43
Maria Katsikini Lecturer Department of Solid State Physics Synchrotron Radiation: a novel research tool in materials science xafslab.physics.auth.gr

Synchrotron Radiation: a novel research tool in materials ...users.auth.gr/katsiki/crete.pdfPhase shift ANALYSIS OF THE EXAFS SPECTRA * Nearest neighbor distances * Coordination numbers

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

  • Maria KatsikiniLecturerDepartment of Solid State Physics

    Synchrotron Radiation: a novel research tool in materials science

    xafslab.physics.auth.gr

  • Outline

    About Synchrotron Radiation

    Principles of absorption & fluorescence spectroscopies

    Applications • III-V nitrides • Solidified wastes• Solid biological samples

    Summary

  • Synchrotron radiation

    1947: Experimental verification 1994: 3rd generation sources

    General Electric

    Research Laboratory

    New York

    Electromagnetic radiation produced by accelerated particles circulating in close orbits with very high speed

  • SR sources

    100 101 102 103 104 10510-2101104107

    101010131016

    BESSY-II: E=1GeV, I=400mA, B=1.3T

    Bri

    gh

    tne

    ss(p

    ho

    ton

    s /

    se

    c

    . m

    rad

    2

    . 0

    .1%

    BW

    )

    E(eV)

    εC

    Electron orbit

    br

    il

    li

    an

    ce

    Bending magnet Undulator

  • Properties of SR

    Very high brightnessSmall beam size / low divergence study of small samples & spatial resolved studies

    Linearly / circularly polarized study of magnetic samples,

    surfaces, catalysis

    Pulsed character in-situreal-time chemical reactions

    Continuous spectrum IR hard X-raysEnergy tunability spectroscopies

  • Techniques & beamlines

    X-ray diffraction (XRD) & scattering (SAXS, WAXS)

    X-ray absorption spectroscopy (XAFS)

    X-ray photoelectronspectroscopy (XPS)

    X-ray fluorescencespectroscopy (XRF)

    Imaging techniques (microscopy, topography, tomography, XRF mapping)

    Time resolved studies

    Physics Materials Science Medicine & biology Chemistry Geology Environmental sciences

  • X-ray absorption & fluorescence

    core shells

    valence shell

    KL

    MN

    impinging photon with E>Eb

    emitted photoelectron

    emitted fluorescence photonwith characteristic energy (EK-EL)

  • Absorption & fluorescence spectroscopies

    energy dependence of the X-ray absorption coefficient above the absorption edge

    XAFS X-Ray Absorption Fine Structure

    7800 8000 8200 8400 86000.0

    0.5

    1.0

    X-ra

    y ab

    sorp

    tion

    coef

    ficie

    ntEnergy (eV)

    Co - K - edge

    2 4 6 8 100.0

    0.5

    1.0

    CuFe

    Inte

    nsity

    (arb

    . uni

    ts)

    Energy (keV)

    SArCa

    Zn

    energy distribution of the emitted fluorescence photons

    after excitation with X-rays

    XRF X-Ray Fluorescence

    of emitted fluorescence photons of absorbed photons

    Number of absorbed photons or emitted fluorescence photons or emitted electrons (photoelectrons & secondary electrons)

  • X-r

    ay

    ab

    sorp

    tio

    nc

    oe

    ffic

    ien

    t

    Energy (eV)

    X-ray absorption fine structure (XAFS)

    e

    NEXAFS/XANES

    NEXAFS The outgoing photoelectron interacts with the molecular orbitals

    EXAFS

    EXAFS

    The outgoing photoelectron is scattered from the neighboring atoms

    Modulation of X-ray

    absorption coefficient

    hv

    Backscattered wave

    Outgoing photoelectron

    waveInterference

    Ek=hν-Eb

  • Extended X-ray absorption fine structure (EXAFS)

    Mean free pathof the φe-

    Backscattering amplitude

    Coordination number Debye-Waller

    factor

    distance

    Phaseshift

    ANALYSIS OF THE EXAFS SPECTRA

    * Nearest neighbor distances* Coordination numbers* Thermal / static disorder

    Least square fitting using various single or multiple scattering paths.Some structural parameters e.g. R, N are iterated.

    Simulation using a proper structural model

    4 6 8 10 12 14 16 18

    -0.1

    0.0

    0.1

    χ(k)

    k(A-1)

    0 1 2 3 4 5 6

    Ga

    N

    R(Å)

    |FT

    |

    Fourier transform

    (radial distribution function)

  • Near edge X-ray absorption fine structure (NEXAFS)

    NEXAFS -XANES• Density of empty states• Symmetry • Defect states

    A d v a n t a g e s• non-destructive

    • Applicability on solids (amorphous & crystalline) • Atom selective

    EF

    core states

    OccupiedDOS

    UnoccupiedDOS

    0valence band

    conduction band Dipole approximation

    polarization unit vector density of

    states

    hv=Ef-Ei

  • XAFS characterization of III-V nitrides

    Effect of symmetry & composition

    Implantation & defect formation

    Bonding configuration of impurities

    Effect of alloying on the microstructure

    Applications of III-V nitrides

    Results

    1

    2

    3

    4

    Samples:T. D. Moustakas (Boston Univ.)A. Georgakilas (Univ. of Crete)C.T. Foxon (Univ. of Nottingham)I. Akasaki (Nagoya Univ.)

    • Optoelectronics: blue LED/laser• Micro-electronics: high power devices• Alloying (AlN, GaN, InN) band gap engineering

  • XAFS characterization of III-V nitrides Effect of symmetry

    1

    Quantitative determination of cubic and hexagonal fractions in mixed-phase samples .

    M. Katsikini et al, APL 69, 4206 (1996) & JAP 83, 1437 (1998)

    NEXAFS is strongly affected by the symmetry of the polytype

    mixed phase

    25% cub+75%hex

    400 410 420 4300

    1

    2

    3

    Inte

    nsi

    ty (

    arb

    .un

    its)

    Energy (eV)

    hexagonal

    cubic

    GaN

    N-K edge

    Linear Combination of Spectra

  • XAFS characterization of III-V nitrides Effect of composition

    1

    400 410 420 430 4400

    1

    2

    3

    4

    Inte

    nsi

    ty (

    arb

    . un

    its)

    energy (eV)

    AlN

    InN

    GaN

    Absorption edge width : Wabs= 0.8-2me*

    M. Katsikini et al, J. Synchr. Rad. 6, 558 (1999)

    Absorption edge position : red shifted with ΖC

    me*= 0.3m0(AlN) me*= 0.2m0(GaN) me*= 0.11m0(InN)

    408 409 410 411 4120

    1

    2

    Inte

    nsi

    ty (

    arb

    . un

    its)

    energy (eV)

    AlN

    InN

    GaN

  • XAFS characterization of III-V nitrides Implantation & defect formation

    2

    Ion implantation• precise doping profile• formation of new phases, e.g. InGaN/GaN

    disadvantage• lattice damage • annealing dopant activation & lattice recovery

    400 410 420 430

    0

    2

    4

    6

    8

    10

    1000

    500

    200

    100

    70

    50

    30

    20

    15

    10

    5

    Inte

    nsity

    (arb

    . uni

    ts)

    Energy (eV)

    as grown

    fluence (cm-2)

    x1013

    RL1

    RL2

    Effect of fluence • damping of the NEXAFS peaks • emergence of RL1 and RL2

  • XAFS characterization of III-V nitrides Implantation & defect formation

    2

    400 410 420 430

    0

    2

    4

    6

    8

    10

    1000

    500

    200

    100

    70

    50

    30

    20

    15

    10

    5

    Inte

    nsity

    (arb

    . uni

    ts)

    Energy (eV)

    as grown

    fluence (cm-2)

    x1013

    RL1

    RL2

    400 401 402

    Energy (eV)

    RL2

    236meV

    vibronicstates of N2

    RL1: ~ 1.7eV bellow the absorption edge

    The N=N bonds give πpantibonding mid-gap states [J. Neugebauer et al , PRB 50, 8067 (1994)]

    N-split interstitial

    M. Katsikini et al, J. Phys.: Conf. Series, 190, 12065 (2009)

  • 0 1 2 3 4 5 6 7 80

    1

    2

    3

    4

    5

    6

    7 Ga

    as grown

    ann. (900oC)

    ann. (800oC)

    |FT

    {k2χ(

    k)}|

    R(Å)

    as implanted

    N

    Sample RGa-N(Å) ± 0.01

    RGa-Ga (Å) ± 0.005

    NGa-N NGa-Ga

    as grown 1.94 3.178 4 12

    as implanted

    1.95 3.187 3.5±0.4 4.8±0.6

    annealed (800oC)

    1.94 3.192 3.8±0.6 11.4±2.1

    annealed (900oC)

    1.94 3.193 3.1±0.3 10.6±0.8

    Fluence: 5x1015cm-2

    • Implantation : reduction Ni

    XAFS characterization of III-V nitrides Implantation & bonding of Ga

    2

    Effect of annealingGa - K - edge

    M. Katsikini et al, Mat. Sci. Eng. B, 152, 132 (2008)

    • Loss of nitrogen at 900oC

    • Annealing at 800oC increase of the Ga-Ga distance and partial recovery of Ni

  • ϕ=55ολf~60nm

    XAFS characterization of III-V nitrides Bonding configuration of impurities

    3

    Implantation of GaN with 70keV O ions

    Why O?• Diluted: n-type dopant• at high concentrations formation of GaOxNy

    400 410 420 430 4400

    1

    2

    3

    4

    fluence (cm-2)

    as grown

    1x1016

    1x1015

    1x1017

    Energy (eV)

    Inte

    nsi

    ty (

    arb

    . un

    its)

    • implantation affects strongly the spectra variation of the O bonding

    N K edge O K edge

    M. Katsikini et al, APL 82, 1556 (2003) & NIMB (in press)

  • Self Consistent Fieldfor the electron density &

    scattering potentials

    Full Multiple Scattering

    RFMS

    RSCF

    RSCF=5.6 - 6ÅRFMS=8Å (195-230 atoms)

    N-K edge (hex GaN)

    M. Katsikini et al, JAP 101, 83510 (2007)

    XAFS characterization of III-V nitrides Bonding configuration of impurities

    3

    FEFF8: ab-initio MS calculations • scattering of the photoelectron wave from the muffin-tin potentials of the neighboring atoms

  • XAFS characterization of III-V nitrides Bonding configuration of impurities 3

    M. Katsikini et al, Nucl. Instrum. Meth. B (in press)

    O-Ga=1.84Å

    fluence=1×1015cm-2

    530 540 550 560

    0

    2

    4

    6

    simul.

    no

    rma

    lize

    d in

    ten

    sity

    Energy (eV)

    exp.

    channel interstitial (O in the Ga plane)

    column interstitial

    50% + 50%

    O is interstitial

    O-Ga=1.84Å

    fluence=1×1016cm-2

    O substitutes for N

    530 540 550 5600

    2

    4

    6

    simul.

    exp.

    no

    rma

    lize

    d in

    ten

    sity

    Energy (eV)

    0 2 4 6 8 10 120

    10

    20

    30

    40

    disordered

    nu

    mb

    er

    of b

    on

    ds

    radial distance (A)

    crystalline

  • 530 540 550 5600

    2

    4

    6

    8

    10

    12

    Inte

    nsi

    ty (

    arb

    . uni

    ts)

    Energy (eV)

    simul.

    exp.

    α-Ga2O3

    50% O + 50% N

    XAFS characterization of III-V nitrides Bonding configuration of impurities

    3

    formation of oxynitrides

    fluence=1×1017cm-2

    CVD poly-GaN O contamination varies with deposition temperature

    N. H. Tran et al, J. Phys. Chem. B, 109, 18348 (2005).

  • XAFS characterization of III-V nitrides Effect of alloying on the microstructure

    4

    Alloying of InN and GaN band gap engineeringProblem: ~10% mismatch

    0 1 2 3 4 5 6 7 80

    2

    4

    x=1

    0.9

    0.8

    0.7

    |FT

    {k2χ(

    k)}|

    R (A)

    0.07

    4 5 6 7 8 9 10 11 12

    0.0

    0.2

    0.4

    x=1

    0.9

    0.8

    0.7χ(k

    )

    k (A-1)

    0.07

    In – K – EXAFS

    InxGa1-xN

    M. Katsikini et al, pss (a) 205, 2593 (2008).

  • Ferhat & Bechsted, PRB65, 075213 (THEORY)

    Cation – cation distances

    RGa-Ga

  • X-ray fluorescence spectroscopy

    2 4 6 8 100.0

    0.5

    1.0

    CuFe

    Inte

    nsity

    (arb

    . uni

    ts)

    Energy (keV)

    SArCa

    Zn

    Quantitative analysis• using standards• using the fundamental parameter method

    Uses:

    CA: element concentration (mA/msample)ωA: fluorescence yieldgl: transition probability(rA-1)/rA: jump ratioμ/ρ : mass absorption coefficientEl: fluorescence energyA: analyte, M: matrixϕ,ψ: incidence, detection angles

    ϕ

    ψ

  • X-ray fluorescence spectroscopy

    substance identification

    Uses:

    Chinese porcelains imported in Europe were re-decorated.Identification of metals (Fe, Cu, Mn) used to color the enamelLarge objects difficult to be studied by SEM

    K. Janssens et al, Spectrochim. Acta, B51, 1161 (1996).

  • X-ray fluorescence spectroscopy

    2 4 6 8 100.0

    0.5

    1.0

    CuFe

    Inte

    nsity

    (arb

    . uni

    ts)

    Energy (keV)

    SArCa

    Zn

    XRF mapping (spatial distribution of elements)

    Uses:

    • proper energy windows• micrometric sample movement• reduction of the beam size

  • Original ink, rich in Zn(Bøtinge i Asbo)

    • Non- destructive

    • Detection of high - Z elements (Fe, Cu, Sn, Sb, Ag) and mapping

    • Different composition of inks although their visual appearance is the same

    Sweden, 1499

    Falsifying ink, rich in Ca(Gäsmestad i Böre)

    X-ray fluorescence spectroscopy

    XRF mapping (spatial distribution of elements)

    Authenticity of valuable documents.

    K. Janssens et al, X-ray spectrometry, 29, 73 (2000).

  • XAFS characterization of solidified wastes

    Structural role of Fe in glasses

    Annealing induced devitrification

    Determination of crystallization ratio

    Motivation• Problem: Management of Pb and Fe-containing toxic wastes from storage tanks from oil industry

    • Stabilization & immobilization via vitrification (co-melting with SiO2 + Na2O)

    Results

    Glass or vitroceramic

    Samples: Prof. T. Karakostas

    Fani Pinakidou (PhD)

    1

    2

    3

  • XAFS characterization of solidified wastes

    7100 7120 7140 7160 7180 72000

    2

    FeS

    In

    ten

    sity

    (a

    rb.u

    nit

    s)

    Energy (eV)

    Fe3O

    4

    Pre edge peak

    Fe K edge

    K

    L

    M

    1s2

    2s2, 2p6

    N

    3s2, 3p6, 3d6

    4s2

    The field of the O ligandsmodifies the Fe 3d energy levels

    empty d-states

    7110 7115 7120energy (eV)

    non centrosymmetricDipole allowed -mixing of 3d Fe + 2p O

    High intensity Small width

    1 function to simulate the pre-peak

    7110 7115 7120energy (eV)

    centrosymmetric& distortionQuadruple allowed

    Low intensity Large width

    2 functions to simulate the pre-peak

  • XAFS characterization of solidified wastes1

    10 20 30 40 50 60

    3.5

    4.0

    4.5

    5.0

    5.5

    Co

    ord

    ina

    tio

    n N

    um

    be

    r

    Fly ash (wt%)

    Glasses with 10% < ash

  • XAFS characterization of solidified wastes2

    F. Pinakidou et al, JAP 102, 113512 (2007)

    Annealing induced devitrification

    -150 -100 -50 0 50 100 150-150

    -100

    -50

    0

    50

    100

    150

    μmμm

    0.2

    0.4

    0.5

    0.7

    0.8

    1.0

    -400 -200 0 200 400

    -400

    -200

    0

    200

    400

    μm

    μm

    0.2

    0.4

    0.5

    0.7

    0.8

    1.0

    60% ash – 25% SiO2 – 15% Na2O

    annealing (440oC) annealing (600oC)

    Fe Fe

    Annealing promotes the inhomogeneity

  • 0 1 2 3 4 5 60

    4

    8

    12

    16

    20

    FT

    (a

    rb. u

    nit

    s)

    R (Å)

    Fe2O

    3

    XAFS characterization of solidified wastes2

    F. Pinakidou et al, JAP 102, 113512 (2007) & J. non Cryst. Solids 351, 2474 (2005)

    Annealing induced devitrification

    -150 -100 -50 0 50 100 150-150

    -100

    -50

    0

    50

    100

    150

    μm

    μm

    mid – range order(re-crystallization / devitrification )

    7100 7120 7140 71600

    1

    2

    Fe2O

    3

    Inte

    nsi

    ty (

    arb

    . uni

    ts)

    Energy (eV)

    NEXAFSFT of EXAFS

    octahedral / tetrahedral coordination

  • 0 1 2 3 4 5 60

    4

    8

    12

    16

    20

    24

    FT

    (arb

    . un

    its)

    R (Å)

    XAFS characterization of solidified wastes3

    F. Pinakidou et al, JAP 102, 113512 (2007)

    Crystallization ratio

    ~80% glassy + 20% PbO ∙ 6 (Fe2O3)

    μ-EXAFSFe –rich region -150 -100 -50 0 50 100 150-150

    -100

    -50

    0

    50

    100

    150

    μm

    μm

    PbO ∙ 6 (Fe2O3)

    μ-EXAFSLow-Fe region

    conventional EXAFS (fitting using a mixed model)

  • XAFS & XRF characterization of human nails

    Motivation Use of the human nails as bioindicators

    Results

    Structural role of metals in keratins which are also found in tumors

    Spatial distribution of Fe

    Effective atomic number

    Bonding environment of Zn samples

    Hospital of Dermatological & Venereal Diseases

    Pulmonary Clinic of AUTH

    1

    2

    3

    Nail :modified type of epidermis keratinized matrix + heavier inorganic elements

    major elements (e.g. Ca, Mg, K, Na)

    trace elements (e.g. Fe, Cu)

    Lack or excess is related to: • disorders or diseases • environmental factors• nutritional factors

    hard insoluble protein, rich in cysteine

    keratin

  • healthy

    lung cancer

    Distribution of Fe in nails1

    0

    20

    40

    60

    80

    100

    density of clusters=1656 mm-2

    nu

    mb

    er

    of

    clu

    ste

    rs

    0 20 40 60 80 280 3000

    20

    40

    60

    80

    100

    H

    size (μm)

    C1

    density of clusters=2594 mm-2

    Spatial density of Fe-rich regions ~ x 1.5 higher in the sample from the cancer patient

    M. Katsikini et al, Nucl. Instrum. Meth. B (in press)

  • Zn bonding in nails2

    M. Katsikini et al, J. Phys.: Conf. Series, 190, 12204 (2009)

    0 1 2 3 4 5 6 7 80

    1

    2

    3

    4

    S/N = 0.43

    S/N = 0.42

    S/N = 0.38

    S/N = 0.48

    S/N = 0.53

    clubbed nail

    clubbed nail

    FT

    Inte

    nsi

    ty (

    arb

    . un

    its)

    R (Å)

    healthy

    healthy

    obstructing lung disease

    tuberculosis

    fibrosis

    N S

    S/N = 0.81

    Zn – N distance = 2.00ÅZn – S distance = 2.28Åcoordination number ~4

    More S atoms are bonded with Zn

    the lung tissue thickens, becomes stiff and inhibits O2 from entering the blood stream.

  • Predominant bonding of ZnZn (his) (cys)3

    Healthy

    Fibrosis

    Zn S O N C

    2 4 6 8 10-0.2

    0.0

    0.2

    0.0

    0.5

    1.0

    1.5

    0 1 2 3 4 5 6 7 80.0

    0.5

    1.0

    1.5

    2 4 6 8 10-0.2

    0.0

    0.2

    χ(k)

    k (Å-1)

    |FT

    {k2χ(

    k)}|

    R(Å)

    χ(k)

    k (Å-1)

    Zn bonding in nails2

    Predominant bonding of ZnZn (his)2 (cys)2

    M. Katsikini et al, J. Phys.: Conf. Series, 190, 12204 (2009)

  • 9.0 9.5 10.0 10.5 11.0

    scattered

    RayleighCompton

    Energy (keV)

    Zn Kβ

    X-ray scattering from human nailsIntense• in materials of small Zeff• at high energies

    SplittedElastic (Rayleigh) at ER=E0Inelastic (Compton) at Ec

  • Effective atomic number of human nails

    Rayleigh to Compton scattering ratio as a function of the fat content of liver.

    3

  • Effective atomic number of human nails

    Incoherent scattering factor

    atomic form factor

    x=sinϑ/λ

    3

    M. Katsikini et al, J. Nanoscience & Nanotechnology (in press)

    polarization factor (=0.84)

  • Effective atomic number of human nails

    x=sinϑ/λ

    3

    Phe 5.76Leu 5.92Ile 5.96Lys 6.00Val 6.01Trp 6.05Pro 6.11Gln 6.18Arg 6.18Tyr 6.20His 6.28Ala 6.29Ser 6.29Thr 6.42Asn 6.54Gly 6.54Glu 6.58Asp 6.74Met 8.45Cys 9.31

    affect stronglythe Zeff

    M. Katsikini et al, J. Nanoscience & Nanotechnology (in press)

    Mean Zeff : 7.5±0.416 samples

  • Summary

    Synchrotron Radiation is a valuable tool for the study of materials.

    The NEXAFS spectrum is fingerprint of the symmetry and the composition. It is strongly affected by lattice damage & presence of defects.It is sensitive to the bonding geometry of impurities .

    EXAFS provides information on the bonding environment of the absorbing atom. It provides information on local distortions. It can be applied in crystalline and amorphous materials.

    The use of “focused” beams (1-5μm) permits the detection of inhomogeneities (XRF mapping) and the determination of the spatially resolved bonding configurations of the elements.

    XAFS & XRF are useful and non destructive techniques for the atom specific structural and chemical analysis of materials.

  • xafslab.physics.auth.gr

    • Prof. Eleni C. Paloura • Maria Katsikini, Lecturer• Dr. Fani Pinakidou, Pdoc• Katerina Mavromati, PhD candidate• 3 MSc students

    Measurements