3
1 Summary Summary M axim um Intensity M axim um desired beam currentis 10 nC /pulse. M inum um photocathode Q E before replacem entis.5% . T hisrequires9.4 µJ/pulse atthe photocathode. M axim um pulse length 4 stacked gaussian pulses, each w ith R M S = 2.3 psec (FW H M = 5.4 psec), separated by 2.3 psec yieldsa pulse w ith R M S = 6.3 psec (FW H M = 20.8 psec). Intensity variation atflattop is<±5% . M inim um pulse length RM S = 2.3 psec (FW H M = 5.4 psec). This is the m inim um the laser system can deliver. M axim um spotsize Photocathode is5 m m in diam eter, so m axim um spotsize is5 m m FW ofany shape. M inim um spot size RM S = 1.0 m m (FW = 4.0 m m ) "flat" transverse profile @ 3.2 nC /pulse,4 stacked gaussians; RM S = ?? m m "flat" transverse profile, @ ?? nC /pulse M axim um pulse train 3000 pulses@ 5 H z M inim um pulse train 1 pulse @ 1 H z Pulse-to-pulse intensity fluctuation ??% RM S N otes --G eneration oflaser pulsesw ith a flattened transverse profile requiresthe use ofan iris, w hich dim inishes intensity. --Stacking 4 gaussian pulsesis~70-80% efficient. (J. R uan) --Transportefficiency from uv targetto photocathode is10-20% (J. R uan) --Trade offsare betw een intensity, transverse em ittance,m om entum spread, and bunch length

Summary

Embed Size (px)

DESCRIPTION

Summary. Stacked Gaussians. 4 gaussians @ σ =2.3 ps; separation =1.4 ps FWHM=13.0 ps; RMS=4.3 ps - PowerPoint PPT Presentation

Citation preview

1

SummarySummary

Maximum Intensity Maximum desired beam current is 10 nC/pulse. Minumum photocathode QE before replacement is .5%. This requires 9.4 µJ/pulse at the photocathode.

Maximum pulse length 4 stacked gaussian pulses, each with RMS = 2.3 psec (FWHM = 5.4 psec), separated by 2.3 psec yields a pulse with RMS = 6.3 psec (FWHM = 20.8 psec). Intensity variation at flattop is <±5%.

Minimum pulse length RMS = 2.3 psec (FWHM = 5.4 psec). This is the minimum the laser system can deliver.

Maximum spot size Photocathode is 5 mm in diameter, so maximum spot size is 5 mm FW of any shape.

Minimum spot size RMS = 1.0 mm (FW = 4.0 mm) "flat" transverse profile @ 3.2 nC/pulse, 4 stacked gaussians; RMS = ?? mm "flat" transverse profile, @ ?? nC/pulse

Maximum pulse train 3000 pulses @ 5 Hz

Minimum pulse train 1 pulse @ 1 Hz

Pulse-to-pulse intensity fluctuation ??% RMS

Notes -- Generation of laser pulses with a flattened transverse profile requires the use of an iris, which diminishes intensity. -- Stacking 4 gaussian pulses is ~70-80% efficient. (J. Ruan) -- Transport efficiency from uv target to photocathode is 10-20% (J. Ruan) -- Trade offs are between intensity, transverse emittance, momentum spread, and bunch length

2

Stacked GaussiansStacked Gaussians

0.0000000

0.0500000

0.1000000

0.1500000

0.2000000

0.2500000

-20.0000 -15.0000 -10.0000 -5.0000 0.0000 5.0000 10.0000 15.0000 20.0000

t [ps]

0.0000000

0.0500000

0.1000000

0.1500000

0.2000000

0.2500000

0.3000000

0.3500000

-20.0000 -15.0000 -10.0000 -5.0000 0.0000 5.0000 10.0000 15.0000 20.0000

t [ps]

4 gaussians @ σ=2.3 ps; separation=2.3 ps

FWHM=20.8 ps; RMS=6.4 ps

4 gaussians @ σ=2.3 ps; separation =1.4 ps

FWHM=13.0 ps; RMS=4.3 ps

with spot size = 1.2mm RMS (flat distribution, 4.8mm dia.) and 3.2 nC/pulse yields 3.5E-6 emittance, dp/p (FW) = ±3.2%, and RMS bunch length = 320 µm after bunch compression (no 3rd harmonic cavity)

3

Irised GaussianIrised Gaussian

σ = 2.85mm; iris = 4.8mm dia

intensity reduced to 30%; phase space density variation of ±17.5%

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

-5.00 -4.00 -3.00 -2.00 -1.00 0.00 1.00 2.00 3.00 4.00 5.00

x [mm]

irised gaussian

flat distribution

gaussian