12
Supersymmetric dark matter with low reheating temperature of the Universe Sebastian Trojanowski National Center for Nuclear Research, Warsaw COSMO 2014 – Chicago, August 29, 2014 L. Roszkowski, ST, K. Turzy´ nski hep-ph/1406.0012 1/12 ”Supersymmetric dark matter with low reheating temperature of the Universe”

Supersymmetric dark matter with low reheating temperature

  • Upload
    others

  • View
    8

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Supersymmetric dark matter with low reheating temperature

Supersymmetric dark matterwith low reheating temperature of the Universe

Sebastian Trojanowski

National Center for Nuclear Research, Warsaw

COSMO 2014 – Chicago, August 29, 2014

L. Roszkowski, ST, K. Turzynski hep-ph/1406.0012

1/12 ”Supersymmetric dark matter with low reheating temperature of the Universe”

Page 2: Supersymmetric dark matter with low reheating temperature

Motivation

What is the nature of dark matter (DM)?

⇒ Lightest Supersymmetric Particle(?)

LHC bounds ⇒ SUSY scale MS & 1 TeV⇒ popular higgsino DM with mχ ∼ 1 TeV. . .

. . .but what else? It’s difficult to get neutralino dark matterwith mχ > 1 TeV

Any prospects for discovery such heavy DM?

Gravitino DM – typically discussed upper limit on thereheating temperature TR . 107 − 108 GeV

What about lower limit on TR?

2/12 ”Supersymmetric dark matter with low reheating temperature of the Universe”

Page 3: Supersymmetric dark matter with low reheating temperature

Reheating period in the evolution of the Universe

At the end of a period of cosmological inflation:

T ≈ 0

large potential energy of the inflaton field φ is transformed into thekinetic energy of recreated particles

then T (reheating)

If instantaneous reheating: Γφ = H =√

8π3M2

Plρφ and ρφ = ρrad(TR) ∼ T 4

R

Γφ =

√4π3g∗(TR)

45

TR2

MPldefines reheating temperature TR

If non-instantaneous reheating – Boltzmann equations:G. F. Giudice, E. W. Kolb, A. Riotto hep-ph/0005123, G. Gelmini et al. hep-ph/0602230

dρφdt

= −3Hρφ − Γφρφ inflaton field

dρRdt

= −4HρR + Γφρφ + 〈σv〉2〈EX 〉[n2X − (neq

X )2] radiation

dnXdt

= −3HnX − 〈σv〉[n2X − (neq

X )2] (+

b

mφΓφρφ

)dark matter

Radiation dominated (RD) epoch begins when T ∼ TR ,

before – the reheating period

3/12 ”Supersymmetric dark matter with low reheating temperature of the Universe”

Page 4: Supersymmetric dark matter with low reheating temperature

Reheating period – evolution of the total supersymmetric yield

Y = ns with n =

∑i ni

T−−→ nχ

Y =

n / s

x = mχ / T

freeze-out

(low TR)

freeze-out

(high TR)

nn

χ

10-15

10-10

10-5 1

10-4 10

-2 1 102 10

4 106

dilution due to

fast expansion

RD epoch(low TR)

n ≈ neq

reheatingperiod

(low TR)

low TR

high TR

Dark matter particles freeze-out inthe reheating period:

freeze-out occurs at a slightlyhigher temperatures than inthe standard case

after freeze-out, but beforethe end of the reheatingperiod, the DM particles areeffectively diluted away

Ωχh2(low TR) ∼(TR

Tnewfo

)3 ( Toldfo

Tnewfo

)Ωχh

2(high TR)

G. F. Giudice, E. W. Kolb, A. Riottohep-ph/0005123

Ωχh2(low TR ) < Ωχh2(high TR )

(w/o inflaton decays to DM)

4/12 ”Supersymmetric dark matter with low reheating temperature of the Universe”

Page 5: Supersymmetric dark matter with low reheating temperature

Supersymmetric dark matter with low TR in the (N)MSSMthe lightest neutralino is natural DM candidate (R-parity conservation)depending on its composition it can be: bino, higgsino, wino, singlino(NMSSM) or a mixed statefor bino or singlino DM relic density can vary by several orders ofmagnitude for a fixed mχ

for bino DM ΩBh2(high TR) . g

−1/2∗,fo

(m

lm

B

)2 ( ml

460 GeV

)2

M. Drees et al. hep-ph/9207234, J. D. Wells hep-ph/9809504

for higgsino and wino DM Ωχh2 ∼ m2

χ, wino DM – Sommerfeld effect

ΩD

Mh

2 (

hig

h T

R)

mDM (TeV)

TR = 1 GeV

TR = 10 GeV

TR = 50 GeV

TR = 100 GeV

TR = 200 GeV

high TR

ΩDMh2 = 0.12 p10MSSM

bino

higgsino

wino

10-1

1

101

102

103

104

105

106

0 1 2 3 4 5 6

ΩD

Mh

2 (

hig

h T

R)

mDM (TeV)

1 GeV

TR = 10 GeV

TR = 50 GeV

TR = 100 GeV

TR = 200 GeV

high TR

ΩDMh2 = 0.12 p13NMSSM (95% CL)

singlino comp. > 99%

> 95%

10-1

1

101

102

103

104

105

106

107

108

0 1 2 3 4 5 6

5/12 ”Supersymmetric dark matter with low reheating temperature of the Universe”

Page 6: Supersymmetric dark matter with low reheating temperature

Higgsino DM

high TR

correct relic density for mχ ∼ 1 TeV

testable – DM direct detection σSIp

(Xenon1T)

low TR (w/o inflaton decays to DM)

correct relic density for mχ & 1 TeV

still testable

10-13

10-12

10-11

10-10

10-9

10-8

10-7

0 1 2 3 4 5

σpS

I (pb)

mχ1

(TeV)

p10MSSM (95% CL) high TR

LUX

Xenon 1T

bino

higgsino

σpS

I (pb)

mχ1

(TeV)

p10MSSM (95% CL) TR = 100 GeV

LUX

Xenon 1T

bino

higgsino

10-13

10-12

10-11

10-10

10-9

10-8

10-7

0 1 2 3 4 5

6/12 ”Supersymmetric dark matter with low reheating temperature of the Universe”

Page 7: Supersymmetric dark matter with low reheating temperature

Bino DM – high TR

correct relic density in the bulk region or with some specific conditions:(co)annihilations, resonances

only partly testable in DM direct detection experiments

possibly some hints from colliders (stau-coannihilation region)

Bino DM – low TR (w/o inflaton decays to DM)

correct relic density for wide range of mχ depending on TR

w/o specific mass patterns

σpS

I (pb)

mχ1

(TeV)

p10MSSM (95% CL) TR = 10 GeV

LUX

Xenon 1T

bino

10-13

10-12

10-11

10-10

10-9

10-8

10-7

0 1 2 3 4 5

σpS

I (pb)

mχ1

(TeV)

p10MSSM (95% CL) TR = 50 GeV

LUX

Xenon 1T

bino

higgsino

10-13

10-12

10-11

10-10

10-9

10-8

10-7

0 1 2 3 4 5

7/12 ”Supersymmetric dark matter with low reheating temperature of the Universe”

Page 8: Supersymmetric dark matter with low reheating temperature

Wino DM – high TR

correct relic density for mW ∼ 3 TeV (including Sommerfeld effect)

J. Hisano et al. hep-ph/0610249,A. Hryczuk et al. hep-ph/1010.2172

excluded by DM indirect detection (γ-ray line) for mW . 3.5 TeVT. Cohen et al. hep-ph/1307.4082, J. Fan et al. hep-ph/1307.4400, A. Hryczuk et al. hep-ph/1401.6212

Wino DM – low TR (w/o inflaton decays to DM)

correct relic density for heavy wino DM

testable – direct and/or indirect DM detection

σpS

I (pb)

mχ1

(TeV)

p10MSSM (95% CL) TR = 150 GeV

LUX

wino (ID excl.)

bino

higgsino

wino

10-13

10-12

10-11

10-10

10-9

10-8

10-7

0 1 2 3 4 5

Xenon 1T

TR

[G

eV

]

mW~ [TeV]

p10MSSM (95% CL)ΩW~ h

2 = 0.12

with Sommerfeld effect

w/o Sommerfeld effect

120

140

160

180

200

3.6 3.8 4 4.2 4.4 4.6 4.8 5

8/12 ”Supersymmetric dark matter with low reheating temperature of the Universe”

Page 9: Supersymmetric dark matter with low reheating temperature

Gravitino G DM

superpartner of graviton

extremely weakly interacting massive particle (EWIMP) – interaction ratesuppressed by MPl ∼ 1018 GeV

not directly testable, but some hints from the LHC may be possible

cosmological constraints

Gravitino relic density

ΩGh2 = ΩNTP

Gh2 + ΩTP

Gh2 low TR' ΩNTP

Gh2 =

mG

mχΩχh

2

*

Non-Thermal Production

late decays of the next-to-LSP

Thermal production

scatterings of superparticles

in the thermal plasma

HHHH

HHY

Big Bang Nucleosynthesis (BBN) constraints

late-time decays of the next-to-LSP to gravitino initiate electromagneticand hadronic cascades that destroy light nuclei in the early Universe

→ this alters BBN predictions

constraints depend on the next-to-LSP’s lifetime τ and relic density Ωχh2

as well as on the hadronic branching fraction BhK. Jedamzik hep-ph/0604251, M. Kawasaki et al. hep-ph/0804.3745

K. Jedamzik hep-ph/0710.5153, M. Kawasaki hep-ph/0703122

9/12 ”Supersymmetric dark matter with low reheating temperature of the Universe”

Page 10: Supersymmetric dark matter with low reheating temperature

Gravitino DM – low TR ΩGh2 =

mG

mNLSPΩNLSPh

2

Bino next-to-LSP

Bh & 0.1

τ ∼m2

G

m5B

for mB mG

BBN requires τ . 0.1 s

⇒ mB & 1.4(

mG

GeV

)2/5

TeV

Slepton next-to-LSP

lower Ωlh2 ⇒ larger mG

low Bh

τ ∼m2

G

m5l

(1−

m2G

m2l

)−4

ΩLO

SPh

2 (

hig

h T

R)

mLOSP (TeV)

TR = 1 GeV

TR = 10 GeV

TR = 100 GeV

TR = 200 GeV

NTP high TR

ΩG~h

2 = 0.12 mG

~ = 10 GeV

bino

higgsino

wino

stau

sneutrino

10-1

1

101

102

103

104

105

106

0 1 2 3 4 5 6

BBN excl.

too low ΩG~h

2 ΩLO

SPh

2 (

hig

h T

R)

mLOSP (TeV)

TR = 100 GeV

TR = 200 GeV

NTP high TR

ΩG~h

2 = 0.12 mG

~ = 1 TeV

bino

higgsino

wino

stau

sneutrino

10-1

1

101

102

103

104

105

106

0 1 2 3 4 5 6

BBN excl.

too low ΩG~h

2

10/12 ”Supersymmetric dark matter with low reheating temperature of the Universe”

Page 11: Supersymmetric dark matter with low reheating temperature

Gravitino DM – lower limit on TR

BBN + relic density constraints ⇒ lower limit on TR

min

TR

(G

eV

)

mG~ (GeV)

bino LOSPmτ~ < 5 TeV

mτ~ < 10 TeV

mτ~ < 15 TeV

0

50

100

150

200

0.1 1 10

min

TR

(G

eV

)

mG~ (GeV)

sneutrino LOSP

stau LOSP

100

150

200

250

300

350

400

100 1000

11/12 ”Supersymmetric dark matter with low reheating temperature of the Universe”

Page 12: Supersymmetric dark matter with low reheating temperature

Conclusions

for low enough reheating temperature TR neutralino freeze-outmay occur before the RD epoch – in the reheating period. . .

. . .this opens up new regions with neutralino dark matter

regions with heavy higgsino or wino DM can be tested indirect/indirect detection experiments

wino DM can be again allowed

bino DM – correct relic density w/o specific mass patterns

gravitino DM in such scenario is only produced in non-thermalproduction

BBN constraints in case of gravitino DM introduce lower limitTR & 100 GeV

12/12 ”Supersymmetric dark matter with low reheating temperature of the Universe”