55
Switched-Capacitor Circuit Implementations • SC Biquads: Block Diagram Representations and Implementations • SC Techniques for reduced area and high Q-filters • Other SC applications ECE 622(ESS) 1

Switched-Capacitor Circuit Implementationss-sanchez/622-SC-part2A 2011.pdf · Switched-Capacitor Circuit Implementations ... Switch Resistance - + Cf VDD VDD vi ... Capacitor Values

Embed Size (px)

Citation preview

Switched-Capacitor Circuit Implementations • SC Biquads: Block Diagram Representations and Implementations • SC Techniques for reduced area and high Q-filters • Other SC applications

ECE 622(ESS) 1

PRACTICAL CONSIDERATIONS FOR OP AMPS

Key op amp specifications:

•Gain

•Speed (BW)

•Supply voltages

•Output swing

•Noise

•Power

+

2

NON-IDEAL EFFECTS OF OP AMPS

A. FINITE DC GAIN For a two integrator biquadratic filter:

QAQ

AQ

QA

A

o

o

aoo

ooA

−≅

+=

+=

21211

1ωω

Therefore: - deviations are negligible - Q deviations can be significant

B. FINITE BANDWIDTH • Bandwidth is very critical for high frequency applications

3

How to determine the GB of an Op Amp? • The required GB is a function of the clock frequency and the feedback topology around the Op Amp. • A rule of thumb to select GB requires to satisfy the following inequality: a GB T/2 > 5 or GBT> 10/a where T is the period of the clock frequency, a is the capacitor ratio between the sum of all the feedback capacitors divided by the sum of all the capacitors connected to the input terminal of the Op Amp. More details later

4

MULTI-STAGE OP AMP DESIGN A. SINGLE-ENDED CONFIGURATION • High gain • CMRR = 0 • Nested compensation trades BW for stability

B. FULLY DIFFERENTIAL CONFIGURATION • High gain • Good CMRR • Rail-to-rail output swing • Higher bandwidth (less compensation) • Requires and additional CMFB and dynamic reset 5

Noise due to the switches

• The switch noise density can be expressed as

• Because two switches are present

kTRswitch4v 2noise,sw =

vin

Vnoise Rswitch

C

Rswitch

∫ π==

BW

2total,sw RswitchC

kTRswitch4dfkTRswitch8v

CkT4v total,sw π

=or

4kT=16x10-21V2C For C=1 pF the noise level is around 70 µV C=10 pF ==> noise level is around 20 µV

6

Clock Feedthrough

The charge in the channel is

When the switch is opened the channel charge, ideally, should be injected to vin, otherwise an error proportional to Q-channel is induced.

If CP is small, then few electrons charge the capacitor at lower voltage, then rejecting the electrons. Then most of the charge is absorbed by the previous stage.

IMPLEMENTATION

( )TGSOXchannel VVWLCQ −=-

+

Ci VG -VSS Vi Cf

It is a matter of parasitic capacitances

VG Vi

CP

( )TDDOX1 V0VWLCQ −−=

( )TDDOX2 VVinVWLCQ −−=

Basic principle

7

Minimization of Clock Feedthrough

The right hand side switches are opened before the others

switches 1’ and 2’ can be implemented with

only n-channel and should be turn off before switches 1 and 2.

Error is minimized using these early clock phases Reference. D. A. Johns and K. Martin, “ Analog Integrated Circuit Design” Chapter 10

-

+

Vi Cf

VG Vi

CP

1 1’

2 2’

Ci

Ci

1’ 1

8

Switch Resistance

-

+

Cf VDD VDD

vi

VSS VSS

Ci VT=VT0+∆V

Body effect

vi

Rs

( )VTVVDDWCLRs

iOXn −−µ=

Vi=VDD-VT

For VDD=1.5 V, and VT=1 ==> Vi<0.5 V !!! And for VDD=0.75 V ?

9

BASIC BUILDING BLOCKS

A. GAIN AMPLIFIERS

Basic Configuration:

•Compact, versatile & time

continuous

•Lacks dc feedback

- Op amp is not stabilized

- Leakage current saturates the

circuit

−+

o o

iV

IC

1oV

SC

I

SCCGain −=

Analog and Mixed Signal Center TAMU 10

Improved Gain Amplifier •Low sensitivity to the op amp

offset voltage and open loop

gain (due to charge

cancellation

•Additional capacitor between

nodes A and B eliminates the

“spikes” during the non-

overlapping clock phases I

SCCgain −=

−+

o o

iV

HC

oVSC•

2φ••

A

B

•• •

•• •

IC 1φ

11

B. Integrators Conventional stray-insensitive integrators: •Non-inverting:

•Inverting:

−+

o

iV

ICooV

SC••

o

eoVo

• •

1φ•

−+

o

iV

ICooV

SC••

o

eoVo

• •1φ

2φ2φ

1φ•

12

Type of Integrator

Mapping Transfer (Equivalent) Function

Magnitude, )e(H Tjω

Phase, )e(HA Tj

RGω

−+

• •

1V

2C

oV1R

1V

−+

• •

2C

oV1C

1φ 2φ

Inverting (Forward)

Non-Inverting

Inverting (Backward)

−+

• •

2C

oV

1C

iV• •

−+

• •

2C

oV

1C

iV• •

2φ2φ

ωωo

))2/Tsin(

2/T(

atVFor

o

2o

ωω

ωω

φ

))2/Tsin(

2/T(

atVFor

o

1o

ωω

ωω

φ

))2/Tsin(

2/T(

atVFor

o

2o

ωω

ωω

φ

))2/Tsin(

2/T(

atVFor

o

1o

ωω

ωω

φ

))2/Tsin(

2/T(

atVFor

o

2o

ωω

ωω

φ

))2/Tsin(

2/T(

atVFor

o

1o

ωω

ωω

φ

2T

−π

2T

−π

2T

In the S-Plane LDI

Forward

LDI Forward

Backward

LDI

SCSR1)S(H.e.i o

21

ω−==

)Z1

Z(CC)Z(H 1

2/1

2

1−

−−=

)Z1

Z(CC)Z(H 1

1

2

1−

−−=

)Z1

Z(CC)Z(H 1

2/1

2

1−

−=

)Za

Z(CC)Z(H 1

1

2

1−

−−=

)Z1

Z(CC)Z(H 1

2/1

2

1−

−−=

)Z11(

CC)Z(H 1

2

1−−

−=

13

Basic SC first-order low-pass

−+

inV1R

2R

CoutV

−+inV

CoutV1C

• •1φ

2φ2φ

2C• •

2φ2φ

Active RC prototype

2

12sCR1

R/R)s(H+

−=

2,1i,fC/1C/TR Siieq ===

1)C/C1(zz)C/C()z(H

2

1−+

−=

0Zzero =

)C/C1/(1Z 2pole +=

14

Improved Integrator with reduced capacitance spread

Problem: offset Solution: use an offset & low dc gain compensated integrator as the 2nd stage (only valid for two-integrator loop applications)

−+

oinV C e

oV1C• •

2φ2φ

2C

• •

o o• •

••

3C

4C

1'42

31oin

eooe

z11

CCCC

)z(V)z(V)z(H −−

−==

34'4 CCC +=

15

Offset and gain compensated Integrator

• compensates the offset voltage and dc gain error of the op amp • eliminates spikes (providing continuous feedback to the op amp)

−+

oinV o

oV1C• •

2φ2φ

FC

o o• •

••

hC2φ1φ

MC

1F

1oin

oooo

z11

CC

)z(V)z(V)z(H −−

−==

hC

MC

16

SWITCHED-CAPACITOR FILTER IMPLEMENTATIONS

φ1 φ1φ1 φ1

C2 C3

C1 CA

φ2 φ2 φ2 φ2

Vi ooV

+ 1Z11

−−+

iVA

2

CC

A

3

CC

A

1

CC

i

A

3

A

1

A

21

o V

1ZCC

1

CC

ZC

CC

V

+

++

−=

+ 1Z11

−− 1Z11

−−+ +

1K−

2K−

3K−

4K−

1oV

15ZK −

6K−

2oV

φ2

φ1

K1C1

φ2

C1

C2

K6C2

φ1

φ1

φ1φ2 φ2

V02

φ1

φ1

φ2φ1 K5C2

V01

K4C1

φ1

φ2 φ2

K2C2φ1

φ2φ2

φ1

Vi

K3C2

φ2

17

−+

12 =C

)(out sV

11 =C

)(SVin

• Q/1

• • −+

2k

oω/1−

• • •

ok ω/1

oo k/ω

oω/1

An alternate realization of a general active-RC biquad filter

A direct mapping from an active-RC filter into a SC Filter. Since negative (equivalent) resistances are easily implemented in SC, a modified Active-RC prototype is next described

18

• 16CK

23CK

• •

2φ2φ

25CK

2φ1φ

14CK

)(1 ZV

)(ZVi

−+

• • 11CK

2φ• • •

1φ 1φ

12CK

• 1C

• • −+

2C

)(out ZV•

A high-Q switched-capacitor biquad filter (without switch sharing). 19

+ + outV

+ 1Z11

−− 1Z11

−−+ +

1K−

2K−

3K−

4K−

15 ZK −

6K−

outV

Vio

oKω

1o kω−

2k−

s1 s1+

Q−

oω−

Building Block Diagrams of Figs. In p 18 and 19

Biquad Circuit & Block Diagrams

Circuit Diagram Block Diagram

−+inV

ooVAC

• •

C

o o• •

−+

GC• •

C

• •

CC• •

1φ• •

ECInverting Summer

E−

A

1

1

z1z

−∑ 1z1

1−−

o

oV∑

C−

G−o

inV

Inverting Integrators Non-inverting Integrator

21

Biquad Circuit 1

Circuit Diagram Block Diagram

−+

inV

oV

2C

o

o• •−+

1C

22Cα2φ

25Cα

1φ 2φ

17Cα

1φ 2φ

28Cα2φ

•••

••

• • •

• •

2φ 1φ

22

Biquad Circuit 2

Block Diagram Circuit Diagram

1F4 C/C−

2F2 C/C

1

1

z1z

−1z11

−−o

oV∑

1F3 C/C−

1F1 C/C−o

inV

23

•−+ outV

2FC

o−+

1FC

2C2

1 2

4C

21

3C21

•••

• • ••

11

•2

•hC

6 10

21

12 11

7 89

2•

3

21

"1FC

2

1••

4• •

'1FC

inVo20

2

5

SC Bandpass C Diagram

1F

4"

1F'1F

'1F

CC

CCC+

2F

2CC 1

1

z1z

−1z11

−−o

oV∑

1F

3CC

1F

1"

1F'1F

'1F

CC

CCC+

o

inV

SC Bandpass Filter Block Diagram 24

Capacitor Values for the SC Filter

Capacitor Values )Hz(fo )Cu(C'

1F )Cu(CC 2F1F =

697 852 1209 1477

4 2.6 1.5 1.1

11.4 9.3 6.6 5.4 ,Cu2.2C,Cu1CCCC:Where 1h432 =====

kHz50T/1fandCu3C c"

1F ===

25

Specifications vs. Simulated Results for the SC Filter

Design Specifications Gain Q (v/v)

Simulated Results Gain Q (v/v)

)Hz(fo)Hz(fo

1 697 20 0.998 699.00 19.92 1 852 20 0.999 857.25 20.02 1 1209 20 1.000 1209.00 19.83 1 1477 20 1.002 1479.00 20.11

26

Design of 2nd-Order LP Notch Filter Design a LP Notch Filter with =1,800 Hz, = 1,700 Hz, =30 and 0dB DC Gain. The corresponding H(s) yields:

zf pf pQ

)10140926.1(s0475.356s)10140926.1(s89195.0)s(H 82

82

×++×+

=

By using the bilinear mapping

1

1

z1z1Ks −

+−

=

)2/T(tan/aKwhere dωω=The corresponding transfer function becomes:

21

21

z997232.0z99029.11zz99220.1189093.0)z(H −−

−−

+−++

=

Next we will match the coefficients of H(z) with the ones of a SC Biquad Topology, i.e.,

21

21

E zCz)CE(1z)HG(z)JGI(I)z(H

z −−

−−

+++−+−++

−=

1zz;z1

zzwhere 1

11 −=

−= −

−−

21

21

z000694.0z0097.01z0078.0z0078.0189093.0)z(H −−

−−

++++

= 27

E-CIRCUIT

CAPACITOR (PF) INITIAL

DYNAMIC RANGE

ADJUSTED FINAL

A B C D E F G H I J K(I=J) C(pF) ∑

1.0000 1.0000 0.00694 1.0000 0.00277

--- 0.00694

--- --- ---

0.89093 ---

0.08308 1.0000 0.00694 0.08308 0.00277

--- 0.00694

--- --- ---

0.89093 ---

1.0000 12.0365 2.5035 29.9613 1.0000

--- 2.5035

--- --- ---

10.7238 59.7

28

1ZZ;1-ZZ :NOTATION DOMAIN - ˆ +==Z

( ) ( )( ) ( )

( )

12211

o2121o1oo

2212

21

1

o1

12

2

221221

11

22

11o

aa1,a2

bbb,bb2,b

where

ra,cosr2a;ZaZa1

bZbZbZH

Zcosr2r1Zcosr221ZKNK

ZZ1ZZZH

−+=−=

++=+==

==+−

++=

−++−+=

++++

=

−−

−−

−−−−

−−

αα

βββ

θθααβββ

29

LP 20 (bilinear transform)

LP 11

LP 10

LP 02 (forward transform)

LP 01

LP 00 (backward transform)

BP 10 ((bilinear transform)

BP 01 (forward)

BP 00 (backward)

HP

( )21 4ˆ41 −− ++ zzK

( ) 11 ˆ1ˆ2 −− + zzK

( )1ˆ3ˆ3ˆ2 112 ++ −−− zzzK

( ) 11 ˆˆ1 −−+ zzK

( )21ˆ1 −+ zK

2−Kz

( )1ˆ21 −+ zK

1ˆ −zK( )1ˆ1 −+ zK

K

LPN

( )211 −+ zK

( )11 1 −− + zKz

( )11 −+ zK

K

2−Kz1−Kz

( )( )11 11 −− +− zzK

( )11 1 −− − zKz

( )11 −− zK( )211 −− zK( ) 0,,1 21 >>++ −− ββαεε zzK ( ) ( )[ ]21 ˆ22ˆ1 −− ++++ zzK εε

HPN ( ) 0,,1 21 ><++ −− ββαεε zzK ( ) [ ][ ]21 ˆ22ˆ1 −− ++++ zzK εε

AP ( )21 −− ++ zzK αβ See Eq. (21), Sect. 5.1 21 , αβαα =−=

Generic Biquadratic Transfer Functions in the 2r and cosr2 domain, z ==− βθα

GENERIC FORM NUMERATOR N(z) NUMERATOR N( ) z

30

Recall notation for and building blocks Z Z

- +

- +

φ1 φ1 KiC Vin

φ2 φ2

C

φ1 Vo Vin

-Ki 1ˆ1 −+ Z Vo

Vin φ1 KnC

φ2 φ1

φ2

C

φ1 Vo Vin

Kn 1ˆ −Z Vo

Vin -Ki

111

−− ZVo

Vin -Ki

1

1

1 −

− ZZ

Vo

31

2V

oinV ∑

o

o

1V

)1z( 1 +− I−

1z− F− )z1( 1−+

J

A

H1z− E−

)z1( 1−+

C−G−

A general SC biquad flow diagram type 1. 32

SC implementation type 1 with maximum number of switches.

A1φ

• • +

−1φ

2φ2φ

o2V

2φ F

1φ1φ

B

2φ I

1φ 1φ

J1φ

o

1V

• +

D

2φ C

1φ1φ

E

2φ G

1φ1φ

H1φ

o

inV+

− o

33

SC implementation type 1 minimum switch configuration.

A1φ

• • +

−1φ

2φo

2V

B

I

J

o

1V

• +

D

C

2φ G

1φ1φ

H1φ

o

inVo

6

•9

•5

•7

•834

E

F

•2•120

34

SWITCAP Input file

timing; period 7.8125e-06; clock clk 1 (0 1/2); end; circuit; cg (1 2) 2.5935; ca (8 7) 1.0000; cd (4 3) 29.9613; cb (6 5) 12.0365; ce (4 5) 1.00000; cc (2 9) 2.5035; e1 (3 0 0 4) 28000; e2 (5 0 0 6) 28000; s1 (20 1) #clk;

s4 (2 4) #clk; s5 (9 5) #clk; s9 (8 0) #clk; s10 (7 6) #clk; s2 (1 0) clk; s3 (2 0) clk; s6 (9 0) clk; s7 (3 8) clk; s8 (7 0) clk; v1 (20 0); end; analyze sss; infreq 1 4000 lin 300; set v1 ac 1.0 0.0; print vm(5); plot vm(5);

35

36

• Switched-capacitor techniques conventionally have only two degrees of freedom: clock frequency

capacitor ratios

i.e.,

eqseq

seq C

CfC

CTCR ⋅=⋅

==1τ

-37-

Francisco Duque-Carrillo & Edgar Sánchez-Sinencio

37

Periodic Non-Uniform Switched Capacitor Principle

• The number of active pulses (pi) of a switched-capacitor branch controls the equivalent resistance value.

Vo

Master CLK

φi

sTm ⋅

si

Tp ⋅

⋅⋅=⋅=

1CCT

pmCR s

ieqτ

1 2 pi

sT

-38-

viφ1 φ1

φ2 φ2

C1

C

vo

+

An additional degree of freedom (m/pi) is provided by this approach

38

Periodic Non-Uniform Switched-Capacitor Example

• In more complex switched-capacitor networks, any response parameter can be fully-programmed by means of the number of active pulses of some switched-capacitor branches:

DC gain:

2

1)0(CC

ppH

f

k ⋅=

Cutoff frequency (ωo): f

sop

CCCmTjez

+

==2

ω

-39-

C

vivo

C1

C2

φ1k φ2k

φ1kφ2k

φ2f φ2f

φ1f φ1f

φ1f

mTS

φf 1 2 3 pf

φk 1 2 pk

fs

39

Periodic Non-Uniform Switched-Capacitor Remarks Advantages: • Great flexibility and resolution for programming SC signal processors. • The design is performed in the digital domain with a single logic programmable section (i.e., FPGA). • Reduced cost (area) and high accuracy (no extra parasitic capacitances) respect to any other programming technique (i.e., capacitor arrays). • Only one clock is used. One sub-clock (φi) is required for each output response parameter to be programmed. • The programmability does not affect the circuit dynamic range.

Disadvantages: • The master clock frequency must be m times the clock frequency of the traditional case (pi=m). However, the amplifier requirements remain unchanged. -40-

40

-41-

HP HP

A

B

-

+

-

+

φ 1f LP φ

1f

G

C φ

1f

I

F

A1 A2 V o

E

φ 1f

D

φ 1f

φ 1f

φ 1f K

BP

V i φ

2f φ

2f

φ 2f

φ 2f

φ 2f

φ 2f

φ 2f

φ 2f

φ 2q

φ 1q

φ 2q

φ 1q

φ 2f

Example of the Proposed Technique

•Universal second-order SC filter (CMOS 1.2 µm, Vsupply= + 1.5 V)

Design specifications { fo = 0.2 kHz, Q = 0.707, k = 0 dB } with fs = 20 kHz

The SC circuit was designed to operate with clock frequencies up to 1 MHz

The digital programming signals were off-chip generated by a commercial FPGA 41

Experimental Results of Second-Order Non-Uniform SC 1. Low-pass response programmability (m = 8, fs = 160 kHz)

Swp Time: 19.66 SecVBW: OffRange 0 dBmRes BW: 9.1 HzA: NORMALIZED SPEC

Stop 800 HzStart 50 Hz

LogMag 5dB /div

-25

25dB

LP fo-programmability (1 < pf < 8)

LP Q-factor programmability (1 < pq < 8)

Swp Time: 31.13 SecVBW: OffRange 0 dBmRes BW: 18 HzA: NORMALIZED SPEC

Stop 5 000 HzStart 50 Hz

LogMag 3dB /div

-28

2dB

-42- 42

Experimental Results (continues) 2. fo Band-pass response programmability

Swp Time: 31.13 SecVBW: OffRange 0 dBmRes BW: 36 HzA: NORMALIZED SPEC

Stop 20 000 HzStart 100 Hz

LogMag 4dB /div

-36

4dB

m = 8; fs = 160 kHz (1 < pf < 8)

m = 24; fs = 960 kHz (1 < pf < 24)

Swp Time: 13.11 SecVBW: OffRange 0 dBmRes BW: 36 HzA: NORMALIZED SPEC

Stop 4 000 HzStart 50 Hz

LogMag 2dB /div

-18

2dB

-43-

Note the increased resolution

43

Experimental Results (continues) 3. Q-factor band-pass programmability

m = 8; fs = 160 kHz (1 < pq < 8)

m = 32; pf = 3; fs = 1 MHz (1 < pq < 25)

Swp Time: 31.13 SecVBW: OffRange 0 dBmRes BW: 18 HzA: NORMALIZED SPEC

Stop 5 000 HzStart 200 Hz

LogMag 6dB /div

-20

40dB

Swp Time: 13.11 SecVBW: OffRange 0 dBmRes BW: 36 HzA: NORMALIZED SPEC

Stop 800 HzStart 50 Hz

LogMag 5dB /div

-20

30dB

-44-

Enhanced Resolution

44

Experimental Results (continues) 4. Q-factor Band-pass and Notch programmability

m = 32; pf = 2; fs = 0.8 MHz (1 < pq < 16)

m = 24; fs = 1 MHz (1 < pq < 16)

Swp Time: 50.79 SecVBW: OffRange 0 dBmRes BW: 18 HzA: NORMALIZED SPEC

Stop 8 000 HzStart 200 Hz

LogMag 5dB /div

-45

5dB

Swp Time: 18.02 SecVBW: OffRange 0 dBmRes BW: 18 HzA: NORMALIZED SPEC

Stop 3 000 HzStart 200 Hz

LogMag 6dB /div

-10

50dB

-45- 45

Conclusions

A SC technique with an additional degree of freedom is presented. Potential applications are very wide and practical implications are very promising. The ideal situation of analog processing and digital control are present in the proposed scheme.

46

outVinV −

+ • 1C

Bφ• •

• •

3C

2C

)()()()(

21

12

cacaB

cacaA

φφφφφ

φφφφφ

•+•=

•+•=

(a)

• •

caφ

(b)

(a) A switched-capacitor square-wave modulator where the input clock phases are controlled by the modulating square wave φM. (b) A possible circuit realization for φA and φB.

A full-wave detector based on the square-modulator circuit of Fig. (a)

(a) Fig.ofModulator

+−

caφ

inV outV

47

High-Q bandpass filter with center frequency f0

Period T

Period T = 1/f0

A BP Filter based sinusoidal oscillator.

1VrefV

outV

refV−

sin (wot)

48

+outV

• •

4C

• 1φ

refV+−+

• 2φ

• •

1φ X

1φ X

1=BC

1=AC

2C

• 1φ2φ

1C

5C

+−

+−

6C

3C

Comp

7CstVStart-up

circuit • X

X

A SC implementation of a BP based Oscillator

49

References • E. Sanchez-Sinencio, J. Silva-Martinez, The Circuits and Filters Handbook: Switched Capacitor Filters, CRC Press Inc., section XV, pp. 2491-2520, 1995. • E. Sanchez-Sinencio, R.L. Geiger and J. Silva-Martinez, “Tradeoffs between Passive Sensitivity, Output Voltage Swing and Total Capacitance in Biquadratic SC Filters,” IEEE Trans. Circuits and Systems, Vol. CAS-31, No. 11, pp. 984-987, November 1984. • E. Sanchez-Sinencio, J. Silva-Martinez, and R.L. Geiger, “Biquadratic SC Filters with Small GB Effects,” IEEE Trans. Circuits and Systems, Vol. CAS-31, No. 10, pp.876- 884, October 1984. • R. Castello, F. Montecchi, F. Rezzi and A. Baschirotto, “Low-Voltage Analog Filters,” IEEE Trans. on Circuits and Systems I, Vol. 42, No. 11, pp. 827-840, November 1995. • A. Abo, “Low Voltage, High-Speed, High-Precision Switched-capacitor Circuits,” Qualifying Exam, University Of California at Berkeley, May 1996.

50

outVinV −

+ • 1C

Bφ• •

• •

3C

2C

)()()()(

21

12

cacaB

cacaA

φφφφφ

φφφφφ

•+•=

•+•=

(a)

• •

caφ

(b)

(a) A switched-capacitor square-wave modulator where the input clock phases are controlled by the modulating square wave φM. (b) A possible circuit realization for φA and φB.

A full-wave detector based on the square-modulator circuit of Fig. (a)

(a) Fig.ofModulator

+−

caφ

inV outV

51

High-Q bandpass filter with center frequency f0

Period T

Period T = 1/f0

A BP Filter based sinusoidal oscillator.

1VrefV

outV

refV−

sin (wot)

52

+outV

• •

4C

• 1φ

refV+−+

• 2φ

• •

1φ X

1φ X

1=BC

1=AC

2C

• 1φ2φ

1C

5C

+−

+−

6C

3C

Comp

7CstVStart-up

circuit • X

X

A SC implementation of a BP based Oscillator

53

References • E. Sanchez-Sinencio, J. Silva-Martinez, The Circuits and Filters Handbook: Switched Capacitor Filters, CRC Press Inc., section XV, pp. 2491-2520, 1995. • E. Sanchez-Sinencio, R.L. Geiger and J. Silva-Martinez, “Tradeoffs between Passive Sensitivity, Output Voltage Swing and Total Capacitance in Biquadratic SC Filters,” IEEE Trans. Circuits and Systems, Vol. CAS-31, No. 11, pp. 984-987, November 1984. • E. Sanchez-Sinencio, J. Silva-Martinez, and R.L. Geiger, “Biquadratic SC Filters with Small GB Effects,” IEEE Trans. Circuits and Systems, Vol. CAS-31, No. 10, pp.876- 884, October 1984. • R. Castello, F. Montecchi, F. Rezzi and A. Baschirotto, “Low-Voltage Analog Filters,” IEEE Trans. on Circuits and Systems I, Vol. 42, No. 11, pp. 827-840, November 1995. • A. Abo, “Low Voltage, High-Speed, High-Precision Switched-capacitor Circuits,” Qualifying Exam, University Of California at Berkeley, May 1996.

54

J. L. Ausin, J. F. Duque-Carillo, G. Torelli, E. Sánchez-Sinencio, and F. Maloberti, “Periodical nonuniform individually sampled switched-capacitor circuits,” ISCAS 2000, pp. 449-452, May 2000, Geneva, Switzerland P. E. Fleischer and K.R. Laker, “A family of active switched-capacitor biquad building blocks,” Bell Syst. Tech J., vol. 58, pp. 2253-2269, Oct. 1979. J. Adut and J. Silva-Martínez, “A high-Q switched-capacitor filter with reduced capacitance spread using a randomized noninterval sampling technique”, ISCAS 2002 submitted.

55