14
0 5 10 15 20 25 30 H 3K 4m e3 H 2B K 5ac H 3K 27ac H 3K 9ac H 2B K 120ac H 4K 91ac H 3K 18ac H 3K 4ac H 4K 5ac H 2A K 5ac H 3K 36ac H 2A K 9ac H 2B K 20ac H 3K 79m e2 H 2A Z H 2B K 12ac H 3K 79m e3 H 4K 8ac H 4K 12ac H 3K 4m e2 H 3K 36m e3 H 4K 20m e1 H 3K 9m e1 H 4K 16ac H 3K 23ac H 3K 79m e1 H 2B K 5m e1 H 3K 4m e1 N um b er o ftag s o factive m od ificatio ns (m illio O ld M apping N ew M apping Supplementary Material Epigenetic histone modifications of human transposable elements: genome defense versus exaptation Ahsan Huda, Leonardo Mariño-Ramírez and I. King Jordan Supplementary Figure 1. Comparison of the original (old) mapping and new mapping procedures. (a) Number of tags of active histone tail modifications and (b) number of tags of repressive modifications mapped using the old and the new mapping techniques (a) (b) 0 5 10 15 20 25 30 H 3K 9m e3 H 3K 27m e1 H 3K 14ac H 3R 2m e1 H 4K 20m e3 H 3K 36m e1 H 3K 9m e2 H 3R 2m e2 H 3K 27m e3 H 3K 27m e2 N um b er oftag s o frep ressive m o dificatio n s (m illio O ld M apping N ew M apping

Supplementary Material Epigenetic histone modifications of human transposable

Embed Size (px)

DESCRIPTION

Supplementary Material Epigenetic histone modifications of human transposable elements: genome defense versus exaptation Ahsan Huda, Leonardo Mariño-Ramírez and I. King Jordan Supplementary Figure 1. Comparison of the original (old) mapping and new mapping - PowerPoint PPT Presentation

Citation preview

Page 1: Supplementary Material Epigenetic histone modifications of human transposable

0

5

10

15

20

25

30

H3

K4

me

3

H2

BK

5a

c

H3

K2

7a

c

H3

K9

ac

H2

BK

12

0a

c

H4

K9

1a

c

H3

K1

8a

c

H3

K4

ac

H4

K5

ac

H2

AK

5a

c

H3

K3

6a

c

H2

AK

9a

c

H2

BK

20

ac

H3

K7

9m

e2

H2

AZ

H2

BK

12

ac

H3

K7

9m

e3

H4

K8

ac

H4

K1

2a

c

H3

K4

me

2

H3

K3

6m

e3

H4

K2

0m

e1

H3

K9

me

1

H4

K1

6a

c

H3

K2

3a

c

H3

K7

9m

e1

H2

BK

5m

e1

H3

K4

me

1

Nu

mb

er

of

tag

s o

f a

cti

ve

mo

dif

ica

tio

ns

(m

illio

ns

)

Old Mapping New Mapping

Supplementary Material

Epigenetic histone modifications of human transposableelements: genome defense versus exaptationAhsan Huda, Leonardo Mariño-Ramírez and I. King Jordan

Supplementary Figure 1. Comparison of the original (old) mapping and new mapping procedures. (a) Number of tags of active histone tail modifications and (b) number of tags of repressive modifications mapped using the old and the new mapping techniques

(a)

(b)

0

5

10

15

20

25

30

H3

K9

me

3

H3

K2

7m

e1

H3

K1

4a

c

H3

R2

me

1

H4

K2

0m

e3

H3

K3

6m

e1

H3

K9

me

2

H3

R2

me

2

H3

K2

7m

e3

H3

K2

7m

e2

Nu

mb

er

of

tag

s o

f re

pre

ss

ive

mo

dif

ica

tio

ns

(m

illio

ns

)

Old Mapping New Mapping

Page 2: Supplementary Material Epigenetic histone modifications of human transposable

-3

-2

-1

0

1

2

H3

K4

me

3H

2B

K5

ac

H3

K2

7a

cH

3K

9a

cH

2B

K1

20

ac

H4

K9

1a

cH

3K

18

ac

H3

K4

ac

H4

K5

ac

H2

AK

5a

cH

3K

36

ac

H2

AK

9a

cH

2B

K2

0a

cH

3K

79

me

2H

2A

ZH

2B

K1

2a

cH

3K

79

me

3H

4K

8a

cH

4K

12

ac

H3

K4

me

2H

3K

36

me

3H

4K

20

me

1H

3K

9m

e1

H4

K1

6a

cH

3K

23

ac

H3

K7

9m

e1

H2

BK

5m

e1

H3

K4

me

1H

3K

9m

e3

H3

K2

7m

e1

H3

K1

4a

cH

3R

2m

e1

H4

K2

0m

e3

H3

K3

6m

e1

H3

K9

me

2H

3R

2m

e2

H3

K2

7m

e3

H3

K2

7m

e2E

xp

res

sio

n f

old

ch

an

ge

(lo

g2)

Supplementary Figure 2. Effect of individual histone modifications on CD4+ T cellgene expression levels. Histone tail modifications were determined to be present or absent in the promoter regions of human genes as described in the Methods section. For each modification, the log2 normalized ratio of the average expression level for genes present for the modification over the average expression level for genes where the modification is absent is shown. Active modifications (red) have positive ratios, andrepressive modifications (green) have negative ratios.

Page 3: Supplementary Material Epigenetic histone modifications of human transposable

Supplementary Table 1. Statistics for histone modification enrichment or depletion in TEs and human gene expression. Significance was calculated using the G-test and the P-value was adjusted for multiple tests using the Bonferroni correction (refer to Figure 1).

Supplementary Table 2. Correlation and statistical significance between gene expression enrichment or depletion and TE enrichment or depletion for 38 histone modifications (refer to Figure 2)

Alu L1 LTR DNA L2 MIRr 0.020132 -0.432517 -0.515575 -0.273047 0.082045 0.194877t 0.120815 -2.878243 -3.610283 -1.702993 0.493936 1.192117p- value 0.461729 0.106439 0.086011 0.169008 0.353964 0.222174

G p G p G p G p G p G p G pH3K4me3 1E+07 0 256505 0 631482 0 43338 0 47430 0 785.51 8E-173 1E+06 0H2BK5ac 1E+06 0 32745 0 93028 0 30925 0 8147.4 0 1084.1 9E-238 328030 0H3K27ac 1E+06 0 70683 0 113936 0 17276 0 7213.2 0 3037.6 0 631482 0H3K9ac 704496 0 25868 0 39591 0 170.19 7E-39 1655.8 0 889.88 2E-195 393172 0H2BK120ac 867104 0 400.38 5E-89 131025 0 13074 0 6183.6 0 3330.9 0 43488 0H4K91ac 825807 0 40683 0 361975 0 3306.9 0 10818 0 5742.5 0 339941 0H3K18ac 839704 0 3948.1 0 277985 0 905.94 5E-199 3900.1 0 11484 0 122161 0H3K4ac 374450 0 233.18 1E-52 104050 0 1532.5 0 2043.1 0 5524.2 0 42598 0H4K5ac 387350 0 52285 0 277515 0 2964.4 0 58.931 2E-14 17378 0 34153 0H2AK5ac 3903.8 0 245.18 3E-55 31759 0 267.37 4E-60 2349.2 0 3721.6 0 52898 0H3K36ac 610986 0 10898 0 83990 0 43.966 3E-11 97.349 6E-23 12808 0 197773 0H2AK9ac 32030 0 521.13 2E-115 1895.2 0 237.85 1E-53 41.383 1E-10 119.29 9E-28 135891 0H2BK20ac 526082 0 38126 0 246447 0 1629.1 0 2537.9 0 12181 0 45170 0H3K79me2 21442 0 89641 0 45170 0 42666 0 6754.8 0 6781.9 0 210506 0H2AZ 1E+06 0 162729 0 210232 0 24984 0 89.998 2E-21 19695 0 40338 0H2BK12ac 178059 0 36576 0 3475.3 0 13799 0 800.01 5E-176 1022.1 3E-224 31.912 2E-08H3K79me3 112140 0 758275 0 210506 0 15433 0 4203.6 0 14.253 0.0002 604264 0H4K8ac 321071 0 5587.4 0 146713 0 95.08 2E-22 443.6 2E-98 12248 0 176401 0H4K12ac 43343 0 794.61 8E-175 23035 0 7388.6 0 3178.8 0 4804.7 0 535117 0H3K4me2 429727 0 133398 0 328030 0 3232.7 0 1351.8 6E-296 7970.3 0 210232 0H3K36me3 755.92 2E-166 547116 0 197773 0 30072 0 436.06 8E-97 397.18 2E-88 104050 0H4K20me1 108316 0 689687 0 604264 0 191451 0 12041 0 2979.5 0 39591 0H3K9me1 316935 0 329307 0 393172 0 1812.2 0 18.433 2E-05 12763 0 42732 0H4K16ac 185657 0 71982 0 173120 0 4358.4 0 2631.7 0 1663.9 0 277985 0H3K23ac 19191 0 1029.7 6E-226 57430 0 15700 0 2106 0 13714 0 57430 0H3K79me1 28992 0 386834 0 135891 0 7202 0 167.13 3E-38 2915.6 0 113936 0H2BK5me1 102758 0 455709 0 535117 0 37498 0 8930.4 0 2481.6 0 83990 0H3K4me1 364966 0 2E+06 0 1E+06 0 55818 0 20559 0 11246 0 277515 0H3K9me3 14451 0 422117 0 339941 0 1078 2E-236 3179.1 0 2838.4 0 146713 0H3K27me1 8759.4 0 163552 0 122161 0 14708 0 972.46 2E-213 5277.9 0 23035 0H3K14ac 3431.7 0 2621.7 0 42732 0 19526 0 646.07 2E-142 6931.8 0 173120 0H3R2me1 4024 0 36426 0 40338 0 15997 0 476.23 1E-105 11191 0 361975 0H4K20me3 2818.1 0 224032 0 176401 0 142879 0 90922 0 95259 0 31759 0H3K36me1 4233.2 0 3358.6 0 52898 0 85314 0 2590.1 0 13606 0 1895.2 0H3K9me2 1330.9 2E-291 23439 0 43488 0 105773 0 2090.8 0 2455.2 0 93028 0H3R2me2 665.8 8E-147 97294 0 31.912 2E-08 734.18 1E-161 513.93 9E-114 3412.1 0 3475.3 0H3K27me3 18.077 2E-05 8247.2 0 34153 0 270665 0 948.08 3E-208 38819 0 246447 0H3K27me2 6453.1 0 11951 0 42598 0 207220 0 18.26 2E-05 4549.8 0 131025 0

L2DNA MIR

Act

ive

Rep

res

siv

e

Expression Alu L1 LTR

Page 4: Supplementary Material Epigenetic histone modifications of human transposable

r = 0.99

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

-0.8 -0.3 0.2Local enrichment fold change (log2)

Ge

no

mic

en

rich

me

nt f

old

ch

an

ge

(lo

g2)

Supplementary Figure 3. Comparison of global versus local methods for computing TE-histone modification enrichment ratios. For each TE class (family), log2 normalizedenrichment ratios were computed for the 38 histone modifications by using a genome-wide background tag count (y-axis) or a locally computed background tag count (x-axis).

r = 0.95

-2

-1.5

-1

-0.5

0

0.5

1

-2 -1 0 1Local enrichment fold change (log2)

Ge

no

mic

en

rich

me

nt f

old

ch

an

ge

(lo

g2)

r = 0.95

-1.5

-1

-0.5

0

0.5

1

1.5

-1.5 -0.5 0.5 1.5Local enrichment fold change (log2)

Ge

no

mic

en

rich

me

nt f

old

ch

an

ge

(lo

g2)

r = 0.91

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

-0.8 -0.3 0.2Local enrichment fold change (log2)

Ge

no

mic

en

rich

me

nt f

old

ch

an

ge

(lo

g2)

r = 0.92

-0.5

-0.3

-0.1

0.1

0.3

0.5

-0.5 0 0.5Local enrichment fold change (log2)

Ge

no

mic

en

rich

me

nt f

old

ch

an

ge

(lo

g2) r = 0.92

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

-0.6 -0.1 0.4Local enrichment fold change (log2)

Ge

no

mic

en

rich

me

nt f

old

ch

an

ge

(lo

g2)

Alu L1

L2 MIR

LTR DNA

Page 5: Supplementary Material Epigenetic histone modifications of human transposable

-1.5

-1

-0.5

0

0.5

1

H3

K4

me

3H

2B

K5

ac

H3

K2

7a

cH

3K

9a

cH

2B

K1

20

ac

H4

K9

1a

cH

3K

18

ac

H3

K4

ac

H4

K5

ac

H2

AK

5a

cH

3K

36

ac

H2

AK

9a

cH

2B

K2

0a

cH

3K

79

me

2H

2A

ZH

2B

K1

2a

cH

3K

79

me

3H

4K

8a

cH

4K

12

ac

H3

K4

me

2H

3K

36

me

3H

4K

20

me

1H

3K

9m

e1

H4

K1

6a

cH

3K

23

ac

H3

K7

9m

e1

H2

BK

5m

e1

H3

K4

me

1H

3K

9m

e3

H3

K2

7m

e1

H3

K1

4a

cH

3R

2m

e1

H4

K2

0m

e3

H3

K3

6m

e1

H3

K9

me

2H

3R

2m

e2

H3

K2

7m

e3

H3

K2

7m

e2

TE

-mo

dif

ica

tio

n e

nri

ch

me

nt

(lo

g 2)

Alu L1 LTR DNA L2 MIR

Supplementary Figure 4. Enrichment or depletion of 38 individual histone modificationsin TE families. Log2 normalized ratio of the number of tags of each of the 38 histonemodifications located within each TE family over the local genomic background tag count.TE-modification enrichment values were calculate using the local genomic background histone modification tag counts, which were computed as described in the Methods section.

Page 6: Supplementary Material Epigenetic histone modifications of human transposable

Supplementary Figure 5. Correlation between enrichment of histone modifications in TE families and for human gene expression. The enrichment of 38 histone modifications in human gene expression (Supplementary Figure 2) is plotted against the same in 6 TE families (Supplementary Figure 1). TE-histone modification enrichment values were calculated using the local genomic background histone modification tag counts, which were computed as described in the Methods section. Pearson correlation coefficient values (r) are shown.

r = -0.56

-1

0

1

-3 -2 -1 0 1 2

LTR enrichment

Ex

pre

ss

ion

en

ric

hm

en

t

r = -0.48

-1

0

1

-3 -2 -1 0 1 2

DNA enrichment

Ex

pre

ss

ion

en

ric

hm

en

t

r = -0.17

-1

0

1

-3 -2 -1 0 1 2

L2 enrichment

Ex

pre

ss

ion

en

ric

hm

en

t

r = -0.02

-1

0

1

-3 -2 -1 0 1 2

MIR enrichment

Ex

pre

ss

ion

en

ric

hm

en

t

r = -0.21

-1.5

-0.5

0.5

1.5

-3 -2 -1 0 1 2

Alu enrichment

Ex

pre

ss

ion

en

ric

hm

en

t

r =-0.46

-2

-1

0

1

-3 -2 -1 0 1 2

L1 enrichment

Ex

pre

ss

ion

en

ric

hm

en

t

Page 7: Supplementary Material Epigenetic histone modifications of human transposable

Supplementary Figure 6. Enrichment or depletion of active and repressive histone modifications in retrotransposons. Histone modifications were classified as active or repressive based on expression enrichment (Supplementary Figure 1). The log2 normalized ratios of the number of tags of active or repressive modifications located within each family of retrotransposons over the modification background tag counts are shown. Backgroundmodification tag counts were calculate using the local genomic background histone modification tag counts, which were computed as described in the Methods section.Retrotransposon families are arranged according to their relative age. Spearman rank correlations between active and repressive TE-modification enrichments (depletions) and the relative ages of TE families are shown.

r = 0.89

r = 0.60

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

Alu L1 LTR DNA L2 MIRTE

-mo

dif

ica

tio

n e

nri

ch

me

nt

(lo

g2)

ActiveRepressiveLinear (Repressive)

Page 8: Supplementary Material Epigenetic histone modifications of human transposable

(a) Alu active (b) Alu repressive

Supplementary Figure 7. TE distance from genes versus histone modifications. Distances between TE sequences and the nearest genes are binned in 10kb bins and plotted against the number of histone modification tags mapped to the TE sequence, normalized by its length. Tags are mapped using the new mapping procedure. (Refer to Figure 5)

r = -0.61

0.003

0.0032

0.0034

0.0036

0.0038

0 20 40 60 80 100

distance - x10,000 nucleotides

No

rma

lize

d t

ag

co

un

t

r = -0.38

0.0034

0.0036

0.0038

0.004

0 20 40 60 80 100

distance - x10,000 nucleotidesN

orm

aliz

ed

ta

g c

ou

nt

r = -0.89

0.0015

0.0017

0.0019

0.0021

0.0023

0.0025

0 20 40 60 80 100

distance - x10,000 nucleotides

No

rma

lize

d t

ag

co

un

t

r = -0.90

0.0034

0.0036

0.0038

0.004

0.0042

0 20 40 60 80 100

distance - x10,000 nucleotides

No

rma

lize

d t

ag

co

un

t

(c) L1 active (d) L1 repressive

Supplementary Table 3. Statistics for distances between Alu and L1 sequences and the nearest genes using uniquely mapped tags (Refer to Figure 5)

active repressiveAlu r -0.38 -0.67

t 4.066878956 8.934549001p-value 4.8184E-05 1.23944E-14

L1 r -0.27 -0.01t 2.775961966 0.098999899p-value 0.003197316 0.460670287

Page 9: Supplementary Material Epigenetic histone modifications of human transposable

-3

-1

1

3

-3 -1 1 3Theoretical Normal quantiles

Exp

ress

ion

fold

ch

an

ge q

uan

tile

s

Supplementary Figure 8. Q-Q plots showing the concordance between the expression fold change and data generated from the theoretical Normal distribution (refer to Figure 2).

Supplementary Table 4. Statistics for correlations between Alu and L1 subfamilies and histone modifications (Refer to Figure 4).

active repressiveAlu subfamilies r 0.94 0.93

t 16.5311 15.1812148p-value 3E-19 5.0865E-18

L1 subfamilies r 0.53 -0.13t 3.75001 -0.7866757p-value 0.00029 0.21817526

divergence from consensus

Page 10: Supplementary Material Epigenetic histone modifications of human transposable

-0.5

0

0.5

-3 -1 1 3Theoretical Normal quantiles

TE

fold

ch

an

ge q

uan

tile

s

-0.5

0

0.5

-3 -1 1 3Theoretical Normal quantiles

TE

fold

ch

an

ge q

uan

tile

s

-1

-0.5

0

0.5

-3 -1 1 3Theoretical Normal quantiles

TE

fold

ch

an

ge q

uan

tile

s

-1

-0.5

0

0.5

-3 -1 1 3Theoretical Normal quantiles

TE

fold

ch

an

ge q

uan

tile

s

-1.5

-0.5

0.5

-3 -1 1 3Theoretical Normal quantiles

TE

fold

ch

an

ge q

uan

tile

s

-2

0

2

-3 -1 1 3Theoretical Normal quantiles

TE

fold

ch

an

ge q

uan

tile

sSupplementary Figure 8 contd. Q-Q plots showing the concordance between the TE enrichment fold change data and data generated from the a theoretical Normal distribution (refer to Figure 2).

Alu L1

L2 MIR

LTR DNA

Page 11: Supplementary Material Epigenetic histone modifications of human transposable

0.002

0.003

0.004

0.005

-3 -1 1 3

Theoretical Normal quantiles

Norm

aliz

ed

tag

s q

uan

tile

s

0.002

0.003

0.004

0.005

-3 -1 1 3Theoretical Normal quantiles

Norm

aliz

ed

tag

s q

uan

tile

s

0

5

10

15

20

-3 -1 1 3

Theoretical Normal quantiles

Av

era

ge

mill

idiv

qu

an

tile

s

0

100

200

300

-3 -1 1 3Theoretical Normal quantiles

Avera

ge m

illid

iv q

uan

tile

s

0.001

0.002

0.003

0.004

0.005

-3 -1 1 3

Theoretical Normal quantiles

Norm

aliz

ed

tag

s q

uan

tile

s

0.002

0.004

0.006

-3 -1 1 3Theoretical Normal quantiles

Norm

aliz

ed

tag

s q

uan

tile

s

Alu subfamilies L1 subfamilies

Alu subfamilies L1 subfamilies

Alu subfamilies L1 subfamilies

Supplementary Figure 9. Q-Q plots showing the non-concordance of millidiv and tags counts with the data generated from the a theoretical Normal distribution (refer to Figure 4).

Page 12: Supplementary Material Epigenetic histone modifications of human transposable

0.001

0.0015

0.002

-3 -1 1 3

Theoretical Normal quantiles

Norm

aliz

ed

tag

s q

uan

tile

s

0

0.0005

0.001

-3 -1 1 3

Theoretical Normal quantiles

Norm

aliz

ed

tag

s q

uan

tile

s

0.0005

0.001

0.0015

-3 -1 1 3

Theoretical Normal quantiles

Norm

aliz

ed

tag

s q

uan

tile

s

0.001

0.0015

0.002

-3 -1 1 3

Theoretical Normal quantiles

Norm

aliz

ed

tag

s q

uan

tile

s

Supplementary Figure 10. Q-Q plots showing the non-concordance of modification tag counts with respect to their distance from human genes with the data generated from the a theoretical Normal distribution (refer to Figure 5).

Alu active Alu repressive

L1 active L1 repressive

Page 13: Supplementary Material Epigenetic histone modifications of human transposable

0

2

4

6

8

10

12

14

16

18

20

Alu

Ya5

Alu

Yb9

Alu

Yb8

Alu

Yd8

Alu

Yf5

Alu

Yf4

Alu

Yg6

Alu

Yk4

Alu

Yk12

Alu

Yc3

Alu

YA

luYa8

Alu

Yc

Alu

Sg7

Alu

Sc5

Alu

Sp

Alu

Sq4

Alu

Sq1

Alu

Sc

Alu

Sc8

Alu

Yc5

Alu

Sg4

Alu

Sg

Alu

Yk11

Alu

Sq

Alu

Sx4

Alu

Sq2

Alu

Sx1

Alu

Sx3

Alu

Yh9

Alu

Sx

Alu

Sz

Alu

Sz6

FLA

M_C

Alu

JoA

luJb

Alu

JrA

luJr

4FLA

M_A

FR

AM

FA

M

Perc

ent

div

erg

ence

fro

m c

onse

nsu

s se

quence

Supplementary Figure 11. Age of Alu subfamilies determined by divergence from consensus sequence (refer to Figure 4).

Page 14: Supplementary Material Epigenetic histone modifications of human transposable

0

5

10

15

20

25

L1H

SL1

PA

2L1

PA

3L1

PA

4L1

PA

5L1

PA

6L1

P1

L1P

A7

L1P

2L1

PA

8L1

PL1

P3

L1P

A1

0L1

PA

8A

L1P

B1

L1P

A1

1L1

MA

1L1

PA

13

L1P

B2

L1P

A1

4L1

PB

a1

L1M

A2

L1P

RE

C2

L1M

A3

L1P

A1

2L1

PB

L1P

5L1

MA

5A

L1P

A1

6L1

PA

15

L1P

B3

L1P

Ba

L1P

4L1

P3

bL1

MA

5L1

MA

4A

L1M

A8

L1M

C1

L1M

A4

L1P

A1

7L1

MA

7L1

MA

6L1

M1

L1M

B3

L1P

B4

L1M

B1

L1M

C2

L1M

B2

L1M

B4

L1M

A9

L1M

3L1

MB

7L1

P4

aL1

MB

8L1

M2

a1

L1M

3f

L1M

B5

L1M

D1

L1M

2

Perc

ent

div

erg

ence

fro

m c

onse

nsu

s se

quence

0

5

10

15

20

25

30

35

L1P

A1

5-1

6L1

MA

10

L1P

Bb

L1M

C3

L1M

Ca

L1M

D3

L1P

4e

L1M

D2

L1M

4L1

M2

cL1

ML1

M2

aL1

M4

cL1

P4

dL1

MD

aL1

ME

2z

L1M

3e

L1M

4b

L1M

2b

L1M

DL1

ME

1L1

P4

bL1

ME

3L1

MC

5L1

P4

cL1

ME

2L1

MC

bH

AL1

-3A

_M

EL1

ME

cL1

ME

3A

L1M

CL1

MD

bL1

MC

4L1

M3

cH

AL1

-2a

_M

DL1

ME

fL1

ME

3B

L1M

3b

L1M

C4

aL1

ME

3F

L1M

E3

DL1

M3

de

L1M

E3

EL1

ME

4a

L1M

3d

HA

L1b

L1M

Eb

L1M

Eg

L1M

Ea

L1M

Cc

L1M

E3

CL1

M5

L1M

E5

L1M

Ee

HA

L1L1

M7

L1M

Eg

1L1

M3

aL1

ME

g2

HA

L1N

1_

MD

L1M

Ed

L1M

6

Perc

ent

div

erg

ence

fro

m c

onse

nsu

s se

quence

Supplementary Figure 12. Age of L1 subfamilies determined by divergence from consensus sequence (refer to Figure 4).