134
United Arab Emirates University Scholarworks@UAEU eses Electronic eses and Dissertations 4-2012 Supercritical CO2 Extraction of Oil from Henna Flower: Experimental, Mathematical Modeling, and Antioxidant Activity Bushra Saeed Mohammed Dohai Follow this and additional works at: hps://scholarworks.uaeu.ac.ae/all_theses Part of the Petroleum Engineering Commons is esis is brought to you for free and open access by the Electronic eses and Dissertations at Scholarworks@UAEU. It has been accepted for inclusion in eses by an authorized administrator of Scholarworks@UAEU. For more information, please contact [email protected]. Recommended Citation Mohammed Dohai, Bushra Saeed, "Supercritical CO2 Extraction of Oil from Henna Flower: Experimental, Mathematical Modeling, and Antioxidant Activity" (2012). eses. 581. hps://scholarworks.uaeu.ac.ae/all_theses/581

Supercritical CO2 Extraction of Oil from Henna Flower

  • Upload
    others

  • View
    5

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Supercritical CO2 Extraction of Oil from Henna Flower

United Arab Emirates UniversityScholarworks@UAEU

Theses Electronic Theses and Dissertations

4-2012

Supercritical CO2 Extraction of Oil from HennaFlower: Experimental, Mathematical Modeling,and Antioxidant ActivityBushra Saeed Mohammed Dohai

Follow this and additional works at: https://scholarworks.uaeu.ac.ae/all_theses

Part of the Petroleum Engineering Commons

This Thesis is brought to you for free and open access by the Electronic Theses and Dissertations at Scholarworks@UAEU. It has been accepted forinclusion in Theses by an authorized administrator of Scholarworks@UAEU. For more information, please contact [email protected].

Recommended CitationMohammed Dohai, Bushra Saeed, "Supercritical CO2 Extraction of Oil from Henna Flower: Experimental, Mathematical Modeling,and Antioxidant Activity" (2012). Theses. 581.https://scholarworks.uaeu.ac.ae/all_theses/581

Page 2: Supercritical CO2 Extraction of Oil from Henna Flower

Faculty of Engineering

United Arab Emirate Univer ity

Faculty of Engineering

Q l.:UAIl Q..;! .. U5U' LJ IJ La � I ii.sto l.;l United Arab Emirates University

M.Sc. Program in Petroleum Science & Engineering

SUPERCRITICAL CO2 EXTRACTION OF OIL FROM

HENNA FLOWER: EXPERIMENTAL, MATHEMATICAL

MODELING, AND ANTIOXIDANT ACTIVITY

By

Bushra Saeed Moham med Dohai

A thesis Submitted to

United Arab Emirates University

In Partial fulfilment of the requirements

For the Degree ofM.Sc in Petroleum Science & Engineering

April 20 12

Page 3: Supercritical CO2 Extraction of Oil from Henna Flower

Faculty of Engineering

United Arab Emirates University

Faculty of ngineering

oll1All Ci..M J.StII w IJ La � I Cuto l.;1 United Arab Emirates University

M. c. Program in Petroleum Science & Engineering

SUPERCRITICAL CO2 EXTRACTION OF OIL FROM

HENNA FLOWER: EXPERIMENTAL, MATHEMATICAL

MODELING, AND ANTIOXIDANT ACTIVITY

By

Bushra Saeed Moham med Dohai

A thesis Submitted to

United Arab Emirates University

In Partial fulfilment of the requirements

For the Degree of M.Sc in Petroleum Science & Engineeling

Supervisor Ali H . Al Marzouqi

Associate Professor in chemical Engineering

Department of Chemical & Petroleum Engineering

Collage of Engineering

United Arab Emirates University

April 2012

Page 4: Supercritical CO2 Extraction of Oil from Henna Flower

ABST RACT

Henna i a plant that ha been u ed tradit ional ly [or coloring nai l , kin, and hair,

and a medicinal plant. The upercritical fluid technology offers a con iderable promi e

a e traction media due to it ad antage 0 er other conventional e traction technique .

The extraction of volat i le components from flower of henna wa tudied using

upercri t ical carbon dioxide at temperatures and pres ures ranging from 35 to 55°C and

80 to 1 20 bar, re pect ively. A maximum extraction yield of 3 1 % from 2g of henna

flower was obtained at 45 °C and 1 20 bar. The composition of the extracts was

inve t igated by gas chromatography technique. Furthem10re, the extract were te ted for

their antibacterial and ant ioxidant activit ies . No inh ibit ion zone was ob erved in the

antibacteria l study; however the extracts obtained at most of the extraction conditions

exhibited antiox idant activity.

A mathematical model of the extraction curve based on mass transfer principles

was developed at all extract ion conditions. Powell optimization method \ as used to

obtain the model parameters by adj usting to experimental results. The calculated

e tract ion yields were in good agreement with experimental results .

I

Page 5: Supercritical CO2 Extraction of Oil from Henna Flower

ACIC TO\VL E D G E I\lE � T

Prai e be to God for h i unl imited grace and help to complete the requirement of

thi work.

Fir t and [oremo t , I would l ike to extend my deepest gratitude to my supervi or

Dr. Ali Al Marzouqi [or hi guidance, encouragement valuable suggestion , upport, and

advi e that are u eful in personal and profes ional l i fe. I would especially l ike to thank

him [or haring hi knowledge in supercritical fluid extraction ( SFE), e sential oi l

maU1ematicai model ing, and programming.

econdly, 1 would l ike to thank the assistance of the fol lowing individuals who

upported me in the analysis, Dr. Agnes Sonnevend from Faculty of Medicine and Health

c ience for her a i tance in conducting the antibacterial test . I thank Mr. Babucarr lobe,

and Mr. Saj id Maqsood from Faculty of Food and Agriculture for sharing their

knowledge on conducting antioxidant tests. The assistance of Dr. Ali Dowaidar in Gas

Chromatography and part icle characterization is al 0 great ly appreciated.

I would l ike a lso to thank my close friend Eng. Hanifa Taher; a PhD tudent from

Chemical and Petroleum Engineering Department for her support and assistance on using

End ote oftware. Al 0 I would l ike to acknowledge my friend Negin Farah, a master

tudent from Chemical and Petroleum Engineering Department for reviewing the Engl ish

wri t ing of thi thesis.

Also, I wish to thank a l l the faculty members and staff of the Chemical and Petroleum

Engineering Department at UAE University for supporting me during my research

studies.

Last but defmite ly not the least ; I thank my family members, who I can never thank

enough for bel ieving in me and helping me to go through the chal lenging period of my

studies at UAE University.

I I

Page 6: Supercritical CO2 Extraction of Oil from Henna Flower

TABL E O F C Ol TT E , TTS

B TRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

A K OWLEDGEME T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ll

T BLE OF CO TE T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . I I I

L I T O F F IGURE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . .. .. . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . .. V I

L I T OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . V I I I

onlenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IX

1 TRODUCTIO . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1 . 1 Problem tatement . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1 .2 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1 .3 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 BACKGROUN D AND L ITERATURE SURVEY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 . 1 Henna plant ( Syn. Lawsonia inerrnis Linn. Lytheraceae ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 .2 Supercrit ical fluids ( SCFs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 .3 Extraction Technologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 0

2 .3 . 1 Soxhlet Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1

2 . 3 . 2 Hydrodist i l lat ion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2

2 . 3 . 3 Microwave- Assisted Extraction (MAE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 3

2 . 3 .4 Supercritical Fluid Extraction ( SFE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 4

2 . 3 .4 . 1 Extraction parameters . . . . . . . . . , . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 6

I I I

Page 7: Supercritical CO2 Extraction of Oil from Henna Flower

2 .3 .4.2 Mathematical Model ing . . . . . .. . . . . . . . .. . . . . . . .. .. . . . . . . . . . . . . . .. . . .. . . . . . . . . . . . . .. . . . . . . . . . . . . 1

2 .3A.2 . 1 olubi l i t of olute in upercritical fluid pha e . . ..... . . . . . . . . . . . . . . . . . . . . . . . 1 9

2 .3 .4 .2 .2 Model ing the e tract ion curve ..... . . . . . . . . . . . . . . .. . . . . . . . . . .. . . . . . . . . . . . . . . . . . .. . . . . . . 25

3 E PERIME TAL ET P AND METHODOLOGI E .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... . . . 35

3 . 1 ample preparation . . . . . . . . . . . . .. . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..... 35

3 .2 Supercri tical fluid e traction . . . . . . . . . . . . . . . . . . . . .. . .. . . . . . . . . . . . . . . . . . . . . ..... . . . . . . . . . . . . . . . . . . . . . . .. . . . 3 5

3 .3 Ga Chromatography analy is . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3 . 4 Antibacterial Activity Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3 . 5 Antio idant Acti ity test . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 37

3 . 5 . 1 FRAP ( Fenic reducing antioxidant power) assay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3 . 5 .2 DPPH radical scavenging activi ty . . . . . . . . . . . . . . . . . ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4 RESU LTS AND DISCUSS ION . . . . . . . . . . . .. . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . ........ . . . . . . . . . . . . . . . . . . . .. . . 39

4. 1 Supercri t ical carbon dioxide extraction of henna flower.. . . . . . . . . . . . . . . . . . . ..... . . . . . . . . . 39

4 . 1 . 1 Effect of temperature . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4 . 1 .2 Effect of pressure . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .... . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . 48

4 .2 Extract Analysis . . . . . . . . . . . . . . . . . ... . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . 50

4 .2 . 1 GC-Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4 .2 .2 Antibacterial activity . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . · . . . . . . . . . . . . . . . . . . . . . . . .. 54

4 .2 .3 Antiox idant act ivi ty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4 .2 .3 . 1 FRA P ( Ferric reducing ant ioxidant power) assay . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . 55

IV

Page 8: Supercritical CO2 Extraction of Oil from Henna Flower

4.2 .3 .2 DPPH cavenging acti i ty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5 D T MODELL G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5 . 1 De cliption of the e traction mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5 .2 Theoret ical principle of the extraction proces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1

5 .2 . 1 Part ic le Pha e rn a tran fer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5 .2 . 1 . 1 Transfer of solute from solid phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5 .2 . ] .2 Di ffu ion within part ic le pores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5 .2 .2 F lu id Phase mas tran feL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5 .2 .2 . 1 F i lm d iffu ion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5 .2 .2 .2 Bu lk d iffu ion along the extraction bed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5 .2 .2 . 3 Model parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6 MODEL IN G RESU LTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

7 Conclu ion and recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

8 REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

9 APPEND ICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

v

Page 9: Supercritical CO2 Extraction of Oil from Henna Flower

L I ST O F F I G URES

Figure I Pha e diagram of O2 . .. . . . .. . . . . .. . . . . .. . . . . .. . . . . . . . . . ... .. . . . . .. .. . . . . . . . . . . ... . . .. . . ....... . . . . .. . . .. . . .. . . 6

FIgure 2 The change in den ity of CO2 with pre ure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Figure 3 oxhlet Extractor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2

Figure 4 chmatic diagram of SFE apparatus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 5

Figure 5 Supercri tical Extraction Experimental Set up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Figure 6 Effect of cool ing temperature a t 45 °C and 1 00 bar.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1

Figure 7 E ffect o f cool ing temperature at 55 °C and 80 bar.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1

Figure 8 Effect of flow rate at 55 °C and 1 00 bar . . . . . . . . . . . . ... ..... . . . . ... .. . . .. . .. . . . . . . . . . . . . . .. . . . . . . . ... 42

Figure 9 E ffect of £10\ rate at 55 °C and 1 20 bar.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Figure 1 0 Effect of temperature on the extraction yield at 80 bar.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

Figure 1 1 E ffect of temperature on the extraction yield at 1 00 bar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

F igure 1 2 E ffect of temperature on the extraction yield at 1 20 bar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Figure 1 3 Effect of temperature and pressure on solubi l ity of henna flower extract in SC-

CO'2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

F igure 1 4 E ffect of pressure on the extraction yield at 3 5 °C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

F igure 1 5 Effect of pressure on the extraction yield at 3 5 °C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Figure 1 6 Effect of pressure on the extraction yield at 55 °C . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . 50

Figure 1 7 GC chromatogram for extract obtained at 55 °C and 1 20 bar . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1

Figure 1 8 Results of antibacterial test. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

Figure 19 FRAP Reduction reaction . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

Figure 20 FRAP assay results for extract of henna flowers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

Figure 2 1 DPPH reduction by antioxidant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

VI

Page 10: Supercritical CO2 Extraction of Oil from Henna Flower

Figure 22 DPPH a ay re ull for extract of henna flower . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Figure 23 Mechani rn of FE proce . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1

Figure 24 lnterpha e rna tran fer rnechani rn . . . . , . . . . . . . . . . . . . . ' . . . . . . . . . . . . . . . . . . , . . . . . . . . . . . . . . . . . . . . . . . . . 63

Figure 25 Ma tran fer in the pat1icle pha e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Figure 26 Fluid phase rna transfer rnechani 111 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

Figure 27 Ma tran fer in the fluid pha e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Figure 28 Extraction curve at 80 bar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

Figure 29 Extract ion curve at 1 00 bar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

Figure 30 Extraction curve at 1 20 bar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

Figure 32 Cal ibrat ion curve for FRAP as ay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 03

Figure 33 Cal ibrat ion curve for DPPH as ay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 03

V I I

Page 11: Supercritical CO2 Extraction of Oil from Henna Flower

L I ST O F TABL E S

Table 1 Major volat i le component i n henna flower (Wong & Tong, 1 995 ) . . . . . . . . . . . . . . . . . . . . . 5

Table 2 Some of the phy ical properties of ga , l iquid and upercritical fluid . . . . . . . . . . . . . . . . . . . 6

Table 3 Most Common upercritical fluid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Table 4 Maximum yield and olubi l ity of SFE of Henna flower extract . . . . . . . . . . . . . . . . . . . . . . . . 40

Table 5 Compo it ional analy i of extract from henna flower by GC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

Table 6 Adju table model parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

V I I I

Page 12: Supercritical CO2 Extraction of Oil from Henna Flower

F

FE

G

H PLC

T

P

C

q

r

R

L

� o menclatu re

Supercri t ical Fluid

upercritical Fluid E traction

upercri tical carbon dio ide

Ga Chromatography

High Pre sure Liquid Chromatography

Temperature, Kelvin

Pres ure, bar

Bed poro ity

Particle poro ity

Concenh"ation of solute in the partic le phase, kg/m3

Init ia I Concentration of solute in the particle phase, kg/m3

Concentration of solute at the particle surface, kg/m3

Concentration of solute in the fluid phase, kg/m3

Init ia l concentration in the fluid phase, kg/m3

Concentration of solute in the sol id phase, kg/m3

Init ia l Concentration of solute in the solid phase, kg/m3

Part ic le diameter, m

Particle radius, m

Bed rad ius, m

Bed length, m

IX

Page 13: Supercritical CO2 Extraction of Oil from Henna Flower

D

A

F

z

M ample

y

pc

pr

�r

Dax

Bed diameter m

Bed era ectional area, m2

Bed volume m3

Flo\ rate of C-C02, kg/s

uperfi ia! e!ocity, rnls

Inter t it ia! e!ocity, ml

Axial coordinate, m

Weight of charged sample, kg

I nit ial rna s in the ample, Kg

Extraction yield percentage

fraction of oi l ini t ia l ly dissolved in the fluid phase

Density of SC-C02, kg/m3

Vi cosity of SC-C02, Pa.s

Cri t ical temperature of CO2, K

Critical volume of C02, m3/mol

Critical density of CO2, kg/m3

Crit ical iscosity of CO2 Pa.s

Reduced density of CO2

Reduced viscosity of CO2

Axial d iffusivity coefficient, m2/s

Effect ive d iffusivity coefficient, m2/s

x

Page 14: Supercritical CO2 Extraction of Oil from Henna Flower

K

r

r

z

l

Film coefficient mJ

E · l ·b· 3 / 3 qUl \ num con tant, m \Old m sp

Ad . ffj · -\ � / ] orphon coe lC lent, s m- \old m- s.p

Radiu coordinate, m

ize of part ic le increment, m

ize of bed increment, m

Time increment, m

Number of particle increment

umber of bed increments

Number of time increments

X l

Page 15: Supercritical CO2 Extraction of Oil from Henna Flower

1 I N T R O D U C T I O N

1 .] Problem tatemen t

Henna plant (Lawsonia inermis) extracts have historical u age in cosmetic and

medicine field . The plant extract give temporary color, which is used for tattooing

e pecia l ly in Middle Ea t region. Moreo er, the extract of henna exhibit biological

act i \ itie , including antimicrobial , antioxidant, and anticancer activities.

onventional ly, chemical 01 ents are employed for extraction of components

from henna lea e , seeds, and roots. Only few studies are avai lable for the extraction

from henna flower using olvent extraction . These toxic and expensive chemical

olvents hinder the explorat ions on valuable extracts from henna. Furthermore, separat ion

proce es are not efficient enough, and are risky, especia l ly when extracts are used for

food or medicine. Moreover, volat i le components can thermal ly degrade i f other

conventional techniques such as steam dist i l l ation are used.

The supercritical fluid technology is a pronlls lllg field, which has in some

application replaced the traditional extraction techniques. This is typical ly due to the

favorabl e transport properties of supercritical fluids. In part icular, supercritical carbon

dioxide has gained a great deal of attention since it is nontoxic, inexpen ive, inert

chemical and nonflammable. In addition to these properties, supercritical conditions of

carbon dioxide are eas i ly reachable ( 3 1 °C and 73 bar).

Page 16: Supercritical CO2 Extraction of Oil from Henna Flower

1.2 cope

upercri tical carbon dioxide can be uti l ized to extract olati le component from

henna flowers with comparable quality and yield to conventional e traction technique .

Furthermore, the effect of e traction on e tract o lubi l ity and yield i inve t igated. The

phy ical trend of the extract ion cur e i tudied by proposing a mathematical model

ba ed on law of con ervation of rna s.

1.3 Objecth es

The main target of this thesis is to examine the validity of supercritical fluid to

extract olati le component of henna flowers. This main target has the fol lowing specific

target :

I. Optimization of supercrit ical extraction condit ions.

2 . Compositional analysis of the extracts by gas chromatography

3 . I nvestigation o f antibacterial and ant ioxidant act ivities of the extract .

4 . Development of mathematical model for the supercrit ical extraction process.

2

Page 17: Supercritical CO2 Extraction of Oil from Henna Flower

2 B ACKG ROU D AND L I T E RATURE URVEY

2 . 1 Henna plant (S n . La" son ia i nermis Linn. L� theraceae )

Henna i a flowering plant grown in dry tropical and ubtropical region uch a

Middle East, OJ1h Africa, India and Sri lanka. The plant extract are traditional ly u ed

for cosmetic purpo e and appl ied to hands, feet, nai ls and hair to give temporary color.

The major component of the extract is the lawsone (2-hydroxy- I 4-naphtboquinonel )

which i the dying molecule that uppl ie red-orange pigment. In addition it is used to

reduce body temperature in case of high fever. Hanna's extracts are prepared by finely

grinding the dried leaves and mix ing them with water at room temperature.

In addit ion to the cosmetic purposes, henna is considered as medicinal p lant since

the extracts showed biological acti it ies including antimicrobial (Hsouna et aI . , 20 1 1 ;

Ja l lad & Espada-Jal lad, 2008; Priya et a I . , 20 1 1 ), ant i fungal (Chaudhary et aI . , 20 1 0;

Shanna & Shanna, 20 1 1 ), anti- in flammatory and antipyretic ( BH . et a I . , 1 995; Mikhaeil

et aI . , 2004), and antiox idant (Hsouna et aI . , 20 1 1 ; Uddin et aI . , 20 1 1 ) . Henna extracts are

used a medicine for jaundice, leprosy smal lpox, and skin complaints. Moreover it was

a serted by Priya and co-authors that the ethanol extracts of henna roots exhibited

sign ificant antitumor activ ity, which explained the fact that henna has a long history for

the treatment of cancer (Priya et a I . , 20 1 1 ) .

The leaf extracts took the attention of most henna investigators. The biological

activ ities of the leaf extracts from henna trees were scanned . Anis and his col leagues

figured out that the chemical components of L . inennis leaves have good antiox idant

capacities, and it is possible to use those extracts as a potential source of new natural

3

Page 18: Supercritical CO2 Extraction of Oil from Henna Flower

antioxidant ( H ouna et a I . , 20 ] 1 ) . Furthermore. leaf ample were analyzed for their

antimicrobial potential and showed obviou antibacterial activity again t E cherichia coli

( H ouna et a I . , 20] I; Jal lad & � pada-JaUad, 200 ; Priya et at. , 20 1 1 ) . Be ides, isolation

of Law one from lea e ' e tract revealed trong antifungal activity (Sharma & Shanna,

20 1 1 ) . The extract hO\ ed anticancer act ivi ty a wel l against l iver and colon cancer cel l

(Endrini et a I . , 2007; Uddin et a I . , 20 1 1 ) .

On the other hand there is only one tudy publ ished on the flower part. Wong and Tong,

1 995 e tracted the volati le component of helIDa flowers by solvent extraction. They

analyzed the extract and identified the major components by GC and GC-MS for red and

yel low flower . The research re ealed the presence of volat i le components in the yel low

flower uch as: (E)-3 -hexenol , diethyl oxalate, ! inalool, dihydro-�- ionone, benzyl

alcohol , 2-phenylethanol, �- ionone, and dih ydro-�-ionol . Other volat i le components were

detected in the red flower including' hexanal , eugenol , and ethyl l inolenate. Volatile

component in yellow and red henna flowers with their corresponding composi t ion are

presented in Table 1 .

4

Page 19: Supercritical CO2 Extraction of Oil from Henna Flower

Table I �ajor \ olatllc component. in henna flo\\ er (\\ ong &. Tong. 1 995)

Component Compo ition in yellow flower (wt %) Compo ition in red flower (wt 00) Hexanal - 1 .4

He anol 1 .6 1 . 5

(E)-2-hexenal - 5 .4

( E)-2-hexenol - 2.2

(E)-3 -hexenol 5 .4 3

Diethyl oxalate 1 .4 3 . 1

Linalool 1 9. 8 1 2 .7

Methyl sal icylate - 1 . 8

Ethyl nicotinate - l .2

Dihydro-�-ionone 2 . 5 -Benzyl alcohol 3 . 3 6

2-phenylethanol 5 .8 1 1 . 5

�-ionone 48 .6 2 .5

D ihydro-�-ionol 1 .4 -

Eugenol - 1.1 Ethyl palmitate - 1 . 1

Ethyl l inoleate - 2 . 5

E thyl l inolenate - 8.9

2.2 Supercritica l fluids (SCFs)

A supercritical fluid is a substance beyond its critical pressure and temperature

\ here only one phase exists. Figure 1 i l lustrates a phase diagram for carbon dioxide.

SCF physical and chemical properties intennediate between gases and l iquids . As

indicated in

Table 2, SCFs have d iffusivit ies h igher than pure l iquids, and v iscosities h igher than

those for pure gases. A SCF has the gaseous property of being able to penetrate and the

l iquid property of being able to dissolve materia ls into their components. SCFs possess

5

Page 20: Supercritical CO2 Extraction of Oil from Henna Flower

no urface ten ion hence no capi l lary force wi l l appear during extraction. The olvating

power of the F fol low the change in the den ity.

1 00

90

0 Critical Poin

Supercritical Fluid

,-.. 70 '- --�-----(31.5°C,73.9 ar) '" .:J 60 '-' (J

50 '-=' '"

40 Sol id '" (J ... Q. 30

20

10

0 -78.5

LiQu i d /

Gas

-33.5 - 1 8 .5 -3.5 1 1 .5 26.5

Temperature °C

FIgure I Pha e dIagram of CO2

- SublImation - Melting

Vaporization

Table 2 ome of the ph) ical properties of gas. l iquid and supercritical fluid

Phy ical State Density (kg/m3) Viscosity ( cp) Diffusivity (mm2/s)

Gas 1 0.0 1 1 - 1 0 Supercritical Fluid 1 00-800 0 .05 -0. 1 0.0 1 -0. 1

Liquid 1 000 0.5- 1 0 .00 1

AroUfld the critical point, the density, v iscosity and diffusivi ty of the fluid are tunable and

sensit ive to pre ure, for example, a smal l change in the pressure results in large changes

in densit ies and hence large change in the solvating power of the fluid. Figure 2 presents

the change of density of carbon dioxide with pressure at 1 5 DC and 32 DC . It is c lear from

the figure that at 1 5 DC, pressure has smal l influence on density of the fluid, however at

32 DC, which i close to the critical temperature; the change is drastic around the critical

pre ure ( 73 .9 bar).

6

Page 21: Supercritical CO2 Extraction of Oil from Henna Flower

uch combination of fluid propertie provide the dri e for applying CF a a

preferable alternat ive to conventional organic olvent . The higher diffu ion coefficient

of F compared to that of l iquids al lows SCF to penetrate into ol id material easier

than organic olvent . ince the density can ea i ly be control led by pres ure, eparat ion

of ub tance [rom F is ea y to handle which reduces separation costs. In addition to

the e benefit , the olubi l i ty in S F can be enhanced by adding modifiers to change the

fluid polarity and impro e it electivity. Different supercritical fluids are l i sted in Table

3 with their corre ponding critical conditions and appl ications.

900 • • • • • • • a( 15"C .., a(32 E ....... ao 600 ..lO:

>- _Vapor -'iii c:

300 �Supercritical QJ 0 Liquid

a

60 80 100

Pressure (bar)

Figure 2 The change in den lty of CO:c \\ Ith pressure

Among a l l l i sted supercritical fluids in Table 3 , the most commonly used fluid is

the carbon dioxide due to it benign chemical and physical characteristics which are: the

easi ly reachable critical temperature which saves energy, being nontoxic, inflammable,

and noncorrosive. In addition, from economic aspects it i s readi ly available with low co t

compared to other fluids. Supercri tical carbon dioxide is hydrophopic which al lows easy

disso lution of l ight hydrocarbons. The low polarity of SC-C02 increases its stabi l i ty

which i environmental ly acceptable.

7

Page 22: Supercritical CO2 Extraction of Oil from Henna Flower

Although the pecial characteri t ic of upercri tical fluid \ ere ftf t di co ered in

1 879 by Hannay and Hogarth, appl ication of supercritical fluid technology marked

crucial place on the re earch area 0 er the la t three decades. SCF ha e been u ed in

di fferent indu trie : eutracuet ical, Phannaceutical , Cosmetic , Polymers textiles and

c lothing, o i l remediation, and renewable energy (McHugh & Krukoni , 1 994) .

Re earcher have u ed SCF in d ifferent unit operat ion techniques including extraction

and impregnation, fractionation, chromatography, drying, coating dying, and a reaction

media. It is worth mentioning that SCF techniques are available in commercial scale with

more than 200 plants around the world . Most of the industrial technique are upercritical

fluid extraction ( SFE) , supercritical fluid fractionation ( SFF) supercritical fluid

chromatography ( SFC), and supercritical fluid reaction ( SFR) . These techniques are

briefly discus ed in the fol lowing paragraphs.

In analytical chemi try supercrit ical chromatography i prefered approach to

l iquid chromatography due to it shorter time consumption, safety since it acquires lower

organic olvents, and simple decompression is needed to obtain the products (Garcia­

Risco et al . , 20 1 1 ) . Supercritical chromatography is employed for separation of mixtures,

detennination of binary d iffusion coefficients of solutes (Guiochon & Tarafder, 20 1 1 )

and detection of dyes in food samples ( Rezaei & Temel l i , 2000).

8

Page 23: Supercritical CO2 Extraction of Oil from Henna Flower

Table '" 10 t Common upercritical fluid

ompound Tc (0C) Pc ( bar) pplication

Itrogen - 1 47 33.9 Polymer proce ing due to its mert propertIes , Gass assIsted injection moulding process

I Ethylene 282.4 48.2 Polymer proces ing

arbon coffee and tea decaffeination, extraction of

dIoxide 3 1 .5 73.9 e ential 011 : spice , fragnces, dyes,

pharmacuetical compounds, and polymerization A a soh ent and oxidant for organic functional

'Itrous group since the byproduct i N� which is 36.4 72.5 en ironmenta l ly acceptab le, Extraction of: oxide

Amine , pharmacuetical compounds from animal feed, and l ipids from human plasma. Production of: isoparaffins byFischer-Tropsch

Butane 9 1 . 46.2 synthesis from synthe is gas, and emul ifiers by enzynle-catalyze glyceriysis reaction Deasphaltation of petroleum, regeneration of

Propane 96.6 42.5 acti ated carbon fiber in l iquid petroleum gas processes ( LPG), and Manufacture of metaJlocene catalysts in polyolefin production Synthe is of carbon nanotubes, heterogenous

Ammonia 1 32 .5 1 1 2.8 catalytic processes, ammonothermal growth of GaN in the manufucture i f I ight emitting devices ( LEDs) Biodiesel production : to ketali e the byproduct

Acetone 235 46.9 glycerol into slketal , Chemical recycl ing of polynlers, thermal dehydration of fructose, and themlal degradation of cellulose

Chemical recycling of polymers, Biodiesel ;-"'lethanol 239.4 I production, and synthesis of metal and metal

oxide nanoparticles, and nanonuids

Ethanol 243 63.8 Biodiesel production, and polymer processing

Tetrahydrof 267 5 1 . 8 Chemical recycl ing of polymers

uran (THF) Chemcial recycling of polymer , extraction of

Toluene 3 1 8.6 4 1 petroleum pitch, oi l shale processes, and l iquefaction of coal

Supercritical water oxidation in waste treatment processes, hydrothemlal synthsis of

Water 374 22 1 multicomponents oxide in particle formation, gasification and refomling of biomass, and reaction media fo polymerization and conversion processes

9

Reference

(Okubo. 2005: Zhang et al.. 20 I I )

(Yeo & KJran, 2005)

( B.Gupta & hill, 2007)

(Ashraf-Kborassam et al .. 1 990: Poh et aI., 1 999)

(Ceni et a l . . 20 1 0: Valeno et a l . . 2009: Yoneyama et a I . , 2009)

(Chihara et at. . 20 1 2 ; J. Wang et a l . . 2004)

(Fischer et aI . , J 999: Hashimoto et a I ., 2005: Shao et al., 2009: Vyalov et aI . , 20 1 1 : S . Wang et a l . . J 999)

( Hwang et a I ., 1 999; Royon et aI . , 20 1 1 )

(Okubo, 2005: Quesada-Medina & Olivares-Carri l lo, 20 1 1 ; Sawangkeaw et aI . , 2009: Tan et a I . , 20 1 0; C. Wang et a I . , 20 1 l : Zhou et a l .,20 1 0)

(Gonen et aI., 20 I I : Gui et a I . , 2009)

( Lee & Hong, 1 998)

( Abourriche et a I . , 2009: Joung et a I . , 1 999: Pan et al , 2006: Sangon et a l . . 2006: Zhuang & Thies. 1 999) (Brurmer, 2009; Kipcak et a I . , 20 1 1 : Kruse & Dinjus. 2007: Lachance et aI., 1 999: Letel l ier et a I . , 20 1 0: Leusbrock et al.. 20 I 0; Marias et a l . . 20 I I ; Ot u & Oshima. 2005: Savage, 2009: an Bennekom et aI., 20 1 1 : Vogel et aI., 2005: Yoshida et a l . . 2004: Zheng et a I ., 2008)

Page 24: Supercritical CO2 Extraction of Oil from Henna Flower

upercntIcal fluid al act a good react ion media due to their beneficial phy Ical

characten t iC , \\. hlch \\.ere dl cu ed earl ier. The rea on behmd carrying out reaction

under upercntical condi t ion i the p ib i l t ty of contro l l ing reaction condit ion la

temperature and pre ure. In mult i- tep reaction the upercri tical media can be the

choice 1 11 the a e of di ffu i n l imited reaction due to the high di ffu ion coefficient of

F . upercri tical media can al 0 hift the reaction balance tOy ard the product

\\. hen the later one i prefered t di 01 e in certain pha e, thu the electi ity can be

enhanced. 1any re earcher ha e in e l igated the u e of upercritical media in chemical

reactIOn uch a ; eth Ibenzene di propol1 ionation ( otelo et a I . , 20 1 0), synthesi of

\ Itamin E ( . " ang et a I . , 2000) , de u l furization and demetal l izaiotn of ga oi l (Vogelaar

et aI. , 1 999) .

2.3 E x t ract ion Technologie

Extraction i u ed to reco er compound from raw material . The raw material

can be o l id uch a herb and meat , or l iquid uch as crude oil and gel . The

phenomenon behind extra tion i the olubi l ity of the de ired compound can di olve in

another ub tance or pha e according to their molecular propert ie uch a polarity. Many

indu trie are u ing e traction among which are; pharmaceutical, food, co metics,

em Ironmental & petroleum indu tries. The mo t common extraction technique i Soxhlet

extract IOn and team d i t i l lation or hydro-di t i l lation. The new extract ion technology

\vhich ha taken a great attention recent ly i the upercrit ical fluid extraction. The e

extraction technique are d i cu ed below with extended deta i l for SCF extraction.

1 0

Page 25: Supercritical CO2 Extraction of Oil from Henna Flower

2.3. 1 oxh let E t raction

oxhlet extraction al 0 knO\ n a olvent extraction wa fir t introduced by on

oxhlet in 1 79 a a ol id-l iquid extraction technique. It ha been u ed for more than a

century and con idered a the main reference to e aluate the performance of other

ex traction method . In oxhlet extract ion an organic 01 ent is u ed to dissol e a de ired

compound [rom solid raw materia l . Th cri teria for electing appropriate solvent are: higb

oh ent power, electi i ty, and chemical stabi l ity, being recyclable, inexpen ive, nontoxic

and noncorro i e, low i cosi ty, avoid emulsion, and al low fonnation of im111 i cible

l iquid pha e ( Luque de Ca tro & Priego-Capote, 20 1 0) .

I n oxhlet e tractor the olvent i placed in a reservotr and heated up to

e\ aporat ion and i pa ed through a dist i l lation tube. The solvent vapor is condensed

indirect ly by cold water and dripped into the chamber holding the solid sample. During

dripping, the extraction takes place and once the sample chamber is fil led with the wann

o l \'ent, the later one return back to its starting reservoir via siphon am1 holding the

de ired extract. A further eparation is acquired to obtain the extract. F igure 3 shows the

chematic d iagram for Soxhlet extractor.

1 1

Page 26: Supercritical CO2 Extraction of Oil from Henna Flower

ndenser

Siphon arm 1 '1,. ........ -+ Extraction Chamber

I Igure : '- 0 hlel Extractor

ing this extraction approach one can en ure the cont inuous contact between

ample and fre h olvent which improve the driving force and hence the mass transfer.

Al 0 the equipment is economical compared to microwave-assi sted extraction and

uperclit ical extraction. Moreover, the selectivity can be enhanced by altering the solvent

polari ty. The drawback of thi techn ique include; time consumption, large amount of

o lvent which increa e the co t and environmental impact, and thermal degradation of

ome compounds which may happen s ince the process is performed at a temperature

cIo e to the boi l ing point of the solvent ( Luque de Ca tro & Garcia· Ayuso, 1998).

2.3.2 H� d rodist iUat ion

One of the o ldest extraction methods i hydrodist i l l ation which uses water as

solvent for the extract ion of water soluble compounds. Adequate amount of water is

poured into the vessel containg the sol id sample. Heat i suppl ied to boi l water and steam

is a l lowed to penetrate into the sample to release the desired compounds from its raw

materia l . The l eaving steam containing the extract ( dist i l late) is condensed by indirect

1 2

Page 27: Supercritical CO2 Extraction of Oil from Henna Flower

co l ing and flow into a eparator v here extract i automatical ly i olated from di t i l l ate

'v\ ater.

The main advantage of thi teclmique is it feasibi l ity and low 01 ent co t .

Bearing in mind that i t uffer [rom eriou di ad antage including; low extraction

efficiency since team cannot penetrate into the inner pore , t ime consumption and

degradation of olat i le component hich are thermally ensitive material ( Damjanovic

et aI. , 2005; Khajeb et al. 2005 ) . In addition to these drawbacks, the long contact t ime of

plant material can cau e the hydroly i s of essent ial oil compounds such as e ters into

acid and alcohol ( Handa et at., 2008 ) .

2.3.3 Micro" a\f- Assisted E. t raction (MA E)

Microwave- A isted extraction i s a new technique appl ied firstly in 1 986 by

Salgo et al for extraction of organic compounds. MAE is being commercia l ized with two

type ; c lo ed extraction essels and focused microwave ovens ( MandaI et aI. , 2007) .

1AE i main ly based on convert ing the e lectromagnetic energy in microwaves into heat

energy at frequency of 2450 M Hz. It aves energy since heating occurs in c losed sy terns,

and ave t ime compared to other conventional extraction techniques (Armstrong, 1 999;

Duvemag et aI. , 2005; Franke et aI., 1 996; Ganzer et aI. , 1 986) . The extract ion takes

place when moisture in ide the sample cel ls is heated up and evaporate pushing the cel ls

wal ls from ins ide. As a result of the pressure, the wal l s stretch and rupture relea ing the

act ive compounds into the surrounding solvent (MandaI et aI. , 2007) .

The process i s l imited by the solvent nature s ince only polar solvents can absorb

microwave heating. Therefore, MAE is not a favorable technique for recovery of non

1 3

Page 28: Supercritical CO2 Extraction of Oil from Henna Flower

polar compound . Moreo er ha l ower electi ity than FE, hence fractionation

cannot be avoided to enrich or purify the e tract . fter e traction cooling and

depre urizing of the e el are required which on ume energy and time ( un & Lee,

2003 ; Taathke & Y Jai wal, 20 1 1 ) . Another drawback i the en ironmental impact due

to 01 ent u age . Another di ad antage mentioned i the ign ificant thermal degradation

of analyt e tmcted by M E ( han et aI., 20 1 1 ) .

2.3.4 S u pcrcrit ical Flu id E xt raction (SFE)

FE i imply can-ied out by passing a SCF ( usual ly CO2) through ample

material uch a dried plant . Due to the tran p0l1 propert ies the compound of interest

tran fer into SCF pha e. The proces is restricted by temperature, pressure, fluid flow

rate, t ime, and sample ize. The SFE process i chematica l ly hown in Figure 4. CO2

flow from the cyl inder into a pump and a heater where temperature and pressure are

adju ted to reach the supercritical tate. The SC-C02 passes through the extraction vessel

\ hich i charged by the sample material . The de ired compounds dis olve in the

upercri tical fluid as a re ult of contact between the two phases. The SC solution ( SC­

CO2 containing the extract) lea es the extraction vessel . Final ly, the extract is col lected

by vent ing SC-C02 at ambient condit ion into a vial . I t should be noted that CO2 can be

recycl ed and the proce s can be performed continuously to reduce the cost and faci l itate

the operation work .

14

Page 29: Supercritical CO2 Extraction of Oil from Henna Flower

Syringe Pu mp

- - - - - -

I Oven

Extraction " es el

- - - - - - -

Figure 4 chmati c d iagram of FE apparatus

I - ,

The perfonnance of SCF proces can be assessed by three parameters which are; product

yield, product quali ty, and efficiency. Y ield is defined as the amount of extract obtained

b SFE over the amount of ample charged in the extraction ves e l .

0'0 Yie ld = W e tract x l 00 \V,ample ( 1 )

On the other hand the product qual ity is described by analytical techniques such as gas

chromatography ( GC) and high perfomlance l iquid chromatography ( H PLC) . The

product has high qual i ty when h igh removal of impuri ties or high abundance of desired

compounds was obtained from extraction process. Extraction efficiency is defined as the

amount of extract obtained by SFE over the amount of extract in i tial ly present in the

charged sample . The amount of extract ini t ia l ly present in a sample is found by a

reference conventional extraction technique such as Soxhlet extraction . .

15

Page 30: Supercritical CO2 Extraction of Oil from Henna Flower

ff· . Wextract 1 00 % E lC le ncy = X Wextr.1CI an charged sample ( 2)

upercri t ical fluid e tra t ion ha numerou advantage that can be u eful for everal

appl ication in d i fferent fi eld ; food, co metic pharmaceuticals c lothing, and etc. The

proce environmental l y acceptable and con idered a green technology since no tox ic

o lvent i u ed thu reducing harmful re idue . Moreover the 01 ating power of

supercri tical fluid is ea ily control led by temperature and pre sure. Another advantage i

that i olation of CF from the extract i feasible since SCFs are separable at room

temperature and thu reduce the separation expen es. In addition, due to the high

01\ ating power of upercrit ical fluids, extract ion of high boi l ing point compounds is

achie\ able at lower temperatures. Thermal degradation of sensit ive valuable compounds

can be avoided in supercritical fluid extraction.

The main reported drawback of supercrit ical fluid extraction is the high capital

co t of the equ ipment which can be covered by the reco ery of valuable and commercial

compound with h igher yield and quality. A d isadvantage of SC-C02 is that it is a good

olvent only for non polar compounds; however addition of modifiers such as ethanol

could increase the solubi l ity of polar compounds.

2.3 .4. 1 E xt raction para meters

The extraction process trongly depends on several factors inc luding; temperature,

pres ure, t ime, solvent flow rate, and part ic le size. E ffects of these factors are discussed

bel low.

1 6

Page 31: Supercritical CO2 Extraction of Oil from Henna Flower

Th effect of pre ure on the e traction proce related to sol ent den ity and

01 ent power. It i wel l known that when the pre ure i increased, the 01 ent den i ty

mcrea e ele at ing the 01 ent power, thu reducing amount of 01 ent needed. I n other

word increa jng the extract ion pres ure wi l l re ult in more molecule being forced into

the o lution, therefore more solutes wi l l di olve in the supercritical fluid. This behavior

i favorable when higher e traction yield is desired. It should be brought to attention that

an increase in extraction pre ure wi l l reduce the extraction selectivity since higher

o lub i l i ty mean dis olving more compound . Consequent ly the extraction pressure can

b u ed to tune the select ivity since den ity is sensit ive in supercri t ical region.

Temperature E ffect

The extraction yie ld is trongly influenced by extraction temperature. It is obvious

that change in extraction temperature is associated by change in supercritical fluid density

and o lute volat i l i ty \ hich affect the solute solubi l ity in opposite way . Such behavior of

the extraction temperature i s commonly known as the crossover phenomena where both

parameters ( den ity and volat i l i ty) are competing factors are dominant . By increasing the

extraction temperature the volat i l i ty of the extract increases, which increases the

solubi l i ty, hence extraction yield goes up. The extraction yield goes down with increasing

temperature when den ity of supercri t ical fluid decreases cau ing reduction in the

solub i lity.

Effect of sol ent flow rate and extraction t ime

1 7

Page 32: Supercritical CO2 Extraction of Oil from Henna Flower

The o lvent flo\ rate i in er ely proport ional to e traction time. lncrea ing the

oh ent flow rate wi l l make the e traction proce fa ter. At higher solvent flo rate , the

contact t ime between olvent and ample wi l l be lower, and the sol ent may not have

enough time to penetrate into ample pores effect ively. As a re ult lower amount of

di oh ed compound wi l l exi t in the upercritical fluid, tbu reducing extraction yield.

lze

ample preparation i needed before performing the extraction

proces . One of the preparation teps is grinding the sample into smal ler size. I t is well

known that when the ample part ic le ize is decreased, the surface area i ncrease and the

contact between the olvent and ample material wi l l be more. As a result of increa ing

the contact between the ample and olvent more extract wi l l be released from the

ample ce l l and hence extract ion yield is enhanced.

everal investigator reported that in some cases decreasing the sample particle

size can lead to lower yie ld . The reason behind this behavior is that the smal l particles are

packed together forming bed caking al lowing the solvent to flow through channels along

the extraction bed ( Bernardo-Gi l et a 1 . 2007; J ia et a I . , 2009b; Langa Cacho et a I . , 2009;

Langa, Porta et aI. , 2009; Liu et a I . , 20 1 0 ) .

2.3. 4. 2 ,\/athematical .\/odelillg

The potent ia l interest i n supercritical fluid extraction is the need for mathematical

and theoretical description of the extract ion process. A mathematical model of a process

helps in predict ing the proce s design parameters such as solvent flow rate particle size,

1 8

Page 33: Supercritical CO2 Extraction of Oil from Henna Flower

and equipment dimen ion

mathematical prediction

oreo er, due to high capi tal in e tment of FE a

needed to a se the proce cale-up fea ibi l ity. The

mathematical model of the proce reflect the ph sical trend of the experimental data .

The extTaction proce mainly de cribed by an e traction curve; a plot of

extract weight ver u CO2 \ oJume. imulation of extraction curve can be accompli bed

b under tanding the e traction mechanism and olute behavior in the SCF pha e.

Briefly, in the extraction proce the tran port of olute occurs in three phases namely;

olid pha e, part ic le pha e, and fluid phase. First, the solute moves from the solid particle

the pore , then, d iffuses in ide the pore wi l l take place, and the fmal step i the a ial

di ffu ion along the bed. The extraction process is affected by the solubi l ity and diffusion

of the olute in upercri t ical fluid pha e.

1.3. .1. 2. 1 Solubility o/solute in Slipercritical fluid phase

Solubi l ity data of the intere ted compounds are needed to model the supercritical

fluid proces e . !nve t igator have u ed many approaches to ob erve the behavior of a

o lute in the upercrit ical fluid region. Those approaches can be divided into two main

categories; mathematical and experimental depending on the nature of the existing

compounds . The mathematical approach uses two main tools; empirical correlations and

them10dynamic models .

• Thermodvnamic solubilitv

The thermodynamics models for sol ub i l ity or phase equi l ibrium data are based on

equations of state along with various mixing rules. Typical ly, a system reaches

equi l ibrium state when it meets one of the three conditions; minimum Gibbs free energy,

19

Page 34: Supercritical CO2 Extraction of Oil from Henna Flower

ame hemical potential of ea h pecie in all pha e , and the equali ty of the fugacity of

pure olute to it fugac ity in upercrit ical fluid pha e. The equi l ibrium data can be

de crib d by the fugacity coefficient which i obtained by equations of tate . The

calculation tart with common a umption including; the olubi l i ty of tbe fluid in olute

pha e i negl igible and the molar olume of solute pha e i con tant . At equi l ibrium the

fugaci ty of the solute in the ol id phase is equal to the fugacity of the olute in the

upercri tical pha e ( Eq. 3 ). The fugacity of pure species at olute phase and supercri tical

pha e are calculated using equat ion 4 and 5 re pe ti vely.

Ii sol id = t;SUperCTitical

Fsupercritical _ p 1 i - Yi <Pi

( 3 )

(4 )

(5) Where f i the fugacity and i refer to component i in the mixture P is the pre sure, T is

the temperature, v i s o lute molar volume, R i s the universal gas constant, Nat is the

aturation pre ure found ei ther in l iterature or calculated using Antoine equation ( Eq .

(6 ) ) , <pfat i fugacity coefficient for species i at saturation and can be taken as unity, and

<Pi i the fugacity coefficient of species i in supercritical fluid phase which is calculated

by equations of state such as; Peng-Robhinson, Van del' waals, and Redl ich-Kwong

equation of state.

B log psat = A - -- Eq. (6 ) TCK) -C

where A, B, and C are Antoine constants for pure species, T is the operating temperature

20

Page 35: Supercritical CO2 Extraction of Oil from Henna Flower

e eral inve t igator u ed equat ion of tate for olubi l ity calculation. Recently,

Yazdladeh et aI . , 20 1 1 modeled the olubi l it ie of 52 mo t ly u ed olid compound in

up rcnt ical carbon dioxide. In their model, they appli ed the Peng-Robin on and

mael izadeh-Ro hanfekr equation of tate along with everal mix ing rule including

Wong- andler and an der aal . Their re ult howed good agreement with

e perimental data found in l iterature (Yazdizadeh et a I . , 20 1 1 ) . Gracia et. ai, 2009 tudied

the pha e behavior of egetable o i l in supercritical carbon dioxide. In their approach,

they con idered that any egetable o i l consist of two key components; oleic acid and

triolein. The cubic equat ions of tate Soave-Redl ich-Kwong and Peng-Robinson-Bo ton­

Mathia were u ed along with mi ing rules with modifications. The equat ions were

included in A pen-P lus software package and the re ul ts fitted the experimental data

fairl wel l (Gracia et a I . , 2009). Another group, Esmael izadeh et a1 . ( 2009) developed a

new mi ing rule to simulate the solubi l ities of aromatic hydrocarbons, al iphatic

carboxylic acid , aromat ic acids, aromatic and a l iphatic alcohols in supercrit ical carbon

dioxide . Their new e cess G ibbs free energy ( Gex) mi ing rule was employed along with

PR and SRK and compared with five mix ing ru les namely' Wong-Sandler, Orbey-

andler, Van der waals with one adj ustable parameter, Van der Waals with two

adju table parameters, and covolume dependent rules. Their model gave satisfactory

re u l t wi th minimum de iation from experimental results compared with other

models(E maeilzadeh et a I . , 2009 ). Madras (2004) proposed a thermodynamic model for

the o lub i l ity of fatty acids in supercritical carbon dioxide . He used Redich-Kwong

equation of state coupled wi th Kwak-Mansoori mix ing rules with one adju table

parameter. Furthermore, he correlated the interaction parameter to the chain length of the

2 1

Page 36: Supercritical CO2 Extraction of Oil from Henna Flower

fatt acid by l inear re lation hip and concluded that the model can be u ed to predict the

o lubi l ity f variou [att acid . Hi re ult matched experimental data publi hed in

l iterature (Madra , 2004). In addition, Correa et a1 . ( 20 I 0) reported new olubil ity data

for qualene in upercrit ical carbon dio ide. They u ed combinat ion of Peng-Robinson

equat ion of tate and Van der Waal mixing rule and their result agreed with

experimental olubi l ity data ( Martinez-Correa et a l . , 20 1 0 ) .

• Empirical olubilit\.'

Variou tudie ha e been conducted on relating the solubi l ity of materials in

up rcri t ical fluid by empirical correlations. In 1 982 Chrast i l could relate the solubi l ity

of \ 'arious omponents direct ly to the density of supercritical carbon dioxide by the

equation:

( 7 )

where y i the olubi l i ty of olute expre ed in giL, p i den ity of the supercritical fluid

in g/L,T i the temperature in K, k i s association number, and the constants a and b are

rel ated to aporization and olvating heat and molecular weights of solute and

supercritical fluid . The model is based upon the fact that one molecule of solute A

as ociates w ith k molecules of solvent B and combine to give the complex ABk. The

Chra t i l equation fi tted the experimental solubil ities of the interested compounds fairly

wel l 0 er temperature range from 40 to 80 °C and pressure range from 80 up to 250 atm

(Chra t i l . 1 982) . Further modification was employed to Chrast i l equation by Del Val le

and Aguilera ( 1 988) to be more general and val id for wider range of temperatures and

pressures. Thei r equation can be appl ied for calculating the solubil ity of vegetable oi ls in

22

Page 37: Supercritical CO2 Extraction of Oil from Henna Flower

upercri t ical arbon dio ide for temperature from 20 to 0 0 , pre ure from 1 50 atm to

8 0 atm, and olubi l i t ie I er than 1 00 giL . The Del a I le and Agui lera equation i

e prc cd:

I n y = 1 0. 724 In p exp (40 .36 _ 1 8708 + 2186840) T T2 ( )

Gong and Cao ( 2009) u ed hra til and Mendez- antiago-Teja empirical model to

corr lat experimental solubi l ity data of art imi inin in supercritical carbon dioxide. The

Mendez- ant iago-Teja model i ba ed on the theory of d i lute solut ions ( Santiago & Teja,

\ 999) . The compared the empirical model with the experimental mea urements and

obtained an average de iation of 8% for both model . The model is expres ed by the

fol loV'. ing equat ion, where the con tants A B and C are adjustable parameters ( Gong &

Cao, 2009) .

Tln(yP) = A + Bp + CT ( 9 )

Another empirical model i the one proposed by Adachi-Lu involving five adj ustable

parameters. Savo a et a 1 . ( 200 1 ) used Adachi-Lu model to quant ify the solubi l ity of

grape and b lackcurrent oils in upercrit ical carbon dioxide in addition to Chrastil Del

Val le and Agui lera models . The Adach-Lu model fitted the experimental data fairly wel l

but the other model showed better agreement . The Adachi-Lu model with Savova s

adj ustable parameters i s expre sed by Eq. ( 1 0)

00002 2 -5000 Y = p 1.4+0.0048p-0.0 P exp ( ) T-10. 1 4

23

( 1 0)

Page 38: Supercritical CO2 Extraction of Oil from Henna Flower

• Experimental ollibilil}'

olub ! l i ty of pure component can be mea ured e perimenta i ly a de cribed in l i terature

( nite cu & Ta laride , 1 997; hen et a i . , 20 1 1 ; Chra t i l , 1 982; Del al 1e & Agui lera,

1 98 : 0 ova et a 1 . , 200 I ) . I l ov,'ever the e y tems are l imited for olubil ity of pure

compound not mi ture . In addition solubi l i ty measurement are time con uming since

they are canied out at low Dow rate . A typical e perimental approach to detennine the

olubi l i t i [rom the experimental extraction curve . The solubi l ity i simply equal to the

init ial lope of the l inear part of the extraction curve. Thi approach is preferable

e pecia l ly if the e tract con i t of d ifferent unknown compound

The mathemat ical olubi l i ty model are l imi ted to common compounds and pure species .

The thennodynamic model can be complicated when the extract is a mixture of several

pecie . When the extract contain many compounds, there wi l l be a need for the physical

prope11ie which are not widely available. Moreover, physical properties are not always

mea urabl e or computable . Correlations and fonnulas for physical properties can be val id

only within a certain range. For example, the saturation pre sure which i calculated by

Antoine equation i s l imited for temperature and pres ure ranges, and also the Antoine

con tants are not avai lab le for a l l compounds. Besides the lack of physical properties the

behavior of a component is d ifferent when it is in a mixture. For example, d iffusivity and

beat capacity parameters for pure components vary when they are in a mixture due to the

effect of other component d iffusivity and heat capacity based on their compositions.

U ual ly the empirical models are not widely accepted in the scient ific community

because they are l imi ted by process conditions, e .g. temperature and pressure ranges.

24

Page 39: Supercritical CO2 Extraction of Oil from Henna Flower

M re \ er, the adju table parameter cannot be general ized for a l l kind of e tract .

Furthermore, the adj u table parameter are appl icable to common extract and fitted

without phy ical ign ificance. In other word , the adju table parameter do not reflect the

ph ical behavior of the compound and do not e plain the theory behind the extraction

curve to faci l itate pro e s scal ing-up.

A a re ult of the l imited mathematical tool for getting the solubi l i ty the appropriate

approach i the init ial lope of the extraction curve which ensures sufflcient accuracy of

olubi l i t value and demon trate the phy ical behavior of solutes in superclitical

extraction proce

1.3 . .:1.1.1 lIodelillg the extractioll curve

N umerous studies simulated the extraction curve of the supercritical extraction

proce . The a ai lable models in the l i terature vary depending on d ifferent scient ific

\ iew and d i fferent postu lation . Recently, Grosso et a l . ( 20 1 0) publi hed a study dealing

wi th d ifferent mathematical model for upercritical CO2 extraction of volat i le oils from

aromatic plant . I n general the models are found in four main categories' empirical

models, shrinking core models, models based on heat transfer analogies, and models

ba ed on d ifferent ia l rna s balances ( Gro so et a ! . , 20 1 0) .

General as umptions common to almost a l l models types include; 1 ) isobaric and

i othermal process, 2) constant physical properties a long the process; porosity and initial

o i l content, 3 ) uniform superficia l velocity and solvent flow rate, 4) extract content is

di tributed uniformly between particles, all sol id part ic les have the same uniforrll shape

and 5 ) l inear relationship between sol id and fluid phase.

25

Page 40: Supercritical CO2 Extraction of Oil from Henna Flower

reover, the adju table parameter cannot be general ized for al l kind of e tract .

Furthermore the adju table parameter are appl icable to common extract and fi tted

without phy ical igni ficance. In other word , the adj u table parameters do not reflect the

ph ical beha ior of the compound and do not e plain the theory behind the extraction

cun e to faci l itate proce a l ing-up.

A a re'ult of the l imited mathematical tool for gett ing the solubi l i ty, the appropriate

approach i the init ial lope of the extraction curve which ensures sufficient accuracy of

olubi l ity alue and demon trate the pby ical behavior of olutes in supercritical

extract ion proce

2. 3. ,/. 1. 2 llodelillg the extractioll curve

umerous studie simulated the extraction curve of the supercritical extraction

proce . The available models in the l iterature ary depending on d ifferent scient ific

\ iev\> and d i fferent po tulations. Recently Gros 0 et al. (20 1 0) publ ished a study deal ing

\ i th di fferent mathematical models for supercri t ical C02 extraction of volat i le o i l from

aromatic p lants. In general the models are found in four main categories· empirical

models, shrinking core models, models based on heat transfer analogies, and models

based on d ifferential mass balances (Grosso et a l . , 20 1 0) .

General a umptions common to almost a l l models types include; 1 ) isobaric and

isothem1a l process, 2) constant physical properties along tbe process; porosity and init ia l

o i l content, 3) uni fonn superficial velocity and solvent flow rate, 4 ) extract content is

d istributed unifonnly between particles, a l l sol id partic les have the same unifonn shape,

and 5 ) l inear relationship between sol id and fluid phase.

25

Page 41: Supercritical CO2 Extraction of Oil from Henna Flower

• EII/prrica/ models

n empirical m del \ a prop ed by aik et al . in 1 9 9 to de cribe the extraction

f perfume and nav r fr m plant material . The i l l u trated the ariation of the

e"\tra tl n ie ld \ er u t ime b imple mathematical Eq. ( \ 1 ) . Thi model de cribe the

e"\tractl n le ld \ r u e"\tra ti n t ime by a Langmuir ga ad orption i otherm . Langmuir

a LImed mon layer coverage of the olid matri including the olutes, which force a

con traint to the ma"\imal amount of olute in the ub trat depending on its peciftc

·urface. De pite the good agre ment with e peri mental data, thi model doe n't con ider

both the IIlteraction bet\ een olute and ol id matri and the fractionation of o i l during

the pro e . e\ eral r earch r employed thi empi rical model and optimized the

adJu table parameter; they found that parameter b vane with ma s flow rate, pre ure,

and temperature ( E qUI el et a I . , 1 999; Papamichail et a I . , 2000) .

Y = Yoo t

b + t ( 1 1 )

where Y i extraction yield defined a the ratio of the ma s of o i l extracted in kg at time t

( ) to the in it ial ma s feed Yoo i Y after infinite extraction time, , and b i adju table

model parameter.

Lmearization of Eq. ( 1 1 ) l ead to l i near relation hip between the inverse of the yield and

i l1\ er e of the extraction time with a lope equal Yoo and intercept equal to �. In b Yoo

addition, Y 00 can be a umed to be the maximum yield obtained experimental ly, thLl the

number of adju table parameter w i l l reduce. Furthermore, Huang et a l . (20 1 1 ) defined

Y the recovery T as - and obtained the relation hown in Eq. ( 1 2 ) . They determined Yoo

26

Page 42: Supercritical CO2 Extraction of Oil from Henna Flower

parameter b from the ' I pe f the curve reciprocal reco\ ery ver U reclpr cal of the

extract IOn tim

t r = ­

b + t ( 1 2 )

( I I uang et a I . , �O l l ) de cribed the extraction rate a a fir t order chemical reaction

\\ a. lq. ( 1 3 ) . cording t the m del , the e tract avai lable i n the ol id matrix i

decrea mg \'. ith time exponent ia l ly b rate con tant k and expre ed mathematical ly by

Eq. ( 1 4 ) \\ ith initial con entrat ion Cso . The e traction rate constant ( k ) i related to

di ffu 1 \ I t _ and part ic le dimen ion by q. ( 1 5 ) . In thi model Yo and k can be obtained by

fitting the m del to experimental data ( a ik et a I . , 1 9 9) .

des = -kC dt 5

\\' t th 0\ eral l extract ion yield given b

Y = Yo [ l - exp (-kt)]

\ here

k = DS Vd

And

5 6(1-Ep) v dp

27

( 1 3 )

( 1 4 )

( \ 5 )

( 1 6 )

( 1 7 )

Page 43: Supercritical CO2 Extraction of Oil from Henna Flower

\" here Cs I th extract on entratl n in the o l id matrix 10 g I , dp i part ic le diameter in

m. d i the bed diameter 10 m, D i ' lute d iffu ion oefficient, Ep i part icle poro ity,

and are part ic le urfa e area in m2

and olume in m-�, re pectivel .

Regardle f the implicit and the large capa it f the empirical model , which are the

onl ad\ antage . u h m del uffer from lack of theoretical or ph ical meaning . A a

re ul t emplri al model are not uitabl for cal ing up the upercritical e traction

( Bernardo-Gi l & a qui lho, 2007).

• Heal transfer analogi . models

The e model de crib the extraction phenomena a a heat tran fer phenomena by

con idering each o l id part ic le a a hot phere cool ing in a unifOIm cool medium. Thi

oolmg of hot phere i u ed to imulate the concentration profi le a a function of t ime.

Deri\ation of thi mod I i carried out by applying Fick ' econd law for d iffu ion along

\\ Ith heat-rna tran fer analogy u ing Fourier tran form . The model wa propo ed by

Crank and repre ented by Re erchon u ing the fol lo\ ing equat ion (Campo et a I . , 2005;

Crank. 1 97 5 : Doker et a I . , 2004; Erne to Reverchon, 1 997; Erne to Reverchon et a l .

1 993) :

q 6 <Xl 1 ( n2rr2 Dt) - = 2 Ln=1 2 exp - --2 -qo rr n r ( 1 )

where q i the o lute concentration \0 olid pha e ( Kg/m\ qo i the init ial olute

concentration m ol id pha e ( Kg/m\ n IS an integer, D

, . phere (m- ) , t 1 extraction time ( ) .

28

solute d iffusi ity \0 olid

Page 44: Supercritical CO2 Extraction of Oil from Henna Flower

a par et a ! . ( 2003 imulated the extraction curve u ing heat tran fer analogy

m del v" ith the a umption of the plate l ike part ic le , 0 cal led imple ingle plate model

P) . They l ight ly modi fied the model propo ed by Bartle et a!. ( 1 990) where the

e tractable il i con idered to minimize the de iation from experimental data. It i

worth mentioning that the propo ed model by Bartle et a 1 . for the extract ion of rosemary

il howed de iation from e perimental data as a re ul t of neglecting the

equ i l ibrium tage ( early e traction tage) where the majority of oi l wa extracted. The

model wa reVvTitten in tenns of e traction degree and expre sed by Eq. ( 1 9 ). (Gaspar et

a 1 . , 2003 ) . E qui el et a ! . ( 1 999) used the arne approach to describe the ex traction of

ol ive hu k o i l . They reported that the model gave sat isfactory agreement with

experimental data at h igh uperficial veloci t ies while at low superficial velocities the

fitting wa ery poor ( Erne to Reverchon et a I . , 1 993) .

( 1 9 )

where ECt) and Eoo are the extraction degree (%) after time t ( ) and i nfinite, Dm is solute

d i ffusi ity on the part ic le plate (m2/s), 8 i s the th ickness of the part ic les (p lates) (m) and

n i an integer.

• Shrinking core model

This model divides the porous sol id matrix into two zones; inner zone which is o i l

rich core, and outer zone. The extraction proceeds as a result of i rreversible desorption of

solute from the core to the part icle pores fol lowed by d iffusion wi th in the pores ( intra-

part icle d iffusion), and d iffusion through the bulk fluid phase . When the solute

29

Page 45: Supercritical CO2 Extraction of Oil from Henna Flower

concentrati n in the outer zone i much h igher than the olubi l ity in the fluid pha e; a

harp b undary ( hlinking boundary) exi t betv een the two zone . During the e tract ion

proces the core of the inner region hrinks with l ime. The model wa propo ed by Goto

at a ! . ( 1 996) for de cribing the e traction cur e of o i l from rape seed . The model

a ume no ad orption of olute into the ol id matrix and ha two fi tting parameter ;

effective di ffu i \ ity and ma tran fer coefficient. Goto et a 1 . ( 1 996) ex pre sed the

hrinking core model using dimen ionless material balance in the fluid phase and sol id

pha e by e t of equat ions shown below and 01 ed the d ifferential equations numerical ly

u ing rank- ichol on' method ( Goto et a 1 . 1 996; Ol iveira et a ! . , 20 1 1 ) .

aterial balance in the bulk flu id phase:

Material balance in the part ic le pha e:

with an extraction yield expressed as

y = abE I.e X de 1 - E 0 b

( 20)

(2 1 )

(22)

Xb , Xp , Q e, Z, ( are dimensionle s groups of concentration in bu lk phase, concentrat ion

in part ic le phase, solid phase concentration, time, axia l bed coordinates and part ic le

coordinate, respectivel y, defined as:

X - Cb b - -, Csat

X _ Cp P - , Csat

30

Page 46: Supercritical CO2 Extraction of Oil from Henna Flower

z = :. L '

r - '!:E '> c - R

\\ here Cb the olute concentration III the bulk pha e (molfm\ Cp i olute

concentrati n of the part ic le pha e (molfm\ Csat i saturated olute in fluid pha e

(mol m\ q i o lute concentTat ion III olid pha e (m01lm\ qo ini tial solute

concentration in olid pba e (mo m\ Bi i Biolt number, Pe is Peclet number, E i bed

poro it , Ep i the part ic le poro i ty, t i t ime ( ), De i the effect ive d iffusivity (m::!/ ) , r is

radial coordinate (m) , rc i s the core radiu (m), R i s the init ial radial coordinate, z i s the

a ial coordinate in the extTactor (m), L i the extractor length (m) , and V i the inter t i t ial

\elocity of the o lvent (m/s) . The model con tants a and b are defined as fol lows:

b = � Csat

Machmudah et a l . ( 2006), Salgin et al . ( 2006), and Doker et a l . ( 20 1 0) employed the

hrinking core model for the extract ion of nutmeg o i l , sunflower o i l and sesame seed oi l

re pecti e ly . In their work they fair ly val idated the model by fitt ing the effective

d iffu i ity ince the mass transfer coefficient can be estimated using correlations

pub l i hed in l i terature.

• Differential mass transfer models

These models have more reasonable explanations for the theory behind the

supercritical extraction process . They acquire more physical properties and coefficients

of the sol id and solvent matrices such as; part ic le and bed porosity, mass transfer

3 1

Page 47: Supercritical CO2 Extraction of Oil from Henna Flower

coefficient and di ffu i ity coeffi ient . They are ba ed on two main mechani m ; the

equi l ibrium which occur at the earl tage of the e traction curve and the rna tran fer

mechani m at later tage. The equil ibrium i the mechan i m where the solubi l i ty of the

olute in the upercri tical region i dominant. The econd tage of the extraction tage

ccur \\ hen the concentration gradient became more dominant and it i de cribed by

ma tran fer phenomena.

I t i c lear that the mas tran fer mechanism may be control led with two resistances;

external and internal ma tran fer re i lances. Many re earcher simulated the extraction

urve ba ed on mas tran fer balance . Different assumptions where employed in order to

impl if the model . Ba ed on the e arious assumptions; the mass transfer balance

model can b c la ified into three groups according to the hypothesized contro l l ing step

namely; the external mass transfer res istance model , the internal mass transfer resistance

model , and both mass tran fer resi tance control the extraction process. Such deviations

on the e a umptions can be attributed to the di fferent structures of the material being

extracted for example d ifferent plant parts ( e.g . flowers, eeds, leaves, roots etc . ) can

yield to di fferent mass tran fer phenomena.

Reverchon and Marrone ( 1 997) forn1Ulated a mathematical model for the supercri t ical

extraction of c love bud oil con idering that external resistance is the control l ing step.

They studied the influence of both resistance and found that only s l ight deviation was

observed, which suggested that the internal mass transfer resistance can be ignored. They

asserted that the internal resistance can be ignored s ince it is insensitive to solvent flow

rate; on the other hand the external resistance is sensible to solvent flow rate. Wu and

Hou ( 200 1 ), Permt et a1 . ( 1 997) , and Kim et a ! . ( 2007) fol lowed the same scheme for

3 2

Page 48: Supercritical CO2 Extraction of Oil from Henna Flower

modeling the e traction of uni1o� er eed oi l , egg yolk, canola o i l and caffeine,

re pect i \ el .

Later on, intemal mas tran fer re istance wa taken into account and con idered

a the control l ing tep in the upercri tical e traction proce . The rea on behind this

con ideration \\ a explained by Re erchon et al . ( 2000) when they investigated the

tructure of hip ro e eed u mg canning electron micro cope (SEM) . The structure

re\ ealed that only ol ute near to the opemng channels are readi ly avai lable for

e ' traction. Therefore, upercri t ical olvent faces resi tance due to the d iffu ion at the

channel a i t penetrate deeply within the i rmer channels .

Moreover, it wa stated that as the e traction t ime mcreases, more extract content i

obtained. I n other word , at the beginning of the proces , the olute located at the part ic le

surface are e tracted, while solutes located inside the part ic le are transferred later on

when ea i ly extractable solutes are depleted (Nei et aL, 2008 ; Park et aL, 2007; Reis­

Va co et aL, 2000: Vaquero et aL , 2006) .

The third group proposed models that consider both resistances control the

supercrit ical extract ion proce s s imultaneously which wa described by Savo a in 1 994.

She art iculated the extraction cw-ve by assuming that solutes are stored in the part ic le

cel l and protected by the cel l wal ls . During mi l l ing, some of those wal ls are broken

(broken cel ls) and olute became easi l y accessible, however the solute present in the

intact cells are inaccessible . Two resistances exist and face the extraction' the first is an

extemal resistance in the fluid phase and contro ls the process up to a l l essentia l oil in the

broken cel l is recovered. The second resistance l ies in the intact ce l ls and controls the

3 3

Page 49: Supercritical CO2 Extraction of Oil from Henna Flower

remaining e traction part \ hich re i t the d iffu ion of the inacces ible o i l . Based on

the e po -tulatJOn , three d i fferential ma s balance are dri en addre ed; two for the

pal1icle pha e; one in the brok n cel ls and another one in the intact cel l , and the third

balance i ll1 the Ouid pha e . Th d ifferential equat ion were integrated numelical ly with

three adju table parameter ; ma tran fer coe fficient in the solid pha e, ma transfer

coeffic ient in the Ouid pha e and the fraction of o i l init ial ly e i t in the cel l . The model

\V a ad pted for the e traction of variou o i l s including; p lumula nelumbinis by J ia et al

( J ia et a l . 2009a) . apricot kernel by Ozka l et a l . (Ozkal et a l . 2005 ), and Spanish sage by

Langa et al ( Langa, Porta et a I . , 2009) . .

Later ome modification were employed to the broken and intact cel l . Reverchon and

Man-one extended thi model by a paral le l resi tance model where solutes are transferred

with d ifferent kinetic in both broken and intact cells ( E . Reverchon & Man-one, 200 1 ) .

The d i fference between eries and the para l le l model i that the solutes are extracted

d irect ly to the fluid phase in the latter one. Fiori et al . ( 2009) combined the shrinking core

model with the broken intact cel ls model . They can idered the o i l existence in the intact

and broken cel ls, and a the extract ion proce s progresses each cel l is irreversibly

depleted cau ing the olutes to move towards the intemal hel l which is described by the

hrinking core model .

3 4

Page 50: Supercritical CO2 Extraction of Oil from Henna Flower

3 E X P E R I ;\ I E N T A L E T U P A ' D l\ I E T H O DO LOG I ES

3 . 1 , ample p reparat ions

l lenna nower were picked from henna tree located at AI-J imi area in Al Ain c i ty,

E during blooming ea on in October. The flower were dried to reduce the moi ture

content u ing a freeze dryer (Eyela, FDU 1 200, Japan) at -4 DC for 1 2 hour . Dried

flower were tored in a fIidge unt i l further u e.

3.2 S upercr i t ica l flu id extraction

The experimental etup hown in Figure 5 wa used for the supercritical carbon

dioxide extraction of volat i le components from henna flowers. The apparatus consists of

a 260 ml yringe pump wi th contro l ler ystem ( ISCO 260D), and an ISCO series 2000

SCF Extraction sy tern ( SFX 220) including a dual chamber extraction module with two

1 0 ml tain le tee l extraction cel ls . Each 1 0 ml stainless teel cel l ha diameter of 1 .5

em and 5 cm length. In a typical experiment, about 2 g of dried henna flower was

weighed u ing an e lectronic balance ( Precisa, Swiss), mechanical ly grinded ( Moul inex,

France), and p laced in the extraction cel l . The part ic le diameter measured by microscope

(Nikon ecl ipe Ive l 00pol, Japan ) wa obtained to be on average 0 .504 mm. The part icle

and bed poro ity were calculated and their values were 0.79 and 0.5, respectively. After

placing the ample in the cel l and sett ing the extraction temperature and pressure, the

sample was al lowed to equi l ibrate for 1 5 min with SC-C02 . Supercri tical CO2 flowed

along the extraction cel l with flow rate o f 1 m llmin. The extract col lector was immersed

in cold methanol ( -40 DC ) provided by a ch i l ler ( ULTRA-KRYOMAT, Germany) to trap

the extract whi le the CO2 was vented to the atmosphere. The extract weight was recorded

for d i fferent C02 amounts pass ing through the sample unt i l no more extract was obtained

3 5

Page 51: Supercritical CO2 Extraction of Oil from Henna Flower

at \\-hich time the apparatu \ a lopped. The apparalu wa thoroughly cleaned after

each experiment by flu b ing methanol and 300 ml of CO2.

CO2 Cyl i n d er

Figure 5 uperclit ical Extraction Experimental Set up

3.3 Ga Chroma tography analysis

The extracts from flowers of henna obtained by SFE were subjected to Gas

chromatography (GC) compositional analysis. Gas chromatographic ( GC ) analysis was

perfonned with a CP 3800 Varian instrument equipped with flame ionization detector and

a column (CP-Select 624 CB, DF = 1 . 8, Id = 0.32 rom, l ength = 60 m). The condi tions

were a fol lows: carrier gas ( hel ium); Oven temperature program: Ini t ia l Temp : 40 °C for

1 min, Ramp 1 : heating up to 60 °C with heating rate 20 °C/min, Ramp 2 : heating up to

1 40 °C with heating rate 2 °C/min, Ramp 3 : Heating up to 250 °C with heating rate 5

3 6

Page 52: Supercritical CO2 Extraction of Oil from Henna Flower

° min and hold at 250 ° for 40 min, Injector temperature: 300 °C, Injection Mode:

p l i t le , In let pre ure : 20 p i, Detector Temperature: 2 0 °C .

3.... Ant ibacterial Acth it� Te t

The extract \ ere te ted for thei r ant ibacterial acti ity USIng di c d i ffu ion

method. Gram po it i e and Gram negati e bacteria (Staphylococclis aureus A TCC25923

and E cl1erichia coli 15922 ) ere pread a lawn culture on Muel ler-H inton Agar plates

(M T , Mer ey ide, K) . Fi l ter paper di c impregnated with 10 f.! L of each herbal

e tract \ ere placed onto the agar with ma imum 6 di cs per agar plate. P late were

incubated overnight at 3 5 °C and the inhibit ion zone around the di cs was measured .

3.5 An tio idant Act iYi t� te t

3.5. 1 FRA P ( Ferric red ucing ant ioxidant pmur) a sa�

Tota l antiox idant acti ity of henna flower extracts wa measured by reducing antioxidant

act i \ ity power as ay a described by Benzie and Strain 1 996. The principle of this assay

is the reduction of ferric into ferrous ion by the ant ioxidants.

FRAP reagent was prepared by mixing stock solutions in the ratio 1 0 : 1 : 1 at the

time of use. tack o lut ions included 300 mM acetate buffer (PH 3 .6) , 1 0 mM TPTZ

(2,4,6-tripyridyl-s-triazine) s01ution in 40 mM HCI , and 20 mM FeClL6H20 solution.

The mixed solution was incubated at 3 7 °C for 30 min in a water bath ( Memmert, D-

9 1 1 26, Schwabach, Germany) . 0 .5 ml from each extract was d i l uted in l .5 ml of ethano l .

A sample ( 1 50 Il l ) of extract a t each extraction temperature and pressure was mixed with

2850 III of F RAP solution and kept for 30 min in the dark at room temperature. The

absorbance of the ferrous tripyridyltriazine complex (coloured product) was measured at

3 7

Page 53: Supercritical CO2 Extraction of Oil from Henna Flower

wa\ elength 593 run . ampl blank at each concentration wa prepared by omitting

Fe h from the fRAP olution and di t i l led water wa u ed in tead. The standard curve

wa prepared u ing a corbic acid ranging [rom 0 to 1 00 ppm. The activity wa expre ed

a mg A cor'bic acid equival nt ( )/ 1 00 g of henna flower extracts.

3.5.2 D PPH radical ca, cnging acth i t�

1 .5 m1 of thi ample ( about 0 .5 ml of henna extract at each extraction condition

\ a added to 1 . 5 ml of ethano l ) wa mi ed with 1 .5 ml of O. l 5 mM 2 2-diphenyl- l -picryl

h draz 1 ( DP P H ) in 95% ethano l . The mj ture wa mi ed vigorou ly and a l lowed to

tand at room temperature in the dark for 30 min . The absorbance of the resul t ing

olution \\ a measured at 5 1 7 nm using a UV- 1 60 1 spectrophotometer ( Shimadzu,

Kyoto. J apan) . The ample blank at each concentration wa prepared in the ame manner

except that ethanol wa used instead of DPPH solution. A standard curve was prepared

u ing a corbic acid in the range of 0- 1 00 ppm. The act ivi ty wa calculated and expres ed

a mg A corbic Acid equ i alents (AA)/ 1 00 g henna flower extracts.

3 8

Page 54: Supercritical CO2 Extraction of Oil from Henna Flower

4 R E U LTS T D D I C U S I O �

I n thi tudy fir t henna flower oil was e tracted by upercritical carbon dioxide .

The extraction experiment were perfolmed under d ifferent temperature and pre ures

\\ h l le keeping the flO\ rate of C- 02 and cool ing temperature con tant. Effect of other

ex traction parameter including the cool ing temperature and the flow rate of S -C02

\\ ere al 0 tudied. Appendi A includes the raw data for the experiment . The extract

\\ ere analyzed by GC for their composition and their antibacterial and antioxidant

act i \ itie \ ere measured.

4. 1 Supercri t ical carbon d io, ide extract ion of henna flo" er

The operat ing condition that were investigated, the maXimum yield, and

olubi l ity of extract in SC-C02 for each of condit ions are tabulated in Table 4 .The

maximum yield \ as calculated by d ividing the final extract weight over the charged

ample weight (2g) . The solubi l ity of extract in SC-C02 was calculated from the init ia l

lope of the extraction curve (rna s of extract versu mass of CO2 passed). The highe t

yield was (30 .88%) obtained at 45 DC and 1 20 bar, while the lowest yield ( 1 8 .29%) was

found at the lowest temperature ( 3 5 DC) and pressure (80 bar).

39

Page 55: Supercritical CO2 Extraction of Oil from Henna Flower

Table 4 1a lmum \ idds and olubt l i t\ of FF of I Ienna flo\\ er extract - ,

T P F Tcoohng P /..l v Maximwn Yield Solubil ity (0 ) ( bar) (ml mm) (0 ) (kg/mJ ) ( Pa. ) 1 0' (m�/ ) x 1 0 ( °'0) (go,tract g CO2)x 1 03

3 5

3 5

3 5

4 5

45

45

55

55

55

55

5 5

.+5

3:

5 5

8 0 1 -40 4 1 9.09 2 . 98 7 . 1 2 1 8 .29

1 00 1 -40 7 1 2 . 8 1 5 . 77 8 .09 20.53

1 20 1 -40 767.07 6 .55 8 . 54 2 1 .66

80 1 -40 24 1 .05 2. 1 0 8 . 73 2 3 . 3

1 00 1 -40 498.25 3 .60 7.23 28.88

1 20 1 -40 657.74 5 . l 3 7 . 79 30.88

80 1 -40 203 .64 2.02 9 . 9 1 2 3 . 1 3

1 00 1 -40 325 .07 2 . 5 3 7 . 79 2 7 . 79

1 20 1 -40 504.5 1 3 . 70 7 .33 25 .4

1 00 2 -40 325 .07 2 . 5 3 7 . 79 l 3 . 5 1

1 20 2 -40 504.5 1 3 . 70 7 .33 1 7. 94

1 00 1 -25 498 .25 3 . 60 7.23 1 4 .06

80 1 -25 4 1 9.09 2.98 7 . 1 2 4 .52

80 1 -25 203 .64 2.0 9 .9 1 1 3 .56

The cool ing temperature wa found to have a significant effect on both extract ion

yield and olubi l ity. As can be seen in Table 4, increasing the cool ing temperature from

-40 to -25 °C reduces the extraction yield which may be due to the loss of some of the

volati le compound . Figures 6 and 7 i l l ustrate the s ignificant effect of the cool ing

temperature on extraction yield.

40

0.54 1

0.657

0 .742

0.757

0 .9 l 3

I 0. 756

0.853

2.9

0.04

1 .2

0.6

0. 1

0 .5

Page 56: Supercritical CO2 Extraction of Oil from Henna Flower

0 7

0.6 45 0 , 1 00 bar = 0 5 .JM

� 04 u ro � 0.3 � .......... lill

0.2 ... ....... ..... • - 40 °C ....

0 1 .. -25 °C

0 0 200 400 600

CO2 (g)

Flgurc 6 f. ffect of cool ing tcmperature at 45 LC and 1 00 bar

0.5

0.45

0.4

0.35

:§ 0.3

�0.25 CJ

3 0.2

0. 1 5

0 . 1

0.05

55 °C, O bar .... ",. . .

.. � ....... ,

.... "�,A

"

.' / ,,�

.A

.. ...

•• ..

-

. -40C

-25C

800

35

30

25

20 ? "0

1 5 11 r

1 0

5

0

25

20

1 5 ______ o

"0 .�

10 r

5

o �--------------------------------------� a o 200 400

CO2 (g)

600

Figure 7 E ffect of cool ing temperature at 55 °C and 80 bar

800

The flow rate of SC-C02 affected the extraction yield significantly. As shown in figures 8

and 9, increasing the flow rate decrea ed the extraction yield drast ical ly . For example an

increase of the flow rate from 1 mlJmin to 2 mllmin dropped the extraction yield by 7 %

4 1

Page 57: Supercritical CO2 Extraction of Oil from Henna Flower

at 5 5 ° and 1 20 bar ( Table 4) . The rea on behind thi trend is the longer contact t ime

between th ample and - O2 at the lower Oow rate.

0 .6

5 5 0 , 1 00 bar 0 .5

0 .4

I 0.2 •

•• . � 0. 1 ••

I •• ••••• • •

o o 200

• ••

••

• ••

� . •

••

400

CO2 ( g)

Figure c HTect of flo\\ rate at 5 5 °C and 1 00 bar

42

•••••••

. 1 mUmin

2 mlImin

600 800

30

25

20 """' o o '---'

1 5 :g Q) >=

1 0

5

o

Page 58: Supercritical CO2 Extraction of Oil from Henna Flower

0.6

0.5

0.4 --� '--' .,..., g 0.3 .... .,..., ><! lI.l

0.2

0. 1

0

5 5 °C, 1 20 bar

0 50 ] 00

• • • • • •

1 50 200 CO2 (g)

Figure 9 E ffect of flo\', rate a t 5 5 °C and 1 20 bar

4. 1 . 1 E ffec t of temperat u re

250 300

30

2 5

2 0

� o e..... 15 �

. � >-

10

5

o

350

The effect of temperature on the extraction yield is shown in figures 1 0- 1 2 . The

e traction curves for a l l runs exhibited a simi lar trend, stm1ing with a l inear part for

which the rate of extraction was constant fol lowed by a continuous decrease in the rate of

extraction unti l reaching a frnal maximum yie ld value after which no more extracts

obtained. However the init ia l slope and the frnal ( maximum) yield value of extraction

yield were d ifferent for the d ifferent conditions studied in this work. This is expected as

the operating condit ion (temperature and pressure) affect fluid propert ies ( i . e . volat i l ity)

and transport propert ies ( i .e . d iffusion coefficient), aU of which affect the extraction

process.

In almost a l l cases, the temperature had a direct effect on the extraction process since the

yie ld increased with an increase in temperature. As temperature increases, density

43

Page 59: Supercritical CO2 Extraction of Oil from Henna Flower

lllcrea e inver ely affecting the olubi l i ty of olute and e traction yield. However,

temperature i direct ly related to olati l i ty of the olute, which direct ly affect the

o lub t l i ty of the olute and hence the extraction yield. Therefore temperature affect the

olubi l ity and extract ion yield in trend opposite way through two compet ing factor

(den it) and v olati l i ty) . Furthemlore, temperature inver ely affects the vi cosity ( as

temperature increa e , vi co ity decrea e leading to ea ier flow). Temperature i also

dIrectly and favorably re lated to d iffusion coefficient ( a temperature increases d iffusion

coefficient increa e leading to higher yield) .

s a r ul t of a l l the e factor , for most of the condition studied in this work the

temperature had a direct in fluence on the extraction yield, ugge ting that the effect of

\olati l i t , vi co i ty and transport coefficient was higher than the unfavorable effect of

den ity change with temperature.

0 6

0.5

04

� b1) 0.3 � u ell '-� >< 0.2 r.:.::

0. 1

0 1' 0 1 00

p= 80 bar

• ••• • • • ••

A •• ....

. •• •

•• •• •

• •• •• A.. • •••

A" ••• ... .,

200 300 400 CO., (g)

•••• •

500

••••••

• • ••••••

55 °C .45 °C e 35 °C

600 700

Figure 1 0 E ffect of temperature on the extraction yield at 80 bar

44

30

25

20

� � 15 ::2

.!!:! >--

10

5

0

800

Page 60: Supercritical CO2 Extraction of Oil from Henna Flower

0.7

0 6

0.5

bO 0.4 "--' ...... u ro .....

� 0.3 •

• 0.2 •

0 . 1 •

0 0 1 00 200

P= 1 00 bar

• • • • • •

• • • •

300 400 CO2 ( g)

• • • • • • • • • • • • • •

• • • • • • • • • • • •

55 °C

.45 °C

e 35 °C

00 600 700

figure 1 1 I:: ffeet of temperature on the extraction ) i eld at 1 00 bar

45

35

30

2 5

2 0 ,......, 0 � :2

1 5 II)

>-

10

5

0

800

Page 61: Supercritical CO2 Extraction of Oil from Henna Flower

0.7 35

P= 1 20 bar 0.6 � 30

... •

0.5 ". � . 25

• • • • .....

OA • • ••• 20 • • � bO •• 0

• 0 '-" •• '-" ..., ::g u .., •• • ro • 1 5 ;;: l-X 0.3

• •• • u.l • • •

••

0 2 • • •• • • ••

• .. -0. \ . ..

o . o 200

400 600

Figure 1 2 E ffect of temperature on the extraction yield at 1 20 bar

55 °C

.45 °C

e 35 °C

800

10

5

o

1 000

The o lub i l ity of henna flower extract in SC-C02 (extract weight/C02 weight)

wa calculated at each condit ion using the ini t ia l slope of experimental extraction curves.

A hown in Figure 1 3 . solubil ity of the extract increased with both temperature and

pre ure, \vhich matche the trend of the extraction yield . Pressure directly affects the

solubi l ity of solutes on SC-C02. As the pressure increa es, the fluid density increases,

enhancing the solvent power of CO2 which leads to higher solubi l i ty on solutes as shown

in Figure 1 3 . Therefore, as a re ult of h igher solubil ity, the extraction yield increases as

the pressure is i ncreased ( Figures 1 0- 1 2 ) .

46

Page 62: Supercritical CO2 Extraction of Oil from Henna Flower

Temperature affect the olubi l ity by h\ 0 competing factor ( den ity and

\ olati l i ty) . the temperature increa e the den it of CO::! decrea e , reducing it

olvent power, which lead to lower olubi l ity of the olute in CO2. On the other hand, a

the temperature increa e , the olat i l ity of olute increa e , leading to high olubi l i ty of

the olute in O2. For a l l the condition tudied in thi work, the volati l ity effect wa

dominant cau ing the olubi l i ty to increase with temperature a hown in Figure 1 3 . The

increa e in olubi l i t of henna flower extract in SC-C02 with temperature resulted in an

in rea e in the extraction yield " i lh temperature ( Figure ] 0- 1 2 ) . These result show that

e ' traction proce i direct! re lated to the solub i l ity of extract in SC -C02 . The highest

o lub i l it \ a 2 .9 mge\.tra /gcm found at 1 20 bar and 55 °C . Thi was also the fastest run

leading to a yield of 25 .4 0'0 u ing only around 400 ml of CO2 compared to other runs

\\ hich consumed about h ice as much CO2 .

Moreover, the olubi l ity re u l ts re ealed that at the highest pressure studied in this work

the effect of temperature i more noticeable compared to tho e at lower pressures . At 1 20

bar, the solub i l i ty j umped from 1 to 2 .9 mge}.tractigc02 when the temperature was increased

from 45 to 55 °C, however at 80 bar no s ign ificant change on the solubi l ity was observed

for the same change in temperature .

47

Page 63: Supercritical CO2 Extraction of Oil from Henna Flower

3 . 5

1 20 bar r-- 3 '" 0 - 1 00 bar () eo 2 .5 • O bar <.) ro .... .... 2 >< <t> OJ) E

1 . 5 '-' 0 ... .D - •

:::l • 0 • CI) 0 .5

0 30 35 40 45 50 55 60

Temperature ( 0C)

Figure 1 3 Effect of temperature and pressure on solub i l ity of henna flov. er extract in SC­CO�

·U .2 Effect of p ressu re

Figures 1 4- 1 6 show the effect of pressure on the extraction yie ld . At a constant

temperature the extraction yield was improved as increasing pressure . This behavior was

expected ince i ncrea i ng the pressure increases the solvent density and hence the

sol ating power of SC-C02 which increases the amount of dissolved extract leading to

h igher yield. F igure 1 3 is in agreement with the results presented in figures 1 4- 1 6. As the

pressure i increased the solubi l ity increases ( Figure 1 3) leading to higher extraction rate.

48

Page 64: Supercritical CO2 Extraction of Oil from Henna Flower

0.5

0.45 T = 35 ° AA ••• 0.4 AA •• •

0.35 AA •• • •••••• A • • •

SO 0.3 •• •••• � • U 0.25 ••• <;) ...

• •• ;: 0.2 •••

o 1 5 .... 120 bar

til 0 1 . 100 bar

O.O� , e 80 bar

0 1 00 200 300 400 500 600 700 CO:! (g)

FIgure 1 ..+ e ffect of pre,' llre 011 the ex. traction yield at 35 °C

0.7

0.6

0.5

:§ 0.4 U co ... >< :..lJ 0.3

0.2

0. 1

0 0

T = 45 °C Jl;. A A A A A A A • • • • • • A •

JI;. A A •

A .. . . .... . . . A • • ••

• • . A • •

• • • •

A A • • • • • A · . ·

A Jj •• A A ,

.

A II" 1 20 bar

A •• A ••

., 1 00 200 300 400

CO2 (g) 500 600

. 1 00 bar

e 80 bar

700

F igure 1 5 E ffect of pres ure 011 the extraction yield at 3 5 °C

49

25

20

1 5 � 0 e..... :2 <U

1 0 r

5

0 800

35

30

25

20

1 0

5

o 800

Page 65: Supercritical CO2 Extraction of Oil from Henna Flower

0.6

T = 5 5 °C

r/I . • • • • • • •

0.5 � • •

• •• • • • • • .. . • • •

OA • . -• •

".-... • OJ) '--"" c:; 0 3

• � .... -'

.,1 x :.Ll •

0 2 • .. .-

. .-0. 1 •

.'

a a l Oa 200 300 400

CO2 ,g

Figure 1 6 E ffect of pre 'sure on the extraction )- ie ld at 55 °C

4.2 E x t ract An a l� is

4.2 . 1 GC-Anal�' is

1 20 bar

_ l Oa bar

e so bar

500 600 700

Henna flower extracts were analyzed by GC for their compositions. From a l is t of

40 a ai lable standard chemicals essential o i l , 27 components were observed in the

extracts at various condit ions in addition to about 79 components that could not be

identified but they appeared in the GC chromatograms with unique peaks and were

con idered in the calculation of extract composit ion ( Table 5 ) . Figure 1 7 shows a typical

GC chromatogram. The unidentified compounds are marked as unknowns and should be

identified by GC-MS and other teclmiques for future studies.

50

30

25

20

� 0 ;:...

I S :2 <l.) >-

1 0

5

a SOO

Page 66: Supercritical CO2 Extraction of Oil from Henna Flower

1 8000 1 6000 1 4000 SS 0 and 1 20 bar I :WOO 1 0000

> 000 E 6000 4000 2000

-20nO 5 1 5 25 95 1 05 Time (min)

Figure 1 7 GC chromatogram for extract obtained at 55 DC and 1 20 bar

The ident ified components in the extracts obtained by SFE were compared with those

obtained by Wong and Tong ( 1 995) using solvent extraction ( Table 1 ) . Some compounds

were ob erved in the extracts obtained by supercritical fluid extraction in this work were

also presented in the extracts reported by Wong and Tong such as; l imonene, eugenol,

and l inaloo l . On the other hand, �-ionone was reported by both techniques, but h igher

composition was obtained by upercrit ical fluid extraction. Moreover, some components

existed only in the SFE extracts with h.igh percentage and not found in Wong and Tong

extracts (e .g . eugenol acetate) .

The extract composition varied sign ificant ly at d ifferent conditions suggesting

di fferent quality for d ifferent extracts. For example �-ionone is a major component of

henna flower extract . This component constituted about 28 % of the extract obtained at

5 5 °C and 80 bar, whereas at 1 20 bar and at the same temperature only 1 .49% of �-

ionone was observed. Another example is eugenol acetate, for which the best condit ion to

5 1

Page 67: Supercritical CO2 Extraction of Oil from Henna Flower

operate wa 55 °C and 1 20 bar re ult ing in 25 .6% compo it ion. Different extract

obtained by FE are e pected to how di fferent bioacti it ies due to their d ifferent

compo it ional qual i ty. Thi i e ident from the re ult of the antioxidant acti ity.

In orne extract the compo it ion of some unknown component are higher than

ident ified one . For e ample unknown, Un64 is abundantly present in the extracts

obtained at 5 5 °C and 1 20 bar ( 33%), and 45 °c and 80 bar (63%). Since the number of

unknown compounds i significant i t would be usefu l to conduct further studies to

identify and i alate orne of the wlknown compound pre ent in the extracts, especia l ly

the e tracts that how significant antioxidant act iv i ty.

Tabl e : Composit ional anal ) is of extract from henna flower by GC

!mperature (OC) 55 55 55 45 45 45 35 35 essure (bar) 1 00 1 20 80 80 1 00 1 20 80 1 00 lme Time (min) 1 25.84 - - - - - - - 1 0.3 1 2 �xanal 27.27 - 0.285 - - - 0.676 0.895 1, 29.59 - - - - - - - 0.2 1 1 ]3 29.9 - - - - - - - 0.336 1. 30.26 - - - - - - - 0 . 1 72 1, 3 1 .22 1 .698 0.782 - - - - - 0.3 16 32.45 - 0.723 1 .429 - 1 .048 0.636 1 .4 1 5 -s-3-Hexenol 33 .3 - - - - - - - -ms-2-Hexenol 33 .88 - - - - - - - -h 34.24 - - - - - - - 0. 1 2 1h 34.46 - - - - - - - 0. 1 3 19 34.83 - - - - - - - 0.2 1 6 lin 35 .53 - 0.479 - - 1 . 3 ] 0 .7 1 2 0 .75 1 -111 36.24 - - 1 . 80 1 1 .037 - - -Dinene 37 .2 1 - - - - -�J1 4 1 .3 - 1 .048 4.004 1 . 337 3 .628 1 .788 4. 1 1 1 ·pinene 4 1 . 74 - 0. 1 97 0 . 1 22 In 43 . 1 ] - - - - - 0.3 1 4 - 0. 1 3 11� 43 .89 - 0.709 ethyl Oxalate 44.56 - 0.62 ] monene-S-R 45.6 ] - 1 .973 0.44 1 .607 7 .424 0 . 1 88 lIS 45 .76 - 0.06 0. 1 99 0. 1 43 0.32 ] Deole 46.55 - 3 .648 116 47. 1 4 - 0.366 1 , 48.05 - 0.293 1emisia ketone 48.72 - 0.46 l . l 58 0 .576 1 .039 0.655 1 .246 0. 1 67 11� 48.99 - 0 . 1 59 0.222 0. 1 8 0.58 1 119 49.36 - 9.576

5 2

3 5 1 20

0.954 -----

0.374 ----

0.829 --

0.628

0.727

Page 68: Supercritical CO2 Extraction of Oil from Henna Flower

"able 5 ComDositi, mal analvsls 0 extract from helma t10\� ?r hv (T(' (COI7I.) n,( 49.62 - 0.427 9 .9 1 9 n�1 50.04 1 .736 1 .245 2 1 .778 enzyl Alcohol 50.3 - 1 . 7 1 9 n" 50.82 - 0.305 0. 1 08 n'l 50.94 - 0. 1 94 n, 5 1 .25 - 0.47 1 1 .373 0.927 0.873 0.837 ,nalool 5 1 .63 - 0.525 0.888 1 .979 1 .699 1 . 588 0.4 1 n,� 5 1 .87 - 0.244 0.7 0.448 1 .9 1 2 0.438 n�� 52.22 - 1 . 1 85 n'7 54.43 - 1 .548 3 .838 2 .34 3 A42 2.082 3 .753 0 .207 0.84 1 rPhenylethanol 54.7 1 - 2 A88 0 . 1 08 0,057 ��b 55 .34 - 0.785 0 .265 Jh 55.56 - 3 .646 0,685 0.433 0.605 OA I 2 enthone 55 .87 -enthol 56,57 - 2 .745 omeol 57,02 - 0.3 1 4 0.392 ethyl Salicylate 57.97 0.5 1 3 5 ,2 1 7 0.548 0.879 0 . 1 4 1 0.775 �hydroca" one 58 .3 - 0.039 ih) I ntcotmate 58.83 7 .5'22 0,907 3 . 709 1 .279 1 . 785 1 . 1 94 1 .928 1 .0 1 1

n30 59.08 - 0.775 0 , 1 32

b11 59.36 - 0.209 IV one 60.44 - 0.344 0,27

enth,,1 acetate 60.86 - OA95 0.362 0.364 :>m) I acetate 6 1 1 6 -llbomyl Acetate 6 1 .-+6 - 1 ,065 a3' 62.07 - 3 ,37 2 . 1 56 4.086 2 .9 1 1 a,n 62.42 9 .38 2 .9 1 4 3 .305 0,289 Pl 62.82 1 ,348 0,52 1 .074 0.88 1 1 ,238 0,68 1 1 .095 4,30 1 0.658

" 63.08 - 0.345 0. 35 1 0.304 l AO I

1/1 63 .29 0.4 1 6 OA99 0 . 1 72 0.092

�3- 63 .44 0.336 Pllene 63.89 0.23 1 0.092

Pll\ 64.42 0.347 OA03 \genol 64 .84 2 .445 0.524 4A58 4,887 4 .06 2 . 1 1 4

�lQ 65.25 4.907 1 3 .429 3 . 1 64 3 .904

�o 65.7 2 .045 6 . 1 78 6. 776 4.386 0.639 6.745

III 66 ,3 1 OA52 0.302 0.406 0.459 0.439 0.929 �arvophyl lene 66.52 0.288 OA25 0 ,64 1 0.675 0.8 1 6 0.538

l' 66.72 0,967 4.659 2 .9 1 3 1 .029 2 .5 1 1

�1 67.47 0.394 Ihydro-B-Ionone 67,69 0 .459 1 . 834 0.54 1 1 . 1 82 1 . 1 07 0.79 K umulene 67.89 0.3 1 5 0.9 1 3 0,5 7 1 0.353

i4l 68.09 1 ,089

i14� 68.72 0,9 1 3 3 .456 1 . 1 1 9 henene 69.28 Uonone 69.74 1 .4 9 1 0.834 28 .0 1 9 1 0. 1 2 1 4.307 1 0.99 0.939 3 1 . 1 1 2

i4� 69.88 0 .335 0.326 0.044

Ill- 70.27 0,507 0 . 1 29 0.5 1 2 0.539

llR 70.49 2 .433 0.203 [genol acetae 70.84 25 .684 2 .804 1 .284 1 6.34 1 3 .972 3 . 1 98 0.725 2 .979

'-'9 7 1 .24 47 .063 3 .457 0 . 1 75

,�O 72.26 1 .609

l� r 72.73 0 . 1 76 0.343 0.796

,�, 73 ,24 0.457

�q 73,73 0.499 0.533 0.9 1 0 .475 0.559 0.592 0.92 1 .208 0.90 1

154 74.06 0.2 1 7

53

Page 69: Supercritical CO2 Extraction of Oil from Henna Flower

lable 5 Comnositi :))131 ana" "IS , . extract from hecna 'l(I\\ 'r hv Gl i ,-nn!.) l iethvl Phthalate 74 44 0.985 0 .406 larophyl lene o\lde 75.2 0 .68 1 n .. 75 ,4 0 774 0.377 0.092 0.496 n." 76.2 0.383 0.605 0.602 0 .3 8 1 0.66 1 n" 77. 1 0 .56 1 n •• 78 .04 0.545 1 . 877

n59 78.34 0.62 1 . 1 98 0.579 L l 73 l A33 0.64 1 . 1 97 fl1nn 79.29 0.772 6. 1 36 4 .335

i161 79A8 3 .79 1 . 593 2. 1 32 1 .734 !1;,1 80A 1 0.33 1

n..� 8 U8 8.842 J . 735 3 .642 1 0.209 5 .207 20.697 1 .244 7 .076

� 82. 1 9 33 .297 62.666 1 3 .629 1 9.796 1 .087 0.75 1 0.259 Iv.. 83.47 1 . 1 45

/It.h 83.75 1 .553 1 . 355

no' 84. 1 9 0 .4 1 8 0.708 3 .746 2 .406 3 .7 1 7 2.332 2 .4 1 4

h.., 84.56 I A4 1 1 ,48 0.993 ! . I 5 0 .8 1 6

p"Q 85.36 1 . 2 1 1 7.023 6.928 8.054 2.696 5 .569 8.574 noo 87.0 1 1 . 32 n71 87.55 0.638 0.443 h" 88.32 0.865 0 .904 n7� 90.35 0.342 n, 9 1 .05 0.822 0.303 n,< 93.43 1 .849 2.267 2.386 0.509 1 . 894

'6 94.3 1 j .238 -- 95.77 1 .005

-, 98. 1 2 0.902 1 . 1 24

-9 1 0 L5 8 6.35 1 2 .47 1 l . 293 Total 1 00.00 1 00.00 1 00.00 1 00.00 1 00.00 1 00.00 1 00.00 1 00.00 1 00.00

.t.2 . 2 Ant ibacterial acth i ty

The antibacterial act ivity test showed that no inhibit ion zone existed for the henna

flo\ er extract, sugge t ing no antibacteria l activity for the flower extracts . However, other

re earcher reported that the leaves extracts exhibi ted sign ificant ant ibacterial activity.

F igure 1 8 hows the re ul ts of antibacterial test where no inhibit ion zones against E . co l i

trains around the extracts di cs ( disc where numbered 1 to 9) compared to antibiotic

control .

54

Page 70: Supercritical CO2 Extraction of Oil from Henna Flower

Inhibibon zone for antibiotic control

Figure l �' Re ults of ant ibacteria l te t

4.2.3 Ant io idant actiYit)

-1. 1.3. 1 FRAP (Ferric reducing antioxidant power) assay

The F RA P as ay measures the abi l ity of the extract to reduce a ferric salt (TPTZ-

Fe ( I l l ) to a ferrous product (TPTZ-Fe( I I ) . The reaction mechanism is electron transfer

reaction hown in F igure 1 9. The reduction is due to the existence of antioxidants in the

extract \ h ich involve electron-denoting groups such as hydroxyl group. The fonnation

of the ferrous product is noticed as the color gets deeper from yel low to intense blue and

quantitati ely measured by the absorbance at 539 run wavelength .

[Fe llI)(TP _ J:t Deep Blue

Figu re 1 9 F RA P Reduction reaction

5 5

Page 71: Supercritical CO2 Extraction of Oil from Henna Flower

The ab orbance of each e tract mi ed with the FRAP olut ion wa mea ured and the

c ncentration of antio idant \ ere calculated a ascorbic acid equi alent from a

calibrat ion urve ( ppendi ). The re u l ts of FRA P a say for e tracts at each extraction

condition are hown in Figure 20. The FRAP a ay re ealed that compound obtained by

FE of henna Dower e hibited antio idant activity.

2 . 5 ..-., � c..> - 80 bar ce .... >< - 1 00 bar c..> co 2

0 1 20 bar 0 --

r::r c..> -< 1 . 5 -< co E '-' � >

� c..> ce � c cc X 0 0. 5 � c cc

0.. -< � !.L. 0

3 5 4 5 5 5

Temperature C Oc)

Figure 20 F RAP a ·sa.\ re 'ults for extract of henna flO\\ ers

Extracts obtained at d ifferent extract ion temperature and pressure showed

d ifferent antioxidant content. The maximum antioxidant activity was observed at 45 °C

and 1 20 bar and the minimum was at 55 °c and 1 00 bar. A c lear trend of antioxidant

activity with extraction pressure can be observed at 3 5 and 45 °C. However, at elevated

56

Page 72: Supercritical CO2 Extraction of Oil from Henna Flower

temperature of 55 °C 10\ e t antio idant acti ity was obtained at 1 00 bar. The ariation

in the antiox idant act i \ ity [ di fferent e tract are expected to be due to the d ifference ill

the compo it ion of compound in the e tract . For e ample the extract at 3 5 °C and 0

bar ha the highe t compo it ion of compound uch a ; Limonene-S+R and the unknown

n63 . The e, tract obtain d at 45 °C and 1 20 bar i the only extract that contain menthol

unknown 1 -1 . UN-I4, and UNS7, and has the highest composition of carvone. It would

be inter t ing to ident i fy, fractionate and then test the antiox idant properly of these

unknown compound .

-1.1.3.2 DPPH . £"avenging activity

The chemi try behind this a ay i the reduction reaction that occurs to the DPPH

molecule (2 ,2-d iphenyl- l -picryl hydrazyl ) by antiox idants in the substance. The DPPH

molecule i one of the few stable organic nitrogen radicals and characterized by deep

purple color \ ith maximum absorbance at 5 1 7 nm wavelength . This method assesses the

radical cavenging act ivity of antiox idants again t the free radical DPPH. The reduction

reaction of DPPH and by an antiox idant i hown in Figure 2 1 . Upon reduction, the color

fade a the odd electron of DPPH radical becomes paired with a free radical scavenging

antioxidant and fonn the reduced DPPH-H . The loss in color is proportional to the

antioxidant concentration; the higher the antioxidant concentration the more the color

loss ( the more the DPPH scavenging activity) . The antioxidant concentration was

calculated as ascorbic acid equivalent (AA eq) from a cal ibrat ion curve (Appendix C) and

the antiox idant or antiradical activ ity values were expressed as mm AA eq/ l OOg of

extract .

5 7

Page 73: Supercritical CO2 Extraction of Oil from Henna Flower

DPPH

Fi.!ure 2 1 DPPH reduction b) antioxIdant

60

50

40

30

20

0... 1 0

0.... o

o 3 5 45

Temperature °c

F igure 12 DPPH a �a) re ult for extracts of henna flo\\ ers

- 80 bar

- 1 00 bar

1 20 bar

5 5

The results o f DPPH assay agrees with the results obtained b y FRAP assay,

i ndicating that henna flower extract obtained by SFE exhibit antioxidant acti vity ( Figure

22) . Similar to the results of the FRAP assay, the extract obtained at 45 °C and 1 20 bar

has the h ighest radical scavenging activity whi le the extract obtained at 5 5 °c and 1 00 bar

exhibited the lowest act ivity. The effect of antioxidants on DPPH radical scavenging is

genera l ly due to their hydrogen donat ing abil i ty . This can be attributed to the presence of

58

Page 74: Supercritical CO2 Extraction of Oil from Henna Flower

adjacent ub ti tuted group uch a methoxyl group in an aromatic ring which i a

electron-donat ing group. On the other hand, the pre ence of a carbo yl group ha a

negat i \ e effect on the antiox idant act ivi ty ince i t is an electron-withdrawing group. Such

group exi t in henna Dower extra t as hOWD from the G analysis .

59

Page 75: Supercritical CO2 Extraction of Oil from Henna Flower

5 DATA lVIO D E L I N G

5. 1 Dc cription of the extract ion mcchan i m

It i well knO\ n tbat tbe e traction proce i the re ult of rna tran fer which i

promoted by concentration gradient . Figure 23 pre ent the teps involved in the

'upercritical fluid extract ion proces . At the beginning, supercritical carbon dioxide fi l l

the e traction ve el and equi l ibrates with ample material where free solute are

di o lved in C-C02. Thi equi l ibrium tage i to ensure the constant temperature,

pre ure, and compo ition within the extTaction y tem. In step (a ) the solutes present in

the olid part ic le d i sol e in SC-C02 within particle pores. Tbis step is governed by

olubi l ity of olute in SC-C02 or adsorption/desorption mechanism. Then, the solutes

d iffu e through the part ic le pores to the particle surface a shown in step (b) . In step ( c ),

the olute tran fer from tbe part ic le surface to the bulk phase through a fi lm. Final ly, the

o lute di ffu e within the bulk phase along the extraction vessel ( Step d). The solutes

leaving the extract ion bed are col lected and accumulated by depressurizing the

upercrit ical olution to ambient pressure in the col lection v ia l .

I t is c lear from the abo e explanation that the extraction process is governed by two

phenomena, namely the olubi l ity of solutes in SC-C02 and d iffusion of the solute

within the part icle and the bulk flu id phase.

60

Page 76: Supercritical CO2 Extraction of Oil from Henna Flower

� � ." �

� if + .... .. if � � ."

� �

St�1' � DuluSl" fl " f s, lutes from s" hd t" p,'res

Step \ b ) Dl1'l.i.ts1011 of s lutes wllhm Ule partIcle to the p�rlIde sur(�('e forl11mg ;t fIlm

Step \ C 1 Ddluslon of ,,,lutes frnm the pnrtJcle surface tn the bulk phnse

FIlter � -----,t---�---i i

i

i Fllte�------------

Step I " I Dl li"uSIl'11 of sl) lutes \\ 1111m U1e

bulk along U1e extractlOl1 bed

Figure 23 i\lechal1l l11 of F E process

5.2 Theoretical principle of the extraction process

It is c lear from section 5 . 1 that the extraction process takes place in two pha es

namely; particle phase, and fluid pha e. The propo ed mathematical model of the current

extraction process is based on the law of conservation of mass. Derivation of the model

equation starts by applying ma s balance around a thin shel l perpendicular to the transfer

direction in each phase. The general equation of mass balance is :

(Rate Of ) _ ( Rate Of ) + ( Rate of ) = ( Rate of ) rna in mass out - mass generated or consumed accumulated mass

The fol lowing assumptions were used to simpl ify the model equations:

6 1

( 23 )

Page 77: Supercritical CO2 Extraction of Oil from Henna Flower

1 . The y tern i i othennal and i obaric; therefore, upercri tical fluid propert ie

uch a ; d i ffu i it coefficient , den ity, and i co ity are con tant along the bed.

2. The part icle ha e pherical geometry and ol ute i di tributed uniformly.

3 . Radial concentration gradient are negl cted i n the fluid pha e

4 . o lute concentrat ion gradient in the part ic le i in r coordinate only.

5 . Bed and particle poro i t ie are fi ·ed during the e traction proce s .

6 . Local equ i l ibrium is e tabl i hed a t the interface of flu id and solid phase.

5.2 . 1 Partkh.' Pha c mass t ransfer

Ma tran fer on the part ic le phase occurs through two teps as mentioned

pre iou 1 . When the fluid fi l l the paltic le pores, solute transfers from the sol id phase to

the fluid pha e ins ide the particle pores, due to the concentration gradient ( h igh solute

concentration in the solid pha e compared to that in the pores) . This is usua l ly expressed

a an equi l iblium relation by solubi l ity or ad orption/desorption mechanism. Then the

o lute transfer to the particle surface by d i ffusing through the pores . This step can be

de cribed by molecular d i ffu ion equation. A deta i led description for each step i found

in the coming sections.

5. 2. 1. 1 Tran fer of solute /rom solid phase

In this step the fluid and the sol id are competing in keeping the solute. This kind

of competition is expres ed by adsorption/desorption process. Many researchers

expressed the adsorption/desorption process in the upercrit ical regions using d ifferent

models such as Langmuir-l i ke isotherm and BET type equ i l ibrium equation (J ia et aI . ,

2009b; Papamichail et a I . , 2000; Ruetsch e t a I . , 2003) . Also the adsorption/desorption

62

Page 78: Supercritical CO2 Extraction of Oil from Henna Flower

proce can be e pre ed imply b e ither analogy to interpha e rna tran fer a hown

chematica l ly in Figure 24, or u ing kinetic principle a di cu ed later.

Int�rt .h:e

q,

{ .,1 's,,"'I1J

Ph,l"�

Fum

FluId

t'h ""

Film

( ' ,

19ure 2-+ Interpha"e ma. s tran fer mechanism

Tr.ln .. h : r ('I f solute irl,."lm

the s'''itJ ph lS(' h"'l the

l1uIJ "Jlhm tht! p.lrtH.:k

r,'re

There are t\ 0 pha e in the interpha e mas tran fer mechanism; sol id phase, and fluid

pha e eparated by an interfacial surface. The interphase mass transfer involves three

tran fer teps; the transfer of olute through the ol id phase fi lm to the interfacial surface,

transfer aero the interface into the fluid phase within the pore , and transfer of solute

througb the fluid pha e fi lm to the bulk pha e within the pores. The mathematical

repre entation of this theory acquire two assumptions; ( 1 ) on each side of the interface,

the transfer of solute is governed by the rates of d iffusion through the phases, ( 2 ) there is

no re i tance to the mas transfer across the interface. Consequent ly, the two

concentration at the interface (ql from the sol id side and CP1 from the particle side) are in

equ i l ibrium as a result of the infinite contact time of the two phases. Assuming that the

equi l ibrium relation is l inear ( Eq.24) the rate of mass transfer from sol id phase to

part ic les pore can be written as ( Eq .25) .

( 24 )

63

Page 79: Supercritical CO2 Extraction of Oil from Henna Flower

dq = k (C - C ) dt a P P

Where K i the lope of the equi l ibrium curve. ka i th 0 eral l rna

(25 )

tran fer capacity

coefficient, C;, is the concentration in the pore of the part ic le in equi l ibrium \ ith q.

q = KC; (26)

The equi l ibrium relation ( Eq .24) can be u ed to relate Cp to q.

ub t i tuting with Eq. (�6) into Eq. (25 ) , the rate of mas transfer from sol id phase to

particle pore can be calcu lated from :

(27)

Another \ ay to expres the tran fer of solute from solid pha e to pore of the part ic le i

through ad orptionJde orption mechani m using the reaction kinetics principles by

implement ing the fol lowing re ersible react ion with l SI order rate can tants for both

direction :

dq - = k C - kd q dt a p

DefIning K = ka leads to kd

(28 )

64

Page 80: Supercritical CO2 Extraction of Oil from Henna Flower

B th approache ( Interphase rna tran fer and adsorption/desorption) re ul ted in the

arne fonn of the rna tran fer equat ion ( Eq. 27 and 28) , with di fferent phy ical meaning

for their con tant . In thi tudy parameter ka and K were fitted to the experimental data.

5. 2. 1 .2 Diffi"'iol1 withill particle pore.\

olute that i tran [erred from the ol id phase to the pore wi l l d iffu e within the

pores to\>\ ard the urface of the pa11ic le due to a concentration gradient. Molecular mass

tran fer i de cribed by Fick' law and ince the pore ize are not uniform in the particle,

effecti e di ffu ion coefficient i u ed in the flux equation:

(29)

Applying equation 23 (rna s balance) around a spherical she l l of thickness L\r

within a ingle part ic le a shown in Figure 25 ,the fol lowing equation can be obtained :

c/

r = O r = R 1 1 r - - - - - - ., 1 1 1 .... .. - � - .. , " " " " - - 1- "' ,, "

' " I ' 1 I I \ ' : t 1 1"--+1 . �u�

\ Ii ) \ , " 1 I I

' " '

... _ _ .. " ., ' 1 ' ... _ _ _ _ .... " 1 1

1 1 1 1

1 1 1 1.&1

q 'M

F igure 25 . l a tran fer in the particle phase

65

Page 81: Supercritical CO2 Extraction of Oil from Henna Flower

Diy iding both ide b 4rr.1r

Reananging

d 2 2 dCp dq -Ep - r NA = Epr - + r2 - ( 1 - Ep) dr dl dt

ince there i no convecti e mas transfer ( lower flow) in the pores NA = jA

Applying Fick's law of d iffusion jA = -De dCp dr

d dC dC ( ) dq D E - (r2 _P) = E r 2 ---E + r2 1 - E -

e P dr dr P dt P dt

Dividing both s ides by Epr2

S ince both Cp and q are functions of two variables ( r, t) , the ordinary derivatives are

converted to part ia l deri atives and rearranged:

( 3 1 )

Eq. 3 1 can also be written as

66

Page 82: Supercritical CO2 Extraction of Oil from Henna Flower

quation 32 i a partial d ifferential equat ion ith two dimen ion and ha the fol lowing

init ial and boundary condition :

at t = 0 and 0 ::;; r ::;; R :

at r = 0 . oCp = 0 or

5.2.2 Fluid Pha e mass transfer

Diffusion of the solute in the fluid phase is control led by its transfer from the

part ic le phase, which invol e hvo steps; ( 1 ) h'ansfer of solute from surface of the part ic le

to the bulk fluid pha e in the extraction e sel which j repre ented by film diffusion and

( 2 ) tran fer of solute along the extraction vessel , which is governed by molecular and

con ective mass transfer. These steps are schematica l ly demonstrated in Figure 26.

67

Page 83: Supercritical CO2 Extraction of Oil from Henna Flower

Filler t -- 7-, \

t \ \ F tlm dIffusion <'> \ . � , Bulk ddfuslon along ,

t I �rraCUOD bed I

i , , ,

t 1 1 FIlter

Fle-ure 26 FlUId pha e l11a�s tran fer mechani. m

5.2. 2. 1 Film diffu ion

Fi lm d iffu ion is ba ed upon the assumption that the entire resistance to d iffusion

from the part ic le urface to the bulk fluid phase occurs in a tagnant or laminar film of

con tant thicknes 8 a shown in Figure 26. Ma s tran fer takes place as a result of the

concentration gradient between the part ic le surface ( high concentration ) and the fi lm

boundary in the fluid phase ( l0\ concentration ) . The mas transfer flux through the fi lm

can be de cribed as hown in Eg .33

5.2.2.2 Bulk diffusion alo11g tire extraction bed

( 3 3 )

i nce the flu id i flowing within the extraction vessel mass tran fer is the result

of molecular d iffusion plus convecti e mass transfer (bulk flow), which can be described

a :

68

Page 84: Supercritical CO2 Extraction of Oil from Henna Flower

Where {)i i the inter t it ial velocity and can be calculated from the superficial velocity

and the bed poro ity:

Figure 27 sho\l the ma balance along the e tract ion bed.

Applying ma s balance ( Eq.23 ) over a control volume in the extraction bed as hown in

Figure 27 yield :

_____ L -z = L

c /' tout - - - - - - - - - z+{).z

-+ - - - - f - - - - z

I n

_____ r - z = O

FIgure 27 1a - 5 tran fer 1TI the fluid phase

Div id ing both ides by EbA6z

r (N A(z) -N ACZ+IIZ)) + ( l -Eb) k (C _ C) = de Imllz .... O t.z Eb fa pR dt

69

Page 85: Supercritical CO2 Extraction of Oil from Henna Flower

ub tituting the flux by NA = jA + C19i

Recal l ing Equation 33

. - - D de

JA - ax dz

Where

Further reaITangement results

( 34)

( 3 5 )

Equation 3 5 i second order part ia l d ifferential equation for solute concentration i n the

fluid phase a a function of two variables (z, t ) .

Boundary and ini t ia l condition are as fol lows:

at t = 0; all zC = Co = 0

a t z = 0; all tC = 0

de at z = L · t > 0 - = 0 J J dz

Equations 3 2 and 3 5 are the mathematical expressions for the proposed model and were

solved numerica l ly by the finite element method

70

Page 86: Supercritical CO2 Extraction of Oil from Henna Flower

alue of Cpo , and qo ere calculated from their corre ponding defmition which take

into ac ount ; the amount of oil di 01 ed ini t ia l ly in the fluid pha e; amount of o i l in the

ample, and the geometry of th particle and the bed a expre ed in equations 39 and 40.

( 39)

(40)

The fraction of olute ini tial ly d issolved in the fluid phase after the equil ibrium time, fo '

\', a a umed to be O. Equation 36-38 can be olved simultaneously from q(r, t) ,

Cp (r, t) , and C(z, t) profile . Once the fluid pha e concentration profile, C(z, t), i s

obtained the extract mas can be calculated from:

M et) = J; C (z = L, t)8sAdt

Where 19s i the superficial velocity and A is the cross ectional area of the extraction

ve e l . S ince both 8s and A are con tants:

M (t) = 19sA J; C (z = L, t)dt

Superficial v elocity 19s can be calculated from

19 = � S pA

(4 1 )

Where rh and p are the mass flow rate and density of the fluid, respectively, at the

extraction operating condit ions. The fluid is mainly C02 since the extract solubi l ity is low

in CO:! « 3 x l O-3 glgC02) . Therefore, fluid properties are assumed to be the same as for

7 1

Page 87: Supercritical CO2 Extraction of Oil from Henna Flower

pure 02 · The proces can be a umed continuous and at teady tate for CO2, therefore,

rna now rate of CO2 in the e traction e el can be as umed equal to that at the yringe

pump, \ hich i at 25 ° and tem pre ure ( P) . Since vol umetric flow rate ( F ) i

control led and recorded at the ynnge pump. Mas flow rate of CO2 ( m) can be

calculated from it den ity at temperature and pre ure of CO2 of the syringe pump

( 25°C system P) :

Therefore,

Fina l ly extraction yield is calculated from:

Yield (%) = Moo X 100 Msample

(42)

The properties of SC-C02 namely; density and viscosity were obtained from

1ST Chemistry webbook and tabulated in Table 4 . The density values were used for the

calculation of mass flow rate and supercritical velocity.

5.2.2.3 Jfodel parameters

The model equations requITe the knowledge of parameters such as effective

d iffu ion coefficient ( De) fi lm coefficient ( kf) axia l d ispersion coefficient ( Dax) , and

constants of the kinetics model ( Ka, K). The axial dispersion coefficient at each extraction

condition was calculated using the cOlTelation proposed by Tan and Liou in 1 989. Their

i nvestigation revealed that the axial dispersion is affected by the intersti t ial velocity,

72

Page 88: Supercritical CO2 Extraction of Oil from Henna Flower

part Ic le diameter and reduced den ity and vi co ity of upercri tical carbon dio ide. The

orrelation hown in equation 43 and ha about .5% deviation from experimental

resul t .

D = 0 08519 0 914d 0.388p 0. 725 /1 0 676 ax . 1 P r rr (43 )

Wi th Pr = 1!.. and 11 1" = £. Pc I1c

Effecti ve d i ffu ion coefficient

particle pora ity:

u ual ly related to binary d iffusion coefficient and

HO\\'ever, ince henna flower extract contain many unknown compounds, calculation or

e perimental determination of the binary d iffusion coefficient is d ifficult and time

con ummg.

Therefore, De and other parameter ( kf' ka, and K) were adjusted to fit

e perimental extraction data by minimizing the fol lowing objective function, which i the

summation of squared relat ive error.

(43)

Where yiexp is the experimental and y;'cal the calculated extraction yield and i refers to

data points used in the fitting.

73

Page 89: Supercritical CO2 Extraction of Oil from Henna Flower

6 l\l O D E L I � G R E S U LTS

The model equation ( 36-3 ) and e traction yield (Eq.42) were 01 ed u mg

Excel i ual Ba ic Appl ications-Mocro ( BA-Macro) . Furthennore, Powel l

minimization method u ing ubroutine avai lable wa used for fitting the model

parameter to the experimental extract ion data u mg objective function (Eq.44) . The

B -Macro code i hown in Appendix D. The calculation for the adju table parameter

at each condit ion u ing Powel l ' minimization method usual ly took 1 -2 days OD a

per onal computer ( DELL In piron 1 564, AE) .

The model \! a appl ied to each experimenta l condition and the results are hown in

figure 28-30 howing the effect of temperature and pressure. Results howed good

agreement between calculated extract ion yield by the mathematical model and the

experimental data.

The di fference ben een experimental and calculated extraction curve, R2

was

calculated for each condition using equation (44) .

2 ,\, (yexp _ yeal) 2 _ <J[ [ [

R - L yexp _yexp [ [ (44)

alue of R2

ranged from 0.96 to 0.99 as seen in Table 6 . The best agreement between

experimental and calculated extraction curve was found at 45 °C and 80 bar with R2

of

0.998 whi le the worst agreement was at 55 °C and 80 bar with R2

of 0.96.

Four fitting parameters (De l kf l kal and K) were used and their values were

adj usted to the experimental data using Powel l ' minimization method. Values of these

parameters obtained from the model are given in Table 6 at their corresponding conditions

74

Page 90: Supercritical CO2 Extraction of Oil from Henna Flower

along \'vith the optimum objective function and R2 alue . The fitting method re ealed

that the objective function (JObj ) wa en it ive to De and kr while K and Ka were not

affecting the objective function igni ficantly.

0.6

0 .5

0 4 -----OJ) '--" ...... � 0 3 .... ..... ><

LU O.2

0. 1

0

p= 0 bar

0 1 00 200 300 400

CO2 (g) 500 600 700

30

2 5

2 0 �

1 0

5

o

800

o �

5 5 ·C Experimental data • 45 ·C Experimental d ata • 35 ·C Experimental data 5 5 ·C model d ata - 45 ·C model data - 35 ·C model data

FIgure ]" Extraction cun e_ at 80 bar

75

Page 91: Supercritical CO2 Extraction of Oil from Henna Flower

0.7

0 6

0.5

§04 ti "" .... ] 0.3

0.2

0 . 1

0 0

35

P= I OO bar 30

25

20

1 5 ........ 0 � 1 0�

>= 5

0 1 00 200 300 500 600 700 800

55 °C Expenmental data • 45 °C Experimental data • 35 °C Experimental data 55 °C model data - 45 °C model data - 35 °C model data

Figure 3 t traction ('un e� at 1 00 bar

0.7

0.6

0.5 ,--... on ",:: 04 () C;l ..... ><: 0.3

UJ 0.2

0 . 1

0 0

P= 1 20 r

1 00 200 300

5 5 O( Experimental d ata 55 O( Model data

400 CO� (g)

500 600

• 4 5 O( Experi mental data - 4 5 O( Model data

F igure 30 Extraction cun es at 1 20 bar

76

35

30

2 5

2 0 :: ........, ::2

1 5 .� >-

10

5

0

700 800

• 35 O( Experi mental data _ 35 °( Model data

Page 92: Supercritical CO2 Extraction of Oil from Henna Flower

Table 6 dju table model paramder.

lperature °c Pre ure bar Dc X I O I �, m}! kr 1 0H. n

3 5 80 9.50 6.0

3 5 1 00 5 24 7 .88

35 1 20 0.496 0.702

45 0 1 6.3 9.42

45 1 00 20.3 1 0.9

45 1 20 0.6 5 1 2 .2

55 0 2 1 .9 1 3 .7

55 1 00 9.47 1 6 .4

55 1 20 25 .5 5.0 1

77

K, m ' vOId/m) .p Ka. - 1 m3 vOld/m' .p. OBJF R! 1 4 1 . 2 320.8 1 . 60 0.97 1 27

90.3 5 1 9 .3 0.992 0.9939

3 ,49 1 .046 1 .30 0.985 1 9

1 50 .3 1 97. 1 1 . 35 0.99838

1 39.6 45.9 1 0.403 0.97439

69.0 320.02 1 .08 0.96052

1 79.8 1 98.5 1 . 38 0.962 1 6

1 39.9 1 22 .2 1 .4 1 0.9797 1

34.05 5 1 9. 1 0.826 0.98388

Page 93: Supercritical CO2 Extraction of Oil from Henna Flower

7 C o n c l u s i o n a n d reco m m e n d a t i o n s

Volat i le component of henna flower \ ere e tracted u ing supercritical fluid

extraction technique over temperature and pressure range of 3 5-55 °c and 80- 1 20 bar,

respectively. traction operating condition showed ign ificant effects on the solubil ity

of extract in C-C02 and e traction yield. An extraction yield 3 1 % was obtained at 45

°c and 1 20 bar. The rna imum olubil i ty of 2 .9 mgexlraC/g CO2 wa observed at 55 °C and

1 20 bar. Other e traction parameters including; e tract cool ing temperature, and SC-C02

flow rate were al 0 fow1d to have effects on the extraction yield.

Compo itional analysis of extracts obtained at different conditions revea led the

pre ence of many compounds in the extracts. Over 1 00 compounds, 79 of which were not

ident i fied \ ere detected by Gc. Henna flower extracts did not exhibit any antibacterial

act ivity again t S. aureus and E. coli ince no inhibition zone was detected when

perforn1 ing disc d iffusion test. Tbe FRAP and DPPH tests revealed that extracts of henna

flower contain antioxidants. This assay has a great interest in nutraceutical and

phannaceutical fields.

The proposed mathematical model could fit the experimental extract ion curve

ery wel l at a l l conditions. The model was derived according to mass transfer principles

where two mass balance equations (one for the part ic le phase and one for the fl uid pbase)

governed the extraction phenomenon. The parameters· fi lm coefficient, effective

diffusivity coefficients, adsorption and equi l ibrium constants were adj ustable parameters

and fi tted to match the experimental result by Powel l ' s minimization method an objective

function defined as the minimum sum of squared relative errors. The model can be used

for a feasibil i ty study of a large scale process or selection of better conditions that yield

78

Page 94: Supercritical CO2 Extraction of Oil from Henna Flower

higher e tract quality. Moreo er, tbe propo ed mod I can be te ted to model

supercritical e traction of other plant materi al .

79

Page 95: Supercritical CO2 Extraction of Oil from Henna Flower

8 R E F E R E T C E S

bourriche, A . , Oumarn, M. , Hannache, H . , Adi l , A . , Pai l ler R . , aslain, R . , B irot, M . & Pi l lot , l P. (2009) . Effect of toluene proportion on the yield and compo ition of oil obtained by upercri tical extraction of Moroccan oil shale. The Journal of

upercri tical Fluid , 5 1 ( 1 ), 24-2 . Anite cu, G . , & Tavlaride , L . L . (1 997) . Solubi l i t ies of solid in supercrit ical fluids: I .

ew qua istatic experimental method for polycycl ic aromatic hydrocarbons ( PAH ) + pure fluid . The Journal of Supercritical Fluid , 1 0( 3 ) , 1 75- 1 89 .

Annstrong, . D . ( 1 999) . Microwa e-Assisted Extraction for the Isolation of Trace Sy temic Fungicide from Woody Plant Materia l . Faculty of the Virginia Polytechn ic in titute and State Uni ersi ty, Virginia.

A hraf-Khora ani , M., Taylor, L . T. , & Zimmennan, P. ( 1 990) . N i trous oxide versus carbon dio ide for upercrit ica l -fluid extraction and clu'omatography of amines. Analytical Chemistry, 62( 1 1 ) 1 1 77- 1 1 80 .

B .Gupta, R . , & him, J . -J . (2007) . Solubi l ity in supercritical carbon diox ide ( 1 ed . ) . New York: Taylor and Francis Group.

Bernardo-Gi l , M. G . , & Ca qui l ho, M . (2007) . Model ing the supercritical fluid extraction of hazelnut and walnut oi ls . A IChE Journal , 53 ( 1 1 ), 2980-2985 .

Bernardo-Gi l , M . G . , Lopes 1 . M . G . , Casqui lho, M . , Ribeiro, M . A . , Esquivel, M . M . , & Empis, J . (2007) . Supercritical carbon dioxide extraction of acorn o i l . The Journal

of Supercri t ical Flu ids, 40(3 ), 344-348. B H . , A . AK. B. , & MO., T. ( 1 995) . inflammatory, antipyret ic, and analgesic effects of

Lawsonia inermis L . ( henna) in rats . J ournal of pharmacology 5 1 , 3 56-363 . Brunner, G . (2009) . Near and supercri tica1 water. Part 1 1 : Oxidative processes. The

Journal of Supercri t ical F luids, 47( 3 ) , 3 82-390. Campos, L. M. A . S. , M ichiel in E. M. Z . , Danielski L. , & FelTeira, S . R . S . ( 2005) .

Experimental data and model ing the supercritical fluid extraction of marigold

(Calendula officinal is) oleores in . The Journal of Supercritical F lu ids , 34(2) , 1 63-1 70 .

Ceni , G . , S i lva P . C . d . Lerin , L . , Charin, R. M . OLiveira, J . v . , Toniazzo, G . , Treichel, H . , Oestreicher, E . G . & Oliveira, D . d . (20 1 0) . Enzyme-catalyzed production of 1 -g1yceryl benzoate in compressed n-butane. Enzyme and Microbial Technology

46(6), 5 1 3-5 1 9 . Chan C . -H . , Y usoff R . N goh, G . -c . , & Kung, F . W . -L . (20 1 1 ) . M icrowave-assisted

extraction of active ingredients from plants. J ournal of Chromatography A,

1 2 1 8( 37 ), 62 1 3-6225 .

Chaudhary, G . Goyal , S . , & Poonia, P . (20 1 0) . Lawsonia inermis Linnaeus : A Phytopharmacological Review. internat iona l Journal of Phannaceutical Sciences and Drug Research , 2 (2) , 9 1 -98 .

80

Page 96: Supercritical CO2 Extraction of Oil from Henna Flower

hen P . - . Chen W.-H . Lai .- . , & Chang, C . -M. 1 . ( 20 1 1 ) . Solubi l i ty of l atropha and Aqui laria oi l in supercritical carbon dio ide at elevated pres ure . The Journal [ upercri ticaJ F luids, 5 5( 3 ), 893-897.

Chibara, K. , Sumitomo K. Omote, M . S imokawatoko T. , Takubo, M . Kono K. & Kawai, T. (20 1 2) . upercriticaJ propane regeneration of activated carbon fiber ad orbed by hea y oi l

Chra t iL 1 . ( 1 9 2 ) . Solubil ity of ol id and l iquid in upereri tical gases. The 10urnal of

Phy ieal Chemi try, 86( 1 5 ) , 30 1 6-302 1 . Crank, 1 . (1 975) . The Mathematic of d iffusion ( 2 ed . ) . New York : Oxford Univer ity

Pr Damjanovie, B., Lepoje ic, Z . Zivkovic, V., & Tolic, A. (2005 ) . Extraction of fennel

( Foen iculum ulgare M i l l . ) eed with supercritical C02 : Comparison with hydrodi t i l lation. Food Chemistry 92(1 ), 1 43 - 1 49.

Del aIle, 1. M . , & Agui lera, 1. M. ( 1 988) . An improved equation for predicting the solubi l ity of vegetable o i ls in upercrit ical carbon dioxide. Industrial & Engineering Chemi try Research, 27(8) , 1 55 1 - 1 55 3 .

Ooker 0 . , Salgm, U . , Sanal 1 . , U . Mehmetoglu, & Cahml l , A . ( 2004) . Model ing of e traction of beta-carotene from apricot bagasse using supercritical CO2 in packed

bed extractor. The Journal of Supercritical F luids, 28( 1 ) 1 1 - 1 9.

Ou ernag, W . H . , Assad, J . M . , Sabiov, C . M . , Lima, M . , & Xu, Z . (2005 ) . Microwave Extraction of Antioxidants Components from Rice Bran. The official Journal of I SPE, 25(4) .

Endrini, S . , Rahmat, A. , Ismai l , P . , & Taufiq-Yap, Y. H. ( 2007). Comparing of the cytotoxici ty properties and mechanism of lawsonia inermis and strobilanthes cri pu extract against severak cancer cel l l i nes. 10urnal of medical sciences, 7(7) , 1 098- 1 1 02 .

Esmaeilzadeh, F . , A adi, H . & Lashkarb0100ki, M . ( 2009) . Calculation of the sol id

solubi l i t ies i n upercri t ical carbon dioxide using a new Gex mixing rule. The

Journal of Super cri t ical F luids, 5 1 ( 2 ), 1 48- 1 5 8. EsqUIve l , M . M. Bernardo-Gi l , M. G . & King, M. B . ( 1 999) . Mathematical models for

supercritical extraction of o l ive husk o i l . The Journal of Supercri t ical F luids,

1 6( 1 ), 43-58 . F ischer, A . , Mal lat, T . , & Baiker A . ( 1 999) . Synthesis of 1 ,4-Diaminocyclohexane in

Supercritical Ammonia . Journal of Catalysis, 1 82(2), 289-29 1 . Franke, M . , Winek, C . L . , & Kingston, H . M . ( 1 996) . Extraction of selected drugs from

serum using microwave i rradiation. Forensic Science International , 8 1 ( 1 ), 5 1 -59 .

Ganzer, K . , Saigo, A . , & Valko, K . ( 1 986) . M icrowave Extraction : Anovel Sample Preparation method for Chromatography. Journal of Chromatography 37 1 , 299-306.

8 1

Page 97: Supercritical CO2 Extraction of Oil from Henna Flower

Garcfa-Ri co, . R. thyme (Thymu The Journal of

icente G . , Reglero, G. , & Fornari T. ( 20 1 1 . Fractionation of ulgari L . ) by upercri tical fluid extraction and chromatography.

upercritical Fluid , 5 5( 3 ), 949-954. Ga par, F . , Lu, T. Santo , R . , & AI-Duri , B . ( 2003 ) . Model l ing the extraction of es entiat

oil with compre sed carbon dio ide. The Journal of Supercritical Fluids, 25 (3 ) , 247-260.

Gonen, M., Balko e, D., & lku, . ( 20 1 1 ) . Supercrit ical ethanol drying of zinc borates of 2ZnO· 3 B:cOy 3 H�0 and ZnO' B20y 2H20. The Journal of Supercritical Fluids, 59(0), 43-52 .

Gong, X . - . , & Cao X.-J . ( 2009) . Mea urement and correlation of sol ubi l ity of artemi inin in supercritical carbon dio ide. Fluid Phase Equil ibria, 284( I ) , 26-30.

Goto, M. , Roy, B. C . & Hirose, T. ( 1 996) . Shrinking-core leaching model for upercri t ica l - flu id extraction. The Journal of Super cri t ical F luids, 9(2) , 1 28- 1 33 .

Gracia, I . , Garcia, M . T. , Rodriguez, J . F . , Fernandez, M . P . , & de Luca , A . ( 2009) . Model l ing of the phase behaviour for vegetable o i ls at supercritical conditions.

The Journal of Supercrit ical Fluid , 48(3 ), 1 89- 1 94 .

Gro 0, C. , Coelho, J . P . , Pessoa, F. L . P . , Fareleira, J . M . N . A . , Barroso, J . G . , Urieta, J .

S . , Palavra, A . F . , & Sovov, H. (20 1 0) . Mathematical model l ing of supercritical C02 extraction of olat i le o i l s from aromatic plants. Chemical Engineering

Science, 65( 1 1 ) , 3 579-3590. Gui, M. M . , Lee, K. T . , & Bhatia S . ( 2009) . Supercrit ical ethanol technology for the

product ion of biodiesel : Process optimization studies. The Journal of Supercrit ical F lu ids, 49(2) , 286-292.

Guiochon G., & Tarafder, A. (20 1 1 ) . Fundamental chal lenges and opportunities for preparative supercrit ical fluid chromatography. Journal of Chromatography A, 1 2 1 8(8) , 1 037- 1 1 1 4 .

Handa, S . S . , Khanuj a, S . P . S . , Longo, G . , & Rakesh, D . D . (2008). Extraction Technologies for Medicinal and Aromatic Plants ( 1 ed. ) . Trieste :

INTERN A TIONAL CENTRE FOR SC IENCE AN D H IGH TECHNOLOGY . H ashimoto, T . , Fuj ito, K . , Haske l l, B . A . Fini P . T . , Speck, 1 . S . , & Nakamura, S .

( 2005 ) . Growth of gal l i um n itride via flu id transport in superclitical ammonia .

Journal of Crystal Growth 275 ( 1 2) , e525-e530.

H souna, A. B . , Trigu i , M. Cul iol i , G . r . , B lache, Y. , & Jaoua, S . (20 1 1 ) . Antioxidant

constituents from Lawsonia inermis leaves : I solation, structure e lucidation and antioxidative capacity. Food Chemistry, 1 25( 1 ), 1 93 -200.

H uang, Z. , Yang, M . -1 . , L iu , S . -F . , & Ma, Q. (20 1 1 ) . Supercrit ical carbon diox ide extraction of Baizhu: Experiments and modeling. The Journal of Supercrit ical

F lu ids, 58 ( 1 ), 3 1 -39 .

82

Page 98: Supercritical CO2 Extraction of Oil from Henna Flower

H\ ang, G . . K im, B . K . , Bae, . Y . , Y i S . c. , & Kumazawa, H . ( 1 999). Degradation of Poly tyrene in upercri ticaJ Acetone. Journal of Indu trial and Engineering

hemi try, 5 (2 ) 1 50- 1 54 . Jal lad, K. . , & E pada-JaUad, C . (2008) . Lead expo ure from the u e of Law onia

inermi ( Henna) in temporary paint-on-tattooing and bair dying. Science of The Total En ironment, 397( 1 3 ), 244-250.

J ia, D., Li , S. , & Xiao, L . ( 2009a) . Supercritical O:! extraction of Plumula nelumbini

oi l : , periments and model ing. Journal of Supercritical Fluids, 50, 229-234.

J ia, D. , Li , . , & Xiao, L . ( 2009b) . upercli tical CO2 extraction of Plumula nelumbinis o i l : Experim nt and model ing. The Journal of Supercrit ical F luids, 50( 3 ) 229-

234. Joung, S . , Park S., Kim S., Yoo, K.-P. & Bae, S. ( 1 999) . Thern10lysis of crap tire using

upercri t ical toluene. Korean Journal of Chemical Engineering, 1 6( 5 ), 602-607 . Khajeh, M . , Yamini, Y . , Bahramifar, N . , Sefidkon, F . , & Reza Pinnoradei , M . (2005) .

Comparison of e s ential o i l s compositions of Ferula assa-foetida obtained by

upercri tical carbon dioxide extraction and hydrodi t i 1 1ation methods. Food

Chemi try, 9 1 (4) , 639-644. Kipcak, E . , KJpcak, E . , Sogut 0. 0., & Akgun, M. (20 1 1 ) . Hydrothennal gasification of

oli e mi l l wastewater a a biomass source in supercrit ical water. The Journal of

Supercri tical F luids, 57 ( 1 ), 50-57 . .Kru e, A . , & Dinj us, E . ( 2007) . Hot compressed water as reaction medium and reactant :

2 . Degradation reactions. The Journal of Supercrit ical F lui ds, 4 1 ( 3 ), 3 6 1 -379. Lachance R. , Paschkewitz, 1 . , DiNaro, 1 . , & Tester, 1 . W . ( 1 999) . Thiodiglycol

hydrolysi and oxidation in sub- and supercritical water. The Journal of Supercritical F luids, 1 6(2 ) 1 33 - 1 47 .

Langa, E . , Cacho, J . , Palavra, A . M . F . , Buri l lo, J . , Mainar A . M . , & Uri eta 1 . S . ( 2009) .

The evolution of hyssop o i l composition in the supercritical extraction curve : Mode l li ng of the o i l extract ion process. The Journal of Supercrit ical Fluids, 49( 1 ),

37-44. Langa, E., Porta, G. D . Palavra, A. M. F., U ri eta, J . S . , & Mainar, A. M . (2009) .

Supercrit ical flu id extraction of Spanish sage essentia l o i l : Opt imization of the process parameters and model l ing. The Journal of Supercritical F luids, 49(2) ,

1 74- 1 8 1 .

Lee S . -B . , & Hong, I . -K . (1 998) . Depolymerization Behavior for cis-Polyi soprene Rubber in Supercrit ical Tetrahydrofuran. Journal of I ndustrial and Engineering

Chemistry, 4 ( 1 ), 26-30.

Letel l ier, S . , Marias, F . , Cezac, P. , & Serin, 1 . P. ( 20 1 0) . Gasification of aqueous biomass in supercritical water: A thermodynamic equil i brium analysis. The Journal of Supercrit ical F luids 5 1 (3 ), 353 -36 1 .

83

Page 99: Supercritical CO2 Extraction of Oil from Henna Flower

Leu brock 1 . tz, . J . Rex\ inkel, G . , & Versteeg, G . F. (20 1 0 ) . The olub i l it ie of pho phate and u l fate alt in upercritical water. The Journal of Supercritical Fluid , 54( 1 ), 1 - .

Liu, J . , Lin, . , Wang, Z. , Wang, c., Wang, E . Zhang, Y . , & Liu, J . ( 20 1 0) . Supercrit ical fluid e traction of fla onoid from Maydi t igma and i t n itrite-scavenging abi l i t . Food and Bioproduct Proces ing 9(4), 333-339 .

Luque de Ca tro, M . D . , & Garcia· Ayu 0, L . E . ( 1 998) . oxhlet extraction of ol id material : an outdated technique with a promising innovative future. Analytica Chimica Acta, 369( 1 2 ) , 1 - 1 0 .

Luque d Ca I:ro, M . D. & Priego-Capote, F. ( 20 1 0) . Soxblet extract ion: Past and present panacea. 10urnal ofClu'omatography A 1 2 1 7( 1 6) , 2383-2389.

Madra , G . (2004) . Thermodynamic model ing of the solubi l ities of fatty acids in upercri tical fluids. F lu id Pha e Equi l ibria, 220(2 ) , 1 67- 1 69.

MandaI , V. , Mohan, Y. & Hemalatha, S . ( 2007) . Microwave assisted extraction - An innovati e and promi ing extraction tool for medicinal plant research.

Phamlacognosy Review , 1 ( 1 ), 7- 1 8 . Marias, F . , Lete l l ier, S . , Cezac, P . , & Serin, J . P. ( 20 1 1 ) . Energet ic analysis of

gasification of aqueous biomass in supercritical water. B iomass and Bioenergy,

3 5 ( 1 ) , 59-73 .

Martinez-Correa, H. A, Gomes D. C . A . , Kanehisa, S . L . , & Cabra l , F . A (20 1 0). Measurement and thermodynamic model ing of the solubi l ity of squalene in upercrit ical carbon dioxide. JOW11al of Food Engineering 96( 1 ), 43-50.

McHugh, M. A, & Krukonis, V . J . ( 1 994 ) . Supercritical F luid Extraction (2 ed . ) . Washington: Butterworth-Heinemam.

M ikhaei l , B. R . , Badria, F. A . , Maatooq G. T., & Amer, M . M. A . (2004) . Antioxidant

and imrnunomodulatory constituents of henna leaves. 10umal of biosciences, 59(7-8) 468-476

N aik, S . N. Lentz, H . , & Maheshwari R . C. ( 1 989) . Extraction of Perfumes and F lavours

from P lant material with l iquid Carbon diox ide under l iquid-vapor Equil ibrium Conditions. F lu id Phase Equi l ibria, 49, 1 1 5 - 1 26 .

ei , H. Z . N. , Fatemi, S . , Mehmia, M. R . , & Sal imi, A . ( 2008 ) . Mathematical model ing

and study of mass transfer parameters in supercritical fluid extraction of fatty

acids from Trout powder. Biochemical Engineering 10urnal, 40( 1 ), 72-78.

Okubo, M. ( 2005) . Polymer Particles ( 1 ed . ) . The Netherlands : Springer-Verlag Berl in Heidelberg.

Ol iveira, E . L. G . , S i l vestre, A. 1. D . , & S i lva, C. M. (20 1 1 ) . Review of kinetic models

for supercri t ical fluid extraction. Chemical Engineering Research and Design, 89(7) , 1 1 04- 1 1 1 7 .

84

Page 100: Supercritical CO2 Extraction of Oil from Henna Flower

t u 1 . & 0 hima, Y . (2005 ) . ew approaches to the preparation of metal or metal oxide part ic le on the urface of porous material u ing supercritical water: : Development of upercritical water impregnation method. The Journal of

upercritical Fluid , 33( 1 ) , 6 1 -67 . Ozkal, . G. Yener M. E. & Baymdlrh, L (2005 ) . Mass tran fer model ing of apricot

kernel o i l e traction with uperclitical carbon dioxide. The Journal of upercritical F luid , 3 5( 2 ), 1 1 9- 1 27 .

Pan, Z. Y . , Bao, Z . , & Chen, Y. X . (2006) . Depolymerizat ion of Poly(bisphenol A carbonate) in ubcri tical

and upercri t ical Toluene. hine e Chemical Letters, 1 7(4) , 545-548.

Papamicbai l , 1 . , Loul i , V. , & Magoula , K. (2000). Supercritical fluid extraction of celery e d o i l . The Journal of Super crit ical F luids, 1 8( 3 ), 2 1 3 -226.

Park H . . , Choi, H . -K. , Lee, . J . , Park, K . W . Choi, S . -G . & Kim, K . H . (2007) .

Effect of rna s transfer on the remo al of caffeine from green tea by supercli tical carbon dioxide. Journal of Supercritical F lu ids 42, 205-2 1 1 .

Poh, S . , Hernandez, R . I nagaki, M . & Jessop, P . G . ( 1 999) . Oxidation of Phosphines by Supercrit ical N i trou Oxide. Organic Letters 1 (4 ), 583 -586.

Priya, R. , I 1 a eni l , S . , Kaleeswaran, B. , Srigopalram, S . , & Ravikumar, S . ( 20 1 1 ) . Effect of Law onia inermis on tumor expression induced by Daltons lymphoma ascites

in Swis albino mice. Saudi Journal of Biological Sciences, 1 8(4) , 3 53 -3 59. Que ada-Medina, 1 . & Ol i ares-Carr i l lo, P . ( 20 1 1 ) . Evidence of thermal decomposition

of fatty acid methyl esters during the synthesis of biodiesel with supercritical methanol . The 10urnal of Superclitical F lu ids, 56( 1 ), 56-63 .

Rei -Va co E . M . C , Coelho, 1 . A . P. Palavra, A . M . F. , Marrone, C , & Reverchon, E . (2000). Mathematical model l ing and simulat ion of pennyroyal essential o i l upercrit ical extraction. Chemical EngineeIing Science, 55 ( 1 5 ) 29 1 7-2922.

Reverchon, E. ( 1 997) . Supercritical fluid extraction and fractionation of essential oi ls and related products. The Journal of Supercritical Flu ids, 1 0( 1 ) 1 -37 .

Re erchon, E . , Donsi , G . , & Sesti Osseo L . ( 1 993) . Modeling of supercrit ical fluid extract ion from herbaceous matrices. I ndustrial & Engineering Chemistry Research, 32( 1 1 ), 272 1 -2726.

Reverchon, E . , & Marrone, C . (200 1 ) . Model ing and s imulation of the supercritical CO2 extraction of vegetable oi ls . Journal of Super crit ical F lu ids 1 9, 1 6 1 - 1 75 .

Rezaei , K. A . & Temel l i , F . ( 2000). Using supercrit ical flu id chromatography to detennine d iffusion coefficients of l ipids in supercritical CO2 . The Journal of Supercrit ical F l uids, 1 7( 1 ), 3 5-44.

Royon D . Locatel l i , S . , & Gonzo, E . E . ( 20 1 1 ) . Ketal ization of glycerol to solketal in

supercrit ical acetone . The Journal of SupercriticaJ F luids, 58( 1 ), 88-92 .

85

Page 101: Supercritical CO2 Extraction of Oil from Henna Flower

Ruet ch, L . , Daghero, 1 . , & Mattea, M. ( 2003 ) . upercri tical extraction of ol id matrice . Model formulation and xperiment . Lat in merican appl ied re earch, 33 , 1 03 -1 07 .

angon, . Ratana araha, gampra ert ith, . , & Pra a arakich, P. (2006). Coal l iquefact ion u ing upercritical toluenetetral in mi ture in a semi-continuous reactor. Fuel Proce ing Technology, 87( 3 ), 20 1 -207.

ant iago, J. M., & Teja, . . ( 1 999). The olubi l ity of ol id in upercri tical fluids. F lu id Pha e Equi l iblia, 1 60, 50 1 -5 1 0 .

avage, P. E . (2009). per pecti e on cataly i in ub- and supercritical water. The Journal of upercritical F luid 47(3 ), 407-4 1 4.

awangkeaw, R . , Bunyakiat, K., & gamprasertsith, S . ( 2009) . A re iew of laboratory­cal re earch on l i pid can er ion to biodiesel with upercritical methanol ( 200 1 -

2009) . The Journal of Supercritical Fluid , 5 5( 1 ), 1 - 1 3 . hao L . , Bai, Y . , H uang, . , Gao, Z . , Meng, L . , Huang, Y . , & Ma, 1 . (2009). Mult i­

wal led carbon nanotube ( M WCNTs) functiona l ized with amino groups by reacting with upercritical ammonia fluids. Material Chemistry and Physics 1 1 6( 23 ), 323-326.

harma, A . , & Sharn1a, K. ( 20 1 1 ) . A ay of Antifungal Activity of Lawsonia inermis

L inn. and Eucalyptu citriodora Hook. Journal of Pharmacy Research, 4(5 ), 1 3 1 3 -

1 3 1 4 . otelo, J . L . , Rodriguez, A . , & . 1 . Agueda, P. G . (20 1 0) . Supercri tical fluid as react ion

media in the ethylbenzene d isproport ionation on ZSM-5 . The Journal of Supercrit ical F lu id , 55 ( 1 ) , 24 1 -245.

Sovova, H . , Stateva, R . P. , & Galushko, A . A. ( 200 1 ). Essent ial oi ls from seeds :

olubi l i ty of l imonene in supercritical CO2 and how i t is affected by fatty o i l . The Journal of Supercritical F lu ids, 20(2) , 1 1 3 - 1 29 .

Sun, L . , & Lee, H . K. ( 2003 ) . Optimizat ion of microwave-assisted extraction and

supercri tical fluid extraction of carbamate pest icides in soi l by experimental design methodology. Journal of Chroma tog rap by A 1 0 1 4( 1 65 - 1 77) .

Taathke P . , & Y.Jai wal (20 1 1 ) . An Overview of Microwave Assisted Extraction and i ts Applicat ion in Herbal Drug Re earcb. Re earch Journal of Medicinal Plants, 5 ( 1 ), 2 1 -3 1 .

Tan, K. T. , Lee, K . T . , & Mohamed, A. R . ( 20 1 0) . Effects of free fatty acids, water

content and co-solvent on biodiesel production by supercri tical methanol reaction. The Journal of Superclit ical F luids, 53 ( 1 3 ), 88-9 1 .

Uddin, . , S iddiqui, B . S . , Begum, S . Bhatt i , H . A . , Khan, A . , Parveen, S . , & Choudhary, M . I . ( 20 1 1 ) . B ioactive flavonoids from the leaves of Lawsonia alba

( Henna). Phytochemistry Letters, 4(4), 454-458. Valerio, A. F iamett i , K . G . , Rovani , S. , Franceschi, E . , Corazza, M . L . , Treichel , H. , de

Ol iveira, D. b . , & Oliveira, 1 . V. ( 2009) . Enzymatic production of mono- and

86

Page 102: Supercritical CO2 Extraction of Oil from Henna Flower

diglyceride III compre ed n-butane and AOT urfactant. The Journal of upercritical F luid , 49(2 ) 2 1 6-220.

\- an Bennekom, 1. . , enderbo ch R. H . , A ink, D . , & Heere , H . J . ( 20 ] 1 ) . Reforming of methanol and glycerol in upercritical water. The Journal of Supercri tical Fluid , 58( 1 ), 99- 1 1 3 .

aquero, E. M . , Beltrn , . , & anz, M . T (2006) . Extraction of fat from pigskin with upercritical carbon dioxide. The Journal of upercritical Flu ids 37( 2) , 1 42- 1 50.

ogel , F. d . r . , B lanchard J . L. D . , Marrone, P . A . , Rice S . F . , Webley, P. A . , Peter , W. A. , mi th, K . . , & Te ter, 1 . W. ( 2005 ) . Critical re iew of kinet ic data for the ox idation of methanol in upercri tical water. The Journal of Supercritical F luid 34(3 ) , 249-2 6 .

ogelaar, B. M . , Makkee, M . , & Moulijn , J . A . ( \ 999) . Applicabi l i ty of supercritical

water a a reaction medium for de ulfuri ation and demetal l i sation of gasoi l . Fuel Proce ing Te hnology, 6 \ ( 3 ), 265-277.

yalov, 1 . , Kisele , M . , Tas aing, T, Soetens, 1 . c. , Federov, M., Damay, P . , & ldrissi , . ( 20 1 1 ) . Reorientat ion relaxat ion in supercri t ical ammonia. Journal of

Molecular Liquid , 1 59( 1 ), 3 1 -37 .

Wang, c. , Chen, W . , Wang, W . , Wu, Y . , Ch i , R. , & Tang, Z. ( 20 1 1 ) . Experimental tudy

on methanol recovery through flashing aporation in continuous production of biodiesel via supercritical methanol . Energy Conversion and Management, 52(2) ,

1 454- 1 45 . Wang, J . , Chen, J . , & Yang, Y . ( 2004) . Solubi l i ty of titanocene dichloride in supercritical

propane. F l uid Pha e Equil ibria, 220(2) , 1 47- 1 5 1 .

Wang, . , Bornath W . , Paul ing, H . , & Kienzle, F . ( 2000) . The syn thesis of d, l -tocopherol in upercritical media . The Journal of Super crit ical Fluids 1 7( 2 ), 1 35 - 1 43 .

ang, S . , Karpf, M . , & Kienzle, F . (1 999) . Ammonolysis with supercri tical N H3 . The

Journal of Super critical F luids, 1 5( 2 ), 1 57- 1 64 .

Wong, K . c. , & Tong, Y . E . ( 1 995) . Volat i le components of lawsonia inermis L . flowers. Journal of e sentia l oi ls re earch, 7, 425-428.

Y azdizadeh, M . , Eslamimanesh, A . & Esmaei lzadeh, F . ( 20 1 1 ) . Thermodynamic model ing of solubi l ities of various solid compounds in supercritical carbon dioxide: E ffects of equat ions of state and mixing rules. The Journal of

Supercritical F luids, 5 5 ( 3 ), 86 1 - 75 . Yeo, S . -D . , & Kiran, E. (2005 ). Formation of polymer particles with supercrit ical fluid :

A review. The Journal of Supercritical F luids, 34( 3 ), 287-308. Yoneyama, Y. Sun, x., Zhao, T. Wang, T , I wai , T . , Ozaki K. , & Tsubaki, N. (2009) .

Direct synthesis of isoparaffm from synthesis gas under supercritical conditions. Catalysis Today, 1 49( 1 2 ), 1 05- 1 1 0 .

87

Page 103: Supercritical CO2 Extraction of Oil from Henna Flower

Yo hida, T. , 0 hima, Y . , Mat umura Y. (2004) . Ga i fication of bioma model compound and real bioma in upercritical " ater. B ioma s and Bioenergy, 26( 1 ), 7 1 -7 .

Zhang, P. , Huang, Y . , hen, B . , & Wang R. Z. ( 20 1 1 ) . Flow and heat tran fer characteri t ic of upercri tical n itrogen in a ertical mini-tube. lnternational Journal of Thermal cience , 50( 3 ) 2 7-295 .

Zheng, Q. . , Li , B . , ue , M . , Zhang, H . D . , Zhan, Y . 1 . , Pang, W. S . , Tao, X . T. , & J iang, M . H . ( 200 ) . ynth i of YV04 and rare earth-doped YV04 ultra-fine particle in upercritical \ ater. The Journal of upercri tical Flu ids, 46(2 ), 1 23 -

1 2 . Zhou, C. , Wang, c. , \ ang, . Wu, Y . , Yu, F . , Chi , R. a . , & Zhang, J . (20 1 0) .

Continuou Production of Biodie el from Soybean Oi l Using Supercri tical Methanol in a Vertical Tubular Reactor: 1 . Phase Holdup and Distribution of Intern1ediate Product along the Ax ial Direction. Chinese Journal of Chemical Engineering, 1 8(4), 626-629.

Zhuang, M. . , & Thie , . C . ( 1 999) . Extraction of Petroleum Pitch with Supercritical Toluene: Experiment and Prediction. Energy & Fuel , 1 4( 1 ), 70-75 .

88

Page 104: Supercritical CO2 Extraction of Oil from Henna Flower

9 A P P E N D I C E S

A p p e n d i x A

E x p e ri m e n ta l data of F E o f volati l e c o m po n e n ts fro m flower of h e n n a

Thi ection include the value of extTaction yields for each run that were

obtained experimental l y and mathematica l ly at each extract ion condition.

35 °C and 80 bar

20

1 3 5 °C and 80 bar ....... 1 6 �. ... 1 4

,........ p � � '-' 1 0 '"0 a:> >= • Experimental 6

4 - Mathematical

2 Modeling

0 0 200 400 600 800

CO, (g)

89

Page 105: Supercritical CO2 Extraction of Oil from Henna Flower

CO2 g

0 3 . 8832

9,-85556 1 1 .6496 1 5 5328 1 9 .4 1 6 38 .832 58.248 77.664 97.08

1 1 6 .496 1 35 .9 1 2 1 55.328 1 82 . 5 1 1 94 . 1 6

2 1 6.683 232 .992 252 .408 27 1 .824 29 1 .24

3 1 0.656 330.072 349.488 368 .904 388.32

407.736 427. 1 52 446.568 468.3 1 4

485.4 504.8 1 6 524.232 543 .648 563 .064 582.48

60 1 .896 62 1 .3 1 2 640.728 660. 1 44 679.56

698.976

0'0 Yc,p 0

0.94 1 1 9 0.74 1 99 I 1 0552 1 . 1 3042 1 .90728 2 02679 2.684 1 3 3 . 1 77 1 3 4 1 1 334 4 .52 1 69 5 .3 1 846 6.33435 6.78253 6.97 1 76 7.58926 7.9727 1 8 .38 1 06 8.83422 9.49 1 56 9.60 1 1 2 1 0 .4029 1 0.5473

1 1 . 1 1 1 .5034 1 2 .4645 1 2 .7 1 35 1 3 .3858 1 4 .0929 1 5 . 1 1 88 J 5 .288 1 1 5 .6964 1 6. 1 596 1 6.7472 1 7 .4643 1 7.8577 1 8 . 1 2 [ 6 1 8 . 1 863 1 8 .2909 1 8 .3656 1 8 .4802

0/0 Y cal

0 0. 1 30 1 2 0.5 1 273 0.62474 0.85989 1 .086 1 1 2. 1 1 6 1 7 3 .02577 3 .85056 4.6 1 004 5 .3 1 666 5.97904 6.60353 7 ,42322 7 .75727 8 .3770 I 8.806 1 4 9.29743 9.769 1 8 1 0.223

1 0.660 1 1 1 .08 1 8 1 I .489 1 1 I . 883

1 2.2642 1 2.6336 1 2.99 1 7 1 3 .3393 1 3 .7 1 67 J 4.0048 1 4.3237 1 4 .634 1 4.936

1 5 .230 1 1 5.5 1 67 1 5 .796

1 6.0684 1 6.3342 1 6.5935 1 6 .8466 1 7 .0938

90

Page 106: Supercritical CO2 Extraction of Oil from Henna Flower

35 °C and 1 00 bar

25

20

5

o o

CO� (g) 0

4.088 1 5

8. 1 763

1 3 .8997

20.4408

4 1 .699 1

6·U928

8 1 .763

1 02.204

1 22.645

1 43 .085

1 63.526

1 83.967

204.408

224.848

245.289

263.277

286. 1 7 1

306.6 1 1

327.052

347.493

367.934

3 88.374

4 1 0.45

429.256

449.697

470. 1 3 7

490.578

5 1 2.409

532.277

553 . 1 27

572.34 1

592.782

6 1 3.223

633.663

654. 1 04

674.545

694.986

3 5 0 and 1 00 bar

0 0 l'C\n 0

0.633 1

0.9322

1 .05683

1 .3659

2.44267

3 . 3 1 007

4 . 2 1 236

5.00997

6.2 1 1 3 7

7. 1 336

7.936 1 9

8.44965

9 56 1 32

1 0. 3 29

1 0.987

1 2.293 1

1 2 .5972

1 3 .5593

1 4.2722

1 4.7856

1 5 .4287

1 6.30 1 1

1 6.9191

1 7.5025

1 8.290 1

1 9. 1 874

1 9.332

1 9.8355

20.3 1 9

20.4786

20.5284

20.8225

20.9472

2 1 .05 1 8

2 L296 1

2 1 .3659

2 1 .4307

200

0 0 Ycal 0

0. 1 584 1

0.45262

0.85095

1 .28566

2.59 1 1 9

3 .86637

4.75634

5.75564

6.6991 1

7.5945 1

8.447 1 8

9.26 1 66

1 0.04 1 5

1 0.7898

1 1 .5089

1 2 . 1 1 93

1 2&68 1

1 3 .5 1 1 6

1 4 . 1 33

1 4.7337

1 5. 3 1 47

1 5 .877 1

1 6.4646

1 6.9496

1 7 .46 1 3

1 7.9578

1 8.4395

1 8.9384

1 9.379 1

1 9 .8283

20.2308

20.6473

2 1 .0522

2 1 .4459

2 1 .8287

22.20 1 1

22.5633

400 CO� ( g)

• Experimental

- Mathematica 1 m deling

600 800

9 1

Page 107: Supercritical CO2 Extraction of Oil from Henna Flower

35 °C a n d 1 20 b a r

2 5

20

;0- 1 5 � -0 V >- 1 0

5

o

CO�g 0

4.22735

9.300 1 7

1 2.682 1

1 6.9094

2 1 . 1 368

42.2735

63.4 1 03

84.547

1 04.838

1 26.82 1

1 47.957

1 69.094

1 92.767

2 1 1 .368

232.504

253.64 1

273.932

295.9 1 5

3 1 7.05 1

338 . 1 88

3 59.325

380.462

40 1 .598

422.735

443.872

465.009

486. 1 45

507.282

526.728

542.792

549.556

570.692

5 9 1 .829

6 1 2.966

634. 1 03

o

3 5 °C and 1 20 bar

200

0 0 Y<'<I' 0 0 Yea I 0 0

1 .06 1 07 0. 1 99 1 5

1 . 1 8063 0.63856

1 .4 1 477 0.9 1 757

1 .52436 1 .25305

1 63894 1 .57622

2.665 1 4 3 .05587

345223 ·U7269

4.5 1 828 5.57233

5 80353 6.63693

6 . 8 1 977 7 . 7 1 074

7.91 073 8.67678

8.75262 9.5862 1

9.9980 1 1 0.5456

1 0.6556 1 1 .26

1 1 4078 1 2 .0338

1 2 .2596 1 2 .7707

1 3 . 1 1 65 1 3 .446

1 4.0879 1 4 . 1 449

1 4 .9 1 48 1 4.787 1

1 5 .8862 1 5 .4022

1 6.7729 1 5 .99 1 8

1 7 .6796 1 6 .5576

1 8 .46 1 7 1 7 . 1 008

1 93982 1 7 .6228

1 9.8864 1 8 . 1 247

:W.255 1 1 8 .6075

20.6685 1 9 .0722

2 1 .062 1 1 9 .5 1 96

2 1 .27 1 3 1 9.9 1 66

2 1 .4307 20.2346

2 1 .62 20.3658

2 1 .62 20.766

2 1 .6599 2 1 . 1 5 1 8

2 1 .7695 2 1 .5238

2 1 .7595 2 1 .8826

400

CO� ( g)

• Experimental

- Mathematical Model ing

600

92

800

Page 108: Supercritical CO2 Extraction of Oil from Henna Flower

45 0 a n d 80 ba r

30

25 45 0 and o bar

�20 " 0 � � 1 5 �

>- 1 0 • Experimental

5 athematical odel ing

0 0 200 t-JO

C 1 (g) 600 800

CO� g 0 0 Y c," 0 0 y,.11 0 0 0

3,8832 0.70247 0. 1 3 1 2 7

9.3 1 968 0.86688 0.475 1 8

1 1 .6496 I 1 5584 0.62009

1 6.3094 1 .27043 0.90564

1 9 .4 1 6 1 .36509 1 .09322

3 8.832 2 .48 1 07 2.215 1 8

58,248 3 . 1 636 1 3.30 1 7 1

77.664 4 05042 4.33378

97.08 4.77282 5.3'2772

1 1 6 .496 5 .5002 6.28778

1 3 3 5�2 6.342 1 7 7 . 1 07 1 1

1 58.43 5 7.43822 8.25969

1 74.744 8. 1 7557 8.99257

1 95 .7 1 3 9.0823 9.90925

2 1 3 .576 9.87445 1 0.6686

2E992 1 0.7065 1 1 .4726

252.408 1 1 .3242 1 2 .2553

2 7 1 .824 1 2 .08 1 5 1 3 .0 1 76

2 9 1 .24 1 2 .8 1 89 1 3.7604

3 1 0.656 1 3 .6309 1 4 .4843

330.072 1 4.3882 1 5 . 1 9

349.488 1 5 .255 1 1 5 .878 1

3 7 1 .234 1 6.22 1 6 1 6.6287

388.32 1 7. 1 682 1 7.2038

407.736 1 8. 1 397 1 7.8424

427. 1 52 1 8.7625 1 84654

446.568 1 9 .42 5 1 1 9.0733

465.984 20.008 1 9.6664

485.4 20.48 1 3 20.2452

504.8 1 6 2 1 .2983 20.8 1 0 1

524.232 22.0506 2 1 .36 1 3

543.648 22.7232 2 1 .8994

563.064 2 3 .3 2 1 224245

5 82.48 23 .6299 22.937

601 .896 23 .9886 23 .4372

62 1 .3 1 2 24. 1 63 23.9255

640 728 24.3922 24.402 1

660. 1 44 24.427 1 24.8673

679.56 24437 25.3 2 1 4

698.976 24.407 1 25.7646

93

Page 109: Supercritical CO2 Extraction of Oil from Henna Flower

45 °C a n d 1 00 b a r

35

30 45 °C and 1 00 bar

2 5

--;;- ')0 ::..- --0 � 1 5 >-

1 0

5

0 0 200

CO� (g) 00 Yo," 0 0

8 . 1 763 0.7 1 325 1 2.2645 0.932 7 1 1 6.3526 I 1 3223 20.4408 1 . 1 82 1 40.88 1 5 2.26944 6 1 .3223 3.63 1 1 86.6688 4.6 1 37 204.408 1 0.2649 2 1 5 .037 1 0.9033 245.289 1 1 .45 1 9 265.73 1 3. 1 528

277. 1 77 1 4. 1 453 306.6 1 1 1 6.0 1 58 327.052 1 7.2876 347.493 1 7. 8 1 63 367.934 1 8 .385 388.374 1 9.3376 408.8 1 5 20.4 429.256 2 1 .2878 449.697 21. 1 457 470. \ 3 7 23 . 1 483 490.578 24. 1 259 506. 1 1 3 24.9339 529.824 25 .4576

55 1 .9 26.3604 572.34 1 27.83 1 8 592.782 28.8294 6 1 3.223 28.8543 633 .663 28.949 1 654. 1 04 28.939 1 674.545 29.5925 694.986 29.83 1 9

...... • , ..

•• • +

• Experimental

- Mathematical Model ing

400

CO2 (g)

600

0 0 YC.l1 0

0.2842 0.53 1 5 1 0.77855 1 .02352 2.2 1 752 3 .36835 4.74577 1 0.5836

1 1 .072 1 2 .4308 1 3 .3238 1 3.8 1 52 1 5 .05 1 6 1 5.8875 1 6.7055 1 7.5059 1 8.2893 1 9.0559 1 9.8063 20.5407 2 1 .2595 2 1 .963 1 22.4879 23 .2726 23.9858 24.63 1 8

25.264 25 .8829 26.4888 27.08 1 8 27.6623 28.2306

94

800

Page 110: Supercritical CO2 Extraction of Oil from Henna Flower

45 °C a n d 1 20 b a r

35 45 0 and 1 20 bar

30

25

"? ')0 � -:2 � 1 5 >-

1 0 • Experimental

5 - Mathematical

0 Modeling

0 200 400 600 00 °2 (g)

CO� g 0 0 YCX" 0 0 Yc,1 0 0 0

5.9 1 829 1 .297 1 5 0.49515

8.4547 1 1 4748 0.804

1 2.682 1 1 .87088 1 .29932

1 6.9094 1 .94512 1 .77279

2 1 . 1 368 2.0:W55 1 . 22804

42.2735 3 .38256 4.30077

63.4 1 03 4 84434 6. 1 1902

84.547 6.24616 7.78 1 03

1 05.684 7.88266 9.29422

1 39.503 1 0.41 7 1 1 1 .484

1 69.094 1 1 .7242 1 3 .1093

201222 1 2 4726 1 4 .9 1 6 1

1 1 1 .368 1 4.2836 1 5 .4133

131.504 1 5 .5508 1 6.435 8

253.64 1 1 7. 1 622 1 7 .3928

274.778 1 7.8408 1 8 .299

295.9 1 5 1 8 .983 1 1 9. 1 581

3 1 7.05 1 20. 1 107 1 9.9738

338. 1 88 2 1 .9 1 1 8 10.7488

359.325 1 3 .1389 1 1 .4859

380.462 25 .3 1 43 12. 1 874

3 9 1 .453 15.6935 11.5389

412.735 26. 1 824 13 .492 1

443.872 17.0904 24 0989

465.009 28.2618 14.6775

486. 1 45 28.9862 25.2294

507.281 29.2556 15.756 1

538.564 30.2934 26.49 1 8

549.556 30.6476 26.7385

570.691 30.881 1 27. 1 966

59 1 .829 30.8 5 7 1 27.6339

6 1 2 .966 30.882 1 28.05 1 6

634. 1 03 30.872 1 28.4505

655.239 30.882 1 28.83 1 6

676.376 30.882 1 19. 1 955

95

Page 111: Supercritical CO2 Extraction of Oil from Henna Flower

55 °C a n d 80 ba r

35

30 5 5 °C and 0 bar

25

� 20 -0 u

1 5 >-1 0

5

0 0 1 00 200 300

CO� (g) ° 0 '{C-X" 0 0 YCd! 0 0 0

3 .8832 0.60709 0. 1 5 1 38

7.7664 0 90565 0.42975

1 1 .6496 1 .249 0.70395

1 5 .5328 1 37838 0.97362

1 9 .4 1 6 1 .54757 1 .23936

38.832 2.4582 2.52052

58.248 3 .8863 5 3 .73863

77.664 4.60788 4.90589

99.4099 5.98627 6. 1 6 1 47

1 1 6.496 6.60828 7. 1 1 38

1 3 5.9 1 2 7.479 1 8. 1 627

1 55.328 8.44447 9. 1 7877

1 74 744 9.6636 1 1 0. 1 642

1 94. 1 6 1 0.4399 1 1 . 1 208

2 1 3 .576 1 1 .3406 1 2 .05

232.992 1 2 .3 1 09 1 2 .9533

256.29 1 1 3.6246 1 4. 0044

2 7 1824 1 4.5253 1 4.6862

29 1 .24 1 5 .5603 1 5 .5 1 77

3 1 0.656 1 6.3266 1 6 .3272

3 30.072 1 7 .5707 1 7 . 1 1 54

349.488 1 8.302 1 1 7 .8828

368.904 1 9.3 1 73 1 8 .6303

3 88.32 20. 1 732 1 9.3584

4 1 0.066 20.7454 20. 1 5 1 5

4')9.482 2 1 .3376 20.8403

446.568 2 1 .9098 2 1 .43 1 7

465.984 22.3726 22.0876

485.4 22.6363 22.7267

504. 8 1 6 23.0693 23.3495

524.232 2 3 . 1 389 23 .9563

543.648 23.3 1 8 1 24.5476

568.5 23.3479 25.2826

59·t 1 3 23 .4972 26.0 1 54

684.22 ')3 . 5569 28.4023

698.976 23.527 1 28.7667

7 1 8.392 23 .5768 29.2355

400 500 O2 (g)

96

...

• xperimental

- Mathematical Model ing

600 700 800

Page 112: Supercritical CO2 Extraction of Oil from Henna Flower

55 °C a n d 1 00 b a r

3 0

2 5

20 � <> ;:... "0 � 1 5

>-1 0

5

a a

COe (g) 0

4.088 1 5

8 . 1 763

1 2 .2645

1 6.3526

20.4408

40.88 1 5

6 1 .3223

�1 .763

1 02 . 204

1 1 4.468

1 43 .085

1 63 5�6

I§3.967

2 1 2 5§4

224.848

230.572

265.73

286. 1 7 1

306.6 1 1

3 27.052

347.493

367 934

3 88.374

408. 8 1 5

429.256

449.697

470. 1 3 7

490.578

5 1 8.377

53 1 .46

55 1 .9

592.782

6 1 3.223

633.663

654. 1 04

674.545

694.986

7 1 5.426

55 0 and 1 00 bar

200

0 0 Ynn 0

0.78854

0.93826

1 .44732

1 .68688

2 . 1 7597

3 .20407

3 .64825

5 .43495

5 .80925

6.73 754

7.65085

8.559 1 7

9.79688

1 1 . 1 643

1 1 .823 1

1 2 .8462

1 3 .505

1 4.568

1 5 .9455

1 7 .0 1 85

1 7 .9668

1 9. 1 645

1 9 .7535

20.74 1 6

1 1 .9694

13. 1 97 1

23.8309

�5 .0786

26. 1 666

26.6307

27.0799

27. 1 348

27.7936

27.7736

27.7886

27.8036

27.7886

27.7786

° 0 Yeal

400 CO� (g)

0

0. 1 9453

0.55 1 02

0.89976

1 .23798

1 .567 1 1

3 . 1 0737

4.5 1 565

5. 82469

7.053 1 2

7.75677

9.3 1 396

1 0.362

1 1 .3626

1 2.69 1 9

1 3 .2382

1 3 .4886

1 4.9676

1 5 .7838

1 6.5703

1 7 .329

1 8 .06 1 4

1 8.7689

1 9 .4528

20. 1 1 4 1

20.754

2 1 .3735

2 1 .9733

21.5543

23.3 1 58

23 .663 1

24. 1 92 1

25.2017

25.6853

26. 1 536

26.608

27.0489

274769

27.8923

• xperimental

atheematical odel ing

600

97

800

Page 113: Supercritical CO2 Extraction of Oil from Henna Flower

55 °C a n d 1 20 bar

30

25

20

1 0

5

o o

C02 g 0

3 . 1 829

5 .00 1 7

6.8205

9.094

1 1 .3675

2 1 .8256

34. 1 02 5

45 .47

56.8375

68.205

78.2084

92.7588

1 02.3075

1 1 4.5844

1 25 .4972

1 36.4 1

1 47.7775

1 59 . 1 45

1 70.5 1 25

1 8 1 .88

1 93 .2475

55 ° and 1 20 bar

50

0'0 y �'P

0

1 .327677

1 .7070 1 3

2 .066384

2 .600449

3 .03968 1

4.69678 1

6.443723

8.485 1 5 1

1 0.47667

1: 2 .09384

1 4. 1 3027

1 6.22 1 6 1

1 8. 1 1 829

20.20464

22 .226 1

23 .66858

24.6868

25 . 1 6596

2 5 .4 1 552

2 5 . 5 1 036

25.50537

0 0 Yea I

1 00 CO2 (g) 1 50

0

0.54 1 789

1 .003844

1 .457 1 06

2 . 0 1 3066

2 .55856 1

4 .954 1 33

7 .564377

9 .8 1 1 672

1 1 .9 1 03 7

1 3.87 1 2

1 5 .490 1 2

1 7 .679 1 3

1 9.0 1 59

20.62656

2 1 .96263

23 .2 1 459

24 .43499

25 .57547

26.64 1 27

27.63728

28 .56806

• Experimental

- Mathematical Model ing

200

98

250

Page 114: Supercritical CO2 Extraction of Oil from Henna Flower

A p p e n d i x B

G a C h ro m a togra phy res u l ts of h e n n a flower ext racts

Thi ection pre ent the chromatogram of extract at ach condition obtained by Gc. The

chr matogram are hO\ n in th fol lowing figure :

> E

1 8000

1 3000

000

3 000

-2(J�0 5

1 8000

1 3000

> E 8000

3000

-2(J�0 5

35 °C and 80 bar

Time ( min)

35 °C and 1 00 bar

1 5 2 5 3 5 45 55

Time ( min)

99

65 75 85 95 1 05

Page 115: Supercritical CO2 Extraction of Oil from Henna Flower

I 000 35 °C and 1 20 bar

1 3000

> E 000

3000

-2000 5 1 5 25 35 45 55 65 75 85 95 1 05 Time (mi n)

45 °C and 80 bar

I 000

1 3000

> E 8000

3000

-2000 5 1 5 25 3 5 45 55 65 75 85 95 1 05

Time ( min)

1 00

Page 116: Supercritical CO2 Extraction of Oil from Henna Flower

45 °C a n d 1 00 b a r

000

000

> E 000

3000 j -2060 5 1 5 25 3 5 4 5 55 65 75 85 95 1 05

Time ( m i n )

I 000 45 °C and 1 20 bar

1 3000

> E 000

3000 J -2060 5 1 05

Time (min)

1 0 1

Page 117: Supercritical CO2 Extraction of Oil from Henna Flower

> E

1 000

1 3000

000

3000

1 000

1 3000

� 000

3000

-2000

1 000

1 6000

1 4000

1 2000

1 0000 > 8000 � c

6000

4000

2000

-2000

5 1 5 25

5 I S 25

5 1 5 2 5

55 °C a n d 80 b a r

3 5 4 5 55 65 75 85 95 1 05 Time ( m i n )

55 °C a n d 1 00 bar

35 45 55 65 75 85 95 1 05

Time ( m i n )

55 °C and 1 20 bar

1 05

Time ( min)

1 02

Page 118: Supercritical CO2 Extraction of Oil from Henna Flower

A p p e n d i x C

Thi ect lOn pre ent the calibration urve obtained for FRAP and DPPH a ay .

The cal ibration curve a prepared by plotting concentrat ion of A corbie Acid ranging

from 0 to 1 00 ppm er u their ab orbance at 539 run a hown in Figure 3 1 and the

cal ibration equation \ a found to be:

E 1.5 0.. 0.. 1

"0 'v 0.5 1'0

I.J :c 0 ... 0 I.J 0 2 0 4 0 60 VI

-0. 5 80 c:t Absorbance at 539 nm

Figure 3 1 Cal ibration cun e for F RA P assay

R2 = 0.981

100 120

Concentration (ppm) = 0.0 1 2 1 Abs - 0.0342

1 . 8

1 .6 R2 = 0.9587

E 1.4 c:

i' 1 . 2 .-I U"I

1 ... •

1'0 QI 0.8 I.J c:

0.6 1'0 .0 ...

0 . 4 0 VI .0

0.2 c:t • 0

-0. 2 0 2 0 4 0 60 80 100 120

Ascorbic Acid concentration (ppm)

FIgure 32 Cal ibration cun e for DPPH assay

Absorbance = - 0.0 1 5 6 concentration (ppm) + 1 .5474

1 03

Page 119: Supercritical CO2 Extraction of Oil from Henna Flower

A p p e n d i x D

Sol ut ion to t h e model eq u a tions

I n the part icle phase:

Recal l ing equation 32 and 2

let n and k present the time and radius domains respectively,

acp _ cp k,nH -Cp k,n at t!.t

acp _ cp k+1 ,n -cp k- l,n ar 2t!.r

a2 cp _ cp k+ l.n -2Cp k,n + Cp k- l,n ar2 t!.r2

Starting with Equation 28 :

aq q k.nH - q k,n at t!.t

q k.n H - q k,n = k (C _ q kn) t!.t a p k.n K

Rearranging yields

q k,n+t = q k.n (1 - t,t;) + t,tka Cp k.n

1 04

( 32 )

(28)

( 36)

Page 120: Supercritical CO2 Extraction of Oil from Henna Flower

Equati n 32 can be rearranged and con erted to finite element a fol low

Cp k.nH-Cp k.n = ZDe (Cp k+ l.n -cp k-l .n) + D cp k + l.n - ZCp k.n + Cp k- l.n _ ( l -Ep) q k,nH-q k,n M kllr Zl1r e l1r2 Ep l1t

Rearranging results

_ 2De ( ) IHDe ( ) (l-Ep) ( ) Cp k.n+t -cp k.n + kllr2

cp k+ l.n - cp k-l,n + t;;2 cp k+ l.n - 2Cp k,n + cp k-l,n -£- q k,n+t - q k,n p

Sub tituting itb q k,n+ t from equat ion 36 :

c = (1 _ 2�tDe _ ( I - £p) fj.tk ) c + (�tD. _ MDe) C + (MOe + MOe) C + ( l -Ep) fj. t ka q p k.nH M2 £p

a p k,n M2 kl1r2 p k- l,n kllrz l1r2 p k+l.n £p K k,n

Defining

M - �tD Mz - (I-Ep) fj.tk 1 - �r2 ' - <p a

(37)

The fol lowing criteria should be taken into account to en ure real istic physical results :

a) (1 - 2M1 - M2» o

Hence,

1 05

Page 121: Supercritical CO2 Extraction of Oil from Henna Flower

k > l

The init ial and boundary condition

at k = 0 . acp = 0 = cp k+ l.n -Cp k- l.n , ar 2�r

hence Cp k+ 1.n = Cp k- l .n

aq = 0 = q k+ l n -q k.n ar �r

there/ore, q k+ l.n = q k.n

at k = R ;

. D Cp R+ l,n -Cp R,n - k (c C ) . , - e �r - fa pR.n - m,n

I n th e fluid phase:

Recal l ing Equation 3 5 :

( 3 5 )

1 06

Page 122: Supercritical CO2 Extraction of Oil from Henna Flower

let m presents the z domain

oC _ Cm.n+ I - Cm,n at M

oC Cm + 1 n - Cm -l,n az 2 6z

a2 c _ Cm+ 1 n - 2 Cm.n + Cm - l , n az2 6z2

ub tituting into Equation 3 5 :

D ( Cm + l .n - 2 Cm.n + Cm - I ,n ) _ {J . ( Cm + l ,n - Cm-l,n) + (l-Cb) k a(C _ C ) = Cm,n + l - Cm,n ax f1z2 l 2f1z Cb f pR,n m,n M

Rearranging yields:

(Dn> 0, ) ( l -Cb) k 2Dax ) (Dax 0, ) (I -'b) Cm " + 1 = --:;- - - f1tCm+1 " + 1 - -- f aM - -2 I!.t Cm " + 2 + - I!.tCm- 1 n + -- kraI!.tCpR n . 6z· 26z ' 'b 6z ' l!.z 26z " b '

fi ' M Dax M {)l d M De m mg 3 = - 4 = - - an 5 f1z2 ' 2f1z '

The fol lowing criteri a should be val id for real istic results :

a) M3 + M4 > 0, D� - � > 0 /j,z" 2/j,z

therefore

b) (1 - MsM - 2M3M) > 0

1 M < --Ms + 2M3

1 07

Page 123: Supercritical CO2 Extraction of Oil from Henna Flower

In i t ia l and boundary condition

at n = 0; C = 0

at m = 0 ; C = 0

at m = L ;

ac = 0 = az

Cm+l .n-Cm.n l!.z

hence, Cm+ 1,11 = Cm,l1

1 08

Page 124: Supercritical CO2 Extraction of Oil from Henna Flower

E x cel V i s u a l Basic A p p l icat ion M ac ro (V BA - M acro) Code

Thi ection include the code that \ a written in Excel YBA-Macro for mathematical

model ing of FE from henna flower .

The code i a fol low

Pub l l C pcom ( 5 0 ) , x i com ( 5 0 ) , n c om Fu n c t l on FUNC ( x ) Dim c ( 1 0 0 1 ) , c 1 ( 1 0 0 1 ) , Y ( 1 0 0 0 0 0 0 0 ) , t ( 1 0 0 0 0 0 0 0 ) , q 1 ( 1 5 1 ) , c p 1 ( 1 5 1 ) , c p ( l 5 1 ) , q ( l 5 1 ) , texp ( 1 0 0 ) , ye xp ( 1 0 0 ) , yca l ( 1 0 0 ) Dim n t A s Long , n z A s Long , n r A s I n tege r

fo = Wo r ks h e e t s ( " v � s u a l ba s i c " ) . Range ( " c 3 6 " ) . Va l ue M i n f = Wor k s hee t s ( " v l s ua l ba s l c " ) . Range ( " c 3 7 " ) . V a l ue 0 1 2 = Wo r k s hee t s ( " v i s u a l b a s i c " ) . Ran ge ( " c S 7 " ) . Va l ue Oax = Wo r k s he e t s ( " v i s u a l b a s i c " ) . Range ( " c 6 1 " ) . Va l u e ep = W o r k s h e e t s ( " v l s u a l ba s i c " ) . Range ( " c 8 " ) . Va l ue F = Wo r k s he e t s ( " v :. s u a l b a s i c " ) . Range ( " c2 6 " ) . Va l ue dens i t y = Wo r k s he e t s ( " v i s u a l ba s l c " ) . Range ( " c 4 1 " ) . Va l u e Msamp l e = W o r k s h e e t s ( " v i s u a l b a s l c " ) . Range ( " c 3 0 " ) . Va l ue ibn = W o r k s h e e t s ( " v i s u a l b a s ic " ) . Ran ge ( " n 4 3 " ) . Va l ue Ndat = ibn

De = Abs ( x ( l ) ) * 0 . 0 0 0 0 0 0 0 0 0 0 0 1 k f = Abs ( x ( 2 ) * 0 . 0 0 0 0 0 0 0 1 k = Ab s ( x ( 3 ) ) ka = Abs ( x ( 4 ) )

o To ibn Fo r l b = t e xp ( ib ) yexp ( i b ) Next i b

Wo r ks hee t s ( " v i s u a l ba s i c " ) . Ce 1 I s ( S + i b , 1 5 ) . Value Wo r k s hee t s ( " v i s u a l ba s i c " ) . Ce l l s ( S + ib , 1 7 ) . Va 1 u e

i b 1

dp 0 . 0 0 0 5 0 4 rp dp / 2 # r = r p

L 0 . 0 5 D 0 . 0 1 6 p i 1 = 3 . 1 4 1 5 9 2 6 5 4 a = p i l * ( D A 2 ) / 4 # u s = F / ( den s i t y * a ) p o ro s i t y = 0 . 5 u i u s / po r o s i t y Mo 0 . 0 0 0 6 1 9

co 0 qo ( 1 - f o ) * M o / ( a * L * ( 1 - p o r o s i t y ) * ( 1 - e p )

1 09

Page 125: Supercritical CO2 Extraction of Oil from Henna Flower

Cpo = fo * Mo / ( a * � * ( 1 - poro s i t y ) * e p )

t f 6 0 0 0 0 n r 2 0 d r r / n r

Wo r K shee t s ( " v l s u a l b a s i c " ) . Range ( " A 1 0 0 : B I O I " ) . C l e a rContents Wo r K s h e e t s ( " v i s u a l b a s i c " ) . Range ( " OC 1 1 8 : 0E 3 0 0 0 " ) . C l e a rContents

d zmax = 2# * Oax / u i d z = d zmax - ( dzmax / 1 0 ) n z = CLng ( L / d z ) s t epdr : dt.max 1 = 1 # / ( 2 # * Oax / ( d z " 2 # ) + 3 # * k f * ( 1 # - p o ro s i t y ) / ( rp * p o ro s l t y ) )

dtma x 2 = 1 # / ( ( 2 * De / ( ep * ( dr A 2 » + ( 1 - e p ) * ka / e p » d ma x 3 = k / k a : f dtmax 1 < dtma x 2 A n d dtmax 1 < dtma x 3 Then dtmax = dtma x 1 E l s e I f dtma x 2 dtma x 1 A n d dtmax2 < dtma x 3 The n dtmax dtmax2 E l s e d max dtmax3 End I f dtma x = dtma x - ( dtmax / 1 0 ) dt = dtmax I f d t > 3 Then dt. = 3 End I f

n t = C L n g ( t f / dt ) drmin ( ( 2 * De * dt ) / ( ep * ( 1 - ( ( 1 - e p ) * d t * k a / e p » » " 0 . 5

d rma x De / k f I f d r < drmi n Then d r = dr�in + ( drmin / 1 0 ) Wo r k s he e t s ( " v i s u a l b a s i c " ) . Ce l l s ( 1 0 0 , 3 ) . Va l u e Go To s tepdr E n d I f I f d r > drmax Then dr = d rmax - ( drmax / 1 0 ) W o r k s h ee t s ( " v i s u a l b a s i c " ) . C e l l s ( 1 0 0 , 4 ) . Va l u e Go To s ""C.epdr E n d r :

I f ( d z > = 2 # * Oax / u i ) Then W o r k s h e e t s ( " v i s u a l ba s l c " ) . Ce l l s ( 1 0 0 , 1 ) . V a l u e

E n d I f

" d r i s sma l l "

" dr i s l a rge "

" d z i s l a rge "

I f ( dt > = 1 # / ( 2 # * Oax / ( d z " 2 # ) + 3 # * k f * ( 1 # - poros i t y ) / ( rp x p o r o s i t y » ) Then

W o r ks he e t s ( " v i s u a l ba s i c " } . Ce l l s ( 1 0 1 , 1 } . Va l ue = " dt is l a r ge " E n d I f I f ( dt >= 1 # / ( ( 2 * De / ( ep * ( d r A 2 } ) + ( 1 - e p ) * k a / e p } } ) Then

W o r k s h e e t s ( " v i s u a l b a s i c " ) . Ce l l s ( 1 0 1 , 2 ) . Va l u e = " dt is l a r ge " E n d I f

1 1 0

Page 126: Supercritical CO2 Extraction of Oil from Henna Flower

Ml Dax / ( dz A 2 ) M2 - U l / ( 2 Ji . dz ) M3 3 * k f * ( 1 - p o r o s i t y ) M4 De * dt M5 ( 1 - e p )

e l ( 0 ) 0 # t ( 0 ) 0 Y ( O ) = 0

/ ( dr .. dt

Fo r ] = 1 To nz + 1 c i ( j ) = eo

Next J

Fo r J r = 0 To n r q I ( j r ) = qo cp I ( j r ) = Cpo

ext j r

" 2 ) * k a / e p

/ ( r * poros i t y )

c p I ( n r + 1 ) c p I ( n r ) - d r * k f * ( cp I ( n r ) - c I ( O » / De

M I O 0 # Y I O 0 #

y e a I ( O ) 0 #

Fo r i = 0 To n t c ( 0 ) c l ( 0 ) e ( I ) = c ( O ) + dz * u i * c ( O ) / Dax

F o r ] = 0 To nz q ( O ) = ( 1 * - ( dt * ka / k » * q I ( O ) + dt * k a * c p l ( O ) q ( l ) = q ( O ) cp ( I ) = ( M 4 / 1 # + M4 ) * e p I ( 2 ) + ( 1 # - 2 # * M4 - MS ) * c p l ( l )

+ ( M 4 - M4 I H ) * c p l ( 0 ) + M S * ql ( 1 ) / k cp ( O ) = cp ( I )

Fo r j r = 2 To n r q ( J r ) = ( 1 # - d t * ka / k ) * q l ( j r ) + d t * k a * c p l ( j r ) cp ( J r ) = ( M 4 / j r + M4 ) * c p l ( j r + 1 ) + ( 1 # - 2 # * M4 - MS )

* c p l ( j r ) + ( M 4 - M4 / j r ) * cpl ( j r - 1 ) + M S * q l ( j r ) / k Next J r I f ( J < 2 ) Then Go To s tep z l e ( j ) = d t. * ( M l + M2 ) * e l ( j + 1 ) + ( 1 # - 2 # * M l * dt - M 3 *

dt ) * e l ( j ) + dt * ( M l - M2 ) * c l ( j - 1 ) + M3 * dt * e p l ( n r + 1 )

s t ep z I : ep ( n r + 1 )

Next j c ( n z + 1 ) c ( n z )

ep ( n r ) - d r * k f * ( cp ( n r ) - c ( j » / De

area dt * ( e ( n z ) + e l ( n z » / 2 # M = M I 0 + a r e a * u s * a Y ( i ) M * 1 0 0 # / M s amp l e t ( i ) = 1 * d t

1 1 1

Page 127: Supercritical CO2 Extraction of Oil from Henna Flower

For ] = 0 To n z + 1 c 1 ( j ) c ( j ) MI 0 = M

e x t J For J r = 0 To n r

c p l ( j r ) = cp ( j r ) q 1 { J r ) = q ( j r )

Next j r c p 1 ( n r + 1 ) = cp ( n r + 1 )

I f 1. > 0 Then I f t ( � - 1 ) < = texp ( i b ) * 60 And t ( i ) > texp ( ib ) * 60 Then

yca l ( i b ) = « t exp ( i b ) * 60 - t ( i - 1 » ) / ( t ( i ) - t ( i - 1 » ) * ( Y ( i ) - Y ( i - 1 » + Y ( i - 1 )

l b = i b + 1 End : f E n d I f

Next i OBJF = 0 # F o r i b = 1 T o ibn - 1 OBJF = OBJF + « yc a l ( i b ) - yexp ( ib » / yexp ( i b » A 2 Next i b W o r k s h e e t s ( " vi s u a l bas l c " ) . Ce l l s ( S , 2 1 ) . Va l ue = OBJF W o r k s h e e t s ( " vi s u a l b a s i c " ) . C e l l s ( 6 , 1 0 ) . Va l u e = OBJF Wo r k s he e t s ( " vl s u a l bas i c " ) . Range ( " i 6 " ) . V a l ue x ( l ) Work shee t s ( " vi s u a l bas i c " ) . Range ( " i 7 " ) . Va l ue x ( 2 ) Wo r k sh e e t s ( " v i s u a l bas i c " ) . Range ( " i 8 " ) . Va l ue x ( 3 ) Wo r k sh e e t s ( " v i s u a l bas i c " ) . Range ( " i 9 " ) . V a l ue x ( 4 )

FUNC = OBJF End Fun c t i on Sub Opt imi z a t i on ( )

N o r M = 4 Oim X P ( 4 ) , xi ( 4 , 4 ) FTOL = 0 . 0 0 0 0 0 1 np = D I M

F o r i = 1 T o N O I M F o r ] = 1 To N o r M

X i ( l , J ) = 0 # Next j

Next i F o r 1 = 1 To N o r M

x i ( i , i ) = 1 # ex i

Oe = W o r ks h e e t s ( " v i s u a l b a s i c " ) . Range ( " c 6 4 " ) . Va l ue k f = W o r k s h e e t s ( " v i s u a l b a s i c " ) . Range ( " c 6 6 " ) . Va l ue k = Wo r k s hee t s ( " v i s u a l bas i c " ) . Range ( " c 6 7 " ) . Va l u e ka = Wor k s h e e t s ( " v i s u a l b a s i c " ) . Range ( " c 6 8 " ) . Va l ue

X P ( 1 ) De

X P ( 2 ) k f

X P ( 3 ) k

X P ( 4 ) ka

Ca l l powe l l ( X P , X l , N O I M , np , FTOL , i t e r , f r e t )

1 1 2

Page 128: Supercritical CO2 Extraction of Oil from Henna Flower

Wo r ksheets ( " v _ s u a l ba s l c " ) . Range ( " i 6 : k 9 " ) . C l e a rCon e n t s Wo r k shee t s ( " v � s u a l b a s � c " ) . Range ( " 1 6 " ) . V a l u e X P ( l ) Worksheets ( " v _ s u a l bas _ c " ) . Range ( " i 7 " ) . V a l ue X P ( 2 ) Wo r k sheets ( " v i s u a l bas .L c " ) . Range ( " i 8 " ) . Va l ue X P ( 3 ) Wo r k sheets ( " v i s u a l b a s _ c " ) . Range ( " i 9 " ) . V a l u e X P ( 4 ) Wo rksheets ( " v l s u a l ba s l c " ) . Range ( " J 6 " ) . Va l u e FUNC ( X P ) Wo r k sheets ( " v i s u a l bas l c " ) . Range ( " j 7 " ) . Va l ue f r e t Wo r kshee ts ( " v� s u a l ba s l c " ) . Range ( " k6 " ) . Va l ue l te r

End Sub Sub powe l l ( P , X l , N, np , FTOL , i te r , f re t )

MAX = 2 0 I TMAX = 2 0 0 D l m pt ( 2 0 ) , p t t ( 2 0 ) , x i t ( 2 0 ) f r e t = FUNC ( P ) Fo r J = 1 To N

pt ( j ) = P ( j ) Next j l te r = 0

s t e p l : i te r = i t e r + 1

fp = f re t l b i g = 0 de l = 0 # F o r i = 1 T o N

Fo r j = 1 To N x i t ( j ) = x i ( j , i )

Next j fptt = f re t Ca l l I l nm i n ( P , x i t , N , f re t ) I f ( Ab s ( fp t t - f re t ) > d e l ) Then

de l = Ab s ( fp t t - f re t ) i b l g = 1

End I f e x t 1

I f ( 2 # * Abs ( fp - f ret ) <= FTOL * ( Ab s ( fp ) + Abs ( f ret ) ) ) Then GoTo f i n i s h

I f ( i t e r = I TMAX ) Then GoTo f i n i s h2 F o r J = 1 To N

p t t ( j ) = 2 # * P ( j ) - pt ( j ) x i t ( j ) = P ( J ) - p t ( j ) pt ( j ) = P ( j )

Next ] fptt = FUNC ( p t t ) I f ( fp t t >= f p ) Then GoTo s t e p l t = 2 * ( fp - 2 # * f r e t + fptt ) * ( fp - f re t - de l ) A 2 # - de l *

( fp - fptt ) A 2 # I f ( t > = 0 4 ) Then GoTo s t e p l Ca l l 1 1 nm i n ( P , x i t , N , f re t ) For J = 1 T o N

x i ( j , i b i g ) = x i ( j , N ) x i ( j , N ) = x i t ( j )

Next j GoTo s t e p l

f i n i s h 2 : Wo r k s he e t s ( " v i s u a l b a s i c " ) . Range ( " 1 6 " ) . Va l ue

ma x l mum i te r a t i on s "

1 1 3

" powe l l exceeding

Page 129: Supercritical CO2 Extraction of Oil from Henna Flower

. ni s h : End Sub Sub l � nmln ( P , X l , N, f r e t )

MAX = 5 0 t o l = 0 . 0 0 0 1 ncom = N For ] = 1 To N

p e om ( j ) = P ( ] ) x i eom ( ] ) = x i ( ] )

Nex j ax = 0 # x x = 1 # Ca l l mnb ra k ( ax , X X , bx , fa , fx , f b ) f r e t = b re n t ( a x , x x , b x , t o l , xmi n ) For j = 1 T o N

X l ( j ) = xm i n * X l ( j ) P ( j ) = P ( j ) + xi ( j )

e x t j End Sub Sub mnbra k ( a x , bx , e x , fa , f b , f e )

GOLD = 1 . 6 1 8 0 3 4

s t ep l :

- r ) )

G L I M I T = 1 0 0 # T I NY = 1 E - 2 0 f a = f 1 dl m ( a x ) f b = f l di m ( b x ) I f ( fb > f a ) Then

dum = ax ax = bx bx = dum dum = fb f b = f a fa = dum

E n d I f ex b x + GOLD * ( bx - a x ) f e = f l dim ( e x )

I f ( fb > = f e ) Then r = ( b x - a x ) * ( fb - f e ) q = ( b x - e x ) * ( fb - fa ) ma xqr = App l i e a t i on . Wor ks hee t F u n e t i o n . Max ( Ab s ( q - r ) , T I NY ) u = bx - « bx - ex ) * q - ( bx - ax ) * r ) / ( 2 # * s i gn ( maxqr , q

u l irn = b x + G L I M I T * ( ex - b x ) I f « bx - u ) * ( u - e x ) > 0 # ) Then

fu = f l dim ( u ) I f ( fu < f e ) Then

ax bx fa f b bx u fb fu GoTo f i n i s h

E l s e I f ( f u > f b ) Then e x = u fe = f u GoTo f i n i s h

E n d I f u = e x + GOLD * ( ex - bx )

1 1 4

Page 130: Supercritical CO2 Extraction of Oil from Henna Flower

fu = f l dim ( u ) E l se I f « ex - u ) * l u - u l im ) > O A ) Then

fu = f l dim ( u ) I f ( fu < f e ) Then

bx = ex e x = u u = ex + GOLD * ( e x - bx ) fb f e f e = f u fu = f l dim ( u )

End I f E l se I f « u - u l im ) * ( u l im - e x ) > = 0 # ) Then

u = u l im fu = f l d im ( u )

E l s e u = ex + GOLD * ( e x - bx ) fu = f l dim ( u )

E n d I f ax bx bx e x ex = u fa f b fb f e f e fu GoTo s te p l

E n d I f f i n i s h :

E n d Sub Fun c t i on b re n t ( a x , bx , e x , t o l , xmi n ) I TMAX = 1 0 0 CGOLD = 0 . 3 8 1 9 6 6 Z E P S = 0 . 0 0 0 0 0 0 0 0 0 1

a = App l i e a t i on . Wo r ksheetFune t i on . M i n ( a x , e x ) b = App l i ea t i on . Wo r ksheetFune t i on . Max ( a x , e x )

v bx w = v x = v E 0 # f x = f l dim ( x ) f v l = fx fw = f x F o r i t e r = 1 To I TMAX

xm = 0 . 5 * ( a + b ) L o l l = t o l * Abs ( x ) + Z E P S t o l 2 = 2 # * t o l l I f ( Ab s ( x - xm ) < = ( to l 2 - 0 . 5 * ( b - a ) ) ) Then GoTo s t e p 3 I f ( Ab s ( E ) > t o l l ) Then

r = ( x w ) * ( f x - f v l ) q I x v ) * ( f x - f w )

P ( x v ) * q - ( x - w ) * r

q 2 # * ( q - r ) I f ( q > 0 # ) Then P = - P q = Abs ( q ) e t emp = E E = D I f ( Ab s ( P ) >= Abs ( 0 . 5 * q * etemp ) O r P < = q * ( a - x ) O r P

>= q * ( b - x ) ) Then GoTo s t e p l

1 1 5

Page 131: Supercritical CO2 Extraction of Oil from Henna Flower

o = P / q u = x + 0 I f ( u - a < t o l 2 Or b - u < t o l 2 ) Then 0 GoTo s tep2

s t e p 1 :

s t e p 2 :

End I f

::: f ( x >= xm) Then E = a - x

E l s e E b x

End I f 0 = CGOLO * E

I f ( Ab s ( D ) >= t o l l ) Then u = x + 0

E l s e u = x + s i gn ( t o l l , 0 )

E n d ::: f fu = f l d im ( u ) I f ( f u < = fx ) Then

I f ( u >= x ) Then a = x

E l s e b = x

E n d I f v = w fvl = fw w = x fw = f x x = u f x = fu

E l s e I f ( u < x ) Then

a = u E l s e

b = u E n d I f I f ( fu < = fw O r w

v = w x ) Then

fv l = fw w = u fw = f u

E l s e I f ( fu < = fvl Or v v = u f v l = fu

E n d I f End I f

N e x t i t e r GoTo f l n i s h 2

s t e p 3 : xm i n = x b r e n t = f x

f i n i sh2 :

x Or v w ) Then

Wo r k s h e e t s ( " v l s u a l bas i c " ) . Range ( " 1 7 " ) . Va l u e maX l mum i t e r a "C l on s " E n d Func t i on

Fu n c t i on f I di m ( x )

1 1 6

s i gn ( to l l , xm - x l

" b r e n t exceeding

Page 132: Supercritical CO2 Extraction of Oil from Henna Flower

Dlm x t ( 5 0 ) MAX = 5 0

1 To ncom Fo r j = x t ( j )

Next J f l dim =

pcom ( j ) + x * x i c om ( j )

FUNC ( x t )

E !1 d Fu n c t i on Fu n c t � on s lg n ( a , b )

I f ( b > = 0 # ) The n s � gn Ab s ( a )

E l s e s � g n

E n d I f End F u n c t l o n

- Ab s ( a )

1 1 7

Page 133: Supercritical CO2 Extraction of Oil from Henna Flower

� . .5 ..?'i1 4y,;I9';1I J-O� l ,jy:> jc )L,! .... '""'�)U .b.....yS ;",� � �yJl ,j� � .JA'I ..Ji:.C

.=i..A � � yJl ,j� j>!fill �I � > ('\� . ��1 3�j J'" �'y-Lb:i.J1 �\..,...JI ,-,..,,�I - 4......1.J�1 3�

..yo J-O)GU..... � ...,Iei .�� �j� �5 � J 3 5 j..o cJfo 'OJ.? w'..:::- .J� J )� LO .)I 0 J'" ol�

y#.y wL.:S:i.....1 r> L.S .�� �j� 45 .)y. �j� J j . 1 20 .6.....0 � 0 03 1 ts ��I .lJjJ j.o 0'" 2

J • .l......S)ll .ll.....o..J\ .bUI u� . (Ga Chromatography) �Ij- j-ilAJfi jWI � i'1�� vob; .11

_� JjL:- 4.ihi.. �Y'"J J=- _� �l.....o..Jl .bUI � � � . ��I .lJjJ vol':"; AI �� ��I

.. .l....Si wl�� � ��I jl.A.) '-� � 1 y..,..1 J=- � 4,....1 .J�I jl j..o ri" )I ...,Ie

w......J.l �I J-O�'il wJ..;b � dJ:iS.ll j'liijl L>fil 'p tb.:. .. J .... � l,,1.<')GU.....'i i � ��)I J¥...:JI �I

.��I �Lill\ '5 by.' o;! d\� J �I ��)I w �L.....JI J...IJC �L:...l Powel l �..;.b ':"""'.h:i...1 .��

.��I Yj�1 0" �I c::..:,tu t'" I� \.iSlji ��.JI w .lL.....JI j..o �I yL......::.. �tu �

Page 134: Supercritical CO2 Extraction of Oil from Henna Flower

Faculty of Engineering

��I � :; ,· . . 11 J .� .II I - - L. . � .J .J� r-� � � y

a�1 Cl..:H}StI1 wIJL.cYI fuLo United Arab Emirates Universit.

:[�I dJi 6J.:fll �i �� rl ''';..,4 ��l o�j �j ��l .o�� J�\ 4,bL1j �\-JJ J �� ,�

<-.r.l � � c.S� �l �-1i4 �t...u.)

o�1 �yJI ul)...,), 1 �� w� Jl.&.....'J

��I.J J.JY-:JI (')c. � �W\ 4-.Jj

Apri l 20 1 2