26
Synergy Day 2015 Abstracts WINNER – BEST RAPID FIRE RESEARCH ABSTRACT Title: Solar Rechargeable Redox Flow Battery Authors: Mohammad Ali Mahmoudzadeh, Ashwin R. Usagaocar and John D. Madden Abstract: Largescale storage of electricity is a vital requirement for the realization of a carbonneutral electricity grid. Electrochemical energy storage is the preferred method for this application due to its flexibility and scalability. However, such systems suffer from high capital cost even for the cheapest technology (lead acid battery). Integration of energy conversion and storage is one method to reduce the cost of solar energy systems. An integrated solarbattery structure based on two relatively wellestablished technologies of the redox flow battery and the dyesensitized solar cell is designed and demonstrated. The cell consists of a sensitized electrode in a redox flow battery structure. The design enables independent scaling of power and energy rating of the system thus it is applicable for largescale storage purposes. Areal energy capacity of 52 μWhcm 2 , charge capacity of 1.2 mAh L 1 , energy efficiency of 78% and almost perfect Coulombic efficiency are observed for the integrated cell. WINNER – BEST POSTER ABSTRACT Title: Electrolessly deposited Pt/Nafion composite catalysts Authors: Isaac Martens, Blaise Pinaud, Jeanette Leeuwner, Amin Nouri, Elod Gyenge, David Wilkinson, and Dan Bizzotto RAPID FIRE RESEARCH ABSTRACTS (Abstracts Presented as Three-Minute Talks) Comprehensive study of exfoliated thin flake of FeSe Authors: Rui Yang and Shun Chi Abstract: As the simplest member of Ironbased superconductors, FeSe can help people understand superconductivity in Ironbased superconductors. FeSe has layered structure, making it possible for exfoliation. We successfully made superconducting FeSe thin flakes and developed technique for making microleads. We studied its properties with transport, Rama and SIMS. Our study indicates that Oxygen from air exposure probably can enter interstitial positions of FeSe thin flakes, leading to quenched superconductivity.

Synergy Day 2015 Abstracts - UBC AMPELampel.sites.olt.ubc.ca/files/2015/05/Abstracts-2015...Synergy Day 2015 Abstracts ! WINNER – BEST RAPID FIRE RESEARCH ABSTRACT ! Title:!Solar!Rechargeable!Redox!Flow!Battery!

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Synergy Day 2015 Abstracts - UBC AMPELampel.sites.olt.ubc.ca/files/2015/05/Abstracts-2015...Synergy Day 2015 Abstracts ! WINNER – BEST RAPID FIRE RESEARCH ABSTRACT ! Title:!Solar!Rechargeable!Redox!Flow!Battery!

Synergy Day 2015 Abstracts

 WINNER – BEST RAPID FIRE RESEARCH ABSTRACT

 Title:  Solar  Rechargeable  Redox  Flow  Battery  

Authors:  Mohammad  Ali  Mahmoudzadeh,  Ashwin  R.  Usagaocar  and  John  D.  Madden    Abstract:   Large-­‐scale   storage  of  electricity   is   a   vital   requirement   for   the   realization  of  a   carbon-­‐neutral  electricity   grid.     Electrochemical   energy   storage   is   the   preferred  method   for   this   application   due   to   its  flexibility   and   scalability.   However,   such   systems   suffer   from   high   capital   cost   even   for   the   cheapest  technology  (lead  acid  battery).  Integration  of  energy  conversion  and  storage  is  one  method  to  reduce  the  cost  of  solar  energy  systems.      An  integrated  solar-­‐battery  structure  based  on  two  relatively  well-­‐established  technologies  of  the  redox  flow   battery   and   the   dye-­‐sensitized   solar   cell   is   designed   and   demonstrated.   The   cell   consists   of   a  sensitized  electrode  in  a  redox  flow  battery  structure.  The  design  enables  independent  scaling  of  power  and   energy   rating   of   the   system   thus   it   is   applicable   for   large-­‐scale   storage   purposes.   Areal   energy  capacity   of   52   μWhcm-­‐2,   charge   capacity   of   1.2   mAh   L-­‐1,   energy   efficiency   of   78%   and   almost   perfect  Coulombic  efficiency  are  observed  for  the  integrated  cell.        

WINNER – BEST POSTER ABSTRACT

Title:  Electrolessly  deposited  Pt/Nafion  composite  catalysts  Authors:  Isaac  Martens,  Blaise  Pinaud,  Jeanette  Leeuwner,  Amin  Nouri,    

Elod  Gyenge,  David  Wilkinson,  and  Dan  Bizzotto      

RAPID FIRE RESEARCH ABSTRACTS (Abstracts Presented as Three-Minute Talks)  

 Comprehensive  study  of  exfoliated  thin  flake  of  FeSe  Authors:  Rui  Yang  and  Shun  Chi    Abstract:   As   the   simplest   member   of   Ironbased   superconductors,   FeSe   can   help   people   understand  superconductivity   in   Ironbased   superconductors.   FeSe   has   layered   structure,   making   it   possible   for  exfoliation.  We  successfully  made  superconducting  FeSe  thin  flakes  and  developed  technique  for  making  microleads.  We  studied   its  properties  with   transport,  Rama  and  SIMS.  Our   study   indicates   that  Oxygen  from   air   exposure   probably   can   enter   interstitial   positions   of   FeSe   thin   flakes,   leading   to   quenched  superconductivity.    

Page 2: Synergy Day 2015 Abstracts - UBC AMPELampel.sites.olt.ubc.ca/files/2015/05/Abstracts-2015...Synergy Day 2015 Abstracts ! WINNER – BEST RAPID FIRE RESEARCH ABSTRACT ! Title:!Solar!Rechargeable!Redox!Flow!Battery!

Effect  of  niobium  and  molybdenum  alloying  elements  in  high  strength  low-­‐alloyed  steels  Authors:  Jean-­‐Yves  Maetz,  PhD  and  Professor  Matthias  Miilitzer      Abstract:  High  strength  low  alloyed  (HSLA)  steels  are  continuously  in  development,  especially  for  automotive  applications,   because   vehicle   weight   reduction   to   improve   fuel   economy   and   high   crash   performance  materials   for  passenger  safety  are  central  priorities.  According   to   the   fact   that   the  mechanical  properties  of  material   are   directly   correlated   to   its   microstructure,   especially   by   varying   the   alloying   composition   and  manufacturing  process,  a  careful  control  of  the  microstructure  is  required  to  optimize  material  performance.  Different  microstructural   strengthening   effects   are   known   to   enhance  mechanical   properties,   such   as   grain  refinement,  solute  strengthening,  precipitation  hardening,  etc.      In   this   project,   the   strengthening   effect   of   Nb   and  Mo   alloying   elements   is   investigated,   especially   during  coiling  by  precipitation  hardening.  Industrial  processing,   including  coiling,   is  simulated  in  laboratory,   in  order  to   quantify   the   strengthening   contribution   in   steels   because   of   Nb   and   Mo,   based   on   a   systematic  experimental  study.  The  final  goal  of  the  study  is  to  develop  a  model  for  precipitation  strengthening  applicable  as  a  function  of  composition  and  heat  treatment  conditions,  in  particular  coil  cooling.      Effect  of  electrostatics  on  entrainment  in  gas-­‐solid  fluidized  bed    Authors:  Farzam  Fotovat,  Xiaotao  T.  Bi  and  John  R.  Grace      Abstract:   Many   chemical   and   physical   processes   such   as   combustion,   gasification,   cracking,   drying,  filtration,  coating,  separation  and  polymerization  feature  fluidization  of  particulate  materials.   In  view  of  the  widespread  application  of   these  processes,   fluidized  beds  are  of  central   importance   in  many  areas,  including  power  stations,  chemical,  pharmaceutical  and  food  industries.      Fluidized  beds,  especially   those  operating  at  high  gas  velocity,  suffer   from  entrainment  of   fine  particles  leading  to  loss  of  valuable  solids  and  to  air  pollution.  To  avoid  these  problems  and  ensure  the  technical  and  economic  success  of  fluidized  beds,  proper  design  of  solids  recovery  equipment  such  as  cyclones   is  essential.  This  requires  deep  insight  and  accurate  prediction  on  the  entrainment.  Numerous  studies  have  been  conducted  on   the  entrainment,  and  several  empirical   correlations  have  been  proposed   to  predict  the   entrained   rate;   however,   due   to   the   use   of   empirical   constants   and   the   absence   of   fundamental  understanding  of  the  underlying  phenomena,  huge  discrepancies  are  observed  between  predictions  and  reported  values.  Recent  work  at  UBC  has  shown  that  electrostatics   is  one  of  the  factors   influencing  the  entrainment  of  fine  particles.  Electrostatic  charges  are  produced  because  of  the  continuous  motion  and  rubbing   among   bed   particles.   No   allowance   has   yet   been   considered   for   electrostatic   charges   in   the  correlations   predicting   entrainment   rate   in   fluidized   beds.   Ignoring   the   contribution   of   electrostatic  effects   could   be   the   dominant   reason   the   enormous   scatter   seen   in   the   literature   on   entrainment.   To  address   this   issue,   experiments   are   being   undertaken   in   a   unique   column   capable   of   measuring   both  electrostatic  charges  and  entrainment.  The  next  step  is  seeking  to  make  recommendations  to  significantly  improve  the  predictability  of  entrainment  on  the  basis  of  the  experimental  results.      The   preliminary   observations   show   that   under   the   same  operating   conditions,   the   entrainment   flux   of  different  fine  materials   largely  depends  on  the  amount  of  the  electrostatic  charges  they  carry,  which   in  turn  is  a  function  of  their  electrical  properties  such  as  dielectric  constant  and  conductivity.  In  this  regard,  

Page 3: Synergy Day 2015 Abstracts - UBC AMPELampel.sites.olt.ubc.ca/files/2015/05/Abstracts-2015...Synergy Day 2015 Abstracts ! WINNER – BEST RAPID FIRE RESEARCH ABSTRACT ! Title:!Solar!Rechargeable!Redox!Flow!Battery!

the  next   step   is   to  determine  and  explain   the  parameters  governing   the  magnitude  and  polarity  of   the  charged   particles   by   affecting   the   mechanisms   of   generation,   separation   and   transfer   of   electrostatic  charges.  Furthermore,  the  impact  of  the  electrostatic  forces  on  entrainment  of  fines  will  be  quantified  by  measuring  the  electrostatic  forces  and  introducing  them  into  the  correlations  predicting  the  entrainment  flux.    Pronounced  polarization-­‐induced  energy  level  shifts  at  boundaries  of  organic  semiconductor  nanostructures  Authors:  K.  A.  Cochrane,  A.  Schiffrin,  T.  S.  Roussy,  M.  Capsoni  and  S.  A.  Burke    Abstract:  Organic  semiconductor  devices  rely  on  the  movement  of  charge  at  and  near  interfaces,  making  an   understanding   of   energy   level   alignment   at   these   boundaries   an   essential   element   of   optimizing  materials   for   electronic   and   optoelectronic   applications.   Here   we   employ   low   temperature   scanning  tunneling   microscopy   (STM)   and   spectroscopy   (STS)   to   investigate   a   model   system:   two-­‐dimensional  nanostructures   of   the   prototypical   organic   semiconductor,   PTCDA   (3,4,9,10-­‐perylenetetracarboxylic  dianhydride)   adsorbed   on   NaCl   (2ML)/Ag(111).   Pixel-­‐by-­‐pixel   STS   allows   mapping   of   occupied   and  unoccupied   electronic   states   across   these   nano-­‐islands  with   sub-­‐molecular   spatial   resolution,   revealing  strong  electronic  differences  between  molecules  at  the  edges  and  those  in  the  “bulk”,  with  energy  level  shifts  of  up  to  400  meV.  We  attribute  this  to  the  change  in  electrostatic  environment  at  the  boundaries  of  clusters,   namely   via   polarization   of   neighboring   molecules.   The   observation   of   these   strong   shifts  illustrates   a   crucial   issue:   interfacial   energy   level   alignment   can   differ   substantially   from   the   bulk  electronic  structure  in  organic  materials.  

     The  Laboratory  for  Atomic  Imaging  Research:  An  ultra-­‐low  vibration  facility    Author:  Ben  MacLeod      Abstract:   The   Scanning   Tunneling   Microscope   (STM)   can   probe   matter   topographically   and  spectroscopically  at  the  atomic  scale  and  is  therefore  of  enormous  value  in  fundamental  materials  science  research.  The  signal  from  this  type  of  instrument  –  a  tunneling  current  –  is  extremely  sensitive  to  minute  displacements.   This   sensitivity  underlies  both   the  atomic   imaging   capabilities  of   these   instruments   and  

Page 4: Synergy Day 2015 Abstracts - UBC AMPELampel.sites.olt.ubc.ca/files/2015/05/Abstracts-2015...Synergy Day 2015 Abstracts ! WINNER – BEST RAPID FIRE RESEARCH ABSTRACT ! Title:!Solar!Rechargeable!Redox!Flow!Battery!

their   vulnerability   to   vibrational   disturbances.   To   achieve   high   performance   and   reliable   operation,  extreme  care  must  be  taken  to  isolate  STMs  from  environmental  sources  of  vibration.  The  Laboratory  for  Atomic  Imaging  Research  is  an  ultra-­‐low  vibration  facility  designed  specifically  to  house  high-­‐performance  Scanning  Tunneling  Microscopes.  The  facility  consists  of  three  pneumatically  suspended  massive  concrete  inertia  blocks  (20,40,80  tons),  each  enclosed  in  a  heavy  concrete  acoustic  enclosure  and  each  supporting  a  different  STM  experiment.  This  facility  has  achieved  vibration  levels  among  the  lowest  in  the  world  and  is   located   in  the  basement  of  the  AMPEL  building  on  the  Vancouver  campus  of  the  University  of  British  Columbia.  In  this  paper  I  present  a  review  of  the  design,  construction  and  performance  of  this  facility  as  well  as  findings  relevant  to  the  design  of  future  such  facilities.      Characterization   of   the   Internal   Parameters   of   Nanostructured   Light   Induced   Thermionic   Emission  Devices  for  Energy  Conversion    Authors:  Amir  H.  Khoshaman,  Andrew  T.  Koch,  Mike  Chang,  Harrison  D.  E.  Fan,  and  Alireza  Nojeh      Abstract:  We   propose   a  method   to   calculate   the   output   current-­‐voltage   (I-­‐V)   characteristics   of   a   light  induced   thermionic   emission   (LITE)   device.   This   approach   improves   on   the   existing  methods   by   having  both   a   higher   precision   and   higher   range   in   evaluating   the   associated   integrals,   resulting   in   simulated  device   characteristics   with   a   wider   range   of   parameters.   This   method   represents   a   significant   step  towards   the   characterization   of   emergent   LITE   devices   due   to   the   unknowns   involved   in   their   internal  parameters.  More  importantly,  its  high  numerical  precision  and  flexibility  allows  one  to  solve  the  reverse  problem  and  evaluate  the  internal  parameters  of  the  device  from  experimental  I-­‐V  curves.  Based  on  this,  the   internal  parameters  of  a  carbon  nanotube   (CNT)-­‐based  LITE  device  are  calculated,   including  several  parameters,  the  estimation  of  which  was  previously  not  feasible  with  one  single  type  of  experiment.      Motivation      Solar  thermionic  convertors  have  salient  features  such  as  an  exponential  dependence  of  current  density  on   temperature,   which   make   them   attractive   candidates   for   clean   energy   applications.   We   have  previously  reported  a  localized  heating  effect  in  a  multi-­‐walled  CNT  forest  using  a  low-­‐power  input  light  source  1,2.  This  device  overcomes  some  of  the  main  obstacles  facing  LITE  devices,  such  as  heat  spread  in  the   cathode.   Thermionic   devices   fabricated   using   nanomaterials,   though   having   the   same   working  principles  as  traditional  devices,  have  several  distinct  features.  Firstly,  the  workfunction  of  nanomaterial-­‐based   electrodes   are   highly   dependent   on   various   experimental   conditions3,   whereas   traditional  refractive  metals   have  well-­‐known  work   functions.   Secondly,   the   entire   electrode   area   of   a   traditional  electrode   is   heated,   whereas,   a   small   portion   (about   100   μm   radius)   is   heated   in   the   case   of  nanomaterials.   Hence,   the   temperature   will   be   highly   dependent   on   the   local   morphology   of   the  nanomaterial,   and   the   influence   of   a   temperature   gradient   is   more   substantial.   Consequently,   it   is  important  to   improve  the  numerical  calculation  precision  and  to  develop  a  reliable  algorithm  to  extract  the  internal  parameters  of  the  device  particular  to  each  experiment.      1  P.  Yaghoobi,  M.V.  Moghaddam,  and  A.  Nojeh,  Solid  State  Communications  151,  1105  (2011).    2  P.  Yaghoobi,  M.  Vahdani  Moghaddam,  and  A.  Nojeh,  AIP  Advances  2,  042139  (2012).    3  P.  Liu,  Q.  Sun,  F.  Zhu,  K.  Liu,  K.  Jiang,  L.  Liu,  Q.  Li,  and  S.  Fan,  Nano  Lett.  8,  647  (2008).    4  G.N.  Hatsopoulos  and  E.P.  Gyftopoulos,  Thermionic  Energy  Conversion  -­‐  Vol.  2:  Theory,  Technology,  and  Application  (The  MIT  Press,  1979).    

 

Page 5: Synergy Day 2015 Abstracts - UBC AMPELampel.sites.olt.ubc.ca/files/2015/05/Abstracts-2015...Synergy Day 2015 Abstracts ! WINNER – BEST RAPID FIRE RESEARCH ABSTRACT ! Title:!Solar!Rechargeable!Redox!Flow!Battery!

Results    The  I-­‐V  characteristics  were  calculated  in  the  three  modes  of  operation,  i.e.,  retarding,  space-­‐charge  and  saturation  mode  (Fig.  1).   In  the  space  charge  mode,  Poisson’s  and  Vlaslov’s  equations  were  solved  self-­‐consistently   in   the   inter-­‐electrode   region   based   on   the   method   proposed   by   Hatsopoulus4.   This   was  further  improved  by  employing  multiple  iterations  at  each  step,  leading  to  higher  precision  calculations  in  the  transition  from  the  retarding  to  the  space  charge  mode  (critical  point,  Vc  and  Ic  in  Fig.  2).  The  errors  caused  by  following  the  assumptions  made  in  ref.  [4]  compared  to  the  rigorous  calculations  proposed  in  this   work   are   depicted   in   Fig.   2.   The   influence   of   a   linear   temperature   gradient   on   the   overall   I-­‐V  characteristics   is   illustrated   in   Fig.   3.   Experimentally,   a   CNT   forest   used   as   the   emitter  was   illuminated  with  varying  powers  of  a  532-­‐nm  laser  beam  (Fig.  4).   I-­‐V  characteristics  were  obtained  by  sweeping  the  voltage  from  negative  (retarding)  to  positive  (collection)  values  and  fitted  to  the  simulation  results   (Fig.  5).  The  area  of  the  heat  spot  from  simulation  matched  closely  to  that  obtained  experimentally  by  a  CCD  camera.   The   estimated   temperature   and   workfunction   are   also   well   in   agreement   with   the   values  reported  previously.  

   Fig.  1:  A  typical  simulated  I-­‐V  curve  illustrating  the  different  modes  of  operation  of  a  thermionic  device.  Φ,  μ,  and  V  represent  the  workfunction,  Fermi  level  and  applied  bias.  Subscripts  E  and  C  indicate  emitter  and  collector.    

   Fig.  2:  The  errors  caused  when  the  critical  voltage  is  calculated  following  the  assumptions  made  in  ref.  [4].  (left)   TE   and   (right)   d   represent   the   interelectrode   resistance   and   emitter’s   temperature,   respectively.  Vc,Hat  represents  the  critical  voltage  calculated  based  on  ref.  [4].    

Page 6: Synergy Day 2015 Abstracts - UBC AMPELampel.sites.olt.ubc.ca/files/2015/05/Abstracts-2015...Synergy Day 2015 Abstracts ! WINNER – BEST RAPID FIRE RESEARCH ABSTRACT ! Title:!Solar!Rechargeable!Redox!Flow!Battery!

   Fig.  3:  (left)  Contributions  of  rings  with  different  temperatures  to  current  along  a  hot  spot  size  of  radius  200  μm.  (right)  Temperature  map  along  a  quadrant  of  the  hot  spot  with  radius  r.      

   Fig.  4:  Schematic  diagram  and  photograph  of  the  experimental  set-­‐up.  (left)  A  secondary  electron  micrograph  and  (right)  a  CCD  image  of  the  locally  heated  area.    

   Fig.  5:  Experimental  I-­‐V  characteristics  fitted  to  simulation  curves  and  the  calculated  internal  parameters  of  the  system.    High  Performance  Electrodes  for  Novel  Li-­‐S  Batteries  Authors:  Timothy  Watson,  Saeid  Soltanian,  Frank  Ko  and  Peyman  Servati    

Page 7: Synergy Day 2015 Abstracts - UBC AMPELampel.sites.olt.ubc.ca/files/2015/05/Abstracts-2015...Synergy Day 2015 Abstracts ! WINNER – BEST RAPID FIRE RESEARCH ABSTRACT ! Title:!Solar!Rechargeable!Redox!Flow!Battery!

Abstract:   The   rapid   progression   of   portable   and   wearable   electronics   and   the   advancement   of   next  generation  energy   solutions  necessitate   the  development  of   high  performance  energy   storage  devices.  One  potential  candidate  for  future  widespread  energy  storage  is  the  lithium  sulphur  (Li-­‐S)  battery,  which  has   many   advantages   compared   to   other   energy   storage   devices,   such   as   a   high   theoretical   energy  capacity   that   is   about   five   times   greater   than   that   for   current   lithium-­‐ion   batteries   as  well   as   utilizing  more  green  and   readily   available  materials   compared   to   Li-­‐Ion  batteries.    Although  extensive  attempts  have  been  made  during  the  last  few  years  to  develop  Li-­‐S  based  energy  storage  devices,  they  suffer  from  several  drawbacks  such  as  poor  cycling  stability  and  poor  active  material  utilization.  This  work  presents  our  research  on  the  development  of  novel  materials  and  components  for  application  in  high  performance  and  flexible  Li-­‐S  batteries.  Highly  conductive  and  porous  carbon  (C)  based  nanostructure  materials  such  as  nanofiber  mesh  as  well  as  C-­‐composites  that  possess  high  flexibility,  mechanical  stability  and  capacity  to  adsorb   the   necessary   sulphur   molecules   are   being   developed   and   utilized   as   cathodes.   We   will   also  present  potential  challenges  in  this  research  that  include  optimization  of  the  electrical  properties  of  the  cathode,  mitigation  of  shuttling  effect  as  well  as  maintaining  stability,  flexibility  and  mechanical  strength.  In   collaboration   with   another   research   groups,   the   developed   novel   materials   will   be   utilized   for  fabrication  of  a  new  generation  of  Li-­‐S  battery.    

This  research  is  supported  by  an  NSERC  Strategic  Research  Grant    Low-­‐roughness,  Charge-­‐selective  Nanofibrous  Transparent  Conductors  for  Organic  Solar  Cells    Authors:  R.  Rahmanian,  S.  Soltanian,  P.  Servati    Abstract:  Transparent  conductors  (TCs)  used  for  solar  cells  and  optoelectronic  devices  are  still  dominated  by  brittle  indium-­‐tin  oxide  (ITO).  Mechanical  flexibility  needed  in  emerging  flexible  electronics,  along  with  increasing  price  of  indium,  calls  for  alternative  TCs. In  attempt  to  find  a  substitute  for  ITO  which  can  meet  the  combined  expectations  of  low  sheet  resistance,  high  optical  transmittance,  and  mechanical  flexibility,  various  nanostructures  have  been  suggested,  e.g.,  carbon  nanotubes,  graphene,  metallic  nanowires,  and  conductive  polymers.  Matching  high  mechanical   flexibility  with  outstanding  optoelectronic  performance  is  a  major  challenge  in  flexible  TCs.  Conductive  polymer  TCs,  showing  the  highest  stretchability,  generally  have   high   sheet   resistances.     Metallic   nanowires,   while   attaining   optoelectronic   performances  comparable  to  ITO,  show  far  less  flexibility.  To  address  the  requirements  of  superior  flexibility  as  well  as  optoelectronic  performance,  we  have  developed  a  compliant  core-­‐shell  nanofibrous  mesh  consisting  of  high-­‐aspect-­‐ratio  electrospun  PAN  nanofibers  (NFs),  metallized  by  a  conformal  coating  of  gold,  to  function  as   a   stretchable   TC.   Transferred   onto   a   PDMS   substrate,   the   nanofibrous   TCs   exhibit  more   than   100%  stretchability   while   maintaining   a   performance   comparable   to   ITO.   A   drawback   of   as-­‐transferred  nanofibrous   TCs   is   their   high   surface   roughness   that   limits   their   application   as   bottom   electrodes   for  organic   solar   cells.   To   address   this   issue,   we   have   covered   the   nanofibers   with   a   layer   of   transparent  electron-­‐selective   ZnO   nanoparticles,   which   also   serves   the   double   purpose   of   further   decreasing   the  sheet  resistance  and  providing  a  charge-­‐selective  coating  on  the  electrodes.  The  proposed  structure  can  be  rendered  flexible  by  partially  embedding  the  ZnO-­‐coated  NFs  near   the  surface  of  a  PDMS   layer.  The  resulting  TC  can  undergo  up  to  10%  tensile  strain,  showing  reversible  recovery  of  sheet  resistance  over  repeated  stretching  cycles.    Deformability-­‐based  Sorting  of  Red  Blood  Cells  to  Enrich  for  Parasitized  Cells  in  Falciparum  Malaria  

Page 8: Synergy Day 2015 Abstracts - UBC AMPELampel.sites.olt.ubc.ca/files/2015/05/Abstracts-2015...Synergy Day 2015 Abstracts ! WINNER – BEST RAPID FIRE RESEARCH ABSTRACT ! Title:!Solar!Rechargeable!Redox!Flow!Battery!

50 µm

A

B C D 123456789

BC

D

Deformable

Rigid

OutletsBuffer Inlet  

Cell Inlet

RBCs reaching the blocking pore

Sorting Region

Oscillation (upwards)

Oscillation (downwards)

 

1 mm

100 µm

100 µm

Authors:  Quan  Guo,  Kerryn  Matthews,  Xiaoyan  Deng,  Simon  Duffy,  and  Hongshen  Ma   Abstract: As  one  of  the  oldest  scourges,  malaria  has  caused  significant  morbidity  and  mortality  for  ages,  particularly  in  the  developing  countries.  As  the  most  virulent  species  of  malaria,  Plasmodium  falciparum  is  responsible   for   approximately   90%   of   the   infected   population.   The   gold   standard   in   clinical   malaria  diagnosis   is  microscopic  observation  of  Giemsa  stained  blood  smears  despite  the  availability  of   low-­‐cost  rapid  diagnostic  tests  (RDTs)  and  highly  sensitive  PCR-­‐based  tests.  Microscopy  has  an  estimated  detection  threshold   of   50-­‐100   parasites   per   µl   of   blood   in   field   conditions,   which   is   often   insufficient   for  asymptomatic   patients   with   low   parasitemia.   A   central   aspect   of   malaria   parasitism   is   the   loss   of  deformability  of  Plasmodium  falciparum  infected  red  blood  cells  (Pf-­‐iRBCs),  which  occurs  even  at  the  early  stages  of   infection  and  allows  these  cells   to  be  discriminated  from  uninfected  RBCs   (uiRBCs).  Using  this  principle,   we   develop   a  microfluidic   device   for   deformability-­‐based   sorting   of   RBCs   to   enrich   for   early  stage  Plasmodium  falciparum  infected  RBCs  (Pf-­‐iRBCs).  Our  method  is  able  to  enrich  the  parasitemia  of  an  infected   blood   sample   up   to   2000X   (from   0.0004%   to   ~1%),   enabling   samples   that   are   currently  undetectable  using  microscopy  and  RDTs,  to  be  readily  detectable  using  both  methods.      Figure   below   illustrates   the   design   principle   and   operation   of   the   device.   Here,   we   sort   RBCs   using   a  matrix  of   funnels  where  the  pore  sizes  gradually  decrease   from  the  bottom  to  the  top  row  (Figure  1C).  RBCs   infused   into   the   bottom-­‐left   corner   (Figure   1B)   are   propelled   by   a   vertical   oscillatory   flow   and   a  constant  horizontal  flow,  which  causes  them  to  follow  a  zig-­‐zag  diagonal  path  (Figure  1A)  until  reaching  a  limiting   funnel   size,  where   they  proceed  horizontally  between   the   funnel   rows.  The   limiting   funnel   size  depends  on  RBC  deformability   thereby  enabling  deformability  based   sorting.   Specifically,  we   sorted  Pf-­‐iRBC  samples  using  a  matrix  of  funnels  with  pore  sizes  ranging  from  1.5  to  7.5  µm  (Figure  1D)  leading  to  nine  outlets.  To  demonstrate  the  ability  to  enrich  the  parasitemia  of  clinically  relevant  blood  samples,  we  prepared  samples  containing  0.0004-­‐0.03%  early  stage  Pf-­‐iRBC  and  showed  that  our  process  can  increase  the  parasitemia  of  these  samples  to  1-­‐5%,  equivalent  of  100~2000X  enrichment.  This  capability  enables  detection  of  samples  with  parasitemia  currently  below  the  sensitivity  limit  of  microscopy  and  RDTs.      In  summary,  we  developed  a  method  to  sort  RBCs  based  on  deformability  and  then  used  this  process  to  enrich   for   early   stage  Pf-­‐iRBCs   to   significantly   increase   the   sensitivity   of  malaria   diagnosis   on   clinically  relevant  samples.    

  Figure   1:  Micrograhs   of  the   microfluidic  

sorting  mechanism.   (A)  Overview   of   the  design;   (B)  RBCs  infused   into   the  funnel   matrix;  

Page 9: Synergy Day 2015 Abstracts - UBC AMPELampel.sites.olt.ubc.ca/files/2015/05/Abstracts-2015...Synergy Day 2015 Abstracts ! WINNER – BEST RAPID FIRE RESEARCH ABSTRACT ! Title:!Solar!Rechargeable!Redox!Flow!Battery!

(C)   funnel   matrix   showing   the   RBCs   blocked   at   certain   pore   sizes;   (D)   9   different   outlets   forming   the  deformability  gradient  with  the  most  deformable  RBCs  collected  at  outlet  1  and  most  rigid  RBCs  at  outlet  9.    Red  Blood  Cell  Trans-­‐dispersion  Enabling  High-­‐Throughput  Deformability  Analysis  of  Malaria  Parasitism  Authors:  Aline  T.  Santoso,  Xiaoyan  Deng,  Jeong  Hyun  Lee,  Kerryn  Matthews,  Emel  Islamzada,  Sarah  McFaul,  Marie-­‐Eve  Myrand-­‐  Lapierre,  Mark  D.  Scott  and  Hongshen  Ma    Abstract:   Gel   electrophoresis   is   a   fundamental   technology   enabling   modern   molecular   biology   and  genetics.  This  process  involves  migrating  DNA  or  protein  molecules  in  agarose  gel  using  an  electric  field,  where   the   final  positions  of   the  molecules   in   the  gel   indicate   their   size   relative   to  known  controls.  We  present  an  analogous  process  for  red  blood  cells  (RBCs),  here  termed  trans-­‐dispersion,  where  individual  cells  are  transported  through  aseries  of  micro-­‐scale  constrictions  in  a  microchannel  using  pressure-­‐driven  flow  (Figure  1).  The  final  positions  of  RBCs  indicate  their  deformability,  similar  to  intensity  bands  in  a  DNA  gel,  thereby  enabling  repeatable,  high  throughput,  and  parallelized  measurements  of  RBC  deformability.  We  show  the  throughput  and  sensitivity  of  the  trans-­‐dispersion  mechanism  is  sufficient  to  1)  detect  rare  subpopulations   of   ring-­‐stage   Plasmodium   falciparum   infected   RBCs   (iRBCs)   at   clinically   relevant  parasitemia  (<1%),  and  2)  enable  in  vitro  assays  for  antimalarial  drug-­‐efficacy  that  could  be  used  for  drug  screening.    Background  RBC  deformability  plays  a  central  role  in  the  pathogenesis  of  P.  falciparum  malaria,  and  therefore  could  potentially  enable  simple,  rapid,  and  reagent-­‐free  biophysical  assays  [1].  A  key  challenge,  however,  is  that  pathological   cells   often   comprise  only   a   small   fraction  of   the   sample,  which   requires   testing  of   a   large  number  of  individual  cells  in  order  to  detect  these  key  subpopulations.  Additionally,  it  is  often  desirable  to  perform   multiple   assays   simultaneously,   which   require   technologies   capable   of   parallelized   analysis.  Recent  microfluidic  methods,   based  on   the  measurement   of   transit   time   [2,3]   or   transit   pressure   [4,5]  through   a   micro-­‐scale   constriction,   are   difficult   to   parallelize   because   of   the   need   to   monitor   the  deformation  process  using  a  video  recording  or  to  integrate  electrical  sensors  on  a  disposable  microfluidic  chip.    Mechanism  and  Results  The  cellular  trans-­‐dispersion  mechanism  provides  a  sensitive  and  consistent  method  for  measuring  single  RBC  deformability  by  designing  the  geometry  of  each  constriction  to  form  a  temporary  seal  with  the  cell  during  the  transiting  process.  Supporting  microchannels  form  a  self-­‐compensating  network  to  generate  a  consistent  pressure  drop   in  each  microchannel   (Figure  1).  After  undergoing  repeated  deformations,   the  final  position  of  each  RBC,  indicating  its  deformability,  is  determined  using  simple  bright-­‐field  microscopy  and  automated  image  processing,  and  thereby  enables  high-­‐throughput  and  massively  parallel  analysis  of  RBC  deformability.  We  evaluated  the  performance  of  trans-­‐dispersion  mechanism  by  detecting  changes  in  RBC  deformability  resulting  from  chemical  degradation,  malaria  parasitism  and  exposure  to  anti-­‐malarial  drugs.   Figure   2   shows   the   distribution   of   tested   RBCs   following   chemical   degradation   using  glutaraldehyde.  Figure  3  shows  the  deformability  profiles  of  iRBCs,  shown  as  cumulative  distribution,  and  synchronized  at  the  ring-­‐stage  of  infection.  From  this  data,  the  linear  correlation  between  the  parasitemia  and   the  percentage  of  non-­‐transiting   cells   could  potentially  be  used   to   infer   the  parasitemia  of   clinical  

Page 10: Synergy Day 2015 Abstracts - UBC AMPELampel.sites.olt.ubc.ca/files/2015/05/Abstracts-2015...Synergy Day 2015 Abstracts ! WINNER – BEST RAPID FIRE RESEARCH ABSTRACT ! Title:!Solar!Rechargeable!Redox!Flow!Battery!

specimens   (Figure   4).   Finally,   we   used   this   approach   to   measure   the   deformability   of   iRBCs   following  exposure   to   all   known   clinical   antimalarials   relative   to   their   unexposed   controls   (Figure   5).  Our   results  show  that  rigidification  of  iRBCs  may  be  a  universal  biomarker  for  antimalarial  drug  efficacy  and  cellular  trans-­‐dispersion  may  be  an  appropriate  method  for  alternative  screens  for  new  antimalarials.   References:  [1]  Nash  GB,  O’Brien  E,  Gordon-­‐Smith  EC,  Dormandy  J  a.  Abnormalities  in  the  mechanical  properties  of  red  blood  cells  caused  by  Plasmodium  falciparum.  Blood  1989;74:855–61.  [2]  Adamo  A,  Sharei  A,  Adamo  L,  Lee  B,  Mao  S,  Jensen  KF.  Microfluidics-­‐based  assessment  of  cell  deformability.  Anal  Chem  2012;84:6438–43.  doi:10.1021/ac300264v.  [3]  Zheng  Y,  Sun  Y.  Microfluidic  devices  for  mechanical  characterisation  of  single  cells  in  suspension.  Micro  Nano  Lett  2011;  6:327.  doi:  10.1049/mnl.2011.0010.  [4]  Guo  Q,  Reiling  SJ,  Rohrbach  P,  Ma  H.  Microfluidic  biomechanical  assay  for  red  blood  cells  parasitized  by  Plasmodium  falciparum.  Lab  Chip  2012;12:1143–50.  doi:  10.1039/c2lc20857a.  [5]  Myrand-­‐Lapierre  M-­‐E,  Deng  X,  Ang  RR,  Matthews  K,  Santoso  AT,  Ma  H.  Multiplexed  fluidic  plunger  mechanism  for  the  measurement  of  red  blood  cell  deformability.  Lab  Chip  2015;  15:159–67.  Doi:  10.1039/C4LC01100G.  

   Figure  1:  Trans-­‐dispersion  mechanism.  (A)  Trans-­‐dispersion  chip  with  8  parallel  trans-­‐dispersion  arrays.  (B)  Structure  and  components  of  a  single  trans-­‐dispersion  array.  (C)  Position  of  the  cells  along  the  device  indicates  their  transit  speed  and  hence,  their  deformability.  More  deformable  cells  will  travel  further  along  the  device  than  less  deformable  cells.  (D)  Micrograph  of  a  zoomed-­‐in  section  of  deformation  microchannels  (scale  bar  =  75  μm).  

 

Page 11: Synergy Day 2015 Abstracts - UBC AMPELampel.sites.olt.ubc.ca/files/2015/05/Abstracts-2015...Synergy Day 2015 Abstracts ! WINNER – BEST RAPID FIRE RESEARCH ABSTRACT ! Title:!Solar!Rechargeable!Redox!Flow!Battery!

 Figure  2:  Sensitivity  of  the  trans-­‐dispersion  mechanism  was  established  using  RBCs  treated  with  mild  glutaraldehyde  (GTA)  fixation  (p  <  0.0001).  

   Figure  3:  Deformability  profiles  of  RBCs  parasitized  with  ringstage  synchronized  P.  falciparum  at  increasing  population  fraction,  from  least  to  most  deformable  and  (insert)  scatter  plotat  2%  least  deformable  fraction  shows  significant  difference  between  0%  and  1%  parasitemia  samples  (p  <  0.0001  with  n  =  9074  for  control  and  a  minimum  n  =  978  for  2%).  

  Figure  5:  Evaluating  antimalarial  drug  efficacy.  Antimalarial  drug  response  (>  4  x  EC50)  in  late-­‐stage  iRBCs  shows  a  decreased  deformability  for  all  antimalarial  drugs  (p  <  0.0001)  except  for  tetracycline  (p  =  0.54).  

 The  Quantum  Materials  Spectroscopy  Centre  at  the  Canadian  Light  Source    Authors:  S.  Zhdanovich,  M.  Schneider,  D.  Wong,  P.  Dosanjh,  G.  Levy,  S.  Gorovikov,  B.  Yates,  and  A.  Damascelli     Abstract:   The   Quantum   Materials   Spectroscopy   Center   (QMSC)   currently   under   construction   at   the  Canadian   Light   Source   (CLS)   is   a   state-­‐of-­‐art   beamline   facility   equipped   with   endstations   for   angle-­‐resolved  photoemission  spectroscopy  (ARPES)  and  spin-­‐resolved  ARPES.  QMSC  will  operate  in  the  photon  

Page 12: Synergy Day 2015 Abstracts - UBC AMPELampel.sites.olt.ubc.ca/files/2015/05/Abstracts-2015...Synergy Day 2015 Abstracts ! WINNER – BEST RAPID FIRE RESEARCH ABSTRACT ! Title:!Solar!Rechargeable!Redox!Flow!Battery!

energy  range  from  10  to  1200  eV,  with  full  polarization  control.      The  main   components  of   the  beamline   are   the   low-­‐   and  high-­‐energy  4  m   long  APPLE   type  undulators,  installed   side-­‐by-­‐side   in   a   switch-­‐yard   arrangement,   and   a   variable   line-­‐spacing   plane-­‐grating  monochromator  (VLS  PGM).  The  photon  flux  will  be  in  the  range  of  1012  –  1013  photons/second  at  the  endstations,   with   a   resolving   power   higher   than   104   over   the   full   pho-­‐ton   energy   range.   Complete  polarization   control,   in   both   linear   and   circular  modes,  will   be   available.   In   addition,   the   quasiperiodic  magnetic  structure  of  the  low-­‐energy  undulator  will  guarantee  the  optimized  suppression  of  higher-­‐order  harmonics.      The  ARPES  endstation  is  based  on  a  VG  Scienta  R-­‐4000  hemispherical  analyzer  with  1  meV  energy  resolution  and  a  0.1°  angular  resolution.  The  spin-­‐ARPES  endstation  employs  the  same  analyzer  paired  with  a  VG  Scienta  VLEED  single-­‐hole  transfer  system  and  spin  detector  capable  of  resolving  out-­‐of-­‐plane  as  well  as  in-­‐plane  spin  components.  The  integrated  MCP/CCD  detector  will  enable  sample  alignment  and  characterization  in  ARPES  mode,  prior  to  spin  measurements.  A  6-­‐axis  cryogenic  manipulator  installed  on  both  endstations  will  al-­‐low  a  sample  rotation  of  ±65°  and  +30°  to  -­‐70°,  respectively,  with  respect  to  horizontal  and  vertical  planes.  In  addition,  a  closed-­‐cycle  cryostat  will  enable  the  sample  temperature  to  be  quickly  varied  between  4  and  300K.  Both  endstations  will  allow  for  in-­‐situ  sample  preparation  and  manipulation  with  sputtering,  annealing,  and  adatom  evaporation  capabilities,  as  well  as  the  ability  to  grow  oxide  materials  via  integrated  molecular  beam  epitaxy  (MBE)  systems.      In  situ  ultrasound  treatment  of  collagen  type  I  assembly  for  microfabricated  3D  tumor  cell  encapsulation    Author:  Solmaz  Karamikamkar    Abstract:   3D   tumor   spheroids   (TSs)   have   gained   increasing   recognition   as   an   effective   tool   for   cancer  research.  The  TSs  are  composed  of  tumor  cells  growing  in  a  3D  extracellular  matrix  (ECM)  polymers.  The  ECM  polymers  are   formed  as  hydrogel  beads   to   simulate   the  micro-­‐environmental   conditions  of   tumor  tissue1.  Zhang  et  al.2  showed  that  the  hydrogel  beads  mimic  3D  structure  of  tumors  in  vivo  more  faithfully  compared   to   2D   in   vitro   and   monolayer   cultures.   One   of   the   commonly   used   techniques   in   forming  hydrogel   beads   is   the   use   of   microfluidic   systems,   which   can   produce   beads   with   high   uniformity.  Generally,   the   gelation   of   natural   polymers   is   reported   to   be   less   controllable,   though   they   are  more  compatible   for   cell-­‐encapsulation3.   Collagen   type   I   solutions   undergo   self-­‐assembly   into   beta-­‐sheet  structures   induced   by   pH   or   temperature   and   form   hydrogels.   For   TS   production   process,   collagen  gelation   can  be  prohibited  by  using  a   cooling   system  during  bead  production   to  prevent   chip   clogging.  However,  this  technique  reduces  the  cells  efficiency  to  proliferate  for  desired  time  length.  In  this  study,  a  new  ultrasound-­‐based  treatment  (UST)  is  developed  to  induce  in  situ  structural  transition  of  collagen  in  a  controllable  manner  to  enhance  the  proliferation  of  human  source  Michigan  Cancer  Foundation-­‐7  breast  tumor  cells  (MCF-­‐7).    Materials  &  methods      

Page 13: Synergy Day 2015 Abstracts - UBC AMPELampel.sites.olt.ubc.ca/files/2015/05/Abstracts-2015...Synergy Day 2015 Abstracts ! WINNER – BEST RAPID FIRE RESEARCH ABSTRACT ! Title:!Solar!Rechargeable!Redox!Flow!Battery!

MCF-­‐7  cells  were  cultured  in  RPMI  media  supplemented  with  10%  Fetal  Bovine  Serum  and  1%  antibiotics  for   24h   under   5%   CO2   at   37°C.   MCF-­‐7   cells   were   detached   with   0.025  mM   trypsin,   centrifuged,   and  washed   in   media.   Briefly,   a   mixture   containing   sodium   alginate   (2%   w/v,   medium   viscosity),   collagen  solution  (1.5  mg/ml),  calcium  carbonate  suspension  (80  mM,  anhydrous),  and  MCF-­‐7  cells  (5×106  cells/ml)  was  prepared.  The  pH  was  set  to  7.4  by  the  drop-­‐wise  addition  of  calcium  bicarbonate  (S1:  no  sonication).  Additional  mixtures  were  likewise  prepared  and  ultrasound  energy  at  power  of  2000  J/ml  in  a  continuous  wave  fashion  was  applied  on  mixtures  for  30  min  in  a  water  bath  at  temperatures  of  32°C,  37°C,  and  42°C  (S2,  S3,  and  S4).  The  temperature  was  increased  from  32°C  up  to  42°C  to  see  the  temperature  effect  on  the   possible   structural   changes   and   distribution   of   collagen   fibers.   The   viability   of   MCF-­‐7   cells   is   first  monitored  by   counting   viable   cells,   applying   Trypan  blue  exclusion   immediately   after  bead  production.  MCF-­‐7  cell  proliferation  was  measured  by  the  standard  MTS  assay  in  which  the  cell-­‐laden  beads  and  MTS  solution  were  mixed  5:1   in   a   96-­‐well   plates   and   cultured   in   an   incubator   at   37°C   and  5%  CO2  for   4h   4.  Second  harmonic  generation  backward  propagation   (SHG)  was  employed  to  monitor   the  distribution  of  the  collagen  fibers  within  the  mixtures.  Generally,  the  focusing  objective  of  a  2p  25X  water  dipping  with  1.05  numerical  aperture  (NA)  (Olympus  objectives),  the  illumination  wavelength  was  centered  at  810  nm,  and  blocking  of  the  fundamental  was  carried  out  with  channel  one  HQ  405/30M-­‐2P  filter  and  channel  two  HQ  495/25M-­‐2P  filter.      Results      Table   1   shows   the   size   distribution   of   the   beads   (number   of   beads=80)   that   are   represented   by   their  coefficient  of  variation.  Beads  from  S4  had  the  highest  uniformity  compared  to  S1,  and  S2.  S1  showed  the  least   bead   uniformity   compared   to   the   sonicated   samples.   The   resultant   spheroids   (7   days   after   bead  generation)   from  sonicated   sample   showed  much  better  uniformity     than  non-­‐sonicated   sample.   Fig.   1  presents  the  SHG  images  of  collagen  fibers  in  the  empty  (no  cells)  sonicated  and  non-­‐sonicated  hydrogels,  both  before  and  after  bead  generation.  Collagen  fibers  exhibit  a  strong  photo-­‐stable  SHG  signal  produced  from  their  shell  while  treated  collagen  do  not  produce  significantly  detectable  backward-­‐propagating  SHG  signal5.  There  are  more  noticeable  fiber  structures  in  S1  compared  to  S2,  S3,  and  S4.  This  might  be  due  to  the  deformation  of  collagen  fibers  structure  into  non-­‐shelled  structure  through  the  breakage  of  hydrogen  bonding  after  UST.  Fig.  2  illustrates  the  proliferation  rate  for  samples  S1,  S2,  S3,  and  S4.  Proliferation  rate  for  S1  was  dramatically  higher  than  S3  (Fig.  2).  UST  at  37°C  improved  MCF-­‐7  proliferation  comparing  S1  and  S2.    This  observation  is  in  agreement  with  the  results  presented  by  Choi  et  al.  6.      Discussion  and  conclusion      The  data   indicate  that  MCF-­‐7  cells  survive  and  proliferate   longer  within  the  sonicated  collagen/alginate  bead   culture   than   the   non-­‐sonicated   sample.   Beads   made   of   the   sonicated   mixture   retained   their  structure  for  16  days  whereas  beads  made  of  the  non-­‐sonicated  mixture  started  to  degrade  after  only  5  days.  As  SHG  observation   indicates   (Fig.  2),   the  higher   the   temperature  of  UST,   the  better   the  collagen  distribution   among   the  mixture.  Uniformly   positioned   deformed   collagen   fibers   induced   by  UST   allows  having  uniform  spheroids  than  those  made  from  the  non-­‐sonicated  mixture.  Since  sonication  treatment  breaks  the  lateral  hydrogen  bonds  in  collagen  fibers,  it  generates  more  nano-­‐sized  collagen  in  the  system  that  pack  cells  inside  the  beads.  The  size  distribution  and  MTS  assay  demonstrate  that  the  most  uniform  

Page 14: Synergy Day 2015 Abstracts - UBC AMPELampel.sites.olt.ubc.ca/files/2015/05/Abstracts-2015...Synergy Day 2015 Abstracts ! WINNER – BEST RAPID FIRE RESEARCH ABSTRACT ! Title:!Solar!Rechargeable!Redox!Flow!Battery!

spheroid   is   obtained   from  UST   at   37°C.   In   conclusion,   it   is   shown   and   confirmed   that  UST   is   an   useful  technique  in  producing  the  most  uniform  spheroids  with  long  proliferation.      References    1.   Sutherland,  R.,  et  al.,  Cancer  Res.  41,  2980–2984  (1981).  2.   Zhang,  X.  et  al.,  Biotechnol.  Prog.  21,  1289–1296  (2005).  3.   Lee,  C.  H.,  et  al.,  Int.  J.  Pharm.  221,  1–22  (2001).  4.   Huyck,  L.,  et  al.,  Assay  Drug  Dev.  Technol.  10,  382–392  (2012).  5.   Williams,  R.  M.,  et  al.,  Biophys.  J.  88,  1377–1386  (2005).  6.   Choi,  B.  H.,  et  al.,  J.  Biomed.  Mater.  Res.  A  79,  858–864  (2006).    Optical  Trapping  and  Diagnostic  Analysis  of  sub-­‐60nm  Gold  Nanoparticles  Using  Photonic  Crystal  Slot  Microcavity  Authors:  S.  Hamed  Mirsadeghi,  Jonathan  Massey-­‐Allard  and  Jeff  young    Abstract:  Here,  we  report  our  recent  advances  in  using  silicon-­‐on-­‐insulator  (SOI)  photonic  integrated  circuits  for  trapping  gold  nanoparticles  of  sizes  as  small  as  20  nm,  with  sub-­‐mW  laser  powers.  Using  a  novel  analysis  of  our  device  transmission  time-­‐series  data,  when  nanoparticle  trapping  occurs,  we  contrast  the  dynamics  of  trapped  Au  spheres  and  nanorods."    In-­‐situ  grain  size  measurement  in  a  cobalt  super  alloy  using  laser-­‐ultrasonics  Authors:  Mahsa  Keyvani,  Thomas  Garcin,  D.  Fabrègue,  Matthias  Militzer,  K.  Yamanaka,  A.  Chiba        Abstract:   Laser   ultrasonic   for   metallurgy   (Lumet)   is   dedicated   to   in-­‐situ   monitoring   of   microstructure  evolution   during   thermo-­‐mechanical   treatments.   In   this   technique,   broadband   ultrasound   pulses   are  generated   and   detected   with   lasers.   For   anisotropic   materials,   ultrasonic   attenuation   is   caused   by  scattering  at  grain  boundaries  and  can  be   related   to  grain  size.  The  objective  of   the  present  work   is   to  further   explore   the   LUMet   potential   for   in-­‐situ   grain   size   measurements.   The   response   of   ultrasonic  attenuation   to  grain  growth   is  evaluated  during   isothermal  annealing  at  various   temperatures   in  cobalt  super  alloy.  Correlations  have  been  found  between  the  average  grain  size  and  the  frequency  dependence  of  attenuation.  The  applicability  of   these  relationships   to  quantify   the  changes   in  grain  size  distribution  during  abnormal  grain  growth  is  examined.  The  results  of  this  investigation  establish  LUMet  as  a  powerful  tool   to   study   evolution   of   microstructure   in   cobalt   super   alloys   during   their   processing   at   high  temperatures  to  get  the  best  mechanical  strength.    Setpoint  effects  in  Fourier  transform  scanning  tunneling  spectroscopy  Authors:  A.J.  Macdonald,  YS.  Tremblay-­‐Johnston,  S.  Grothe,  S.  Chi,  and  S.  Burke  

Abstract:  The  basement  of  AMPEL  houses  vibrationally  isolated  pods,  which  allow  for  the  measurements  on  the  atomic  scale  of  condensed  matter  materials.  The  Laboratory  for  Atomic   Imaging  Research  (LAIR)  group  uses   scanning   tunneling  microscope   (STM)   to  probe  novel   properties   of  materials   such   as   single  molecule  solar  cells  and  high  temperature  superconductors.    

Page 15: Synergy Day 2015 Abstracts - UBC AMPELampel.sites.olt.ubc.ca/files/2015/05/Abstracts-2015...Synergy Day 2015 Abstracts ! WINNER – BEST RAPID FIRE RESEARCH ABSTRACT ! Title:!Solar!Rechargeable!Redox!Flow!Battery!

An  STM  is  capable  of  measuring  sample  topography  as  well  as  spatially  and  energy  resolved  spectroscopy,  provides  information  about  the  local  electronic  density  of  states,  through  the  derivative  of  the  tunneling  current  (dI/dV).  Fourier  analysis  yields  momentum  resolution  of  the  density  of  states,  which  can  be  used  to  determine  the  band  structure  and  energy  dispersion  of  electrons  in  a  sample.  These  measurements  are  made   with   simplifying   assumptions   about   the   nature   of   the   dI/dV,   such   as   zero   temperature,   flat   tip  density   of   states,   and   energy   independent   matrix   elements.   In   real   experiment   conditions,   these  assumptions  do  not  always  hold.  We  illustrate  the  different  artifacts  that  can  appear  in  FT-­‐STS  using  data  taken   from  the  well-­‐understood  surface  state  of  an  Ag(111)  single  crystal  at  4.2  K  and  under  ultra-­‐high  vacuum   conditions.  We   find   that   constant   current   dI/dV  maps   taken  with   a   lock-­‐in   amplifier   lead   to   a  feature   in   the   FT-­‐STS   dispersion   that   disperses   as   a   function   of   energy   below   the   Fermi   level   (EF)   and  becomes   constant   above   EF.   This   result   shows   the   importance   of   distinguishing   dispersing   features  caused  by  quasiparticles  in  the  sample  from  those  caused  by  the  measurement.    Transparent,  flexible  and  stretchable  'Piezoionic'  tactile  sensor  Authors:  Mirza  Saquib  us  Sarwar,  Yuta  Dobashi,  Ettore  F.  Scabeni  Glitz,  Meisam  Farajollahi,  Shahriar  Mirabbasi  and  John  D.  W.  Madden    Solute-­‐defect  interactions  in  Al-­‐Mg  alloys  from  diffusive  molecular  dynamics  calculations  Authors:  Evgeniya  Dontsova,  Joerg  Rottler  and  Chad  Sinclair    Abstract:   Segregation   and   precipitation   of   solute   atoms   at   defects   and   interfaces   are   common  phenomena  in  alloys,  but  are  difficult  to  model  atomistically  as  they  occur  on  timescales  that  far  exceed  those  accessible  with  standard  molecular  dynamics.  I  will  present  an  adaptation  of  the  recently  developed  “diffusive  molecular  dynamics”  method,  which  is  capable  to  describe  the  energetics  and  kinetics  of  binary  alloys  on  diffusive  timescales  and  at  the  atomic  level.  The  potential  of  the  technique  will  be  illustrated  by  applying  it  to  the  classic  problems  of  solute  segregation  to  an  edge  dislocation  in  the  Al-­‐Mg  system.    Process-­‐Induced  Shape  Distortions  in  Aerospace  Thermoplastic  Composites  Authors:  Gabriel  Fortin  and  Goran  Fernlund    Abstract:   Thermoplastic   composite  materials   are   of   great   interest   in   primary   and   secondary   aerospace  structures  due  to  their  potential  for  shorter  manufacturing  cycle  times,  high  production  rates,  and  their  ability   to  be   re-­‐heated  and  shaped  multiple   times.  Thermoplastic   resins  offer  many  new  possibilities   in  their  ease  of  repair,  recycling,  and  welding  capabilities  [1,2].  Aerospace-­‐grade  thermoplastic  composites  such  as  carbon  fibre  reinforced  pleather-­‐ether-­‐ketone  consolidation  of  the  material  can  take  place.  As  the  material   is   subsequently   cooled  down   from   the  process   temperature,   residual   stresses   develop  due   to  effects  of  material  anisotropy,  part  geometry,  and  tool-­‐part  interactions  that  eventually  lead  to  undesired  shape   distortions   in   the   final   party   geometry.   As   observed   with   thermoset   composites,   common  distortions   include   spring-­‐in   of   corner   angles   and   warpage   of   flat   sections.   The   tight   dimensional  tolerances   require   for   aerospace   parts   demands   that   process-­‐induced   shape   distortions   be   well  understood   in  order   to   reduce   the  number  of   scrap  parts   and   to  eliminate   fitting  problems  during   the  assembly  stage  of  the  components.    

Page 16: Synergy Day 2015 Abstracts - UBC AMPELampel.sites.olt.ubc.ca/files/2015/05/Abstracts-2015...Synergy Day 2015 Abstracts ! WINNER – BEST RAPID FIRE RESEARCH ABSTRACT ! Title:!Solar!Rechargeable!Redox!Flow!Battery!

In   this   project,   L-­‐shape   flanges   with   a   90°   corner   are   manufactured   form   aerospace-­‐grade   AS4/PEEK  thermoplastic   composites   in   a   hot   press   using   a   matched-­‐die   tooling   configuration.   A   thermoforming  technique   is  employed  that   involves  heating  previously-­‐manufactured   flat  panels  of   the  material   to   the  processing   temperature  prior   to   transferring   and   forming  within   a   relatively   cold   tool   held   at   constant  load  and  temperature.  L-­‐shape  flanges  consisting  of  a  quasi-­‐isotropic  layup  of  unidirectional  plies  as  well  as  short  randomly-­‐oriented  strands  of  AS4/PEEK  are  thermoformed  at  105°,  215  °C,  and  290  °  in  the  hot  press.  Spring-­‐in  angles  of  the  manufactured  parts  are  quantified  using  a  coordinate  measuring  machine  and  the  results  from  the  experiments  are  compared  with  predictions  form  the  Nelson-­‐Cairns  expression  based  on  material  thermal  expansion  anisotropy.    SURFACE  AND  BULK  POROSITY  IN  OUT-­‐OF-­‐AUTOCLAVE  PREPREGS    Authors:  Jeremy  Wells,  James  Kay,  Anoush  Poursartip,  Malcolm  Lane  and  Göran  Fernlund      ABSTRACT:   In  composites  manufacturing  both  bulk  and  surface  porosity  are  undesirable  outcomes  that  should   be   minimized   or   eliminated.   Bulk   porosity   negatively   impacts   mechanical   properties   whereas  surface  porosity  produces  an  uneven  and  aesthetically  unpleasing  exterior.  In  prepreg  processing,  out-­‐of-­‐autoclave   processes   have   a   greater   tendency   to   exhibit   problems   with   porosity   relative   to   autoclave  processes  due  to  the  lower  compaction  pressures.  This  has  led  to  a  greater  emphasis  on  gas  removal  prior  to   cure   and   more   stringent   requirements   on   high   vacuum   levels   during   processing.   The   formation,  evolution,   and   removal   of   voids   in   OOA   prepregs   currently   lack   a   robust   scientific   understanding.   The  present  study  aims  to  investigate  the  evolution  of  bulk  and  surface  porosity  due  to  dissolved  volatiles,  as  well   as   the   relationship   between   them   and   drivers   behind   them.   Flat,   fully   evacuated   laminates  were  cured  under   various  processing   conditions   and   their  bulk  porosity   after   cure  was  quantified  by  density  and   thickness  measurements.  Using  a   transparent  glass   tool  and  a  video  camera  connected   to  a  digital  microscope,  the  tool-­‐laminate  interface  was  optically  recorded  in-­‐situ  during  cure.  Based  on  observations  of  resin  flow  and  wetting,  bubble  movement,  and  bubble  growth  at  the  tool-­‐laminate  interface  from  the  recorded  video,  an  understanding  of  porosity  drivers  and  mechanisms  is  developed.  Process  parameters  considered  in  the  study  include  resin  pressure,  resin  moisture  content  and  prepreg  fiber  architecture.    Gallium  Zinc  Oxynitride  Photocatalyst  and  the  Corresponding  Reduced  Graphene  Oxide  Composite  for  Visible  Light  Hydrogen  Generation  Authors:  B.  Adeli  and  F.  Taghipour    Abstract:   Among   the   various   clean   and   renewable   energy   sources,   sunlight   by   far   is   the   largest.   Solar  hydrogen   makes   solar   energy   as   storable   and   transportable   as   fossil   fuels   without   their   negative  environmental  impacts.      Gallium-­‐zinc   oxynitride   solid   solution   (GaN:ZnO)   is   one   of   the   few   photocatalysts   which   is   capable   of  splitting  water  to  hydrogen  and  oxygen  under  visible  light  with  high  and  stable  photocatalytic  activity.  The  GaN:ZnO  solid  solution  photocatalyst  is  typically  synthesized  by  nitridation  of  a  mixture  of  Ga2O3  and  ZnO  at   high   temperatures   for   5–15   h   [1]   via   the   solid-­‐state   reaction.   Although   the   photocatalyst   prepared  through  the  traditional  method  demonstrates  high  activity  for  overall  water  splitting,  the  long  synthesis  time  at  high  temperature  is  considered  a  drawback  of  this  synthesis  technique  [2].    

Page 17: Synergy Day 2015 Abstracts - UBC AMPELampel.sites.olt.ubc.ca/files/2015/05/Abstracts-2015...Synergy Day 2015 Abstracts ! WINNER – BEST RAPID FIRE RESEARCH ABSTRACT ! Title:!Solar!Rechargeable!Redox!Flow!Battery!

We  have  synthesised  nanoporous  gallium-­‐zinc  oxynitride  solid  solution  through  a  fast  and  cost  effective  synthesis   technique.   Pre-­‐treatment   of   the   synthesis   precursor   improved   the   homogeneity   of   the  photocatalyst.  The  composition  and  surface  structure  of   the  solid  solution  were  controlled  by  adjusting  the  ratio  of  starting  materials   in  the  precursor  and  the  synthesis  conditions.  The  crystalline  structure  of  the   photocatalyst   was   improved   through   post-­‐heat   treatment.   Various   characterization   techniques  confirmed   the   formation   of   visible-­‐light   activated   nano-­‐porous   solid   solution  with   higher   surface   area,  comparing  to  the  one  prepared  via  traditional  technique.      The  photocatalyst   incorporated  to  graphene  oxide   (GO)  nanosheets   through   facile  ultra-­‐sonication.  The  reduced  graphene  oxide  (RGO)  composite  was  obtained  via  in-­‐situ  photo-­‐reduction  reaction  as  a  result  of  electron   transfer   from  bulk  of  photocatalyst   to   the  nanosheets.  Structural,  optical,  and  electrochemical  characterizations   confirmed   the   effective   interaction   between   composites   component   and   its   superior  optical  properties.  The  overall  water  splitting  efficiency  of  the  composite  indicated  that  the  performance  of  the  samples  improved  significantly  because  of  efficient  charge  separation  in  the  composites  structure.      References:  

1. K.  Maeda,  T.  Takata,  M.  Hara,  N.  Saito,  Y.  Inoue,  H.  Kobayashi,  and  K.  Domen,  J.  Am.  Chem.  Soc.,  127,  8286  (2005).  2. B.  Adeli  and  F.  Taghipour,  ECS  Journal  of  Solid  State  Science  and  Technology,  2  (7)  Q118-­‐Q126  (2013).  

 Geometrically  Controlled  Carbon  Nanofibre  Membrane  for  Fuel  Cell  Catalyst  Support  layer  Sophia  Chan  and  Dr.  Frank  Ko    Abstract:  Responding  to  the  urgent  need  for  clean,  efficient,  affordable  and  sustainable  energy  this  study  examines   the   role  of   carbon  nanofibres   in   the  performance  of   polymer  electrolyte  membrane   fuel   cell  (PEMFC).   Although  widely   used   in   conventional   PEMFCs,   the   agglomerate-­‐based   catalyst   layers   have   a  number  of  disadvantages.  Their  microstructure  is  irregular,  often  non-­‐homogeneous,  with  highly  tortuous  transport   paths   for   electrons,   protons,   and   gas.   As   a   result   the   overall   conductivity   and   gas   diffusivity  decrease,  while  keeping  a  portion  of  the  Pt  catalyst  buried  within  the  agglomerate  making  it  inaccessible  for  the  reaction.  Specifically  this  study  focuses  on  the  use  of  carbon  nanofibre  as  a  substrate  for  cathode  catalyst   layer   in   a   PEMFC   with   the   aim   to   develop   catalyst   layers   with   more   controllable   design  parameters.  A  systematic  study  is  carried  out  to  optimize  the  processing  parameters,  structural  geometry  and   performance   of   the   carbon   nanofibre   catalyst   layer.   The   processing   parameters   studied   include  precursor  preparation,  electrospinning  conditions,  heat  treatment,  and  catalyst  deposition.  The  structural  parameters  studied  include  fibre  diameter,  fibre  web  thickness,  fibre  orientation,  and  pore  geometry.  The  performance  of  the  FC  will  be  characterized  based  on  electrical  conductivity,  electrochemical  impedance  spectroscopy  (EIS)  and  cyclic  voltammetry  (CV)  measurements.        Preliminary   results   showed   the   concept   of   the   catalyst   carbon   nanofibre   layer   is   encouraging.     The  random  nanofibre  layers  demonstrate  high  porosity,  conductivity,  and  low  fibre  diameter,  all  of  which  are  essential  requirements  for  an  efficient  fuel  cell.  It  was  shown  that  the  electrospinning  parameters  could  be  accurately  and  precisely  controlled  yielding  fibres  with  the  desired  diameter,  thickness,  and  porosity.    The   results  also  demonstrated   that  orthogonally  aligned  nanofibre   layers   could  be   fabricated  using   the  electrospinning  technique.      

Page 18: Synergy Day 2015 Abstracts - UBC AMPELampel.sites.olt.ubc.ca/files/2015/05/Abstracts-2015...Synergy Day 2015 Abstracts ! WINNER – BEST RAPID FIRE RESEARCH ABSTRACT ! Title:!Solar!Rechargeable!Redox!Flow!Battery!

 Progressive  Damage  Modeling  of  Notched  Composite  Materials    Authors:  Mina  Shahbazi,  and  Reza  Vaziri      Abstract:   Damage   tolerance   analysis   of   composite   structures   requires   availability   of   robust   and   fully  validated  numerical  tools  that  can  capture  the  onset  and  extent  of  damage  development  in  the  material  and  the  resulting  degradation  of  the  structural  stiffness.  A  reliable  prediction  of  the  inelastic  behavior  of  composite  materials  due  to  damage  requires  the  simulation  of  several  interactive  failure  mechanisms  e.g.  matrix   cracking,   fibre   breakage,   splitting   and   delamination   that   emanate   and   grow   from   pre-­‐existing  discontinuities  such  as  notches  in  the  material.      An  enhanced  form  of  a  Composite  Damage  Model  (CODAM2)  developed  at  UBC  and  implemented  in  the  commercial   explicit   finite   element   software,   LS-­‐DYNA,   is   used   here   as   a   tool   for  modeling   progressive  damage   in   composite   materials.   As   a   macro-­‐mechanical   continuum   damage   model,   the   constitutive  stress-­‐strain   response   of   the   material   is   smeared   over   a   finite   representative   volume   element   of   the  laminate  made  up  of  repeating  sub-­‐laminate  blocks.  The  model  is  capable  of  accounting  for  the  effects  of  intra-­‐laminar  damage  mechanisms   in   individual  plies  on  the  stiffness  degradation  of  the   laminate.   In   its  local   form   and   through   appropriately   determined   scaling   laws   the  model   addresses   the   issue   of   strain  localization  and  mesh  size  dependency  observed   in  modeling  strain-­‐softening  materials.   In   its  non-­‐local  form,  the  model  is  capable  of  capturing  the  correct  path  for  damage  growth  in  orthotropic  media  and  is  insensitive  to  the  orientation  of  the  finite  element  mesh.    

In   this   study,   double-­‐edge-­‐notched   specimen   configuration   under   tension   for   a   highly   orthotropic  material   layup   of   [90/0]s   will   be   used.   The   purpose   is   to   investigate   the   capability   and   efficiency   of  CODAM2  material  model  as  a  continuum  damage  model  in  capturing  the  smeared  effect  of  intralaminar  damage  modes  including  splitting,  matrix  cracking  and  fibre  breakage  along  with  the  interlaminar  damage  that  occurs  in  the  form  of  delamination  between  the  layers.    Fibre-­‐path  reconstruction  in  composites  Author:  Kyle  Farnand    Abstract:  Fibre  misalignments  are  considered  to  be  some  of   the  most  mechanically  detrimental  defects  that  arise  in  modern  composites  manufacturing.  While  wrinkling  receives  most  of  the  research  attention  due  to  its  detectability,  internal  waviness  often  goes  unnoticed  during  quality  assessment.  Building  on  the  Yurgartis   method   of   quantifying   fibre   misalignments   from   ellipse   aspect   ratios,   in-­‐plane   fibre   path  reconstruction  has  been  attempted  from  a  single  cross  sectional  micrograph.  The  results  show  promising  agreement  with  highly  destructive  in-­‐plane  micrographs  where  improvements  to  the  method  are  within  the   realm   of   possibility.   Although   microscopy   is   an   expensive   process,   an   automated   form   of   this  waviness   quantification   method   could   easily   be   implemented   in   manufacturing   facilities   where  microscopy  is  routinely  performed.          

Page 19: Synergy Day 2015 Abstracts - UBC AMPELampel.sites.olt.ubc.ca/files/2015/05/Abstracts-2015...Synergy Day 2015 Abstracts ! WINNER – BEST RAPID FIRE RESEARCH ABSTRACT ! Title:!Solar!Rechargeable!Redox!Flow!Battery!

Poster Abstracts (Abstracts Presented exclusively as posters)

 Effects  of  carbon  on  phosphorus  diffusion  in  SiGe:C  and  the  implications  on  phosphorus  diffusion  mechanisms  Author:  Yiheng  Lin    Abtract:   The   use   of   carbon   (C)   in   SiGe   base   layers   is   an   important   approach   to   control   the   base   layer  dopant   phosphorus   (P)   diffusion,   and   thus   enhance   PNP   heterojunction   bipolar   transistor   (HBT)  performance.  We  performed  experiments  to  quantitatively  investigate  the  carbon  impacts  on  P  diffusion  in   Si0.82Ge0.18:C   and   Si:C   under   rapid   thermal   anneal   conditions.   The   carbon  molar   fraction   is   up   to  0.32%.   The   results   showed   that   the   carbon   retardation   effect   on   P   diffusion   is   less   effective   for  Si0.82Ge0.18:C  than  for  Si:C.  In  Si0.82Ge0.18:C,  there  is  an  optimum  carbon  content  at  around  0.05%  to  0.1%,  beyond  which  more  carbon  incorporation  does  not  retard  P  diffusion  any  more.      This  behaviour  is  different  from  the  P  diffusion  behavior  in  Si:C  and  the  B  in  Si:C  and  low  Ge  SiGe:C,  which  can  be  explained  by  the  decreased  interstitial-­‐mediated  diffusion  from  1to  0.95  as  Ge  content  increases  from   0   to   18%.   Empirical   models   were   established   to   calculate   the   time-­‐averaged   point   defect  concentrations  and  effective  diffusivities  as  a  function  of  carbon,  and  was  shown  to  agree  with  previous  studies  on  boron,  phosphorus,  arsenic  and  antimony  diffusion  with  carbon.    Bandedge  optical  properties  of  MBE  grown  GaAsBi  films  measured  by  photoluminescence  and  photothermal  deflection  spectroscopy  Authors:  J.J.  Andrews,  M.  Beaudoin,  V.  Bahrami-­‐Yekta,  R.B.  Lewis,  M.  Masnadi-­‐Shirazi,  S.K.  O’Leary,  T.  Tiedje  

 

Abstract:  The  semiconductor  alloy,  GaAsBi,  has  become  a  focus  of  attention  due  to  its  interesting  material  properties   and   its   potential   for   electronic   and   optoelectronic   devices.       With   the   addition   of   small  amounts  of  bismuth,  the  energy  gap  of  the  material  decreases  significantly.      This  dramatic  reduction  in  the   energy   gap   points   to   the   potential   use   of   this  material   for   long-­‐wavelength   optoelectronic   device  applications.      This  low  energy  gap  also  suggests  use  for  solar  cell  applications.    Adding  an  extra  junction  with  a  band  gap  of  around  1eV  could  increase  efficiency,  absorbing  otherwise  unabsorbed  regions  of  the  solar  spectrum.        The  band  edge  optical  properties  of  GaAsBi  films,  as  thick  as  470  nm,  with  Bi  content  varying  from  0.7%  Bi  to   2.8%   Bi   grown   by   molecular   beam   epitaxy   on   GaAs   substrates   are   measured   by   mirage   effect  photothermal  deflection  spectroscopy  (PDS),  and  compared  to  the  photoluminescence  (PL)  spectra.    PDS  is   a   very   powerful   technique   to  measure   low   absorptions   in   thin   films   and   holds   advantages   over   the  more   common   transmission   spectroscopy.     Transmission   is   unable   to   distinguish   between   light   that   is  absorbed  or  scattered,  while  PDS  only  measures  the  light  that  is  absorbed  because  this  is  what  causes  the  thermal  effects.    

Page 20: Synergy Day 2015 Abstracts - UBC AMPELampel.sites.olt.ubc.ca/files/2015/05/Abstracts-2015...Synergy Day 2015 Abstracts ! WINNER – BEST RAPID FIRE RESEARCH ABSTRACT ! Title:!Solar!Rechargeable!Redox!Flow!Battery!

The  PDS  spectra  were  fit  with  a  modified  Fernelius  model,  which  takes  into  account  multiple  reflections  within   the   GaAsBi   layer   and   GaAs   substrate.   Three   undoped   samples   and   two   samples   that   are  degenerately  doped  with  silicon  are  studied.  The  undoped  samples  show  a  clear  Urbach  absorption  edge  with  a  composition  dependent  bandgap  that  decreases  by  56  meV/%  Bi  and  a  composition  independent  Urbach  slope  parameter  of  25  meV  due  to  absorption  by  Bi  cluster  states  near  the  valence  band.    IN-­‐SITU  EVALUATION  OF  THE  HCP  TO  BCC  TRANSFORMATION  IN  COMMERCIALLY  PURE  TITANIUM  USING  LASER  ULTRASONICS    Authors:  Alyssa  Shinbine,  Thomas  Garcin  and  Chad.  Sinclair      Abstract:   Titanium   and   titanium   alloys   are   critical   materials   for   structural   applications   in   aerospace,  biomedical,  energy  and  marine  industries.  Given  the  complex  phase  transformations  that  can  occur  in  titanium  alloys,  and  the  importance  of  processing  on  the  microstructure  and  final  properties  of  parts,  techniques  that  allow  for  in-­‐situ  monitoring  of  microstructure  and  its  evolution  with  processing  are  valuable.      Laser   Ultrasonics   for  Metallurgy   (LUMet)   is   a   technology   specifically   dedicated   to   the   real   time   sensing   of  metallurgical  phenomena.  While  this  technology  has  been  shown  to  be  reliable  for  monitoring  the  fcc  to  bcc  transformation   in  steels   [1],   it  has  rarely  been  used  to  study  phase  transformations   in  non-­‐ferrous  alloys.   In  this   work,   LUMet   is   used   to   examine   the   hcp   (α)   to   bcc   (β)   phase   transformation   in   commercially   pure  titanium.  In  particular,  the  evolution  of  the  longitudinal  wave  velocity  is  studied  in  a  polycrystalline  sample.  As  the  bulk  elastic  properties  of  the  material  evolve  during  the  phase  transformation,  the  variation  of  ultrasound  velocity  can  potentially  be  used  to  extract  quantitative  information  on  the  transformation  kinetics.      In  this  study,  a  pre-­‐annealed  sheet  of  commercially  pure  titanium  is  sectioned  to  produce  specimens  60  x  10  x  3  mm  in  size.  The  material  is  graded  at  99.95  wt  %,  with  the  remaining  impurities  consisting  of  Fe,  O,  H  and  N.  The  longitudinal  velocity  is  measured  during  continuous  heating  and  cooling  at  a  rate  of  3°C/s  with  a  peak  temperature  of  1000  °C.  Treatments  are  conducted  in  a  Gleeble  3500  thermomechanical  simulator  equipped  with  the  LUMet  system.  The  samples  are  further  analyzed  with  ex-­‐situ  backscatter  electron  imaging  (BEI)  and  electron  backscatter  diffraction  (EBSD)  observations  in  order  to  evaluate  microstructure  and  crystallographic  texture  before  and  after  a  transformation  cycle.      Figure   1   (a)   shows   the   inverse   pole   figure   map   of   the   as   received   sample   measured   with   EBSD.   The  microstructure   is   composed   of   polygonal   grains   with   an   equivalent   area   diameter   of   57   μm.   This   material  exhibits  a  strong  basal  texture,  split  around  the  rolling  direction.  Figure  1  (b)  shows  the  microstructure  of  the  sample  after  completion  of  the  first  treatment  at  1000°C.  The  first  cycling  around  the  transformation  lead  to  the  formation  of  plate  like  and  serrated  α  grains.  Figure  1  (c)  shows  the  microstructure  of  the  sample  after  five  temperature  cycles  between  700°C  and  950°C  at  a  rate  of  3°C/s.  A  similar  but  larger  grained  microstructure  to  Figure  1   (b)   is  observed  after   five  cycles.  Quantitative  analysis  of   the  specimen  texture   for  sample  shown   in  Figure  1  (b)  and  1  (c)  is  challenging  due  to  the  presence  of  large  grains  inhibiting  appropriate  statistics.  Figure  2  (a),  (b),  (c)  shows  the  variation  of  ultrasonic  velocity  measured  upon  heating  for  the  first,  second  and  fifth  cycle,   respectively.   The   velocity   measured   for   the   α   phase   decreases   linearly   with   temperature   up   to  approximately   870°C.   The   velocity   for   the   β   phase   shows   no   measurable   temperature   dependence   up   to  1000°C.  During  the  transformation,  the  changes  in  velocity  vary  from  non-­‐monotonic  to  monotonic  behavior  depending  on  the  number  of  heating  cycles.  Specifically,  the    

Page 21: Synergy Day 2015 Abstracts - UBC AMPELampel.sites.olt.ubc.ca/files/2015/05/Abstracts-2015...Synergy Day 2015 Abstracts ! WINNER – BEST RAPID FIRE RESEARCH ABSTRACT ! Title:!Solar!Rechargeable!Redox!Flow!Battery!

velocity  measured  during  the  first  cycle  shows  a  clear  two-­‐step  transition  in  the  transformation  temperature  range;  conversely,  the  velocity  measured  during  the  fifth  cycle  shows  a  continuous  and  monotonic  decrease  within  the  transformation  domain.    It  is  argued  that  the  observed  non-­‐monotonic  evolution  of  the  velocity  may  be  attributable  to  crystallographic  texture   and   the   anisotropy   of   elastic   properties   in   the   α   phase.   This   idea   can   be   shown   qualitatively   by  calculating  the  ultrasound  velocity  in  the  rolling  direction  based  on  the  average  texture  of  the  α  and  β  phases  measured  experimentally   from  Figure  1:   i)  When  all   the  crystallographic  variants  of  alpha  are  present   in  the  parent  structure  transform  simultaneously,  then  a   linear  dependence  of  velocity  and  fraction  transformed  is  predicted;   ii)   when   however,   the   selection   of   which   variants   of   the   α   and   β   phases   form   depends   on   the  fraction   transformed,   then  a  non-­‐linear  behavior  can  be  observed.  As  an   illustration,  Figure  2   (d)   shows   the  predicted  velocity  change  during  the  transformation  when  the  α  phase  is  transformed  starting  first  with  high  velocity  orientations.  From  the  texture  measured  before  the  first  cycle  (Figure  1  (a)),  a  non-­‐monotonic  velocity  variation  is  predicted  by  the  model;  however,  when  the  texture  of  the  material  after  5  cycles  is  used,  no  such  effect   is  observed.  This  observation  will  be  discussed  with   reference   to  existing   ideas  of  variant   selection   in  titanium  alloys.    

   (a)                    (b)                                                                                                (c)    

   (d)    

Page 22: Synergy Day 2015 Abstracts - UBC AMPELampel.sites.olt.ubc.ca/files/2015/05/Abstracts-2015...Synergy Day 2015 Abstracts ! WINNER – BEST RAPID FIRE RESEARCH ABSTRACT ! Title:!Solar!Rechargeable!Redox!Flow!Battery!

Figure  1.  Inverse  pole  figure  maps  of  the  α  (hcp)  phase  with  legend  (d),  for  the  (a)  as  received  condition,  (b)  after  the  first  cycle  of  treatment,  and  (c)  after  the  fifth  cycle  of  treatment    

  Figure  2.  heating  velocity  profiles  of  commercially  pure  titanium  treated  to  950°C  during  the  first  (a),  second  (b),  and  fifth  (c)  treatment  cycles,  (d)  average  velocity  profile  calculated  independent  of  temperature  dependence  (model)  for  the  first  (1x)  and  fifth  cycle  (5x)      [1].  Militzer,  Matthias,  Thomas  Garcin,  and  Warren  J.  Poole.  “In-­‐situ  Measurements  of  Grain  Growth  and  Recrystallization  by  Laser  Ultrasonics.”  Materials  Science  Forum  753  (March  2013):  25–30.  doi:  10.4028/www.scientific.net/MSF.753.25.    FABRICATION  AND  TESTING  OF  PIEZOELECTRIC  HYBRID  PAPER  FOR  SENSING  APPLICATIONS    Authors:  Suresha  K.  Mahadeva,  Konrad  Walus  and  Boris  Stoeber    Wood  cellulose  is  the  most  encountered  and  an  abundant  natural  organic  material;  Canada  in  particular  is  the  home  of  a  strong  pulp  and  paper   industry,  and   is  also  the   largest  producer  of  wood  cellulose  fibre.  Imparting   special   functionality   into  wood   cellulose  would  be   interesting   and  hence   could  be  used   as   a  low-­‐cost   functional   material   to   develop   sensing   devices.   In   recent   years,   many   researchers   have  developed   piezoelectric   paper   through   (i)   a   hydrothermal   synthesis   route,   and   (ii)   wood   fiber  functionalization,   and   demonstrated   applications   of   piezoelectric   paper   to   strain   sensing,   electronic  devices,   energy   harvesting,   and   a   touch   pad.   Hydrothermal   synthesis   involves   immersion   of   a   paper  substrate   in  a   reaction  bath   for  a  specific  duration,   leading   to   the  growth  of  zinc  oxide  nanostructures,  while  wood   fiber   functionalization   involves   embedding   nanostructured   barium   titanate   (BaTiO3)   into   a  stable  matrix  of  wood   fibers  during   the  paper  making  process.  Former   technique  present  challenges   to  the  scalable  mass  production  of   such  paper,  while   latter   suffer   from  poor  mechanical  and  piezoelectric  properties;  paper  with  significant  piezoelectric  properties  and  high  mechanical  strength  has  never  been  realized  to  best  of  our  knowledge.    Herein  we  describe   fabrication  process   for  hybrid  paper   that  has  a   large  piezoelectric   coefficient   (d33=  45.7±4.2   pC/N)   and   tensile   properties   (breaking   strength   =1.55N/mm2),   similar   to   commercial   printing  paper.  We  employed  a  layer-­‐by-­‐layer  approach  to  functionalize  the  wood  fibers,  which  involve  immersion  of   wood   fibers   in   aqueous   solution   of   poly   (diallyldimethylammonium   chloride);   PDDA(+)   and   poly  (sodium  4-­‐styrenesulfonate);  PSS  (-­‐)  and  once  again  in  PDDA  (+),  and  results  in  the  creation  of  a  positively  

Page 23: Synergy Day 2015 Abstracts - UBC AMPELampel.sites.olt.ubc.ca/files/2015/05/Abstracts-2015...Synergy Day 2015 Abstracts ! WINNER – BEST RAPID FIRE RESEARCH ABSTRACT ! Title:!Solar!Rechargeable!Redox!Flow!Battery!

charged  surface  on  wood  fiber.  The  treated  wood  fibers  are  then  immersed  in  a  BaTiO3  (barium  titanate)  suspension,  leading  to  the  electrostatic  binding  of  BaTiO3.  The  next  step  involves  the  activation  of  BaTiO3  functionalized  wood  fibers   in  a  suspension  of  commercially  available  paper-­‐strength-­‐enhancing  additive  (sodium  carboxymethylcellulose:  CMC)  with  a  range  of  concentrations  (0,  2,  3,  4,  5,  and  6  wt%)  over  10  hours.  This  step  ensures  a  uniform  coating  of  CMC  over  the  BaTiO3  functionalized  wood  fibers  and  results  in  improved  fiber-­‐fiber  bonding.  Paper  hand  sheets  (f=16  cm)  are  made  according  to  the  TAPPI  method  T-­‐205.  Finally  hybrid  paper  is  subjected  to  corona  poling  to  render  it  piezoelectric.      The  piezoelectric  paper  was  subjected  to  electrochemical  tests  to  evaluate  its  piezoelectric  behavior,  for  that,  a  compressive  load  (from  0.5  N  to  3  N  to  0.5  N  in  steps  of  0.5  N)  was  applied  to  a  sample  and  the  corresponding   charge   induced   by   the   paper   was   measured   using   a   charge   meter.   The   piezoelectric  coefficient  d33  of   the  hybrid  paper   is   found   to  be  45.7±4.2  pC/N.  To  demonstrate   the  physical   sensing  capability  of  our  piezoelectric  paper,  silver  electrodes  were  deposited  on  both  sides  of  the  paper  and  the  response  of  the  paper  to  pressure  from  a  finger  was  measured.  The  magnitude  of  the  charge  induced  by  the  paper  is  highly  dependent  on  the  dynamics  of  the  force  exerted  in  each  touch  event.  The  correlation  between  the   induced  piezoelectric  charge  and  the  magnitude  of  the  tactile  force  on  the  sensors   is  high  with  R2  =  0.893.  The  rapid  decay  of  the  charge  signal  is  indicative  of  charge  leakage  to  force  application  at  different   speeds.   Our   study   suggests   that   the   piezoelectric   paper   may   be   a   promising   low   cost   and  environment-­‐friendly   substrate   for  building   various  physical   sensors,   and   just   as   for  other  piezoelectric  materials,  its  strength  might  be  in  capturing  highly  dynamic  events.    Melting  of  Solids  in  Liquid  Titanium  during  Electron  Beam  Melting  Authors:  Jun  Ou,  Steve  L.  Cockcroft,  Daan  M.  Maijer,  Ainul  Akhtar,  Lu  Yao,  Carl  Reilly    Abstract:  One  of  the  defects  associated  with  Electron  Beam  Cold  Hearth  Melting  (EBCHM)  of  Al-­‐bearing  titanium   alloys   is   the   Al-­‐rich   regions,   which   are   harmful   to   the   material’s   fatigue   performance   and  deformability.  One  of  the  main  causes  of  these  defects  is  condensate  falling  into  the  melt  –  referred  to  as  a  “drop-­‐in”  event  industrially.  The  condensate  consists  of  Al  and  Ti,  evaporated  from  the  melt,  which  has  condensed   on   the   furnace/mould  walls.   This  work   is   focused   on   understanding   the  melting   kinetics   of  condensate   in   liquid   titanium.  The  work   supports   the  melt  processing  of  Ti407  alloy,   recently  patented  alloy   developed   by   Titanium  Metals   Corporation   (TIMET).   This   alloy   has   been   designed   specifically   to  produce  the  fan  blade  casing  for  the  Rolls-­‐Royce  Trent  XWB  engine.  The  fan  casings  purpose  is  to  contain  the   debris   that   can   be   generated  when   a   fan   blade   fails,   and   therefore,   it   is   a   critical   part   of   airplane  engine   for   protecting   passengers.   In   this   work   the   melting   of   commercial   pure   titanium   (CP-­‐Ti)   and  synthetic   condensate   (Ti-­‐Al)   in   liquid   titanium  has  been   investigated  with   the  aid  of   the  Electron  Beam  Button  Furnace  located  in  AMPLE.  The  results  show  that  the  liquid  titanium  initially  freezes  onto  the  cold  solid  to  form  a  shell  when  it  was  immersed  into  the  liquid  in  both  cases  (CP-­‐Ti  and  Ti-­‐Al).  This  resulted  in  the   formation   of   a   solid/solid   interface,   which   results   in   a   significant   resistance   for   heat   transfer.    Afterwards,  in  the  CP-­‐Ti  case,  the  frozen  titanium  melted  followed  by  melting  of  the  rod.  However,  in  the  Ti-­‐Al  case,  melting  of  the  Ti-­‐Al  solid  occurred  prior  to  the  melting  of  the  shell  since  the  Ti-­‐Al  has  a  lower  melting  temperature  than  the  shell.  After  the  melting,  sub-­‐shell  boiling  of  the  liquid  Ti-­‐Al  occurred  which  significantly  affected   the  heat   transfer  and  melting  behavior  –   the  Ti-­‐Al   solid  was  heated  up   in  a  much  slower  rate  comparing  to  the  CP-­‐Ti;  and  additionally,  the  shell   formed  in  the  Ti-­‐Al  case  was  much  more  persistent  than  that  formed  in  the  CP-­‐Ti  case.    

Page 24: Synergy Day 2015 Abstracts - UBC AMPELampel.sites.olt.ubc.ca/files/2015/05/Abstracts-2015...Synergy Day 2015 Abstracts ! WINNER – BEST RAPID FIRE RESEARCH ABSTRACT ! Title:!Solar!Rechargeable!Redox!Flow!Battery!

 Selective  attachment  of  fluorescent  dye  molecules  to  Au  nanorods  using  DNA  linkers    Authors:  Jonathan  Massey-­‐Allard,  Elizabeth  Fisher,  Kaylyn  Leung,  Dan  Bizzotto  and  Jeff  F.  Young       Abstract:   Surface  plasmon   resonances   supported  by  noble  metal   nanoparticles   can  drastically   enhance  both   the  excitation  and  emission  of  nearby  quantum  emitters.    The  effect   is  extremely  sensitive   to   the  emitter's   location   relative   to   the   nanoparticle's   surface.   This   motivates   the   development   of   a   reliable  technique   for   the   co-­‐localization   of   quantum   emitters   and   noble  metal   nanoparticles   with   nanometer  precision.    Here  we  report  on  our  progress  using  an  electroless  process  to  selectively  attach  a  fluorescent  dye   molecule   to   the   (111)   surface   on   the   ends   of   Au   nanorods   using   functionalized   DNA   linkers.    Theoretical   predictions   of   the   excitation   and   emission   enhancements   for   various   coupling   lengths  between  the  dye  molecule  and  the  nanorods  are  also  discussed.      Developing   a   knowledge   framework   to   sustainably   transform   composites   manufacturing   design  practice  Author:  Janna  Fabris    Abstract:   The   insertion   of   advanced   composites   is   an   excellent   example   of   a   promising   technology  threatened  by  manufacturing  risk.    This  risk   is  represented  by  design  uncertainty:   inherent  variability   in  materials  and  process  (aleatoric);  and  a   lack  of  understanding  root  causes  of  this  variability  (epistemic).    Consequently,  composite  manufacturers  cope  inadequately  with  unanticipated  manufacturing  challenges  and  late  engineering  design  changes.    Whilst  most  research  effort  is  spent  understanding  the  processing  physics   (science   /   knowledge)   and   developing   predictive   simulation   tools   (technology);   the   use   of  knowledge  to  prompt  intelligent  decision  making  (workflow  /  practice)  is  often  overlooked.    To   explicitly  manage   this   gap,  my  work   aims   to   establish   a   knowledge   framework   called   Knowledge   in  Practice.    The  goal  is  to  systematically  integrate  the  creation  and  application  of  composites  manufacturing  knowledge   to  prompt  composites  manufacturing  experts;   train  new  and   future  engineers;  and  educate  supply   chains.     We   believe   that   protecting,   advancing   and   disrupting   composites   manufacturing  knowledge  is  the  necessary  next  step  to  sustainably  transform  composites  manufacturing  design  practice  and  thus  address  composites  manufacturing  risk.    In   this   rapid-­‐fire   presentation   I   will   demonstrate   the   Knowledge   in   Practice   approach   with   Thermal  Management   examples   of   protecting,   advancing   and   disrupting   composites   manufacturing   design  practice.   A  RATE-­‐TYPE  CRYSTALLIZATION  KINETICS  MODEL  FOR  PROCESS  MODELLING  OF  CARBON  FIBRE  PEEK  MATRIX  COMPOSITES    Authors:  Kamyar  Gordnian  and  Anoush  Poursartip      ABSTRACT:  Process  models  of  composite  materials  are  highly  useful  tools  for  understanding  the  effects  of  process  variables  and  parameters  on  the  dimensional  changes  and  residual  stresses  in  the  final  product.  By   using   process   models,   optimal   process   conditions   are   ensured   and   production   risks   and   costs   are  minimized.  Process  modeling  platforms,  using  sub-­‐model  or  modular  approach  are  well  established  and  

Page 25: Synergy Day 2015 Abstracts - UBC AMPELampel.sites.olt.ubc.ca/files/2015/05/Abstracts-2015...Synergy Day 2015 Abstracts ! WINNER – BEST RAPID FIRE RESEARCH ABSTRACT ! Title:!Solar!Rechargeable!Redox!Flow!Battery!

are  widely  being  used  for   thermoset  composites.  These  sub-­‐models   include  thermochemical,   flow,  void  and  stress.  In  recent  years,  there  have  been  attempts  at  manufacturing  primary  aircraft  structures  such  as  fuselage  panels  from  thermoplastic  composites.  Processing  of  thermoplastic  composites  involves  heating  up   of   the   material   beyond   melting   temperature,   forming   and   then   cooling   down   using   different  temperature  profiles.  Whilst  cooling  down,  the  material  crystallizes  and  modulus  builds  up.      The  same  sub-­‐model  approach  can  be   followed   for  process  modeling  of   thermoplastic  composites.  The  main   component  of   thermochemical   sub-­‐model   for   thermoplastics   is   the   crystallization   kinetics  model.  Different  isothermal  and  constant  cooling  rate  non-­‐isothermal  crystallization  models  are  available  in  the  literature.      In   this   study,   we   investigate   the   crystallization   behavior   of   AS4/PEEK   which   is   an   aerospace   class  thermoplastic  composite.  Both  isothermal  DSC  tests  at  different  target  temperatures  and  non-­‐isothermal  DSC  tests  at  different  cooling  rates  are  conducted  on  melted  AS4/PEEK  tape.  Experimental   results   from  different  tests  indicate  that  the  rate  of  crystallization  is  only  a  function  of  state  of  transformation,  i.e.,  the  temperature  and  degree  of  crystallinity,  and  not  the  thermal  history.  Also  the  results  show  the  existence  of   an   incubation   period   or   induction   time.   For   induction   time   in   isothermal   crystallization,   a   simple  empirical  model  is  adopted  from  the  literature  and  calibrated  with  the  experimental  results.  This  model  together  with   the   additivity   rule   is   used   for   prediction   of   induction   time   for   an   arbitrary   temperature  profile.   The   rate   of   crystallization   equation   and   the   induction   time   model   are   used   for   prediction   of  degree  of  crystallinity  at  each  time  instant  during  processing  of  AS4/PEEK  composites.  The  experimental  results  are  in  good  agreement  with  the  model’s  predictions.    Experimental  determination  of  band  structure,  superconducting  gap,  and  electronic  correlations  on  LiFeAs.  Authors:  G.  Levy,  R.  Szedlak,  S.  Chi,  G.  Hodgson,  B.  Ludbrook,  C.  Veenstra,  R.  Comin,  Z.-­‐H.  Zhu,  J.A.  Rosen,  R.  Sutarto,  A.  Radi,  R.  Liang,  W.N.  Hardy,  D.A.  Bonn,  I.S.  Elfimov,  G.A.  Sawatzky,  A.  Damascelli    Abstract:   We   performed   angle-­‐resolved   photoemission   spectroscopy   experiments   (ARPES)   on   LiFeAs  single  crystals.  The  absence  of  a  polar  surface  or  surface  reconstruction,  as  evidenced  experimentally  by  low   energy   electron   diffraction   (LEED)   technique,   makes   LiFeAs   an   ideal   system   to   compare   the  experimentally  determined  band  structure  with  ab-­‐initio  density   functional  calculations.  We  will  discuss  the   pitfalls   encountered   on   such   a   comparison   and   the   different   approaches   to   address   it.   From   this  comparison,   we   determine   a   band   renormalization,   which   we   relate   to   the   strength   of   the   electronic  correlations  obtained  from  Auger  electron  spectroscopy  using  Cini-­‐Sawatzky  theory.  Once  the  electronic  correlations  are  determined,  we  focus  on  their  coupling  with  bosonic  excitations  as  evidence  by  kinks  on  the   band   dispersion.   Lastly,   we   discuss   our   observation   of   the   superconducting   gap   and   its   evolution  along  the  Fermi  surface.            

Page 26: Synergy Day 2015 Abstracts - UBC AMPELampel.sites.olt.ubc.ca/files/2015/05/Abstracts-2015...Synergy Day 2015 Abstracts ! WINNER – BEST RAPID FIRE RESEARCH ABSTRACT ! Title:!Solar!Rechargeable!Redox!Flow!Battery!

Nanostructure  Solid  Solution  Photocatalyst  Synthesis  and  the  Effect  of  Substrate  Material  on  Photo-­‐Induced  Charge  Separation  Authors:  Babak  Adeli  Koudehi  and  Fariborz  Taghipour    Abstract:   The   development   of   photocatalyst   system   for   solar   to   chemical   energy   conversion   is   a  topic  of  great   interest   for   fundamental  and  practical   importance.  Large-­‐scale  hydrogen  production  from  water  can  potentially  produce  clean  fuel  from  renewable  resources.  The  splitting  of  water  into  hydrogen  and  oxygen  has  been  studied  extensively  over  the  past  decades.  However,   in   the  visible  light  (λ >  400  nm)  region,  quantum  efficiency  remains  only  a  few  percent  or  much  lower.      Among   a   few   visible-­‐light   activated   photocatalysts,   GaN:ZnO   solid   solution   demonstrated   high  activity   for   overall   water   splitting,   controllable   band   gap   energy,   and   stability   in   water   splitting  reaction   condition.  However,   low   surface   area   and  high   rate   of   charge   recombination   limited   the  performance  of  GaN:ZnO.        Nanostructure   photocatalysts,   due   to   their   larger   interfacial   surface   areas   than   their   bulk  counterparts,   show  more  efficient  electron-­‐hole  pair  separation,  and  allow  tailoring  of  optical  and  electrical  properties  for  optimal  light  absorption  and  energy  transfer.      In   this  work,  we   developed   a   cost   effective   synthesis   technique   for   nanoporous  GaN:ZnO,  with   higher  active   surface  area,   comparing   to   the  one   synthesized  via   traditional   techniques.  Nano-­‐porosity  on   the  surface   of   the   sample   confirmed   through   SEM   analysis.   The   prepared   photocatalyst   incorporated   into  zeolite   as   substrate   in   order   to   enhance   the   charge   separation.   The   rate   of   charge   recombination   of  samples   were   estimated   through   photoluminescence   spectroscopy   (PL)   analysis,   which   indicated   the  improvement  in  charge  separation  via  composite  preparation