23
Synthesis of Cobalt Aluminum Oxide and Aluminum Oxide Nanoparticles and Evaluation of their Antimicrobial Activity Against Some Pathogens By Esraa Khodor El-Hadidi Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in Biology Department of Biological Sciences Faculty of Science 2020

Synthesis of Cobalt Aluminum El-Hadidi Thesis 2020

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Synthesis of Cobalt Aluminum El-Hadidi Thesis 2020

Synthesis of Cobalt Aluminum Oxide and Aluminum Oxide Nanoparticles and Evaluation of their

Antimicrobial Activity Against Some Pathogens

By Esraa Khodor El-Hadidi

Thesis

Submitted in Partial Fulfillment of the Requirements for

the Degree of Master of Science in Biology

Department of Biological Sciences

Faculty of Science

2020

Page 2: Synthesis of Cobalt Aluminum El-Hadidi Thesis 2020

Synthesis of Cobalt Aluminum Oxide and Aluminum Oxide Nanoparticles and Evaluation of their

Antimicrobial Activity Against Some Pathogens

By Esraa Khodor El-Hadidi

Submitted in Partial Fulfillment of the Requirements for

the Degree of Master of Science in Biology

Department of Biological Sciences

Faculty of Science

Supervised by Prof. Dr. HodaYusef Prof. Dr. Ramadan Awad Professor of Microbiology Professor of Material Science

Biological Sciences Department Dean of Faculty of Science

Faculty of Science Faculty of Science

Beirut Arab University Beirut Arab University

2020

Page 3: Synthesis of Cobalt Aluminum El-Hadidi Thesis 2020

iv

Abstract

With the increasing concern for human health and quality of life, the uses of

nanoparticles for disinfection become more and more important. There is a special

interest in induced bactericidal effect of Aluminum Oxide (Al2O3), Cobalt Aluminum

oxide (CoAl2O4), and Aluminum doped Zinc Oxide (Zn0.9Al0.1O) nanoparticles in the

area of coated ceramic and paints production for hospitals and health cares to reduce

the spread of nosocomial infection. The current study outlines the synthesis of Al2O3,

CoAl2O4, and Zn0.9Al0.1O Nps nanoparticles by co-precipitation method and

subsequently the antimicrobial potentials of these nanoparticles was evaluated against

several pathogenic bacteria along with two fungi, mostly nosocomial pathogens. The

formation and the characterization of Al2O3, CoAl2O4, and Zn0.9Al0.1O nanoparticles

were confirmed by UV-Vis Spectroscopy, X-Ray Diffraction (XRD), Fourier

Transform Infra-Red Spectroscopy (FTIR), and Transmission Electron Microscopy

(TEM). All data revealed the formation of pure nano-sized Al2O3, CoAl2O4, and

Zn0.9Al0.1O NPs. Among the tested synthesized nanoparticles, aluminum doped zinc

oxide show powerful antimicrobial action on the tested bacteria and fungi except

Aspergillus sp.. The effectiveness of the synthesized nanoparticles (Al2O3, CoAl2O4,

and Zn0.9Al0.1O NPs) showed that the action of CoAl2O4 and Zn0.9Al0.1O NPs against

tested bacteria was determined to be bactericidal. Zn0.9Al0.1O NPs exhibited a

privileged ability to suppress the growth of nosocomial pathogens in culture media

and paints as an application. Transmission electron images clearly illustrated a

remarkable damage in E. coli cell’s structure upon exposure to Zn0.9Al0.1O NPs, the

observations suggest that Zn0.9Al0.1O NPs distorted and damaged bacterial cell wall

and cytoplasmic membrane resulting in leakage of protoplasmic content.

Page 4: Synthesis of Cobalt Aluminum El-Hadidi Thesis 2020

v

Table of Contents Acknowledgments .............................................................................................................. v

Abstract .............................................................................................................................. iv

Table of Contents ............................................................................................................... v

List of Tables ................................................................................................................... viii

List of Figures .................................................................................................................... ix

List of Abbreviations…………………………………………………………………….xi

1. Introduction ................................................................................................................ 1

1.1. Nanoparticles ............................................................................................................ 1

1.2. Metal Oxide Nanoparticles ....................................................................................... 1

1.2.1. An Overview of metal oxide nanoparticles ....................................................... 1

1.2.2. Physical-Chemical Characterization of Metal Oxide Nanoparticles ................. 2

1.2.3. Antimicrobial Activity of Metal Oxide Nanoparticles ...................................... 2

1.2.4. Mechanisms of Metal Nanoparticles on Microbes ............................................ 3

1.2.4.1. Interactions with Phospholipid Bilayer ........................................................... 4

1.2.4.2. Production of Reactive Oxygen Species (ROS) ............................................ 5

1.2.4.3. Binding to Cytosolic Proteins .......................................................................... 5

1.3. Aluminum Oxide, Cobalt Aluminum Oxide and Aluminum Doped Zinc Oxide Nanoparticles ....................................................................................................................... 5

1.3.1. Aluminum Oxide Nanoparticles ........................................................................ 5

1.3.2. Applications of Aluminum Oxide Nanoparticles .............................................. 6

1.3.3. Cobalt Aluminum Oxide Nanoparticles ........................................................... 7

1.3.4. Applications of Cobalt Aluminum Oxide Nanoparticles .................................. 8

1.3.5. Aluminum Doped Zinc Oxide Nanoparticles .................................................... 8

1.3.6. Applications of Aluminum Doped Zinc Oxide Nanoparticles .......................... 9

1.4. Toxicity of Nanoparticles ......................................................................................... 9

1.5. Hospital Acquired Infection .................................................................................... 10

1.5.1. Overview of Health Care Environment ........................................................... 10

1.5.2. Spread of Nosocomial Infections .................................................................... 11

1.5.3. Routes of Nosocomial Infection Transmission ............................................... 12

1.5.4. Types of Nosocomial Infection ....................................................................... 13

1.6. Control of Nosocomial Infection ............................................................................ 14

1.6.1. Infection Control Programs ............................................................................. 14

1.6.2. Antimicrobial Use and Resistance ................................................................... 15

Page 5: Synthesis of Cobalt Aluminum El-Hadidi Thesis 2020

vi

1.6.2.1 . Appropriate Antimicrobial Use.................................................................... 15

1.6.2.2. Antibiotic Resistance ....................................................................................... 15

1.6.3. Use of Biocides and Bacterial Resistance ....................................................... 16

1.6.3.1. Use of Biocides ................................................................................................ 16

1.6.3.2. Bacterial Resistance to Biocides ...................................................................... 17

1.7. Application of Nanoparticles in Hospitals and Health Care Facilities ................... 17

1.8. Aim of Study ........................................................................................................... 18

2. Materials and Methods ............................................................................................ 19

1.1. Materials ................................................................................................................. 19

2.1.1. Microbial Pathogens ........................................................................................ 19

2.1.2. Chemicals and Supplements ............................................................................ 19

2.1.3. Culture Media .................................................................................................. 19

2.1.4. Reagents........................................................................................................... 20

2.2. Methods................................................................................................................... 21

2.2.1. Preparation of Nanoparticles ............................................................................... 21

2.2.1.1. Preparation of Aluminum Oxide (Al2O3) NPs by Co-Precipitation Method ... 21

2.2.1.2. Preparation of Cobalt Aluminum Oxide (CoAl2O4) NPs by Co-Precipitation Method ………………………………………………………………………….…….22

2.2.1.3. Preparation of Aluminum Doped Zinc Oxide (Zn0.9Al0.1O) NPs by Co-Precipitation Method .......................................................................................................... 22

2.2.2. Nanoparticles Characterization ........................................................................... 23

2.2.2.1. X-ray Powder Diffraction (XRD) .................................................................... 23

2.2.2.2. Transmission Electron Microscope (TEM) ..................................................... 24

2.2.2.3. Ultraviolet-Visible Absorption Spectroscopy (UV-vis) .................................. 25

2.2.2.4. Fourier Transform Infrared- Spectroscopy (FTIR) ......................................... 26

2.2.3. Preparation of Culture Media .............................................................................. 27

2.2.4. Stock Culture of Microorganisms ....................................................................... 27

2.2.4.1. Agar Slants ...................................................................................................... 27

2.2.4.2. Glycerol Stock ................................................................................................. 27

2.2.5. Inoculum Preparation and Standardization ......................................................... 27

2.2.5.1. Preparation of Bacterial Inocula ...................................................................... 27

2.2.5.2. Preparation of Fungal Inocula ......................................................................... 28

2.2.6. Antimicrobial Susceptibility Tests ...................................................................... 28

2.2.6.1. Disk Diffusion method .................................................................................... 28

Page 6: Synthesis of Cobalt Aluminum El-Hadidi Thesis 2020

vii

2.2.6.2. Broth Micro Dilution Method.......................................................................... 29

2.2.6.2.1. Determination of Minimum Inhibitory Concentration (MIC) ................... 29

2.2.6.2.2. Determination of Minimum Bactericidal Concentration (MBC) .............. 29

2.2.6.3. Time Kill Study ............................................................................................... 30

2.2.6.4. Transmission Electron Microscope ................................................................. 30

2.2.7. Application of Aluminum Doped Zinc Oxide Nanoparticles in a Paint Sample 31

3. Results and Discussion ............................................................................................. 32

3.1. Characterization of Al2O3, CoAl2O4, and Zn0.9Al0.1O Nanoparticles ..................... 32

3.1.1. X-ray Diffraction (XRD) ................................................................................. 32

3.1.2. Transmission Electron Microscope (TEM) ..................................................... 35

3.1.3. Ultraviolet -Visible Absorption Spectroscopy (UV-vis) ................................. 36

3.1.4. Fourier Transform Infrared Spectroscopy (FTIR) ........................................... 38

3.2. Antimicrobial Susceptibility Tests .......................................................................... 40

3.2.1. Disc Diffusion Method .................................................................................... 40

2.2.2. Broth Micro Dilution Method.......................................................................... 43

3.2.2.1. Determination of Minimum Inhibitory Concentration (MIC) ................... 43

3.2.2.2. Determination of Minimum Bactericidal Concentration (MBC) .............. 45

3.2.3. Time-kill Study ................................................................................................ 45

3.2.3. Transmission Electron Microscope ................................................................. 60

3.3. Application of Aluminum Doped Zinc Oxide NPs in a Paint Sample ................... 62

4. Recommendation ...................................................................................................... 64

5. Summary ................................................................................................................... 65

6. References .......................................................................................................... 67

Page 7: Synthesis of Cobalt Aluminum El-Hadidi Thesis 2020

67

6. References

Abaide, E. R., Anchieta, C. G., Foletto, V. S., Reinehr, B., Nunes, L. F., Kuhn, R. C.,

Mazutti, M. A., & Foletto, E. L. (2015). Production of copper and cobalt aluminate

spinels and their application as supports for inulinase immobilization. Materials Research,

18, 1062-1069.

Ahammed, N., Hassan, M. S., & Hassan, M. (2018). Effects of aluminum (Al)

incorporation on structural, optical and thermal properties of ZnO nanoparticles.

Materials Science 36, 419-426.

Aitken, C., & Jeffries, D. J. (2001). Nosocomial spread of viral disease. Clinical

Microbiology Reviews, 14, 528-546.

Alkahlout, A., Al Dahoudi, N., Grobelsek, I., Jilavi, M., & de Oliveira, P. W. (2014).

Synthesis and characterization of aluminum doped zinc oxide nanostructures via

hydrothermal route. Journal of Materials, 2014, 1-8.

Alonso, S. (2016). Novel preservation techniques for microbial cultures. In J.M. Aguilera,

R. Simpson, D.B. Aguirre, G.B. Canovas (Eds). Food Engineering Series (pp. 7-33).

Switzerland: Springer International Publishing

Ansari, S. M., Bhor, R. D., Pai, K. R., Sen, D., Mazumder, S., Ghosh, K., Kolekar, Y. D.,

& Ramana, C. V. (2017). Cobalt nanoparticles for biomedical applications: Facile

synthesis, physiochemical characterization, cytotoxicity behavior and biocompatibility.

Applied Surface Science, 414, 171-187.

Aoun, Y., Boubaker, B., & Benramache, S. (2015). A study the aluminum doped zinc

oxide thin films. Journal of Nano- and Electronic Physics, 7,03006-03009.

Arias, C. A., & Murray, B. E. (2012). The rise of the enterococcus: Beyond vancomycin

resistance. National Review Microbiology, 10, 266-278.

Azam, A., Shareef Ahmed, A., Oves, M., Khan, M., Habib, S., & Memic, A. (2012).

Antimicrobial activity of metal oxide nanoparticles against gram-positive and gram-

negative bacteria: A comparative study. International Journal of Nanomedicine, 7, 6003-

6009.

Page 8: Synthesis of Cobalt Aluminum El-Hadidi Thesis 2020

68

Balasubramanyam, A., Sailaja, N., Mahboob, M., Rahman, M. F., Hussain, S. M., &

Grover, P. (2009). In vivo genotoxicity assessment of aluminium oxide nanomaterials in

rat peripheral blood cells using the comet assay and micronucleus test. Mutagenesis, 24,

245-251.

Balouiri, M., Sadiki, M., & Ibnsouda, S. K. (2016). Methods for in vitro evaluating

antimicrobial activity: A review. Journal of Pharmaceutical Analysis, 6, 71-79.

Bautin, V. A., Seferyan, A. G., Nesmeyanov, M. S., & Usov, N. A. (2017). Magnetic

properties of polycrystalline cobalt nanoparticles. AIP Advances, 7, 045103.

doi:10.1063/1.4979889

Berlanga, M. (2010). Brock biology of microorganisms. International Microbiology, 8,

149-150.

Bernard, L., Kereveur, A., Durand, D., Gonot, J., Goldstein, F., Mainardi, J. L., Acar, J.,

& Carlet, J. (1999). Bacterial contamination of hospital physicians' stethoscopes. Infection

Control and Hospital Epidemiology, 20, 626-628.

Boumaza, A., Favaro, L., Lédion, J., Sattonnay, G., Brubach, J. B., Berthet, P., Huntz, A.

M., Roy, P., & Tétot, R. (2009). Transition alumina phases induced by heat treatment of

boehmite: An x-ray diffraction and infrared spectroscopy study. Journal of Solid State

Chemistry, 182, 1171-1176.

Burlibaşa, L., Chifiriuc, M. C., Lungu, M. V., Lungulescu, E. M., Mitrea, S., Sbarcea, G.,

Popa, M., Măruţescu, L., Constantin, N., Bleotu, C., & Hermenean, A. (2019). Synthesis,

physico-chemical characterization, antimicrobial activity and toxicological features of

agzno nanoparticles. Arabian Journal of Chemistry. doi.org/10.1016/j.arabjc.2019.06.015.

Cadet, J., & Wagner, J. R. (2014). Oxidatively generated base damage to cellular DNA by

hydroxyl radical and one-electron oxidants: Similarities and differences. Archives of

Biochemistry and Biophysics, 557, 47-54.

Cappitelli, F., Vicini, S., Piaggio, P., Abbruscato, P., Princi, E., Casadevall, A.,

Nosanchuk, J. D., & Zanardini, E. (2005). Investigation of fungal deterioration of

synthetic paint binders using vibrational spectroscopic techniques. Macromolecular

Bioscience, 5, 49-57.

Page 9: Synthesis of Cobalt Aluminum El-Hadidi Thesis 2020

69

Carrico, R. M., Garrett, H., Balcom, D., & Glowicz, J. B. (2018). Infection prevention and

control core practices: A roadmap for nursing practice. Nursing, 48, 28-29.

Carta, G., Casarin, M., El Habra, N., Natali, M., Rossetto, G., Sada, C., Tondello, E., &

Zanella, P. (2005). MOCVD deposition of CoAl2O4 films. Electrochimica Acta, 50, 4592-

4599.

Castro, L., Blázquez, M. L., Muñoz, J., González, F., & Ballester, A. (2014). Mechanism

and applications of metal nanoparticles prepared by bio-mediated process. Reviews in

Advanced Sciences and Engineering, 3, 199-216.

Cataño, J. C., Echeverri, L. M., & Szela, C. (2012). Bacterial contamination of clothes and

environmental items in a third-level hospital in colombia. Interdisciplinary Perspectives

on Infectious Diseases, 2012, 507640. doi: 10.1155/2012/507640 Cauerhff, A., & Castro, G. (2013). Bionanoparticles, a green nanochemistry approach.

Electronic Journal of Biotechnology, 16, 717-3458.

Centers for Disease Control and Prevention (CDC) (2004). National nosocomial

infections surveillance system report. US Department of Health and Human Services:

Centers for Disease Control and Prevention.

Chandradass, J., Balasubramanian, M., & Kim, K. H. (2010). Size effect on the magnetic

property of coal2o4 nanopowders prepared by reverse micelle processing. Journal of

Alloys and Compounds, 506, 395-399.

Chapman, J. S. (2003). Disinfectant resistance mechanisms, cross-resistance, and co-

resistance. International Biodeterioration & Biodegradation, 51, 271-276.

Chemlal, S., Larbot, A., Persin, M., Sarrazin, J., Sghyar, M., & Rafiq, M. (2000). Cobalt

spinel CoAl2O4 via sol-gel process: Elaboration and surface properties. Materials

Research Bulletin, 35, 2515-2523.

Chen, L., Yokel, R. A., Hennig, B., & Toborek, M. (2008). Manufactured aluminum

oxide nanoparticles decrease expression of tight junction proteins in brain vasculature.

Journal of Neuroimmune Pharmacol, 3, 286-295.

Chen, Z.-Z., Shi, E.-W., Li, W.-J., Zheng, Y.-Q., Zhuang, J.-Y., Xiao, B., & Tang, L.-A.

(2004). Preparation of nanosized cobalt aluminate powders by a hydrothermal method.

Materials Science and Engineering: B, 107, 217-223.

Page 10: Synthesis of Cobalt Aluminum El-Hadidi Thesis 2020

70

Cho, W.-S., & Kakihana, M. (1999). Crystallization of ceramic pigment coal2o4

nanocrystals from co–al metal organic precursor. Journal of Alloys and Compounds, 287,

87-90.

Chokkaram, S., Srinivasan, R., Milburn, D. R., & Davis, B. H. (1997). Conversion of 2-

octanol over nickel-alumina, cobalt-alumina, and alumina catalysts. Journal of Molecular

Catalysis A: Chemical, 121, 157-169.

Cloete, T. (2003). Resistance mechanism of bacteria to antimicrobial compounds.

International Biodeterioration & Biodegradation, 51, 277-282.

Clinical and Laboratory Standards Institute (CLSI) (1999). Clinical and laboratory

standard document M26-A. Methods for determining bactericidal activity of antimicrobial

agents; approved standard -Vol. 19. Wayne, Pennsylvania, USA: Clinical and Laboratory

Standards Institute.

Clinical and Laboratory Standards Institute (CLSI) (2012). CLSI document M02-A11.

Performance standards for antimicrobial disk susceptibility tests; approved standard-

eleventh Edition. Wayne, Pennsylvania, USA: Clinical and Laboratory Standards

Institute.

Clinical and Laboratory Standards Institute (CLSI) (2010). CLSI document M51-A.

Reference method for antifungal disk diffusion susceptibility testing of nondermatophyte

filamentous fungi; approved guideline. Wayne, Pennsylvania, USA: Clinical and

Laboratory Standard.

Colgan, R., & Powers, J. H. (2001). Appropriate antimicrobial prescribing: Approaches

that limit antibiotic resistance. American Family Physician, 64, 999-1004.

Colomban, P. (2013). Rocks as blue, green and black pigments/dyes of glazed pottery and

enamelled glass artefacts – a review. European Journal of Mineralogy, 25, 863-879.

Custovic, A., Smajlovic, J., Hadzic, S., Ahmetagic, S., Tihic, N., & Hadzagic, H. (2014).

Epidemiological surveillance of bacterial nosocomial infections in the surgical intensive

care unit. Materia Socio Medica, 26, 7-11.

Daschner, F. D., Schuster, A., Dettenkofer, M., & Kummerer, K. (2004). No routine

surface disinfection. American Journal of Infection Control, 32, 513-515.

Page 11: Synthesis of Cobalt Aluminum El-Hadidi Thesis 2020

71

Dettenkofer, M., & Spencer, R. C. (2007). Importance of environmental decontamination-

-a critical view. Journal of Hospital Infection, 65, 55-57.

Dever, L. A., & Dermody, T. S. (1991). Mechanisms of bacterial resistance to antibiotics.

Archives of Internal Medicine, 151, 886-895.

Dey, S., Bakthavatchalu, V., Tseng, M. T., Wu, P., Florence, R. L., Grulke, E. A., Yokel,

R. A., Dhar, S. K., Yang, H. S., Chen, Y., & St Clair, D. K. (2008). Interactions between

sirt1 and ap-1 reveal a mechanistic insight into the growth promoting properties of

alumina (Al2O3) nanoparticles in mouse skin epithelial cells. Carcinogenesis, 29, 1920-

1929.

Diouf, E., Beye, M. D., Diop, N. M., Kane, O., & Ka, S. B. (2007). Nosocomial

infections: Definition, frequence and risk factors. Dakar Medical, 52, 69-76.

El-Hussainy el, H. M., Hussein, A. M., Abdel-Aziz, A., & El-Mehasseb, I. (2016). Effects

of aluminum oxide (al2o3) nanoparticles on ecg, myocardial inflammatory cytokines,

redox state, and connexin 43 and lipid profile in rats: Possible cardioprotective effect of

gallic acid. Canadian Journal of Physiology and Pharmacology, 94, 868-878.

Emori, T. G., & Gaynes, R. P. (1993). An overview of nosocomial infections, including

the role of the microbiology laboratory. Clinical Microbiology Reviews, 6, 428-442.

Ershova, K., Savin, I., Kurdyumova, N., Wong, D., Danilov, G., Shifrin, M.,

Alexandrova, I., Sokolova, E., Fursova, N., Zelman, V., & Ershova, O. (2018).

Implementing an infection control and prevention program decreases the incidence of

healthcare-associated infections and antibiotic resistance in a russian neuro-icu.

Antimicrobial Resistance and Infection Control, 7, 94-94.

Galstyan, V., Comini, E., Baratto, C., Faglia, G., & Sberveglieri, G. (2015).

Nanostructured zno chemical gas sensors. Ceramics International, 41, 14239-14244.

Geberemariyam, B. S., Donka, G. M., & Wordofa, B. (2018). Assessment of knowledge

and practices of healthcare workers towards infection prevention and associated factors in

healthcare facilities of west arsi district, southeast ethiopia: A facility-based cross-

sectional study. Archives of Public Health, 76, 69-69.

Gholami, T., Salavati-Niasari, M., & Varshoy, S. (2016). Investigation of the

electrochemical hydrogen storage and photocatalytic properties of CoAl2O4 pigment:

Page 12: Synthesis of Cobalt Aluminum El-Hadidi Thesis 2020

72

Green synthesis and characterization. International Journal of Hydrogen Energy, 41,

9418-9426.

Gojova, A., Guo, B., Kota, R. S., Rutledge, J. C., Kennedy, I. M., & Barakat, A. I. (2007).

Induction of inflammation in vascular endothelial cells by metal oxide nanoparticles:

Effect of particle composition. Environmental Health Perspectives, 115, 403-409.

Gold, K., Slay, B., Knackstedt, M., & Gaharwar, A. K. (2018). Antimicrobial activity of

metal and metal-oxide based nanoparticles. Advanced Therapeutics, 1, 1700033. doi:

10.1002/adtp.201700033

Hackenberg, S., Zimmermann, F. Z., Scherzed, A., Friehs, G., Froelich, K., Ginzkey, C.,

Koehler, C., Burghartz, M., Hagen, R., & Kleinsasser, N. (2011). Repetitive exposure to

zinc oxide nanoparticles induces dna damage in human nasal mucosa mini organ cultures.

Environmental and Molecular Mutagenesis, 52, 582-589.

Haque, M., Sartelli, M., McKimm, J., & Abu Bakar, M. (2018). Health care-associated

infections - an overview. Infection and Drug Resistance, 11, 2321-2333.

Hashem, A. M., Abdel-Ghany, A. E., Abuzeid, H. M., El-Tawil, R. S., Indris, S.,

Ehrenberg, H., Mauger, A., & Julien, C. M. (2018). Edta as chelating agent for sol-gel

synthesis of spinel limn2o4 cathode material for lithium batteries. Journal of Alloys and

Compounds, 737, 758-766.

Hausemann, A., Grünewald, M., Otto, U., & Heudorf, U. (2018). Cleaning and

disinfection of surfaces in hospitals. Improvement in quality of structure, process and

outcome in the hospitals in frankfurt/main, germany, in 2016 compared to 2014. GMS

Hygiene and Infection Control, 13, Doc06-Doc06.

Hosseini, S. A., Niaei, A., & Salari, D. (2011). Production of γ Al2O3 from kaolin. Open

Journal of Physical Chemistry, 1, 23-27.

Hu, G., Deng, X., Cao, Y., & Peng, Z. (2007). Synthesis of spherical coal2o4 pigment

particles with high reflectivity by polymeric-aerosol pyrolysis. Rare Metals, 26, 236-241.

Huang, C. C., Aronstam, R. S., Chen, D. R., & Huang, Y. W. (2010). Oxidative stress,

calcium homeostasis, and altered gene expression in human lung epithelial cells exposed

to ZnO nanoparticles. Toxicology In Vitro, 24, 45-55.

Page 13: Synthesis of Cobalt Aluminum El-Hadidi Thesis 2020

73

Huang, J., Lin, L., Sun, D., Chen, H., Yang, D., & Li, Q. (2015). Bio-inspired synthesis of

metal nanomaterials and applications. Chemical Society Reviews, 44, 6330-6374.

Ismail, R. A., Zaidan, S. A., & Kadhim, R. M. (2017). Preparation and characterization of

aluminum oxide nanoparticles by laser ablation in liquid as passivating and anti-reflection

coating for silicon photodiodes. Applied Nanoscience, 7, 477-487.

Ito, K., & Mizuno, Y. (2009). Numerical morphological analysis of fungal growth based

on a reaction-diffusion model. Biocontrol science, 14, 21-30.

Jansen, K. U., Knirsch, C., & Anderson, A. S. (2018). The role of vaccines in preventing

bacterial antimicrobial resistance. Nature Medicine, 24, 10-19.

Jensen, A. A., & Tuchsen, F. (1990). Cobalt exposure and cancer risk. Critical Reviews in

Toxicology, 20, 427-437.

Jomha, M. Y., Yusef, H., & Holail, H. (2014). Antimicrobial and biocide resistance of

bacteria in a lebanese tertiary care hospital. Journal of Global Antimicrobial Resistance,

2, 299-305.

Jones, N., Ray, B., Ranjit, K., & Manna, A. (2008). Antibacterial activity of ZnO

nanoparticle suspensions on a broad spectrum of microorganisms. FEMS Microbiology

Letters, 279, 71-76.

Jun, M.-C., Park, S.-U., & Koh, J.-H. (2012). Comparative studies of Al-doped ZnO and

ga-doped zno transparent conducting oxide thin films. Nanoscale Research Letters, 7,

639-639.

Kaiser, J.-P., Zuin, S., & Wick, P. (2013). Is nanotechnology revolutionizing the paint and

lacquer industry? A critical opinion. Science of the Total Environment, 442, 282-289.

Kalpana, V. N., & Devi Rajeswari, V. (2018). A review on green synthesis, biomedical

applications, and toxicity studies of ZnO nps. Bioinorganic Chemistry and Applications,

2018, 3569758-3569758.

Kandi, V., & Kandi, S. (2015). Antimicrobial properties of nanomolecules: Potential

candidates as antibiotics in the era of multi-drug resistance. Epidemiology and Health, 37,

e2015020-e2015020.

Page 14: Synthesis of Cobalt Aluminum El-Hadidi Thesis 2020

74

Kashef, N., & Hamblin, M. R. (2017). Can microbial cells develop resistance to oxidative

stress in antimicrobial photodynamic inactivation? Drug Resistance Updates : Reviews

and Commentaries in Antimicrobial and Anticancer Chemotherapy, 31, 31-42.

Khan, H., Baig, F., & Mehboob, R. (2017). Nosocomial infections: Epidemiology,

prevention, control and surveillance. Asian Pacific Journal of Tropical Biomedicine, 7,

478-482.

Khan, H. A., Ahmad, A., & Mehboob, R. (2015). Nosocomial infections and their control

strategies. Asian Pacific Journal of Tropical Biomedicine, 5, 509-514.

Khassin, A. A., Anufrienko, V. F., Ikorskii, V. N., Plyasova, L. M., Kustova, G. N.,

Larina, T. V., Molina, I. Y., & Parmon, V. N. (2002). Physico-chemical study on the state

of cobalt in a precipitated cobalt-aluminum oxide system. Physical Chemistry Chemical

Physics, 4, 4236-4243.

Kone, W. M., Atindehou, K. K., Terreaux, C., Hostettmann, K., Traore, D., & Dosso, M.

(2004). Traditional medicine in north cote-d'ivoire: Screening of 50 medicinal plants for

antibacterial activity. Journal of Ethnopharmacol, 93, 43-49.

Krewski, D., Yokel, R. A., Nieboer, E., Borchelt, D., Cohen, J., Harry, J., Kacew, S.,

Lindsay, J., Mahfouz, A. M., & Rondeau, V. (2007). Human health risk assessment for

aluminium, aluminium oxide, and aluminium hydroxide. Journal of Toxicology and

Environmental Health. Part B, Critical reviews, 10, 1-269.

Kurajica, S., Tkalcec, E., & Schmauch, J. (2007). CoAl2O4–mullite composites prepared

by sol–gel processes. Journal of the European Ceramic Society, 27, 951-958.

Lai, Y. Y., Li, Y., Lang, J., Tong, X., Zhang, L., Fang, J., Xing, J., Cai, M., Xu, H., Deng,

Y., Xiao, F., & Tian, G. (2015). Metagenomic human repiratory air in a hospital

environment. PLoS ONE, 10, e0139044-e0139044.

Lamprecht, A., Ubrich, N., Yamamoto, H., Schafer, U., Takeuchi, H., Maincent, P.,

Kawashima, Y., & Lehr, C. M. (2001). Biodegradable nanoparticles for targeted drug

delivery in treatment of inflammatory bowel disease. Journal of Pharmacology and

Experimental Therapeutics, 299, 775-781.

Leekha, S., Terrell, C. L., & Edson, R. S. (2011). General principles of antimicrobial

therapy. Mayo Clinic Proceeding, 86, 156-167.

Page 15: Synthesis of Cobalt Aluminum El-Hadidi Thesis 2020

75

Li, W., Li, J., & Guo, J. (2003). Synthesis and characterization of nanocrystalline

CoAl2O4 spinel powder by low temperature combustion. Journal of the European

Ceramic Society, 23, 2289-2295.

Liu, J., Kang, Y., Yin, S., Song, B., Wei, L., Chen, L., & Shao, L. (2017). Zinc oxide

nanoparticles induce toxic responses in human neuroblastoma shsy5y cells in a size-

dependent manner. International Journal of Nanomedicine, 12, 8085-8099.

Liu, Y., He, L., Mustapha, A., Li, H., Hu, Z. Q., & Lin, M. (2009). Antibacterial activities

of zinc oxide nanoparticles against Escherichia Coli o157:H7. Journal of Applied

Microbiology, 107, 1193-1201.

Luka, G., Krajewski, T., Witkowski, B., Wisz, G., Virt, I., Guziewicz, E., & Godlewski,

M. (2011). Aluminum-doped zinc oxide films grown by atomic layer deposition for

transparent electrode applications. Journal of Materials Science: Materials in Electronics,

22, 1810-1815.

Lv, W., Qiu, Q., Wang, F., Wei, S., Liu, B., & Luo, Z. (2010). Sonochemical synthesis of

cobalt aluminate nanoparticles under various preparation parameters. Ultrasonics

Sonochemistry, 17, 793-801.

Maillard, J.-Y. (2005). Antimicrobial biocides in the healthcare environment: Efficacy,

usage, policies, and perceived problems. Therapeutics and Clinical Risk Management, 1,

307-320.

Maillard, J. Y. (2007). Bacterial resistance to biocides in the healthcare environment:

Should it be of genuine concern? Journal of Hospital Infection, 65, 60-72.

Maldonado, F., & Stashans, A. (2010). Al-doped ZnO: Electronic, electrical and structural

properties. Journal of Physics and Chemistry of Solids, 71, 784-787.

Mama, M., Teshome, T., & Detamo, J. (2019). Antibacterial activity of honey against

methicillin-resistant Staphylococcus aureus: A laboratory-based experimental study.

International Journal of Microbiology, 2019, 7686130. doi: 10.1155/2019/7686130

Manteghi, F., Kazemi, H., Peyvandi pour, M., & Asghari, A. (2015). Preparation and

application of cobalt oxide nanostructures as electrode materials for electrochemical

supercapacitors. RSC Advances, 5, 76458-76463

Page 16: Synthesis of Cobalt Aluminum El-Hadidi Thesis 2020

76

Mashaghi, S., Jadidi, T., Koenderink, G., & Mashaghi, A. (2013). Lipid nanotechnology.

International Journal of Molecular Sciences, 14, 4242-4282.

McDonnell, G., & Russell, A. D. (1999). Antiseptics and disinfectants: Activity, action,

and resistance. Clinical Microbiology Reviews, 12, 147-179.

McDowell, E. M., & Trump, B. F. (1976). Histologic fixatives suitable for diagnostic

light and electron microscopy. Archives of Pathology Laboratory Medicine, 100, 405-414.

Mehta, Y., Gupta, A., Todi, S., Myatra, S., Samaddar, D. P., Patil, V., Bhattacharya, P. K.,

& Ramasubban, S. (2014). Guidelines for prevention of hospital acquired infections.

Indian Journal of Critical Care Medicine : Peer-Reviewed, Official Publication of Indian

Society of Critical Care Medicine, 18, 149-163.

Mei, J., Liao, T., Ayoko, G. A., Bell, J., & Sun, Z. (2019). Cobalt oxide-based

nanoarchitectures for electrochemical energy applications. Progress in Materials Science,

103, 596-677.

Melo, D. M. A., Cunha, J. D., Fernandes, J. D. G., Bernardi, M. I., Melo, M. A. F., &

Martinelli, A. E. (2003). Evaluation of CoAl2O4 as ceramic pigments. Materials Research

Bulletin, 38, 1559-1564.

Memon, B. (2006). Nosocomial infections in public sector hospitals: Urgent need for

structured and coherent approach to the problem. Rawal Medical Journal, 31, 81-84.

Merikhi, J., Jungk, H.-O., & Feldmann, C. (2000). Sub-micrometer coal2o4 pigment

particles—synthesis and preparation of coatings. Journal of Materials Chemistry, 10,

1311-1314.

Mirjalili, F., Hasmaliza, M., & Luqman Chuah, A. (2010). Size-controlled synthesis of

nano α-alumina particles through the sol–gel method. Ceramics International, 36, 1253-

1257.

Mody, V. V., Siwale, R., Singh, A., & Mody, H. R. (2010). Introduction to metallic

nanoparticles. Journal of Pharmacy & Bioallied Sciences, 2, 282-289.

Moos, P. J., Chung, K., Woessner, D., Honeggar, M., Cutler, N. S., & Veranth, J. M.

(2010). ZnO particulate matter requires cell contact for toxicity in human colon cancer

cells. Chemical Research in Toxicology, 23, 733-739.

Page 17: Synthesis of Cobalt Aluminum El-Hadidi Thesis 2020

77

Mukherjee, A., I, M., Tc, P., & Chandrasekaran, N. (2011). Antimicrobial activity of

aluminium oxide nanoparticles for potential clinical applications 1, 245-251.

Munita, J. M., & Arias, C. A. (2016). Mechanisms of antibiotic resistance. Microbiology

Spectrum, 4. doi.org/10.1128/microbiolspec.

Narjis, A., El Aakib, H., Boukendil, M., El Hasnaoui, M., Nkhaili, L., Aberkouks, A., &

Outzourhit, A. (2019). Controlling the structural properties of pure and aluminum doped

zinc oxide nanoparticles by annealing. Journal of King Saud University - Science, 32,

1074-1080.

Nekkab, N., Astagneau, P., Temime, L., & Crépey, P. (2017). Spread of hospital-acquired

infections: A comparison of healthcare networks. PLoS Computational Biology, 13,

e1005666-e1005666.

Nunes, P., Fortunato, E., Tonello, P., Braz Fernandes, F., Vilarinho, P., & Martins, R.

(2002). Effect of different dopant elements on the properties of ZnO thin films. Vacuum,

64, 281-285.

Oesterling, E., Chopra, N., Gavalas, V., Arzuaga, X., Lim, E. J., Sultana, R., Butterfield,

D. A., Bachas, L., & Hennig, B. (2008). Alumina nanoparticles induce expression of

endothelial cell adhesion molecules. Toxicology Letters, 178, 160-166.

Ouahdi, N., Guillemet, S., Durand, B., Ouatib, R. E., Rakho, L. E., Moussa, R., & Samdi,

A. (2008). Synthesis of CoAl2O4 by double decomposition reaction between LiAlO2 and

molten KCoCl3. Journal of the European Ceramic Society, 28, 1987-1994.

Padmavathy, N., & Vijayaraghavan, R. (2011). Interaction of ZnO nanoparticles with

microbes--a physio and biochemical assay. Jounal of Biomedical Nanotechnology, 7, 813-

822.

Parveen, S., Misra, R., & Sahoo, S. K. (2012). Nanoparticles: A boon to drug delivery,

therapeutics, diagnostics and imaging. Nanomedicine, 8, 147-166.

Patil, M. P., & Kim, G.-D. (2017). Eco-friendly approach for nanoparticles synthesis and

mechanism behind antibacterial activity of silver and anticancer activity of gold

nanoparticles. Applied Microbiology and Biotechnology, 101, 79-92.

Peleg, A. Y., & Hooper, D. C. (2010). Hospital-acquired infections due to gram-negative

bacteria. The New England Journal of Medicine, 362, 1804-1813.

Page 18: Synthesis of Cobalt Aluminum El-Hadidi Thesis 2020

78

Pepe, O., Sannino, L., Palomba, S., Anastasio, M., Blaiotta, G., Villani, F., & Moschetti,

G. (2010). Heterotrophic microorganisms in deteriorated medieval wall paintings in

southern italian churches. Microbiology Research, 165, 21-32.

Pietarinen, V. M., Rintala, H., Hyvarinen, A., Lignell, U., Karkkainen, P., & Nevalainen,

A. (2008). Quantitative pcr analysis of fungi and bacteria in building materials and

comparison to culture-based analysis. Journal of Environmental Monitoring, 10, 655-663.

Piriyawong, V., Thongpool, V., Asanithi, P., & Limsuwan, P. (2012). Preparation and

characterization of alumina nanoparticles in deionized water using laser ablation

technique. Journal of Nanomaterials, 2012, 819403. doi.org/10.1155/2012/819403.

Pittet, D. (2001). Improving adherence to hand hygiene practice: A multidisciplinary

approach. Emerging Infectious Diseases, 7, 234-240.

Pittet, D., Dharan, S., Touveneau, S., Sauvan, V., & Perneger, T. V. (1999). Bacterial

contamination of the hands of hospital staff during routine patient care. Archives of

Internal Medicine, 159, 821-826.

Prince, J., & Ayliffe, G. A. (1972). In-use testing of disinfectants in hospitals. Journal of

Clinical Pathology, 25, 586-589.

Qu, L., He, C., Yang, Y., He, Y., & Liu, Z. (2005). Hydrothermal synthesis of alumina

nanotubes templated by anionic surfactant. Materials Letters, 59, 4034-4037.

Raghu, P., Srinatha, N., Naveen, C. S., Mahesh, H. M., & Angadi, B. (2017).

Investigation on the effect of al concentration on the structural, optical and electrical

properties of spin coated al:Zno thin films. Journal of Alloys and Compounds, 694, 68-75.

Ravindhranath, K., & Ramamoorty, M. (2017). Nano aluminum oxides as adsorbents in

water remediation methods: A review. Rasayan Journal of Chemistry, 10, 716-722.

Reed, D., & Kemmerly, S. A. (2009). Infection control and prevention: A review of

hospital-acquired infections and the economic implications. The Ochsner Journal, 9, 27-

31.

Reid, C., Forrester, J., Goodshaw, H., Kisi, E., & Suaning, G. (2008). A study in the

mechanical milling of alumina powder. Ceramics International, 34, 1551-1556.

Page 19: Synthesis of Cobalt Aluminum El-Hadidi Thesis 2020

79

Russell, A. D. (2003). Biocide use and antibiotic resistance: The relevance of laboratory

findings to clinical and environmental situations. The Lancet Infectious Diseases, 3, 794-

803.

Russell, A. D. (2002). Introduction of biocides into clinical practice and the impact on

antibiotic-resistant bacteria. Journal of Applied Microbiology, 92, 121-135.

Sadiku, R., Agboola, O., Ibrahim, I., Olubambi, P., Avabaram, B., Bandla, M., Kupolati,

W., Jayaramudu, T., Varaprasad, K., Agwuncha, S., Mochane, M., Daramola, O.,

Oboirien, B. O., Adegbola, T., Nkuna, C., Owonubi, S., Fasiku, V., Aderibigbe, B., Ojijo,

V., & Chima, B. (2018). Nanotechnology in paints and coatings. In L.Li and Q.Yang

(Eds.) Advanced Coating Materials. (pp. 175-233). USA: Scrivener Publishing.

Sadiq, I. M., Chowdhury, B., Chandrasekaran, N., & Mukherjee, A. (2009). Antimicrobial

sensitivity of Escherichia coli to alumina nanoparticles. Nanomedicine, 5, 282-286.

Saeedi, M., Eslamifar, M., Khezri, K., & Dizaj, S. M. (2019). Applications of

nanotechnology in drug delivery to the central nervous system. Biomedicine and

Pharmacotherapy, 111, 666-675.

Saini, R., Saini, S., & Sharma, S. (2010). Nanotechnology: The future medicine. Journal

of Cutaneous and Aesthetic Surgery, 3, 32-33.

Saravanakumar, K., & Ravichandran, K. (2012). Synthesis of heavily doped

nanocrystalline ZnO:Al powders using a simple soft chemical method. Journal of

Materials Science: Materials in Electronics, 23, 1462-1469.

Saxena, V., & Pandey, L. M. (2019). Synthesis, characterization and antibacterial activity

of aluminum doped zinc oxide. Materials Today: Proceedings, 18, 1388-1400.

Schabrun, S., & Chipchase, L. (2006). Healthcare equipment as a source of nosocomial

infection: A systematic review. Journal of Hospital Infection, 63, 239-245.

Schmidt-Mende, L., & MacManus-Driscoll, J. L. (2007). ZnO – nanostructures, defects,

and devices. Materials Today, 10, 40-48.

Seneviratne, G., & Indrasena, I. K. (2006). Nitrogen fixation in lichens is important for

improved rock weathering. J Biosci, 31, 639-643.

Page 20: Synthesis of Cobalt Aluminum El-Hadidi Thesis 2020

80

Sheldon, A. (2005). Antiseptic "resistance": Real or perceived threat? Clinical infectious

diseases : an official publication of the Infectious Diseases Society of America, 40, 1650-

1656.

Shiferaw, T., Beyene, G., Kassa, T., & Sewunet, T. (2013). Bacterial contamination,

bacterial profile and antimicrobial susceptibility pattern of isolates from stethoscopes at

jimma university specialized hospital. Annals of Clinical Microbiology and

Antimicrobials, 12, 39-39. doi: 10.1186/1476-0711-12-39

Shirdel, B., & Behnajady, M. A. (2017). Sol-gel synthesis of ba-doped zno nanoparticles

with enhanced photocatalytic activity in degrading rhodamine b under uv-a irradiation.

Optik, 147, 143-150.

Sifontes, Á. B., Gutierrez, B., Mónaco, A., Yanez, A., Díaz, Y., Méndez, F. J., Llovera,

L., Cañizales, E., & Brito, J. L. (2014). Preparation of functionalized porous nano-γ-Al2O3

powders employing colophony extract. Biotechnology Reports, 4, 21-29.

Sikora, P., Augustyniak, A., Cendrowski, K., Nawrotek, P., & Mijowska, E. (2018).

Antimicrobial activity of Al2O3, CuO, Fe O , and ZnO nanoparticles in scope of their

further application in cement-based building materials. Nanomaterials, 8, 212. doi:10.3390/nano8040212.

Slavin, Y. N., Asnis, J., Häfeli, U. O., & Bach, H. (2017). Metal nanoparticles:

Understanding the mechanisms behind antibacterial activity. Journal of

Nanobiotechnology, 15, 65. doi: 10.1186/s12951-017-0308-z

Smith, K., Gemmell, C. G., & Hunter, I. S. (2008). The association between biocide

tolerance and the presence or absence of qac genes among hospital-acquired and

community-acquired MRSA isolates. Journal of Antimicrobial Chemotherapy, 61, 78-84.

Sood, S., Bhat, S., Singhal, R., & Kumar, A. (2011). Inoculum preparation. In M.Moo-

Yong (Ed). Comprehensive Biotechnology, second edition (pp. 151–164). Pergamon:

Elsevier

Srisawad, N., Chaitree, W., Mekasuwandumrong, O., Praserthdam, P., & Panpranot, J.

(2012). Formation of CoAl2O4 nanoparticles via low-temperature solid-state reaction of

fine gibbsite and cobalt precursor. Journal of Nanomaterials, 2012.

doi: 10.1155/2012/108369.

Page 21: Synthesis of Cobalt Aluminum El-Hadidi Thesis 2020

81

Sukee, A., Kantarak, E., & Singjai, P. (2017). Preparation of aluminum doped zinc oxide

thin films on glass substrate by sparking process and their optical and electrical properties.

Journal of Physics: Conference Series, 901, 012153-012157 doi: 10.1088/1742-

6596/901/1/012153.

Tavakoli, A., Maram, P. S., Widgeon, S., Rufner, J., van Benthem, K., Ushakov, S., Sen,

S., & Navrotsky, A. (2013). Amorphous alumina nanoparticles: Structure, surface energy,

and thermodynamic phase stability. The Journal of Physical Chemistry C, 117, 17123-

17130.

Thomas, L., Maillard, J. Y., Lambert, R. J., & Russell, A. D. (2000). Development of

resistance to chlorhexidine diacetate in pseudomonas aeruginosa and the effect of a

"residual" concentration. Journal of Hospital Infection, 46,97-303.

Thomas, L., Russell, A. D., & Maillard, J. Y. (2005). Antimicrobial activity of

chlorhexidine diacetate and benzalkonium chloride against pseudomonas aeruginosa and

its response to biocide residues. Journal of Applied Microbiology, 98, 533-543.

Torkian, L., & Daghighi, M. (2014). Effects of β-alanine on morphology and optical

properties of CoAl2O4 nanopowders as a blue pigment. Advanced Powder Technology, 25,

739-744.

Vincent, J. L. (2003). Nosocomial infections in adult intensive-care units. Lancet, 361,

2068-2077.

Vittal, R., & Bai Aswathanarayan, J. (2011). Nanoparticles and their potential application

as antimicrobials. Science Against Microbial Pathogens: Communicating Current

Research and Technological Advances (2011), 197-209

Walsh, S. E., Maillard, J. Y., Russell, A. D., Catrenich, C. E., Charbonneau, D. L., &

Bartolo, R. G. (2003). Development of bacterial resistance to several biocides and effects

on antibiotic susceptibility. Journal of Hospital Infection, 55, 98-107.

Wang, C., Liu, S., Liu, L., & Bai, X. (2006). Synthesis of cobalt–aluminate spinels via

glycine chelated precursors. Materials Chemistry and Physics, 96, 361-370.

Wang, L., Hu, C., & Shao, L. (2017). The antimicrobial activity of nanoparticles: Present

situation and prospects for the future. International Journal of Nanomedicine, 12, 1227-

1249.

Page 22: Synthesis of Cobalt Aluminum El-Hadidi Thesis 2020

82

Wang, Z. L. (2004). Nanostructures of zinc oxide. Materials Today, 7, 26-33.

Weinstein, R. A. (1998). Nosocomial infection update. Emerging Infectious Disease, 4,

416-420.

Willmann, G. (1994). 20 years aluminum oxide ceramics for medical applications.

Biomedizinische Technik, 39, 73-78.

Winder, C. L., Al-Adham, I. S., Abdel Malek, S. M., Buultjens, T. E., Horrocks, A. J., &

Collier, P. J. (2000). Outer membrane protein shifts in biocide-resistant Pseudomonas

aeruginosa PAO1. Journal of Applied Microbiology, 89, 289-295.

Wood, M. W., Lund, R. C., & Stevenson, K. B. (2007). Bacterial contamination of

stethoscopes with antimicrobial diaphragm covers. American Journal of Infection

Control, 35, 263-266.

Yatsui, K., Yukawa, T., Grigoriu, C., Hirai, M., & Jiang, W. (2000). Synthesis of ultrafine

γ-Al2O3 powders by pulsed laser ablation. Journal of Nanoparticle Research, 2, 75-83.

Yousef, M. I., Mutar, T. F., & Kamel, M. A. E.-N. (2019). Hepato-renal toxicity of oral

sub-chronic exposure to aluminum oxide and/or zinc oxide nanoparticles in rats.

Toxicology Reports, 6, 336-346.

Zayat, M., & Levy, D. (2000). Blue CoAl2O4 particles prepared by the sol−gel and

citrate−gel methods. Chemistry of Materials, 12, 763-2769.

Zhang, Q. L., Li, M. Q., Ji, J. W., Gao, F. P., Bai, R., Chen, C. Y., Wang, Z. W., Zhang,

C., & Niu, Q. (2011). In vivo toxicity of nano-alumina on mice neurobehavioral profiles

and the potential mechanisms. International Journal of Immunopathology Pharmacology,

24, 23-29.

Zhou, H.-m., Yi, D.-q., Yu, Z.-m., Xiao, L.-r., & Li, J. (2007). Preparation of aluminum

doped zinc oxide films and the study of their microstructure, electrical and optical

properties. Thin Solid Films, 515, 6909-6914.

Zhu, K., Yang, Y., Li, J., & Song, W. (2017). Physical properties of al-doped zno and ga-

doped zno thin films prepared by direct current sputtering at room temperature. Journal of

Wuhan University of Technology-Mater. Sci. Ed., 32, 85-88.

Page 23: Synthesis of Cobalt Aluminum El-Hadidi Thesis 2020

83

Zhu, W., Esteban, R., Borisov, A. G., Baumberg, J. J., Nordlander, P., Lezec, H. J.,

Aizpurua, J., & Crozier, K. B. (2016). Quantum mechanical effects in plasmonic

structures with subnanometre gaps. Nature Communications, 7, 11495-11495.

Zhu, X., Radovic-Moreno, A. F., Wu, J., Langer, R., & Shi, J. (2014). Nanomedicine in

the management of microbial infection - overview and perspectives. Nano Today, 9, 478-

498.

Zhu, Z., Li, X., Zeng, Y., Sun, W., Zhu, W., & Huang, X. (2011). Application of cobalt

oxide nanoflower for direct electrochemistry and electrocatalysis of hemoglobin with

ionic liquid as enhancer. The Journal of Physical Chemistry C, 115, 12547-12553.