9
1 st Workshop in Supramolecular Chemistry December 18 th , 2019 Valencia, Spain Supramolecular Chemistry Group

Supramolecular Chemistry · a Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), Av. Països Catalans, 16, 43007, Tarragona,

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Supramolecular Chemistry · a Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), Av. Països Catalans, 16, 43007, Tarragona,

1st Workshop in

Supramolecular Chemistry December 18th, 2019 Valencia, Spain

Supramolecular ChemistryGroup

Page 2: Supramolecular Chemistry · a Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), Av. Països Catalans, 16, 43007, Tarragona,

Workshop in Supramolecular Chemistry

Wednesday, December 18th

9:25 – 9:30 Inauguration of the Workshop

9:30 – 10:15 Prof. Ángela Sastre, Área de Química Orgánica, Instituto de Bioingeniería,

Universidad Miguel Hernández.” Supramolecular Complexes of Fused Phthalocyanine-Porphyrin

Systems with C60”

10:15 – 11:00 Prof. Beatriu Escuder, Departament de Química Inorgànica i Orgànica, Universitat

Jaume I. “Bio-inspired Supramolecular Materials Based on Simple Peptidic Derivatives”

11:00 – 11:30 Coffee break

11:30 – 11:40 Dr. Álvaro Martínez-Camarena, Universitat de València, Instituto de Ciencia

Molecular (ICMol). “Metal biomimetics as potent antioxidant agents”

11:40 – 11:50 Dr. Alberto Lopera, Universitat de València, Instituto de Ciencia Molecular

(ICMol). “Supramolecular Pyrazole-based Metalloreceptors”

11:50 – 12:00 Dr. Mario Inclán, Universitat de València, Instituto de Ciencia Molecular (ICMol).

“Polyamine Receptors for DNA Recognition”

12:00 – 12:45 Prof. Pablo Ballester, Institute of Chemical Research of Catalonia (ICIQ) & Catalan

Institution for Research and Advanced Studies (ICREA). “Self-assembly of Mono-metallic Pd(II)

and Pt(II)-Cages Featuring Two Different Polar Binding Sites”

12:45 – 13:15 Dr. Guzmán Gil, School of Chemistry, University of Lincoln. “Lanthanide-directed

self-assembly of topologically complex structures”

Page 3: Supramolecular Chemistry · a Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), Av. Països Catalans, 16, 43007, Tarragona,

Pablo Ballester

Pablo Ballester studied Chemistry at the University of the Balearic

Islands (UIB) where he also completed the PhD degree in 1986

under the guidance of Prof. Ramón Mestres. In 1987 he worked

as post-doctoral Associate with Prof. J. Rebek Jr. at the University

of Pittsburgh. In 1988 after a post-doctoral stay at UIB supervised

by Prof. J. M. Saá he decided to return to Pittsburgh and moved

to MIT in 1989 with the Rebek’s group. From 1991 to 2002 he

held the positions of Assistant and Associate Professor at UIB and served as Secretary of

the Chemistry Department, Vice-dean of the Faculty of Sciences and Head of Studies of

Chemistry at UIB. In 2003 and while enjoying a sabbatical leave at the Scripps Research

Institute (USA) with the rank of Associate Professor of Research he got an ICREA

Research Professorship and joined ICIQ as Group Leader in 2004. He is the recipient of

the 2012 Janssen Cilag Organic Chemistry Prize awarded by the Spanish Royal Society of

Chemistry. From February 2016 to July 2018 he served as ICIQ Vice-Director for BIST

affairs. In July 2018 he was appointed Scientific Collaborator of the Spanish Federal

Agency for Research.

Ángela Sastre

Ángela Sastre-Santos is currently Full Professor of Organic Chemistry

(2010) and Head of the Instituto de Biongeniería at the Universidad

Miguel Hernández de Elche. She studied chemistry at the Universidad

Autónoma de Madrid, where she obtained her Ph.D under the

supervision of Tomás Torres. Subsequently, she spent 6 months as a

European Postdoc Fellow in the École Supérieure de Physique et

Chimie Industrielles in Paris (Prof. Jacques Simon). She worked as

posdoctoral fellow to Prof. Fred Wudl’s group for 2 years at the

Institute for Polymers and Organic Solid, University of California, Santa Barbara and at

the Department of Chemistry and Biochemistry, University of California, Los Angeles.

She moved in 1998 to the Universidad Miguel Hernández de Elche (Elche, Spain). Her

research interest focuses on the synthesis of molecular and supramolecular

electroactive systems with nano- and biotechnological applications. She is member of

the American Chemical Society, Electrochemical Society, Society of Porphyrins and

Phthalocyanines, the Spanish Royal Chemical Society and the Spanish Royal Physical

Society; within the two latter, she is the President of the Nanoscience and Molecular

Material Division (March 2013-). She has published more than 130 peer-reviewed

articles. Awarded by the José Barluenga 2018 Medal of the Specialized Group of Organic

Chemistry of the Royal Spanish Society of Chemistry, in recognition of a projection of

quality and excellence in her independent research career in Organic Chemistry. Co-

founder of the spin-off Anfechem S.L.

Page 4: Supramolecular Chemistry · a Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), Av. Països Catalans, 16, 43007, Tarragona,

Beatriu Escuder Gil

Beatriu graduated in Chemistry at the University of Valencia, Spain, in 1992

and obtained her PhD at Universitat Jaume I, Castelló, Spain, in 1997, under

the supervision of Prof. Santiago V. Luis and Prof. Enrique García-España. In

1998, she joined Prof. Nolte’s group at the University of Nijmegen, The

Netherlands, as a Marie Curie postdoctoral fellow. She has been Associate

Professor of the Inorganic and Organic Chemistry Department at

Universitat Jaume I since 2001 and she has been recently promoted to Full

Professor of Organic Chemistry in the same department. Her main scientific

interests include the study of peptide-based supramolecular materials and

their application in biomimetic catalysis and as biomaterials.

Guzmán Gil-Ramírez

Guzmán nació en Castellón (España). Obtuvo su doctorado (2009) bajo la

dirección del Profesor Pablo Ballester en el Instituto Catalán de

Investigación Química (ICIQ) en Tarragona (España). Posteriormente se

fue al Reino Unido (UK) a trabajar con el Profesor Harry L. Anderson FRS

y el Profesor Andrew G. Briggs en la Universidad de Oxford como

investigador asociado. En 2013 trabajo con el Profesor David A. Leigh FRS

en la Universidad de Manchester. GGR inició su carrera como

investigador independiente en la Universidad de Lincoln en 2016 donde

trabaja como Senior Lecturer. Su investigación se centra en el diseño, síntesis, estudio y

caracterización de agregados moleculares funcionales con lantánidos. Con énfasis en el estudio

del efecto de estructuras con topologías complejas y enlace mecánico (nudos, catenanos,

rotaxanos) en las propiedades físico-químicas de los agregados. Las posibles aplicaciones de

estos agregados con lantánidos están en el campo de bioimagen, materiales para single-

molecule magnets, LEDs, o sensores luminescentes.

Page 5: Supramolecular Chemistry · a Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), Av. Països Catalans, 16, 43007, Tarragona,

Self-assembly of Mono-metallic Pd(II) and Pt(II)-Cages

Featuring Two Different Polar Binding Sites

Pablo Ballestera,b

a Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), Av. Països Catalans, 16, 43007, Tarragona, Spain

b ICREA, Passeig Lluís Companys, 23, 08010, Barcelona, Spain

E-mail: [email protected]

In this presentation, I will describe the synthesis of the tetra-α isomers of aryl and super

aryl-extended calix[4]pyrroles bearing four 3-pyridyl substituents at their upper rims. I will

show that only the self-assembly of the tetra-pyridyl substituted super aryl-extended

calix[4]pyrrole with Pd(II) salts affords a mono-metallic cage displaying two different polar

binding sites. In contrast, replacing the super-aryl extended scaffold by the aryl-extended

counterpart prevents the Pd(II)-cage assembly and induces the formation of oligomeric

aggregates.

The assembled Pd(II)-cage is capable of reversibly including mono and ditopic polar

guests in organic solvents. Additional experiments will be presented supporting that the

hydrogen-bonding needs of the two binding sites of the cage must be met to achieve its

efficient assembly and thermodynamic stability. The results of the characterization of the

structures of the cage and several cage complexes in solution and in the solid-state will

be detailed. Finally, a “french-doors” mechanism involving the four meso-phenyl

substituents of the cage will be proposed in order to explain the exchange dynamics

experienced by the included guests in a Pt(II)-mono-metallic cage.[1,2]

X-Ray structures of the inclusion complexes of acetonitrile with: (left) tetra-α tetra-pyridyl super

aryl-extended calix[4]pyrrole and (right) mono-metallic Pd(II) cage.

References:

[1] L. Escobar, D. Villarón, E. C. Escudero-Adán, P. Ballester, Chem. Commun. 2019, 55, 604-607.

[2] L. Escobar, E. C. Escudero-Adán, P. Ballester. Angew. Chem., Int. Ed. 2019, 58, 16105-16109.

Page 6: Supramolecular Chemistry · a Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), Av. Països Catalans, 16, 43007, Tarragona,

Supramolecular Complexes of Fused Phthalocyanine-Porphyrin

Systems with C60

Ángela Sastre-Santos, Jorge Follana-Berná, Luis Martín-Gomis, Fernando Fernández-

Lázaro,

Área de Química Orgánica, Instituto de Bioingeniería, Universidad Miguel Hernández, Elche 03202 (Alicante), Spain.

E-mail: [email protected]

Phthalocyanines (Pc) and porphyrins (P) have emerged as building blocks for the

construction of new materials due to their thermal, chemical and photochemical

stabilities. Moreover, the complementary absorptions of both units have increased the

interest in covalently fused Pc-P dyads as they cover a wider range of the solar spectrum,

and consequently have generated a great expectation for photovoltaic applications. The

good overlap between the Q band absorption of phthalocyanine and the fluorescence of

porphyrin in most Pc-P conjugates gives rise to an efficient intramolecular energy

transfer from the singlet excited porphyrin to the phthalocyanine core[1]. Further,

appending one or two electron acceptor entities to the Pc-P dyads make such

supramolecular donor-acceptor systems photochemically more attractive as they reveal

charge separation upon photoexcitation[2].

Herein, we will report our more recent results related with the synthesis of different

phthalocyanines fully conjugated with porphyrins and other macrocyclic systems and

their supramolecular complexation with imidazole C60 moieties (see as example Figure

1) and their photophysical studies[3].

References:

1. (a) A. Hausmann, A. R. Soares, M. V. Martínez-Díaz, M. G. Neves, A. C. Tomé, J. A. Cavaleiro, Photochem. Photobiol. Sci. 2010, 9, 1027-1032. (b) Z. Xiao, Z. Li, X. Wu, Y. Fang, G. Ao, J. Huang, D. Liu, Y. Wang, X. Zhang, Y.Song, Dyes Pigm. 2016, 127, 197-203.

2. C. B. Kc, F. D’Souza, Coord. Chem. Rev. 2016, 322, 104-141.

3. J. Follana-Berná, S. Seetharaman, L. Martín-Gomis, G. Charalambidis, A. Trapali, P. A. Karr,

A. G. Coutsolelos, F. Fernández-Lázaro, F. D’Souza, Á. Sastre-Santos, Phys. Chem. Chem. Phys., 2018, 20, 7798-7807. (b) S. Seetharaman J. Follana-Berná, , L. Martín-Gomis, G. Charalambidis, A. Trapali, P. A. Karr, A. G. Coutsolelos, F. Fernández-Lázaro, Á. Sastre-Santos, F. D’Souza, Chem.Phys.Chem. 2019, 20, 163-172

Structure of a ZnPc-ZnP:(C60Im)2 system

Page 7: Supramolecular Chemistry · a Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), Av. Països Catalans, 16, 43007, Tarragona,

Bio-inspired Supramolecular Materials Based on Simple

Peptidic Derivatives

Beatriu. Escuder

Departament de Química Inorgànica i Orgànica, Universitat Jaume I, 12071 Castelló, Spain

Email: [email protected]

Nature has been a source of inspiration for a wide variety of functional supramolecular

materials. For instance, protein structure and function has been emulated by simple

synthetic systems with the concurrence of non-covalent interactions.1 Among them,

peptide-based self-assembled fibrillar materials (hydrogels) are particularly attractive

because of structural as well as functional reasons (i.e. rigidity of the amide bond, rich

chemical space provided by the amino acid side chain functionality, ability to form

specific H-bonding patterns leading to hierarchical self-assembled structures).2

Here we will discuss on low molecular weight peptide-based materials as protein

structure mimetics as well as materials with emergent catalytic properties.3

References 1. (a) D. A. Uhlenheuer, K. Petkau, L. Brunsveld, Chem. Soc. Rev., 2010, 39, 2817. (b) I. Alfonso, Chem. Commun., 2016, 52, 239.

2. N. Singh, M. Kumar, J. F. Miravet, R. V. Ulijn, B. Escuder, Chem. Eur. J., 2017, 23, 981.

3. (a) N. Singh, K. Zhang, C. A. Angulo-Pachón, E. Mendes, J. H. van Esch, B. Escuder, Chem. Sci., 2016, 7, 5568. b) M. Tena-Solsona, J. Nanda, S. Díaz-Oltra, A. Chotera, G. Ashkenasy, B. Escuder, Chem. Eur. J. 2016, 22, 6687. (c) N. Singh, B. Escuder, Chem. Eur. J., 2017, 23, 9946. (d) R. Martí-Centelles, B. Escuder, ChemNanoMat, 2018, 4, 796.

Page 8: Supramolecular Chemistry · a Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), Av. Països Catalans, 16, 43007, Tarragona,

Lanthanide-directed self-assembly of topologically complex

structures

Guzmán Gil Ramirez

School of Chemistry, University of Lincoln, Brayford Way, Brayford Pool, Lincoln LN6

7TS, Reino Unido

Email: [email protected]

The hard Lewis acid character and large coordination spheres (6-12) of lanthanides

makes nitrogen and oxygen rich ligands good building blocks for self-assembled

systems. In that sense the 2,6-pyridyldicarboxyamide motif has been widely used in

literature.1 The use of lanthanide ions to direct the formation of complex supramolecular

architectures using ligands based on 2,6-pyridyldicarboxyamide motif is favoured

because they display predictable coordination to lanthanide ions, in many cases with

three 2,6-pyridyldicarboxyamide motifs coordinating to a single lanthanide to give a 9

coordinate species.

We have previously reported the use of lanthanide ions as templates for the synthesis of

trefoil knots.2 When chiral ligands are used in conjunction with the lanthanide template

the enantioselective synthesis of each handedness of the knot can be achieved.3

The study of the structure-property relationships of the assemblies shows that the

topology of the assembly seems to have an effect on those properties.

There are very few lanthanide assemblies containing interlocked structures, exploration

into this area could lead to interesting molecular switching and molecular sensors taking

advantage of the optical/magnetic properties of the LnIII metal.4

References:

1. J. A. Kitchen, Coord. Chem. Rev., 2017, 340, 232.

2. J.-F. Ayme, G. Gil-Ramírez, D. A. Leigh, J.-F. Lemonnier, A. Markevicius, C. A. Muryn, G. Zhang, J. Am. Chem. Soc., 2014, 136, 13142.

3. G. Zhang, G. Gil-Ramírez, A. Markevicious, C. Browne, I. J. Vitorica-Yrezabal, D. A. Leigh, J. Am. Chem. Soc., 2015, 137, 10437.

4. D. E. Barry, D. F. Caffreya, T. Gunnlaugsson, Chem. Soc. Rev., 2016, 45, 3244.

Page 9: Supramolecular Chemistry · a Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), Av. Països Catalans, 16, 43007, Tarragona,

SCIENTIFIC COMMITTEE

Prof. Enrique García-España, Universidad de Valencia (Spain)

Dr. Jorge González García, Universidad de Valencia (Spain)

Dr. Begoña Verdejo Viu, Universidad de Valencia (Spain)

ORGANIZING COMMITTEE

Dr. Jorge González García, Universidad de Valencia (Spain)

Dra. Cristina Galiana Roselló, Universidad de Valencia (Spain)

Dr. Salvador Blasco Llopis, Universidad de Valencia (Spain)

Dra. Begoña Verdejo Viu, Universidad de Valencia (Spain)

Dra. Mª Paz Clares García, Universidad de Valencia (Spain)

Dr. Mario Inclán Nafria, Universidad de Valencia (Spain)

Dr. Alvar Martinez Camarena, Universidad de Valencia (Spain)

Dr. Isabel Pont Niclos, Universidad de Valencia (Spain)

Dr. Alberto Lopera, Universidad de Valencia (Spain)

Prof. Enrique García-España, Universidad de Valencia (Spain)

Ariadna Gil Martínez, Universidad de Valencia (Spain)

SPONSORS