24
Sulfur biochemistry of garlic: the biosynthesis of flavour precursors Hamish A Collin, Jill M Hughes, Angela Tregova, Jonathan GC Milne, Gloria van der Werff, Mark Wilkinson, Rick Cosstick, Meriel G Jones and A Brian Tomsett The School of Biological Sciences, The University of Liverpool Laurence Trueman, Tim Crowther, Linda Brown and Brian Thomas Warwick HRI, The University of Warwick, Wellesbourne, UK

Sulfur biochemistry of garlic: the biosynthesis of flavour precursors Hamish A Collin, Jill M Hughes, Angela Tregova, Jonathan GC Milne, Gloria van der

Embed Size (px)

Citation preview

Page 1: Sulfur biochemistry of garlic: the biosynthesis of flavour precursors Hamish A Collin, Jill M Hughes, Angela Tregova, Jonathan GC Milne, Gloria van der

Sulfur biochemistry of garlic: the biosynthesis of flavour precursors

Hamish A Collin, Jill M Hughes, Angela Tregova,Jonathan GC Milne, Gloria van der Werff, Mark Wilkinson, Rick Cosstick, Meriel G Jones and A Brian TomsettThe School of Biological Sciences, The University of Liverpool

Laurence Trueman, Tim Crowther, Linda Brown and Brian ThomasWarwick HRI, The University of Warwick, Wellesbourne, UK

Page 2: Sulfur biochemistry of garlic: the biosynthesis of flavour precursors Hamish A Collin, Jill M Hughes, Angela Tregova, Jonathan GC Milne, Gloria van der

Project objectives: Garlic flavour

Improved understanding of S allocation and translocation during garlic development

Identify genes and intermediates involved in alliicin synthesis

Page 3: Sulfur biochemistry of garlic: the biosynthesis of flavour precursors Hamish A Collin, Jill M Hughes, Angela Tregova, Jonathan GC Milne, Gloria van der

For controlled growth in the UK climate - hydroponic and pot culture in a glasshouse

Measurements during growth

•Leaf number, bulb weight

•N, S, C, protein, CSO

•SO42-uptake using

stable isotope labelling

Improved understanding of S allocation and translocation during garlic development

Page 4: Sulfur biochemistry of garlic: the biosynthesis of flavour precursors Hamish A Collin, Jill M Hughes, Angela Tregova, Jonathan GC Milne, Gloria van der

Hydroponic vpot-grown Printanor - Leaf weight

0

5

10

15

20

25

0 50 100 150 200 250

Days after planting

Mea

n m

ass

of le

af (g

, n=3

)

Hydoponic-grown Printanor

Pot-grown Printanor

Hydroponic-grown garlic - comparison of bulb formation

0

20

40

60

80

100

120

140

160

0 50 100 150 200 250

Days after planting

Fres

h w

eigh

t of c

love

Printanor clove

Messidrome Clove

Garlic growth and S partition

0.0

0.1

0.2

0.3

29 56 77 109 141 169 203Days after planting

Tota

l Su

lph

ur

Co

nte

nt

(g) Root

Leaf

Clove

0

500000

1000000

1500000

2000000

56 109 141 169 203Days after planting

CS

O c

on

ten

t Root

Leaf

Clove

1 2 3 4 1 2 3 4

Page 5: Sulfur biochemistry of garlic: the biosynthesis of flavour precursors Hamish A Collin, Jill M Hughes, Angela Tregova, Jonathan GC Milne, Gloria van der

Four stages in bulb development Early growth phase: Day 0 – 40/70

uses stored nutrients

Late growth phase: Day 40/70 - 150

roots, leaves grow rapidly

C, protein accumulate in leaves; S stored in roots

Bulb initiation: Day 150 – 200 S, N, C, protein and CSOs decline in roots and leaves but

accumulate in bulbs rise in CSO synthesis

Bulb maturity: Day 200 turgor loss as leaves and roots senesce S, N, C, protein falls in leaves, roots, and rises in

bulbs neck closure and bulb matures

Page 6: Sulfur biochemistry of garlic: the biosynthesis of flavour precursors Hamish A Collin, Jill M Hughes, Angela Tregova, Jonathan GC Milne, Gloria van der

Sulfur uptake and distribution in more detail

grow hydroponically

use isotope labelled sulfur stable heavy isotope sulfur-34

measure total S, 34/32S ratio (delta value)

Page 7: Sulfur biochemistry of garlic: the biosynthesis of flavour precursors Hamish A Collin, Jill M Hughes, Angela Tregova, Jonathan GC Milne, Gloria van der

0

50

100

150

200

0 25 50 75 100 125 150 175 200 225

Days after planting

Fre

sh w

eig

ht

(g) Clove

Leaf

Root

Distribution and remobilizationof sulphur taken up early

Distribution and remobilizationof sulphur taken up late

* * * * * * * * * * *

* * * * * * * * * * *

34S32S

A

B

Growth pattern in earlier experiment

Sulfur labelling design

Page 8: Sulfur biochemistry of garlic: the biosynthesis of flavour precursors Hamish A Collin, Jill M Hughes, Angela Tregova, Jonathan GC Milne, Gloria van der

Sulpur accumulation in system A plants

0

50

100

150

200

250

05/0

4/02

12/0

4/02

19/0

4/02

26/0

4/02

03/0

5/02

10/0

5/02

17/0

5/02

24/0

5/02

31/0

5/02

07/0

6/02

14/0

6/02

21/0

6/02

28/0

6/02

05/0

7/02

12/0

7/02

Date

Tota

l m

ass

in m

g

Clove

Leaf

Root

Total

34S 32S

Hydroponic garlic in isotopically labelled sulfur

Sulphur accumulation in system A plants (34S then 32S)

Page 9: Sulfur biochemistry of garlic: the biosynthesis of flavour precursors Hamish A Collin, Jill M Hughes, Angela Tregova, Jonathan GC Milne, Gloria van der

0

50

100

150

200

25005

/04/

02

19/0

4/02

03/0

5/02

17/0

5/02

31/0

5/02

14/0

6/02

28/0

6/02

12/0

7/02

26/0

7/02

d v

alu

e

Bulb

Leaf

Root

0

50

100

150

200

05/0

4/02

19/0

4/02

03/0

5/02

17/0

5/02

31/0

5/02

14/0

6/02

28/0

6/02

12/0

7/02

26/0

7/02

d v

alu

e

Bulb

Leaf

Root

A: 34S then 32S B: 32S then 34S

S pools in root, leaf, bulb increase while root takes up S

After S uptake by roots cease, it is exported to bulb

Roots therefore appear an important S source for the bulb

3234 3432

Page 10: Sulfur biochemistry of garlic: the biosynthesis of flavour precursors Hamish A Collin, Jill M Hughes, Angela Tregova, Jonathan GC Milne, Gloria van der

To identify genes and intermediates in flavour precursor biosynthesis

Alliinase

Other genes from earlier part of biosynthetic pathway

Page 11: Sulfur biochemistry of garlic: the biosynthesis of flavour precursors Hamish A Collin, Jill M Hughes, Angela Tregova, Jonathan GC Milne, Gloria van der

Sequence obtained

Relative alliinase expression during development

0

0.2

0.4

0.6

0.8

1

08/02/01 10/03/01 09/04/01 09/05/01 08/06/01Rel

ativ

e al

liin

ase

exp

ress

ion

Bulb

Leaf

Alliinase

Page 12: Sulfur biochemistry of garlic: the biosynthesis of flavour precursors Hamish A Collin, Jill M Hughes, Angela Tregova, Jonathan GC Milne, Gloria van der

Biosynthetic pathway for garlic flavour precursors

SO42- SO3

2- S2- cysteine

glutathione(γ-glu-cys-gly)

S-methyl-γ-glu-cys

gly

S-methylcysteine

S-methylcysteine sulphoxide(methiin)

glu

trans-peptidase

oxidase

S-2-CP-γ-glu-cys

gly

S-trans-1-propenyl-γ-glu-cys

S-trans-1-propenylcysteineoxidase

trans-peptidaseglu

HCOOH

S-trans-1-propenylcysteine sulphoxide(isoalliin)

S-methylglutathioneS-(2-carboxypropyl)-glutathioneS-allylglutathione

S-allyl-γ-glu-cys

gly

S-allylcysteine

glu trans-peptidase

oxidase

S-allyl group(unknown source)

valine & methacrylateserine

oxidase

S-allylcysteine

S-allyl-cysteine sulphoxide(alliin) Lancaster and Shaw 1989; Granroth

1970

Page 13: Sulfur biochemistry of garlic: the biosynthesis of flavour precursors Hamish A Collin, Jill M Hughes, Angela Tregova, Jonathan GC Milne, Gloria van der

Is cysteine synthase involved in garlic flavour precursor biosynthesis?

O-acetyl serine + sulphide cysteine

cytoplasmic, plastid and mitochondrial forms

non-protein amino acids synthesised

Page 14: Sulfur biochemistry of garlic: the biosynthesis of flavour precursors Hamish A Collin, Jill M Hughes, Angela Tregova, Jonathan GC Milne, Gloria van der

Non-protein aminoacid synthesis by CSases

serine   SAT/CSase Complex   O-acetyl serine   H2S CH2=CH-CH2-SH methyl-SH 3,4-dihydroxy-

pyrazole Free CSase pyridine     L-cysteine S-allyl-L-cysteine S-methyl- mimosine -pyrazol-

1-yl alanine L-cysteine    Free CAS HCN  

3-cyano-L-ala

watermelonMimosa pudica

CSase cysteine synthase; CAS -cyanoalanine

synthase

Pea (Pisum sativum)

Leucaena leucocephala

watermelon

Leucaena leucocephala

Lathyrus latifolius

Ikegami and Murakoshi 1994; Warrilow and Hawkesford 2002

Page 15: Sulfur biochemistry of garlic: the biosynthesis of flavour precursors Hamish A Collin, Jill M Hughes, Angela Tregova, Jonathan GC Milne, Gloria van der

Biosynthetic capacity of garlic callus

allyl cysteine alliin isoalliin propyl cysteine propiinallyl thiol 10; 10,1 10,1;10,1 allyl cysteine 10;10,1propenyl cysteine 1;10,1propyl thiol 1;10 10;propyl cysteine 10,1;10,1

Incubation for 5 days with 10mM or 1mM substrateIncubation for 12/15 days with 10mM or 1mM substrate

Conclusion:

These experiments suggest that in vivo the general reactions shown may occur:-

alk(en)yl thiol alk(en)yl cysteine alk(en)yl CSO

Page 16: Sulfur biochemistry of garlic: the biosynthesis of flavour precursors Hamish A Collin, Jill M Hughes, Angela Tregova, Jonathan GC Milne, Gloria van der

Isolation of cysteine synthases from garlicStrategy:

Screening a garlic cDNA library for sequences with homology to known CSase

Identify a protein with S-allyl CSase activity and screen garlic cDNA library for it

Confirm function of CSase genes through expression of the protein

Page 17: Sulfur biochemistry of garlic: the biosynthesis of flavour precursors Hamish A Collin, Jill M Hughes, Angela Tregova, Jonathan GC Milne, Gloria van der

Screening using homology to known CSases

Three full-length sequences from garlic cDNA library GCS1, GCS2

GCS1 – frameshift; truncated 202 aa, 22 kDa

GCS2 – 332 aa, 35 kDa51 aa predicted transit peptide - plastid

GCS3323 aa, 34 kDaNo transit peptide - cytosol

Page 18: Sulfur biochemistry of garlic: the biosynthesis of flavour precursors Hamish A Collin, Jill M Hughes, Angela Tregova, Jonathan GC Milne, Gloria van der

Purification of an allyl cysteine synthase from garlic leaves

Phenyl sepharose fractionation

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 3 5 7 9

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

Fraction

OD

55

0

cysteinesyntase activity

allyl cysteinesynthaseactivity

…….FLGVMPSHYSIE………. YLGADLALTDTN………… SANPGAHYATTGP………….

Sequence of peptides from this protein

34 kDa

Page 19: Sulfur biochemistry of garlic: the biosynthesis of flavour precursors Hamish A Collin, Jill M Hughes, Angela Tregova, Jonathan GC Milne, Gloria van der

Obtained CSase from garlic

Four full-length cDNAs isolated and sequenced:

GCS1 – potential plastidic CSase (frameshift)

GCS2 – potential plastidic CSase GCS3 – potential cytosolic CSaseGCS4 – potential S-allyl-CSase (based on

protein data)

Page 20: Sulfur biochemistry of garlic: the biosynthesis of flavour precursors Hamish A Collin, Jill M Hughes, Angela Tregova, Jonathan GC Milne, Gloria van der

Phylogenetic tree of garlic cysteine synthases

 

    

Spinach

A. thaliana [3, 10]

A. thaliana [6]

GCS2

A. thaliana [4]

RCS4RCS2

GCS4

GCS3

A. thaliana [2]

A. thaliana [5]

Watermelon

A. thaliana [1]

A. thaliana [8]A. thaliana [9]

A. thaliana [7]

50 changes

PAUP version 4.0b 10

100

78

97

100 100

100

100

100 28

72

7246

45

99

100

Page 21: Sulfur biochemistry of garlic: the biosynthesis of flavour precursors Hamish A Collin, Jill M Hughes, Angela Tregova, Jonathan GC Milne, Gloria van der

1 2 3 4 5

gcs4

gcs3

gcs2

18s

1. 7o stored clove

2. 20o stored clove3. Sprouting clove4. Leaf5. Root

• Low expression of putative plastidic CSase gcs2

• Root expression of cytosolic CSase gcs3

• Most tissues expressed potential S-allyl CSase gcs4

Northern blot analysis

Page 22: Sulfur biochemistry of garlic: the biosynthesis of flavour precursors Hamish A Collin, Jill M Hughes, Angela Tregova, Jonathan GC Milne, Gloria van der

Results

• Background activity from E. coli proteins subtracted

• All three genes gcs2 gcs3 gcs4 are functional to transcribe and translate CSase

• GCS4 shows the highest activity in cysteine biosynthesis

• GCS4 functions as S-allyl-CSase

In vitro CSase activity

0

5

10

15

20

25

30

35

µm

ol c

ys

min

-1 m

l-1

Substrate: Na2S

GCS2 GCS3 GCS4

0

5000

10000

15000

20000

25000

30000

35000

GCS2 GCS3 GCS4 0 10 0 10 0 10 min

Substrate: allyl mercaptan

GCS2 GCS3 GCS4

Expression of gcs2 gcs3 gcs4 in vitro

Pea

k ar

ea

Page 23: Sulfur biochemistry of garlic: the biosynthesis of flavour precursors Hamish A Collin, Jill M Hughes, Angela Tregova, Jonathan GC Milne, Gloria van der

SummaryS allocation and re-mobilisation during garlic

development Alliinase

Sequence obtained Expression during development

Could a cysteine synthase be involved in flavour precursor biosynthesis in garlic?

Sequences of three cysteine synthases obtained, all expressed in garlic Functional in vitro

cysteine synthesis – GCS2, GCS3, GCS4S-allyl cysteine synthesis – GCS4

Role in planta?

Page 24: Sulfur biochemistry of garlic: the biosynthesis of flavour precursors Hamish A Collin, Jill M Hughes, Angela Tregova, Jonathan GC Milne, Gloria van der

Acknowledgements

The Garlic and Health project partners

EU FP5 Quality of Life program: Garlic and Health project QLK1-CT-1999-00498