Surface Facilities 2 1

Embed Size (px)

Citation preview

  • 8/11/2019 Surface Facilities 2 1

    1/27

    SEPARATOR SIZE SELECTION

    Must satisfy two constraints:(1)Gas capacitydetermines droplet velocity

    (2) Liquid capacityliquid must be retained in separator

    long enough for equilibrium (retention time) for gas

    to evolve from solution

    Liquid

    Desired path of liquid dropletgas

    Well

    stream

    gas

    liquid

    gas bubbles evolve,

    travel to gas phase

  • 8/11/2019 Surface Facilities 2 1

    2/27

    SEPARATOR SIZE SELECTION

    1. GAS CAPACITY CONSTRAINT

    Forces acting on a liquid droplet as it drops in

    the gravity settling section of separator

    gravity

    drag = buoyant force

    liquid droplet

    gas

  • 8/11/2019 Surface Facilities 2 1

    3/27

    SEPARATOR SIZE SELECTIONGAS CAPACITY CONSTRAINT

    (1).........2

    2

    g

    VACF tgDD

    Drag force, FD, given by

    meter10micron1

    micronsdroplet,liquidofdiameter

    ft,10281.3

    ftdroplet,liquidofdiameter

    ft/s32.2constant,nalgravitatio

    ft/svelocity,terminallb/ftdensity,liquid

    lb/ftdensity,gas

    ftarea,sectional-crossdroplet

    tcoefficiendrag

    6-

    6

    2

    3

    3

    2

    m

    m

    t

    l

    g

    D

    d

    dD

    D

    g

    V

    A

    C

    Buoyant force, FB, given by

    (2).........6

    3D

    F glB

    Equating forces gives

    terminal velocity (Vt):

    (3).........0119.02

    1

    D

    m

    g

    glt

    C

    dV

    34.0Re

    3

    Re

    2421 DC

    Vdmg0049.0Re

    NOT Stokes law, CD=24/Re,

    because gas is compressible

  • 8/11/2019 Surface Facilities 2 1

    4/27

    SEPARATOR SIZE SELECTIONGAS CAPACITY CONSTRAINT

    Liquid droplet size:

    100 micron size removed in gravity settling

    section,

    10-100 micron size removed by mist

    extractors

    Retention time = liquid droplet must staylong enough in separator to have gas-liquid

    equilibrium, typically 0.53 minutes

  • 8/11/2019 Surface Facilities 2 1

    5/27

    SEPARATOR SIZE SELECTIONGAS CAPACITY CONSTRAINT

    P= separator pressure, psig

    T = separator temperature, R

    z = separator z-factor at T and P

    Qg= separator gas flow rate, MMSCF/D

    d= separator diameter, in

    liqu

    idLiquid

    gas

    liquid

    Qg

    4).........()ft(

    )/sft()ft/s(

    2

    3

    g

    gA

    QV

    Assume separator half-filled with liquid.

    )........(5367

    in2

    2 dAg

    Sizing of Horizontal Separators

  • 8/11/2019 Surface Facilities 2 1

    6/27

    SEPARATOR SIZE SELECTIONGAS CAPACITY CONSTRAINT

    From real gas law,

    (6).........

    327.0

    P

    zTQ

    Q g

    Subst. (5) and (6) in (4):

    ......(7)

    120

    2Pd

    zTQ

    V

    g

    g

    (8)..........120

    2

    effeff

    Pd

    zTQL

    V

    Ltgg

    g

    Time for gas to traverse length of separator:

    LiquidLeff

    liqu

    id

    gas

    liquidQg d

  • 8/11/2019 Surface Facilities 2 1

    7/27

    SEPARATOR SIZE SELECTIONGAS CAPACITY CONSTRAINT

    Residence time = time for liquid droplet to fall to gas-liquid

    interface

    (9)..........242 tt

    dV

    d

    V

    Dt

    Subst. (3) in (9):

    ....(10)..........0119.024

    2

    1

    m

    D

    gl

    gd

    d

    Cdt

    Setting traverse time, tg= residence time, td, gives

    .....(11)4202

    1

    eff

    m

    D

    gl

    gg

    d

    C

    P

    zTQdL

  • 8/11/2019 Surface Facilities 2 1

    8/27

    2. LIQUID CAPACITY CONSTRAINT

    (12)......../s)(ftrateliquid

    )(ftvolume(s)3

    3rt

    3)........(11073.214442

    1eff

    23eff2

    LdLd

    volume

    14).........()b/d(1049.6/s)(ftrateLiquid 53 lQ

    Subst. (13) and (14) in (12):

    l

    eff2

    Q0.42 Ld

    tr(15).....................

    minutes)in(7.0

    eff2

    rlr t

    QtLd

    That is,

    SEPARATOR SIZE SELECTIONLIQUID CAPACITY CONSTRAINT

  • 8/11/2019 Surface Facilities 2 1

    9/27

    Seam-Seam Length, Lss

    Making allowance for separator internals:

    (16)..........12

    :constraintcapacitygasFor effd

    LLss

    ).......(173

    4

    :constraintcapacityliquidFor effLLss

    Slenderness ratio, Lss/d

    ....(18)..........4to3ss

    d

    L

    Smaller ratios lead to turbulence, waves, re-entrainment

    at gas-liquid interface.

    Larger ratios (> 4 or 5) lead to re-entrainment

    SEPARATOR SIZE SELECTIONLIQUID CAPACITY CONSTRAINT

  • 8/11/2019 Surface Facilities 2 1

    10/27

    SEPARATOR SIZE SELECTION

    Sizing of Vertical Separators

    9)........(1183in2

    2 d

    Ag

    ......(20)60

    2Pd

    zTQV

    gg

    Derivation similar to that for horizontal separators.

    1. GAS CAPACITY CONSTRAINT

    impliestg VV

    ......(21)50402

    1

    m

    D

    gl

    gg

    d

    C

    P

    zTQd

    Liquid

    gas

    liquid

    Qg Leff

    d

  • 8/11/2019 Surface Facilities 2 1

    11/27

    SEPARATOR SIZE SELECTION

    2. LIQUID CAPACITY CONSTRAINT

    ).......(22..........12.0

    2 lrQthd

    Derivation similar to that for horizontal separators.

    h= height of liquid in separator, inches

    Seam-Seam Length, Lss

    (23)..........12

    76h

    Lss ....(24)..........12

    40

    dhLssor

    .....(25)..........4to3ss d

    L

    Slenderness ratio, Lss/d

  • 8/11/2019 Surface Facilities 2 1

    12/27

    SEPARATOR SIZE SELECTION

    CALCULATION PROCEDURE FOR SIZING

    HORIZONTAL SEPARATORS

    Step 1Calculate dand Leffthat satisfy gas capacity

    constraint (Eq. 11)

    Step 2Calculate dand Leffthat satisfy liquid capacity

    (retention time) constraint (Eq. 15)

    minutes)in(7.0

    eff2

    rlr t

    QtLd

    .....(11)4202

    1

    eff

    m

    D

    gl

    gg

    d

    C

    P

    zTQdL

  • 8/11/2019 Surface Facilities 2 1

    13/27

    SEPARATOR SIZE SELECTION

    Step 3Estimate seam-to-seam length, Lss

    12:16)(Eq.constraintcapacitygasFor eff

    dLLss

    eff

    3

    4:17)(Eq.constraintcapacityliquidFor LLss

    Step 4Select slenderness ratio, Lss/d (Eq. 18)

    4to3ss d

    L

  • 8/11/2019 Surface Facilities 2 1

    14/27

    SEPARATOR SIZING PROCEDURE

    ASSUMING 100 MICRON DROPLET

    100420420

    2

    1

    2

    1

    eff

    D

    gl

    gg

    m

    D

    gl

    gg C

    P

    zTQ

    d

    C

    P

    zTQdL

    Horizontal separators:

    Eq. 11

    reduces to ..(26)..........0.42eff KPzTQ

    dL g

    where (27)..........constant,2

    1

    D

    gl

    gCK

    What value of drag coefficient CDto

    use to calculate Kin Eq. 27?

  • 8/11/2019 Surface Facilities 2 1

    15/27

    SEPARATOR SIZING PROCEDURE

    ASSUMING 100 MICRON DROPLET

    Vertical separators:

    Eq. 21

    reduces to

    where2

    1

    D

    gl

    g CK

    Again, what value of CDto use to calculate K?

    2

    1

    2

    1

    10050405040

    D

    gl

    gg

    m

    D

    gl

    gg C

    P

    zTQ

    d

    C

    P

    zTQd

    ......(28)0.504 KP

    zTQd

    g

  • 8/11/2019 Surface Facilities 2 1

    16/27

    TWO METHODS TO ESTIMATE CDor K

    1. Graphical method

    - assumes 100 micron droplet

    2. Iterative method on CD

    - more exact

    - does not assume dm= 100 micron

    TWO METHODS TO ESTIMATE C K

  • 8/11/2019 Surface Facilities 2 1

    17/27

    1. Graphical method to estimate K

    R]inispsia,inis1),(airs.g.gasis:[Note

    graph.fromoffreadandCalculate

    TPS

    KSP/T

    TWO METHODS TO ESTIMATE CDor K

  • 8/11/2019 Surface Facilities 2 1

    18/27

  • 8/11/2019 Surface Facilities 2 1

    19/27

    TWO METHODS TO ESTIMATE CDor K

    Step 3Calculate Re

    Step 4Calculate CD

    0119.0

    2

    1

    D

    m

    g

    gl

    t C

    d

    V

    tmg Vd

    0049.0Re

    34.0

    Re

    3

    Re

    2421 DC

    Step 5Calculate Vt

    Step 6If Vt in Steps 5 and 2 differ significantly, go to

    Step 3 and recalculate Re usingVtfrom Step 5

    Note: = gas viscosity at

    separator pressure andtemperature, cp

    E l Si i h i t l t

  • 8/11/2019 Surface Facilities 2 1

    20/27

    ExampleSizing a horizontal separator

    (from Arnold-Stewart)

    Example Sizing a horizontal separator

  • 8/11/2019 Surface Facilities 2 1

    21/27

    ExampleSizing a horizontal separator

  • 8/11/2019 Surface Facilities 2 1

    22/27

    Example Sizing a horizontal separator

  • 8/11/2019 Surface Facilities 2 1

    23/27

    ExampleSizing a horizontal separator

    E ample Si ing a ertical separator

  • 8/11/2019 Surface Facilities 2 1

    24/27

    ExampleSizing a vertical separator

    (from Arnold-Stewart)

  • 8/11/2019 Surface Facilities 2 1

    25/27

  • 8/11/2019 Surface Facilities 2 1

    26/27

    ExampleSizing a vertical separator

  • 8/11/2019 Surface Facilities 2 1

    27/27