29
1 SUPPORTING INFORMATION Effect of Mg(II) and Zn(II) complexation on the unimolecular fragmentation of glyoxylate, pyruvate, and 2-oxobutyrate. Relationship to biological CO 2 fixation, and the Grignard and Barbier reactions Glenn B. S. Miller and Einar Uggerud CONTENTS * Star marked sections are modified copies of earlier reports from us on these issues. 1, 2 1 EXPERIMENTAL METHOD AND ADDITIONAL RESULTS ......................................3 1.1 Mass spectra noise and creation of breakdown curves* ..............................................3 1.2 Extrapolation procedure to determine onset energies* ................................................3 1.3 Absolute intensity breakdown curves of the [RCOCO 2 MCl 2 ] complexes ...............12 1.4 Mass spectra of the enolate-metal complex reactions with CO 2 ................................14 1.5 Comparison of experimental and calculated energy difference between the CO 2 and CO 2 +CO losses. ....................................................................................................................15 2 ADDITIONAL COMPUTATIONAL RESULTS ............................................................16 2.1 Non-occurring elimination of CO ..............................................................................16 2.2 M06-2X and M06-L potential energy diagrams ........................................................17 3 OPTIMISED ENERGIES .................................................................................................20 3.1 B3LYP/aug-cc-pVTZ .................................................................................................20 3.1.1 GlyoxylateMgCl 2 ...............................................................................................20 3.1.2 GlyoxylateZnCl 2 ................................................................................................20 3.1.3 PyruvateMgCl 2 ..................................................................................................20 3.1.4 PyruvateZnCl 2 ...................................................................................................21 3.1.5 2-OxobutyrateMgCl 2 .........................................................................................21 3.1.6 2-OxobutyrateZnCl 2 ..........................................................................................21 3.1.7 Common ions and neutrals for all complexes .....................................................22 3.1.8 CO 2 reaction of the enolate-pyruvate complexes................................................22 Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2017

SUPPORTING INFORMATION - rsc.org · 1.4 Mass spectra of the enolate-metal complex reactions with CO2 ... 2.1 Non-occurring elimination of CO ... 20 3.1.1 GlyoxylateMgCl2

Embed Size (px)

Citation preview

1

SUPPORTING INFORMATION

Effect of Mg(II) and Zn(II) complexation on the unimolecular fragmentation of glyoxylate, pyruvate, and 2-oxobutyrate. Relationship to biological CO2 fixation, and the Grignard and Barbier reactions

Glenn B. S. Miller and Einar Uggerud

CONTENTS

* Star marked sections are modified copies of earlier reports from us on these issues.1, 2

1 EXPERIMENTAL METHOD AND ADDITIONAL RESULTS......................................3

1.1 Mass spectra noise and creation of breakdown curves* ..............................................3

1.2 Extrapolation procedure to determine onset energies* ................................................3

1.3 Absolute intensity breakdown curves of the [RCOCO2MCl2]– complexes ...............12

1.4 Mass spectra of the enolate-metal complex reactions with CO2 ................................14

1.5 Comparison of experimental and calculated energy difference between the CO2 and

CO2+CO losses. ....................................................................................................................15

2 ADDITIONAL COMPUTATIONAL RESULTS............................................................16

2.1 Non-occurring elimination of CO ..............................................................................16

2.2 M06-2X and M06-L potential energy diagrams ........................................................17

3 OPTIMISED ENERGIES.................................................................................................20

3.1 B3LYP/aug-cc-pVTZ.................................................................................................20

3.1.1 GlyoxylateMgCl2–...............................................................................................20

3.1.2 GlyoxylateZnCl2– ................................................................................................20

3.1.3 PyruvateMgCl2– ..................................................................................................20

3.1.4 PyruvateZnCl2– ...................................................................................................21

3.1.5 2-OxobutyrateMgCl2– .........................................................................................21

3.1.6 2-OxobutyrateZnCl2– ..........................................................................................21

3.1.7 Common ions and neutrals for all complexes.....................................................22

3.1.8 CO2 reaction of the enolate-pyruvate complexes................................................22

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry.This journal is © The Royal Society of Chemistry 2017

2

3.2 M06-2X/aug-cc-pVTZ ...............................................................................................23

3.2.1 GlyoxylateMgCl2–...............................................................................................23

3.2.2 GlyoxylateZnCl2– ................................................................................................23

3.2.3 PyryvateMgCl2– ..................................................................................................23

3.2.4 PyruvateZnCl2– ...................................................................................................23

3.2.5 2-OxobutyrateMgCl2– .........................................................................................24

3.2.6 2-OxobutyrateZnCl2– ..........................................................................................24

3.2.7 Common ions and neutrals..................................................................................25

3.3 M06-L/aug-cc-pVTZ..................................................................................................26

3.3.1 GlyoxylateMgCl2–...............................................................................................26

3.3.2 GlyoxylateZnCl2– ................................................................................................26

3.3.3 PyryvateMgCl2– ..................................................................................................26

3.3.4 PyruvateZnCl2– ...................................................................................................27

3.3.5 2-OxobutyrateMgCl2– .........................................................................................27

3.3.6 2-OxobutyrateZnCl2– ..........................................................................................27

3.3.7 Common ions and neutrals..................................................................................28

4 REFERENCES .................................................................................................................29

3

1 EXPERIMENTAL METHOD AND ADDITIONAL RESULTS

1.1 Mass spectra noise and creation of breakdown curves*Visible in some of our mass spectra is significant noise around the precursor ion peaks and some product ion peaks. This phenomenon becomes more apparent with increasing collision energy. In spite of repeated attempts at identifying the exact cause we do not fully understand it. We believe it is connected to the axial speed of the ions as they travel through the ToF tube (V-shaped flight path due to a reflectron). When the axial speed is excessive (high collision energy) relative to flight time, the ions are not fully centred on the detector. It is clearly visible in the Figure 1 in the main paper for the [HCOCO2MgCl2]– ion.

However, in spite of this problem we do not believe it adversely affects the absolute intensity of the product ions nor the relative peak heights of the product ions to each other. At higher collision energies we do believe the precursor ion intensity is greatly affected.

The breakdown curves are made from mass spectra recorded at incrementally increasing collision energies, as described in the main paper. Due to the above described phenomenon we use absolute intensity peak heights when creating the breakdown curves and for performing the extrapolation.

1.2 Extrapolation procedure to determine onset energies*The determination of onset energies is done by doing a linear regression of the linearly rising portion of a fragment’s intensity vs. energy curve, followed by extrapolation of this curve to zero intensity. At zero intensity the onset energy is read. However, the ions fragmented to some extent irrespective of collision energy in our experiments meaning that the energy at zero intensity will be too low. We therefore performed a baseline correction of the onset energy where the onset energy is read at the intercept of the corrected baseline and the extrapolated line of the linearly rising section. The corrected baseline was set at the lowest intensity detected for each fragment. It is important to use the absolute peak intensities and not relative intensities, as the relative intensities will greatly shift the curve’s positions towards the right, resulting in energies that are too high. Based upon previous experiences this method appears to work best for barrierless first-generation processes.1, 2 It also requires decent fragment signals for good reproducibility. An improvement on this method is too record a breakdown curve at varying pressures, and then to determine the onset energy at each pressure. Once this data has been acquired a onset energy vs. pressure curve can be made, and the onset energy at “zero pressure” can be determined via extrapolation. This has not been performed here as the required amount of experiments is prohibitively large. Instead, the experiments have been performed at the lowest pressure possible (1 x 10–4 mbar Ar, background: 2 x 10–5 mbar) with three repetitions.

The results for the CO2 and CO2+CO eliminations are summarised in Table 1 with Figure 1 to Figure 6 showing the extrapolations. Table 2 summarises the data for the HCl and MCl2 eliminations with Figure 7to Figure 11 showing the extrapolations.

4

Table 1: Summary of values from the extrapolation procedure for the CO2 and CO2+CO eliminations for all complexes. Energies in kJ/mol.

CO2 elimination CO2+CO EliminationRun_Complex E at Y=0 Baseline Corrected E at Y=0 Baseline Corrected

1_GlyMgCl2– 150 4 154 207 3 210

2_GlyMgCl2– 151 17 168 185 15 200

3_GlyMgCl2– 114 13 127 191 15 206

Avg. ± σ 138 ± 17 150 ± 17 194 ± 9 205 ± 41_GlyZnCl2

– 104 0 104 137 0 1372_GlyZnCl2

– 117 20 137 156 17 1733_GlyZnCl2

– 80 25 105 143 18 161Avg. ± σ 100 ± 15 115 ± 15 145 ± 8 157 ± 151_PyrMgCl2

– 146 24 170 185 91 2762_PyrMgCl2

– 111 24 135 224 17 2413_PyrMgCl2

– 131 20 151 232 2 234Avg. ± σ 129 ± 14 152 ± 14 214 ± 21 250 ± 181_PyrZnCl2

– 117 17 134 152 23 1752_PyrZnCl2

– 149 6 155 180 2 1823_PyrZnCl2

– 91 19 110 139 22 161Avg. ± σ 119 ± 24 133 ± 18 157 ± 17 173 ± 91_ButMgCl2

– 167 11 178 215 35 2502_ButMgCl2

– 135 21 156 176 47 2233_ButMgCl2

– 125 19 144 181 47 228Avg. ± σ 142 ± 18 159 ± 14 191 ± 17 234 ± 121_ButZnCl2

– 118 20 138 146 33 1792_ButZnCl2

– 106 17 123 137 34 1713_ButZnCl2

– 71 36 107 114 37 151Avg. ± σ 98 ± 20 123 ± 13 132 ± 13 167 ± 12

5

Table 2: Summary of values from the extrapolation procedure for the MCl2 loss from all complexes and the HCl loss from the pyruvate and 2-oxobutyrate complexes. Energies in kJ/mol.

MCl2 elimination HCl EliminationRun_Complex E at Y=0 Baseline Corrected E at Y=0 Baseline Corrected1_GlyMgCl2

– 289 21 3102_GlyMgCl2

– Poor data 2903_GlyMgCl2

– 288 30 318Avg. ± σ 289 306 ± 121_GlyZnCl2

– 172 0 1722_GlyZnCl2

– 186 8 1943_GlyZnCl2

– 181 14 195Avg. ± σ 180 ± 6 187 ± 111_PyrMgCl2

– Bad data <0 146 21 1672_PyrMgCl2

– Poor data 305 146 10 1563_PyrMgCl2

– 303 0 303 153 4 157Avg. ± σ 303 304 148 ± 3 160 ± 51_PyrZnCl2

– 119 92 211 111 9 1202_PyrZnCl2

– 206 0 206 132 3 1353_PyrZnCl2

– 198 9 207 86 16 102Avg. ± σ 174 ± 39 208 ± 2 110 ± 19 119 ± 131_ButMgCl2

– 99 191 290 158 8 1662_ButMgCl2

– <0 poor data 328 130 12 1423_ButMgCl2

– 102 240 342 141 11 152Avg. ± σ 101 320 ± 20 143 ± 12 153 ± 101_ButZnCl2

– 162 56 218 116 13 1292_ButZnCl2

– 71 89 160 113 12 1253_ButZnCl2

– 190 17 207 76 18 94Avg. ± σ 141 ± 51 195 ± 25 102 ± 18 116 ± 16

6

Figure 1: Extrapolation for [HCOCOMgCl2]– to determine onset energies of CO2 elimination (top) and CO2+CO elimination (bottom) for three independent runs.

Figure 2: Extrapolation for [HCOCOZnCl2]– to determine onset energies of CO2 elimination (top) and CO2+CO elimination (bottom) for three independent runs.

7

Figure 3: Extrapolation for [CH3COCOMgCl2]– to determine onset energies of CO2 elimination (top) and CO2+CO elimination (bottom) for three independent runs.

Figure 4: Extrapolation for [CH3COCOZnCl2]– to determine onset energies of CO2 elimination (top) and CO2+CO elimination (bottom) for three independent runs.

8

Figure 5: Extrapolation for [CH3CH2COCOMgCl2]– to determine onset energies of CO2 elimination (top) and CO2+CO elimination (bottom) for three independent runs.

Figure 6: Extrapolation for [CH3CH2COCOZnCl2]– to determine onset energies of CO2 elimination (top) and CO2+CO elimination (bottom) for three independent runs.

9

Figure 7: Extrapolations performed for the elimination of MCl2 from GlyMgCl2– (top) and GlyZnCl2

– (bottom).

Figure 8: Extrapolations performed for the eliminations of MCl2 (top) and HCl (bottom) from PyrMgCl2–.

10

Figure 9: Extrapolations performed for the eliminations of MCl2 (top) and HCl (bottom) from PyrZnCl2–.

Figure 10: Extrapolations performed for the eliminations of MCl2 (top) and HCl (bottom) from ButMgCl2–.

11

Figure 11: Extrapolations performed for the eliminations of MCl2 (top) and HCl (bottom) from ButZnCl2–.

12

1.3 Absolute intensity breakdown curves of the [RCOCO2MCl2]– complexes

Figure 12: Absolute intensity breakdown curves of the 2-oxocarboxylate-MgCl2– complexes.

13

Figure 13: Absolute intensity breakdown curves of the 2-oxocarboxylate-ZnCl2– complexes.

14

1.4 Mass spectra of the enolate-metal complex reactions with CO2

Figure 14: Mass spectrum of the CO2 reaction with the pyruvate-enolate metal complex [H2C=COCO2MgCl]–. Conditions: CO2 pressure 2 x 10–3 mbar, 1 eV (Lab). A small amount of H13CO2H contamination was present from a previous experiment.

Figure 15: Mass spectrum of the CO2 reaction with the pyruvate-enolate metal complex [H2C=COCO2ZnCl]–. Conditions: CO2 pressure 3 x 10–3 mbar, 1 eV (Lab). A small amount of H13CO2H contamination was present from a previous experiment. The intensity of the reaction products have been multiplied by a factor of 10 for visibility.

15

1.5 Comparison of experimental and calculated energy difference between the CO2 and CO2+CO losses.

Figure 16: Comparison of calculated and experimental energy (kJ/mol) difference between the eliminations of CO2 and CO2+CO (∆E = E–(CO2+CO) – E–CO2). Error bars mark sum of uncertainties.

16

2 ADDITIONAL COMPUTATIONAL RESULTS

2.1 Non-occurring elimination of COAs described in the introduction of the paper the simple 2-oxo carboxylate anions eliminate CO to generate RCO2

– type species. While this process is only efficient for glyoxylate, it is not detected for neither pyruvate nor 2-oxobutyrate. When these carboxylates are complexed with MgCl2 and ZnCl2 this reaction channel is efficiently shut down. The naked carboxylates eliminate CO with calculated barriers between 186 kJ/mol and 232 kJ/mol, depending on mechanism and carboxylate.2 Complexation to MCl2 increases these barrier significantly, but a distinction must be made based on the mechanism of CO loss. Elimination of CO via the [RCO2MCl2]– route is for all complexes associated with large barriers of 294 – 322 kJ/mol, nearly 100 kJ/mol above the naked carboxylates. The second mechanism generating [ROCOMCl2]– has large barriers for R = CH3, CH3CH2 of 380-393 kJ/mol. However, for R = H the barriers are fairly low at 220 kJ/mol and 217 kJ/mol for magnesium and zinc respectively, an increase over the naked glyoxylate of around 25 kJ/mol.

Figure 17: Transition states associated with the loss of CO from naked glyoxylate (A), from the glyoxylate complexes (B), and from the pyruvate and 2-oxobutyrate complexes (C). The presented metal transition states are for zinc, but the magnesium transition states are similar.

Closer inspection of each mechanism’s transition state reveals some details of the high barriers. There are two transition state structures relevant for [RCO2MCl2]–, both are presented in Figure 17. The B TS structure applies to the glyoxylate complexes, while the C structure applies to the pyruvate and 2-oxobutyrate complexes. Also presented in Figure 17 is the TS of the naked carboxylates, represented here by glyoxylate. In all three cases there is a transfer of R– to the carboxylate carbon. A noticeable difference between the transition states of the naked carboxylates (A) and metal transition states (B, C) is the angle of the CO2-moiety. For A the CO2-moiety is more linear, with an angle of 166.8°, than the metal complex transition states which have CO2 angles of 121.6° and 124.6°. This is important since the CO2 angle is a measure of the amount of charge carried by it. The CO2

– radical anion, although unstable, has an assumed equilibrium angle of 135° based on experimental and calculated values of the asymmetric stretching frequency.3, 4 While the [ClMgO2C]– complex has a calculated CO2 angle of 112.8° and an inferred charge of 1.8e– based upon its asymmetric stretch.5 These considerations suggest that the nature of the R transfer changes from naked carboxylate to metal complexed carboxylate. In the naked carboxylates the CO2 moiety carries far less negative charge making it easier to accept the R– group. For the metal complexes significant charge resides on the CO2-moiety making it harder to accept R–, raising the barriers. Indeed, there is a linear correlation (R=0.93, Figure 18) between the CO2 angle in the transition states and the transition state energies, where a more linear angle makes for a lower barrier.

17

Figure 18: Correlation of the angle in the CO2-moiety of the naked 2-oxocarboxylates and the 2-oxocarboxylate-metal complexes with the energy (B3LYP/aug-cc-pVTZ, kJ/mol) of the CO elimination barriers.

The lowest energies associated with CO loss if found for the [ROCOMCl2]– route for the glyoxylate complexes. As mentioned, these have barriers just 25 kJ/mol higher than the naked carboxylates, with the increase likely stemming from the MCl2-moiety locking the geometry of the carboxylate, preventing it from effectively adjusting to the transfer of hydrogen from the carbonyl carbon to the carboxylate oxygen. Since CO loss is not observed for the glyoxylate-metal complexes, this reaction must be kinetically unfavourable either in absolute terms or relative to the competing CO2/CO2 + CO losses which are very fast. For the pyruvate- and 2-oxobutyrate metal complexes large barriers of 380-393 kJ/mol are computed for the [ROCOMCl2]– route, likely due to the larger methyl and ethyl groups, making their transfers highly unfavourable.

2.2 M06-2X and M06-L potential energy diagramsFigure 19 and Figure 20 presents potential energy diagrams for the 2-oxocarboxylateMCl2

– complexes at the M06-2X/aug-cc-pVTZ and M06-L/aug-cc-pVTZ, respectively.

Some minor mechanistic differences are present between the two Minnesota functionals and B3LYP. Firstly, both M06-2X and M06-L are incapable of reproducing the transition state for the HCl loss and the ion-neutral complex associated with the reaction. Instead, both M06-2X and M06-L suggest that the HCl loss occurs completely without any reverse barriers. There is one exception, M06-L manages to locate the TS for the HCl loss from [CH3CH2COCO2ZnCl2]–, it was however unable to optimise the INC. Whether the B3LYP result with a TS leading to an INC, or the M06-2X/M06-L result is correct we do not consider to be important, as all functionals agree that it overall occurs without a reverse barrier.

18

Figure 19: M06-2X/aug-cc-pVTZ potential energy diagram describing the fragmentations of the 2-oxocarboxylateMCl2

– complexes. Energies are zero-point corrected.

We were unable to optimise at the M06-L level some of transition states associated with CO2 and CO loss for some of the complexes. These have been marked with a ? in the diagrams. M06-2X was able to optimise all species except the CO2 loss INC for [CH3CH2COCO2ZnCl2]–. This further motivates our reasoning for using the B3LYP result in the main paper which successfully modelled all species involved.

19

Figure 20: M06-L/aug-cc-pVTZ potential energy (kJ/mol) diagram describing the fragmentations of the 2-oxocarboxylateMCl2

– complexes. Energies are zero-point corrected.

20

3 OPTIMISED ENERGIES

3.1 B3LYP/aug-cc-pVTZGaussian 09 Keywords (Minima): # opt=(tight) int=ultrafine b3lyp/aug-cc-pvtz freq nosymm

Gaussian 09 Keywords (TS): # opt=(ts,noeigentest,calcall,tight) int=ultrafine freq b3lyp/aug-cc-pvtz nosymm

3.1.1 GlyoxylateMgCl2–

Table 3: Optimised electronic energies (hartree) and zero point corrections of GlyoxylateMgCl2–.

m Name Energy (el.) Zero p. cor. m Name Energy (el.) Zero point167 1A -1423.507575 0.035166 167 2A -1423.505476 0.034714123 3A -123.025660 0.018528 123 4A -1234.769632 0.018075167 INC_CO2 -1423.436862 0.030686 167 TS2A -1423.418959 0.030292167 TS1A -1423.495232 0.034129 123 TS3A -1234.767586 0.017973123 TS4A -1234.752797 0.013997 167 TS5A -1423.418407 0.026128

3.1.2 GlyoxylateZnCl2–

Table 4: Optimised electronic energies (hartree) and zero point corrections of GlyoxylateZnCl2–.

m Name Energy (el.) Zero p. cor. m Name Energy (el.) Zero point207 1B -3002.821184 0.034348 207 2B -3002.818786 0.033840163 3B -2814.117105 0.018308 207 TS1B -3002.811006 0.033452207 TS5B -3002.752232 0.026054 163 TS4B -2814.080285 0.013491

3.1.3 PyruvateMgCl2–

Table 5: Optimised electronic energies (hartree) and zero point corrections of PyruvateMgCl2–.

m Name Energy (el.) Zero p. cor. m Name Energy (el.) Zero point181 1C -1462.850130 0.062844 181 2C -1462.845176 0.062409137 3C -1274.111504 0.046411 137 4C -1274.113494 0.046663109 5C -1160.741458 0.035782 145 8C -1001.927436 0.050406153 10C -1349.481802 0.053282 181 11C -1462.740419 0.060957153 12C -1349.384577 0.05227 181 INC_HCl -1462.791097 0.061106181 TS1C -1462.833932 0.062017 137 TS3C -1274.110784 0.046246137 TS4C -1274.085417 0.043577 181 TS5C -1462.743725 0.056115137 TS6C -1274.000467 0.040497 181 TS7C -1462.790933 0.061308181 TS9C -1462.731766 0.058463 181 TS10C -1462.696442 0.058786101 14C -813.149676 0.033671

21

3.1.4 PyruvateZnCl2–

Table 6: Optimised electronic energies (hartree) and zero point corrections of PyruvateZnCl2–.

m Name Energy (el.) Zero p. cor. m Name Energy (el.) Zero point221 1D -3042.162614 0.062089 221 2D -3042.158844 0.061513177 4D -2853.458713 0.046558 149 5D -2740.089656 0.036299185 8D -2581.248941 0.049884 193 10D -2928.794047 0.052448221 11D -3042.053943 0.060437 193 12D -2928.725709 0.051907221 INC_HCl -3042.110729 0.060522 221 TS1D -3042.151387 0.061363221 TS2D -3042.089352 0.057448 177 TS4D -2853.412338 0.043231221 TS5D -3042.067057 0.056328 177 TS6D -2853.332936 0.040141221 TS7D -3042.108799 0.061101 221 TS9D -3042.04 0.057477221 TS10D 0.032774 0.058065 141 13D -2392.51 0.033371113 16D 113.4077 0.022252

3.1.5 2-OxobutyrateMgCl2–

Table 7: Optimised electronic energies (hartree) and zero point corrections of 2-OxobutyrateMgCl2–.

m Name Energy (el.) Zero p. cor. m Name Energy (el.) Zero point195 1E -1502.178469 0.091291 195 2E -1502.173523 0.090858151 3E -1313.439054 0.074916 123 5E -1200.062329 0.06466159 8E -1041.258715 0.078134 167 10E -1388.809716 0.08182195 11E -1502.073705 0.089144 167 12E -1388.717653 0.080671195 INC_HCl -1502.119718 0.089282 195 TS1E -1502.161940 0.09041195 TS2E -1502.105503 0.08708 151 TS4E -1313.438205 0.07475195 TS5E -1502.067467 0.084734 123 TS8E -1200.004951 0.059869151 TS6E -1313.332997 0.068968 195 TS7E -1502.119532 0.089476195 TS9E -1502.062134 0.086994 115 14E -852.478501 0.061652

3.1.6 2-OxobutyrateZnCl2–

Table 8: Optimised electronic energies (hartree) and zero point corrections of ButZnCl2–.

m Name Energy (el.) Zero p. cor. m Name Energy (el.) Zero point235 1F -3081.490927 0.090523 235 2F -3081.487205 0.090009191 4F -2892.786562 0.075051 163 5F -2779.412018 0.065106199 8F -2620.580291 0.07761 155 14F -2431.840769 0.061177207 10F -2968.121983 0.080976 235 11F -3081.387204 0.088605207 12F -2968.058634 0.08027 235 INC_HCl -3081.439388 0.088707235 TS1F -3081.479605 0.089815 235 TS2F -3081.416535 0.086025191 TS4F -2892.733160 0.072165 235 TS5F -3081.391324 0.084933163 TS8F -2779.334822 0.059721 191 TS6F -2892.666342 0.068567235 TS7F -3081.429032 0.080976 235 TS9F -3081.391324 0.084933

22

3.1.7 Common ions and neutrals for all complexesTable 9: Optimised electronic energies and zero point corrections. Numbers left of name indicate m/z-value, while numbers with an N prior to it indicates a neutral.

m Name Energy (el.) Zero p. cor. m Name Energy (el.) Zero point73 Glyoxylate -302.6641015 0.029217 87 Pyruvate -342.0028238 0.057399

1 Hydride -0.53566700 0.00000000 101 2-oxobutyrate -381.3165764 0.085904N134 ZnCl2 -2700.0774087 0.002422 N94 MgCl2 -1120.7337012 0.002623N44 CO2 -188.6633867 0.011657 N28 CO -113.3588319 0.005029N42 Ketene -152.66612 0.031491 59 MgCl -660.448579 0.00064295 HMgCl2 -1121.4021584 0.007238 135 HZnCl2 -2700.7526604 0.007569

3.1.8 CO2 reaction of the enolate-pyruvate complexesTable 10: Optimised electronic energies and zero point corrections for the CO2 reactions of [H2C=COCO2MCl]–.

m Name Energy (el.) Zero p. cor. m Name Energy (el.) Zero point189 Mg_CO2_adduct -1190.606278 0.064962 189 189_TS_161 -1190.501949 0.061044161 CO_loss -1077.236616 0.055843 145 CO2_loss -1001.862948 0.048591229 Zn_CO2_adduct -2769.918323 0.064232 229 229_TS_201 -2769.807477 0.060121201 CO_loss -2656.553397 0.055247 185 CO2_loss -2581.225437 0.049164

23

3.2 M06-2X/aug-cc-pVTZGaussian 09 Keywords (Minima): # opt=(tight,maxcycle=100) M062X/aug-cc-pvtz nosymm int=ultrafine freq

Gaussian 09 Keywords (TS): # opt=(calcall,tight,ts,noeigentest,maxcycle=100) M062X/aug-cc-pvtz freq nosymm int=ultrafine

3.2.1 GlyoxylateMgCl2–

Table 11: M06-2X/aug-cc-pVTZ optimised electronic energies (hartree) and zero point corrections of GlyoxylateMgCl2

–.

m Name Energy (el.) Zero p. cor. m Name Energy (el.) Zero point167 1A -1423.308490 0.03625 167 2A -1423.305367 0.035768123 3A -1234.631366 0.019244 123 4A -1234.627255 0.018679167 INC_CO2 -1423.234523 0.031787 167 TS1A -1423.288939 0.035174167 TS2A -1423.234219 0.031437 123 TS3A -1234.626030 0.018466123 TS4A -1234.610562 0.014468 167 TS5A -1423.211751 0.027249

3.2.2 GlyoxylateZnCl2–

Table 12: M06-2X/aug-cc-pVTZ optimised electronic energies (hartree) and zero point corrections of GlyoxylateZnCl2

–.

m Name Energy (el.) Zero p. cor. m Name Energy (el.) Zero point207 1B -3002.597608 0.035413 207 2B -3002.594189 0.034991163 4B -2813.944128 0.018726 207 TS1B -3002.582145 0.03452207 TS2B -3002.524677 0.031345 163 TS4B -2813.912058 0.013914207 TS5B -3002.516914 0.02683

3.2.3 PyryvateMgCl2–

Table 13: M06-2X/aug-cc-pVTZ optimised electronic energies (hartree) and zero point corrections of PyruvateMgCl2

–.

m Name Energy (el.) Zero p. cor. m Name Energy (el.) Zero point181 1C -3002.597608 0.035413 181 2C -3002.594189 0.034991137 3C -1273.947520 0.04726800 137 4C -1273.952783 0.04750000109 5C 1160.544447 0.036282 145 8C -1001.739663 0.051489101 14C -813.017633 0.034407 181 TS1C -1462.610295 0.063304137 TS3C -3002.597608 0.035413 137 TS4C -3002.594189 0.034991181 TS5C -1462.521334 0.057382 137 TS8C -1273.924679 0.044376

3.2.4 PyruvateZnCl2–

Table 14: M06-2X/aug-cc-pVTZ optimised electronic energies (hartree) and zero point corrections of PyruvateZnCl2

–.

m Name Energy (el.) Zero p. cor. m Name Energy (el.) Zero point221 1D -3002.625627 0.063432 221 2D -3041.913824 0.063130177 4D -2853.264643 0.04714800 149 5D -2739.934924 0.03650500185 8D -2581.032550 0.050918 143 13D -2428.322871 0.011744141 14D -2392.337649 0.03378 113 16D -2278.960230 0.022331221 TS1D -3002.597608 0.035413 221 TS2D -3002.594189 0.034991177 TS4D -2853.225242 0.04389300 221 TS5D -3041.820301 0.05743400177 TS6D -2853.137934 0.040951

24

3.2.5 2-OxobutyrateMgCl2–

Table 15: M06-2X/aug-cc-pVTZ optimised electronic energies (hartree) and zero point corrections of 2-OxobutyrateMgCl2

–.

m Name Energy (el.) Zero p. cor. m Name Energy (el.) Zero point195 1E -1501.939151 0.092869 195 2E -1501.933265 0.092658151 3E -1313.255492 0.07595900 123 5E -1199.917156 0.06547100159 8E -1041.050145 0.079603 115 14E -852.326081 0.062758195 TS1E -1501.918374 0.092064 195 TS2E -1501.863580 0.088606151 TS4E -1313.254515 0.07580900 195 TS5E -1501.824838 0.08636900123 TS8E -1199.858842 0.06073 151 TS6E -1313.144292 0.070304

3.2.6 2-OxobutyrateZnCl2–

Table 16: M06-2X/aug-cc-pVTZ optimised electronic energies (hartree) and zero point corrections of 2-OxobutyrateZnCl2

–.

m Name Energy (el.) Zero p. cor. m Name Energy (el.) Zero point235 1F -3081.227571 0.092144 235 2F -3081.222008 0.091889191 4F -2892.572816 0.07601800 163 5F -2779.236336 0.06568500199 8F -2620.343080 0.078976 155 14F -2431.645207 0.061996235 TS1F -3081.209938 0.091352 235 TS2F -3081.150908 0.087852191 TS4F -2892.526449 0.07321800 235 TS5F -3081.124384 0.08633400

163 TS8F -2779.163883 0.06043 191 TS6F -2892.451388 0.069789

25

3.2.7 Common ions and neutralsTable 17: M06-2X/aug-cc-pVTZ optimised electronic energies and zero point corrections. Numbers left of name indicate m/z-value, while numbers with an N prior to it indicates a neutral.

m Name Energy (el.) Zero p. cor. m Name Energy (el.) Zero point1 Hydride -0.521066 0 59 MgCl- -660.377140 0.000692

73 Glyoxylate -302.548167 0.03040000 87 Pyruvate -341.866345 0.0584750095 HMgCl2- -1121.297028 0.00743800 99 ZnCl- -2239.718787 0.00045400

101 2-Oxobutyrate -381.174581 0.087237 103 ClMgCO2- -849.013439 0.01173000N134 ZnCl2 -2699.948333 0.00245300 135 HZnCl2- -2700.617229 0.007536N28 CO -113.320240 0.005176 N36 HCl -460.807507 0.006805N42 Ketene -152.598694 0.031923 N44 CO2 -188.594207 0.011944N56 Methylketene -191.904616 0.061524 N94 MgCl2 -1120.635562 0.002627

26

3.3 M06-L/aug-cc-pVTZGaussian 09 Keywords (Minima): # opt=(tight,maxcycle=100) M06L/aug-cc-pvtz nosymm int=ultrafine freq

Gaussian 09 Keywords (TS): # opt=(calcall,tight,ts,noeigentest,maxcycle=100) M06L/aug-cc-pvtz freq nosymm int=ultrafine

3.3.1 GlyoxylateMgCl2–

Table 18: M06-L/aug-cc-pVTZ optimised electronic energies (hartree) and zero point corrections of GlyoxylateMgCl2

–.

m Name Energy (el.) Zero p. cor. m Name Energy (el.) Zero point167 1A -1423.391400 0.035223 167 2A -1423.389007 0.034746123 3A -1234.677864 0.018529 123 4A -1234.674042 0.017894167 INC_CO2 -1423.327923 0.030773 167 TS1A -1423.372416 0.034141167 TS2A -1423.327727 0.030768 123 TS3A -1234.673898 0.017849123 TS4A -1234.662639 0.014051 167 TS5A -1423.309253 0.02654

3.3.2 GlyoxylateZnCl2–

Table 19: M06-L/aug-cc-pVTZ optimised electronic energies (hartree) and zero point corrections of GlyoxylateZnCl2

–.

m Name Energy (el.) Zero p. cor. m Name Energy (el.) Zero point207 1B -3002.623877 0.034365 207 2B -3002.622022 0.034015163 4B -2813.941767 0.018266 207 TS1B -3002.611040 0.033668207 TS2B -3002.565541 0.030764 163 TS4B -2813.910313 0.013764207 TS5B -3002.560342 0.026486

3.3.3 PyryvateMgCl2–

Table 20: M06-L/aug-cc-pVTZ optimised electronic energies (hartree) and zero point corrections of PyruvateMgCl2

–.

m Name Energy (el.) Zero p. cor. m Name Energy (el.) Zero point181 1C -1462.728245 0.063377 181 2C -1462.722760 0.062940137 3C -1274.013074 0.04703700 137 4C -1274.013071 0.04702700109 5C -1160.657338 0.035999 145 8C -1001.819176 0.050615101 14C -813.065951 0.033761 181 TS1C -1462.707871 0.062473137 TS3C -1274.011314 0.04677 137 TS4C -1273.903678 0.040366181 TS5C -1462.630210 0.056308 137 TS6C -1273.988416 0.043908

27

3.3.4 PyruvateZnCl2–

Table 21: M06-L/aug-cc-pVTZ optimised electronic energies (hartree) and zero point corrections of PyruvateZnCl2

–.

m Name Energy (el.) Zero p. cor. m Name Energy (el.) Zero point221 1D -3041.959577 0.062463 221 2D -3041.955526 0.062226177 4D -2853.275299 0.04684600 149 5D -2739.924510 0.03645400185 8D -2581.059858 0.050082 143 13D -2428.334163 0.011596141 14D -2392.349116 0.033449 113 16D -2278.947985 0.02239221 TS1D -3041.943338 0.061638 221 TS2D -3041.892964 0.058376177 TS4D -2853.235375 0.04340400 221 TS5D -3041.873220 0.05673400177 TS6D -2853.156625 0.040093

3.3.5 2-OxobutyrateMgCl2–

Table 22: M06-L/aug-cc-pVTZ optimised electronic energies (hartree) and zero point corrections of 2-OxobutyrateMgCl2

–.

m Name Energy (el.) Zero p. cor. m Name Energy (el.) Zero point195 1E -1502.049839 0.091816 195 2E -1502.044385 0.091582151 3E -1313.333976 0.07554000 123 5E -1199.970856 0.06520700159 8E -1041.144296 0.078608 115 14E -852.388783 0.0621195 TS1E -1502.029462 0.09129 195 TS2E -1501.984405 0.087823151 TS4E -1313.254515 0.07580900 195 TS5E -1501.958511 0.08537700123 TS8E -1199.915414 0.05961 151 TS6E -1313.229508 0.069171

3.3.6 2-OxobutyrateZnCl2–

Table 23: M06-L/aug-cc-pVTZ optimised electronic energies (hartree) and zero point corrections of 2-OxobutyrateZnCl2

–.

m Name Energy (el.) Zero p. cor. m Name Energy (el.) Zero point235 1F -3081.281221 0.09117 235 2F -3081.277161 0.090852191 4F -2892.596198 0.07530000 163 5F -2779.239818 0.06552600199 8F -2620.384978 0.078056 155 10F -2431.671032 0.061501235 TS1F -3081.264937 0.090274 235 TS2F -3081.214063 0.087178235 TS5F -3081.192264 0.08547900 163 TS8F -2779.165864 0.059732191 TS6F -2892.484493 0.069789

28

3.3.7 Common ions and neutralsTable 24: M06-L/aug-cc-pVTZ optimised electronic energies and zero point corrections. Numbers left of name indicate m/z-value, while numbers with an N prior to it indicates a neutral.

m Name Energy (el.) Zero p. cor. m Name Energy (el.) Zero point1 Hydride -0.525222 0 59 MgCl- -660.386265 0.000712

73 Glyoxylate -302.607455 0.02945100 87 Pyruvate -341.938982 0.0576590095 HMgCl2- -1121.326326 0.00723300 99 ZnCl- -2239.689062 0.00040600

101 2-Oxobutyrate -381.260626 0.086102 103 ClMgCO2- -849.056537 0.01128600N44 CO2 -188.642120 0.011869 135 HZnCl2- -2700.595206 0.007627N28 CO -113.337234 0.005004 N36 HCl -460.818897 0.006879N42 Ketene -152.641158 0.031432N56 Methylketene -191.960960 0.060925 N94 MgCl2 -1120.666892 0.002658N134 ZnCl2 -2699.928456 0.00251800

29

4 REFERENCES1. G. Miller, V. Fäseke and E. Uggerud, Eur. J. Mass Spectrom., 2015, 21, 545-556.2. G. B. S. Miller and E. Uggerud, International Journal of Mass Spectrometry, 2017,

413, 150-162.3. L. B. Knight Jr., D. Hill, K. Berry, R. Babb and D. Feller, The Journal of Chemical

Physics, 1996, 105, 5672-5686.4. W. E. Thompson and M. E. Jacox, The Journal of Chemical Physics, 1999, 111, 4487-

4496.5. G. B. S. Miller, T. K. Esser, H. Knorke, S. Gewinner, W. Schöllkopf, N. Heine, K. R.

Asmis and E. Uggerud, Angew. Chem. Int. Ed., 2014, 53, 14407-14410.