Surfactant Analysis by TLC.pdf

Embed Size (px)

Citation preview

  • 8/18/2019 Surfactant Analysis by TLC.pdf

    1/12

    See discussions, stats, and author profiles for this publication at: http://www.researchgate.net/publication/233232136

    Separation and Quantitation of Anionic, Cationic,and Nonionic Surfactants by TLC

     ARTICLE  in  JOURNAL OF LIQUID CHROMATOGRAPHY · JANUARY 1983

    DOI: 10.1080/01483918308066867

    CITATIONS

    12

    READS

    43

    2 AUTHORS, INCLUDING:

    Daniel W. Armstrong

    University of Texas at Arlington

    652 PUBLICATIONS  23,109 CITATIONS 

    SEE PROFILE

    Available from: Daniel W. Armstrong

    Retrieved on: 07 December 2015

    http://www.researchgate.net/profile/Daniel_Armstrong?enrichId=rgreq-e6dbbece-bc1e-4827-98ba-b0a332a4cc33&enrichSource=Y292ZXJQYWdlOzIzMzIzMjEzNjtBUzoxNjU3MTM2OTYyNzIzODRAMTQxNjUyMDYzMjY5Mg%3D%3D&el=1_x_4http://www.researchgate.net/profile/Daniel_Armstrong?enrichId=rgreq-e6dbbece-bc1e-4827-98ba-b0a332a4cc33&enrichSource=Y292ZXJQYWdlOzIzMzIzMjEzNjtBUzoxNjU3MTM2OTYyNzIzODRAMTQxNjUyMDYzMjY5Mg%3D%3D&el=1_x_5http://www.researchgate.net/profile/Daniel_Armstrong?enrichId=rgreq-e6dbbece-bc1e-4827-98ba-b0a332a4cc33&enrichSource=Y292ZXJQYWdlOzIzMzIzMjEzNjtBUzoxNjU3MTM2OTYyNzIzODRAMTQxNjUyMDYzMjY5Mg%3D%3D&el=1_x_5http://www.researchgate.net/?enrichId=rgreq-e6dbbece-bc1e-4827-98ba-b0a332a4cc33&enrichSource=Y292ZXJQYWdlOzIzMzIzMjEzNjtBUzoxNjU3MTM2OTYyNzIzODRAMTQxNjUyMDYzMjY5Mg%3D%3D&el=1_x_1http://www.researchgate.net/profile/Daniel_Armstrong?enrichId=rgreq-e6dbbece-bc1e-4827-98ba-b0a332a4cc33&enrichSource=Y292ZXJQYWdlOzIzMzIzMjEzNjtBUzoxNjU3MTM2OTYyNzIzODRAMTQxNjUyMDYzMjY5Mg%3D%3D&el=1_x_7http://www.researchgate.net/institution/University_of_Texas_at_Arlington?enrichId=rgreq-e6dbbece-bc1e-4827-98ba-b0a332a4cc33&enrichSource=Y292ZXJQYWdlOzIzMzIzMjEzNjtBUzoxNjU3MTM2OTYyNzIzODRAMTQxNjUyMDYzMjY5Mg%3D%3D&el=1_x_6http://www.researchgate.net/profile/Daniel_Armstrong?enrichId=rgreq-e6dbbece-bc1e-4827-98ba-b0a332a4cc33&enrichSource=Y292ZXJQYWdlOzIzMzIzMjEzNjtBUzoxNjU3MTM2OTYyNzIzODRAMTQxNjUyMDYzMjY5Mg%3D%3D&el=1_x_5http://www.researchgate.net/profile/Daniel_Armstrong?enrichId=rgreq-e6dbbece-bc1e-4827-98ba-b0a332a4cc33&enrichSource=Y292ZXJQYWdlOzIzMzIzMjEzNjtBUzoxNjU3MTM2OTYyNzIzODRAMTQxNjUyMDYzMjY5Mg%3D%3D&el=1_x_4http://www.researchgate.net/?enrichId=rgreq-e6dbbece-bc1e-4827-98ba-b0a332a4cc33&enrichSource=Y292ZXJQYWdlOzIzMzIzMjEzNjtBUzoxNjU3MTM2OTYyNzIzODRAMTQxNjUyMDYzMjY5Mg%3D%3D&el=1_x_1http://www.researchgate.net/publication/233232136_Separation_and_Quantitation_of_Anionic_Cationic_and_Nonionic_Surfactants_by_TLC?enrichId=rgreq-e6dbbece-bc1e-4827-98ba-b0a332a4cc33&enrichSource=Y292ZXJQYWdlOzIzMzIzMjEzNjtBUzoxNjU3MTM2OTYyNzIzODRAMTQxNjUyMDYzMjY5Mg%3D%3D&el=1_x_3http://www.researchgate.net/publication/233232136_Separation_and_Quantitation_of_Anionic_Cationic_and_Nonionic_Surfactants_by_TLC?enrichId=rgreq-e6dbbece-bc1e-4827-98ba-b0a332a4cc33&enrichSource=Y292ZXJQYWdlOzIzMzIzMjEzNjtBUzoxNjU3MTM2OTYyNzIzODRAMTQxNjUyMDYzMjY5Mg%3D%3D&el=1_x_2

  • 8/18/2019 Surfactant Analysis by TLC.pdf

    2/12

    TLC

    s a

    potent ia l ly

    powerfu l

    technique

    or the separat ion

    of

    surfactants.

    Reversed

    hase

    hin

    layer

    chromatograghy

    RPTLC)

    can

    be used

    o separate

    ent i re

    classes

    of

    surfactants

    ( i .e. '

    anionics

    f rom

    nonionics

    f rom

    cat ionics) .

    Conversely '

    s i l ica

    ge1

    can

    be

    used

    o separate

    ndividual

    anionic

    or

    cat ionic

    surfac-

    tants

    f rom other

    'sim' i larly

    charged

    surfactants.

    RPTLC

    an also

    be used o separate indiv idual nonionic surfactants. Using two

    d. imensjonal

    LC

    (wi tn a specia l

    s j l ica

    gel

    p late

    contain ing

    a 2.5

    cm

    str ip

    of

    reveised

    phase

    materia' l

    a long

    one

    gdge)

    I

    complex

    mixture

    of

    surfactants

    tvas

    i rst

    f ract ionated

    into

    classes

    and

    then

    (using

    the second

    di rnension)

    nto

    indiv idual

    components.

    Standdrrd

    ianning

    densi tometry

    was used

    or

    quant i tat ion.

    JOURNAT

    F LTQUTD

    CHROMATOGR3PHY,

    (1),

    23-33

    (1983)

    SEPARATION

    ND

    UANTITATION

    F

    ANIONIC,

    CATIONIC

    ND

    NONIONIC

    URFACTANTS

    Y TLC

    D.l^J.

    rmstrong

    ndG.Y.

    St ine

    Department

    f

    ChemistrY

    Georgetown

    niversitY

    Washington,

    C 20057

    ABSTRACT

    I

    NTRODUCTION

    The

    analysis

    of surfactants

    (e.9. ,

    detergents '

    soaps'

    etc. )

    can

    be a d i f f icu l t

    analyt ical

    problem.

    Surfactants

    are

    general ly

    somewhat

    oluble

    in

    both water

    and

    organic

    solvents.

    They con-

    cent rate

    at

    inter faces

    and

    tend

    to

    bjnd to

    anything

    avai lable

    ( l

    12).

    There

    are

    a var iety

    of

    spect rometr ic,

    t i t r imet r ic,

    atomic

    absorpt ion

    spect rometr ic

    and

    ion-select jve

    elect rode

    methods

    or

    the

    analys. is

    of

    surfactants

    (3-11

    .

    Al l

    of

    these

    techniques

    have

    Copyright

    @

    1983

    by

    Marcel

    Dekker,

    lnc.

    0

    48-399/83/060

    023$3.s0/0

  • 8/18/2019 Surfactant Analysis by TLC.pdf

    3/12

    zq

    ARMSTROI{G AND STINE

    the charactenist ic

    of

    being

    select ive for certa in

    funct ional

    groups.

    For example

    oth

    the

    sodium

    dodecylsul fate

    elect rode and

    the methylene

    blue

    complex

    spect rophotometr ic

    methods

    re seiec-

    t ive

    for

    surfactants

    wi th sul fate or sul fonate

    funct ional

    groups.

    Consequent ly

    hese techniques

    give posi t ive

    r"esponsesor a

    var iety of

    homologous,somer^ic

    nd

    even st ructural ly d issimi lar

    anionic surfactants.

    Another

    shortcoming f

    these techniques s

    that

    one class

    of

    surfactants cannot

    be ef fect ively analyzed

    n

    the

    presence

    of another ' . The

    so-cal ' led neut ra l izat ion ef fect

    of

    cat ionic wi th anionic

    surfactants is wel l documented

    12).

    As a

    resul t of these l imj tat ions, the

    analyst has increasingly

    turned

    to

    physicochemical

    echniques

    which

    pnovide

    nformat ion on the

    tota l

    surfactant content

    in a sample

    13)

    or to

    chromatography

    (14-16).

    Becausemost surfactants are nonvolat i le wi thout der i -

    vat izat ion,

    LC

    or TLC

    methods re of ten

    preferred.

    The use of

    TLC

    to separate a m' ixture

    of anionic surfactants was

    recent ly

    demonst rated

    17).

    In

    th is work we

    not

    only

    demonst rate he

    separat ion

    of ident ical ly

    chargedsurfactants

    f rom

    each other

    but

    also the TLCsepanat ion

    of the

    three major c lasses of surfactants

    (

    i .e. , anionic,

    nonionic and

    cat ionic) .

    MATERALS

    Whatmaneversed

    phase

    TLC

    plates

    (KC18F),

    j l ica

    gel p lates

    (K5F)

    and hybr id Mul t i -K

    plates

    (CS5)

    were

    act ivated at l l5oC for

    two

    hours

    before use. Cetyl t r imethylammonium

    romide

    CTAB,

    Sigma),

    cety lpyr id in ium

    chlor ide

    (CPC,

    Sigma),

    cety l t r imethyl -

  • 8/18/2019 Surfactant Analysis by TLC.pdf

    4/12

    SEPARATION

    F

    SURFACTANTS

    Y TLC

    ammonium

    hlor ide

    (CTAC,

    Pfal tz &

    Bauer) ,

    dodecylamine

    DA'

    Aldnich), octadecylamine.

    0A,

    Eastman),

    odium

    dodecylsul fate

    (SDS,

    Bio Rad),

    dodecy' lbenzenesul fonate

    DBS,

    Pfal tz &

    Bauer) ,

    sodium

    diocty l

    sul osuccinate

    (SD0S,

    Aldr ich)

    and

    sodium aurate

    (SL,

    Pfal tz &

    Bauer)

    were

    recrysta l l ized

    three

    t imes

    f rom

    ethanol -water

    before use.

    The nonionic

    surfactants

    Tr i ton X

    100

    (TX

    100,

    Bio Rad), Surfynol

    465

    (S

    465'

    Ai r Products)

    and

    Igepol

    C0-530

    IC0-530,

    GAF)

    were used as

    received. IC0-530

    s

    nonylphenoxypoly(ethyleneoxy)ethanol

    here

    he

    hydrophi1c

    poly(ethyleneoxy)ethanol

    head-group"

    verages

    ive

    uni ts in

    length. TX 100

    is

    dodecylphenoxypoly(ethyleneoxy)ethano1.

    465

    is a

    poly(ethyleneoxy)ethanol

    averaging

    en uni ts) adduct of

    2,4,7,9- le lnamethyl -5-decyn-4,7-dio l .

    Gold

    able sodium

    tet raphenylborate

    (Aldr jch)

    was

    used

    as received.

    Methanol ,

    ethanoi ,

    methylenechlor ide

    and

    glacia l

    acet ic

    acid

    (Baker)

    were

    also

    used as

    received.

    Al l

    separat ions

    were

    done

    n

    a l1

    3/4

    in. long,4

    in. wide

    and

    l0

    3/4

    in.

    h igh

    sealed

    chromaf lex

    developing

    ank.

    The

    plates were not pre-equi l ihrated wi th solvent vapor before use.

    Separat ion

    of

    anionic

    surfactants:

    I

    ut

    of 0.1

    M

    SDS'

    SL'

    DBS

    and S|JOS

    as spot ted I

    cm

    from

    the

    bot tomof a 5

    x 20 cn s i l ica

    ge1 plate.

    The

    mobile

    phase

    consjsted

    of

    8:1

    (v:v)

    methylene

    chlor jde:methanol .

    The

    addi t ion

    of very

    small

    amounts f acet jc

    acid to the mobi le

    phase

    ended o

    increase

    he R1's but d id not

    METHODS

  • 8/18/2019 Surfactant Analysis by TLC.pdf

    5/12

    ARMSTRONG

    ND

    STINE

    af fect the

    resolut ion. Spots

    were

    vjsual ized

    by

    exposure

    o

    12

    vapor.

    Separat ion of cat ionic surfactants: I

    y l

    of 0. i

    M

    CPC,0A, IJA

    and CTAC r CTABwas spotted 1 cm from the bottom of a 5 x 20 cm

    si l ica

    ge1

    p1ate.

    The

    mobile

    phase

    consisted

    of

    8:1:0.75

    (v:v:v)

    methylenechlor ide:methanolacet ic acid.

    Spots

    were

    visual ized

    by

    exposure o I2

    vapor.

    Separat ' ion

    f nonionic surfactants:

    1

    ut

    of

    10%

    TX

    100, IC0-530

    and S 465

    rvere

    spot ted on

    a

    5

    x

    20

    cm reversed

    phase

    (C16)

    plate.

    The mobi le

    phase

    consisted

    of

    8:2

    (v:v)

    ethanol :2%

    odium

    tet raphenylborate(aq). The

    purpose

    of sodium

    etraphenylborate

    was to

    prevent

    the

    spots

    f rom

    streaking. 12 vapor was used for

    v isual zat ion.

    Separat ionof

    anionic, cat ionic and nonionic surfactants: A

    Whatman S5, Mul t i -K, KC18F/KsF0

    x

    20

    crn

    plate

    was

    pre-

    developed n

    ethanol and then

    act ivated at 115"C or

    2

    hours.

    Each surfactant mjxture

    was

    spot ted

    (0.5

    ur)

    at a

    point

    on the

    reversed

    phase

    st r ip. The

    ent ine

    20

    x

    20

    cm

    plate

    was then

    developedwi th 75%ethanol in the dinect ion of the reversed

    phase

    st r ip. Development

    as stoppedwhen he solvent

    f ront

    was

    2

    cm

    from

    the top of

    the

    plate.

    Under

    hese

    condi t ions, a l l

    anionic surfactants

    t ravel at or very

    nean he solvent

    f ront

    ( i .e. , <

    2

    cm), a l i cat ionic

    surfactants remainat

    or near

    the

    or ig in

    of the reversed

    phase

    st r ip

    (

  • 8/18/2019 Surfactant Analysis by TLC.pdf

    6/12

    r$

    fi

    ,j

    r$

    rd

    SEPAMTION

    F

    SUMACTANTS

    Y TLC 27

    surfactants

    separate

    between he anionics

    and cat ionics. The

    20

    x 20

    cm

    plate

    is

    then cut

    into three separate

    sect ions in a

    di rect ion

    penpendicular

    o the

    f i rst development .

    The

    f i rst

    cut should

    be

    2.5 to 3

    cm below he

    solvent

    f ront .

    This wi l l iso late the anionic surfactants. The

    second

    cut should

    be

    3

    cm

    above he

    or ig in. This

    wi l l

    iso late the cat ionic surfac-

    tants.

    Penpendicular econdary

    evelopment f the

    plates

    con-

    ta in ing the cat ionic and

    anionic sur ' factants

    (af ten

    react ivat ion

    of the

    plates)

    wi l l

    g ive

    completeseparat ion of these

    species.

    The mobi le

    phases

    or secondary evelopment re, 8:1

    (v:v)

    MeCl2:Me0H

    or the anionic

    surfactants

    and

    B:1:0.5

    (v:v:v)

    MeCl2:Me0H:HOAcor

    the cat ionic surfactants.

    I f

    one develops

    the

    ent i re

    p1ate

    in

    the second

    di rect ion

    wi thout isolat ing the

    anionic and cat ionic

    surfactants

    as indicated, the nonionic

    sur" -

    factants

    tend to spread and coat the s i l ica

    ge1 port ion

    of the

    plate

    thereby obscur ' ingal1 other components.Visual izat ion is

    wi th

    I2

    vapor.

    Quant i tat ion

    of surfactants: Scanning

    ensi tometnywas done wi th

    a

    Shimadzu

    odel

    910

    inst rument .

    Surfactants

    could

    be

    detected

    di rect ly in the absorbance-ref lectance ode t 215 nm. l )etect ion

    l imi ts

    wene ower

    when he

    developed

    plate

    was exposed o

    I2

    vapor

    and scanned t

    405

    nm

    (in

    the absonbance-tnansmit tanceode).

    RESTJLTS

    ND

    DISCUSSION

    One's approach

    o the TLCseparat ion

    of

    surfactants

    in a

    mixture

    is

    largely

    contnol led

    by

    the change f the surfactant

  • 8/18/2019 Surfactant Analysis by TLC.pdf

    7/12

    ARMSTRONGND STINE

    head-groups s wel l as the d iversi ty of the

    sample. Si l ica

    ge' l

    is adequate or the separat ion

    of anionic or cat ionic surfactants

    f rom other ident ical ly charged

    species. Nonionic surfactants are

    best

    separated

    by

    reversed

    phase

    TLC

    RPTLC).

    Even

    n

    RPTLC

    nonionjc

    surfactants tend to st reak unless a

    "1

    pophi l ic sal t "

    such as sodium et raphenylborate

    is

    added. Table 1 surnmarizes

    TABLE

    Exper imental

    Condi t ions and

    R1

    Values of

    Indiv idual ly

    SeparatedAnionic, Cat ionic and Nonionic Surfactants

    Compound Stat i onary Mobi e

    Phase Phase

    $

    R1

    Anionic

    Surfactants

    I .

    SDS

    2.

    DBS

    3. SL

    4.

    SDoS

    Cat ionic Surfactants

    1.

    CTAB

    t.

    r.

    I t iu

    3.

    CPC

    4.

    DA

    5. 0A

    Nonionic Surfactants

    1.

    TX

    100

    2.

    S

    465

    3. IC0-530

    0.15

    0

    09

    0

    70

    4,28

    0.2r

    0.20

    0.27

    0,42

    0 55

    0.54

    0

    70

    0 45

    aSi l ica

    Gel

    D

    C1g

    eversed

    phase

    c8:1(v:v)

    MeCl2:MeOH

    d8,1,0.75

    (v:v:v)

    MeCi2:MeOH:H0Ac

    e8:2

    (v

    :v) Et0H:2%

    odi

    um etraphenyi

    orate(6q)

  • 8/18/2019 Surfactant Analysis by TLC.pdf

    8/12

    SEPAMTION

    OF

    SURFACTANTS

    Y

    TLC

    29

    t:"*:l1r'11]f

    andBottomections

    -____________f

    @

    I

    E

    o

    lt ;;l;

    rec

    ;'$

    ,firb.).,l}

    CpC

    DA

     i,: FliJ

    OA

    clF;+

    KCl8F

    Figure

    1: Schemat ic f a two djmensional

    TLC

    separat ion of

    e leven surfactants

    on a

    composi t

    eversed

    phase-

    si l ica

    ge1 p1ate.

    The

    f i rst

    development

    on

    the

    reversed

    phase

    st r ip)

    separated he surfactants

    according to c lass.

    Secondany

    evelopment

    f the top

    and bot tom sect ions of the plate r"esul ts in complete

    separat ion of

    jndiv idual

    sunfactants.

    SDS

    sodium

    dodecyl

    u l ate, DBS dodecyl enzenesul

    onate,

    NL

    =

    sodium aurate, S

    465

    =

    Surfynol

    465, TX

    100

    =

    Tri ton

    X100, IC0-530

    =

    Igepol C0-530,

    CTAC cetyl t r i rnethy-

    I

    ammoni

    m chlor i de,

    CPC cetyl

    pyr i

    di

    n um chlori de,

    DA

    =

    dodecylamine, A

    =

    octadecylamine.

    t ies

    SDS

    DBS

    'fll'

    '#

    sDs

    r,i#

    NL

    {r

    ",$:

    url

    ig

    TX100

    $l

    tco-530

  • 8/18/2019 Surfactant Analysis by TLC.pdf

    9/12

    30

    ARMSTRONG

    AND

    STINE

    the separat ion

    condj t ions

    for each c ' lass of

    surfactants. The

    Rr 's

    of

    the cat ionic

    sunfactants can

    be al tered

    ( i .e. ,

    increased)

    consider"ablywi th a s l ight

    increase

    in

    the concent r^at ion

    f

    ace-

    t ic acid

    in

    the mobi

    e

    phase.

    The separat ion

    of surfactants wi th

    ' ident ical hydrophyl ic headgnoups i .e. , DAand 0A or Tx 100 and

    IC0-530)

    s dependent n the s ize of

    the

    hydrophobic

    ta j l " .

    Genenal ly

    he

    larger

    the hydrophobic

    ort ion

    of

    the

    sunfactant ,

    the

    greater

    the R1.

    The

    analysis of

    solut ions contajn ing sunfactants of

    d i f -

    ferent

    char^ge an

    be

    a

    di f f icu l t

    pr^ocess

    ecause

    f

    precip i tat ion

    and

    "neut ra l

    zat ion" ef fects

    (12).

    RPTLC, owever,can

    be

    used

    to sepanate

    sunfactants

    by

    class

    (see

    Figure

    1).

    A

    75%

    ethanoi

    mobi le

    phase

    ends

    to cannyanionic sunfactants

    wi th the

    solvent

    f ront and

    leave

    cat ionic surfactants

    near the onig in.

    Perpen-

    dicular secondary eveloprnent

    f

    p late

    sect ions

    near the

    solvent

    f ront and oni

    gi

    n wi

    l then sepanate he

    ani

    on

    c and cat i onic sur ' -

    factants into indiv idual

    compounds.The

    secondany evelopment

    cannies thd surfactants

    f rom the reversed

    phase

    st l ip

    into the

    si l ica

    gel port ion

    of the

    plate

    whene

    nact ionat ion occuns

    (Figune

    1).

    Secondary

    evelopment

    f the

    whole

    TLC

    plate

    or the

    sect jon

    of

    plate

    contain ing

    the

    nonionic surfactants

    produced

    i

    ndist i

    nguishabl smears

    oven

    muchof the

    p1

    te.

    Quant i tat ion

    of sur" factants

    by

    scanning

    densi tometry

    s

    a

    relat ively

    st ra ight

    forwar"d

    nocess.

    I t

    is

    possib le

    to d inect ly

    scan

    unt reated spots

    at wavelengths

    rom

    200

    to

    215

    nm.

    Sen-

    si t iv i ty

    and select iv i ty

    can

    be enhanced

    .yusing a

    vaniety of

  • 8/18/2019 Surfactant Analysis by TLC.pdf

    10/12

    SEPARATION

    F SURFACTANTS

    Y TLC

    4812

    CTAC

    Amount,

    ll g

    Figure 2: Cal ibrat ion plot of peak area vensus arnount of th e

    standard

    sunfactant (CTAC)

    chromatographed.

    The

    ' insent

    shows

    the

    actual peaks

    obtained

    from

    scanning

    densitometery

    (at

    405 nm).

    visual

    zat ion

    on

    charr ing

    techniques

    (17,

    1g). F igure

    2 shows

    a

    scan

    of four

    GTAC

    tandards

    (r

    =

    405 nm

    af ten

    visual izat ion

    wi th

    I2

    vapor)

    and the

    corresponding

    al ibrat . ion

    curve.

    I t

    is

    appar"ent

    rom

    the

    l . i terature

    that

    exhaust ive

    chroma_

    tographic

    separat ions

    are

    pr"esent iy

    he

    most

    ef fect ive

    means

    f

    analyzing

    complex

    surfactant

    mixtur"es.

    TLC

    s

    shown

    o be

    a

    highly

    ef f ic ient

    and inexpensive

    echn. ique

    or

    the

    analysis

    of a

    var iety

    of

    surfactant

    and

    surfactant

    mixtures.

    3t

    N

    c

    @'

    96 4

    I

    6

    o

  • 8/18/2019 Surfactant Analysis by TLC.pdf

    11/12

    32

    ARMSTRONGND STINE

    ACKN()l,lLEDGEMENT

    This

    work was supportedby

    grants

    f rom the

    Nat ional

    Science

    Foundat ion

    CHE-8119055)

    nd Whatman

    hemicalSeparat ion

    Divis ion, Inc. We

    gratefu l ly

    acknowledge

    hei r assistance.

    l .

    RE ERENC

    S

    Fendler ,

    J.H.

    and Fendler ,

    E.J. , Catalysis in Micel lar

    and

    Macromolecular

    ystems,Academic ress, NewYork,

    1975.

    Rosen,

    M.J. ,

    Surfactants and

    Inter facia l

    Phenomena,

    ohn

    t , | i ley

    & Sons, NewYork,

    1978.

    |^ lang,

    .K.

    and

    Langley, D.F. ,

    N.

    Engl . WaterŴonks

    ssoc. ,

    89, 301

    (1975).

    Wang,

    L.K.

    and Ross, R.G. ,

    Int . J. Envi ron. Anal .

    Chem.,4,

    285

    (1976).

    5. Higuchi ,

    K. , Shjmoishi , Y. ,

    l ' f iyata,

    H. , Toei , K. and

    Yayami,

    T. , Analyst ,

    105, 768

    (1980).

    6.

    Wang,1.K. ,

    J.

    Am.0i l

    Chern. 0c. ,52,339

    (1975).

    7. Vyt ras,

    K. , Dajkova,

    M.

    and Mach,

    V. , Ana1.

    Chim. Acta,

    I27,

    165

    (1981) (and

    references

    herein) .

    8.

    Cr isp, P.T. ,

    Eckert , J.M. ,

    Gibson, N.A. , Kinkbr ight ,

    G.F.

    and West ,

    T.S. , Ana1.

    Chim.

    Acta,

    87, 97

    (1976).

    9. Lebiham,A. and Courtot -CoupeJ,

    . , Ana1. Let t . ,

    10, 759

    (1977).

    10. Ki rch, B.J. and Clarke, D.E. , Anal . Chim. Acta,67,387

    (1973).

    11.

    Rendal l ,

    H.M. , J.

    Chem.

    Soc.

    FaradayTrans. ,

    72, 48L

    (1976).

    12.

    Wang,

    L.K.

    and

    Langley,

    D.F. , N. Engl . Water Jorks

    Assoc. ,

    90, 354

    (1976).

    Armstrong,

    D.W., Laf ranchise,

    F.

    and Young,D. , Ana1.

    Chim.

    Acta,

    135 165

    (

    1982)

    Sul l ivan, W.T. and Swisher, R.D. , Envi ron.

    Sci .

    Technol .

    3,

    4Bl

    (

    e6e)

    2.

    4.

    13.

    14.

  • 8/18/2019 Surfactant Analysis by TLC.pdf

    12/12

    SEPAMTION

    OF

    SURFACTANTS ]Y

    TLC

    15.

    Huber,

    J.F.K. ,

    Kolder, F.F. l '4 .and Mi11er' ,

    J.M. , Anal .

    Chem.,

    4, los

    (1972).

    16. Nakae,A. , Tsuj i , K.

    and

    Yamanaka,

    "1. ,

    nal

    Chem.,

    52, 2275

    (

    1eB0)

    17.

    Yonese,C. ,

    Shishido,

    T. , Kaneko,

    T.

    and Maruyama,

    . ,

    ,1.

    Arn.

    0i l Chem.Soc. , 59, ?. , 112 (1982).

    18. Zweig, G.

    and

    Sherma, . ,

    Handbook

    f Chrom. ,Vol I I , CRC

    Press Clevel and 1972.

    33