59
ELE 538B: Mathematics of High-Dimensional Data Super-Resolution Yuxin Chen Princeton University, Fall 2018

Super-Resolution - Princeton University · 2018-11-28 · Super-resolution: extrapolate high-end spectrum (fine scale details) from low-end spectrum (low-resolution data) Super-resolution

  • Upload
    others

  • View
    6

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Super-Resolution - Princeton University · 2018-11-28 · Super-resolution: extrapolate high-end spectrum (fine scale details) from low-end spectrum (low-resolution data) Super-resolution

ELE 538B: Mathematics of High-Dimensional Data

Super-Resolution

Yuxin Chen

Princeton University, Fall 2018

Page 2: Super-Resolution - Princeton University · 2018-11-28 · Super-resolution: extrapolate high-end spectrum (fine scale details) from low-end spectrum (low-resolution data) Super-resolution

Outline

• Classical methods for parameter estimation

◦ Polynomial method: Prony’s method◦ Subspace method: MUSIC◦ Matrix pencil algorithm

• Optimization-based methods

◦ Basis mismatch◦ Atomic norm minimization◦ Connections to low-rank matrix completion

Super-resolution 10-2

Page 3: Super-Resolution - Princeton University · 2018-11-28 · Super-resolution: extrapolate high-end spectrum (fine scale details) from low-end spectrum (low-resolution data) Super-resolution

Parameter estimation

Model: a signal is mixture of r modes

x[t] =∑r

i=1diψ(t; fi), t ∈ Z

• di : amplitudes

• fi : frequencies

• ψ: (known) modal function, e.g. ψ(t, fi) = ej2πtfi

• r: model order

• 2r unknown parameters: {di} and {fi}

Super-resolution 10-3

Page 4: Super-Resolution - Princeton University · 2018-11-28 · Super-resolution: extrapolate high-end spectrum (fine scale details) from low-end spectrum (low-resolution data) Super-resolution

Application: super-resolution imaging

Consider a time signal (a dual problem)

z(t) =∑r

i=1diδ(t− ti)

• Resolution is limited by point spreadfunction h(t) of imaging system

x(t) = z(t) ∗ h(t) point spread function h(t)

Super-resolution 10-4

Page 5: Super-Resolution - Princeton University · 2018-11-28 · Super-resolution: extrapolate high-end spectrum (fine scale details) from low-end spectrum (low-resolution data) Super-resolution

Application: super-resolution imaging

time domain: x(t) = z(t) ∗ h(t) =r∑i=1

dih(t− ti)

spectral domain: x(f) = z(f) h(f) =r∑i=1

di h(f)︸ ︷︷ ︸known

ej2πfti

=⇒ observed data: x(f)h(f)

=r∑i=1

di ej2πfti︸ ︷︷ ︸ψ(f ;ti)

, ∀f : h(f) 6= 0

h(t) is usually band-limited (suppress high-frequency components)

Super-resolution 10-5

Page 6: Super-Resolution - Princeton University · 2018-11-28 · Super-resolution: extrapolate high-end spectrum (fine scale details) from low-end spectrum (low-resolution data) Super-resolution

Application: super-resolution imaging

(a) highly resolved signal z(t); (b) low-pass version x(t)

(c) Fourier transform z(f); (d) (red) observed spectrum x(f)

Fig. credit: Candes, Fernandez-Granda ’14

Super-resolution: extrapolate high-end spectrum (fine scale details)from low-end spectrum (low-resolution data)

Super-resolution 10-6

Page 7: Super-Resolution - Princeton University · 2018-11-28 · Super-resolution: extrapolate high-end spectrum (fine scale details) from low-end spectrum (low-resolution data) Super-resolution

Application: multipath communication channelsIn wireless communications, transmitted signals typically reachreceiver by multiple paths, due to reflection from objects(e.g. buildings).

Suppose h(t) is transmitted signal, then received signal is

x(t) =∑r

i=1dih(t− ti) (ti : delay in ith path)

→ same as super-resolution modelSuper-resolution 10-7

Page 8: Super-Resolution - Princeton University · 2018-11-28 · Super-resolution: extrapolate high-end spectrum (fine scale details) from low-end spectrum (low-resolution data) Super-resolution

Basic model

• Signal model: a mixture of sinusoids at r distinct frequencies

x[t] =∑r

i=1die

j2πtfi

where fi ∈ [0, 1) : frequencies; di : amplitudes◦ Continuous dictionary: fi can assume ANY value in [0, 1)

• Observed data:

x =[x[0], · · · , x[n− 1]

]>• Goal: retrieve frequencies / recover signal (also called harmonic

retrieval)

Super-resolution 10-8

Page 9: Super-Resolution - Princeton University · 2018-11-28 · Super-resolution: extrapolate high-end spectrum (fine scale details) from low-end spectrum (low-resolution data) Super-resolution

Matrix / vector representation

Alternatively, observed data can be written as

x = Vn×rd (10.1)

where d = [d1, · · · , dr]>;

Vn×r :=

1 1 1 · · · 1z1 z2 z3 · · · zrz2

1 z22 z2

3 · · · z2r

......

... . . . ...zn−1

1 zn−12 zn−1

3 · · · zn−1r

(Vandermonde matrix)

with zi = ej2πfi .

Super-resolution 10-9

Page 10: Super-Resolution - Princeton University · 2018-11-28 · Super-resolution: extrapolate high-end spectrum (fine scale details) from low-end spectrum (low-resolution data) Super-resolution

Polynomial method: Prony’s method

Super-resolution 10-10

Page 11: Super-Resolution - Princeton University · 2018-11-28 · Super-resolution: extrapolate high-end spectrum (fine scale details) from low-end spectrum (low-resolution data) Super-resolution

Prony’s method

• A polynomial method proposed by Gaspard Riche de Prony in1795

• Key idea: construct an annililating filter + polynomial rootfinding

Super-resolution 10-11

Page 12: Super-Resolution - Princeton University · 2018-11-28 · Super-resolution: extrapolate high-end spectrum (fine scale details) from low-end spectrum (low-resolution data) Super-resolution

Annihilating filter

• Define a filter by (Z-transform or characteristic polynomial)

G(z) =∑r

l=0glz−l =

∏r

l=1(1− zlz−1)

whose roots are {zl = ej2πfl | 1 ≤ l ≤ r}

• G(z) is called annihilating filter since it annihilates x[k], i.e.

q[k] := gk ∗ x[k]︸ ︷︷ ︸convolution

= 0 (10.2)

Proof:

q[k] =∑r

i=0gix[k − i] =

∑r

i=0

∑r

l=1gidlz

k−il

=∑r

l=1dlz

kl

(∑r

i=0giz−il︸ ︷︷ ︸

=0

)= 0

Super-resolution 10-12

Page 13: Super-Resolution - Princeton University · 2018-11-28 · Super-resolution: extrapolate high-end spectrum (fine scale details) from low-end spectrum (low-resolution data) Super-resolution

Annihilating filter

Equivalently, one can write (10.2) as

Xeg = 0, (10.3)

where g = [gr, · · · , g0]> and

Xe :=

x[0] x[1] x[2] · · · x[r]x[1] x[2] x[3] · · · x[r + 1]x[2] x[3] x[4] · · · x[r + 2]

......

.... . .

...x[n− r − 1] x[n− r] · · · · · · x[n− 1]

︸ ︷︷ ︸

Hankel matrix

∈ C(n−r)×(r+1)

(10.4)

Thus, we can obtain coefficients {gi} by solving linear system (10.3).

Super-resolution 10-13

Page 14: Super-Resolution - Princeton University · 2018-11-28 · Super-resolution: extrapolate high-end spectrum (fine scale details) from low-end spectrum (low-resolution data) Super-resolution

A crucial decomposition

Vandermonde decomposition

Xe = V(n−r)×r diag(d)V >(r+1)×r (10.5)

Implications: if n ≥ 2r and di 6= 0, then

• rank(Xe) = rank(V(n−r)×r) = rank(V(r+1)×r) = r

• null(Xe) is 1-dimensional ⇐⇒ nonzero solution to Xeg = 0is unique

Proof: For any i and j,

[Xe ]i,j = x[i+ j − 2] =r∑l=1

dlzi+j−2l =

r∑l=1

zi−1l dlz

j−1l

=(V(n−r)×r

)i,:

diag(d)(V(r+1)×r

)>j,:

Super-resolution 10-14

Page 15: Super-Resolution - Princeton University · 2018-11-28 · Super-resolution: extrapolate high-end spectrum (fine scale details) from low-end spectrum (low-resolution data) Super-resolution

A crucial decomposition

Vandermonde decomposition

Xe = V(n−r)×r diag(d)V >(r+1)×r (10.5)

Implications: if n ≥ 2r and di 6= 0, then

• rank(Xe) = rank(V(n−r)×r) = rank(V(r+1)×r) = r

• null(Xe) is 1-dimensional ⇐⇒ nonzero solution to Xeg = 0is unique

Proof: For any i and j,

[Xe ]i,j = x[i+ j − 2] =r∑l=1

dlzi+j−2l =

r∑l=1

zi−1l dlz

j−1l

=(V(n−r)×r

)i,:

diag(d)(V(r+1)×r

)>j,:

Super-resolution 10-14

Page 16: Super-Resolution - Princeton University · 2018-11-28 · Super-resolution: extrapolate high-end spectrum (fine scale details) from low-end spectrum (low-resolution data) Super-resolution

Prony’s method

Algorithm 10.1 Prony’s method

1. Find g = [gr, · · · , g0]> 6= 0 that solves Xeg = 0

2. Compute r roots {zl | 1 ≤ l ≤ r} of G(z) =∑rl=0 glz

−l

3. Calculate fl via zl = ej2πfl

Drawback

• Root-finding for polynomials becomes difficult for large r

• Numerically unstable in the presence of noise

Super-resolution 10-15

Page 17: Super-Resolution - Princeton University · 2018-11-28 · Super-resolution: extrapolate high-end spectrum (fine scale details) from low-end spectrum (low-resolution data) Super-resolution

Subspace method: MUSIC

Super-resolution 10-16

Page 18: Super-Resolution - Princeton University · 2018-11-28 · Super-resolution: extrapolate high-end spectrum (fine scale details) from low-end spectrum (low-resolution data) Super-resolution

MUltiple SIgnal Classification (MUSIC)

Consider a (slightly more general) Hankel matrix

Xe =

x[0] x[1] x[2] · · · x[k]x[1] x[2] x[3] · · · x[k + 1]x[2] x[3] x[4] · · · x[k + 2]

......

.... . .

...x[n− k − 1] x[n− k] · · · · · · x[n− 1]

∈ C(n−k)×(k+1)

where r ≤ k ≤ n− r (note that k = r in Prony’s method).

• null(Xe) might span multiple dimensions

Super-resolution 10-17

Page 19: Super-Resolution - Princeton University · 2018-11-28 · Super-resolution: extrapolate high-end spectrum (fine scale details) from low-end spectrum (low-resolution data) Super-resolution

MUltiple SIgnal Classification (MUSIC)

• Generalize Prony’s method by computing {vi | 1 ≤ i ≤ k− r+ 1}that forms orthonormal basis for null(Xe)

• Let z(f) :=

1

ej2πf

...ej2πkf

, then it follows from Vandermonde

decomposition that

z(fl)>vi = 0, 1 ≤ i ≤ k − r + 1, 1 ≤ l ≤ r

• Thus, {fl} are peaks in pseudospectrum

S(f) := 1∑k−r+1i=1 |z(f)>vi|2

Super-resolution 10-18

Page 20: Super-Resolution - Princeton University · 2018-11-28 · Super-resolution: extrapolate high-end spectrum (fine scale details) from low-end spectrum (low-resolution data) Super-resolution

MUSIC algorithm

Algorithm 10.2 MUSIC

1. Compute orthonormal basis {vi | 1 ≤ i ≤ k − r + 1} for null(Xe)

2. Return r largest peaks of S(f) := 1∑k−r+1i=1 |z(f)>vi|2

, where

z(f) := [1, ej2πf , · · · , ej2πkf ]>

Super-resolution 10-19

Page 21: Super-Resolution - Princeton University · 2018-11-28 · Super-resolution: extrapolate high-end spectrum (fine scale details) from low-end spectrum (low-resolution data) Super-resolution

Matrix pencil algorithm

Super-resolution 10-20

Page 22: Super-Resolution - Princeton University · 2018-11-28 · Super-resolution: extrapolate high-end spectrum (fine scale details) from low-end spectrum (low-resolution data) Super-resolution

Matrix pencil

Definition 10.1A linear matrix pencil M(λ) is defined as a combination

M(λ) = M1 − λM2

of 2 matrices M1 and M2, where λ ∈ C.

Super-resolution 10-21

Page 23: Super-Resolution - Princeton University · 2018-11-28 · Super-resolution: extrapolate high-end spectrum (fine scale details) from low-end spectrum (low-resolution data) Super-resolution

Matrix pencil algorithm

Key idea:

• Create 2 closely related Hankel matrices Xe,1 and Xe,2

• Recover {fl} via generalized eigenvalues of matrix pencil

Xe,2 − λXe,1

(i.e. all λ ∈ C obeying det(Xe,2 − λXe,1) = 0)

Super-resolution 10-22

Page 24: Super-Resolution - Princeton University · 2018-11-28 · Super-resolution: extrapolate high-end spectrum (fine scale details) from low-end spectrum (low-resolution data) Super-resolution

Matrix pencil algorithm

Construct 2 Hankel matrices (which differ only by 1 row)

Xe,1 : =

x[0] x[1] x[2] · · · x[k − 1]x[1] x[2] x[3] · · · x[k]x[2] x[3] x[4] · · · x[k + 1]

......

.... . .

...x[n− k − 1] x[n− k] · · · · · · x[n− 2]

∈ C(n−k)×k

Xe,2 : =

x[1] x[2] x[3] · · · x[k]x[2] x[3] x[4] · · · x[k + 1]x[3] x[4] x[5] · · · x[k + 2]

......

.... . .

...x[n− k] x[n− k + 1] · · · · · · x[n− 1]

∈ C(n−k)×k

where k is pencil parameter

Super-resolution 10-23

Page 25: Super-Resolution - Princeton University · 2018-11-28 · Super-resolution: extrapolate high-end spectrum (fine scale details) from low-end spectrum (low-resolution data) Super-resolution

Matrix pencil algorithm

Fact 10.2

Similar to (10.5), one has

Xe,1 = V(n−k)×r diag(d)V >k×rXe,2 = V(n−k)×r diag(d)diag (z) V >k×r

where z = [ej2πf1 , · · · , ej2πfr ]>.

Proof: The result for Xe,1 follows from (10.5). Regarding Xe,2,

[Xe,2 ]i,j = x[i+ j − 1] =r∑l=1

dlzi+j−1l =

r∑l=1

zi−1l (dlzl)zj−1

l

=(V(n−k)×r

)i,:diag(d)diag(z)

(Vk×r

)>j,:

Super-resolution 10-24

Page 26: Super-Resolution - Princeton University · 2018-11-28 · Super-resolution: extrapolate high-end spectrum (fine scale details) from low-end spectrum (low-resolution data) Super-resolution

Matrix pencil algorithm

Based on Fact 10.2,

Xe,2 − λXe,1 = V(n−k)×r diag(d) (diag (z)− λI) V >k×r

(Exercise) If r ≤ k ≤ n− r, then

• rank(V(n−k)×r) = rank(Vk×r) = r

• Generalized eigenvalues of Xe,2 − λXe,1 are {zl = ej2πfl}, whichcan be obtained by finding eigenvalues of X†e,1Xe,2

Super-resolution 10-25

Page 27: Super-Resolution - Princeton University · 2018-11-28 · Super-resolution: extrapolate high-end spectrum (fine scale details) from low-end spectrum (low-resolution data) Super-resolution

Matrix pencil algorithm

Algorithm 10.3 Matrix pencil algorithm

1. Compute all eigenvalues {λl} of X†e,1Xe,2

2. Calculate fl via λl = ej2πfl

Super-resolution 10-26

Page 28: Super-Resolution - Princeton University · 2018-11-28 · Super-resolution: extrapolate high-end spectrum (fine scale details) from low-end spectrum (low-resolution data) Super-resolution

Basis mismatch issue

Super-resolution 10-27

Page 29: Super-Resolution - Princeton University · 2018-11-28 · Super-resolution: extrapolate high-end spectrum (fine scale details) from low-end spectrum (low-resolution data) Super-resolution

Optimization methods for super resolution?

Recall our representation in (10.1):

x = Vn×rd (10.6)

• Challenge: both Vn×r and d are unknown

Alternatively, one can view (10.6) as sparse representation over acontinuous dictionary {z(f) | 0 ≤ f < 1}, wherez(f) = [1, ej2πf , · · · , ej2π(n−1)f ]>

Super-resolution 10-28

Page 30: Super-Resolution - Princeton University · 2018-11-28 · Super-resolution: extrapolate high-end spectrum (fine scale details) from low-end spectrum (low-resolution data) Super-resolution

Optimization methods for super resolution?

One strategy:• Convert nonlinear representation into linear system via

discretization at desired resolution:

(assume) x = Ψ︸︷︷︸n×p partial DFT matrix

β

◦ representation over a discrete frequency set {0, 1p , · · · ,

p−1p }

◦ gridding resolution: 1/p

• Solve `1 minimization:

minimizeβ∈Cp ‖β‖1 s.t. x = Ψβ

Super-resolution 10-29

Page 31: Super-Resolution - Princeton University · 2018-11-28 · Super-resolution: extrapolate high-end spectrum (fine scale details) from low-end spectrum (low-resolution data) Super-resolution

Discretization destroys sparsitySuppose n = p, and recall

x = Ψβ = Vn×rd

=⇒ β = Ψ−1Vn×rd

Ideally, if Ψ−1Vn×r ≈ submatrix of I, then sparsity is preserved.

Simple calculation gives

Ψ−1Vn×r =

D(δ0) D(δ1) · · · D(δr)

D(δ0 − 1p

) D(δ1 − 1p

) · · · D(δr − 1p

)...

.... . .

...D(δ0 − p−1

p) D(δ1 − p−1

p) · · · D(δr − p−1

p)

where fi is mismatched to grid {0, 1

p , · · · ,p−1p } by δi, and

D (f) := 1p

p−1∑l=0

ej2πlf = 1pejπf(p−1) sin(πfp)

sin(πf)︸ ︷︷ ︸heavy tail

(Dirichlet kernel)

Slow decay / spectral leakage of Dirichlet kernel

If δi = 0 (no mismatch), Ψ−1Vn×r = submatrix of I=⇒ Ψ−1Vn×rd is sparse

If δi 6= 0 (e.g. randomly generated), Ψ−1Vn×r may be far fromsubmatrix of I

=⇒ Ψ−1Vn×rd may be incompressible• Finer gridding does not help!

Super-resolution 10-30

Page 32: Super-Resolution - Princeton University · 2018-11-28 · Super-resolution: extrapolate high-end spectrum (fine scale details) from low-end spectrum (low-resolution data) Super-resolution

Discretization destroys sparsitySuppose n = p, and recall

x = Ψβ = Vn×rd

=⇒ β = Ψ−1Vn×rd

Ideally, if Ψ−1Vn×r ≈ submatrix of I, then sparsity is preserved.

Simple calculation gives

Ψ−1Vn×r =

D(δ0) D(δ1) · · · D(δr)

D(δ0 − 1p

) D(δ1 − 1p

) · · · D(δr − 1p

)...

.... . .

...D(δ0 − p−1

p) D(δ1 − p−1

p) · · · D(δr − p−1

p)

where fi is mismatched to grid {0, 1

p , · · · ,p−1p } by δi, and

D (f) := 1p

p−1∑l=0

ej2πlf = 1pejπf(p−1) sin(πfp)

sin(πf)︸ ︷︷ ︸heavy tail

(Dirichlet kernel)

Slow decay / spectral leakage of Dirichlet kernel

If δi = 0 (no mismatch), Ψ−1Vn×r = submatrix of I=⇒ Ψ−1Vn×rd is sparse

If δi 6= 0 (e.g. randomly generated), Ψ−1Vn×r may be far fromsubmatrix of I

=⇒ Ψ−1Vn×rd may be incompressible• Finer gridding does not help!

Super-resolution 10-30

Page 33: Super-Resolution - Princeton University · 2018-11-28 · Super-resolution: extrapolate high-end spectrum (fine scale details) from low-end spectrum (low-resolution data) Super-resolution

Discretization destroys sparsitySuppose n = p, and recall

x = Ψβ = Vn×rd

=⇒ β = Ψ−1Vn×rd

Ideally, if Ψ−1Vn×r ≈ submatrix of I, then sparsity is preserved.

Simple calculation gives

Ψ−1Vn×r =

D(δ0) D(δ1) · · · D(δr)

D(δ0 − 1p

) D(δ1 − 1p

) · · · D(δr − 1p

)...

.... . .

...D(δ0 − p−1

p) D(δ1 − p−1

p) · · · D(δr − p−1

p)

where fi is mismatched to grid {0, 1

p , · · · ,p−1p } by δi, and

D (f) := 1p

p−1∑l=0

ej2πlf = 1pejπf(p−1) sin(πfp)

sin(πf)︸ ︷︷ ︸heavy tail

(Dirichlet kernel)

Slow decay / spectral leakage of Dirichlet kernel

If δi = 0 (no mismatch), Ψ−1Vn×r = submatrix of I=⇒ Ψ−1Vn×rd is sparse

If δi 6= 0 (e.g. randomly generated), Ψ−1Vn×r may be far fromsubmatrix of I

=⇒ Ψ−1Vn×rd may be incompressible• Finer gridding does not help!

Super-resolution 10-30

Page 34: Super-Resolution - Princeton University · 2018-11-28 · Super-resolution: extrapolate high-end spectrum (fine scale details) from low-end spectrum (low-resolution data) Super-resolution

Discretization destroys sparsitySuppose n = p, and recall

x = Ψβ = Vn×rd

=⇒ β = Ψ−1Vn×rd

Ideally, if Ψ−1Vn×r ≈ submatrix of I, then sparsity is preserved.

Simple calculation gives

Ψ−1Vn×r =

D(δ0) D(δ1) · · · D(δr)

D(δ0 − 1p

) D(δ1 − 1p

) · · · D(δr − 1p

)...

.... . .

...D(δ0 − p−1

p) D(δ1 − p−1

p) · · · D(δr − p−1

p)

where fi is mismatched to grid {0, 1

p , · · · ,p−1p } by δi, and

D (f) := 1p

p−1∑l=0

ej2πlf = 1pejπf(p−1) sin(πfp)

sin(πf)︸ ︷︷ ︸heavy tail

(Dirichlet kernel)

Slow decay / spectral leakage of Dirichlet kernel

If δi = 0 (no mismatch), Ψ−1Vn×r = submatrix of I=⇒ Ψ−1Vn×rd is sparse

If δi 6= 0 (e.g. randomly generated), Ψ−1Vn×r may be far fromsubmatrix of I

=⇒ Ψ−1Vn×rd may be incompressible• Finer gridding does not help!

Super-resolution 10-30

Page 35: Super-Resolution - Princeton University · 2018-11-28 · Super-resolution: extrapolate high-end spectrum (fine scale details) from low-end spectrum (low-resolution data) Super-resolution

Mismatch of DFT basis

Loss of sparsity after discretization due to basis mismatch

Fig. credit: Chi, Pezeshki, Scharf, Calderbank ’10

Super-resolution 10-31

Page 36: Super-Resolution - Princeton University · 2018-11-28 · Super-resolution: extrapolate high-end spectrum (fine scale details) from low-end spectrum (low-resolution data) Super-resolution

Optimization-based methods

Super-resolution 10-32

Page 37: Super-Resolution - Princeton University · 2018-11-28 · Super-resolution: extrapolate high-end spectrum (fine scale details) from low-end spectrum (low-resolution data) Super-resolution

Atomic set

Consider a set of atoms A = {ψ(ν) : ν ∈ S}

• S can be finite, countable, or even continuous

• Examples:

◦ standard basis vectors (used in compressed sensing)◦ rank-one matrices (used in low-rank matrix recovery)◦ line spectral atoms

a(f, φ) := ejφ︸︷︷︸global phase

[1, ej2πf , · · · , ej2π(n−1)f ]>, f ∈ [0, 1), φ ∈ [0, 2π)

Super-resolution 10-33

Page 38: Super-Resolution - Princeton University · 2018-11-28 · Super-resolution: extrapolate high-end spectrum (fine scale details) from low-end spectrum (low-resolution data) Super-resolution

Atomic norm

Definition 10.3 (Atomic norm, Chandrasekaran, Recht, Parrilo,Willsky ’10)Atomic norm of any x is defined as

‖x‖A := inf{‖d‖1 : x =

∑k

dkψ(νk)}

= inf {t > 0 : x ∈ t conv (A)}

• Generalization of `1 norm for vectors

Super-resolution 10-34

Page 39: Super-Resolution - Princeton University · 2018-11-28 · Super-resolution: extrapolate high-end spectrum (fine scale details) from low-end spectrum (low-resolution data) Super-resolution

SDP representation of atomic norm

Consider set of line spectral atomsA :=

{a(f, φ) := ejφ · [1, ej2πf , · · · , ej2π(n−1)f ]>

∣∣∣ f ∈ [0, 1), φ ∈ [0, 2π)}

,then

‖x‖A = infdk≥0, φk∈[0,2π), fk∈[0,1)

{∑kdk | x =

∑kdka(fk, φk)

}

Lemma 10.4 (Tang, Bhaskar, Shah, Recht ’13)

For any x ∈ Cn,

‖x‖A = inf{

12nTr (Toeplitz(u)) + 1

2 t∣∣∣ [ Toeplitz(u) x

x∗ t

]� 0

}(10.7)

Super-resolution 10-35

Page 40: Super-Resolution - Princeton University · 2018-11-28 · Super-resolution: extrapolate high-end spectrum (fine scale details) from low-end spectrum (low-resolution data) Super-resolution

Vandermonde decomposition of PSD Toeplitzmatrices

Lemma 10.5

Any Toeplitz matrix P � 0 can be represented as

P = V diag(d)V ∗,

where V := [a(f1, 0), · · · , a(fr, 0)], di ≥ 0, and r = rank(P )

• Vandermonde decomposition can be computed efficiently viaroot finding

Super-resolution 10-36

Page 41: Super-Resolution - Princeton University · 2018-11-28 · Super-resolution: extrapolate high-end spectrum (fine scale details) from low-end spectrum (low-resolution data) Super-resolution

Proof of Lemma 10.4Let SDP(x) be value of RHS of (10.7).1. Show that SDP(x) ≤ ‖x‖A.

• Suppose x =∑k dka(fk, φk) for dk ≥ 0. Picking u =

∑k dka(fk, 0)

and t =∑k dk gives (exercise)

Toeplitz(u) =∑k

dka(fk, 0)a∗(fk, 0) =∑k

dka(fk, φk)a∗(fk, φk)

⇒[

Toeplitz(u) xx∗ t

]=∑k

dk

[a(fk, φk)

1

] [a(fk, φk)

1

]∗� 0

• Given that 1nTr(Toeplitz(u)) = t =

∑k dk, one has

SDP(x) ≤∑

kdk.

Since this holds for any decomposition of x, we conclude this part.Super-resolution 10-37

Page 42: Super-Resolution - Princeton University · 2018-11-28 · Super-resolution: extrapolate high-end spectrum (fine scale details) from low-end spectrum (low-resolution data) Super-resolution

Proof of Lemma 10.4

2. Show that ‖x‖A ≤ SDP(x).

i) Suppose for some u, [Toeplitz(u) x

x∗ t

]� 0. (10.8)

Lemma 10.5 suggests Vandermonde decomposition

Toeplitz(u) = V diag(d)V ∗ =∑k

dka(fk, 0)a∗(fk, 0).

This together with the fact ‖a(fk, 0)‖ =√n gives

1n

Tr (Toeplitz(u)) =∑k

dk.

Super-resolution 10-38

Page 43: Super-Resolution - Princeton University · 2018-11-28 · Super-resolution: extrapolate high-end spectrum (fine scale details) from low-end spectrum (low-resolution data) Super-resolution

Proof of Lemma 10.42. Show that ‖x‖A ≤ SDP(x).

ii) It follows from (10.8) that x ∈ range(V ), i.e.

x =∑k

wka(fk, 0) = V w

for some w. By Schur complement lemma,

V diag(d)V ∗ � 1txx∗ = 1

tV ww∗V ∗.

Let q be any vector s.t. V ∗q = sign(w). Then∑kdk = q∗V diag(d)V ∗q � 1

tq∗V ww∗V ∗q = 1

t

(∑k|wk|

)2

⇒ t∑

kdk ≥

(∑k|wk|

)2

AM-GM inequality=⇒ 12nTr (Toeplitz(u))+1

2 t ≥√t∑

kdk ≥

∑k|wk| ≥ ‖x‖A

Super-resolution 10-39

Page 44: Super-Resolution - Princeton University · 2018-11-28 · Super-resolution: extrapolate high-end spectrum (fine scale details) from low-end spectrum (low-resolution data) Super-resolution

Atomic norm minimization

minimizez∈Cn ‖z‖As.t. zi = xi, i ∈ T (observation set)

m

minimizez∈Cn1

2nTr (Toeplitz(u)) + 12 t

s.t. zi = xi, i ∈ T[Toeplitz(u) z

z∗ t

]� 0

Super-resolution 10-40

Page 45: Super-Resolution - Princeton University · 2018-11-28 · Super-resolution: extrapolate high-end spectrum (fine scale details) from low-end spectrum (low-resolution data) Super-resolution

Key metrics

Minimum separation ∆ of {fl | 1 ≤ l ≤ r} is

∆ := mini 6=l|fi − fl|Rayleigh resolution limit

Lord Rayleigh

Rayleigh resolution limit: λc = 2n−1

Super-resolution 10-41

Page 46: Super-Resolution - Princeton University · 2018-11-28 · Super-resolution: extrapolate high-end spectrum (fine scale details) from low-end spectrum (low-resolution data) Super-resolution

Performance guarantees for super resolution

Suppose T = {−n−12 , · · · , n−1

2 }

Theorem 10.6 (Candes, Fernandez-Granda ’14)Suppose that• Separation condition: ∆ ≥ 4

n−1 = 2λc;Then atomic norm (or total-variation) minimization is exact.

• A deterministic result

• Can recover at most n/4 spikes from n consecutive samples

• Does not depend on amplitudes / phases of spikes

• There is no separation requirement if all di are positive

Super-resolution 10-42

Page 47: Super-Resolution - Princeton University · 2018-11-28 · Super-resolution: extrapolate high-end spectrum (fine scale details) from low-end spectrum (low-resolution data) Super-resolution

Fundamental resolution limits

If T = {−n−12 , · · · , n−1

2 }, we cannot go below Rayleigh limit λc.

Theorem 10.7 (Moitra ’15)If ∆ < 2

n−1 = λc, then no estimator can distinguish between aparticular pair of ∆-separated signals even under exponentially smallnoise.

Super-resolution 10-43

Page 48: Super-Resolution - Princeton University · 2018-11-28 · Super-resolution: extrapolate high-end spectrum (fine scale details) from low-end spectrum (low-resolution data) Super-resolution

Compressed sensing off the grid

Suppose T is random subset of {0, · · · , N − 1} of cardinality n— Extend compressed sensing to continuous domain

Theorem 10.8 (Tang, Bhaskar, Shah, Recht ’13)Suppose that• Random sign: sign(di) are i.i.d. and random;

• Separation condition: ∆ ≥ 4N−1 ;

• Sample size: n & max{r log r logN, log2N}.Then atomic norm minimization is exact with high prob.

• Random sampling improves resolution limits ( 4n−1 vs. 4

N−1)

Super-resolution 10-44

Page 49: Super-Resolution - Princeton University · 2018-11-28 · Super-resolution: extrapolate high-end spectrum (fine scale details) from low-end spectrum (low-resolution data) Super-resolution

Connection to low-rank matrix completion

Recall Hankel matrix

Xe :=

x[0] x[1] x[2] · · · x[k]x[1] x[2] x[3] · · · x[k + 1]x[2] x[3] x[4] · · · x[k + 2]

......

.... . .

...x[n− k − 1] x[n− k] · · · · · · x[n− 1]

= V(n−k)×r diag(d)V >(k+1)×r (Vandermonde decomposition)

• rank (Xe) ≤ r

• Spectral sparsity ⇐⇒ low rank

Super-resolution 10-45

Page 50: Super-Resolution - Princeton University · 2018-11-28 · Super-resolution: extrapolate high-end spectrum (fine scale details) from low-end spectrum (low-resolution data) Super-resolution

Recovery via Hankel matrix completion

Enhanced Matrix Completion (EMaC):

minimizez∈Cn

‖Ze‖∗

s.t. zi = xi, i ∈ T

When T is random subset of {0, · · · , N − 1}:

• Coherence measure is closely related to separation condition(Liao & Fannjiang ’16)

• Similar performance guarantees as atomic norm minimization(Chen, Chi, Goldsmith ’14)

Super-resolution 10-46

Page 51: Super-Resolution - Princeton University · 2018-11-28 · Super-resolution: extrapolate high-end spectrum (fine scale details) from low-end spectrum (low-resolution data) Super-resolution

Extension to 2D frequencies

Signal model: a mixture of 2D sinusoids at r distinct frequencies

x[t] =∑r

i=1die

j2π〈t,fi〉

where fi ∈ [0, 1)2 : frequencies; di : amplitudes

• Multi-dimensional model: fi can assume ANY value in [0, 1)2

Super-resolution 10-47

Page 52: Super-Resolution - Princeton University · 2018-11-28 · Super-resolution: extrapolate high-end spectrum (fine scale details) from low-end spectrum (low-resolution data) Super-resolution

Vandermonde decomposition

X = [x(t1, t2)]0≤t1<n1,0≤t2<n2

Vandermonde decomposition:

X = Y · diag(d) ·Z>.

where

Y :=

1 1 · · · 1y1 y2 · · · yr

......

......

yn1−11 yn1−1

2 · · · yn1−1r

,Z :=

1 1 · · · 1z1 z2 · · · zr

......

......

zn2−11 zn2−1

2 · · · zn2−1r

with yi = exp(j2πf1i), zi = exp(j2πf2i).

Super-resolution 10-48

Page 53: Super-Resolution - Princeton University · 2018-11-28 · Super-resolution: extrapolate high-end spectrum (fine scale details) from low-end spectrum (low-resolution data) Super-resolution

Multi-fold Hankel matrix (Hua ’92)

An enhanced form Xe: k1 × (n1 − k1 + 1) block Hankel matrix

Xe =

X0 X1 · · · Xn1−k1

X1 X2 · · · Xn1−k1+1...

......

...Xk1−1 Xk1 · · · Xn1−1

,where each block is k2 × (n2 − k2 + 1) Hankel matrix:

Xl =

xl,0 xl,1 · · · xl,n2−k2

xl,1 xl,2 · · · xl,n2−k2+1...

......

...xl,k2−1 xl,k2 · · · xl,n2−1

.

Super-resolution 10-49

Page 54: Super-Resolution - Princeton University · 2018-11-28 · Super-resolution: extrapolate high-end spectrum (fine scale details) from low-end spectrum (low-resolution data) Super-resolution

Multi-fold Hankel matrix (Hua ’92)

Xe

Super-resolution 10-49

Page 55: Super-Resolution - Princeton University · 2018-11-28 · Super-resolution: extrapolate high-end spectrum (fine scale details) from low-end spectrum (low-resolution data) Super-resolution

Low-rank structure of enhanced matrix

• Enhanced matrix can be decomposed as

Xe =

ZLZLYd

...ZLY

k1−1d

diag(d)[ZR,YdZR, · · · ,Y n1−k1

d ZR],

◦ ZL and ZR are Vandermonde matrices specified by z1, . . . , zr◦ Yd = diag [y1, y2, · · · , yr]

• Low-rank: rank (Xe) ≤ r

Super-resolution 10-50

Page 56: Super-Resolution - Princeton University · 2018-11-28 · Super-resolution: extrapolate high-end spectrum (fine scale details) from low-end spectrum (low-resolution data) Super-resolution

Recovery via Hankel matrix completion

Enhanced Matrix Completion (EMaC):

minimizez∈Cn

‖Ze‖∗

s.t. zi,j = xi,j , (i, j) ∈ T

• Can be easily extended to higher-dimensional frequency models

Super-resolution 10-51

Page 57: Super-Resolution - Princeton University · 2018-11-28 · Super-resolution: extrapolate high-end spectrum (fine scale details) from low-end spectrum (low-resolution data) Super-resolution

Reference

[1] ”Tutorial: convex optimization techniques for super-resolution parameterestimation,” Y. Chi, G. Tang, ICASSP, 2016.

[2] ”Sampling theory: beyond bandlimited systems,” Y. Eldar, CambridgeUniversity Press, 2015.

[3] ”Matrix pencil method for estimating parameters of exponentiallydamped/undamped sinusoids in noise,” Y. Hua, T. Sarkar, IEEETransactions on Acoustics, Speech, and Signal Processing, 1990.

[4] ”Multiple emitter location and signal parameter estimation,”R. Schmidt, IEEE transactions on antennas and propagation, 1986.

[5] ”Estimating two-dimensional frequencies by matrix enhancement andmatrix pencil,” Y. Hua, IEEE Transactions on Signal Processing, 1992.

Super-resolution 10-52

Page 58: Super-Resolution - Princeton University · 2018-11-28 · Super-resolution: extrapolate high-end spectrum (fine scale details) from low-end spectrum (low-resolution data) Super-resolution

Reference

[6] ”ESPRIT-estimation of signal parameters via rotational invariancetechniques,” R. Roy, T. Kailath, IEEE Transactions on acoustics, speech,and signal processing, 1989.

[7] ”Superresolution via sparsity constraints,” D. Donoho, SIAM journal onmathematical analysis, 1992.

[8] ”Sparse nonnegative solution of underdetermined linear equations bylinear programming,” D. Donoho, J. Tanner, Proceedings of theNational Academy of Sciences, 2005.

[9] ”Sensitivity to basis mismatch in compressed sensing,” Y. Chi, L. Scharf,A. Pezeshki, R. Calderbank, IEEE Transactions on Signal Processing,2011.

[10] ”The convex geometry of linear inverse problems,” V. Chandrasekaran,B. Recht, P. Parrilo, A. Willsky, Foundations of Computationalmathematics, 2012.

Super-resolution 10-53

Page 59: Super-Resolution - Princeton University · 2018-11-28 · Super-resolution: extrapolate high-end spectrum (fine scale details) from low-end spectrum (low-resolution data) Super-resolution

Reference

[11] ”Towards a mathematical theory of super-resolution,” E. Candes,C. Fernandez-Granda, Communications on Pure and AppliedMathematics, 2014.

[12] ”Compressed sensing off the grid,” G. Tang, B. Bhaskar, P. Shah,B. Recht, IEEE Transactions on Information Theory, 2013.

[13] ”Robust spectral compressed sensing via structured matrix completion,”Y. Chen, Y. Chi, IEEE Transactions on Information Theory, 2014.

[14] ”Super-resolution, extremal functions and the condition number ofVandermonde matrices,” A. Moitra, Symposium on Theory ofComputing, 2015.

[15] ”MUSIC for single-snapshot spectral estimation: Stability andsuper-resolution,” W. Liao, A. Fannjiang, Applied and ComputationalHarmonic Analysis, 2016.

Super-resolution 10-54