24
Symmetry vs. Chaos * in nuclear collective dynamics signatures & consequences Pavel Cejnar Institute of Particle and Nuclear Physics Faculty of Mathematics and Physics Charles University, Prague, Czech Republic cejnar @ ipnp.troja.mff.cuni.cz Kazimierz 2010 1/15 * According to Empedocles (cca.490-430 BC), the real world, Cosmos, is an interference of Sphairos, an exquisite world of perfect order originating in symmetry, and Chaos, a world of complete disorder which results from a lack of symmetry.

Symmetry vs. Chaos * in nuclear collective dynamics signatures & consequences

  • Upload
    lesley

  • View
    32

  • Download
    0

Embed Size (px)

DESCRIPTION

1/15. Symmetry vs. Chaos * in nuclear collective dynamics signatures & consequences. Pavel Cejnar Institute of Particle and Nuclear Physics Faculty of Math ematics and Phys ics Charles University, Prague, Czech Republic cejnar @ ipnp.troja.mff.cuni.cz. - PowerPoint PPT Presentation

Citation preview

Page 1: Symmetry  vs.  Chaos  * in nuclear collective dynamics signatures  &  consequences

Symmetry vs. Chaos *

in nuclear collective dynamicssignatures & consequences

Pavel CejnarInstitute of Particle and Nuclear PhysicsFaculty of Mathematics and Physics Charles University, Prague, Czech Republic

cejnar @ ipnp.troja.mff.cuni.cz

Kazimierz 2010

1/15

* According to Empedocles (cca.490-430 BC), the real world, Cosmos, is an interference of Sphairos, an exquisite world of perfect order originating in symmetry, and Chaos, a world of complete disorder which results from a lack of symmetry.

Page 2: Symmetry  vs.  Chaos  * in nuclear collective dynamics signatures  &  consequences

Invariant symmetryÞ commutation of Hamiltonian

with generators of a certain group (group of invariant symmetry)

Þ conservation laws

2/15

ÞBreakdown of dynamical symmetrySignatures of symmetry do not vanish instantly:Quasi dynamical symmetry (Rowe… 1988…)The actual dynamical symmetry of the system is broken but the system partly behaves as if the symmetry were effectively preserved.Partial dynamical symmetry (Leviatan… 1992…)All conserved quantum numbers preserved for a part of states or a part of conserved quantum numbers preserved for all states. All kinds of dynamical symmetry

relevant in physics of nuclear collective motions. These motions are therefore mostly thought to be regular...

Symmetry

Breakdown of integrabilityRegular character of classical motions is preserved for some orbits: KAM theorem (Kolmogorov, Arnold, Moser 1954-63)Þ “quasi integrability”Þ “partial regularity”

Dynamical symmetryÞ symmetry of a particular system with respect to

a dynamical group – a higher group than the one following from the invariance requirements

Þ invariant symmetry with respect to the dynamical group can be broken, but a number of motion integrals remains preserved

Þ dynamical symmetry integrability

perfect order

Page 3: Symmetry  vs.  Chaos  * in nuclear collective dynamics signatures  &  consequences

Quantum chaosÞ no genuinely quantum definition of chaos

(linearity & quasi periodicity of quantum mechanics)

Þ chaos studied in connection with classical limitÞ Bohigas conjecture (1984): Chaos on

quantum level affects statistical properties of discrete energy spectra. Chaotic systems yield spectral correlations consistent with Gaussian random matrix model.

Classical chaosÞ exponential sensitivity to initial

conditions (“butterfly wing effect”)Þ practical loss of predictabilityÞ quasi ergodic trajectories in the

phase space

Chaos

ω=0.62

Nuclei show neat signatures of quantum chaos!• data from neutron and

proton resonances: Bohigas, Haq, Pandey (1983)

• ensemble of low-energy levels: Von Egidy et al. (1987)

(Wigner)

112 )(

Nearest-neighbor spacing

1

1

ii

iii EE

EEs

Brody distribution interpolates between Poisson (ω=0) … orderWigner (ω=1) … chaos

1

e)(

sssP

3/15

Page 4: Symmetry  vs.  Chaos  * in nuclear collective dynamics signatures  &  consequences

1) Single-particle dynamics Nucleonic motions in deformed nuclear potentials

?Origin of chaos in atomic nuclei

2) Collective dynamics Nuclear vibrations and rotationsa) Interacting Boson Model (IBM) Iachello, Arima

1975• Alhassid, Whelan, Novoselsky: PRL 65, 2971 (1990); PRC 43, 2637 (1991); PRC 45, 1677 (1992); PRL

67, 816 (1991); NPA 556, 42 (1993)• Paar, Vorkapic, Dieperink: PLB 205, 7 (1988); PRC 41, 2397 (1990), PRL 69, 2184 (1992)• Mizusaki et al.: PLB 269, 6 (1991) • Canetta, Maino: PLB 483, 55 (2000)• Cejnar, Jolie, Macek, Casten, Dobeš, Stránský: PLB 420, 241 (1998); PRE 58, 387 (1998); PRL 93,

132501 (2004); PRC 75, 064318 (2007), PRC 80, 014319 (2009), PRC 82, 014308 (2010), PRL 105, 072503 (2010)

b) Geometric Collective Model (GCM) Bohr 1952

• Cejnar, Stránský, Kurian, Hruška: PRL 93, 102502 (2004); PRC 74, 014306 (2006); PRE 79, 046202 (2009), PRE 79, 066201 (2009), JP Conf.Ser. 239, 012002 (2010)

• Arvieu, Brut, Carbonell, Touchard: PRA 35, 2389 (1987)• Rozmej, Arvieu: NPA 545, C497 (1992)• Heiss, Nazmitdinov, Radu: PRL 72, 2351 (1994); PRL 73, 1235 (1994); PRC 52, 3032

(1995)

Many-body dynamics Complex interactions of all particles in the nucleustoo difficult => two complementary simplifications:

4/15

Page 5: Symmetry  vs.  Chaos  * in nuclear collective dynamics signatures  &  consequences

Angular momentum → 0

.....][5][2

35][5.....][2

5 2)0()0()2()0()0( CBAK

H

)1(* ][10 mm iJ

Geometric Collective Model

V

T

zyx

CBAK

JH ...3cos...21

),(2432

2

22

,,

2'

rot

22vib 2

1yxK

T

Þ effectively 2D system

PAS2 |Re2sin yPrincipal Axes System

PAS0 |Recos x

Shape variables

…corresponding tensor of momenta

quadrupole tensor of collective coordinates ( 2 shape + 3 Euler angles = 5D )

Hamiltonian

A. Bohr 1952Gneuss et al. 1969

neglect …

5/15

x

y

Page 6: Symmetry  vs.  Chaos  * in nuclear collective dynamics signatures  &  consequences

Geometric Collective Model

neglect higher-order terms

…corresponding tensor of momenta

quadrupole tensor of collective coordinates ( 2 shape + 3 Euler angles = 5D )

.....][5][2

35][5.....][2

5 2)0()0()2()0()0( CBAK

H

PAS2 |Re2sin yPrincipal Axes System

PAS0 |Recos x

A. Bohr 1952Gneuss et al. 1969

x

y

Hamiltonian

V

T

zyx

CBAK

JH ...3cos...21

),(2432

2

22

,,

2'

rot

22vib 2

1yxK

T

sphericalprolate

oblate

B

AC >0

Shape-phase diagram

Shape variables

neglect …

5/15

Page 7: Symmetry  vs.  Chaos  * in nuclear collective dynamics signatures  &  consequences

.....][5][2

35][5.....][2

5 2)0()0()2()0()0( CBAK

H

independent scales

energy time coordinates

External parameters

ACB2

… but a fixed value of Planck constant

K

2

1) “shape” parameter

2) “classicality” parameter

path crossing all parabolas Þ all equivalent classes of Hamiltonians

integrability

Geometric Collective Model

Two essential parameters

B

A

prolate

oblate

spherical

C >0

Hamiltonian

Stránský, Cejnar… 2004 ……. 2010

neglect …

6/15

Page 8: Symmetry  vs.  Chaos  * in nuclear collective dynamics signatures  &  consequences

Geometric Collective Model

totregreg /f

chaos order

Stránský, Cejnar… 2004 ……. 2010

Classical chaos

Regular phase space fraction

map of the degree of chaos

7/15

Page 9: Symmetry  vs.  Chaos  * in nuclear collective dynamics signatures  &  consequences

Geometric Collective Model

totregreg /f

chaos order

Stránský, Cejnar… 2004 ……. 2010

Classical chaos

Regular phase space fraction

map of the degree of chaos

7/15

x

y

x

y

x

y

x

y

convexconcave

convex

concave

change of the shape of the border of the accessible domain in the xy plane

Page 10: Symmetry  vs.  Chaos  * in nuclear collective dynamics signatures  &  consequences

Classical chaosJ = 0, E = 0, A = −5.05, B = C = K = 1

50,000 passages of 52 randomly chosen trajectories throughthe section y=0

Geometric Collective Model

x

yx

Stránský, Cejnar… 2004 ……. 2010

Poincaré section

examples of trajectories and a Poincaré section

x

8/15

Page 11: Symmetry  vs.  Chaos  * in nuclear collective dynamics signatures  &  consequences

J = 0

2

22

22vib

21

21

K

KT yx

Two quantization options

432

2222322

3cos

)()3()(

CBA

yxCxyxByxAV

(a) 2D system (b) 5D system restricted to 2D (true geometric model of nuclei)

H

2

2

2

2

2

2

2

22

vib

112

2

K

yxKT

3sin

3sin11

2 24

4

2

vib KT

The 2 options differ also in the metric (measure) for calculating matrix elements.► Possibility to test Bohigas conjecture in different quantization schemes.

with additional constraints

(to avoid quasi-degeneracies due to the symmetry of V) ),(),(

),(),( 32

k

even / odd

K

2 classicality parameter

Geometric Collective Model Stránský, Cejnar… 2004 ……. 2010

Quantum chaos

9/15

Page 12: Symmetry  vs.  Chaos  * in nuclear collective dynamics signatures  &  consequences

Geometric Collective Model Stránský, Cejnar… 2004 ……. 2010

Quantum chaoscomparison of classical and quantal measures

freg … classical regular fraction 1−ω … adjunct of Brody parameter

10/15

Page 13: Symmetry  vs.  Chaos  * in nuclear collective dynamics signatures  &  consequences

1) Quasi-2D angular momentum

2) Hamiltonian perturbation

Choice of P

Geometric Collective Model Stránský, Cejnar… 2004 ……. 2010

Quantum chaosdeparture from integrable regime

2) <H’>

1) <L2>

11/15

iii PP

iE

Visual method by A. Peres (1984)

Page 14: Symmetry  vs.  Chaos  * in nuclear collective dynamics signatures  &  consequences

B=0.62

Geometric Collective Model Stránský, Cejnar… 2004 ……. 2010

Quantum chaos

1) <L2>

complex mixture of regular and chaotic patterns: ordered vs. chaotic states 2)

<H’>

12/15

Visual method by A. Peres (1984)

Page 15: Symmetry  vs.  Chaos  * in nuclear collective dynamics signatures  &  consequences

■ ● ♦

B=0.62

Geometric Collective Model Stránský, Cejnar… 2004 ……. 2010

Quantum chaoscomplex mixture of regular and chaotic patterns: ordered vs. chaotic states

1) <L2>

2) <H’>

12/15

Visual method by A. Peres (1984)

Page 16: Symmetry  vs.  Chaos  * in nuclear collective dynamics signatures  &  consequences

Macek, Cejnar, Jolie… 200713/15

B

ddn ~d

)()(1),( 2d QQN

nN

H

)2(]~[~)( dddssdQ

Interacting Boson ModelMore than 1 classical control parameter

But there exist regions of almost full compatibility Þ multi-dimensional chaotic map.

J = 0, E = 0

integrableregime

with the GCM.

Page 17: Symmetry  vs.  Chaos  * in nuclear collective dynamics signatures  &  consequences

Interacting Boson Model Macek, Dobeš, Cejnar… 201014/15

Consequences of regularity for the adiabatic separation of intrinsic and collective motions: rotational bands exist even at very high excitation energies if the corresponding region of the J =0 spectrum is regular.

• Product of 0+-2+ and 0+-4+

correlation coefficients for intrinsic wave

functions in the given “band”

• Energy ratio for 4+ and 2+ states in

a given “band”

• Selection of hypothetical bands of rotational states based on the maximal correlation of the intrinsic SU(3) structures.

• Classical regular fraction in the

respective energy region

0 15 30 J

N = 30

0

2

intrinsic wave functions for various band members in the SU(3)

basis

),(

Page 18: Symmetry  vs.  Chaos  * in nuclear collective dynamics signatures  &  consequences

integrable regime

G C M J = 0, E = 0

Conclusions• Nuclear collective motions exhibit an intricate interplay or regular and

chaotic features (despite the presumption that collective = regular).• Models of collective motions may serve as a laboratory for general

studies of chaos (profit from the coexistence of simplicity and complexity).

• Order/Chaos have relevant nuclear-structure consequences (e.g. for the adiabatic separation of collective and intrinsic motions etc.).

Thanks to Pavel Stránský (now UNAM Mexico) Michal Macek (soon Uni Jerusalem)

15/15

Page 19: Symmetry  vs.  Chaos  * in nuclear collective dynamics signatures  &  consequences

Appendices

Page 20: Symmetry  vs.  Chaos  * in nuclear collective dynamics signatures  &  consequences

J=0, A=−0.84, B=C=K=1

Dependenceon energy

Page 21: Symmetry  vs.  Chaos  * in nuclear collective dynamics signatures  &  consequences

32 105.2/

109.11

K

CBA

GCM

Page 22: Symmetry  vs.  Chaos  * in nuclear collective dynamics signatures  &  consequences

GCM

32 105.2/

109.11

K

CBA

Page 23: Symmetry  vs.  Chaos  * in nuclear collective dynamics signatures  &  consequences

Peres latticesA visual method to study quantum chaos in 2D systems due to Asher Peres, PRL 53, 1711 (1984)

► In any system there exists infinite number of integrals of motions: e.g. time averages of an arbitrary quantity along individual orbits (note: in fully or partly chaotic systems, these integrals do not allow one to build action-angle variables since they are strongly nonanalytic)

0,)(lim0

H1 Þ

HPdttPPT

TT(1934-2005)

► One can construct a lattice: energy versus value of

► Quantum counterparts of such observables can be found:

► In a fully regular (integrable) system, the lattice is always ordered (the new integral of motion is constant on tori => it is a function of actions) ► In a chaotic system, the lattice is disordered► In a mixed regular & chaotic system, the lattice is partly ordered & disordered

P

E

regular mixed chaotic

iiii PPP iE

Page 24: Symmetry  vs.  Chaos  * in nuclear collective dynamics signatures  &  consequences

Relation to the regular fraction GCM

4104

41025

410100

K/2classicality parameter

B=1.09 2D even