18
Contents Page No FTIR Spectra of used and fresh CuFe 2 O 4 particles (FC Reaction Condition = heating) (FC Reaction Condition = rt) S3,S4 S8,S9,S10 PXRD patterns of used and fresh CuFe 2 O 4 particles (FC Reaction Condition = heating) (FC Reaction Condition = heating and rt) S5 S6 HRTEM images of used and fresh CuFe 2 O 4 particles (FC Reaction Condition = heating) (FC Reaction Condition = rt) S7 S11, S12, S13 Characterization data for the unknown compounds S14,S15, S16 Proposed Mechanism S17 Supplementary Material Catalytic Friedel-Crafts Acylation: Magnetic Nanopowder CuFe 2 O 4 as a Proficient and Magnetically Separable Catalyst Ramarao Parella, Naveen, Amit Kumar and Srinivasarao Arulananda Babu* Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, SAS Nagar, Mohali, Manauli P.O., Punjab, 140306, India. Fax: +91-172-2240266. E-mail: [email protected] S1

Supplementary Material

Embed Size (px)

DESCRIPTION

Supplementary Material Catalytic Friedel -Crafts Acylation: Magnetic Nanopowder CuFe 2 O 4 as a Proficient and Magnetically Separable Catalyst Ramarao Parella , Naveen, Amit Kumar and Srinivasarao Arulananda Babu * - PowerPoint PPT Presentation

Citation preview

Page 1: Supplementary Material

Contents Page No

FTIR Spectra of used and fresh CuFe2O4 particles (FC Reaction Condition = heating)

(FC Reaction Condition = rt)

S3,S4

S8,S9,S10

PXRD patterns of used and fresh CuFe2O4 particles (FC Reaction Condition = heating)

(FC Reaction Condition = heating and rt)

S5

S6

HRTEM images of used and fresh CuFe2O4 particles (FC Reaction Condition = heating)

(FC Reaction Condition = rt)

S7

S11, S12, S13

Characterization data for the unknown compounds S14,S15, S16

Proposed Mechanism S17

References S18

Supplementary Material

Catalytic Friedel-Crafts Acylation: Magnetic Nanopowder CuFe2O4 as a Proficient and Magnetically Separable CatalystRamarao Parella, Naveen, Amit Kumar and Srinivasarao Arulananda Babu*Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, SAS Nagar, Mohali, Manauli P.O., Punjab, 140306, India.Fax: +91-172-2240266.E-mail: [email protected]

S1

Page 2: Supplementary Material

Separation/recovery of the nano CuFe2O4 catalyst:1 After the reaction period, EtOAc (1-2 mL) was added to the reaction flask containing the crude reaction mixture and stirred for 1-2 min. Step 2: A magnet was externally appended to the RB flask and the magnetic nano CuFe2O4 catalyst was accumulated at the walls of the flask, the resulting clear solution was transferred in to a fresh RB flask using a dropper. Next, the Steps 1 & 2 were repeated thrice. Then, the catalyst containing flask was dried in an oven (at 100-110 oC, overnight) and the catalyst can be recycled. The FT-IR spectra and PXRD patterns of the used magnetic nano CuFe2O4 catalyst revealed the absence of any characteristic peaks of organic impurities in the used magnetic nano CuFe2O4. Further, the HRTEM images of the used magnetic nano CuFe2O4 revealed that the morphology of the used CuFe2O4 nanoparticles is considered to be stable.The catalyst was recovered in the following reaction.

S2

FC acylation Reaction Condition = Heating, 1,2-DCE (2mL), 80 oC, 24 h

FC acylation Reaction Condition = rt, 1,2-DCE (2mL), 24 h

(or)

MeOCl

O Cl

Cl

MeO

O1a 2 3f+

nano CuFe2O4 (20 mol%)

Page 3: Supplementary Material

nano CuFe2O4

(before use)

FTIR spectrum of fresh

S3

Page 4: Supplementary Material

S4

FC Reaction Condition= heatingNano CuFe2O4 (after 1st use)

Page 5: Supplementary Material

nano CuFe2O4before and after 1st use

PXRD Pattern of

Powder X-ray diffraction (PXRD) patterns[1] were recorded on a diffractometer using parallel beam geometry equipped with a Cu – K source, 2.5° Primary and secondary solar slits, 0.5° divergence slit with 10 mm height limit slit, sample rotation stage (120 rpm) attachment and DTex Ulta detector. The tube voltage and current applied were 40 kV and 40 mA. The data were collected over an angle range 10 to 70° with a scanning speed of 5° per minute with 0.02° step.

S5Reference. E. Matei, A. M. Predescu, A. Predescu, E. Vasile, C. Predescu, J. Optoelectron Adv. M. 5 (2011) 296.

FC Reaction Condition= heatingNano CuFe2O4 (after 1st use)

Page 6: Supplementary Material

A= PXRD pattern of pure CuFe2O4 powder before use. B= PXRD pattern of nanopowder CuFe2O4 after the 3rd usage in the FC acylation of 1a with 2 under heating condition. C= PXRD pattern of nanopowder CuFe2O4 after the 1st usage in the FC acylation of 1a with 2 under rt condition. D= XRD pattern of nanopowder CuFe2O4 after the 2nd usage in the FC acylation of 1a with 2 under rt condition. E= XRD pattern of nanopowder CuFe2O4 after the 3rd usage in the FC acylation of 1a with 2 under rt condition.

S6

Page 7: Supplementary Material

FC Reaction Condition = heating

HRTEMAfter 1st usenano CuFe2O4

nano CuFe2O4

before use

HR TEM analysis offresh

nano CuFe2O4

before use

HRTEM analysis offresh

S7

FC Reaction Condition = heating

HRTEMAfter 1st usenano CuFe2O4

Page 8: Supplementary Material

FC Reaction Condition= rtNano CuFe2O4 (after 1st use)

S8

Page 9: Supplementary Material

FC Reaction Condition= rtNano CuFe2O4 (after 2nd use)

S9

Page 10: Supplementary Material

FC Reaction Condition= rtNano CuFe2O4 (after 3rd use)

S10

Page 11: Supplementary Material

After 1st use CuFe2O4

FC Reaction Condition= rtNano CuFe2O4 (after 1st use)

S11

HRTEM

Page 12: Supplementary Material

After 2nd use CuFe2O4

FC Reaction Condition= rtNano CuFe2O4 (after 2nd use)

S12

HRTEM

Page 13: Supplementary Material

After 3rd use of CuFe2O4

FC Reaction Condition= rtNano CuFe2O4 (after 3rd use)

S13

HRTEM

Page 14: Supplementary Material

Mostly, all the ketones obtained in this work are known compounds and are identified by comparison with the data available in the literature.2-7 Representative characterization data for the unknown compounds are given below. (3-Bromo-4-methoxyphenyl)(p-tolyl)methanone (3h): Following the general procedure described in the article, 3h was obtained after purification by column chromatography on silica gel (EtOAc:Hexanes = 20:80) as white colour solid mp 103-105 oC; Yield: 66% ; IR (KBr) : 1645, 1590, 1270, 1051 and 749 cm-1; 1H NMR (400 MHz, CDCl3): δ 8.02 (d, 1H, J = 2.0 Hz), 7.75 (dd, 1H, J1 = 8.5, J2 = 2.12 Hz), 7.64 (d, 2H, J = 8.1 Hz), 7.26 (d, 2H, J = 8.0 Hz), 6.93 (d, 2H, J = 8.5 Hz), 3.95 (s, 3H), 2.41 (s, 3H); 13C NMR (100 MHz, CDCl3): δ 194.0, 159.1, 143.1, 135.3, 134.8, 131.4, 129.9, 129.0, 111.6, 110.9, 56.5, 21.6; MS(CI): m/z (%) 306 ([M+1]+, 100), 305 ([M]+, 100), 259 (10), 227 (20). (3-Chloro-4-methoxyphenyl)(2-chlorophenyl)methanone (3m): Following the general procedure described in the article, 3h was obtained after purification by column chromatography on silica gel (EtOAc:Hexanes = 20:80) as white colour solid mp 132-134 oC; Yield: 75% ; IR (KBr) : 1660, 1590, 1274, 1055 and 755 cm-1; 1H NMR (400 MHz, CDCl3): δ 7.71 (d, 1H, J = 2.2 Hz), 7.68 (dd, 1H, J1 = 8.6, J2 = 2.1 Hz), 7.44 - 7.34 (m, 4H), 6.95 (d, 1H, J = 8.6 Hz), 3.96 (s, 3H);13C NMR (100 MHz, CDCl3): δ192.9, 159.3, 138.2, 131.9, 131.2, 131.0, 130.9, 130.0, 129.6, 128.9, 126.8, 123.0, 111.3, 56.4; MS(CI): m/z (%) 281 ([M]+, 50), 266 (10), 227 (10).

S14

Page 15: Supplementary Material

1-(3-Chloro-4-methoxyphenyl)hexan-1-one (3y): Following the general procedure described in the article, 3y was obtained after purification by column chromatography on silica gel (EtOAc:Hexanes = 20:80) as yellow colour liquid; Yield: 75% ; IR (CH2Cl2) : 2956, 1727, 1568, 1020 and 699 cm-1; 1H NMR (400 MHz, CDCl3): δ 7.95 (s, 1H), 7.83 (d, 1H, J = 8.6 Hz), 6.92 (d, 1H, J = 8.6 Hz), 3.92 (s, 3H ), 2.84 (t, 2H, J = 8.3 Hz), 1.69 -1.21 (m, 6H), 0.88 (t, 3H, J = 4.1 Hz); 13C NMR (100 MHz, CDCl3): δ 198.2, 158.5, 130.6, 130.4, 128.4, 122.7, 111.2, 56.3, 38.2, 31.5, 24.1, 22.5, 13.9; HRMS: (ESI) calcd for C13H17ClO2:[M + H]+ 241.0995, found [M + H]+ 241.0996. 1-(3-Chloro-4-methoxyphenyl)heptan-1-one (3z): Following the general procedure described in the article, 3z was obtained after purification by column chromatography on silica gel (EtOAc:Hexanes = 20:80) as yellow colour liquid; Yield: 74% ; IR (CH2Cl2) : 2928, 1720, 1594, 910 and 699 cm-1; 1H NMR (400 MHz, CDCl3): δ 7.99 (d, 1H, J = 2.0 Hz), 7.83 (dd, 1H, J1 = 2.0 Hz, J2 = 8.6 Hz), 6.95 (d, 1H, J = 8.6 Hz), 3.96 (s, 3H ), 2.89 (t, 2H, J = 7.4 Hz), 1.72-1.25 (m, 8H), 0.90 (t, 3H, J = 6.4 Hz); 13C NMR (100 MHz, CDCl3): δ 198.1, 158.5, 130.6, 130.3, 128.4, 122.7, 111.2, 56.3, 38.2, 31.6, 29.0, 24.3, 22.5, 14.0; HRMS: (ESI) calcd for C14H19ClO2:[M + H]+ 255.1152, found [M + H]+ 225.1157.

S15

Page 16: Supplementary Material

2-Chlorophenyl(1-methyl-1H-pyrrol-3-yl)methanone (3ai): Following the general procedure described above, 3ai was obtained after purification by column chromatography on silica gel (EtOAc:Hexanes = 60:40) as brown colour liquid; Yield: 57% ; IR (CH2Cl2) : 2950, 1702, 1610, 1115 and 875 cm-1; 1H NMR (400 MHz, CDCl3): δ 7.38-7.27 (m, 4H), 6.94 (t, 1H, J = 1.8 Hz), 6.59 (q, 2H, J = 2.9 Hz), 3.60 (s, 3H); 13C NMR (100 MHz, CDCl3): δ 189.1, 140.2, 130.7, 130.3, 130.0, 129.9, 129.8, 128.5, 126.3, 125.2, 124.0, 110.4, 36.7.

Mesityl(thiophen-2-yl)methanone (6a): Following the general procedure described above, 6a was obtained after purification by column chromatography on silica gel (EtOAc:Hexanes = 20:80) as green colour liquid; Yield: 61% ; IR (CH2Cl2) : 2929, 1723, 1589, 1020 and 785 cm-1; 1H NMR (400 MHz, CDCl3): δ 7.62 (q, 1H, J = 1.1 Hz), 7.25 (q, 1H, J = 1.0 Hz), 7.0 (q, 1H, J = 3.8 Hz), 6.80 (s, 1H ), 2.23 (s, 3H), 2.08 (s, 6H); 13C NMR (100 MHz, CDCl3): δ 192.8, 145.0, 138.7, 136.9, 135.0, 134.7, 134.1, 128.4, 128.2, 21.1, 19.2; MS(CI): m/z (%) 231 ([M+1]+, 100), 212 ([M]+, 10), 153 (9), 111 (10).

S16

Page 17: Supplementary Material

R1

R Cl

O

R

ClO

R

ClO

+

R

O

R

O

R

O

R1

R

O

R

O

R

O

R

O

R1

R

O

R1

R

O

CuFe2O4

+HCl

R1

R

ClOR

ClO

R

ClO

R

O

R

O

R1

Plusible Mechanism

Magnetic Nanopowder CuFe2O4 –Catalyzed Friedel-Crafts Acylation

S17

Page 18: Supplementary Material

References

S18

1. For a recent reference on the synthesis/characterization of CuFe2O4 see: Matei, E.; Predescu, A.; M. Predescu, A.; Vasile, E.; Predescu, C. J. Optoelectron Adv. M. 2011, 5, 296.

2. (a) Olah, G. A. Friedel-Crafts Chemistry; Wiley: New York, 1973. (b) Franck, H. G. Industrial Aromatic Chemistry; Springer: Berlin, 1988. (c) Dasgupta, S.; Torok, B. Curr. Org. Synth. 2008, 5, 321. (d) Guidotti, M.; Coustard, J.-M.; Magnoux, P.; Guisnet, M. Pure Appl. Chem. 2007, 79, 1833. (e) Kozhevnikov, I. V. Appl. Cat. A: Gen. 2003, 256, 3. (f) Losfeld, G.; Escande, C.; Vidal de La Blache, P.; L’Huillier, L; Grison, C. Catal. Today 2012, 189, 111. (g) Chua, C. K.; Pumera, M. Chem. A Asian J. 2012, 7, 1009. (h) Sartori, G.; Maggi, R. Chem. Rev. 2011, 111, PR181. (i) Bonrath, W.; Aquino, F.; Haas, A.; Hoppmann, S.; Netscher, T.; Pace, F.; Pauling, H. Sustainability 2009, 1, 161. (j) Roux, C. L.; Dubac, J. Synlett 2002, 181.

3. (a) Kawada, A.; Mitamura, S.; Kobayashi, S. Synlett 1994, 545. (b) Répichet, S.; Roux, C. L.; Roques, N.; Dubac, J. Eur. J. Org. Chem. 1998, 2743.(c) Kawamura, M.; Cui, D.-M.; Hayashi, T. Shimada, S. Tetrahedron Lett. 2003, 44, 7715. (d) Tran, P. H.; Duus, F.; Le, T. N. Tetrahedron Lett. 2012, 53, 222.

4. Kawada, A.; Mitamura, S.; Kobayashi, S. J. Chem. Soc., Chem. Commun. 1996, 183.5. (a) Babu, S. A.; Yasuda, M.; Baba, A. Org. Lett. 2007, 9, 405. (b) Nishimoto, Y.; Babu, S. A.; Yasuda, M.; Baba, A. J. Org. Chem. 2008,

73, 9465 and references therein.6. (a) Ranu, B. C.; Ghosh, K.; Jana, U. J. Org. Chem. 1996, 61, 9546. (b) Mukaiyama, T.; Suzuki, K.; Sik Han, J.; Kobayashi, S. Chem. Lett.

1992, 435. (c) Sharghi, H.; Jokar, M.; Doroodmand, M. M.; Khalifeh, R. Adv. Synth. Catal. 2010, 352, 3031. (d) Firouzabadi, H.; Iranpoor, N.; Nowrouzi, F. Tetrahedron 2004, 60, 10843.

7. (a) Hodges, J. M.; Gonzalez, J.; Koontz, J.; Myers, W. H. Harman, W. D. J. Org. Chem. 1995, 60, 2125. (b) Barbero, M.; Cadamuro, S.; Degani, I.; Fochi, R.; Gatti, A.; Regondi, V. J. Org. Chem. 1988, 53, 2245. (c) Carson, J. R.; Davis, N. M. J. Org. Chem. 1981, 46, 839. (d) Strekowski, L.; Wydra, R. L.; Cegla, M. T.; Czarny, A.; Patterson, S. J. Org. Chem. 1989, 54, 6120. (e) Hamann, B. C.; Hartwig, J. F. J. Am. Chem. Soc. 1997, 119, 12382. (f) Cahiez, G.; Luart, D.; Lecomte,F. Org. Lett. 2004, 6, 4395. (g) Dohi, S.; Moriyama, K.; Togo, H. Tetrahedron 2012, 68, 6557. (h) Chena, J.-Y.; Chena, S.-C.; Tanga, Y. J.; Moub, C.Y.; Tsaia, F.-Y. J. Mol. Catal. A: Chem. 2009, 307, 88. (i) Su, W.; Jin, C. Synth. Commun. 2004, 34, 4249.