9
  Mill Material Balance The Computer Program XII-17 12.2.4 Result of Projectio n After the simulation of the Brix and Pol degrees on sheet-III completed and have the values shown underneath conform to the limitation, then on sheet-IV can be seen the overall result of calculation in the following pages, which consist of: § Page 1: The complete mill material balance, fo r overall and indiv iduals. § Page 2: The performance targets, o verall a nd in dividually. § Page 3: The proposed mills setting and the average analysis of juice extracted by each mill, imbibition water, etc. § Page 4: The projection of Brix curve. § Page 5: The approximate mill power required.

Sugar Cane Mill Material Balance

Embed Size (px)

Citation preview

  • Mill Material Balance

    The Computer Program XII-17

    12.2.4 Result of Projection

    After the simulation of the Brix and Pol degrees on sheet-III completed and have the values

    shown underneath conform to the limitation, then on sheet-IV can be seen the overall result of

    calculation in the following pages, which consist of:

    Page 1: The complete mill material balance, for overall and individuals.

    Page 2: The performance targets, overall and individually.

    Page 3: The proposed mills setting and the average analysis of juice extracted by each mill,

    imbibition water, etc.

    Page 4: The projection of Brix curve.

    Page 5: The approximate mill power required.

  • Mill Material Balance

    The Computer Program XII-18

    M I LL M A TERIA L B A LA N CE PROJECT ION OF PERFORMA NCE Page : 1 SUGA R FACTORY : EXAMPLE CAPACITY : 4,800.0TCD PERIOD : X

    MILL TRAIN : 2 CC + 5 MILLS MILLING SEASON : 1977 Date : Last date CANE QUA LITY % pol = 10.32 % brix = 13.41 % fiber = 16.07

    Mass % Brix % Pol Density Volume kg/hr. brix kg/hr. pol kg/hr. kg/dm3 dm3/hr. E v a l u a t i o n

    MILL I MILL I - Ju ice in 167,860 15.98 26,820 12.30 20,640 1.07138 156,676 Dk = 10.02 r = 1.3501

    - F iber 32,140 1.60000 20,087 L = 21.33 r' = 1.3492 Total in 200,000 13.41 26,820 10.32 20,640 1.13146 176,763 n = 270 m = 0.3371

    Extracted juice 89,677 16.02 14,322 12.98 11,604 1.07181 83,668 h = 0.3805 y = 0.34 - Bagasse juice 78,183 15.99 12,498 11.56 9,036 1.07088 73,008 i = 2.05 K = 2.56 - F iber 32,140 1.60000 20,087 Vedo = 68,952 HKej = 81.02

    Total bagasse 110,323 11.33 12,498 8.19 9,036 1.18506 93,095 Ved = 68,952 kB = 1.000

    MILL I I MILL I I

    - Ju ice in 166,841 10.47 17,463 7.57 12,626 1.04793 159,210 Dk = 10.23 r = 1.3316 - F iber 32,140 1.60000 20,087 L = 21.33 r' = 1.3380

    Total in 198,981 8.78 17,463 6.35 12,626 1.10978 179,297 n = 270 m = 0.3352 Extracted juice 110,323 9.82 10,800 7.65 8,414 1.04561 105,510 h = 0.2995 y = 0.26 - Bagasse juice 56,518 11.79 6,662 7.45 4,213 1.05248 53,700 i = 2.59 K = 3.24

    - F iber 32,140 1.60000 20,087 Vedo = 55,411 HKej = 77.90 Total bagasse 88,658 7.51 6,662 4.75 4,213 1.20154 73,787 Ved = 55,411 kB = 0.935

    MILL I I I MILL I I I - Ju ice in 134,564 6.75 9,082 4.35 5,851 1.03251 130,327 Dk = 10.21 r = 1.3164

    - F iber 32,140 1.60000 20,087 L = 21.33 r' = 1.3269 Total in 166,704 5.45 9,082 3.51 5,851 1.10830 150,414 n = 270 m = 0.3353 Extracted juice 88,658 5.60 4,965 4.05 3,591 1.02848 86,202 h = 0.2642 y = 0.26

    - Bagasse juice 45,906 8.97 4,117 4.92 2,261 1.04036 44,125 i = 2.47 K = 3.08 - F iber 32,140 1.60000 20,087 Vedo = 48,779 HKej = 72.32 Total bagasse 78,046 5.27 4,117 2.90 2,261 1.21544 64,212 Ved = 48,779 kB = 0.830

    MILL IV MILL IV

    - Ju ice in 117,832 4.33 5,108 2.44 2,876 1.02159 115,342 Dk = 10.20 r = 1.3081 - F iber 32,140 1.60000 20,087 L = 21.33 r' = 1.3158 Total in 149,972 3.41 5,108 1.92 2,876 1.10738 135,429 n = 270 m = 0.3354

    Extracted juice 78,046 3.10 2,419 2.10 1,639 1.01851 76,627 h = 0.2437 y = 0.27 - Bagasse juice 39,786 6.76 2,688 3.11 1,237 1.02766 38,715 i = 2.41 K = 3.01 - F iber 32,140 1.60000 20,087 Vedo = 44,954 HKej = 67.74 Total bagasse 71,926 3.74 2,688 1.72 1,237 1.22319 58,802 Ved = 44,954 kB = 0.715

    MILL V MILL V - Ju ice in 85,906 3.13 2,688 1.44 1,237 1.01262 84,835 Dk = 10.34 r = 1.2985 - F iber 32,140 1.60000 20,087 L = 21.33 r' = 1.2962

    Total in 118,046 2.28 2,688 1.05 1,237 1.12508 104,922 n = 270 m = 0.3341 Extracted juice 52,160 1.90 991 1.18 615 1.01378 51,451 h = 0.2202 y = 0.32 - Bagasse juice 33,747 5.03 1,697 1.84 622 1.01087 33,384 i = 2.04 K = 2.55 - F iber 32,140 1.60000 20,087 Vedo = 41,179 HKej = 62.11

    Total bagasse 65,887 2.58 1,697 0.94 622 1.23220 53,471 Ved = 41,179 kB = 0.607

  • Mill Material Balance

    The Computer Program XII-19

    M I LL M A T E R I A L B A LA N C E P R O J E C T I O N O F P E R F O R M A N C E P a g e : 2 SUGA R FA CTORY : E X A M P LE CA P A CITY : 4 ,800 .0TCD P E R I O D : X

    M I LL TRA I N : 2 CC + 5 MILLS M I LL ING SEASON : 1977 D a t e : La s t d a t e CA N E Q U A L I T Y % pol = 10 .32 % brix = 13 .41 % fiber = 16 .07

    T H E T A R G E T S D e s c r i p t i o n Symbo l V a lu e Unit

    C a n e : - c rushed, total Q 4 ,800 .0 TCD - c rushing duration jg 24 .00 Hours

    - c rushed per hour Q j 200,000 KCH - ju ice content gnt 83 .93 % c a n e

    I m b ib ition water: - weighed, total G i 1 ,581 .3 Tons - weighed per hour G ij 65 ,887 kg/hr.

    - % fiber g is 205.00 % fibe r - % cane g it 32 .94 % c a n e - on bagasse 1 g ia 1 0 % Gij

    - on bagasse 2 g ia 2 0 % Gij - on bagasse 3 g ia 3 30 % Gij

    - on bagasse 4 g ia 4 70 % Gij M ixe d ju ic e : - weighed, total G n m 4,800 .0 Tons

    - weighed per hour G n m j 200,000 kg/hr. - % cane g n m t 100.00 % c a n e

    - pol p n m 10 .04 % - brix b n m 12 .60 % - purity H K n m 79 .68 %

    La s t m ill b a g a s s e : - total per hour G a l 65 ,887 kg/hr. - % cane g a lt 32 .94 % c a n e

    - pol p a l 0 .94 % - brix b a l 2 .58 %

    - f iber content kf 48 .78 % - dry mat te r zk 51 .36 %

    - juice to fiber nss 105.00 % - ju ice loss in bagasse gnhs 32 .97 % fibe r

    Extract ion's : - B rix m ill # 1 H P B -I 53 .40 %

    - B rix total H P B -t 93 .67 % - sugar H P G 96 .99 %

    - sugar on 12,5% f iber H P G 1 2 ,5 97 .66 % Rat io of juice purity P S H K 97 .44 %

    Crystal: - c a n b e e x p e c t e d kt 9 .08 % c a n e - in m ix e d ju ic e k n m 8.99 % c a n e

    - loss in bagasse (re la t iv e ly) khar 1 .05 %

    I N D I V I D U A L P E R F O R M A N C E M I L L NO: ---------------> I I I I I I I V V

    Extraction: - J u ic e En = 53 .42 66 .12 65 .89 66 .23 60 .72 %N o r m a l v a lue = > 6 0 > 6 0 > 6 0 > 6 0 > 6 0 %

    - P o l Ep = 56 .22 66 .64 61 .36 56 .98 49 .74 % - B rix Eb = 53 .40 61 .85 54 .67 47 .37 36 .86 %

    Compress ion rat io : K = 2 .56 3 .24 3 .08 3 .01 2 .55N o r m a l v a lue = 2 , 4 - 3 , 3 2 , 6 - 3 , 5 2 , 6 - 3 , 3 2 , 5 - 3 , 2 2 , 4 - 3 , 0

    J u ice ex t rac ted by f eed open ing y = 0 .34 0 .26 0 .26 0 .27 0 .32

    m e a n ing = e x t ra c t e de x t ra c t e de x t ra c t e de x t ra c t e de x t ra c t e d Ro lle r shel l deflection l = 0 .00 0 .00 0 .00 0 .00 0 .00 %

    m e a n ing = s a f e s a f e s a f e s a f e s a f e B a g a s s e : - no-void dens ity da = 1 .1851 1 .2015 1 .2154 1 .2232 1 .2322 kg /dm3

    - absorption abi l i ty factor r = 1 .3501 1 .3316 1 .3164 1 .3081 1 .2985 - ditto, norm a l r' = 1 .3492 1 .3380 1 .3269 1 .3158 1 .2962

    - % cane gat = 55 .16 44 .33 39 .02 35 .96 32 .94 % - pol pa = 8 .19 4 .75 2 .90 1 .72 0 .94 % - brix ba = 11 .33 7 .51 5 .27 3 .74 2 .58 %

    - dry mat te r zk = 40 .46 43 .77 46 .46 48 .42 51 .36 % F ibe r: - index c = 0 .47 0 .58 0 .66 0 .71 0 .78 kg /dm3

    - loading q = 177.38 173.73 174.07 174.25 171.89 gr /dm2 - reduced lo a d ing q' = 134.89 129.41 129.92 130.17 126.67 gr /dm2

    N o r m a l v a lue = 1 2 0 - 1 3 0 g r / d m 2 e s c r ibe d ro l le r s u r f a c e - % bagasse kf = 29 .13 36 .25 41 .18 44 .68 48 .78 %

    N o r m a l v a lue = 2 5 - 3 5 2 8 - 3 8 3 2 - 4 2 3 7 - 4 7 4 5 - 5 0 %

  • Mill Material Balance

    The Computer Program XII-20

    M I LL M A T E R I A L B A LA N C E P R O P O S E D M I LL SETT ING P a g e : 3 SUGA R FA CTORY : EXA M P LE CA P A CITY : 4 ,800.0TCD PERIOD : X M I LL TRA I N : 2 CC + 5 MILLS M I LLING SEASON : 1977 Date : Las t date

    CANE QUALITY % pol = 10.32 % brix = 13.41% fiber = 16.07

    Obta ined from the material balance (page 1):n c q q' kf i

    M ill # 1 270 0.47 177.38 134.89 29.13 2.05 b M ill # 2 270 0.58 173.73 129.41 36.25 2.59

    M ill # 3 270 0.66 174.07 129.92 41.18 2.47 a M ill # 4 270 0.71 174.25 130.17 44.68 2.41

    M ill # 5 270 0.78 171.89 126.67 48.78 2.04

    n = Rolle r speed per hour (rph).c = F iber index, kg/dm3 escribed de livery opening.

    hd hb kf = F iber content in bagasse, %

    i = Ratio of feed and delivery openings.q = F iber loading, gr/dm2 escribed rolle r surfaceq' = F iber loading, reduced to standard roller of 30"

    When: q' = 120-130 gr/dm2 - normal.

    q' = 130-140 gr/dm2 - requires Donne lly chute . q' = 140-160 gr/dm2 - requires l ight pressure feeder.

    q' = 150-170 gr/dm2 - requires heavy duty pressure feeder. TH E M I LL SETTING (PROPOSED)

    Work Set CTC CTC

    Dimens ion in m m Do k Dk L t Open ing Open ing Work Set a b M ill # 1 , top 1 ,052.0 25.0 1,002.0 2,133 6.0

    feed 1,050.0 25.0 1,000.0 4.7 78.04 23.38 1,079.0 1,074.4 263 516de livery 1 ,048.0 25.0 998.0 4.7 38.05 -16.61 1,038.1 1,033.4

    M ill # 2 , top 1 ,073.0 25.0 1,023.0 2,133 6.0feed 1,069.0 25.0 1,019.0 4.7 77.54 22.87 1,098.5 1,093.9 258 498

    de livery 1 ,066.8 25.0 1,016.8 4.7 29.95 -24.71 1,049.9 1,045.2 M ill # 3 , top 1 ,051.0 15.0 1,021.0 2,133 6.0

    feed 1,048.0 15.0 1,018.0 4.7 65.17 30.51 1,084.7 1,080.0 214 409de livery 1 ,040.0 15.0 1,010.0 4.7 26.42 -8.24 1,041.9 1,037.3

    M ill # 4 , top 1 ,050.0 15.0 1,020.0 2,133 6.0

    feed 1,048.0 15.0 1,018.0 4.7 58.74 24.07 1,077.7 1,073.1 192 364de livery 1 ,040.0 15.0 1,010.0 4.7 24.37 -10.29 1,039.4 1,034.7

    M ill # 5 , top 1 ,064.0 15.0 1,034.0 2,133 6.0feed 1,052.0 15.0 1,022.0 4.7 44.89 10.23 1,072.9 1,068.2 146 274

    de livery 1 ,048.0 15.0 1,018.0 4.7 22.02 -12.64 1,048.0 1,043.4

    Legend: Do = Outside diameter hf = Feed work opening k = Groove correction hd = De livery work opening

    Dk = M e a n d iameter CTC = Center to center d istance

    L = Length of shell a = F e e d ing roll d is tancet = Top roller/hydraulic lift (perm issible) b = D istance / width of Donnelly chute

    EXPECTA TION OF A N A LYSIS (average)% pol % brix Purity % zk % fiber

    - Cane 10.32 13.41 - - 16.07 - M ixed juic e 10.04 12.60 79.68 - -

    - juice # 1 12.98 16.02 81.02 - -- juice # 2 7 .65 9.82 77.90 - -- juice # 3 4 .05 5.60 72.32 - -- juice # 4 2 .10 3.10 67.74 - -

    - juice # 5 1 .18 1.90 62.11 - - - Las t m ill bagasse 0 .94 2.58 36.64 51.36 48.78

    I m b ib ition water : - total = 65,887ltr/hr., or = 205.00% fiber

    A pplied on : - bagasse 1 = 0 % or = 0 ltr/hr. - bagasse 2 = 0 % or = 0 ltr/hr. - bagasse 3 = 30 % or = 19,766ltr/hr. - bagasse 4 = 70 % or = 46,120ltr/hr.

  • Mill Material Balance

    The Computer Program XII-21

    M I LL M A TER IA L B A LA N CE E X P E C T E D B R I X C U R V E P a g e : 4 SUGA R FA CTORY : EXA M P LE CA P A CITY : 4 ,800.0TCD PERIOD : X

    M I LL TRA I N : 2 CC + 5 M I LLS M I LLING SEASON : 1977 Date : Last date CA N E Q UA LI TY % pol = 10.32 % brix = 13.41% fibe r = 16.07

    V a l u e f o r -------------> M ill I M ill I I M ill I I I M ill IV M ill V % brix, expected -----------> 16.02 9.82 5.60 3.10 1.90

    0

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    11

    12

    13

    14

    15

    16

    17

    18

    19

    20

    Mill I Mill II Mill III Mill IV Mill V

    Expected Curve

  • Mill Material Balance

    The Computer Program XII-22

    It is to be noted that after the amount of imbibition water increased to 205% fiber, a better mill performance would have been projected in their operation (see and compare with sheet-II / Evaluation). Beside the additional amount of imbibition water, the mill roller rotation has also to be increased and conform to its nominal speed of the mill drive.

    12.2.5 The Mill Setting

    Basically the mills setting is the same with the system usually applied that is the Java Method. The main different is the use of ratio between the feed and delivery openings (i). Usually it was determined by the value from the historical ratio used during previous operations, which gradually decreasing or increasing from mill#1 to the ensuing mills. With the use of material balance calculation the ratio is determined based upon the compression value occurred in each mill, and that approximately 70%-80% from the value of K of the respective mill. Unlike the determination in practice the distance between feeding roller and the top roller (a) is not by approximation of a certain figure times the delivery work opening or the top roller diameter, but it has to be set based on the formula of continuity for the flow of materials (cane or bagasse) feeds into each mill. Also determination of Donnelly chute width, that is the distance of front and rear plates. Each defined based on the following formulas: The incoming no-void volume of cane / bagasse entering the feeding roller:

    M I LL M A T E R I A L B A LA N C E P O WE R C A L C U L A T I O N P a g e : 5 SUGA R F A CTORY : E X A M P LE CA P A CITY : 4 ,800 .0TCD P E R I O D : X

    M I LL TRA I N : 2 CC + 5 M I LLS M I LL ING SEA S O N : 1 9 7 7 D a t e : La s t d a t e CA N E Q U A LI TY % pol = 10.32 % brix = 13.41 % fibe r = 16.07

    P O WE R C A LCULA T I O N

    D e s c r iption Unit M ill I M ill I I M ill I I I M ill I V M ill V

    M ill h y d r a u lic p res su re k g / c m 2 1 8 0 1 9 0 2 0 0 2 1 0 2 2 0 D ia m e t e r o f h y d r a u lic p is ton m m 3 3 0 3 3 0 3 3 0 3 3 0 3 3 0

    M e c h a n ic a l ef f ic iency, tota l % 8 6 8 6 8 6 8 6 8 6 Ro l le r sha f t d iameter , average m m 4 2 0 4 2 0 4 2 0 4 2 0 4 2 0 Rol ler shaft length m m 4 ,2 2 0 4 ,2 2 0 4 ,2 2 0 4 ,2 2 0 4 ,2 2 0

    Top roller m e a n d ia m e t e r m m 1 ,002 .0 1 ,023 .0 1 ,021 .0 1 ,020 .0 1 ,034 .0 Rol ler length m m 2 ,1 3 3 2 ,1 3 3 2 ,1 3 3 2 ,1 3 3 2 ,1 3 3

    Rol ler rotat ion rph 2 7 0 2 7 0 2 7 0 2 7 0 2 7 0 R e d u c e d f iber load ing gr /dm 2 1 3 4 . 8 9 1 2 9 . 4 1 1 2 9 . 9 2 1 3 0 . 1 7 1 2 6 . 6 7

    C ross sec t io n a r e a o f h y d r a u lic p is ton c m 2 854.87 854.87 854.87 854.87 854.87 H y d r a u lic f o rce k g 307 ,751 324 ,849 341 ,946 359 ,043 376 ,141

    Top rol ler weight k g 16 ,943 17,555 17,496 17,467 17,881 Tota l press ing load k g 324 ,694 342 ,404 359 ,442 376 ,510 394 ,022 B a g a s s e c o e f f ic ient of f r ict ion m 0 .3 3 7 1 0 .3 3 5 2 0 .3 3 5 3 0 .3 3 5 4 0 .3 3 4 1 C irc u m ferent ia l force k g 109 ,454 114 ,757 120 ,534 126 ,293 131 ,655 Power requ i red for m illing, a v e r a g e H P 4 0 0 4 2 9 4 4 9 4 7 0 4 9 7

    S p e c ific power r equ i r ement HP / t on f ib e r 12 .46 13.34 13.98 14.63 15.46

  • Mill Material Balance

    The Computer Program XII-23

    Wim dim 1.1.r.Wim Vrp = drp

    where drp = 1.1.r

    hence Vrp = dm

    Frp = a.L Vrp = Frp.vrp

    vrp = 0.55.p.D.n Vrp = a.L.0.55.p.D.n

    1,1.r.Wim

    dim = a.L.0.55. p.D.n

    Therefore the distance between the feeding roller and top roller is:

    2. r. Wim.h.100 a = dim.Ved

    mm

    With the same calculation system, but the value of drp = dm : 1.1.r2 and vrp = 0.38.p.D.n; the distance between the front and rear plates of the Donnelly chute is:

    2.9. r2. Wim.h.100 b = dim.Ved

    mm

    12.2.6 The Key of Success

    When a mill material balance completed with the relevant projection and criteria based upon the ability of the mill tandem and quality of the cane to be crushed, the following resume of actions become the key of its operational success: 1. Each mill shall be sets actually and conforms to the calculation resulted from the projection

    of mill material balance (see page 3, projection program). 2. Operate the mill tandem always with reference and guidance obtained from the material

    balance, mainly items related to: The recording of the actual mill rotations from its individual counter and not by

    calculation based on the gear ratios. The triangle formed by the top, feed and delivery rollers has to be measured daily to

    define the actual work openings. Pay attention to the results of analysis for the extracted juices, mixed juice, last mill

    bagasse and the application of imbibition water, etc. Pay attention to the actual Brix curves (see page 3, evaluation program).

    3. Evaluate the mill tandem performance periodically (daily, weekly, bi-weekly and monthly). 4. Do the resetting / adjustment (if necessary), 3 (three) or 4 (four) weeks after the campaign

    starts and / or every mill wash, or projected mill stop for periodical maintenance.

    References:

    1. Hugot, Emil (1986). Handbook of Cane Sugar Engineering, Third Edition, Elsevier.

    2. Sumohandoyo, Tot (1980). Pemerahan Pada Suatu Gilingan, Majalah Gula Indonesia

    Volume VI No. 4, Desember 1980.

    3. Mead-Chen (1977). Cane Sugar Handbook, Tenth Edition, John Wiley & Sons.

    4. Murry, C.R. & Holt, J.E. (1967). The Mechanic of Crushing Sugar Cane, Elsevier.

    5. P3GI Pasuruan. Bulletin No. 4 & Bulletin No. 11.

  • Mill Material Balance

    The Computer Program XII-24

    THE CORRELATION OF VISCOSITY AND DENSITYFOR SUGAR DILUTION AT 27.5C *)

    Percent Percent Percent Percent Percentweight Den- weight Den- weight Den- weight Den- weight Den-

    or sity or sity or sity or sity or sityBrix Brix Brix Brix Brix

    degree degree degree degree degree

    0.0 0.99640 5.0 1.01592 10.0 1.03608 15.0 1.05694 20.0 1.078550.1 0.99678 5.1 1.01632 10.1 1.03649 15.1 1.05736 20.1 1.078990.2 0.99717 5.2 1.01671 10.2 1.03690 15.2 1.05779 20.2 1.079430.3 0.99755 5.3 1.01711 10.3 1.03751 15.3 1.05821 20.3 1.079870.4 0.99794 5.4 1.01751 10.4 1.03772 15.4 1.05864 20.4 1.080320.5 0.99832 5.5 1.01790 10.5 1.03813 15.5 1.05906 20.5 1.080760.6 0.99871 5.6 1.01830 10.6 1.03854 15.6 1.05949 20.6 1.081200.7 0.99910 5.7 1.01870 10.7 1.03896 15.7 1.05991 20.7 1.081640.8 0.99948 5.8 1.01910 10.8 1.03937 15.8 1.06034 20.8 1.082080.9 0.99987 5.9 1.01950 10.9 1.03978 15.9 1.06077 20.9 1.08253

    1.0 1.00026 6.0 1.01990 11.0 1.04019 16.0 1.06120 21.0 1.082971.1 1.00064 6.1 1.02030 11.1 1.04061 16.1 1.06162 21.1 1.083421.2 1.00103 6.2 1.02070 11.2 1.04102 16.2 1.06205 21.2 1.083861.3 1.00142 6.3 1.02110 11.3 1.04143 16.3 1.06248 21.3 1.084301.4 1.00180 6.4 1.02150 11.4 1.04185 16.4 1.06291 21.4 1.084751.5 1.00219 6.5 1.02190 11.5 1.04226 16.5 1.06334 21.5 1.085191.6 1.00258 6.6 1.02270 11.6 1.04267 16.6 1.06377 21.6 1.085641.7 1.00297 6.7 1.02230 11.7 1.04309 16.7 1.06420 21.7 1.086081.8 1.00336 6.8 1.02310 11.8 1.04350 16.8 1.06463 21.8 1.086531.9 1.00374 6.9 1.02350 11.9 1.04392 16.9 1.06506 21.9 1.08698

    2.0 1.00413 7.0 1.02390 12.0 1.04433 17.0 1.06549 22.0 1.087432.1 1.00452 7.1 1.02431 12.1 1.04475 17.1 1.06592 22.1 1.087872.2 1.00491 7.2 1.02471 12.2 1.04517 17.2 1.06635 22.2 1.088322.3 1.00530 7.3 1.02511 12.3 1.04558 17.3 1.06678 22.3 1.088772.4 1.00569 7.4 1.02551 12.4 1.04600 17.4 1.06721 22.4 1.089222.5 1.00608 7.5 1.02592 12.5 1.04642 17.5 1.06764 22.5 1.089662.6 1.00647 7.6 1.02632 12.6 1.04683 17.6 1.06808 22.6 1.090112.7 1.00686 7.7 1.02672 12.7 1.04725 17.7 1.06851 22.7 1.090562.8 1.00725 7.8 1.02713 12.8 1.04767 17.8 1.06894 22.8 1.091012.9 1.00764 7.9 1.02753 12.9 1.04809 17.9 1.06938 22.9 1.09146

    3.0 1.00804 8.0 1.02794 13.0 1.04851 18.0 1.06981 23.0 1.091913.1 1.00843 8.1 1.02834 13.1 1.04892 18.1 1.07024 23.1 1.092363.2 1.00882 8.2 1.02875 13.2 1.04934 18.2 1.07068 23.2 1.092813.3 1.00921 8.3 1.02915 13.3 1.04976 18.3 1.07111 23.3 1.093273.4 1.00961 8.4 1.02955 13.4 1.05018 18.4 1.07155 23.4 1.093723.5 1.01000 8.5 1.02996 13.5 1.05060 18.5 1.07198 23.5 1.094173.6 1.01039 8.6 1.03037 13.6 1.05102 18.6 1.07242 23.6 1.094623.7 1.01078 8.7 1.03077 13.7 1.05144 18.7 1.07285 23.7 1.095073.8 1.01117 8.8 1.03118 13.8 1.05186 18.8 1.07329 23.8 1.095533.9 1.01157 8.9 1.03159 13.9 1.05228 18.9 1.07373 23.9 1.09598

    4.0 1.01197 9.0 1.03199 14.0 1.05271 19.0 1.07417 24.0 1.096434.1 1.01236 9.1 1.03240 14.1 1.05313 19.1 1.07460 24.1 1.096894.2 1.01275 9.2 1.03281 14.2 1.05355 19.2 1.07504 24.2 1.097344.3 1.01315 9.3 1.03322 14.3 1.05397 19.3 1.07548 24.3 1.097804.4 1.01354 9.4 1.03362 14.4 1.05439 19.4 1.07592 24.4 1.098254.5 1.01394 9.5 1.03403 14.5 1.05482 19.5 1.07635 24.5 1.098714.6 1.01433 9.6 1.03444 14.6 1.05524 19.6 1.07679 24.6 1.099164.7 1.01473 9.7 1.03485 14.7 1.05566 19.7 1.07725 24.7 1.099624.8 1.01513 9.8 1.03526 14.8 1.05609 19.8 1.07767 24.8 1.100074.9 1.01552 9.9 1.03567 14.9 1.05651 19.9 1.07811 24.9 1.10053

    *) Copied from Bulletin-4 of Indonesian Sugar Research Institute