42
Summary Talk Few Body 18 Ivo Šlaus R. Bošković Institute and TUNL, Duke U niversity I. 50 years ago II. Paradigm change in the NN studies III. Paradigm change in 3B theories IV. Technology we develop changes us V. Few-body research - results, questions VI. Is there an end for few-body research?

Summary Talk Few Body 18 Ivo Šlaus R. Bošković Institute and TUNL, Duke U niversity I. 50 years ago II. Paradigm change in the NN studies III. Paradigm

Embed Size (px)

Citation preview

Summary Talk Few Body 18Ivo Šlaus

R. Bošković Institute and TUNL, Duke U niversity

I. 50 years ago

II. Paradigm change in the NN studies

III. Paradigm change in 3B theories

IV. Technology we develop changes us

V. Few-body research - results, questions

VI. Is there an end for few-body research?

VII. Few-body research community

VIII. ChallengesIX. On being a physicist (Acknowledgement)

Nuclear Forces Experiments Few-body theoryGartenhouse ’55 LASL ’53-’69 Signell- Zagreb ’61-’70 Faddeev ‘60

Marshak’58 ann = -21.7±1 fmOBE 3H:-18±3, 7Li(n,tα)n - fusionBryan- Rice, BNL ’65-’74 Mitra ‘62 Scott ‘69 Sequential (FSI), QFS Amado’633NF Caltech, UC Berkeley separablePrimakoff- 4He levels, 3He? Alt - Holstein ’39 UCLA ’64-’72 Grassberger -n!/ m!(n-m)! nn QFS, NNγ Sandhas

‘67 Fujita- IKO - Ad, Zagreb ‘71 AGSMiyazawa ‘57 BOL-system, 4π emuls. (NN on & off, 3NF)

II. Paradigm change in the NN studies

Hybrid OBE Phenomenological 3NFKukulin CDBonn AV14 TM

Doleschall Shirokov TM99’(χS)

AV18 UIX IL 1-5

χEFT χPT (Q/Λ)n

next-to-next-to-next-to-leading order N3LOR. Machleidt et al, J.J. De Swart et al, V.J. Pandaripandhe et

al, U. G. Meissner et al

TABLE 1 χ2 for various NN potentials compared to NN data

YEAR No of data Nijmegen PSA

CD-Bonn AV18 N3LO N2LO NLO

1992 pp (1787) 1.00 1.00 1.10

1999 pp (2932) 1.09 1.01 1.35

1999 NN (5990)

1.04 1.02 1.21

0-290 MeV

NN data

1999 np 1.04 1.10 10.1 36.2

1999 pp 1.38 1.50 35.4 80.1

No of

parametrs 35 38 24 9

TABLE 2 Deuteron and some very light nuclei

Observ-able

Experi-ment

CD-Bonn AV18 JISP Kukulin Doleschall N3LO

Ed 2.224575 2.224575 2.224575 2.224575 2.224575 2.224575

d .8574 0.8521 0.8548

Qd 2.859 2.70 2.70 2.915 2.754

AD/AS .0256 .0256 .0250 .0252

Pd 4.85% 5.76% 4.14% 5.22% 3.6% 4.51%

Et 8.488 8.013 7.628 8.46 8.48 7.855

E(3He) 7.72 7.288 6.917

E(4He 28.296 24.07 28.6

TABLE 3. BE (MeV) of 3 A 16 with 3NF

3H 3He 4He 6He 6Li 7Li 8He 8Be 16O

Experiment 8.488 7.72 28.296 29.27 31.99 39.2 31.598 56.50 127.619

F:CDB+TMAV18+UIX

8.4788.478

7.7357.733

29.1528.34

G:AV18+UIX AV18+IL2

8.4878.43

7.7397.67

28.3328.37

28.129.4

31.132.3

27.231.3

54.456.6

N: AV8’+TM’ JISP16

8.496 7.797 28.374 28.18928.32

31.0 53.3 133.8

N:N2LO NN Full

34.636.7-38

CONCLUSIONS

1) High precision NN potentials → χ2 = 1.0 to NN data below 350 MeV

ΔσT / ΔσL data → χ2 = 1.08

2) N3LO needed

3) Correct ordering of energy levels of light nuclei, e.g. 9Be, 10B with IL 2 (strong LS)

AV18 contains EM

AV18 fit to 17 states → ave deviation 7.32 MeV

AV18+UIX 2.02 MeV

AV18 + IL 3 0.04 MeV

AV18+IL2 fit to 39 states below 12C < 0.7 MeV

III. Paradigm change in 3B theories

1) Rigorous 3B: Glöckle, Witala, Sauer, Deltuva, Fonseca: Δ + EM

2) GFMC

3) NCSM- sensitivities

- excellent fit

- evidence for 3NF: energy levels of light nuclei and elastic and inelastic scattering

(NB: strong LS in Ay and in ordering levels)

IV. Technology we develop changes our research and us

ACCELERATORS: 17,500 =120 (E > 1 GeV); 1000 “low E” research; 100 synchrotronsmore than 7,500 radiotherapy and 7,000 ion implantationIUCF, TUNL, HIγS, KVI, MAMI, CELSIUS, LEGS,

RIKEN..Jlab...RIB: ISOLDE, SPIRAL, ISAC, Lln, RIBF, RIBBL...2011? 14Be(4ms), 8He(119ms)....10C(19s), 18Ne(17s)

COSY, Nuclotron, DAΦNEP*ANDA+FAIR+HESR 1011 p* to study c in hadron mediaDETECTORS: 76Ge, KamLAND, IceCube (South P)....SALAD, SCANDAL, WASA, ANKE, Crystal ball.......COMPUTERS: valves/cards → PC (25), supercomputers,

DNA (Shapiro), quantum computer

V. Few-body research - results, questions

V 1. Evidence for 3NF

a) Energy levels A ≤ 16, 10B (3+) +Ili; full N3LO

b) PSA of Nd: 4PJ vs NN 3PJ

c) σt (E=150 - 200 MeV)

d) σmin(θ=100o-160o) at E = 95 MeV and other E

e) Kkij Ep = 22.7 MeV

f) Ay, iT11 Cyy Ep = 197 MeV

g) 72 kinematic configurations KVI Ed = 130 MeV

Comparison between 3B and 130 MeV data

Force 2 (NN) 2 (NN+3N)

AV18+TM’ 4.48 3.80

AV18+UIX 4.48 3.67

CD Bonn+TM’

4.04 3.80

3.83 3.63

V 2. Symmetries

1) CKM Δ=1 – (|Vud|2 + |Vus|2 + |Vub

|2)=0.0043±0.0019, 2 σ! Vud=0.97377±0.00024; Vus=0.2272±0.001; Vub=3.96x10-3

Δfr = 0.0004±0.011, Δsr = 0.032±0.181, Δfc = 0.001±0.005 compatible with unitarity2) CP violationElect. dipole: n<6x10-26ecm; e

= (0.07±0.07)10-26ecmA non-zero value requires both P and T violation.Neutrino vs antineutrino → lepton sector(neutrino have mass, Σi mi ≤ 1eV from WMAP)

3) CPT invariance - equality of masses and τ of particles and antiparticles: (mK*o – mK

o)/mKo< 5x10-18

4) Conservation of lepton numbersNeutrinoless double β decay: ΔL = 2:

(Z,A) → (Z+2,A)+e-+e- 76Ge τ > 1.9x1025 y (CL 90%)

5) Time variation of fundamental constants

Δα’/α ≤ 10-3 , (6.4±1.3) 10-16/y from quasar line absorption

BBN: 2H and Li primordial abundances

np→dγ 30 - 130 keV (HIγS + EFT)

6) Supersymmetric particle searchesneutralino m(χo

i) > 46 GeV CL 95%

chargino m(χ±i) > 94 GeV CL 95%

selectron m(se) > 73 GeV CL 95%

squark m(sq) > 259 GeV CL 95%

gluino m(g) > 195 GeV CL 95%

7) CD from π±πo and CSB from md≠mu, ed≠eu

1) Exptl and χ quark model values for scattering lengths

anp app ann (fm) Exp -23.7480.009 -17.30.3* -18.90.4

χ QM -23.749 -17.807 -18.539• *Experimental result is –7.8130.004

2) 3H – 3He BE difference (keV) Experimental 764

Coulomb 676 Mn≠Mp 14CSB NN 65 22CSB 3N 5

Total 760 22

3) Nolen – Schiffer anomaly

4) Superratio π+π- on 3H/3He

5) D(d,α)πo 228 & 232 MeV IUCF

12.7±2.2 & 15.1±3.1 pb vs EFT 23 & 30.8 pb

6) Asymmetry in σ(θ) of H(n,d)πo TRIUMF

(17.2 ± 8st ± 5.5sy)10-4 vs EFT ≤ 69x10-4

7) CS πN small CSB

8) Λ separation energies in 3ΛH vs 3

ΛHe after removing Coulomb 390 keV

9) ΔA = An - Ap

A = An – Ap (in 10-4)

Energy (MeV)

477 347 183

Experiment 47 22st

8sy

59 7st 9sy 34.8 6.2st 4.1sy

1 exchange

5 3 8

1 exchange

43 42 7

2 exchange

-0.4 0.1 -0.5

exchange 8 6 1

- mixing -18 -9 15

Total 38 42 31

Experi-ment

- MnMp

AV18 CDB χ quark cluster

ann 1.6 0.6 1.508 1.508 1.654 1.508 1.46 (1.37-1.67)

rnn 0.10 0.12 0.29 0.26 0.31 0.26

3H-3He 65 221S0 60.9 57.6 62.1 57.6

All T=1 65.8 60.0 65.1 60.0

Nuclear matter1S0 168 154 180

All T=1 367 311 301160 3542 3367 3361 3401 3350 3326(d5/2)

CSB 93 87 92 72 49

V 3. Experimental data “not compatible” with “current theories”

1) Discrepancies between πNN cc from ≠observables2) 3He(γ,p)d and 3He(γ,pp)n at 10.2 and 16 MeV at

TERASCross sections for the reactions 3He(,p)d and 3He(,pp)n

E(MeV) AV18 AV18+UIX Exptl(,p)d (mb) 10.2 1.01 0.96 0.770.05(,p)d (mb) 16.0 0.71 0.72 0.650.05(,pp)n (mb) 10.2 0.55 0.49 0.150.05(,pp)n (mb) 16.0 1.07 1.04 0.910.06Prel. 12.8 MeV linearly polarized from HIS at forward angles n

energy spectra peak at lower En ≠ CDB+Coulomb.

3) pd capture XS, Axx and Ayy at 140 – 200 MeV RCNP ≠ calc with 3NF

4) σ(θ) 108 – 190 MeV 5) Ay puzzle E≤ 25 MeV & at E = 150 – 190 MeV

6) σ(θ), Ay. Kyy’ and Kxx’ at 250 MeV

7) ann

8) σ(θ) and Ayy at 19 MeV H(d,pp)n in SCRE9) Space star pd: 10.3 - 130 MeV; nd: 10.3 - 25 MeV

10) pp and nn QFS (25 MeV nn this conf)

11) Axx, Ayy, Axz in H(d,pp)n at 135 MeV/nucleon12) Lithium problem: 7Li BBN ≈ 2x observational

values

Einc

(MeV)

Type of measurements Analysis ann (fm)

13 θn1=θn2 = 20.5o, 28o, 35o, 43o

ΔΦ= 0o, TOF1, TOF2, Ep Absolute cross sectionShape of FSI peakanp measured simultaneously with θn3= 55.5o,69o and 83.5o corresponding to 43o- 28o, ΔΦ= 180o

NijmegenCDBonn, BonnB

-18.72±0.13st±0.65sy

-18.84±0.47-23.5±0.8

13 θn1=θn2 = 25o

ΔΦ= 0o, TOF1, TOF2, EpAbsolute cross sectionShape

BonnB -14.4±0.3-17.9±0.5

16.6 θn1=55.5o, θp = 41.2o , ΔΦ= 180o

TOF1, EpAbs. cross section normalized to np- QFS

CD-Bonn -16.2±0.3

17.4 kinematically incomplete θp=”0o”Extended geometry and moderate resolution, absolute cross section

CD-Bonn -16.5±0.69st±0.52sy

19 θn1=θn2 = 35.5o ,ΔΦ= 0o,TOF1, TOF2, EpAbsolute cross sectionθn1=35.5o, θn2 = 73.5o ,ΔΦ= 180o,TOF1, TOF2, EpAbsolute cross sectionθn1=51.7o, θp = 45o , ΔΦ= 180o

TOF1, Ep

CD-Bonn -17.6 ±0.2st±0.9sy

anp =

-22.7 ±1.0st±1.3sy

25.3 θn1=55.5o, θp = 41.2o , ΔΦ= 180o

TOF1, EpAbs. cross sectionNormalized to np QFS

CD-Bonn -16.3±0.4-16.1±0.4

25.2 θn1=θp = 32o , ΔΦ= 0o

TOF1, EpAbs. cross section

CD-Bonn -24.3± 1.1

VI. Is there an end for few-body research?Dark”Energy” 73%, Dark”Matter” 22.6%, BM 4.4%; T = 13.7± 0.2 Gy

1) Strange matter, “strangelets”, 3ΛH to 209

ΛBi, 6ΛΛHe,

10ΛΛBe and 13

ΛΛB. Λ Λ interaction weaker than thought before,N, Λ, Σ and Ξ interactions Nijmegen group

2) Exotic states: 4He(Kstop,p)”3baryon”, M = 3117,Γ<21 MeV (?), states around 2 GeV QM predicted not

found3) η-physics, η-mesic nuclei, ηN scattering length;

η→ πoγγ Γex=0.45±0.09st ± 0.08sy eV test for χPT: Γ=0.42±0.2eV;

4) Hybrids (qq*g) and Glueballs (gg)Smoking guns JPC = 0--, 1-+, 2+-.... Evidence: in pπ-→π-π+π-p at 18 GeV/c 1-+,5) Hadron in media could ≠ from free ?6) Neutron and proton drip-lines, e.g. X(31F,x) pb;Efimov effect, Thomas effect;

QFR and “2 spectators QFS”;Borromean, samba and tango nuclei7) NNγ:”off-shell NN amplitude is as a matter of principle

an unmeasurable quantity in NNγ” (1964→75→2000)(Brayshaw, Noyes, Polyzou and Glöckle: off shell – 3NF)

SURPRISES ARE MORE THAN LIKELY

VII. Few-body research community

astrophysics

|

{particle, nuclear - FB - atomic, condensed matter}

|

chemistry, biomed

FB conferences every 2-3 years since 1967

European FB since 1975, Asian-Pacific since 1999(typically 200-400 participants from 20 – 40 countries)

FewBody Systems 1986 (W. Plessas)

APS FB 330 vs APS NP 2476

VIII CHALLENGES

1) Nuclear interaction at N3LO (with 3NF) even N4LO implying CD and CSB

2) More EFT χPT studies required

3) Rigorous 3B, 4B, GFMC, NCSM using NnLO with n ≥ 3 and CD + CSB

4) Relativity

5) Short range: dibaryon – Moscow/Tübingen; p-e EFT potentials should give the same result for all observables

6) Can all EFT parameters be uniquel determined?

7) Latitude in fine tuning PS and parameters?

8) π-N scattering data should get πNN cc9) “Several” potentials - temporary10) N – hyperon and H – H interaction 11) Mesons, baryons, resonances hybrids,

glueballs, etc – topics of conferences: NSTAR, MENU, ETAMESON, e.g. np→dη relativistic descriptions

and PWA workshops, eg Abilene, Zagreb, Tuzla

12) Symmetries

13) FB systems ideal for “new physics” search - weak charge of p (Jlab) - K*N scatt. length to test χSB in systems with strangenness using DEAR and SIDDHARTA

14) New facilities: Bernal – Polanyi polemics15) “Discrepancies” solved using “proper” “3NF” or ? However, there are other “discrepancies”16) Therefore, several approaches desirable17) Rennaisance of nuclear physics

3B actually more complex !

IX. On being a physicist

Knowledge-based society

Paul Crutzen, Martin Rees

John Carey “The Faber Book of Science”

A.Toffler

Aristotle Rurtherford

G. Galilei