.8

166.9, 134.9, 134.1, 121.6, 117.1, 116.8

167.2, 135.3, 134.3, 122.1, 117.5, 116.9

166.9, 134.9, 134.1, 121.6, 117.0, 116.8

168.0, 134.7, 133.9, 121.7, 117.0, 116.5

165.9, 135.0, 134.6, 122.1, 118.0, 117.1

α − 1.4 [655]

14.3 [618]

22.2 [604, 578] 139.2 22.7

[592] 40.4 [584] 25.6

β − − 9.3 [43]

26.9 [35]

136.3 [54]

24.7 [36] 29.7 28.8

γ − − − 26.5 [88]

128.9 [83] − − 27.4

δ − − − 13.6 130.4 [21] − − 14.1

γ−γ′ − − − − − 33.4 [76], 29.2, 29.1, 31.2, 22.5

− −

R

δ′ − − − − 14.1 − − 119Sn − -196 − -338 − − −

* Chemical shifts (δ) in ppm. nJ[117/119Sn, 13C]; nJ[119Sn, 13C] in Hz are listed in parenthesis. ɫ See figure 3.47 for α, β, γ, δ, α′, β′, γ′, δ′. OH

N

HN

O

C(CH3)3

Page 164: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

140

Table 3.24: 13C NMR data of N1′, N6′-bis(2-hydroxybenzylidene)adipohydrazide (H4Lk)*, ɫ and its organotin(IV) derivatives

Chemical Shift (ppm) Carbon

H4Lk (61) (Me2Sn)2Lk

(62) (Et2Sn)2Lk

(63) (n-Bu2Sn)2Lk

(64) (Ph2Sn)2Lk

(65) (Oct2Sn)2Lk

(66) (BuClSn)2Lk

−CH=N− 146.9 161.0 160.9 160.8 161.0 160.6 159.3

CON

168.8 175.5 176.0 175.8 175.7 175.8 166.0

−(CH2)4− 34.2, 25.1 34.2, 26.0 34.3, 26.2 34.3, 26.0 34.4, 26.1 34.3, 26.2 34.2, 26.1

157.8, 131.6 129.9, 120.5, 119.7, 116.5

166.3, 135.2, 134.2, 121.6, 117.2, 116.5

167.0, 135.1, 134.2, 121.5, 116.9, 116.4

166.9, 135.0, 134.2, 121.6, 116.8, 116.5

167.1, 135.4, 134.4, 122.0, 117.5, 116.6

166.8, 134.9, 134.1, 121.6, 116.8, 116.6

162.3, 134.9, 132.0, 122.2, 117.6, 116.6

α − 1.3 [648, 621]

14.2 [618, 590]

22.0 [604, 577] 139.0 22.6

[649, 622] 25.6

β − − 9.6 [43]

26.9 [36]

136.2 [54]

24.7 [36] 28.3

γ − − − 26.5 [94]

128.9 [87, 85] − 27.4

δ − − − 13.6 130.5 [18] − 14.1

γ−γ′ − − − − − 33.4 [78], 29.2, 29.1, 31.8, 22.3

R

δ′ − − − − − 14.1 − 119Sn − -154.8 -192.5 -192.4 -333.0 − −

* Chemical shifts (δ) in ppm. nJ[117/119Sn, 13C]; nJ[119Sn, 13C] in Hz are listed in parenthesis. ɫ See figure 3.47 for α, β, γ, δ, α′, β′, γ′, δ′.

OH

NHN

O

(CH2)4

OHN N

HO

Page 165: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

141

Table 3.25: 13C NMR data of N1′, N6′-bis(5-bromo-2-hydroxybenzylidene)adipohydrazide (H4Ll)*, ɫ and its organotin(IV) derivatives

Chemical Shift (ppm) Carbon

H4Ll (67) (Me2Sn)2Ll

(68) (Et2Sn)2Ll

(69) (n-Bu2Sn)2Ll

(70) (Ph2Sn)2Ll

(71) (Oct2Sn)2Ll

(72) (BuClSn)2Ll

−CH=N− 144.3 159.5 159.3 159.2 156.1 159.2 159.7

CON

168.9 176.0 176.5 176.3 175.2 176.3 175.1

−(CH2)4− 34.2, 25.0 34.1, 25.9 34.2, 26.1 34.2, 25.8 34.4, 25.9 34.2, 26.1 34.2, 25.6

Br

156.0, 133.8, 130.9, 121.7, 119.0, 111.0

165.1, 137.5, 135.4, 123.6, 117.9, 108.1

166.0, 137.4, 135.3, 123.5, 118.0, 107.7

165.8, 137.4, 135.3, 123.6, 118.0, 107.6

165.4, 135.2, 129.4, 124.4, 120.0, 107.4

165.7, 137.4, 135.3, 123.5, 118.0, 107.7

164.7, 135.3, 132.4, 124.4, 118.2, 107.5

α − 1.3 [638, 618]

14.2 [614, 587]

22.1 [599, 574] 138.0 22.7

[627, 599] 23.7

β − − 9.2 [42]

26.8 [34]

135.2 [56]

24.7 [36] 27.2

γ − − − 26.4 [86]

128.8 [88] − 26.3

δ − − − 13.4 129.4 − 13.7

γ−γ′ − − − − − 33.4 [78], 29.2, 29.0, 31.8, 22.5

R

δ′ − − − − − 14.1 − 119Sn − -155.3 − -190.3 -327.7 − −

* Chemical shifts (δ) in ppm. nJ[117/119Sn, 13C]; nJ[119Sn, 13C] in Hz are listed in parenthesis. ɫ See figure 3.47 for α, β, γ, δ, α′, β′, γ′, δ′.

OH

NHN

O

(CH2)4

OHN N

HO

BrBr

Page 166: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

142

Table 3.26: 13C NMR data of N1′, N6′-bis(2-hydroxy-3-methoxybenzylidene)adipohydrazide (H4Lm)*, ɫ and its organotin(IV) derivatives

Chemical Shift (ppm) Carbon

H4Lm (73) (Me2Sn)2Lm

(74) (Et2Sn)2Lm

(75) (n-Bu2Sn)2Lm

(76) (Ph2Sn)2Lm

(77) (Oct2Sn)2Lm

(78) (BuClSn)2Lm

−CH=N− 141.2 156.6 157.4 157.4 157.6 157.4 156.4 CON

168.8 175.5 176.1 175.9 175.6 175.9 173.1

−(CH2)4− 34.3, 25.4 34.2, 26.0 34.2, 26.2 34.3, 25.8 34.4, 26.1 34.3, 26.3 34.3, 25.6

148.4, 147.5, 120.9, 119.6, 118.6, 113.2

161.1, 151.1, 125.8, 116.4, 116.2, 115.2

160.9, 151.1, 125.8, 116.3, 116.0, 115.4

160.8, 151.2, 125.8, 116.4, 116.0, 115.6

161.0, 151.8, 125.9, 116.8, 116.5, 116.4

160.7, 151.3, 125.8, 116.4, 116.0, 115.7

157.5, 151.5, 129.4, 117.6, 117.1, 116.7

−OCH3 56.3 56.1 56.2 56.3 56.6 56.2 56.5

α − 2.2 [652, 624] 15.2 22.6

[602, 577] 138.9 22.9 [601, 578]

25.6

β − − 9.3 26.8 [38]

136.2 [56]

24.7 [37] 28.4

γ − − − 26.4 [88]

128.9 [83] − 27.4

δ − − − 13.6 130.5 [17] − 14.1

γ−γ′ − − − − − 33.3 [84], 29.1, 29.0, 31.8, 22.7

R

δ′ − − − − − 14.1 − 119Sn − -154.6 − -191.0 -331 -192.0 −

Page 167: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

143

* Chemical shifts (δ) in ppm. nJ[117/119Sn, 13C]; nJ[119Sn, 13C] in Hz are listed in parenthesis. ɫ See figure 3.47 for α, β, γ, δ, α′, β′, γ′, δ′. Table 3.27: 13C NMR data of N1′, N4′-bis(2-hydroxybenzylidene)succinohydrazide (H4Ln)*, ɫ and its organotin(IV) derivatives

Chemical Shift (ppm) Carbon

H4Ln (79) (Me2Sn)2Ln

(80) (Et2Sn)2Ln

(81) (n-Bu2Sn)2Ln

(82) (Ph2Sn)2Ln

(83) (Oct2Sn)2Ln

(84) (t-Bu2Sn)2Ln

−CH=N− 147.0 156.2 160.9 160.8 161.2 160.7 160.5

CON

168.2 174.1 175.01 174.9 174.6 174.9 175.0

157.7, 131.7, 129.9, 120.4, 119.0, 116.6

167.1, 130.4, 129.4, 121.4, 116.9, 116.2

167.0, 135.0, 134.2, 121.5, 116.8, 116.5

166.9, 135.0, 134.1, 121.6, 117.2, 116.5

167.1, 135.4, 134.4, 122.0, 117.5, 116.6

166.9, 135.0, 134.1, 121.6, 116.8, 116.6

167.8, 134.8, 134.0, 121.7, 116.6, 116.4

−(CH2)2− 29.4 30.6 30.7 30.8 30.7 30.8 30.4

α − -3.50 [649, 618]

14.1 [618, 592] 22.0 139.0

[592] 22.4 [602] 40.4

β − − 9.3 [44]

26.8 [18]

136.2 [54]

24.7 [35] 29.6

γ − − − 26.4 3J[89]

128.8 [88] − −

δ − − − 13.6 130.5 [17] − −

γ−γ′ − − − − − 33.4 [79], 29.2, 29.1, 31.8, 22.7

R

δ′ − − − − − 14.1 − 119Sn − -158.1 − -194.0 -342 -198.0 −

* Chemical shifts (δ) in ppm. nJ[117/119Sn, 13C]; nJ[119Sn, 13C] in Hz are listed in parenthesis.

OH

NHN

O

(CH2)4

OHN N

HO

OCH3 OCH3

OH

NHN

O

(CH2)2

OHN N

HO

Page 168: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

144

ɫ See figure 3.47 for α, β, γ, δ, α′, β′, γ′, δ′.

Table 3.28: 13C NMR data of mixed ligand complexes

Chemical Shift (ppm) Proton

H2Ld (85) Me2SnLdbipy H2Lf (86)

Me2SnLfbipy

−CH=N− 148.1 162.9 143.3 156.9 −CH=N−

−N=CHO− 165.2 166.6 165.2 163.7 −N=CHO−

157.4, 132.3, 131.6, 120.1 119.1, 116.8

163.7, 135.7, 134.5, 121.8, 117.3, 116.2

146.4, 148.4, 120.7, 119.6, 118.4, 113.4

163.1, 151.2, 126.0, 116.6, 115.9, 115.7

− 156.0, 149.2, 123.8, 136.9,

123.7

− 156.1, 149.2, 122.0, 136.9,

123.7 56.3 56.1 −OCH3

R α 1.6 [623, 652] 2.7

[657, 627] α R * Chemical shifts (δ) in ppm. nJ[117/119Sn, 1H], 3J(1H, 1H) in Hz are listed in square brackets and parenthesis, respectively. ɫ Multiplicity is given as s = singlet, d = doublet, dd = doublet of doublet, m = multiplet., q = quintet, bs = broad signal. ƚƚ See figure 3.47 for α.

OH

N

HN H

O

OH

N

HN H

O

OCH3

Page 169: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

145

Table 3.29: (C-Sn-C) angles (◦) of selective organotin(IV) complexes

Angle(◦) Comp.

No Compound

1J(119Sn, 13C)

(Hz)

2J(119Sn, 1H)

(Hz) θ (1J) θ (2J)

1 Me2Sn(HLa)2 - 80 - 130.8

2 Me3SnHLa 398 58 111.7 111.0

8 Me2Sn(HLb)2 518 70 122.2 120.0

9 Me3SnHLb 361 59 108.4 111.6

16 Me3SnHLc 370 57 109.2 110.5

18 Bu3SnHLc 359 - 112.4 -

22 Me2SnLd 650 79 133.8 129.6

23 Et2SnLd 616 - 130.8 -

24 n-Bu2SnLd 600 - 134.9 -

27 ter-Bu2SnLd 586 - 133.6 -

28 BuClSnLd 615 - 136.3 -

29 Me2SnLe 646 79 133.4 129.6

30 Et2SnLe 609 - 130.2 -

31 n-Bu2SnLe 596 - 134.5 -

32 Ph2SnLe 639 - 138.5 -

33 Oct2SnLe 595 - 134.4 -

34 ter-Bu2SnLe 566 - 131.7 -

35 BuClSnLe 615 - 136.3 -

36 Me2SnLf 657 80 134.4 130.8

37 Et2SnLf 621 72 131.2 121.8

38 n-Bu2SnLf 616 - 136.4 -

40 Oct2SnLf 595 - 134.4 -

41 ter-Bu2SnLf 581 - 133.1 -

43 Me2SnLg 654 79 134.1 129.6

48 Me2SnLh 657 79 134.4 129.6

50 ter-Bu2SnLh 581 - 133.1 -

51 Me2SnLi 787 91 145.8 146.6

Continue….

Page 170: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

146

Angle(◦) Comp.

No Compound

1J(119Sn, 13C)

(Hz)

2J(119Sn, 1H)

(Hz) θ (1J) θ (2J)

54 Me2SnLj 655 79 134.2 129.6

55 Et2SnLj 618 - 131.0 -

56 Bu2SnLj 604 - 135.3 -

58 Oct2SnLj 592 - 134.1 -

59 ter-Bu2SnLj 584 - 133.4 -

61 (Me2Sn)2Lk 648 79 133.6 129.6

62 (Et2Sn)2Lk 618 - 131.0 -

63 (n-Bu2Sn)2Lk 604 - 135.3 -

65 (Oct2Sn)2Lk 649 - 139.4 -

67 (Me2Sn)2Ll 638 78 132.7 128.4

68 (Et2Sn)2Ll 614 - 130.6 -

69 (n-Bu2Sn)2Ll 599 - 134.8 -

71 (Oct2Sn)2Ll 627 - 137.4 -

73 (Me2Sn)2Lm 652 79 134.0 129.6

75 (n-Bu2Sn)2Lm 602 - 135.1 -

77 (Oct2Sn)2Lm 601 - 135.0 -

79 (Me2Sn)2Ln 649 78 133.7 128.4

80 (Et2Sn)2Ln 618 - 131.0 -

82 (Ph2Sn)2Ln 592 - 134.1 -

83 (Oct2Sn)2Ln 602 - 135.1 -

Page 171: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

147

Figure 3.5: 13C NMR spectrum of complex (2)

Figure 3.6: 13C NMR spectrum of complex (50)

Page 172: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

148

Figure 3.7: 13C NMR spectrum of complex (68)

Figure 3.8: 119Sn NMR spectrum of complex (16)

Page 173: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

149

Figure 3.9: 119Sn NMR spectrum of complex (32)

Page 174: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

150

Figure 3.10: 119Sn NMR spectrum of complex (61)

Page 175: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

151

Figure 3.11: 119Sn NMR spectrum of complex (75)

3.4 Mass spectrometry

The mass spectrometric data collected at 70 eV by the electron impact (EI)

method, for the synthesized free ligands and their organotin(IV) complexes is

presented in the experimental section. Some representative spectra are given in figures

3.12−3.14. In the mass spectra of the organometallic compounds with [O,O] donor

ligands, the molecular ion peak [M+•] is generally not observed or it is of very low

intensity as reported by Mahieu and Gielen [58]. The fragments having significant

abundance along with their m/z ratio are given in the experimental section. Schemes

3.1 and 3.2, show the fragmentation pattern of di- and triorganotin(IV) derivatives

with [O,O] donor ligands. A molecular ion peak of low intensity is observed only for

some of the triorganotin(IV) carboxylates whereas in most of the cases it was not

observed, supporting the previous reports [59-61]. The fragmentation patterns

depends both upon the structure of the ligand and the carboxyl group. The base peak

for each di- and triorganotin(IV) compounds is derived by adopting a different

fragmentation pattern. In both di- and triorganotin(IV) carboxylates, the primary

fragmentation is due to the loss of the R group. However, the secondary and tertiary

decomposition is due to the loss of R groups in triorganotin(IV) derivatives while

Page 176: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

152

diorganotin(IV) derivatives exhibit different patterns of fragmentation generating

[RSn]+ and ends at [Sn]+.

[R2Sn(O2CR')2]+ [RSn(O2CR')2]+

[RSn(O2CR')R']+

-R

-CO2

[RSnR'2]+

[RSnR']+

-CO2

-R'

[SnR']+

-R

[Sn[H]+[Sn]+ -R'-H+

[R2Sn(O2CR')]+ -OCR'

[R2SnR']+

-CO2

[R2Sn]+

[RSn]+

[Sn]+[H]+

-R'

-R

-R

-H+

[HO2CR']+

[O2CR']+

-H

-[R2Sn(O2CR')

-O

[R]+

[OCR']+

-CO

[R']+

[C8H7]+

-CO2

[C7H5]+

R = CH3, C4H9, C6H5, C8H17; R� = Organic moiety of Ligands

Scheme 3.1: General mass fragmentation pattern of R2Sn (O2CR′)2

[R3Sn(O2CR')]+ [R2Sn(O2CR')]+

[R2SnR')]+

[R2Sn]+

[RSn]+

[Sn]+

[R3Sn]+

[R2Sn]+

[RSn]+

[R'CO2H]+

[R'CO]+

[R]+

-[R'CO2]+

-R

-R

-R

-R

-CO2

-R'

-R

-R

-R 3Sn

-O

-CO

[O 2CR']+

-H

-CO2

[C8H7]+ [C7H5]+

R = CH3, C4H9, C6H5; R� = Organic moiety of Ligands

Scheme 3.2: General mass fragmentation pattern of R3Sn (O2CR′)

Page 177: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

153

The [O,N,O] donor ligand and their diorganotin(IV) derivatives show

molecular ion peaks of significant intensities along with the characteristic distribution

patterns of tin. The proposed general fragmentation pattern of diorganotin(IV)

complexes is depicted in scheme 3.3. For H2Ld and its complex (22) the proposed

fragmentation (as representative) is shown in scheme 3.4. The first step of the

fragmentation of the complex is the loss of one alkyl group followed by the

subsequent loss of a second alkyl group. The base peak is for the fragment

[C8H6N2O2Sn]+, other fragments with m/z equal to that for [R2Sn]+, [RSn]+ and [Sn]+

are also observed with

RSnR2 RSnR+ +

RSn+

SnR2

+-

SnR+

Sn+

R-

R-

R- R-

R-

R-

-

-

-

-

- -

-

R� = CH3, C2H5, n-C4H9, ter-C4H9, C6H5, C8H17; R = Organic moiety of Ligands

Scheme 3.3: Proposed general mass fragmentation pattern of diorganotin(IV) complexes of tridentate [O,N,O] donor ligands.

OH

NNH

OH

N

OH

N

HN H

O

m/z 164 ( 49.6%)

-COH

m/z 135 (7.8%)

m/z 120 (79.2%)

-NH

OH

N

m/z 119 (100.0%)

-H

m/z 77 (43.8%)

-HCNO

O

NN H

OSnCH3H3C

O

NN H

OSn

O

NN H

OSnH3C

-CH3

-CH3

m/z 312 (84.8%)

m/z 297 (79.8%)

m/z 282 (100%)

[Sn(CH3)2]+

[SnCH3]+

[Sn]+

m/z 150 (5.3%)

m/z 135 (70.8%)

m/z 120 (51.3%)

O

NSn

m/z 238 (26.4%)

-CH2NO

-C8H6N2O2

-C8H6N2O2

-C8H6N2O2

-C 7H 4NO-CNOSn

Scheme 3.4: Proposed mass fragmentation pattern of (H2Ld) and (22)

Page 178: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

154

significant abundance. All the synthesized diorganotin(IV) compounds with tridentate

[O,N,O] donor ligands follow almost the same fragmentation pattern. The mass

spectral data is given in the experimental section.

Figure 3.12: Mass spectrum of complex (22)

Page 179: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

155

Figure 3.13: Mass spectrum of complex (39)

Figure 3.14: Mass spectrum of complex (85)

Page 180: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

156

3.5 Biological activity

3.5.1 Cytotoxicity

The organotin(IV) compounds do not only inhibit the ATP synthesis but they

can also promote oxidative damage. Their ability to interact with a protein, the DNA

and cell membranes make them cytotoxic. The Brine Shrimp method [62] has been

used to check the toxicity of the synthesized compounds by using Etoposide as

standard drug. Cytotoxicity data is given in Table 3.30. Highest toxicity was shown

by compound (38) whose LD50 value is 0.24 µg/mL, while the lowest toxicity was

calculated for compound (22) whose LD50 value is 92.7 µg/mL compared to standard

drugs. The rest of the compounds does not show any significant toxicity against the

Brine Shrimp (larvae).

Page 181: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

157

Table 3.30: Brine shrimp (Artemia salina) lethality bioassay of ligands and their organotin(IV) complexes.*

Comp. No.

Dose (µg/mL)

No. of Survivors

LD50 (µg/mL)

Comp. No.

Dose (µg/mL)

No. of Survivors

LD50 (µg/mL)

Comp. No.

Dose (µg/mL)

No. of Survivors

LD50 (µg/mL)

100 14 100 18 100 19 10 24 10 24 10 22 H2La 1 29

80.32 H2Lb 1 29

− H2Lc 1 25

100 22 100 21 100 21 10 25 10 27 10 24 (1) 1 29

− (8) 1 30

− (15) 1 28

100 0 100 0 100 19 10 17 10 10 10 20 (2) 1 24

− (9) 1 17

8.99 (16) 1 30

100 12 100 6 100 10 10 24 10 10 10 20 (3) 1 28

60.23 (10) 1 9

− (17) 1 28

100 1 100 0 100 1 10 9 10 0 10 12 (4) 1 21

3.06 (11) 1 12

7.88 (18) 1 16

0.96

100 2 100 0 100 1 10 8 10 11 10 9 (5) 1 20

− (12) 1 17

3.34 (19) 1 14

1.04

100 1 100 0 100 1 10 15 10 1 10 2 (6) 1 20

9.33 (13) 1 29

− (20) 1 2

0.50

100 2 100 21 100 10 10 7 10 23 10 20 (7) 1 15

1.01 (14) 1 30

− (21) 1 25

29.11

* Standard drug: Etoposide, LD50 (µg/mL) = 7.46; − LD50 not calculated

Continued…

Page 182: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

158

Comp. No.

Dose (µg/mL)

No. of Survivors

LD50 (µg/mL)

Comp. No.

Dose (µg/mL)

No. of Survivors

LD50 (µg/mL)

Comp. No.

Dose (µg/mL)

No. of Survivors

LD50 (µg/mL)

100 29 100 19 100 13 10 29 10 27 10 20 H2Ld 1 30

− (29) 1 29

− (37) 1 28

100 15 100 10 100 0 10 20 10 16 10 6 (22) 1 25

92.70 (30) 1 22

− (38) 1 9

0.24

100 12 100 8 100 19 10 18 10 10 10 28 (23) 1 26

− (31) 1 18

6.50 (39) 1 30

100 0 100 16 100 20 10 2 10 26 10 25 (24) 1 13

0.69 (32) 1 29

− (40) 1 29

100 24 100 17 100 18 10 16 10 20 10 18 (25) 1 16

− (33) 1 25

− (41) 1 22

100 24 100 12 100 22 10 28 10 18 10 24 (26) 1 30

− (34) 1 26

− (42) 1 28

100 12 100 21 100 22 10 16 10 25 10 22 (27) 1 22

− (35) 1 28

− H2Lg 1 22

100 24 100 22 100 12 10 26 10 22 10 20 (28) 1 27

− H2Lf 1 22

− (43) 1 25

32.11

100 19 100 10 100 13 10 23 10 21 10 20 H2Le 1 26

− (36) 1 23

29.79 (44) 1 28

Continued…

Page 183: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

159

Comp.

No. Dose

(µg/mL) No. of

Survivors LD50

(µg/mL) Comp.

No. Dose

(µg/mL) No. of

Survivors LD50

(µg/mL) Comp.

No. Dose

(µg/mL) No. of

Survivors LD50

(µg/mL) 100 0 100 17 100 9 10 8 10 22 10 18 (45) 1 12

0.84 (61) 1 24

− (69) 1 28

24.65

100 19 100 12 100 26 10 28 10 18 10 29 (46) 1 30

− (62) 1 28

− (70) 1 30

100 20 100 6 100 28 10 25 10 10 10 29 (47) 1 29

− (63) 1 21

4.24 (71) 1 30

100 22 100 0 100 30 10 22 10 5 10 30 H2Lj 1 22

− (64) 1 14

0.89 (72) 1 30

100 9 100 24 100 19 10 18 10 24 10 20 (54) 1 20

26.61 (65) 1 28

− H4Lm 1 26

100 13 100 19 100 17 10 20 10 22 10 21 (55) 1 28

− (66) 1 27

− (73) 1 26

100 0 100 30 100 10 10 6 10 30 10 15 (56) 1 10

0.44 H4Ll 1 30

− (74) 1 25

100 19 100 24 100 9 10 25 10 29 10 14 (57) 1 29

− (67) 1 30

− (75) 1 25

13.86

100 22 100 14 100 9 10 26 10 18 10 9 H4Lk 1 28

− (68) 1 24

− (76) 1 15

0.50

Page 184: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

160

3.5.2 Antifungal activity

The synthesized compounds were also tested against various fungi using the

agar tube diffusion test [63]. The percent growth inhibition (%) by the synthesized

ligands and the organotin(IV) complexes are listed in Tables 3.31−3.41 and figures

3.15-3.25. Miconazole and Amphotericin-B was used as standard drug. The

compounds were screened against six fungal strains namely Trichophyton longifusus,

Candida albicans, Aspergillus flavis, Microsporum canis, Fusarium solani and

Candida glaberata.

The fungicidal data clearly demonstrate that

i) The organotin(IV) derivatives are more active than the free ligands, except

in some cases where the free ligands (H2Lb, H2Le, H2Lf )also show

significant activities againt some fungi.

ii) In the case of the organotin(IV) complexes with [O,O] donor ligands, the

triorganotin(IV) complexes demonstrate higher activities than the

diorganotin(IV) complexes.

iii) Among the diorganotin(IV) derivatives with [O,N,O] donor ligands, the

dibutyl and diphenyl complexes are more active.

Page 185: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

161

Table 3.31:Antifungal activitya-c (% inhibition) of 4-((5-bromo-2-hydroxybenzylidene amino)- methyl)cyclohexanecarboxylic acid (H2La) and its organotin(IV) complexes.

Inhibition (%) Fungus (ATCC No.) H2La (1) (2) (3) (4) (5) (6) (7)

Standard Drug

MIC (µg/mL)

Trichophyton longifusus (22397) 0 10 30 0 40 10 20 0 Miconazole 70.0

Candida albicans (2192) 0 0 0 0 0 0 0 0 Miconazole 110.8

Aspergillus flavis (1030) 20 20 40 25 30 40 30 35 Amphotericin B 20.0

Microsporum canis (9865) 10 40 10 10 25 30 40 20 Miconazole 98.4

Fusarium solani (11712) 10 25 10 40 20 25 25 30 Miconazole 73.2

Candida glaberata (90030) 0 0 0 0 0 0 0 0 Miconazole 110.8

aConcentration: 200 µg/mL of DMSO bMIC: Minimum inhibitory concentration cPercent inhibition (standard drug) = 100

Figure 3.15: Antifungal activity of H2La and its organotin(IV) complexes against various fungi.

Page 186: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

162

Table 3.32: Antifungal activitya-c (% inhibition) of 4-((1-(2-hydroxyphenyl)ethylideneamino)- methyl)-cyclohexanecarboxylic acid (H2Lb) and its organotin(IV) complexes.

Inhibition (%) Fungus (ATCC No.) H2Lb (8) (9) (10) (11) (12) (13) (14)

Standard Drug

MIC (µg/mL)

Trichophyton longifusus (22397) 0 40 0 0 38 0 0 0 Miconazole 70.0

Candida albicans (2192) 0 40 0 20 20 0 0 10 Miconazole 110.8

Aspergillus flavis (1030) 50 60 30 20 60 20 0 10 Amphotericin

B 20.0

Microsporum canis (9865) 70 40 70 0 18 20 60 20 Miconazole 98.4

Fusarium solani (11712) 50 30 0 20 20 0 0 30 Miconazole 73.2

Candida glaberata (90030) 0 65 0 0 40 0 30 25 Miconazole 110.8

aConcentration: 200 µg/mL of DMSO bMIC: Minimum inhibitory concentration cPercent inhibition (standard drug) = 100

Figure 3.16: Antifungal activity of H2Lb and its organotin(IV) derivatives against various fungi.

Page 187: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

163

Table 3.33: Antifungal activitya-c (% inhibition) of 4-((1-(5-bromo-2-hydroxyphenyl)-ethylidene amino)methyl)cyclohexanecarboxylic acid (H2Lc) and its organotin(IV) complexes.

Inhibition (%) Fungus

(ATCC No.) H2Lc (15) (16) (17) (18) (19) (20) (21)

Standard Drug

MIC (µg/mL)

Trichophyton longifusus (22397) 0 20 65 0 20 0 30 0 Miconazole 70.0

Candida albicans (2192) 0 0 0 20 0 0 0 0 Miconazole 110.8

Aspergillus flavis (1030) 0 0 0 0 0 40 0 0 Amphotericin

B 20.0

Microsporum canis (9865) 0 30 60 30 60 0 90 70 Miconazole 98.4

Fusarium solani (11712) 0 0 40 10 70 30 70 0 Miconazole 73.2

Candida glaberata (90030) 0 0 0 0 0 0 0 0 Miconazole 110.8

aConcentration: 200 µg/mL of DMSO bMIC: Minimum inhibitory concentration cPercent inhibition (standard drug) = 100

Figure 3.17: Antifungal activity of H2Lc and its organotin(IV) derivatives against various fungi.

Page 188: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

164

Table 3.34: Antifungal activitya-c (% inhibition) of N′-(2-hydroxybenzylidene)formo- hydrazide (H2Ld) and its organotin(IV) complexes.

Inhibition (%) Fungus

(ATCC No.) H2Ld (22) (23) (24) (25) (26) (27) (28)

Standard Drug

MIC (µg/mL)

Trichophyton longifusus (22397)

0 20 0 20 40 0 0 0 Miconazole 70.0

Candida albicans (2192) 40 35 20 0 0 30 10 20 Miconazole 110.8

Aspergillus flavis (1030) 0 45 40 10 50 0 0 10 Amphotericin

B 20.0

Microsporum canis (9865) 0 0 0 0 10 10 20 30 Miconazole 98.4

Fusarium solani (11712) 0 40 30 20 0 0 0 0 Miconazole 73.2

Candida glaberata (90030)

0 0 35 0 50 5 0 10 Miconazole 110.8

aConcentration: 200 µg/mL of DMSO bMIC: Minimum inhibitory concentration cPercent inhibition (standard drug) = 100

Figure 3.18: Antifungal activity of H2Ld and its organotin(IV) derivatives against various fungi.

Page 189: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

165

Table 3.35: Antifungal activitya-c (% inhibition) of N′-(5-bromo-2-hydroxybenzylidene)- formohydrazide (H2Le) and its organotin(IV) complexes.

Inhibition (%) Fungus (ATCC No.) H2Le (29) (30) (31) (32) (33) (34) (35)

Standard Drug

MIC (µg/mL)

Trichophyton longifusus (22397) 0 10 25 10 0 0 10 20 Miconazole 70.0

Candida albicans (2192) 0 0 0 30 0 0 0 0 Miconazole 110.8

Aspergillus flavis (1030) 0 10 45 90 80 75 50 0 Amphotericin

B 20.0

Microsporum canis (9865) 65 35 25 20 25 20 30 30 Miconazole 98.4

Fusarium solani (11712) 90 40 55 40 85 30 0 50 Miconazole 73.2

Candida glaberata (90030) 0 0 0 0 0 0 0 0 Miconazole 110.8

aConcentration: 200 µg/mL of DMSO bMIC: Minimum inhibitory concentration cPercent inhibition (standard drug) = 100

Figure 3.19: Antifungal activity of H2Le and its organotin(IV) derivatives against various fungi.

Page 190: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

166

Table 3.36: Antifungal activitya-c (% inhibition) of N′-(2-hydroxy-3-methoxybenzyli- dene)formohydrazide (H2Lf) and its organotin(IV) complexes.

Inhibition (%) Fungus (ATCC No.) H2Lf (36) (37) (38) (39) (40) (41) (42)

Standard Drug

MIC (µg/mL)

Trichophyton longifusus (22397) 0 0 0 0 0 0 0 0 Miconazole 70.0

Candida albicans (2192) 0 0 45 0 65 0 0 0 Miconazole 110.8

Aspergillus flavis (1030) 90 0 0 0 40 30 0 0 Amphotericin

B 20.0

Microsporum canis (9865) 0 0 50 75 0 0 50 0 Miconazole 98.4

Fusarium solani (11712) 0 0 30 85 30 0 45 0 Miconazole 73.2

Candida glaberata (90030) 0 0 0 0 80 0 0 0 Miconazole 110.8

aConcentration: 200 µg/mL of DMSO bMIC: Minimum inhibitory concentration cPercent inhibition (standard drug) = 100

Figure 3.20: Antifungal activity of H2Lf and its organotin(IV) derivatives against various fungi.

Page 191: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

167

Table 3.37: Antifungal activitya-c (% inhibition) of N′-(4-(diethylamino)-2-hydroxy- benzylidene)formohydrazide (H2Lg) and its organotin(IV) complexes.

Inhibition (%) Fungus (ATCC No.)

H2Lg (43) (44) (45) (46) (47)

Standard Drug

MIC (µg/mL)

Trichophyton longifusus (22397) 0 0 0 0 0 0 Miconazole 70.0

Candida albicans (2192) 0 0 0 0 0 10 Miconazole 110.8

Aspergillus flavis (1030) 50 40 0 85 70 0 AmphotericinB 20.0

Microsporum canis (9865) 40 80 70 0 0 40 Miconazole 98.4

Fusarium solani (11712) 0 40 60 0 80 30 Miconazole 73.2

Candida glaberata (90030) 0 0 0 0 0 0 Miconazole 110.8

aConcentration: 200 µg/mL of DMSO bMIC: Minimum inhibitory concentration cPercent inhibition (standard drug) = 100

Figure 3.21: Antifungal activity of H2Lg and its organotin(IV) derivatives against various fungi.

Page 192: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

168

Table 3.38: Antifungal activitya-c (% inhibition) of N′-(2-hydroxybenzylidene)-4-tert- butylbenzohydrazide (H2Lj) and its organotin(IV) complexes.

Inhibition (%) Fungus (ATCC No.) H2Lj (54) (55) (56) (57) (58) (59) (60)

Standard Drug

MIC (µg/mL)

Trichophyton longifusus (22397) 0 0 0 0 0 0 0 0 Miconazole 70.0

Candida albicans (2192) 0 0 0 0 0 10 0 0 Miconazole 110.8

Aspergillus flavis (1030) 20 30 0 65 40 0 60 0 Amphotericin

B 20.0

Microsporum canis (9865) 30 70 60 0 0 40 0 20 Miconazole 98.4

Fusarium solani (11712) 0 20 50 0 70 30 80 0 Miconazole 73.2

Candida glaberata (90030) 0 0 0 0 0 0 0 0 Miconazole 110.8

aConcentration: 200 µg/mL of DMSO bMIC: Minimum inhibitory concentration cPercent inhibition (standard drug) = 100

Figure 3.22: Antifungal activity of H2Lj and its organotin(IV) derivatives against various fungi.

Page 193: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

169

Table 3.39: Antifungal activitya-c (% inhibition) of N1′, N6′-bis(2-hydroxybenzylidene)- adipohydrazide (H4Lk) and its organotin(IV) complexes.

Inhibition (%) Fungus (ATCC No.)

H4Lk (61) (62) (63) (64) (65) (66)

Standard Drug

MIC (µg/mL)

Trichophyton longifusus (22397) 0 0 0 0 0 0 0 Miconazole 70.0

Candida albicans (2192) 0 0 20 0 0 0 0 Miconazole 110.8

Aspergillus flavis (1030) 0 85 0 40 85 0 10 Amphotericin B 20.0

Microsporum canis (9865) 0 0 35 0 0 0 20 Miconazole 98.4

Fusarium solani (11712) 0 0 0 50 85 0 0 Miconazole 73.2

Candida glaberata (90030) 0 0 0 0 0 0 0 Miconazole 110.8

aConcentration: 400 µg/mL of DMSO bMIC: Minimum inhibitory concentration cPercent inhibition (standard drug) = 100

Figure 3.23: Antifungal activity of H4Lk and its organotin(IV) derivatives against various fungi.

Page 194: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

170

Table 3.40: Antifungal activitya-c (% inhibition) of N1′, N6′-bis(5-bromo-2-hydroxy- benzylidene)adipohydrazide (H4Ll) and its organotin(IV) complexes.

Inhibition (%) Fungus (ATCC No.)

H4Ll (67) (68) (69) (70) (71) (72)

Standard Drug

MIC (µg/mL)

Trichophyton longifusus (22397) 0 0 0 0 0 0 0 Miconazole 70.0

Candida albicans (2192) 0 0 0 0 0 0 0 Miconazole 110.8

Aspergillus flavis (1030) 40 45 30 0 50 20 30 Amphotericin B 20.0

Microsporum canis (9865) 0 0 0 0 0 0 0 Miconazole 98.4

Fusarium solani (11712) 0 85 45 75 55 25 35 Miconazole 73.2

Candida glaberata (90030) 0 0 0 0 0 0 0 Miconazole 110.8

aConcentration: 400 µg/mL of DMSO bMIC: Minimum inhibitory concentration cPercent inhibition (standard drug) = 100

Figure 3.24: Antifungal activity of H4Ll and its organotin(IV) derivatives against various fungi.

Page 195: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

171

Table 3.41: Antifungal activitya-c (% inhibition) of N1′, N6′-bis(2-hydroxy-3-methoxy- benzylidene)adipohydrazide (H4Lm) and its organotin(IV) complexes.

Inhibition (%) Fungus (ATCC No.)

H4Lm (73) (74) (75) (76) (77) (78)

Standard Drug

MIC (µg/mL)

Trichophyton longifusus (22397) 0 0 10 20 0 0 10 Miconazole 70.0

Candida albicans (2192) 35 0 0 0 0 0 0 Miconazole 110.8

Aspergillus flavis (1030) 45 0 0 30 0 0 80 Amphotericin B 20.0

Microsporum canis (9865) 0 0 0 0 0 0 0 Miconazole 98.4

Fusarium solani (11712) 40 35 30 0 70 0 0 Miconazole 73.2

Candida glaberata (90030) 0 0 0 0 0 0 0 Miconazole 110.8

aConcentration: 400 µg/mL of DMSO bMIC: Minimum inhibitory concentration cPercent inhibition (standard drug) = 100

Figure 3.25: Antifungal activity of H4Lm and its organotin(IV) derivatives against various fungi.

Page 196: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

172

3.5.3 Antibacterial activity

The synthesized free ligands and some of their complexes were screened for

antibacterial activities against six different strains of bacteria with several clinical

implications (Escherichia coli, infection of wounds, urinary tract and dysentery; Bacillus

subtilis, food poisoning; Shigella flexenari, blood diarrhea with fever and severe prostration;

Staphlococcus aureus, food poisoning, scaled skin syndrome, endrocarditis; Pseudomonas

aeruginosa, infection of wounds, eyes, septicemia, Salmonella typhi, typhoid fever, localized

infection) by the agar well diffusion method [63] in DMSO. Imipenum was used as a

standard drug and the zone of inhibition was measured after 20 h in millimeter. The

results are shown in Tables 3.42-3.52 and figures 3.26-3.36. The tested complexes

exhibit higher activities than their corresponding ligands. Compounds (4) and (6)

show significant inhibitory actions against stephlococcus aureus. The data suggest that

triorganotin(IV) carboxylates are more active than the diorganotin(IV) carboxylates.

However, the role of the anionic ligand cannot be ignored. In cases of [O,N,O] donor

ligands the dibutyl and dimethyl derivatives are more active. The inhibitory action of

organotin(IV) compounds is mainly due to their ability to interact with DNA and

protein. They can also damage micochondria, thus causing the death of

microorganisms.

Page 197: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

173

Table 3.42: Antibacterial activitya,b of 4-((5-bromo-2-hydroxybenzylideneamino)met- hyl)cyclohexanecarboxylic acid (H2La) and its organotin(IV) complexes.

Inhibition Zone Diameter (mm) Bacterium (ATCC No.)

H2La (1) (2) (3) (4) (5) (6) (7)

Reference Drug

Escherichia coli (11229) 10 10 17 13 − 12 11 − 30

Bacillus subtilis (11774) − − − − − − − − 37

Shigella flexenari (10782) − 15 13 20 11 10 11 − 36

Stephlococcus aureus (25923) 10 10 − 15 24 16 25 − 26

Pseudomonas aeruginosa (10145) − − − − 12 − − − 32

Salmonella typhi (10749) 11 − − 18 11 − − − 30

aIn vitro, agar well diffusion method, conc. 1 mg/mL of DMSO bReference drug, Imipenum

− Insignificant activity

Figure 3.26: Antibacterial activity of H2La and its organotin(IV) derivatives against various bacteria.

Page 198: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

174

Table 3.43: Antibacterial activitya,b of 4-((1-(2-hydroxyphenyl)ethylideneamino)methyl)- cyclohexanecarboxylic acid (H2Lb) and its organotin(IV) complexes.

Inhibition Zone Diameter (mm) Bacterium (ATCC No.)

H2Lb (8) (9) (10) (11) (12) (13) (14)

Reference Drug

Escherichia coli (11229) − 10 17 − 11 12 − − 30

Bacillus subtilis (11774) − 10 12 14 16 − 18 11 37

Shigella flexenari (10782) 11 − 13 − 10 12 9 − 36

Stephlococcus aureus (25923) − − 12 10 14 14 16 − 26

Pseudomonas aeruginosa (10145) − 12 10 13 11 12 13 12 32

Salmonella typhi (10749) − − 14 − − − 14 − 30

aIn vitro, agar well diffusion method, conc. 1 mg/mL of DMSO bReference drug, Imipenum

− Insignificant activity

Figure 3.27: Antibacterial activity of H2Lb and its organotin(IV) derivatives against various bacteria.

Page 199: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

175

Table 3.44:Antibacterial activitya,b of 4-((1-(5-bromo-2-hydroxyphenyl)ethylideneamino) methyl)cyclohexanecarboxylic acid (H2Lc) and its organotin(IV) complexes.

Inhibition Zone Diameter (mm) Reference Drug Bacterium (ATCC

No.) H2Lc (15) (16) (17) (18) (19) (20) (21)

Escherichia coli (11229) − 12 − − − 10 18 − 30

Bacillus subtilis (11774) − − 15 − 10 − − − 37

Shigella flexenari (10782) − 10 11 10 − 12 15 − 36

Stephlococcus aureus (25923) − − 15 13 22 21 22 − 26

Pseudomonas aeruginosa (10145) − 14 − 10 13 − 12 − 32

Salmonella typhi (10749) − 10 10 − 13 15 − − 30

aIn vitro, agar well diffusion method, conc. 1 mg/mL of DMSO bReference drug, Imipenum

− Insignificant activity

Figure 3.28: Antibacterial activity of H2Lc and its organotin(IV) derivatives against various bacteria.

Page 200: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

176

Table 3.45: Antibacterial activitya,b of N′-(2-hydroxybenzylidene)formohydrazide (H2Ld) and its organotin(IV) complexes.

Inhibition Zone Diameter (mm) Reference Drug Bacterium (ATCC

No.) H2Ld (22) (23) (24) (25) (26) (27) (28)

Escherichia coli (11229) − 10 12 18 15 11 − 14 30

Bacillus subtilis (11774) − 15 16 20 18 10 10 12 37

Shigella flexenari (10782) − 17 10 14 − 11 14 13 36

Stephlococcus aureus (25923) − 20 − 15 − − − 12 26

Pseudomonas aeruginosa (10145) − 12 10 9 10 − 12 − 32

Salmonella typhi (10749) − − − 17 − − − − 30

aIn vitro, agar well diffusion method, conc. 1 mg/mL of DMSO bReference drug, Imipenum

− Insignificant activity

Figure 3.29: Antibacterial activity of H2Ld and its organotin(IV) derivatives against various bacteria.

Page 201: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

177

Table 3.46: Antibacterial activitya,b of N′-(5-bromo-2-hydroxybenzylidene)formohyd - razide (H2Le) and its organotin(IV) complexes.

Inhibition Zone Diameter (mm) Reference Drug Bacterium (ATCC

No.) H2Le (29) (30) (31) (32) (33) (34) (35)

Escherichia coli (11229) − 12 10 12 − − − − 30

Bacillus subtilis (11774) − 15 14 17 18 10 12 14 37

Shigella flexenari (10782) − 20 12 17 − 11 10 15 36

Stephlococcus aureus (25923) − 17 10 12 13 − 14 14 26

Pseudomonas aeruginosa (10145) − 10 − − − − − − 32

Salmonella typhi (10749) − − − 20 20 − − − 30

aIn vitro, agar well diffusion method, conc. 1 mg/mL of DMSO bReference drug, Imipenum

− Insignificant activity

Figure 3.30: Antibacterial activity of H2Le and its organotin(IV) derivatives against various bacteria.

Page 202: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

178

Table 3.47: Antibacterial activitya,b of N′-(2-hydroxy-3-methoxybenzylidene) formohyd- razide (H2Lf) and its organotin(IV) complexes.

Inhibition Zone Diameter (mm) Reference Drug Bacterium (ATCC

No.) H2Lf (36) (37) (38) (39) (40) (41) (42)

Escherichia coli (11229) − 10 10 12 12 − 10 − 30

Bacillus subtilis (11774) 10 13 16 21 18 − 12 13 37

Shigella flexenari (10782) − 15 13 15 − − − − 36

Stephlococcus aureus (25923) − 12 10 14 − − 12 − 26

Pseudomonas aeruginosa (10145) − − − − − − − − 32

Salmonella typhi (10749) − − 14 22 − − − − 30

aIn vitro, agar well diffusion method, conc. 1 mg/mL of DMSO bReference drug, Imipenum

− Insignificant activity

Figure 3.31: Antibacterial activity of H2Lf and its organotin(IV) derivatives against various bacteria.

Page 203: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

179

Table 3.48: Antibacterial activitya,b of N′-(4-(diethylamino)-2-hydroxybenzylidene)for- mo hydrazide (H2Lg) and its organotin(IV) complexes.

Inhibition Zone Diameter (mm) Bacterium (ATCC No.)

H2Lg (43) (44) (45) (46) (47)Reference Drug

Escherichia coli (11229) − 10 − 10 5 − 30

Bacillus subtilis (11774) 10 − 12 − 12 10 37

Shigella flexenari (10782) − 12 − 14 11 12 36

Stephlococcus aureus (25923) − − 10 12 − − 26

Pseudomonas aeruginosa (10145) − 5 − − − − 32

Salmonella typhi (10749) − 8 − 10 10 11 30

aIn vitro, agar well diffusion method, conc. 1 mg/mL of DMSO bReference drug, Imipenum

− Insignificant activity

Figure 3.32: Antibacterial activity of H2Lg and its organotin(IV) derivatives against various bacteria.

Page 204: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

180

Table 3.49: Antibacterial activitya,b of N′-(2-hydroxybenzylidene)-4-tert-butylbenzohy - drazide (H2Lj) and its organotin(IV) complexes.

Inhibition Zone Diameter (mm) Reference Drug Bacterium (ATCC

No.) H2Lj (54) (55) (56) (57) (58) (59) (60)

Escherichia coli (11229) − 14 − 15 13 − 12 16 30

Bacillus subtilis (11774) − − 12 15 − − 10 11 37

Shigella flexenari (10782) 10 12 10 12 − 12 12 14 36

Stephlococcus aureus (25923) − 11 − 10 15 − 13 − 26

Pseudomonas aeruginosa (10145) − 10 − 8 − 10 − − 32

Salmonella typhi (10749) − 8 12 10 9 − − − 30

aIn vitro, agar well diffusion method, conc. 1 mg/mL of DMSO bReference drug, Imipenum

− Insignificant activity

Figure 3.33: Antibacterial activity of H2Lj and its organotin(IV) derivatives against various bacteria.

Page 205: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

181

Table 3.50: Antibacterial activitya,b of N1′, N6′-bis(2-hydroxybenzylidene)adipohydrazide (H4Lk) and its organotin(IV) complexes.

Inhibition Zone Diameter (mm) Bacterium (ATCC No.)

H4Lk (61) (62) (63) (64) (65) (66)

Reference Drug

Escherichia coli (11229) − − − − 17 − 12 30

Bacillus subtilis (11774) − 15 12 21 21 9 13 37

Shigella flexenari (10782) − 17 10 12 18 − 15 36

Stephlococcus aureus (25923) − 15 − 12 − − − 26

Pseudomonas aeruginosa (10145) − 15 14 − − − − 32

Salmonella typhi (10749) − − − 19 − − − 30

aIn vitro, agar well diffusion method, conc. 1 mg/mL of DMSO bReference drug, Imipenum

− Insignificant activity

Figure 3.34: Antibacterial activity of H4Lk and its organotin(IV) derivatives against various bacteria.

Page 206: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

182

Table 3.51: Antibacterial activitya,b of N1′, N6′-bis(5-bromo-2-hydroxybenzylidene)adipo- hydrazide (H4Ll) and its organotin(IV) complexes.

Inhibition Zone Diameter (mm) Bacterium (ATCC No.)

H4Ll (67) (68) (69) (70) (71) (72)

Reference Drug

Escherichia coli (11229) 10 16 14 − 11 − 11 30

Bacillus subtilis (11774) − 15 12 20 13 − 9 37

Shigella flexenari (10782) 9 14 − − 11 − 10 36

Stephlococcus aureus (25923) − 16 10 11 − − 10 26

Pseudomonas aeruginosa (10145) − 15 11 − − − − 32

Salmonella typhi (10749) − − − 19 − − − 30

aIn vitro, agar well diffusion method, conc. 1 mg/mL of DMSO bReference drug, Imipenum

− Insignificant activity

Figure 3.35: Antibacterial activity of H4Ll and its organotin(IV) derivatives against various bacteria.

Page 207: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

183

Table 3.52: Antibacterial activitya-c of N1′, N6′-bis(2-hydroxy-3-methoxybenzylidene)- adipohydrazide (H4Lm) and its organotin(IV) complexes.

Inhibition Zone Diameter (mm) Bacterium (ATCC No.)

H4Lm (73) (74) (75) (76) (77) (78)

Reference Drug

Escherichia coli (11229) − 10 − 14 12 − − 30

Bacillus subtilis (11774) − 12 14 17 14 − 16 37

Shigella flexenari (10782) − 15 − − − 11 13 36

Stephlococcus aureus (25923) − 14 12 14 − − 13 26

Pseudomonas aeruginosa (10145) − 10 − − − − − 32

Salmonella typhi (10749) − − − − − − − 30

aIn vitro, agar well diffusion method, conc. 1 mg/mL of DMSO bReference drug, Imipenum

− Insignificant activity

Figure 3.36: Antibacterial activity of H4Lm and its organotin(IV) derivatives against various bacteria.

Page 208: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

184

3.5.4 Antiurease activity

The antiurease activities of compounds H2La, H2Ld, H2Le, H2Lf, (1−7),

(22−28), (29−35) and (36−42) were studied and data are given in Table 3.53.

Compounds H2La, (1), (2), (6) and (36) show good antiurease activity. The highest

activity was shown by (5) with an IC50 value of 38.4 µM. Thiourea was used as

standard drug.

Table 3.53: Antiurease activity of representative ligands and their organotin(IV) complexes.*, **, ɫ, ƚƚ

Compound No. H2La (1) (2) (3) (5) (6) (7) (14)

% Inhibition 59.0 63.0 64.0 53.2 73.4 63.4 31.4 28.0

IC50 ± S.D [µM]

58.4 ± 1.41

108.8 ± 1.35

105.8 ± 0.62 − 38.4 ±

0.29 103.6 ± 2.05 − −

Compound No. H2Ld (22) (23) (24) (25) (26) (27) (28)

% Inhibition 47.0 37.5 37.1 29.7 30.6 28.7 26.8 27.6

IC50 ± S.D [µM] − − − − − − − −

Compound No. H2Le (29) (30) (31) (32) (33) (34) (35)

% Inhibition 45.1 36.5 27.3 18.1 28.0 20.1 16.2 18.2

IC50 ± S.D [µM] − − − − − − − −

Compound No. H2Lf (36) (37) (38) (39) (40) (41) (42)

% Inhibition 48.8 62.6 18.1 34.5 35.5 42.6 36.1 30.5

IC50 ± S.D [µM] − 101.0

± 2.16 − − − − − −

* Sample Concentration [mM] 0.5 **Standard: Thiourea, IC50 ± SEM [µM], 21.0 ± 0.11

ɫ Proposed implications of inhibitor : Acute ulcer

Page 209: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

185

ƚƚ IC50 reported for those compounds whose % inhibition is more than 55 %

3.5.5 Leishmanicidal activity

The leishmanicidal activity of compounds H2La, H2Ld, H2Le, H2Lf and

their organotin(IV) complexes (1−7), (22−28), (29−35) and (36−42) against the

pathogenic leishmania was checked and the data are given in Table 3.54.

Table 3.54: Antileishmanial activitya-d of selective ligands and their organo- tin(IV) complexes. Compound No. IC50 ( µg/mL) ± S.D Compound No. IC50 ( µg/mL) ± S.D

H2La 20.48 ± 0.09 H2Le 22.07 ± 0.33

(1) 55.64 ± 0.80 (29) 4.28 ± 0.03

(3) 24.32 ± 0.19 (30) 2.26 ± 0.02

(4) 38.39 ± 0.20 (31) 0.41± 0.05

H2Lc 80.44 ± 0.44 (32) 2.51± 0.01

(16) 1.81 ± 0.07 (33) 5.21± 0.04

(17) 21.23 ± 0.21 (34) 1.22 ± 0.02

(20) 1.81 ± 0.05 (35) 8.11 ± 0.04

H2Ld 24.0 ± 0.02 H2Lf 21.8 ± 0.01

(22) 2.08 ± 0.04 (36) 3.06 ± 0.02

(23) 0.90 ± 0.02 (37) 6.41 ± 0.06

(24) 0.96 ± 0.02 (38) 1.09 ± 0.02

(25) 6.50 ± 0.04 (39) 2.03 ± 0.03

(26) 4.26 ± 0.04 (40) 8.25 ± 0.11

(27) 0.98 ± 0.02 (41) 1.26 ± 0.02

(28) 3.08 ± 0.04 (42) 3.91 ± 0.03

aTest organism: Leishmania major (DESTO) bStandard drug: Amphotericin.B (µg/mL) ± S.D = 0.50 ± 0.02 cIncubation period: 72 h; dIncubation temperature: 22 ± 1 °C

Page 210: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

186

Comlexes (16), (20), (23), (24), (27), (31) and (38) exhibited good antileish-

manial activity. Amphotericin.B was used as standard drug with the concentration

0.50 µg/mL.

3.5.6 Evaluation of DNA binding parameters

DNA binding parameters were evaluated for three diorganotin(IV)

derivatives of N′-(2-hydroxybenzylidene)formohydrazide using cyclic voltamme-

try and electronic absorption spectroscopy.

3.5.6.1 Cyclic voltammetry of selected compounds and their DNA adducts

The cyclic voltammetric behavior of a 3.00 mM solution of

diphenyltin(IV) [N′-(2-oxidobenzylidene)-N-(oxidomethylene)hydrazine] (25) in

the absence and presence of 50 µM DNA at bare Glass calomel electrode (GCE)

is shown in Figure 3.37. The voltammogram of the free (25) (Fig. 3.37(a))

featured a single well defined and stable cathodic peak at −1.531 V versus a

saturated calomel electrode (SCE) in 10% aqueous DMSO at 25 °C. The absence

of an anodic peak in the reverse scan indicated the irreversibility of the

electrochemical process. The electrochemical signal at −1.531 V reflects the

reduction of Sn+4 to Sn+2. The broadness of the peak as indicated by |Ep-Ep/2|= 70

mV, may be explained due to the overlap of two 1e- reduction peaks. With the

addition of 50 µM DNA into the same concentration of the drug (Fig. 3.37(b)), a

31.46% decrease in the peak current and 79 mV positive shift in peak potential

were observed. The substantial diminution in the peak current could be attributed

to the decrease of the free drug concentration due to the formation of slowly

diffusing, heavy molecular weight 25−DNA adduct. The obvious positive peak

potential shift could be attributed to the intercalation of 25 into the stacked base

pairs of DNA. Similar results have been reported in the literature [64,65]. The

voltammetric parameters obtained from the cyclic voltammograms of 3.00 mM

dimethyltin(IV) [N′-(2-oxidobenzylidene)-N-(oxidomethylene)hydrazine] (22)

and dibutyltin(IV) [N′-(2-oxidobenzylidene)-N-(oxidomethylene)hydrazine] (24)

with and without DNA have been shown in Figures 3.38 and 3.39 and listed in

Table 3.55.

Page 211: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

187

The greater decrease in the peak current of (24) (33.65%) as compared to

24.88 % for complex (22) by the addition of 50 µM DNA is due to the lower

diffusion coefficient of 24–DNA adduct than 22–DNA, which will be discussed

in more detail in the subsequent section. The positive shift in the peak potentials

of both the compounds by the addition of DNA reflects intercalation as the

dominant mode of interaction, in which the drug inserts itself into the stacked

base pair domains of the DNA.

The gradual decay of the peak current of (25), (22) and (24) by the

addition of varying concentrations of DNA, ranging from 10 to 60 µM, can be

used to quantify the binding constant of 25−DNA, 22−DNA and 24−DNA

adducts by the application of the following equation [66].

log (1/[DNA]) = log K + log (IH-G/(IG-IH-G)) (1)

where

K = binding constant

IG = peak currents of the free guest (G)

IH-G = peak currents of the adduct (H-G)

The plots of log (1/[DNA]) versus log (IH-G/(IG-IH-G)) are straight lines (Fig. 3.40).

the K values of dialkyltin(IV)-DNA adducts can be calculated from the intercept

of these plots. The calculated K values were 1.10 × 104 M−1, 9.61 × 103 M−1 and

1.69 × 104 M−1 for 25−DNA, 22−DNA and 24−DNA adducts, respectively. The

reason for the greater K of (25) than (22), is the presence of extended aromatic

system which binds strongly with DNA bases [67]. The strong affinity of (24) for

DNA indicated by the higher value of intercept as compared to (25) (Fig. 3.40)

could be assigned to the additional hydrophobic interactions of the bulky butyl

moiety with the nucleotide bases. The K values of these diorganotin(IV) adducts

are greater than those observed for similar DNA-intercalation of Cr and Ru.

Binding constants for [CrCl2(dicnq)2]+ and [Ru((dicnq)3]+2 have been reported as

1.20 × 103 and 9.70 × 103 M-1, respectively [68-70].

The nature of the electrochemical process i.e. diffusion controlled or

adsorption controlled was verified by subjecting the data to Randles-Sevcik

equation for irreversible processes [71,72]. The linearized form of the Randles-

Sevcik equation is as

I = 2.99x105 n(αn)1/2ACo*D1/2ν1/2

(2)

Page 212: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

188

Where

I = Peak current (A),

A = Surface area of the electrode (cm2),

Co* = Bulk concentration (mol cm-3) of the electroactive species,

D = Diffusion coefficient (cm2 s-1),

α = Transfer coefficient with a value of 0.34

(obtained from |Ep-Ep/2| = 47.7 mV/αn and)

ν = Scan rate (V s-1).

The peak current, I was plotted vs. ν1/2 in the presence and absence of DNA,

which was a straight line, thus obeying the Randles-Sevcik equation.

The linearity of the plots demonstrates that the main mass transport of

these complexes (Figure 3.41) and their DNA adducts (Figure 3.42), to the

electrode surface is controlled by diffusion steps [73]. The diffusion coefficients

of the free and DNA bound adducts of diorganotin(IV) complexes (shown in

Table 3.56) were determined from the slopes of the Randles-Sevcik plots. The

lower diffusion coefficients of the DNA bound species are responsible for the

decay of peak currents in cyclic voltammograms shown in Figures 3.37−3.39.

Table 3.55: Voltammetric parameters of compound (25), (22) and (24) in the absence and presence of DNA

Substance ν/Vs-1 [DNA]/µM I/µA Epc/V Shift in Epc/mV % decrease in I

25 0.1 0 -15.63 -1.531 31.46

25-DNA 0.1 50 -10.71 -1.452 79

22 0.1 0 -10.85 -1.710

22-DNA 0.1 50 -8.15 -1.664 46

24.88

24 0.1 0 -12.67 -1.713

24 -DNA 0.1 50 -8.41 -1.661 52

33.65

Page 213: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

189

Table 3.56: The binding constants and Gibbs free energies of 25-DNA, 22-DNA and 24-DNA adducts as determined by cyclic voltammetry along with the diffusion coefficients of the free* and DNA bound species**.

Figure 3.37: Cyclic voltammograms of 3.00 mM Ph2SnLd (25) in the absence (a) and presence of 50 µM DNA (b).

CV Drug-DNA

adduct 107Df* /cm2s-

1

108Db**/cm2s-1 K/M-1 -∆G/kJmol-1

25 -DNA 2.37 0.15 1.10 × 104 23.05

22 -DNA 2.05 6.49 9.61 × 103 22.72

24 -DNA 2.29 7.89 1.69 × 104 24.11

Page 214: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

190

Figure 3.38: Cyclic voltammograms of 3.00 mM Me2SnLd (22) in the absence (a) and presence of 50 µM DNA (b).

Figure 3.39: Cyclic voltammograms of 3.00 mM Bu2SnLd (24) in the absence (a) and presence of 50 µM DNA (b).

Page 215: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

191

Figure 3.40: Plots of log (IH-G/(IG-IH-G)) vs. log (1/[DNA]) used to calculate the binding constants of 25-DNA, 22-DNA and 24-DNA adducts.

Figure 3.41. Plots of I vs. ν1/2, for the determination of diffusion coefficients of the free complex (3.00 mM 25, 22 and 24). Scan rates 0.1−0.6 V/s with a difference of 0.1 V/s.

-40

-30

-20

-10

00.2 0.4 0.6 0.8

υ1/2(V/s)1/2

Ι/µ A

24 25 22

4.2

4.6

5

0.15 0.65 1.15 1.65

log( IH-G)/(I G-I H-G))

log(

1/[D

NA

](M

)) 24

2225

Page 216: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

192

Figure 3.42: Plots of I vs. ν1/2, for the determination of the diffusion coefficients of the DNA bound complexes by taking 3.00 mM 25, 22, 24 and 60 µM DNA. Scan rate 0.1-0.6 V/s with a difference of 0.1 V/s.

3.5.6.2 UV-vis absorption studies of diorganotin(IV) complex-DNA

interactions

The interaction of diorganotin(IV) complexes with DNA was also

examined by UV-Vis. spectroscopy in order to obtain further information about

the mode of interaction and binding strength. The effect of varying the

concentration of DNA (5−25 µM) on the electronic absorption spectra of 0.2 mM

of (25), (22) and (24) is shown in Figures 3.43−3.45. The strong absorption by

these compounds in the near UV region (292-330 nm) is attributed to the long-

living triplet excited state of the aromatic system. The rational behind the broad

absorption bands in the region (350-470 nm) is the transition between π−π* and

n−π* energy levels of the tridentate ligand N′-(2-hydroxybenzylidene)

formohydrazide. The absorption spectra of complexes (25), (22) and (24)

recorded a 68.26, 62.83 and 65.91% decrease of peak intensities accompanied by

red shift, by the addition of 25 µM DNA, such peculiar hypochromic effect can be

associated with the interaction of the electronic states of the intercalating

chromophore and those of the stacked base pairs of DNA [74,75]. The shift can

-30

-20

-10

0 0.2 0.4 0.6 0.8

υ1/2(V/s)1/2

25 24 22

I / µ

A

Page 217: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

193

best be described by the lowering in π−π* and n−π* transition energy of the

ligand in diorganotin(IV) complexes due to their ordered stacking between the

DNA base pairs after intercalation.

Based upon the decrease in absorbance, the binding constants were

calculated according to the following equation [76,77].

[ ]DNAKAAA

GGH

G

GGH

G 1

0

0

εεε

εεε

−+

−=

− −−

(3)

Where

K = Binding constant,

A0 = Absorbance of the free diorganotin(IV) complex

A = Absorbance of the diorganotin(IV) complex−DNA adduct

εG = Absorption coefficients of the free diorganotin(IV) complex

εH-G= Absorption coefficient of the diorganotin(IV) complex−DNA

adduct

The binding constants, with values of 1.54 × 104, 8.19 × 103 and 2.59 ×

104 M−1 for the interaction of (25), (22) and (24) with DNA were obtained from

the slope to intercept ratio of the plots (Figure 3.46) between A0/(A-A0) vs.

1/[DNA]. The results tabulated in Table 3.56, indicate a very close agreement in

the values obtained from CV and UV−Vis spectroscopy. An examination of Table

3.57 reflects that the interaction of these drugs with DNA is a spontaneous

process as attested by the negative values of ∆G.

Page 218: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

194

0

0.4

0.8

1.2

1.6

280 330 380 430 480

Wavelength/nm

Abs

orba

nce

Figure 3.43:Absorption spectra of 0.2 mM Ph2SnLd (25) in the absence (a) and presence of 5 µM (b) 10 µM (c) 15 µM (d) 20 µM (e) and 25 µM DNA (f). The arrow direction indicates increasing concentrations of DNA.

0

0.3

0.6

0.9

1.2

1.5

1.8

280 330 380 430 480

Wavelength/nm

Abs

orba

nce

Figure 3.44: Absorption spectra of 0.2 mM Me2SnLd (22) in the absence (a) and presence of 5 µM, (b) 10 µM, (c) 15 µM, (d) 20 µM, (e), and 25 µM DNA (f). The arrow direction indicates increasing concentrations of DNA.

Page 219: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

195

0

0.5

1

1.5

2

280 330 380 430 480Wavelength/nm

Abs

orba

nce

Figure 3.45: Absorption spectra of 0.2 mM Bu2SnLd (24) in the absence (a) and presence of 5 µM, (b) 10 µM, (c) 15 µM, (d) 20 µM, (e), and 25 µM DNA (f). The arrow direction indicates increasing con- centrations of DNA.

Figure 3.46: Plots of Ao/(A−Ao) vs.1/[DNA] for the determination of binding constants of Complex-DNA adducts by taking 0.2 mM complex and 5-25 µM DNA with a difference of 5 µM aliquot of DNA.

-7

-6

-5

-4

-3

-2

-1

0

0 0.05 0.1 0.15 0.2 0.25

1/[DNA]/(µM)-1

)

22

2524

o

(A /

(A-A

o

Page 220: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

196

Table 3.57:The binding constants and Gibbs free energies of 25-DNA, 22-DNA and 24-DNA adducts as determined by UV-vis. Spectroscopy.

Sn CH3

α

Sn CH2 CH3

α β

SnCH2

CH2

CH2

CH3

αβ

γ

δ

Sn C

CH3

αβCH3

CH3

Sn α

β

δ

γ

SnCH2

CH2

CH2

CH2

CH2

CH2

CH2

CH3

αβ

γ

δ

αβ

γ

δ

′′

′′

Figure 3.47 : Numbering scheme for various alkyl and aryl groups attached with tin atom in synthesized organotin(IV) compounds

CV Spectroscopy Drug-DNA

adduct K/M−1 -∆G/kJmol−1 K/M−1 -∆G/kJmol−1

25 -DNA 1.10 × 104 23.05 1.54 × 104 23.39

22 -DNA 9.61 × 103 22.72 8.19 × 103 22.33

24 -DNA 1.69 × 104 24.11 2.59 × 104 25.18

Page 221: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

197

REFERENCES

[1] W. Rehman, M. K. Balocha, A. Badshah, J. Braz. Chem. Soc., 16 (2005) 827.

[2] A. Szorcsik, L. Nagy, L. Pellerito, T. Yamaguchi, K. Yoshida, J. Radioanal.

Nucl. Chem. 256 (2003) 3.

[3] G. K. Sandhu, S.P. Verma, Polyhedron 587 (1987) 2830.

[4] M. J. Hynes, M. O’Dowd, J. Chem. Soc., Dalton Trans. 563 (1987)

[5] R. V. Singh, S.C. Joshi, A. Gajraj, P. Nagpal, Appl. Organomet.

Chem. 16 (2002) 713.

[6] W. K. Pandey, O.P. Pandey, S.K. Sengupta, S.C. Tripathi, Polyhedron

6 (1987) 1611.

[7] A. L. Smith, Spectro Chim. Acta 16 (1960) 87.

[8] R. V. Singh, S.C. Joshi, A. Gajraj, P. Nagpal, Appl. Organomet. Chem. 16

(2002) 713.

[9] B. Bovio, A. Cingolani, F. Marchetti and C. Pettinari, J. Organomet. Chem.,

458 (1993) 39.

[10] S. Mahmood, S. Ali, M. H. Bhatti, K. Shahid, K.S. Shahzadi, M. Mazhar,

K. M. Khan, G. M. Maharvi, J. Chem. Soc. Pak, 26 (2004) 61.

[11] J. Holecek, M. Nadvornik, A. Lycka, J. Organomet. Chem., 315 (1986) 299.

[12] B. Jousseaume, J. G. Duboudin, M. Petraud, J. Organomet. Chem., 238

(1982) 171.

[13] F. Ahmad, S. Ali, M. Parvez, A. Munir, M. Mazhar, K. M. Khan, T. A.

Shah, Heteroatom Chem., 13 (2002) 638.

[14] M. Danish, S. Ali, K. Shahid, M. Mazhar, M., J. Chem. Soc., Pak.

26 ( 2004) 140.

[15] T. Lebl, J. Holecek, A. Lycka, Sci. Pap. Univ. Pardubice Ser.,A2 (1996) 5.

[16] M. Vornefeld, F. Huber, H. Preut, G. Ruisi, R. Barbieri, Appl. Organomet.

Chem. 6 (1992) 75.

[17] C. Pettinari, F. Marchetti, R. Pettinari, D. Martini, A. Drozdov, S. Troyanov,

Inorg. Chim. Acta 325 (2001) 103.

[18] M. Nath, S. Pokharia, R. Yadav, Coord. Chem. Rev. 95 (2001) 215.

[19] Rappoport, Z., Ed. The chemistry of organic germanium, tin and lead

compounds; John Wiley & Sons: Ltd: New York, 2002.

Page 222: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

198

[20] T. S. B. Baul, S. Dhar, S. M. Pyke, E. R. T. Tiekink, E. Rivarola, R.

Butcher, F. E. Smith, J. Organomet. Chem. 633 (2001) 7.

[21] F. Q. Liu, J. T. Wang, R. J. Wang, H. G. Wang, X. K. Yao, J. Organomet.

Chem. 371 (1989) 35.

[22] J. T. Wang, F. Q. Liu, Y. W. Zhang, R. J. Wang, H. G. Wang, X. K. Yao,

J. Organomet. Chem., 375 (1989) 173.

[23] D. K. Dey, B. Samanta, A. Lycka, L. Dahlenburg, Z. Naturforsch.

58b (2003) 344.

[24] G. Matsubayashi, T. Tanaka, S. Nisbigaki, N. Nakatsu, J. Chem. Soc. Dalton

Trans. (1979) 501.

[25] M. H. Bhatti, S. Ali, H. Masood, M. Mazhar, S. I. Qureshi, Synth. React.

Inorg. Met.-Org. Chem., 30 (2000) 1715.

[26] S. Ali, F. Ahmad, M. Mazhar, A. Munir, M. T. Masood, Synth. React. Inorg.

Met.-Org. Chem., 32 (2001) 357.

[27] R. Twari, G. Srivastava, R. C. Mehrotra, A. J. Crowe, Inorg. Chim. Acta.,

111 (1986) 161.

[28] A. Saxena J. P. Tandon, Polyhedron, 3, (1984) 681.

[29] P. G. Harrison, ‘Chemistry of Tin’, ed., P. G. Harrison, Blackie Academic

and Professional, Glasgow, 71 (1989).

[30] D. H. Williams, I. Fleming, Spectroscopic Methods in Organic Chemistry,

4th Edn., McGraw-Hill Book Company (UK) Ltd., 136 (1987).

[32] T. P. Lockhart, W. F. Manders, Inorg. Chem. 25 (1986) 892.

[33] M. Nadvornik, J. Holecek, K. Handlir, A. Lycka, J. Organomet. Chem., 275

(1984) 43.

[34] M. Schurmann, R. Schmiedgen, F. Huber, A. Silvestri, G. Ruisi, A. B.

Paulsen, R. Barbieri, J. Organomet. Chem. 584 (1999) 103.

[35] G. K. Sandhu, R. Hundal, E. R. Tiekink, J. Organomet. Chem.,

430 (1992) 15

[36] J. Holecek, A. Lycka, Inorg. Chim. Acta, L15 (1986) 118.

[37] A. Badshah, M. Danish, S. Ali, M. Mazhar, S. Mahmood, M.I. Choudhry,

Synth. React. Inorg. Met.-Org. Chem., 24 (1994) 1155.

[38] M. Danish, S. Ali, A. Badshah, M. Mazhar, H. Masood, A. Malik and G.

Kehr, Synth. React. Inorg. Met.-Org. Chem., 27 (1997) 863.

[39] M. Danish, S. Ali, M. Mazhar, Heteroatom. Chem., 7 (1996) 23.

Page 223: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

199

[40] B. Wrackmeyer, G. Kehr and J. Süβ, Chem. Ber., 126 (1993) 2221.

[41] A.G. Davis, P. J. Smith, In “Comprehensive Organometallic Chemistry”,

G. Wilkinson, F.G.A. Stone and E.W. Abel, Eds., Pergamon Press, Oxford,

2, 521 (1982).

[42] V. Barba, E. Vega, R. Luna, H . Hopfl, I. H . Beltran, S. L. Zamudio-Rivera

J. Organomet. Chem. 692 (2007) 731.

[43] L. Tian, Z. Shang, X. Zheng, Y. Sun, Y. Yu1, B. Qian, X. Liu. Appl.

Organometal. Chem. 20 (2006) 74.

[44] T. S. B. Baul, S. Dutta, E. Rivarola, M. Scopelliti, S. Choudhuri. Appl.

Organometal. Chem. 15 (2001) 947.

[45] M. Gielen, J. Meunier-Piret, M. Biesemans, R. Willem, A. E. Khloufi,

Appl. Organomet. Chem., 6 (1992) 59.

[46] S. Shahzadi, M. H. Bhatti, K. Shahid, S. Ali, S. R. Tariq, M. Mazhar, K. M.

Khan, Monatsh. Chemie, 133 (2002) 1089.

[47] F. Ahmed, S. Ali, M. Parvez, A. Munir, M. Mazhar, T. A. Shah,

Heteroatom. Chem., 13, (2002) 638.

[48] M. Danish, S. Ali, M. Mazhar, A. Badshah, M. I. Choudhary, H. G. Alt, G.

Kehr, Polyhedron, 14 (1995) 3115.

[49] K. Shahid, S. Ali, S. Shahzadi, A. Badshah, K. M. Khan, G. M. Maharvi,

Synth. React. Inorg. Met.-Org. Chem., 33 (2003) 1221.

[50] J. Holecek, A. Lycka, K. Handlir, M. Nadvornik, Collect. Czech. Chem.

Commun. 55 (1990) 1193.

[51] J. Holecek, M. Nadvornik, K. Handlir, A. Lycka, J. Organomet. Chem. 315

(1986) 299.

[52] F. Kayser, M. Biesemans, M. Boualam, E.R.T. Tiekink, A. ElKhloufi, J.

Meunier-Piret, A. Bouhdid, K. Jurkschat, M. Gielen, R. Willem, Organomet-

allics, 13 (1994) 1098.

[53] D. Dakternieks, A. Duthie, D.R. Smyth, C. P. D. Stapleton, E. R. T. Tiekink,

Organometallics, 22 (2003) 4599.

[54] F. P. Pruchnik, M. Banbula, Z. Ciunik, M. Latocha, B. Skop, T. Wilczok,

Inorg. Chim. Acta, 356 (2003) 62

[55] C. S. Parulekar, V. K. Jain, T. Kesavadas, E. R. T. Tiekink, J. Organomet.

Chem. 387 (1990) 163.

Page 224: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

200

[56] C. Vatsa, V. K. Jain, T. Kesavadas, E. R. T. Tiekink, J. Organomet. Chem.

410 (1991) 135.

[57] R. Willem, I. Verbruggen, M. Gielen, M. Biesemans, B. Mahieu, T. S. B.

Baul, E. R. Tiekink, Organometallics 17 (1998) 5758.

[58] B. Mahieu, M. Gielen, Main Group Met. Chem., 13 (1990) 167.

[59] M.H. Bhatti, S. Ali, M. Mazhar, M. Danish, M.A. Chaudhary, Turk. J.

Chem., 23 (1999) 329.

[60] S. Rehman, S. Ali, A. Badshah, M. Mazhar, X. Song, G. Eng, K. M.

Khan, Synth. React. Inorg. Met.-Org. Chem., 34 (2004) 1379.

[61] S. Rehman, S. Ali, M. Parvez, M. Mazhar, A. Badshah, Heteroatom

Chem., 15, (2004) 398.

[62] B. N. Meyer, N. R. Ferrigni, J. E. Putnam, L. B. Jacobson, D. E. Nichols, J.

L. McLaughlin, Planta Med., 45 (1982) 31.

[63] A. Rehman, M. I. Choudhary, W. J. Thomsen, ‘Bioassay Techniques for

Drug development’ Harward academic publishers.Netherland 2001

[64] M. Aslanoglu, Anal. Sciences. 22 (2006) 439.

[65] E. C. Long, J. K. Barton, Acc. Chem. Res. 23 (1990) 271.

[66] Q. Feng, N. Q. Li, Y. Y. Jiang, Anal. Chim. Acta, 344 (1997) 97.

[67] R. Vijayalakshmi, M. Kanthimathi, R. Parthasarathi, B. U. Nair, Bull. Chem.

Soc. Japn. 78 (2005) 270.

[68] Q. Lie, P. Yang, H. Wang, M. Guo, J. Inorg. Biochem. 64 (1996) 181.

[69] J. Rusanova, S. Decurtins, E. Rosanov, H.S. Evans, S. Delahaye, A. Hauser,

J. Chem. Soc. Dalton. Trans. (2002) 4318.

[70] A. Ambroise, B. G. Maiya, Inorg. Chem. 39 (2000) 4264.

[71] J. E. B. Randles, Trans. Faraday Soc. 44 (1948) 327.

[72] A. Sevcik, Collect. Czech Chem. Commun. 13 (1948) 349.

[73] S. Wang, T. Penz, C. F. Yang, Biophys. Chem. 104 (2003) 239.

[74] X. Yang, G. L. Shen, R. Q. Yu, Microchem. J. 62 (1999) 394.

[75] Z. Xu, G. Bai, C. Dong. Bioorg. Med. Chem. 13 (2005) 5694.

[76] M. Y. Ni, Y. Wang, H. L. Li, Pol. J. Chem. 71 (1997) 816.

[77] M. S. Ibrahim, I. S. Shehatta, A. A. Alnyeli. J. Pharm. Biomed. Ana.

28 (2002) 217.

Page 225: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

201

Chapter−4 CRYSTALLOGRAPHIC ANALYSIS

4.1 X-ray crystal structure of ligands

4.1.1 X-ray crystal structure of H2La

4-((5-Bromo-2-hydroxybenzylideneamino)methyl)cyclohexanecarboxylic acid

The molecular structure of H2La (Figure 4.1) is composed of a cyclohexyl ring

which adopts a classical chair conformation with puckering parameters [1] Q =

0.563(2) Å, θ = 0.0(2)° and ϕ = 341(15)° and an almost planar (5-bromo-2-

hydroxyphenyl)-methylideneaminomethyl unit in which the atoms O(1) and C(8)

deviate from the Br(1)/N(1)/O(1)/C(1)–C(8) least-squares plane by 0.041(2) and

0.053(2) Å. The −OH and C=O groups are cis to each other. The crystal data and

structure refinement parameters are given in Table 4.1. Selected bond lengths and

angles are listed in Table 4.2. The hydroxyl H atom is involved in an intramolecular

interaction with the imine N atom, resulting in a six-membered ring that may be

expressed in graph-set terms as an S(6) motif [2]. In the crystal structure, molecules

form dimeric pairs through hydrogen bonds involving carboxylic acid groups related

by inversion centers (Figure 4.1), representing a motif with graph set R22(8), forming

an eight membered ring. Details of hydrogen bonds are given in Table 4.3.

Figure 4.1: ORTEP drawing of H2La with the atomic numbering scheme. The dashed line indicates hydrogen bonds.

Page 226: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

202

4.1.2 X-ray crystal structure of H2Le

N′-(5-Bromo-2-hydroxybenzylidene)formohydrazide Crystal data and structure refinements of H2Le are given in Table 4.1.

Selected bond angles and distances are listed in Table 4.4. Figure 4.2 shows the

molecular structure along with the atomic numbering scheme. It contains nearly a

planar salicylaldimine fragment which is benzenoid like as shown by most of the

azomethines [3]. The molecule form both an intramolecular hydrogen bond,

O(1)−(H1)...N(1) 2.649(3) and intermolecular hydrogen bond, N(2)−H(2)...O(2)

2.866 Å; the O(1)H(1)N(1) angle is 136° [4]. The N(1)-C(7) and O(2)-C(8) bond

length (1.275(6), 1.227(7) Å) indicates double bond character. However, the N(1)-

N(2), N(2)-C(8) and O(1)-C(6) bond lengths (1.377(6), 1.323(7), 1.348(6) Å) are in

close agreement with the single bond values reported in the literature [5,6]. The

original formyl group is retained in the crystal structure and is in trans position to the

phenolic hydroxyl group. The data pertaining to inter and intra-molecular hydrogen

bonds is provided in Table 4.5.

Figure 4.2: ORTEP drawing of H2Le with the atomic numbering scheme. The dashed line indicates hydrogen bonds.

Page 227: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

203

Table 4.1: Crystal data and structure refinement parameters for H2La and H2Le

Compound No. H2La H2Le

Empirical formula C15H18BrNO3 C8H7BrN2O2

Formula mass 340.21 243.07

Crystal system Monoclinic Monoclinic

Space group P21/n P 21/c

a(Å) 9.786(3) 3.827(3)

b(Å) 12.589(5) 24.259(2)

c(Å)

α(°)

β(°)

γ(°)

12.475(4)

90.00

104.44(19)

90.00

9.441(8)

90.00

100.48(4)

90.00

V(Å3) 1488.3(9) 861.9(12)

Z 4 4

Crystal habit

size (mm)

Prism

0.18 × 0.12 × 0.12

Block

0.49 × 0.43 × 0.39

T (K) 173(2) 296 (2)

ρ (g.cm−3) 1.518 1.873

µ (Mo Kα) (mm−1) 2.77 4.73

F(000) 696 480

Total reflections 6399 2527

Independent reflections 3364 1859

For (Fo ≥ 4.0 σ (Fo)) 2581 1420

R(F) = ∑ (||Fo| - |Fc||) / ∑ |Fo |

For Fo > 4.0 σ (Fo)

0.032 0.033

wR(F2) = [∑ [w(Fo2 - Fc

2)2] / ∑ [w(Fo2)2]]1/2 0.084 0.053

Goodness-of-fit 1.01 1.203

θ Range (deg) 3.74 – 27.42 2.35-30.10

Data/restrictions/params 3364/0/183 1859/0/ 140

Largest diff. peak and hole (eÅ−3) −0.44 and 0.27 −0.82 and 1.18

Page 228: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

204

Table 4.2: Selected Bond lengths (Å) and bond angles (°) for H2La.

Br(1)−C(5) 1.901(2) O(1)−C(2) 1.346(3)

O(2)−C(15) 1.311(3) O(3)−C(15) 1.221(3)

N(1)−C(7) 1.271(3) N(1)−C(8) 1.459(3)

C(7)−N(1)−C(8) 120.12(2)

Table 4.3: Hydrogen-bond geometry (Å, °) for H2La.

D−H....A D−H H....A D....A D−H....A

O(1)−H(1)....N(1) 0.84 1.82 2.566(3) 148

O(2)−H(2)....O(3)i 0.84 1.83 2.674(2) 178

Symmetry code: (i) _x _1, _y, _z.

Table 4.4 Selected bond lengths (Å) and bond angles (o) of H2Le. Bond lengths

N(1)-C(7) 1.275 (6) O(1)-C(6) 1.348 (6)

N(1)-N(2) 1.377 (6) O(2)-C(8) 1.227 (7)

N(2)-C(8) 1.323 (7) Br(1a)-C(3) 1.896 (5)

Bond angles

C(2)-C(3)-Br(1a) 120.37 (4) N(1)-C(7)-C(1) 120.95 (4)

C(4)-C(3)-Br(1a) 119.34 (4) O(2)-C(8)-N(2) 123.67 (5)

O(1)-C(6)-C(5) 117.52 (4) C(7)-N(1)-N(2) 116.68 (4)

O(1)-C(6)-C(1) 123.14 (4) C(8)-N(2)-N(1) 118.33 (4)

Table 4.5: Hydrogen-bond geometry (Å, °) for H2Le. D−H....A D−H H....A D....A D−H....A

O(1)−H(1)....N(1) 0.81 1.84 2.649(3) 136

N(2)−H(2)....O(2) 0.77 2.10 2.866(2) 171

Page 229: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

205

4.1.3 X-ray crystal structure of H2Lf

N′-(2-Hydroxy-3-methoxybenzylidene)formohydrazide The ORTEP diagram for (H2Lf) along with the atomic numbering scheme is

depicted in Figure 4.3. The crystallographic data and selected bond lengths and angles

are given in Tables 4.6 and 4.7. The asymmetric unit consists of one molecule of the

title compound. The molecules are linked by N-H...O hydrogen bonds into dimers

(Figure 4.3). The molecular structure shows that the phenolic hydroxyl and formyl

groups are in trans position to each other. The N(1)-C(8) and O(3)-C(9) bond length

(1.285(2), 1.228(2) Å) indicates double bond character. However, the N(1)-N(2),

N(2)-C(9) and O(1)-C(1) bond lengths (1.381(19), 1.347(2), 1.361(18) Å) are single

bonds. The intramolecular and intermolecular hydrogen bond data are presented in

Table 4.8.

Figure 4.3: ORTEP drawing of H2Lf with the atomic numbering scheme. The dashed line indicates hydrogen bonds.

Page 230: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

206

4.1.4 X-ray crystal structure of H2Lh

N′-(2-Hydroxynaphthalen-1-yl)methylene)formohydrazide

Crystal data and structure refinements of compound H2Lh are given in

Table 4.6 and selected bond angles and distances are listed in Table 4.9. The

molecular structure along with numbering scheme is shown in Figure 4.4. The

asymmetric unit consists of one molecule of the title compound. These molecules are

linked by N−H....O hydrogen bonds into dimers. The formyl group is retained in the

solid state because the N(1)-C(11) and O(2)-C(12) bond length (1.292(2), 1.233(2) Å)

indicates double bond character. However, the N(1)-N(2), N(2)-C(12) and O(1)-C(1)

bond lengths (1.379(19), 1.339(2), 1.357(2) Å) are in close agreement with the single

bond values. In the molecular structure the formyl and hydroxy groups are trans to

each other. The hydrogen bond data is provided in Table 4.10.

Figure 4.4: ORTEP drawing of H2Lh with the atomic numbering scheme.

Page 231: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

207

Table 4.6: Crystal data and structure refinement parameters for H2Lf and H2Lh

Compound No. H2Lf H2Lh

Empirical formula C9H10N2O3 C12H10N2O2

Formula mass 194.19 214.22

Crystal system orthorhombic monoclinic

Space group Pbca P21/n

a (Å) 6.663(14) 4.480(7)

b (Å) 13.664(3) 13.893(2)

c (Å)

α(°)

β(°)

19.963(4)

90.00

90.00

16.132(2)

90.00

94.94(2)

γ(°)

V ( Å3)

90.00

1817.6(7)

90.00

1000.4(2)

Z 8(1) 4

Crystal habit

size (mm)

Block

0.42 × 0.22 × 0.18

Block

0.35 × 0.21 × 0.18

T (K) 100 (1) 100 (1)

ρ (g.cm-3) 1.419 1.422

µ (Mo Kα) (mm-1) 1.08 0.99

F(000) 816 448

Total reflections 15026 7564

Independent reflections 2255 1968

For (Fo ≥ 4.0 σ (Fo)) 1562 1498

R(F) = ∑ (||Fo| - |Fc||) / ∑ |Fo |

For Fo > 4.0 σ (Fo)

0.0438 0.0449

wR(F2) = [∑ [w(Fo2 - Fc

2)2] / ∑ [w(Fo2)2]]1/2 0.1115 0.1212

Goodness-of-fit 1.032 1.047

θ Range (deg) 2.98 - 29.42 2.53 - 27.54

Data/restrictions/params 2255/0/167 1968/0/185

Largest diff. peak and hole (eÅ-3) -0.20 and 0.31 -0.17 and 0.27(5)

Page 232: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

208

Table 4.7 Selected bond lengths (Å) and bond angles (o) of H2Lf. Bond lengths

O(1)-C(1) 1.361(18) N(1)-N(2) 1.381(19)

O(2)-C(2) 1.376(19) N(1)-C(8) 1.285(2)

O(2)-C(7) 1.428(2) N(2)-C(9) 1.347(2)

O(3)-C(9) 1.228(2)

Bond angles

C(2)-O(2)-C(7) 116.74(12) O(2)-C(2)-C(3) 125.65(14)

N(2)-N(1)-C(8) 116.94(13) N(1)-C(8)-C(6) 121.22(14)

N(1)-N(2)-C(9) 118.23(14) O(3)-C(9)-N(2) 123.23(15)

O(1)-C(1)-C(2) 116.66(12) O(1)-C(1)-C(6) 123.51(12)

O(2)-C(2)-C(1) 114.12(13)

Table 4.8: Hydrogen-bond geometry (Å, °) for H2Lf.

D−H....A D−H(Å) H....A(Å) D....A(Å) D−H....A(°)

O(1)−H(1)....N(1) 0.85(2) 1.91(2) 2.6547(18) 146(2)

N(2)−H(2)....O(3) 0.939(19) 1.933(19) 2.8716(19) 179(2)

C(5)−H(5)....O(2) 0.967(17) 2.498(18) 3.410(2) 157.2(14)

Table 4.9 Selected bond lengths (Å) and bond angles (o) of H2Lh Bond lengths

O(1)-C(1) 1.357(2) N(1)-C(11) 1.292(2)

O(2)-C(12) 1.233(2) N(2)-C(12) 1.339(2)

N(1)-N(2) 1.379(19)

Bond angles

N(2)-N(1)-C(11) 117.26(14) O(1)-C(1)-C(10) 123.06(15)

O(1)-C(1)-C(2) 115.35(14) O(2)-C(12)-N(2) 123.82(16)

N(1)-C(11)-C(10) 120.79(15) N(1)-N(2)-C(12) 118.63(14)

Table 4.10: Hydrogen-bond geometry (Å, °) for H2Lh

D−H....A D−H(Å) H....A(Å) D....A(Å) D−H....A(°)

O(1)−H(21)....N(1) 0.95(2) 1.74(2) 2.585(19) 146(19)

N(2)−H(31)....O(2) 0.86(2) 1.99(2) 2.851(18) 174(2)

Page 233: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

209

4.1.5 X-ray crystal structure of H2Lj

N′-(2-Hydroxybenzylidene)-4-tert-butylbenzohydrazide The asymmetric unit consists of one molecule of the title compound. The

molecular structure along with the atomic numbering scheme is shown in Figure 4.5.

Crystal data and structure refinements of compound H2Lj are given in Table 4.11,

selected bond angles and distances are listed in Table 4.12. In the solid state, the

carbonyl group is retained and it is in cis position to the phenolic –OH group. The

N(1)-C(7) and O(2)-C(8) bond lengths (1.288(2), 1.243(2) Å) are double bonds,

However, the N(1)-N(2), N(2)-C(8) and O(1)-C(1) bond lengths (1.381(2), 1.354(3),

1.362(3) Å) are single bonds. All other bond lengths are in the normal range [7]. In

the solid state, the molecules are linked to one another and form a one-dimensional

chain by N(2)−H.....O(2) intermolecular hydrogen bonds (Figure 4.6). The data

pertaining to hydrogen bonds is provided in Table 4.13.

Page 234: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

210

Figure 4.5: ORTEP drawing of H2Lj with the atomic numbering scheme.

Figure 4.6: Chain formation via by N(2)−H.....O(2) intermolecular hydrogen bonds in the crystal structure of H2Lj.

Page 235: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

211

Table 4.11: Crystal data and structure refinement parameters for H2Lj Compound No. H2Lj

Empirical formula C18H20N2O2

Formula mass 296.37

Crystal system orthorhombic

Space group Pbca

a (Å) 13.982(4)

b (Å) 9.269(3)

c (Å)

α(°)

β(°)

24.557(7)

90.00

90.00

γ(°)

V ( Å3)

90.00

3182.6(16)

Z 8

Crystal habit

size (mm)

needle

0.61 × 0.20 × 0.14

T (K) 100 (1)

ρ (g.cm-3) 1.237

µ (Mo Kα) (cm-1) 0.81

F(000) 1264

Total reflections 14719

Independent reflections 3234

For (Fo ≥ 4.0 σ (Fo)) 1946

R(F) = ∑ (||Fo| - |Fc||) / ∑ |Fo |

For Fo > 4.0 σ (Fo)

0.0486

wR(F2) = [∑ [w(Fo2 - Fc

2)2] / ∑ [w(Fo2)2]]1/2 0.1264

Goodness-of-fit 1.007

θ Range (deg) 3.12 - 26.72

Data/restrictions/params 3234/0/279

Largest diff. peak and hole (eÅ-3) -0.19 and 0.23(5)

Page 236: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

212

Table 4.12 Selected bond lengths (Å) and bond angles (o) of H2Lj Bond lengths

O(1)-C(1) 1.362(3) N(1)-C(7) 1.288(3)

O(2)-C(8) 1.243(2) N(2)-C(8) 1.354(3)

N(1)-N(2) 1.381(2) C(8)-C(9) 1.486(3)

Bond angles

N(2)-N(1)-C(7) 116.96(16) N(1)-C(7)-C(6) 120.12(17)

N(1)-N(2)-C(8) 118.04(16) O(2)-C(8)-N(2) 122.33(18)

O(1)-C(1)-C(2) 117.46(18) O(2)-C(8)-C(9) 120.95(17)

O(1)-C(1)-C(6) 122.16(18) N(2)-C(8)-C(9) 116.70(16)

Table 4.13: Hydrogen-bond geometry (Å, °) for H2Lj

D−H..... A D−H H..... A D..... A D−H.....A

O(1)−H(21).....N(1) 0.93 1.79(3) 2.633(2) 149.0(3)

N(2)−H(31).....O(2) 0.938(19) 1.895(19) 2.800(2) 161.4(19)

C(7)−H(7).....O(2) 0.989(19) 2.41(2) 3.198(3) 136.3(16)

C(10)−H(10).....O(2) 0.93(2) 2.57(2) 3.412(3) 150.2(16)

4.2 X-ray crystal structure of organotin(IV) complexes

Page 237: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

213

4.2.1 X-ray crystal structure of complex (2)

Trimethyltin(IV) [4-((5-bromo-2-hydroxybenzylideneamino)methyl)- cyclohexanecarboxylate]

The crystal structure of complex (2) is shown in Figure 4.7. Crystal data and

structure refinements are given in Table 4.14, while the selected bond lengths and

bond angles are listed in Table 4.15. The crystal structure shows that the Sn atom is

coordinated with two oxygen atoms of the 4-((5-bromo-2-

hydroxybenzylideneamino)methyl)cyclohexanecarboxylate ligand via the carboxylate

moieties and it acquires a polymeric chain structure as shown in Figure 4.8. The

Sn(1)–O(1) bond distance of 2.23(15) Å is significantly different from the Sn(1)–O(2)

bond distance of 2.39(14) Å, indicating that the ligand is coordinating in

anisobidentate manner. The Sn–C bond distances are almost identical within the

experimental error [2.12(2), 2.12(2), 2.09(3) Å] and lie in the range reported earlier

for the related compounds [8-10]. The angles C(18)–Sn(1)–C(17) and C(18)–Sn(1)–

C(16) with values of 117.6(9) and 124.9(8) Å are in close agreement with the angle of

120o of a regular trigonal plane. However, the angle C(16)–Sn(1)–C(17) [116.0(8)°]

slightly deviates from the ideal value of 120o. Similarly, the C–Sn–O angles lie in the

range of 82.4(8) to 89.7(6)o and the O(1)–Sn(1)–O(2) angle is 174.0(5)o. All these

evidences suggest a description of the Sn environment as a trigonal bipyramid with

O(1) and O(2) in the apical positions and the three methyl groups in the equatorial

positions. The sum of the equatorial angles is 358.46o instead of the ideal 360o. This

indicates a slightly distorted bipyramidal geometry, which is compatible with the

literature [11,12]. The bond distances and angles of the ligand remains almost

unchanged on complexation.

Page 238: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

214

Figure 4.7: ORTEP drawing of complex (2) with the atomic numbering scheme.

Figure 4.8: Part of crystal structure of complex (2) showing the polymeric chain .

4.2.2 X-ray crystal structure of complex (9)

Page 239: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

215

Trimethyltin(IV) [4-((1-(2-hydroxyphenyl)ethylideneamino)methyl)cyclohexane

carboxylate]

Crystal data and structure refinements of complex (9) are given in Table 4.14.

Selected bond angles and distances are listed in Table 4.16 and the molecular

structure along with the numbering scheme is shown in Figure 4.9. The geometry at

tin(IV) is a distorted trigonal bipyramid with three methyl groups in the axial plane

and the two oxygen atoms in apical positions forming a polymeric chain structure

with a trans-C3O2 configuration. Finally, the Sn−C bond lengths are approximately

equal [2.122(4), 2.116(4) and 2.121(4) Å]. The Sn(1)–O(1), 2.193(3) Å is

significantly shorter than the Sn(1)–O(2), 2.353(3) Å indicating that the later is a

coordinated covalent bond. Within the carboxylate ligand, the hydroxyl H atom is

oriented towards the imine N atom [O(3)....N(1) = 2.505(4) Å] so that the O−H....N

interaction closes a planar six-membered ring. Being generated by 21 screw symmetry

along the b axis, the topology of the polymer is helical as found in the majority of

such polymers [13].

Figure 4.9: ORTEP drawing of complex (9) with the atomic numbering scheme.

Table 4.14: Crystal data and structure refinement parameters for compounds (2) and (9)

Page 240: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

216

Complex No. (2) (9)

Empirical formula C18H26BrNO3Sn [Sn(CH3)3(C16H20NO3)]

Formula mass 503.02 438.12

Crystal system Monoclinic Monoclinic

Space group C2/c, P 21/c

a(Å) 32.62(2) 16.173 (3)

b(Å) 9.885(6) 9.987 (2)

c(Å)

α(°)

β(°)

γ(°)

13.472(8)

90.00

95.06(11)

90.00

12.728 (3)

90.00

106.00(3)

90.00

V(Å3) 4327(5) 1976.3 (7)

Z 8 4

Crystal habit

size (mm)

Block

0.22 × 0.19 × 0.11

Block

0.38 × 0.24 × 0.19

T (K) 100(1) 173 (2)

ρ (g.cm-3) 1.544 1.472

µ (Mo Kα) (mm-1) 30.41 1.31

F(000) 2000 896

Total reflections 3833 14354

Independent reflections 2885 4433

For (Fo ≥ 4.0 σ (Fo)) 1333

R(F) = ∑ (||Fo| - |Fc||) / ∑ |Fo |

For Fo > 4.0 σ (Fo)

0.1047 0.042

wR(F2) = [∑ [w(Fo2 - Fc

2)2] /

∑ [w(Fo2)2]]1/2

0.2930 0.093

Goodness-of-fit 0.924 1.11

θ Range (deg) 2.67 - 27.77 2.7 – 30.4

Data/restrictions/params 2885/0/ 224 4433/0/ 218

Largest diff. peak and hole (eÅ-3) -3.7 and 1.6(2) - 0.70 and 0.73

Table 4.15: Selected bond lengths (Å) and bond angles (o) of complex (2). Bond lengths

Page 241: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

217

Sn-O(1) 2.23(15) O(1)-C(1) 1.29(3)

Sn-C(16) 2.09(3) O(2)-C(1) 1.28(3)

Sn-C(17) 2.12(2) O(3)-C(15) 1.36(3)

Sn-C(18) 2.12(2) N(1)-C(8) 1.48(3)

Sn-O(2a) 2.39(14) N(1)-C(9) 1.26(3)

Bond angles

O(1)-Sn-C(16) 96.0(7) C(17)-Sn-O(2a) 82.4(7)

O(1)-Sn-C(17) 91.8(7) C(18)-Sn-O(2a) 89.7(6)

O(1)-Sn-C(18) 94.3(7) Sn-O(1)-C(1) 115.8(13)

O(1)-Sn-O(2a) 174.0(5) C(1)-O(2)-Sn 134.9(13)

C(16)-Sn-C(17) 116.0(8) C(8)-N(1)-C(9) 114(2)

C(16)-Sn-C(18) 124.9(8) O(1)-C(1)-O(2) 122.4(19)

C(16)-Sn-O(2a) 85.3(7) N(1)-C(8)-C(5) 115.2(18)

C(17)-Sn-C(18) 117.6(9) N(1)-C(9)-C(10) 119(2)

Table 4.16 Selected bond lengths (Å) and bond angles (o) of complex (9). Bond lengths

Sn-O(1) 2.197(3) O(1)-C(4) 1.274(4)

Sn-C(1) 2.122(4) O(2)-C(4) 1.255(4)

Sn-C(2) 2.116(4) O(3)-C(15) 1.351(5)

Sn-C(3) 2.121(4) N(1)-C(11) 1.465(5)

Sn-O(2) 2.353(3) N(1)-C(12) 1.288(5)

Bond angles

O(1)-Sn-C(1) 89.60 (13) C(1)-Sn-O(2) 84.92(12)

O(1)-Sn-C(2) 93.35(13) C(2)-Sn-O2(18) 89.98(13)

O(1)-Sn-C(3) 94.09(14) C(3)-Sn-O(2) 87.74(13)

O(1)-Sn-O(2) 174.46(9) Sn-O(1)-C(4) 120.43(2)

C(1)-Sn-C(2) 117.70(16) C(12)-N(1)-C(11) 123.60(3)

C(1)-Sn-C(3) 118.15(15) N(1)-C(11)-C(8) 108.11(3)

4.2.3 X-ray crystal structure of complex (22)

Page 242: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

218

Dimethyltin(IV) [N′-(2-oxidobenzylidene)-N-(oxidomethylene)hydrazine] The molecular structure, atomic numbering scheme and packing of

molecules in the unit cell for complex (22) are given in Figures 4.10 and 4.11. The

crystallographic data, selected bond lengths and angles are listed in the Tables 4.17

and 4.18. Complex (22) crystallized in the tetragonal unit cell in which the molecules

are separated from each other by normal van der Waal's distances. Each asymmetric

unit contains one formula unit with no atom setting at special position. The bond

distances and angles compare well with an analogous complex [14]. The structure of

complex (22) consists of a deprotonated ONO dibasic tridentate ligand bonded to the

(CH3)2Sn(IV) moiety through the two oxygen and a nitrogen atom forming a ONOC2

core around the tin atom. The ligand is non-planar probably due to the steric

requirements of the five membered and six membered chelate rings formed. The

geometry around the Sn atom can be characterized by the value of τ = (β - α)/60,

where β is the largest and α the second largest basal angle around the tin atom. The τ

value is zero for a perfect square pyramid (α = β = 180° ) and unity for a perfect

trigonal pyramidal geometry (α = 120° ) [10]. For complex (22) (β = O(1)-Sn-O(2) =

152.89(9)° and α = C(9)-Sn-C(10) = 140.70(14)°. The τ value (0.2) indicates a

distorted square-pyramidal geometry with two enolic oxygen atoms and two methyl

carbon atoms in the equatorial positions and the azomethinic nitrogen in the apical

position. The Sn-O(1) and Sn-O(2) bond lengths (2.110 and 2.169 Å) are less than the

sum of van der Waals radii of Sn and O (3.68 Å). The O(1)-Sn-N(1), and O(2)-Sn-

N(1) angles are 82.25(9)° and 72.47(9)o. The C(9)-Sn-C(10) angle (140.70(14)°)

shows a significant larger deviation from the linear value (180o). The Sn-N(1) bond

distance is 2.184(2) Å, compareable to the sum of the covalent radii of Sn and N (2.15

Å) and less than the sum of the van der Waals radii (3.75 Å ) suggesting a strong tin-

nitrogen bond. The C(1)-O(1), C(8)-O(2) bond lengths (1.313(4) Å, 1.302(4) Å) and

C(8)-N(1)-N(2) angle (110.0(3)°) in complex (22) are in agreement with the reported

Page 243: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

219

values [15]. The packing of molecules in the unit cell is stabilized by weak

intermolecular interactions. The shortest contacts include the Sn....O2 distance of

2.986 Å and the O2….O2 distance of 2.876 Å .

Figure 4.10: ORTEP drawing of complex (22) with the atomic numbering scheme.

Figure 4.11: The molecular packing of complex (22) showing the arrangement of monomeric units. 4.2.4 X-ray crystal structure of complex (25)

Page 244: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

220

Diphenyltin(IV) [N′-(2-oxidobenzylidene)-N-(oxidomethylene)hydrazine] Crystal data, structure refinements, bond distances and angles are given in

Tables 4.17 and 4.19. The crystal structure and atomic numbering scheme is presented

in Figure 4.12. The Sn atom is coordinated by two O atoms and an N atom from the

tridentate ligand and two ipso-C atoms belonging to the two phenyl substituents. The

coordination around tin is highly distorted, as seen in the value of τ = 0.56, indicating

a geometry biased towards trigonal bipyramidal (τ = 1.0) rather than square pyramidal

(τ = 0.0) [16]. The distortion can be rationalized in terms of the steric demands of the

two chelate rings formed by the tridentate ligand. Similar structures have been found

in some reported analogues with τ values of 0.59, 0.50 and 0.55 [17,18]. The dihedral

angles between the mean plane of the ligand and the C(9) and C(15) phenyl rings are

68.82(9)° and 56.13 (10)°. The angle between the C(9) and C(15) ring planes is

58.26(12)°. In the crystal structure of (25), centrosymmetric pairs of molecules

associate via C−H π…interactions. Such an arrangement effectively blocks off both N

atoms as well as the O(1) atom from forming intermolecular contacts. The loosely

associated dimers are connected into chains via C−H….O contacts (Figure 4.13).

Page 245: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

221

Figure 4.12: ORTEP drawing of complex (25) with the atomic numbering scheme.

Figure 4.13 Chain formation via C—H….O and C—H….π interactions in the crystal structure of compound 25.

Page 246: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

222

Table 4.17: Crystal data and structure refinement parameters for complexes (22) and (25)

Complex No. (22) (25)

Empirical formula C10H12N2O2Sn C20H16N2O2Sn

Formula mass 310.93 435.04

Crystal system Tetragonal triclinic

Space group I41/a P-1

a(Å) 13.4693(4) 8.9903 (5)

b(Å) 13.4693(4) 9.0639 (5)

c(Å)

α(°)

β(°)

24.9037(17)

90.00

90.00

11.8622 (7)

77.2772 (9)

74.3243 (8)

γ(°)

V(Å3)

90.00

4518.1(4)

68.8693 (8)

859.93 (8)

Z 16 2

Crystal habit

size (mm)

Block

0.35 × 0.29 × 0.15

Block

0.49 × 0.43 × 0.39

T (K) 100(1) 100 (2)

ρ (g.cm-3) 1.828 1.680

µ (Mo Kα) (cm-1) 22.44 1.501

F(000) 2432 432

Total reflections 19718 7721

Independent reflections 2799 4064

For (Fo ≥ 4.0 σ (Fo)) 2749 3921

R(F) = ∑ (||Fo| - |Fc||) / ∑ |Fo |

For Fo > 4.0 σ (Fo)

0.0223 0.028

wR(F2) = [∑ [w(Fo2 - Fc

2)2]/∑ [w(Fo2)2]]1/2 0.0558 0.074

Goodness-of-fit 1.043 1.212

θ Range (deg) 2.69-29.28

Data/restrictions/params 2799/0/139 4064/0/ 290

Largest diff. peak and hole (eÅ-3) -0.12 and 0.17(4) - 1.0 and 1.2 (1)

Page 247: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

223

Table 4.18 Selected bond lengths (Å) and bond angles (o) of complex (22) Bond lengths

Sn-O(1) 2.110(2) O(1)-C(1) 1.312(4)

Sn-O(2) 2.169(2) O(2)-C(8) 1.302(4)

Sn-N(1) 2.184(2) N(1)-N(2) 1.409(3)

Sn-C(9) 2.106(4) N(1)-C(7) 1.295(4)

Sn-C(10) 2.112(4) N(2)-C(8) 1.289(4)

Bond angles

O(1)-Sn-O(2) 152.89(9) N(2)-N(1)-C(7) 115.6(2)

O(1)-Sn-N(1) 82.25(9) N(1)-N(2)-C(8) 110.0(3)

O(1)-Sn-C(9) 88.93(13) Sn-O(1)-C(1) 129.21(18)

O(1)-Sn-C(10) 96.55(10) Sn-N(1)-N(2) 116.97(18)

O(2)-Sn-N(1) 72.47(9) Sn-N(1)-C(7) 127.13(19)

O(2)-Sn-C(9) 93.36(13) O(1)-C(1)-C(2) 119.0(3)

O(2)-Sn-C(10) 98.63(10) O(1)-C(1)-C(6) 123.2(2)

N(1)-Sn-C(9) 115.96(13) Sn-O(2)-C(8) 113.12(18)

N(1)-Sn-C(10) 103.34(11) N(1)-C(7)-C(6) 126.2(3)

C(9)-Sn-C(10) 140.70(14) O(2)-C(8)-N(2) 127.1(3)

Page 248: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

224

Table 4.19 Selected bond lengths (Å) and bond angles (o) of complex (25) Bond lengths

Sn-O(1) 2.065(3) O(1)-C(1) 1.325(3)

Sn-O(2) 2.145(3) O(2)-C(8) 1.300(4)

Sn-N(1) 2.161(2) N(1)-N(2) 1.412(4)

Sn-C(9) 2.123(3) N(1)-C(7) 1.299(4)

Sn-C(15) 2.119(3) N(2)-C(8) 1.296(4)

Bond angles

O(1)-Sn-O(2) 158.49(9) Sn-O(2)-C(8) 112.27(19)

O(1)-Sn-N(1) 84.51(9) Sn-N(1)-N(2) 116.04(17)

O(1)-Sn-C(9) 95.14(10) Sn-N(1)-C(7) 128.3(2)

O(1)-Sn-C(15) 96.19(11) N(2)-N(1)-C(7) 115.7(2)

O(2)-Sn-N(1) 74.00(9) N(1)-N(2)-C(8) 110.2(2)

O(2)-Sn-C(9) 94.87(10) N(1)-C(7)-C(6) 126.6(3)

O(2)-Sn-C(15) 93.7(1) O(2)-C(8)-N(2) 127.5(3)

N(1)-Sn-C(9) 119.79(10) Sn-C(9)-C(10) 121.2(2)

N(1)-Sn-C(15) 115.19(10) Sn-C(9)-C(14) 119.5(2)

C(9)-Sn-C(15) 124.60(9) Sn-C(15)-C(16) 120.9(2)

Sn-O(1)-C(1) 132.8(2) Sn-C(15)-C(20) 119.8(2)

Page 249: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

225

4.2.5 X-ray crystal structure of complex (32)

Diphenyltin(IV) [N′-(5-bromo-2-oxidobenzylidene)-N-(oxidomethylene)

hydrazine] The molecular structure of complex (32) is shown in Figure 4.14. The

crystallographic data and selected bond lengths and angles are given in Tables 4.20

and 4.21. The complex (32) exist as monomer. The Sn atom is coordinated to the

phenolic oxygen O(1), azomethine nitrogen N(1) and amide oxygen O(2) of the

tridentate ligand. The two ipso-C atoms belonging to the two phenyl substituents form

a distorted trigonal bipyramidal geometry(τ = 0.5) [16]. The equatorial positions are

occupied by the nitrogen atom and ipso carbon atoms of the phenyl groups. The two

oxygen atoms are present in the apical position. The angle of O(1)Sn(1)O(2) is

157.29(14)°. The Sn(1) atom forms a six membered ring with the O(1), C(1), C(6),

C(7) and N(1) atoms, while the Sn(1) atom forms a five membered ring with the O(2),

C(8), N(2) and N(1) atoms.

The Sn-O(1) and Sn-O(2) bond lengths (2.068(3) and 2.140(3) Å) are less than

the sum of the van der Waals radii of Sn and O (2.8 Å). The O(1)-Sn-N(1), and O(2)-

Sn-N(1) angles are 84.32° and 73.04°. The Sn-N(1) bond distance is 2.160 Å,

compareable to the sum of covalent radii of Sn and N (2.15 Å ) and less than the sum

of van der Waals radii (3.75 Å ) [20] suggesting a strong tin-nitrogen bond. The C(1)-

O(1) and C(8)-O(2) bond lengths (1.313 Å, 1.274 Å) are in agreement with the

reported values [21].

Page 250: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

226

Figure 4.14: ORTEP drawing of complex (32) with the atomic numbering scheme.

Page 251: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

227

4.2.6 X-ray crystal structure of complex (36)

Bis[dimethyltin(IV) [N′-(3-methoxy-2-oxidobenzylidene)-N-(oxido-

methylene)hydrazine]]

The asymmetric unit of centrosymmetric dinuclear complex (36) consists of

half of the dimer. The molecular structure and atomic numbering scheme for the di-

nuclear molecule 1 is given in Figure 4.15. The crystallographic data, selected bond

lengths and angles for the dinuclear molecules 1 and 2 of complex (36) are listed in

the Tables 4.20, 4.22 and 4.23. Each molecule possesses a dinuclear centrosymmetric

dimeric structure with a four membered planar Sn2O2 ring. The Sn–O bond distances

are 2.231(3) A ˚ and 2.555(3) Å. Each dinuclear molecule contains two formula unit

bridged together through phenolic and methoxy oxygen atoms. The Sn atom and O(1),

C(1), C(6), C(7), N(1) atoms form a six membered ring, while Sn, O(2), C(8), N(1),

N(2) and Sn, O(1), C(1), C(2), O(3) atoms form five membered rings. Each

(CH3)2Sn(IV) moiety is bonded to four oxygen atoms and a nitrogen forming O4NC2

core around the tin atom. The ligand is non-planar probably due to the steric

requirements of the five membered and six membered chelate rings formed. The

geometry around the Sn atom can be characterized as a distorted pentagonal

bipyramid with the methyl groups C(10)-Sn-C(11) 164.48(14)° in apical positions.

The smallest angle within the plane formed by the O4NC2 core in molecule 1 is O(3)-

Sn-O(1) 62.29(9)°, whereas the N(1)-Sn-O(2), O(2)-Sn-O(3), O(1)-Sn-O(1a) and

O(1)-Sn-N(1) angles are 71.63(10)°, 71.32(9)°, 73.73(9)° and 81.16(10)o. The Sn-

Page 252: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

228

O(1) and Sn-O(2) bond lengths (2.231(3),2.186(3) Å) are less than the sum of van der

Waals radii of Sn and O (3.68 Å). The Sn-N(1) interaction is strong because the bond

distance (2.246(3) Å) is less than the sum of the van der Waals radii of Sn and N (3.75

Å).

Figure 4.15: ORTEP drawing of dimer of complex (36) with the atomic

numbering scheme. Where X = 1 or 2

Page 253: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

229

Table 4.20: Crystal data and structure refinement parameters for compounds (32) and (36) Complex No. (32) (36)

Empirical formula C20 H15BrN2O2Sn C22H28N4O6Sn2

Formula mass 513.94 681.91

Crystal system Monoclinic triclinic

Space group P 21/c P-1

a (Å) 19.514(13) 6.688(5)

b (Å) 10.917(7) 9.979(8)

c (Å)

α(°)

β(°)

9.196(5)

90.00

95.44(2)

18.66(15)

99.06(14)

96.82(13)

γ(°)

V ( Å3)

90.00

1950.1(2)

99.61(13)

1198.8(16)

Z 4 2

Crystal habit

size (mm)

Block

0.49 × 0.43 × 0.39

Block

0.49 × 0.36 × 0.11

T (K) 296 (2) 100 (1)

ρ (g.cm-3) 1.750 1.889

µ (Mo Kα) (mm-1) 3.375 21.29

F(000) 1000 672

Total reflections 5915 10689

Independent reflections 3012 5645

For (Fo ≥ 4.0 σ (Fo)) 5042

R(F) = ∑ (||Fo| - |Fc||) / ∑ |Fo |

For Fo > 4.0 σ (Fo)

0.038 0.0300

wR(F2) = [∑ [w(Fo2 - Fc

2)2] / ∑ [w(Fo2)2]]1/2 0.095 0.1011

Goodness-of-fit 1.022 1.183

θ Range (deg) 1.05 - 30.49 2.56 - 29.51

Data/restrictions/params 3012/12/ 234 5645/0/419

Largest diff. peak and hole (eÅ-3) -0.423 and 0.671 -1.5 and 1.2

Page 254: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

230

Table 4.21: Selected bond lengths (Å) and bond angles (o) of compound (32) Bond lengths

Sn(1)-O(1) 2.068(3) N(1)-N(2) 1.401(5)

Sn(1)-C(15) 2.107(2) N(2)-C(8) 1.284(7)

Sn(1)-C(9) 2.133(4) O(1)-C(1) 1.313(4)

Sn(1)-O(2) 2.140(3) O(2)-C(8) 1.274(7)

Sn(1)-N(1) 2.160(4) N(1)-C(7) 1.290(5)

Bond angles

C(1)-O(1)-Sn(1) 132.82(2) C(8)-O(2)-Sn(1) 113.20(3)

O(1)-C(1)-C(2) 119.27(3) O(1)-Sn(1)-C(15) 94.62(12)

O(1)-C(1)-C(6) 123.11(4) O(1)-Sn(1)-C(9) 94.54(14)

N(1)-C(7)-C(6) 126.84(4) O(1)-Sn(1)-O(2) 157.29(14)

O(2)-C(8)-N(2) 127.53(3) O(1)-Sn(1)-N(1) 84.32(12)

C(10)-C(9)-Sn(1) 121.89(4) C(15)-Sn(1)-C(9) 127.49(15)

C(14)-C(9)-Sn(1) 119.42(4) C(15)-Sn(1)-O(2) 95.50(15)

C(16)-C(15)-Sn(1) 121.40(4) C(15)-Sn(1)-N(1) 120.45(12)

C(20)-C(15)-Sn(1) 118.57(19) C(9)-Sn(1)-O(2) 95.33(16)

C(7)-N(1)-Sn(1) 127.68(3) C(9)-Sn(1)-N(1) 111.86(13)

N(2)-N(1)-Sn(1) 116.18(3) O(2)-Sn(1)-N(1) 73.04(15)

Page 255: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

231

Table 4.22: Selected bond lengths (Å) and bond angles (o) of dimer di-nuclear molecule 1 of compound (36) Bond lengths

Sn(1)-O(11) 2.231(3) Sn(1)-C(111) 2.108(3)

Sn(1)-O(12) 2.186(3) Sn(1)-O(11a) 2.555(3)

Sn(1)-N(11) 2.246(3) N(11)-N(12) 1.409(4)

Sn(1)-O(13) 2.585 N(11)-C(17) 1.296(5)

Sn(1)-C(110) 2.105(4) N(12)-C(18) 1.309(5)

Bond angles

O(11)Sn(1)-O(12) 152.72(10) O(11)-Sn(1)-C(111) 91.65(13)

C(111)-O(11)-Sn(1a) 121.4(2) C(12)-O(13)-Sn(1a) 119.3(2)

O(11)Sn(1)-N(11) 81.16(10) O(11)-Sn(1)-O(11a) 73.73(9)

O(11)-Sn(1)-C(110) 92.85(13) C(19)-O(13)-Sn(1a) 122.6(2)

O(11)-Sn(1)-O(13a) 135.97(9) Sn(1)-N(11)-N(12) 116.3(2)

O(12)-Sn(1)-N(11) 71.63(10) Sn(1)-N(11)-C(17) 129.8(3)

O(12)-Sn(1)-C(110) 92.65(13) O(12)-Sn(1)-C(111) 90.11(13)

O(12)-Sn(1)-O(13a) 71.32(9) N(11)-Sn(1)-C(110) 97.55(13)

N(11)-Sn(1)-C(111) 97.81(12) N(11)-Sn(1)-O(11a) 154.87(10)

N(11)-Sn(1)-O(13a) 142.75(10) C(110)-Sn(1)-C(111) 164.48(14)

C(110)-Sn(1)-O(11a) 83.02(12) C(110)-Sn(1)-O(13a) 80.44(12)

C(111)-Sn(1)-O(11a) 84.01(12) Sn(1)-O(11)-C(11) 131.7(2)

O(11a)-Sn(1)-O(13a) 62.29(9) Sn(1)-O(11)-Sn(1a) 106.27(10)

Page 256: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

232

Table 4.23: Selected bond lengths (Å) and bond angles (o) of dimer di-nuclear molecule 2 of compound (36) Bond lengths

Sn(2)-O(21) 2.233(2) Sn(2)-C(211) 2.117(4)

Sn(2)-O(22) 2.209(2) Sn(2)-O(21b) 2.557(3)

Sn(2)-N(21) 2.246(3) N(21)-N(22) 1.411(4)

Sn(2)-C(210) 2.113(4) N(21)-C(27) 1.283(5)

N(22)-C(28) 1.315 (5)

Bond angles

O(21)-Sn(2)-O(22) 151.89(10) O(21)-Sn(2)-C(211) 93.71(12)

C(211)-O(21)-Sn(2b) 121.4(2) C(22)-O(23)-Sn(2b) 118.27(19)

O(21)-Sn(2)-N(21) 80.59(10) O(21)-Sn(2)-O(21b) 73.48(9)

Sn(2)-O(22)-C(28) 113.8(2) C(29)-O(23)-Sn(2b) 121.9(2)

O(21)-Sn(2)-C(210) 90.94(12) Sn(22)-N(21)-N(22) 116.2(2)

O(21)-Sn(2)-O(23b) 136.18(9) Sn(2)-N(21)-C(27) 129.5(2)

O(22)-Sn(2)-N(21) 71.80(11) O(22)-Sn(2)-C(211) 94.42(13)

O(22)-Sn(2)-C(210) 89.29(12) N(21)-Sn(2)-C(210) 101.04(13)

O(22)-Sn(2)-O(23b) 71.83(9) N(21)-Sn(2)-O(21b) 153.84(9)

N(21)-Sn(2)-C(211) 93.55(12) C(210)-Sn(2)-C(211) 164.39(15)

N(21)-Sn(2)-O(23b) 142.97(9) C(210)-Sn(2)-O(23b) 85.25(12)

C(210)-Sn(2)-O(21b) 83.07(12) Sn(2)-O(21)-C(21) 131.8(2)

C(211)-Sn(2)-O(21b) 83.98(12) Sn(2)-O(21)-Sn(2b) 106.52(11)

O(21b)-Sn(2)-O(23b) 81.08(12)

Page 257: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

233

4.2.7 X-ray crystal structure of complex (37)

Diethyltin(IV) [N′-(3-methoxy-2-oxidobenzylidene)-N-(oxidomethylene) hydrazine] In the molecule of (37) (Figure 4.16), the Sn atom is five-coordinated by two

O and one N atoms of the tridentate Schiff base ligand and two C atoms of the diethyl

groups. The crystallographic data and selected bond lengths and angles are given in

Tables 4.24 and 4.25. The Sn(1)-C(9) (2.1217(18) Å), Sn(1)-C(11) (2.1219(19) Å),

Sn(1)-O(1) (2.1888(13) Å), Sn(1)-O(2) (2.2162(14) Å) and Sn(1)-N(1) (2.2271(15)

Å) bond lengths are within normal ranges, which are comparable with the

corresponding values reported in the literature [21]. Rings A (Sn1/O2/ C8/N2/N1) and

C (C1-C6) are, of course, planar, and the dihedral angle between them is A/C = 7.96

(3)°. Ring B (Sn1/O1/C1/C6/C7/N1) adopts a flattened-boat [φ = -57.24 (2)° and θ =

107.39 (3)°] conformation, having a total puckering amplitude, QT, of 0.453 (3) Å

[1]. In the crystal structure, intermolecular C-H···O hydrogen bonds (Table 4.26) link

the molecules into centrosymmetric dimers (Figure 4.17), in which they may be

effective in the stabilization of the structure.

Page 258: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

234

Figure 4.16: ORTEP drawing of compound (37) with the atomic numbering scheme.

Figure 4.17: A partial packing diagram of compound (37). Hydrogen bonds are

shown as dashed lines

Page 259: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

235

4.2.8 X-ray crystal structure of complex (39)

Diphenyltin(IV) [N′-(3-methoxy-2-oxidobenzylidene)-N-(oxidomethylene)-

hydrazine]

The single crystal X-ray diffraction (XRD) study of complex (39)

shows that the tin center is coordinated by five donor atoms, two O and one N atom

from the ligand and two C atoms of the phenyl groups, in a distorted trigonal

bipyramid geometry (τ = 0.55) (Figure 4.18). The distortion is mainly due to the

rigidity of the chelate rings, together with the large covalent radius of tin(IV). The

nitrogen (Sn−N1: 2.158(2) Å) and the carbon atoms (Sn−C10: 2.120(17) and Sn−C16:

2.119(18) Å ) occupy the equatorial plane, whereas the oxygen atoms (Sn−O1:

2.067(2) and Sn−O2: 2.124(2) Å) are in axial positions, with an O1−Sn−O2 bond

angle of 157.84(8)° . The Sn(1)–N(1) distance (2.158(2) Å) is close to the sum of the

non-polar covalent radii (2.15 Å), but is considerably less than the sum of the van der

Waals radii (3.75 Å) indicating a strong tin-nitrogen interaction.

The crystallographic data and selected bond lengths and angles are given in

Tables 4.24 and 4.27.

Figure 4.18: ORTEP drawing of complex (39) with the atomic numbering scheme.

Page 260: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

236

Table 4.24: Crystal data and structure refinement parameters for complexes (37) and (39)

Complex No. (37) (39)

Empirical formula C13H18N2O3Sn C21H18N2O3Sn

Formula mass 368.98 465.10

Crystal system triclinic monoclinic

Space group P-1 P21/n

a (Å) 8.248 (3) 11.628(5)

b (Å) 9.861 (4) 11.156(5)

c (Å)

α(°)

β(°)

10.450 (4)

63.52 (2)

68.96 (1)

15.388(7)

90.00

108.70(6)

γ(°)

V ( Å3)

77.80 (2)

708.79 (5)

90.00

1890.59(15)

Z 2 4

Crystal habit

size (mm)

Prismatic

0.30 × 0.20 × 0.18

Block

0.21 × 0.19 × 0.14

T (K) 296 (2) 100 (1)

ρ (g.cm-3) 1.729 1.634

µ (Mo Kα) (mm-1) 1.81 13.75

F(000) 368 928

Total reflections 14275 16898

Independent reflections 3603 4693

For (Fo ≥ 4.0 σ (Fo)) 3929

R(F) = ∑ (||Fo| - |Fc||) / ∑ |Fo |

For Fo > 4.0 σ (Fo)

0.016 0.0295

wR(F2) = [∑ [w(Fo2 - Fc

2)2] / ∑ [w(Fo2)2]]1/2 0.063 0.0700

Goodness-of-fit 1.02 1.048

θ Range (deg) 2.3 - 28.7 2.60 - 29.12

Data/restrictions/params 3603/0/226 4693/0/316

Largest diff. peak and hole (eÅ-3) -0.59 and 0.39 -0.37 and 1.38

Page 261: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

237

Table 4.25: Selected bond lengths (Å) and bond angles (o) of complex (37) Bond lengths

Sn-O(1) 2.1888(13) O(1)-C(1) 1.3304(19)

Sn-O(2) 2.2162(14) O(2)-C(8) 1.278(3)

Sn-N(1) 2.2271(15) N(1)-N(2) 1.416(2)

Sn-C(9) 2.1217(18) N(1)-C(7) 1.291(2)

Sn-C(11) 2.1216(19) N(2)-C(8) 1.304(3)

Bond angles

O(1)-Sn-O(2) 152.74(5) N(2)-N(1)-C(7) 113.77(15)

O(1)-Sn-N(1) 82.07(5) N(1)-N(2)-C(8) 110.32(16)

O(1)-Sn-C(9) 93.40(7) Sn-O(1)-C(1) 131.78(11)

O(1)-Sn-C(11) 97.19(7) Sn-N(1)-N(2) 116.91(12)

O(2)-Sn-N(1) 71.30(6) Sn-N(1)-C(7) 129.00(12)

O(2)-Sn-C(9) 88.78(9) O(1)-C(1)-C(2) 119.40(15)

O(2)-Sn-C(11) 92.71(8) O(1)-C(1)-C(6) 124.13(15)

N(1)-Sn-C(9) 106.13(7) Sn-O(2)-C(8) 114.11(13)

N(1)-Sn-C(11) 99.42(7) C(9)-Sn-C(11) 153.54(9)

Table 4.26: Hydrogen-bond geometry (Å, o) of complex (37)

D−H..... A D−H H..... A D..... A D−H.....A

C(13)−H(13A).....O(2)i 0.96 2.34 3.068(4) 132

Symmetry codes: (i) -x, -y, -z+1.

Page 262: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

238

Table 4.27 Selected bond lengths (Å) and bond angles (o) of complex (39) Bond lengths

Sn-O(1) 2.067(17) Sn-C(16) 2.119(2)

Sn-O(2) 2.124(18) N(1)-N(2) 1.410(3)

Sn-N(1) 2.158(2) N(1)-C(7) 1.291(3)

Sn-C(10) 2.120(2) N(2)-C(8) 1.290(4)

Bond angles

O(1)-Sn-O(2) 157.84(8) C(10)-Sn-C(16) 124.93(9)

O(1)-Sn-N(1) 84.04(7) Sn-O(1)-C(1) 132.92(15)

O(1)-Sn-C(10) 96.99(8) Sn-O(2)-C(8) 112.53(18)

O(1)-Sn-C(16) 94.38(8) Sn-N(1)-N(2) 115.64(16)

O(2)-Sn-N(1) 74.18(8) Sn-N(1)-C(7) 128.39(16)

O(2)-Sn-C(10) 95.03(8) Sn-C(10)-C(11) 120.20(2)

O(2)-Sn-C(16) 93.90(8) Sn-C(10)-C(15) 120.00(2)

N(1)-Sn-C(10) 112.28(9) Sn-C(16)-C(17) 120.52(18)

N(1)-Sn-C(16) 122.43(9) Sn-C(16)-C(21) 120.53(18)

Page 263: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

239

4.2.9 X-ray crystal structure of complex (48)

Dimethyltin(IV) [N′-((-2-oxido-1-naphthylidene)-N-(oxidomethylene)hydrazine] The asymmetric unit of complex (48) consist of two molecules. The molecular

structure along with the atom numbering scheme, the crystal data and structure

refinements of molecule (1) for complex (48) are given in Figure 4.19 and Table 4.28.

Selected bond lengths and angles for molecules (1) and (2) are listed in Tables 4.29

and 4.30. The X-ray structural data show that the ligand behaves as a tridentate

dibasic coordinating moiety via phenolic oxygen, imino nitrogen and enolic oxygen

atoms. The two methyl groups on tin and the imino nitrogen atom of the ligand

occupy the equatorial positions, and the phenolic and enolic oxygen atoms are in the

axial positions forming a penta-coordination around the tin center. The ligand is not

completely planar. There are two crystallographically independent molecules (denoted

1 and 2) for the complex (48) which differ most significantly in their C−Sn−C angles

[C(113)− Sn(1)−C(114) 131.6(2)° for (1) and C(213)−Sn(2)−C(214) 127.0(2)° for (2).

Crystals of compound (48) are built from discrete molecules. The indices of

trigonality, τ, within the continuum between square pyramidal (τ = 0) and trigonal-

bipyramidal (τ = 1), as defined by Addison et. al. [16] are τ = 0.33 for molecule (1)

and τ = 0.42 for molecule (2). Thus in both cases square pyramidal geometry

predominates over trigonal-bipyramidal geometry. Owing to the geometric

requirements of the ligand, the angles subtended at tin(IV) by two oxygen atoms are

significantly compressed to 151.21(10)° and 152.40(15)° in molecule (1) and

molecule (2). Consequently, the bite angles O(11)−Sn(1)−N(11) (80.48(15)°),

O(12)−Sn(1)−N(11) (73.25(15)°) (for molecule 1) and O(21)−Sn(2)−N(21)

(81.45(16)°), O(22)−Sn(2)−N(21) (73.49(17)°) (for molecule 2) are compressed from

90°. These distortions are due to the rigidity of chelate rings, together with the large

Page 264: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

240

covalent radius of tin(IV). These bite angles are comparable to those reported for

other diorganotin(IV) complexes containing both five and six membered chelate rings

with oxygen and nitrogen donor atoms [22].

Figure 4.19: ORTEP drawing of compound (48) with the atomic numbering

scheme, where X = 1 for molecule 1 and 2 for molecule 2.

Page 265: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

241

4.2.10 X-ray crystal structure of complex (50)

Di-tert-butyltin(IV) [N′-((-2-oxido-1-naphthylidene)-N′-(oxido-methylene) hydrazine]

The molecular structure and atomic numbering scheme for complex (50) is

given in Figure 4.20. The crystallographic data, selected bond lengths and angles are

listed in the Tables 4.28 and 4.31. Each asymmetric unit contains one formula unit

with no atom setting at special position. The structure of complex (50) consists of a

deprotonated ONO dibasic tridentate ligand bonded to the ((CH3)3C)2Sn(IV) moiety

through the two oxygen and a nitrogen atoms forming a O2NC2 core around the tin

atom. The ligand is non-planar probably due to the steric requirements of the five

membered and six membered chelate rings formed. The geometry around Sn atom can

be characterized by the value of τ = (β−α)/60. For complex (50) (β = O(1)-Sn-O(2) =

154.81(7)° and α = C(13)-Sn-C(17) = 129.96(11)°) the τ value (0.41) indicates a

distorted square-pyramidal geometry with two phenolic, enolic oxygen atoms and two

methyl carbon atoms in the equatorial positions and the azomethinic nitrogen in the

apical position. The Sn-O(1) and Sn-O(2) bond lengths (2.108(18) and 2.139(18) Å)

are less than the sum of van der Waals radii of Sn and O (3.68 Å). The O(1)-Sn-N(1),

and O(2)-Sn-N(1) angles are 81.15(7)° and 73.70(7)o. The Sn-N(1) bond distance is

2.156(2) Å, comparable to the sum of covalent radii of Sn and N (2.15 Å ) and less

than the sum of the van der Waals radii (3.75 Å) suggesting a strong tin-nitrogen

bond.

Page 266: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

242

Figure 4.20: ORTEP drawing of complex (50) with the atomic numbering scheme.

Page 267: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

243

Table 4.28: Crystal data and structure refinement parameters for complexes (48) and (50)

Complex No. (48) (50)

Empirical formula C14H14N2O2Sn C20H26N2O2Sn

Formula mass 360.98 445.15

Crystal system monoclinic monoclinic

Space group P21/c P21/c

a (Å) 7.364(14) 9.119(17)

b (Å) 22.621(4) 24.90(4)

c (Å)

α(°)

β(°)

16.112(3)

90.00

94.40(2)

8.756(16)

90.00

92.56(2)

γ(°)

V ( Å3)

90.00

2676.1(9)

90.00

1986.2(6)

Z 8 4

Crystal habit

size (mm)

Block

0.33 × 0.26 × 0.19

Block

0.34 × 0.23 × 0.19

T (K) 100 (1) 100 (1)

ρ (g.cm-3) 1.792 1.489

µ (Mo Kα) (cm-1) 19.08 13.01

F(000) 1424 904

Total reflections 5454 15672

Independent reflections 5454 4178

For (Fo ≥ 4.0 σ (Fo)) 4745 3617

R(F) = ∑ (||Fo| - |Fc||) / ∑ |Fo |

For Fo > 4.0 σ (Fo)

0.0407 0.0303

wR(F2) = [∑ [w(Fo2 - Fc

2)2] / ∑ [w(Fo2)2]]1/2 0.1106 0.0762

Goodness-of-fit 1.491 1.109

θ Range (deg) 2.54 - 29.38 2.77 - 26.73

Data/restrictions/params 5454/0/344 4178/0/232

Largest diff. peak and hole (eÅ-3) -0.15 and 0.22(4) -0.85 and 1.21(11)

Page 268: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

244

Table 4.29 Selected bond lengths (Å) and bond angles (o) of molecule (1) of asymmetric unit of compound (48). Bond lengths

Sn(1)-O(11) 2.109(4) Sn(1)-C(114) 2.089(6)

Sn(1)-O(12) 2.159(4) O(11)-C(11) 1.319(6)

Sn(1)-N(11) 2.158(5) O(12)-C(112) 1.302(7)

Sn(1)-C(113) 2.105(6) N(11)-N(12) 1.405(6)

Bond angles

O(11)-Sn(1)-O(12) 151.21(13) N(11)-Sn(1)-C(114) 122.2(2)

O(11)-Sn(1)-N(11) 80.48(15) C(113)-Sn(1)-C114) 131.6(2)

O(11)-Sn(1)-C(113) 97.3(2) Sn(1)-O(11)-C(11) 130.4(3)

O(11)-Sn(1)-C(114) 89.8(2) Sn(1)-O(12)-C(112) 112.0(4)

O(12)-Sn(1)-N(11) 73.25(15) Sn(1)-N(11)-N(12) 116.8(3)

O(12)-Sn(1)-C(113) 101.1(2) Sn(1)-N(11)-C(111) 128.3(4)

O(12)-Sn(1)-C(114) 94.3(2) N(12)-N(11)-C(111) 114.9(5)

N(11)-Sn(1)-C(113) 106.2(2) N(11)-N(12)-C(112) 109.9(5)

Table 4.30 Selected bond lengths (Å) and bond angles (o) of molecule (2) of asymmetric unit of compound (48). Bond lengths

Sn(2)-O(21) 2.098(4) Sn(2)-C(214) 2.100(5)

Sn(2)-O(22) 2.149(5) O(21)-C(21) 1.323(8)

Sn(2)-N(21) 2.156(5) O(22)-C(212) 1.291(8)

Sn(2)-C(213) 2.115(5) N(21)-N(22) 1.406(7)

Bond angles

O(21)-Sn(2)-O(22) 152.40(15) N(21)-Sn(2)-C(214) 127.27(19)

O(21)-Sn(2)-N(21) 81.45(16) C(213)-Sn(2)-C(214) 127.0(2)

O(21)-Sn(2)-C(213) 101.9(2) Sn(2)-O(21)-C(21) 132.6(3)

O(21)-Sn(2)-C(214) 94.54(16) Sn(2)-O(22)-C(212) 112.3(4)

O(22)-Sn(2)-N(21) 73.49(17) Sn(2)-N(21)-N(22) 116.4(3)

O(22)-Sn(2)-C(213) 95.64(19) Sn(2)-N(21)-C(211) 129.1(4)

O(22)-Sn(2)-C(214) 91.61(17) N(22)-N(21)-C(211) 114.5(4)

N(21)-Sn(2)-C(213) 105.0(2) N(21)-N(22)-C(212) 110.1(5)

Page 269: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

245

Table 4.31 Selected bond lengths (Å) and bond angles (o) of compound (50). Bond lengths

Sn-O(1) 2.108(18) Sn-C(17) 2.156(3)

Sn-O(2) 2.139(18) N(1)-N(2) 1.404(3)

Sn-N(1) 2.156(2) N(1)-C(11) 1.308(3)

Sn-C(13) 2.159(3) N(2)-C(12) 1.297(4)

Bond angles

O(1)-Sn-O(2) 154.81(7) N(1)-Sn-C(17) 113.44(9)

O(1)-Sn-N(1) 81.15(7) C(13)-Sn-C(17) 129.96(11)

O(1)-Sn-C(13) 93.54(9) Sn-O(1)-C(1) 134.91(17)

O(1)-Sn-C(17) 95.26(9) Sn-O(2)-C(12) 112.82(16)

O(2)-Sn-N(1) 73.70(7) Sn-N(1)-N(2) 115.99(15)

O(2)-Sn-C(13) 98.79(9) Sn-C(13)-C(14) 112.0(2)

O(2)-Sn-C(17) 93.52(9) Sn-N(1)-C(11) 130.07(17)

N(1)-Sn-C(13) 116.58(9) Sn-C(13)-C(15) 106.41(18)

Sn-C(13)-C(16) 107.5(2) Sn-C(17)-C(19) 111.00(18)

Sn-C(17)-C(18) 109.78(17) Sn-C(17)-C(20) 105.71(19)

Page 270: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

246

4.2.11 X-ray crystal structure of complex (51)

Dimethyltin(IV) [N′-(1-(5-bromo-2-oxidophenyl)ethylidene))-N-(oxidomethylene) hydrazine]

The crystallographic data and selected bond lengths and angles are given in

Tables 4.32 and 4.33. The molecular structure of complex (51) is shown in figure

4.21. The tin atom is coordinated by two O atoms and one N atom from the ligand and

two C atoms of the methyl groups. The τ value (0.30) suggest a penta-coordination

biased towards tetragonal pyramidal geometry. The distortion is mainly due to the

rigidity of the chelate rings, together with the large covalent radius of tin(IV). The

nitrogen (Sn−N1: 2.211(6) Å) and the carbon atoms (Sn−C(11): 2.110(7) and

Sn−C(16): 2.112(7) Å ) occupy the equatorial plane, whereas the oxygen atoms

(Sn−O(1): 2.091(4) and Sn−O(2): 2.131(4) Å) are in axial positions, with

O(1)−Sn−O(2) bond angle of 148.50(19)°. The Sn(1)–N(1) distance (2.211(6) Å)

indicates a strong tin-nitrogen interaction.

Figure 4.21: ORTEP drawing of complex (51) with the atomic numberin scheme.

Page 271: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

247

4.2.12 X-ray crystal structure of complex (61)

Bis[dimethyltin(IV)] [N1′, N6′-bis(2-oxidobenzylidene)adipohydrazide] The molecular structure and atomic numbering scheme for complex (61) are

given in Figure 4.22. The crystallographic data, selected bond lengths and angles are

listed in Tables 4.32 and 4.34. In the dinuclear complex (61) the dimethyltin moieties

are oriented in trans conformation [23]. Each of the two tin atoms has a coordination

number of five, resulting from the bonding to one nitrogen and two oxygen atoms

from the ligand, and two carbon atoms from the methyl groups forming a O2NC2 core

around each tin atom. The ligand is non-planar probably due to the steric requirements

of the five and six membered chelate rings formed. The geometry around Sn atom can

be characterized by the value of τ = (β - α)/60, For complex (62) the τ value (0.44)

indicates a structure biased towards square-pyramidal geometry with two enolic

oxygens and two methyl carbons in the equatorial positions and the azomethinic

nitrogen in the apical position. The Sn-O(1) and Sn-O(2) bond lengths (2.076(2) and

2.147(2) Å) are less than the sum of the van der Waals radii of Sn and O (3.68 Å).

The O(1)-Sn-N(1), and O(2)-Sn-N(1) angles are 83.36(8)° and 72.41(8)o. The C(11)-

Sn-C(12) angle is 127.84(10)°. The Sn-N(1) bond distance is 2.170(2) Å,

compareable to the sum of covalent radii of Sn and N (2.15 Å ) and less than the sum

of the van der Waals radii (3.75 Å ) suggesting a strong tin-nitrogen bond. In the solid

state the molecules are packed together to form layered structure (Figure 4.23).

Page 272: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

248

Figure 4.22: ORTEP drawing of compound (61) with the atomic numbering scheme.

Figure 4.23:A portion of lattice of complex (61) showing packing of molecules.

Page 273: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

249

Table 4.32: Crystal data and structure refinement parameters for compounds (51) and (61) Complex No. 51 61

Empirical formula C11H13BrN2O2Sn (C12H15N2O2Sn)2

Formula mass 403.85 675.94

Crystal system triclinic monoclinic

Space group P-1 P21/c

a (Å) 7.864(14) 10.298(2)

b (Å) 7.919(14) 10.492(2)

c (Å)

α(°)

β(°)

11.586(2)

103.44(19)°

109.21(19)°

12.489(3)

90.00

109.49(3)

γ(°)

V ( Å3)

99.27(2)°

640.2(2)

90.00

1272.0(5)

Z 2 2

Crystal habit

size (mm)

yellow platelet

0.48 × 0.35 × 0.11

Block

0.24 × 0.18 × 0.11

T (K) 100 (1) 100 (1)

ρ (g.cm-3) 2.095 1.765

µ (Mo Kα) (cm-1) 51.07 20

F(000) 388 668

Total reflections 5680 9979

Independent reflections 3018 2691

For (Fo ≥ 4.0 σ (Fo)) 2810 2377

R(F) = ∑ (||Fo| - |Fc||) / ∑ |Fo |

For Fo > 4.0 σ (Fo)

0.0386 0.0259

wR(F2) = [∑ [w(Fo2 - Fc

2)2] / ∑ [w(Fo2)2]]1/2 0.1248 0.0648

Goodness-of-fit 1.232 1.069

θ Range (deg) 2.77 - 29.50 2.60 - 29.41

Data/restrictions/params 3018/0/157 2691/0/156

Largest diff. peak and hole (eÅ-3) -2.4 and 1.8(2) -0.54 and 1.27(10)

Table 4.33: Selected bond lengths (Å) and bond angles (o) of (51)

Page 274: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

250

Bond lengths

Sn-O(1) 2.091(4) Sn-O(2) 2.131(4)

Sn-N(1) 2.211(6) Sn-C(10) 2.110(7)

N(2)-C(9) 1.301(8) Sn-C(11) 2.112(7)

Br-C(4) 1.904(6) O(1)-C(1) 1.324(7)

O(2)-C(9) 1.304(8) N(1)-N(2) 1.408(7)

N(1)-C(7) 1.322(8)

Bond angles

O(1)-Sn-O(2) 148.50(19) O(1)-Sn-C(10) 97.4(2)

O(1)-Sn-N(1) 80.13(18) O(2)-Sn-N(1) 72.80(17)

O(1)-Sn-C(11) 88.4(2) O(2)-Sn-C(11) 94.4(2)

O(2)-Sn-C(10) 104.4(2) N(1)-Sn-C(11) 125.6(2)

N(1)-Sn-C(10) 103.9(2) Sn-O(1)-C(1) 124.4(4)

C(10)-Sn-C(11) 130.4(3) Sn-N(1)-N(2) 115.2(3)

Sn-O(2)-C(9) 113.8(4) N(2)-N(1)-C(7) 116.5(5)

Sn-N(1)-C(7) 127.8(4)

Table 4.34 Selected bond lengths (Å) and bond angles (o) of complex (61) Bond lengths

Sn-O(1) 2.076(2) Sn-C(12) 2.100(3)

Sn-O(2) 2.147(2) N(1)-N(2) 1.394(3)

Sn-N(1) 2.170(2) N(1)-C(7) 1.290(4)

Sn-C(11) 2.097(3) N(2)-C(8) 1.307(4)

Bond angles

O(1)-Sn-O(2) 154.50(7) N(1)-Sn-C(12) 107.15(9)

O(1)-Sn-N(1) 83.36(8) C(11)-Sn-C(12) 127.84(10)

O(1)-Sn-C(11) 94.77(10) Sn-O(1)-C(1) 131.16(18)

O(1)-Sn-C(12) 100.58(10) Sn-O(2)-C(8) 115.11(18)

O(2)-Sn-N(1) 72.41(8) Sn-N(1)-N(2) 116.63(15)

O(2)-Sn-C(11) 92.38(10) Sn-N(1)-C(7) 127.42(18)

O(2)-Sn-C(12) 94.17(10) N(2)-N(1)-C(7) 115.0(2)

N(1)-Sn-C(11) 124.07(10) N(1)-N(2)-C(8) 111.2(2)

4.2.13 X-ray crystal structure of complex (68)

Page 275: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

251

Bis[diethyltin(IV)] [N1′, N6′-bis(5-bromo-2-oxidobenzylidene)adipohydrazide]

The molecular structure is shown in Figure 4.24. The crystallographic data and

selected bond lengths and angles are given in Tables 4.35 and 4.36. The complex (68)

exists as monomer, each Sn atom is coordinated by two O atoms and a N atom from

the hexadentate ligand and two α-C atoms belonging to the two ethyl substituents

forming a penta-coordination around tin, biased towards square pyramidal geometry

(τ = 0.29). The Sn-O(1) and Sn-O(2) bond lengths (2.119(2) and 2.159(2) Å) are less

than the sum of van der Waals radii of Sn and O (3.68 Å). The O(1)-Sn-N(1),

Ol(1)Sn(1)O(2), Cl(11)Sn(1)C(13) and O(2)-Sn-N(1) angles are 82.55(8)°,

154.91(7)°, 137.73(10)° and 72.43(8)°, respectively. The Sn-N(1) bond distance is

2.194(2) Å, compareable to the sum of the covalent radii of Sn and N (2.15 Å ) and

less than the sum of the van der Waals radii (3.75 Å ) suggesting a strong tin-nitrogen

bond. The Sn atom and the O(1), C(1), C(6), C(7), N(1) atoms form a six membered

ring, while the Sn atom and O(2), C(8), N(2) and N(1) atoms form a five membered

ring. Similar to compound (61) in the dinuclear complex (68), the diethyl tin moieties

are oriented in a trans position.

Figure 4.24: ORTEP drawing of complex (68) with the atomic numbering scheme.

4.2.14 X-Ray Crystal Structure of Complex (69)

Page 276: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

252

Bis[dibutyltin(IV)] [N1′, N6′-bis(5-bromo-2-oxidobenzylidene)adipohydrazide]

The molecular structure of complex (69) is depicted in Figure 4.25, while the

crystal data and selected bond lengths and bond angles are given in Tables 4.35 and

4.37. In the binuclear complex (69) the two dibutyltin moieties are trans to each other.

Each Sn atom is penta-coordinated, the equatorial plane being defined by the two

carbon atoms of the butyl groups and the two oxygen atoms of the N1′, N6′-bis (5-

bromo-2-hydroxybenzylidene)adipohydrazide ligands. The nitrogen atom occupies

the apical position. According to Addison et al., [16] the geometry around the Sn atom

can be characterized by the value of τ = (β-α)/60 , where β is the largest of the basal

angles around the Sn atom. For complex (69) it is O1-Sn-O2 = 154.53(8)° The second

largest of the basal angles around the Sn atom, α for compound (69) is C11-Sn-C15 =

137.49(12)◦. The calculated τ value for the (69) is 0.28. The value indicates a highly

distorted square pyramidal arrangement around the tin atom.

Figure 4.25: ORTEP drawing of complex (69) with the atomic numbering scheme.

Table 4.35: Crystal data and structure refinement parameters for complexes (68) and (69)

Page 277: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

253

Complex No. 68 69

Empirical formula (C14H18BrN2O2Sn)2 (C18H26BrN2O2Sn)2

Formula mass 889.84 1002.06

Crystal system monoclinic orthorhombic

Space group C2/c, 15 Pbca

a (Å) 19.115(2) 9.705(17)

b (Å) 10.389(13) 16.165(3)

c (Å)

α(°)

β(°)

17.299(2)

90.00

113.35(15)

24.704(4)

90.00

90.00

γ(°)

V ( Å3)

90.00

3154.2(6)

90.00

3875.4(12)

Z 4 4

Crystal habit

size (mm)

Block

0.41 × 0.33 × 0.28

Block

0.47 × 0.23 × 0.14

T (K) 100 (1) 100 (1)

ρ (g.cm-3) 1.874 1.717

µ (Mo Kα) (cm-1) 41.56 33.93

F(000) 1736 1992

Total reflections 14013 23508

Independent reflections 3866 3913

For (Fo ≥ 4.0 σ (Fo)) 3259 3189

R(F) = ∑ (||Fo| - |Fc||) / ∑ |Fo |

For Fo > 4.0 σ (Fo)

0.0290 0.0334

wR(F2) = [∑ [w(Fo2 - Fc

2)2] / ∑ [w(Fo2)2]]1/2 0.0712 0.0827

Goodness-of-fit 1.051 1.091

θ Range (deg) 2.56 - 29.43 2.58 - 29.42

Data/restrictions/params 3866/0/183 3913/0/219

Largest diff. peak and hole (eÅ-3) -0.42 and 1.54(11) -0.59 and 1.58(13)

Table 4.36 Selected bond lengths (Å) and bond angles (o) of complex (68). Bond lengths

Page 278: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

254

Sn-O(1) 2.119(2) Sn-C(13) 2.129(3)

Sn-O(2) 2.159(2) N(1)-N(2) 1.403(4)

Sn-N(1) 2.194(2) N(1)-C(7) 1.293(3)

Sn-C(11) 2.127(3) N(2)-C(8) 1.314(3)

Bond angles

O(1)-Sn-O(2) 154.91(7) N(1)-Sn-C(13) 112.86(9)

O(1)-Sn-N(1) 82.55(8) C(11)-Sn-C(13) 137.73(10)

O(1)-Sn-C(11) 92.07(11) Sn-O(1)-C(1) 133.15(18)

O(1)-Sn-C(13) 94.14(11) Sn-O(2)-C(8) 114.83(19)

O(2)-Sn-N(1) 72.43(8) Sn-N(1)-N(2) 116.43(16)

O(2)-Sn-C(11) 94.53(10) Sn-N(1)-C(7) 128.7(2)

O(2)-Sn-C(13) 97.11(11) Sn-C(11)-C(12) 109.7(2)

N(1)-Sn-C(11) 109.40(11) Sn-C(13)-C(14) 112.29(19)

Table 4.37: Selected bond lengths (Å) and bond angles (o) of complex (69). Bond lengths

Sn-O(1) 2.120(2) Sn-C(15) 2.108(3)

Sn-O(2) 2.143(2) N(1)-N(2) 1.403(4)

Sn-N(1) 2.189(2) N(1)-C(7) 1.293(4)

Sn-C(11) 2.121(3) N(2)-C(8) 1.316(4)

Bond angles

O(1)-Sn-O(2) 154.53(8) N(1)-Sn-C(15) 113.64(11)

O(1)-Sn-N(1) 81.92(9) C(11)-Sn-C(15) 137.49(12)

O(1)-Sn-C(11) 95.19(11) Sn-O(1)-C(1) 32.0(2)

O(1)-Sn-C(15) 90.56(11) Sn-O(2)-C(8) 114.59(19)

O(2)-Sn-N(1) 72.91(9) Sn-N(1)-N(2) 116.19(18)

O(2)-Sn-C(11) 96.54(11) Sn-N(1)-C(7) 128.6(2)

O(2)-Sn-C(15) 95.88(11) Sn-C(11)-C(12) 111.9(2)

N(1)-Sn-C(11) 108.87(11) Sn-C(15)-C(16) 112.2(2)

4.2.15 X-ray crystal structure of complex (85)

Page 279: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

255

Dimethyltin(IV) [N′-(2-oxidobenzylidene)-N-(oxidomethylene)hydrazine]bipyridine

The ORTEP diagram of (85) is shown in Figure 4.26. Crystal data and

structure refinements are given in Table 4.38 while selected bond lengths and bond

angles are listed in Table 4.39. In the structure of complex (85), the hepta-

coordination around Sn consists of two O-atoms and one N atom of the Schiff base

ligand [N'-(2-hydroxybenzylidene)formohydrazide], two N-atoms of 2,2'-bipyridine

and two C-atoms of methyl groups. The shortest bond of Sn is with the methyl C-

atoms showing nearly equal values (2.112(4) and 2.107(3) Å. The Sn(1)−O(1)

(2.160(2), Sn(1)−O(2) (2.244(2) Å) and Sn(1)−N(1) (2.317(2) Å) bond distances are

longer than the previously reported values [16], most probably due to the additional

coordination of bipyridine to tin. The bond distances of the N-atoms of bipyridine are

2.621(2) Å (Sn(1)−N(3) and 2.633(2) Å (Sn(1)−N(4). The bond angles around tin are

in the range between 62.07(7)° and 166.89(13)°.

Figure 4.26: ORTEP drawing of complex (85) with the atomic numbering scheme.

4.2.16 X-ray crystal structure of complex (86)

Page 280: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

256

Dimethyltin(IV) [N′-(3-methoxy-2-oxidobenzylidene)-N-(oxidomethylene)hydra-

zine]bipyridine

In the monomeric structure of complex (86) (Figure 4.27), the coordination

around Sn consists of two O-atoms and one N atom of the Schiff base ligand [N'-(3-

methoxy-2-hydroxybenzylidene)formohydrazide], two N-atoms of 2,2'-bipyridine and

two C-atoms of methyl groups. Crystal data and structure refinement parameters are

given in Table 4.38 while the selected bond lengths and bond angles are listed in

Table 4.40. The shortest bond of Sn is realised with the methyl C-atoms showing

nearly equal values (2.096(3) and 2.098(3) Å) corresponding very well with the bond

lengths observed in [(3-methoxy-2-oxidobenzaldehydebenzoylhydrazonato)dimethyl

tin(IV)] [21]. The Sn(1)−O(1) bond distance of 2.157 (14) Å is greater than the values

reported for [diphenyl(methoxy-N-salicylideneacetyl-hydrazonato)tin(IV)] (2.068(2)

Å, [22]. The same is also true for the bonds Sn(1)−O(15) (2.266(18) Å) and

Sn(1)−N(1) (2.298(2) Å). These observations are most probably due to the additional

coordination of bipyridine to tin. The bond distances of the N-atoms of bipyridine are

2.583 (18) Å (Sn(1)−N(3)) and 2.623 (19) Å (Sn(1)−N(4)). The bond distances in the

hydrazine ligand are comparable with those reported for {[N-Formyl-N'-(2-

oxidobenzylidene)hydrazine-κ3O,N,O']diphenyltin(IV)} [11]. The bond angles

around Sn are in the range between 68.60(6)° and 169.75(11)°. The dihedral angle

between (O1/C1/C2/C3/C4 /C5/C6/C7) and (N1/N2/C8/O2) is 36.0 (1)° while the

angle between the rings (N3/C12/C13/C14/C15/C16) and

(N4/C17/C18/C19/C20/C21) is 17.0(1)°. The molecular structure of the title

compound as well as the observed conformation are stabilized by three intramolecular

H-bonds of C−H···O type (Figure 4.28) all involving bipyridine C−H functions (Table

Page 281: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

257

4.41). The closest intermolecular contact of molecules is at a distance of 3.208 (3) Å

between O(1)···C(15)i

[symmetry code: i = x, −y + 1/2, z + 1/2]. A positive electron peak corresponding to

1.12 Å−3 remains at a distance of 0.93 Å near Sn(1)

Figure 4.27: ORTEP drawing of complex (86) with the atomic numbering scheme.

Figure 4.28: The unit cell packing diagram of complex 86. Table 4.38: Crystal data and structure refinement parameters for complexes (85) and (86)

Page 282: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

258

Complex No. (85) (86)

Empirical formula C20H20N4O2Sn C21H22N4O3Sn

Formula mass 467.11 497.12

Crystal system orthorhombic monoclinic

Space group P212121 P21/c

a (Å) 11.959(12) 12.383(3)

b (Å) 12.043(12) 9.909(2)

c (Å)

α(°)

β(°)

12.914(13)

90.00

90.00

17.173(4)

90.00

103.30(10)

γ(°)

V ( Å3)

90.00

1860.1(3)

90.00

2050.80(8)

Z 4 4

Crystal habit

size (mm)

Cut fragment

0.25 × 0.14 × 0.11

Prismatic

0.25 × 0.18 × 0.15

T (K) 100 (1) 296 (2)

ρ (g.cm-3) 1.668 1.610

µ (Mo Kα) (cm-1) 13.97 1.276

F(000) 936 1000

Total reflections 16887 5524

Independent reflections 4617 4407

For (Fo ≥ 4.0 σ (Fo)) 4368 4150

R(F) = ∑ (||Fo| - |Fc||) / ∑ |Fo |

For Fo > 4.0 σ (Fo)

0.0280 0.0249

wR(F2) = [∑ [w(Fo2 - Fc

2)2] / ∑ [w(Fo2)2]]1/2 0.0652 0.0664

Goodness-of-fit 1.034 1.037

θ Range (deg) 2.87 - 28.28 1.69 - 29.18

Data/restrictions/params 4617/0/246 4407/0/280

Largest diff. peak and hole (eÅ-3) -0.34 and 1.68(9) -0.413 and 1.123

Table 4.39 Selected bond lengths (Å) and bond angles (o) of complex (85) Bond lengths

Page 283: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

259

Sn-O(1) 2.160(2) O(2)-C(8) 1.286(4)

Sn-O(2) 2.244(2) N(1)-N(2) 1.413(3)

Sn-N(1) 2.317(2) N(1)-C(7) 1.293(4)

Sn-N(3) 2.621(2) N(2)-C(8) 1.303(4)

Sn-N(4) 2.633(2) N(3)-C(11) 1.329(4)

Sn-C(9) 2.112(3) N(3)-C(15) 1.350(4)

Sn-C(10) 2.107(4) N(4)-C(16) 1.347(4)

O(1)-C(1) 1.316(3) N(4)-C(20) 1.344(4)

Bond angles

O(1)-Sn-O(2) 146.51(8) N(3)-Sn-N(4) 62.07(7)

Sn-N(4)-C(16) 121.93(19) N(3)-Sn-C(9) 86.2(1)

O(1)-Sn-N(1) 77.41(8) N(3)-Sn-C(10) 83.97(11)

Sn-N(4)-C(20) 120.0(2) N(4)-Sn-C(9) 82.04(9)

O(1)-Sn-N(3) 75.82(8) N(4)-Sn-C(10) 85.70(12)

O(1)-Sn-N(4) 137.67(8) C(9)-Sn-C(10) 166.89(13)

O(1)-Sn-C(9) 91.62(10) Sn-O(1)-C(1) 133.9(2)

O(1)-Sn-C(10) 94.35(12) Sn-O(2)-C(8) 114.4(2)

O(2)-Sn-N(1) 69.10(8) Sn-N(1)-N(2) 116.44(17)

O(2)-Sn-N(3) 137.66(8) Sn-N(1)-C(7) 130.02(19)

O(2)-Sn-N(4) 75.74(7) Sn-N(3)-C(11) 120.0(2)

O(2)-Sn-C(9) 91.59(11) Sn-N(3)-C(15) 121.3(2)

O(2)-Sn-C(10) 89.85(12) N(1)-Sn-C(9) 95.67(10)

N(1)-Sn-N(3) 153.21(8) N(1)-Sn-C(10) 97.02(12)

N(1)-Sn-N(4) 144.70(8) N(2)-N(1)-C(7) 113.5(2)

Table 4.40 Selected bond lengths (Å) and bond angles (o) of complex (86) Bond lengths

Page 284: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

260

Sn-O(1) 2.157(14) O(2)-C(8) 1.273(3)

Sn-O(2) 2.266(15) N(1)-N(2) 1.410 (3)

Sn-N(1) 2.298 (18) N(1)-C(7) 1.280 (3)

Sn-N(3) 2.583(18) N(2)-C(8) 1.298 (3)

Sn-N(4) 2.623(19) N(3)-C(12) 1.338 (3)

Sn-C(9) 2.096 (3) N(3)-C(16) 1.349 (3)

Sn-C(10) 2.098 (3) N(4)-C(17) 1.343 (3)

O(1)-C(1) 1.316 (2) N(4)-C(21) 1.341 (3)

Bonds angles

O(1)-Sn-O(2) 145.23 (6) N(3)-Sn-N(4) 62.68(6)

Sn-N(4)-C(17) 119.19(14) N(3)-Sn-C(9) 80.36(9)

O(1)-Sn-N(1) 77.11(6) N(3)-Sn-C(10) 90.33(9)

Sn-N(4)-C(21) 119.57(14) N(4)-Sn-C(9) 91.76(9)

O(1)-Sn-N(3) 138.83(6) N(4)-Sn-C(10) 80.06(10)

O(1)-Sn-N(4) 76.91(6) C(9)-Sn-C(10) 169.75(11)

O(1)-Sn-C(9) 93.97(9) Sn-O(1)-C(1) 128.32(14)

O(1)-Sn-C(10) 90.20(9) Sn-O(2)-C(8) 113.34(15)

O(2)-Sn-N(1) 68.60(6) Sn-N(1)-N(2) 116.77(14)

O(2)-Sn-N(3) 75.91(6) Sn-N(1)-C(7) 127.49(16)

O(2)-Sn-N(4) 136.43(6) Sn-N(3)-C(12) 120.40(16)

O(2)-Sn-C(9) 94.24(9) Sn-N(3)-C(16) 121.75(14)

O(2)-Sn-C(10) 87.60(11) N(1)-Sn-C(9) 94.40(9)

N(1)-Sn-N(3) 143.65(6) N(1)-Sn-C(10) 95.65(10)

N(1)-Sn-N(4) 153.65(6) N(2)-N(1)-C(7) 115.37(2)

Table 4.41: Hydrogen-bond geometry (Å, °) for complex (86)

D−H..... A D−H H..... A D..... A D−H.....A

C(12)−H(12).....O(2) 0.93 2.40 2.993(3) 121

C(21)−H(21).....O(1) 0.93 2.36 2.968(3) 123

C(21)−H(21).....O(3) 0.93 2.50 3.390(3) 161

REFERENCES

Page 285: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

261

[1] D. Cremer, J. A. Pople, J. Am. Chem. Soc. 97 (1975) 1354.

[2] J. Bernstein, R. E. Davis, L. Shimoni, N. L. Chang, Angew. Chem. Int. Ed.

Engl. 34 (1995) 1555.

[3] F. H. Allen, O. Kennard, Chem. Des. Autom. News 8 (1992) 131.

[4] C. Escobar, M. T. Garland, Acta Crystallogr. 40C (1984) 889.

[5] C. Escobar, M. T. Garland, Acta Crystallogr. 39C (1983) 1463.

[6] B. M. Gatehouse, Cryst. Struct. Commun. 11 (1982) 1793.

[7] D. S. Yang, Acta Cryst. E62 (2006) o3792.

[8] M. A. Mostafa, A. Amirreza, R. K. Hamid, S.W. Ng, J. Organomet. Chem.

692 (2007) 3922.

[9] M. Parvez, M. H. Bhatti, S. Ali, M. Mazhar and S. I. Qureshi, Acta Cryst. C56

(2000) 327.

[10] F. Ahmad, S. Ali, M. Parvez, A. Munir, M. Mazhar, K. M. Khan, T. A. Shah,

Heteroatom Chem. 13 (2002) 638.

[11] S. Shuja, S. Ali, N. Khalid, G. A. Broker, E. R. T. Tiekink, Acta Cryst. E63

(2007) m1025.

[12] F. H. Allen, Acta Cryst., B58 (2002) 380.

[13] E. R. T. Tiekink, Appl. Organomet. Chem. 5 (1991) 1.

[14] S. Shuja, S. Ali, S. A. Meetsma, G. A. Broker, E. R. T. Tiekink, Acta Cryst.

E63 (2007) m1130.

[15] S. Shuja, S. Ali, M. N. Tahir, N. Khalid, I. U. Khan, Acta Cryst. E64 (2008)

m531.

[16] A. W. Addison, T. N. Rao, J Reedijk, J. van Rijn, G. C. Verschoor, J. Chem.

Soc. Dalton Trans. 7 (1984) 1349.

[17] O. Diouf, D. G. Sall, M. Gaye, A. S. Sall, U. Casellato, R. Graziani, Z.

Kristallogr. New Cryst. Struct. 214 (1999) 493.

[18] D. K. Dey, B. Samanta, A. Lycka, L. Dahlenburg, Z. Naturforsch. 58b

(2003) 336.

[19] B. Samanta, J. Chakraborty, D. K. Dey, V. Gramlich, S. Mitra, Struct. Chem.

18 (2007) 287.

[20] A. Bondi, J. Phys. Chem. 68 (1964) 441.

[21] S. W. Chen, H. D. Yin, D. Q. Wang, Acta Cryst. E62 (2006) m1654.

Page 286: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

262

[22] O. Diouf, M. Gaye, , A. S. Sall, C. Slebodnick, Z. Kristallogr. 219 (2004) 435.

[23] B. Victor, V. Edgar, L. Rolando, H. Herbert, I. B. Hiram, S. Z. R. Luis, J.

Organomet. Chem. 692 (2007) 731.

Page 287: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

263

CONCLUSIONS

• Novel [O,O] and [O,N,O] potential donor ligands have been synthesized by

the reaction of salicyldehyde and substituted salicyldehydes with tranxemic

acid, hydrazides and dihydrazides in ethanol. The di- and triorganotin(IV)

derivatives have also been obtained in good yields by refluxing the sodium salt

of carboxylic acids, carboxylic acids, hydrazones or dihydrazones and the

respective organotin(IV) chlorides/ dioctyltin(IV) oxides/ butyldihydroxide

chloride in dry toluene for 8-10 hours.

• The appearance of new peaks for Sn-C, Sn-O and Sn-N in the IR spectra

indicated the formation of organotin(IV) complexes with [O,O] donor and

[O,N,O] donor ligands.

• In [O,O] derivatives, the ∆ν values indicated the bidentate nature of

carboxylates in the solid state.

• Multinuclear NMR (1H, 13C and 119Sn) data revealed that in all the

triorganotin(IV) and diorganotin(IV) derivatives with [O,O] donor ligands

except the triphenyltin(IV) complex, the coordination geometry around tin

changed from five to four and from six to five, respectively as we move from

solid state to solution. However, the diorganotin(IV) derivatives with [O,N,O]

donor ligands maintained their solid state trigonal bipyramidal geometry even

in solution. All the dinuclear complexes show a single tin NMR signal

indicating similar environment around each tin atom.

• Mass spectral data are in agreement with the structures confirmed by other

spectroscopic techniques. Molecular ion peaks were observed for almost all

the diorganotin(IV) derivatives with [O,N,O] donor ligands.

• Single crystal X-ray analyses of triorganotin(IV) complexes with [O,O] donor

ligands exhibit the carboxylate moiety as bridge between the tin atoms in

anisobidentate fashion with one short Sn-O bond and one long Sn-O bond,

generating a trigonal bipyramidal geometry. The diorganotin(IV) derivatives

with [O,N,O] donor ligands also demonstrate trigonal bipyramidal geometry in

the solid state. The single X-ray structure of complex (36) features a rare

example of a dinuclear centrosymmetric dimeric structure with a four

Page 288: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

264

membered planar Sn2O2 ring. In complex (85) and (86) heptacoordination

around tin has been observed

• The complexes were screened for cytotoxicity, antifungal, antibacterial,

antiurease, and leishmanicidal activities. The triorganotin(IV) derivatives with

[O,O] donor ligands and dibutyl(IV) complexes with [O,N,O] donor

ligands exhibit reasonable biocidal activities. Most of the compounds were

more active than the corresponding free ligand with a few exceptions.

• The cyclic voltametery results augmented by UV-Vis spectroscopic data

revealed the following order of binding strength of complex-DNA adduct:

(C4H9)2SnLd (1.69 x 104) > (C6H5)2SnLd (1.10 x 104) > (CH3)2SnLd (9.61 x 103) M-1

• The positive shift in the peak potential can be attributed to the intercalative

mode of interaction between the diorganotin(IV) complex and the DNA.

• The negative values of ∆G indicate the spontaneity of the diorganotin(IV)

complex-DNA interaction/binding.

.

Page 289: Synthesis, Structural Elucidation, Biocidal and ...prr.hec.gov.pk/jspui/bitstream/123456789/543/1/228S.pdf · Prof. Dr. Saqib Ali, Department of Chemistry, Quaid-i-Azam University,

265

PUBLICATION LIST 1. S. Shuja, M. N. Tahir, S. Ali, N. Khalid, Acta Cryst. E64 (2008) m963-m964. 2. S. Shuja, S. Ali, M. N. Tahir, N. Khalid, I. U. Khan, Acta Cryst. E64 (2008)

m531-m532. 3. S. Shuja, S. Ali, N. Khalid, G. A. Broker, E. R. T. Tiekink, Acta Cryst. E63

(2007) m1025-m1026. 4. S. Shuja, S. Ali, A. Meetsma, G. A. Broker, E. R. T. Tiekink, Acta Cryst. E63

(2007) m1130-m1132. 5. S. Shuja, S. Ali, A. Meetsma, G. A. Broker, E. R. T. Tiekink, Acta Cryst. E63

(2007) o1781-o1782. 6. S. Shuja, S. Ali, N. Khalid, A. Meetsma, Acta Cryst. E63 (2007) o3162-

o3164. 7. S. Shuja, S. Ali, N. Khalid, M. Parvez, Acta Cryst. E63 (2007) o879-o880. 8. S. Shuja, S. Ali, N. Khalid, G. Labat, H. Stoeckli-Evans, Acta Cryst. E62

(2006) o4783-o4785. 9. S. Shuja, S. Ali, S. Shahzadi, G. Labat, H. Stoeckli-Evans, Acta Cryst. E62

(2006) o4789-o4790. 10. S. Shuja, S. Ali, N. Khalid, G. Labat, H. Stoeckli-Evans, Acta Cryst. E62

(2006) o4786-o4788. 11. N. Muhammad, A. Shah, Z. Rehman, S. Shuja, S. Ali, R. Qureshi, A.

Meetsma, M. N. Tahir, J. Organomet. Chem. 12. Z. Rehman, N. Muhammad, S. Shuja, S. Ali, I. S. Butler, A. Meetsma,

Spectrochim. Acta (Submitted). 13. S. Shuja, Z. Rehman, N. Muhammad, A. Shah, S. Ali, N. Khalid, R. Qureshi, A. Meetsma, Europ. J. Med. Chem. (Submitted)