69
5/24/2002 CDIO3 Class Project 68 Subsystem Requirements Determine separation distance Goal: sense to one-tenth the control tolerance Determine relative attitude (direction) of vehicle to an angular tolerance dependent on angular controllability Goal: sense to one-tenth the control tolerance Full field of view : 360 degrees in two dimensions Sensing presence of other vehicles to a distance compatible with test facilities Introduction Subsystems •Actuation •Formation Control •Control Metrology Requirements •Trades •Design •Issues •Budget Estimates •Electronics •Structure/Power Operations Implementation Conclusion

Subsystem Requirements - MIT OpenCourseWare ÆTT8) zTransceiver Architecture Introduction Subsystems •Actuation •Formation Control •Electronics •Comm •Requirements •Trades

  • Upload
    vokiet

  • View
    219

  • Download
    4

Embed Size (px)

Citation preview

Page 1: Subsystem Requirements - MIT OpenCourseWare ÆTT8) zTransceiver Architecture Introduction Subsystems •Actuation •Formation Control •Electronics •Comm •Requirements •Trades

5/24/2002 CDIO3 Class Project 68

Subsystem

RequirementsDetermine separation distance

Goal: sense to one-tenth the control tolerance

Determine relative attitude (direction) ofvehicle to an angular tolerance dependenton angular controllability

Goal: sense to one-tenth the control tolerance

Full field of view : 360 degrees in twodimensionsSensing presence of other vehicles to adistance compatible with test facilities

IntroductionSubsystems•Actuation•Formation Control

•Control•Metrology

•Requirements•Trades•Design•Issues•BudgetEstimates

•Electronics•Structure/Power

OperationsImplementationConclusion

Page 2: Subsystem Requirements - MIT OpenCourseWare ÆTT8) zTransceiver Architecture Introduction Subsystems •Actuation •Formation Control •Electronics •Comm •Requirements •Trades

5/24/2002 CDIO3 Class Project 69

Trades

Sonic and IR based systemSimilar to SPHERES metrologyExpected improvement inperformance due to 2D operationNew technology should eliminatesome accuracy of the errorsencountered by SPHERESLow refresh rate will require theuse of gyros and accelerometers

IntroductionSubsystems•Actuation•Formation Control

•Control•Metrology

•Requirements•Trades•Design•Issues•BudgetEstimates

•Electronics•Structure/Power

OperationsImplementationConclusion

Page 3: Subsystem Requirements - MIT OpenCourseWare ÆTT8) zTransceiver Architecture Introduction Subsystems •Actuation •Formation Control •Electronics •Comm •Requirements •Trades

5/24/2002 CDIO3 Class Project 70

Design

A

C

B

αB

βA

sAB

t1

t3

t2

IntroductionSubsystems•Actuation•Formation Control

•Control•Metrology

•Requirements•Trades•Design•Issues•BudgetEstimates

•Electronics•Structure/Power

OperationsImplementationConclusion

Page 4: Subsystem Requirements - MIT OpenCourseWare ÆTT8) zTransceiver Architecture Introduction Subsystems •Actuation •Formation Control •Electronics •Comm •Requirements •Trades

5/24/2002 CDIO3 Class Project 71

Design

1 ultrasonic omni-directionaltransmitter (Mimio)3 ultrasonic omni-directionalreceivers (cones)3 IR receivers & 2 transmitters1 rate gyro1 2-axis accelerometer

IntroductionSubsystems•Actuation•Formation Control

•Control•Metrology

•Requirements•Trades•Design•Issues•BudgetEstimates

•Electronics•Structure/Power

OperationsImplementationConclusion

Page 5: Subsystem Requirements - MIT OpenCourseWare ÆTT8) zTransceiver Architecture Introduction Subsystems •Actuation •Formation Control •Electronics •Comm •Requirements •Trades

5/24/2002 CDIO3 Class Project 72

DesignIntroductionSubsystems•Actuation•Formation Control

•Control•Metrology

•Requirements•Trades•Design•Issues•BudgetEstimates

•Electronics•Structure/Power

OperationsImplementationConclusion

Page 6: Subsystem Requirements - MIT OpenCourseWare ÆTT8) zTransceiver Architecture Introduction Subsystems •Actuation •Formation Control •Electronics •Comm •Requirements •Trades

5/24/2002 CDIO3 Class Project 73

Design

System relies only on distancereadingsUses data from all three sensorsCalculates relative attitude anddistance directly to center ofvehicle

IntroductionSubsystems•Actuation•Formation Control

•Control•Metrology

•Requirements•Trades•Design•Issues•BudgetEstimates

•Electronics•Structure/Power

OperationsImplementationConclusion

Page 7: Subsystem Requirements - MIT OpenCourseWare ÆTT8) zTransceiver Architecture Introduction Subsystems •Actuation •Formation Control •Electronics •Comm •Requirements •Trades

5/24/2002 CDIO3 Class Project 74

Design

(x + x1)2 + (y + y1)

2 = d12

(x + x2)2 + (y + y2)

2 = d22

(x + x3)2 + (y + y3)

2 = d32

Y

X

d1

•Origin at center of vehicle• xi and yi are position of thesensors

IntroductionSubsystems•Actuation•Formation Control

•Control•Metrology

•Requirements•Trades•Design•Issues•BudgetEstimates

•Electronics•Structure/Power

OperationsImplementationConclusion

Page 8: Subsystem Requirements - MIT OpenCourseWare ÆTT8) zTransceiver Architecture Introduction Subsystems •Actuation •Formation Control •Electronics •Comm •Requirements •Trades

5/24/2002 CDIO3 Class Project 75

DesignIntroductionSubsystems•Actuation•Formation Control

•Control•Metrology

•Requirements•Trades•Design•Issues•BudgetEstimates

•Electronics•Structure/Power

OperationsImplementationConclusion

Page 9: Subsystem Requirements - MIT OpenCourseWare ÆTT8) zTransceiver Architecture Introduction Subsystems •Actuation •Formation Control •Electronics •Comm •Requirements •Trades

5/24/2002 CDIO3 Class Project 76

Issues

Omni-directional sonic sensorsHand made cones added to currentsensors

Effect of magnetic forcesRange and accuracyRefresh rate

Sound signal leaving the testing area

Rate gyros and accelerometers

IntroductionSubsystems•Actuation•Formation Control

•Control•Metrology

•Requirements•Trades•Design•Issues•BudgetEstimates

•Electronics•Structure/Power

OperationsImplementationConclusion

Page 10: Subsystem Requirements - MIT OpenCourseWare ÆTT8) zTransceiver Architecture Introduction Subsystems •Actuation •Formation Control •Electronics •Comm •Requirements •Trades

5/24/2002 CDIO3 Class Project 77

Budget Estimates

1.090.202500Total (per vehicle)

3.270.607500Total (system)

0.180.051200Accelerometers

0.360.061200Gyros

0.250.0430IR (2+3)

0.30.0570Sonic (1+3)

Power(W)

Mass(kg)

Cost($)

PartIntroductionSubsystems•Actuation•Formation Control

•Control•Metrology

•Requirements•Trades•Design•Issues•BudgetEstimates

•Electronics•Structure/Power

OperationsImplementationConclusion

Page 11: Subsystem Requirements - MIT OpenCourseWare ÆTT8) zTransceiver Architecture Introduction Subsystems •Actuation •Formation Control •Electronics •Comm •Requirements •Trades

5/24/2002 CDIO3 Class Project 78

Communications

Jennifer Underwood

Comm. Board

Comm. Antenna

IntroductionSubsystems•Actuation•Formation Control•Electronics

•Comm•Requirements•Trades•Design•Issues•BudgetEstimates

•Avionics•Structure/Power

OperationsImplementationConclusion

Page 12: Subsystem Requirements - MIT OpenCourseWare ÆTT8) zTransceiver Architecture Introduction Subsystems •Actuation •Formation Control •Electronics •Comm •Requirements •Trades

5/24/2002 CDIO3 Class Project 79

Communications

“The technology employed intransmitting messages”

Architecture

HardwareSoftware

Interfacing

IntroductionSubsystems•Actuation•Formation Control•Electronics

•Comm•Requirements•Trades•Design•Issues•BudgetEstimates

•Avionics•Structure/Power

OperationsImplementationConclusion

Page 13: Subsystem Requirements - MIT OpenCourseWare ÆTT8) zTransceiver Architecture Introduction Subsystems •Actuation •Formation Control •Electronics •Comm •Requirements •Trades

5/24/2002 CDIO3 Class Project 80

Subsystem

RequirementsSend information and instructions automaticallyfrom vehicle to vehicle

Control and metrology purposes

Send information and instructions on commandfrom ground to vehicle

Begin preprogrammed testsEmergency intervention procedures

Send flight health data to “ground” operatorHave no protruding antennae that might interferewith dynamics

IntroductionSubsystems•Actuation•Formation Control•Electronics

•Comm•Requirements•Trades•Design•Issues•BudgetEstimates

•Avionics•Structure/Power

OperationsImplementationConclusion

Page 14: Subsystem Requirements - MIT OpenCourseWare ÆTT8) zTransceiver Architecture Introduction Subsystems •Actuation •Formation Control •Electronics •Comm •Requirements •Trades

5/24/2002 CDIO3 Class Project 81

Trades

HardwareProcessor board (chosen byavionics TT8)Transceiver

Architecture

IntroductionSubsystems•Actuation•Formation Control•Electronics

•Comm•Requirements•Trades•Design•Issues•BudgetEstimates

•Avionics•Structure/Power

OperationsImplementationConclusion

Page 15: Subsystem Requirements - MIT OpenCourseWare ÆTT8) zTransceiver Architecture Introduction Subsystems •Actuation •Formation Control •Electronics •Comm •Requirements •Trades

5/24/2002 CDIO3 Class Project 82

Transceiver Metrics

EM rejection (frequency)

Bandwidth/data rateWeight

Ease of interfaceSize

CostPower consumption

Range

IntroductionSubsystems•Actuation•Formation Control•Electronics

•Comm•Requirements•Trades•Design•Issues•BudgetEstimates

•Avionics•Structure/Power

OperationsImplementationConclusion

Page 16: Subsystem Requirements - MIT OpenCourseWare ÆTT8) zTransceiver Architecture Introduction Subsystems •Actuation •Formation Control •Electronics •Comm •Requirements •Trades

5/24/2002 CDIO3 Class Project 83

Transceiver Trades

Radio Frequency (RF) vs.. WirelessLAN

Avg cost of LAN > avg cost of RFLAN requires a base station ($$)Size and weight of LAN > RFLAN bandwidth, range > RFPower drain of LAN < RFBoth have capacity to reject EM (highfrequencies) and are easily interfaced

Choice: RF

IntroductionSubsystems•Actuation•Formation Control•Electronics

•Comm•Requirements•Trades•Design•Issues•BudgetEstimates

•Avionics•Structure/Power

OperationsImplementationConclusion

Page 17: Subsystem Requirements - MIT OpenCourseWare ÆTT8) zTransceiver Architecture Introduction Subsystems •Actuation •Formation Control •Electronics •Comm •Requirements •Trades

5/24/2002 CDIO3 Class Project 84

RF Trades

DR1012 avail from SPHERESfor prototyping

Company inEurope

Availability

115.2 kbps115.2-882 kbpsData rate

Short-range wireless91m indoorsRange

Relatively EasyRelatively EasyEase of Interface

$35~$245Cost

Hardly any, < AC5124C-100.02 kgWeight

Development kit ready,familiar to staff, students

OEM kit, notfamiliar

Complexity

916.5 MHz2.402 –2.478GHzFrequency

0.04 W0.35 WPower

1”x1.5”2.65˝x1.65˝x0.20˝Size

RF Monolithics (DR3000-1)AC5124C-10IntroductionSubsystems•Actuation•Formation Control•Electronics

•Comm•Requirements•Trades

•Design•Issues•BudgetEstimates

•Avionics•Structure/Power

OperationsImplementationConclusion

Page 18: Subsystem Requirements - MIT OpenCourseWare ÆTT8) zTransceiver Architecture Introduction Subsystems •Actuation •Formation Control •Electronics •Comm •Requirements •Trades

5/24/2002 CDIO3 Class Project 85

Transceiver Selection

Preliminary final product:DR 3000-1

Sufficient EM rejectionFamiliarityPower drain

Prototyping product:DR1012

AvailabilityFamiliarity

IntroductionSubsystems•Actuation•Formation Control•Electronics

•Comm•Requirements•Trades•Design•Issues•BudgetEstimates

•Avionics•Structure/Power

OperationsImplementationConclusion

Page 19: Subsystem Requirements - MIT OpenCourseWare ÆTT8) zTransceiver Architecture Introduction Subsystems •Actuation •Formation Control •Electronics •Comm •Requirements •Trades

5/24/2002 CDIO3 Class Project 86

Architecture Trades

SequentialPass token to determine who talks and towhomHub makes calculation

SimultaneousPass token to determine who talks to everyoneAll vehicles make calculations

HybridCombination of Sequential and Simultaneous

Reliability deciding factor

IntroductionSubsystems•Actuation•Formation Control•Electronics

•Comm•Requirements•Trades•Design•Issues•BudgetEstimates

•Avionics•Structure/Power

OperationsImplementationConclusion

Page 20: Subsystem Requirements - MIT OpenCourseWare ÆTT8) zTransceiver Architecture Introduction Subsystems •Actuation •Formation Control •Electronics •Comm •Requirements •Trades

5/24/2002 CDIO3 Class Project 87

Architecture Trades

SequentialVehicle 2 talks

to Hub

Token passedto Vehicle 1

Vehicle 1 talksto Hub

Hub

Vehicle 1

Command

Updates

GroundStation

1st Comm Channel

Has Token

Updates

2nd Comm Channel

Vehicle 2

Hub makes control calculationsand sends commands to Vehicle 1and Vehicle 2

IntroductionSubsystems•Actuation•Formation Control•Electronics

•Comm•Requirements•Trades•Design•Issues•BudgetEstimates

•Avionics•Structure/Power

OperationsImplementationConclusion

Page 21: Subsystem Requirements - MIT OpenCourseWare ÆTT8) zTransceiver Architecture Introduction Subsystems •Actuation •Formation Control •Electronics •Comm •Requirements •Trades

5/24/2002 CDIO3 Class Project 88

Architecture Trades

SimultaneousVehicle 2 talks to

Hub and Vehicle 1

Token passed toVehicle 1

Vehicle 1 talks toHub and Vehicle 2

Hub

Vehicle 1

Command

Updates

GroundStation

1st Comm Channel

Has Token

Updates

2nd Comm Channel

Vehicle 2

Updates

Token passed to Hub

Hub talks to Vehicle 1 and Vehicle 2

Each vehicle makes control calculations

IntroductionSubsystems•Actuation•Formation Control•Electronics

•Comm•Requirements•Trades•Design•Issues•BudgetEstimates

•Avionics•Structure/Power

OperationsImplementationConclusion

Page 22: Subsystem Requirements - MIT OpenCourseWare ÆTT8) zTransceiver Architecture Introduction Subsystems •Actuation •Formation Control •Electronics •Comm •Requirements •Trades

5/24/2002 CDIO3 Class Project 89

Architecture Trades

HybridVehicle 2 talks to

Hub and Vehicle 1

Token passed toVehicle 1

Vehicle 1 talks toHub and Vehicle 2

Hub

Vehicle 1

Command

Updates

GroundStation

1st Comm Channel

Has Token

Updates

2nd Comm Channel

Vehicle 2

Updates

Token passed to Hub, who talks toVehicle 1 and Vehicle 2

All vehicles make control calculations but onlyHub determines commanded control vectorsends commands to Vehicle 1 and Vehicle 2,ground listens in

IntroductionSubsystems•Actuation•Formation Control•Electronics

•Comm•Requirements•Trades•Design•Issues•BudgetEstimates

•Avionics•Structure/Power

OperationsImplementationConclusion

Page 23: Subsystem Requirements - MIT OpenCourseWare ÆTT8) zTransceiver Architecture Introduction Subsystems •Actuation •Formation Control •Electronics •Comm •Requirements •Trades

5/24/2002 CDIO3 Class Project 90

Architecture Trades

SequentialRequires excess code, bandwidth (BW)Reliable from control point of view

SimultaneousEasy to implementNot reliable from control point of view

HybridReliable and versatile from control and commpoint of viewIncreased bit rate required, excess code, BW

Design Choice: Hybrid

IntroductionSubsystems•Actuation•Formation Control•Electronics

•Comm•Requirements•Trades•Design•Issues•BudgetEstimates

•Avionics•Structure/Power

OperationsImplementationConclusion

Page 24: Subsystem Requirements - MIT OpenCourseWare ÆTT8) zTransceiver Architecture Introduction Subsystems •Actuation •Formation Control •Electronics •Comm •Requirements •Trades

5/24/2002 CDIO3 Class Project 91

Design

Hub

Vehicle1

GroundStation

Command

Data Flow

Command/Request/Update

Update

Update

Command/Request/Update

Vehicle2

Updates

IntroductionSubsystems•Actuation•Formation Control•Electronics

•Comm•Requirements•Trades•Design•Issues•BudgetEstimates

•Avionics•Structure/Power

OperationsImplementationConclusion

Page 25: Subsystem Requirements - MIT OpenCourseWare ÆTT8) zTransceiver Architecture Introduction Subsystems •Actuation •Formation Control •Electronics •Comm •Requirements •Trades

5/24/2002 CDIO3 Class Project 92

Design

Design ConsiderationsComm channel usage

Transmission ratesData framing

Error detection/correctionChannel coding

Automatic Repeat Request (ARQ)protocols

IntroductionSubsystems•Actuation•Formation Control•Electronics

•Comm•Requirements•Trades•Design•Issues•BudgetEstimates

•Avionics•Structure/Power

OperationsImplementationConclusion

Page 26: Subsystem Requirements - MIT OpenCourseWare ÆTT8) zTransceiver Architecture Introduction Subsystems •Actuation •Formation Control •Electronics •Comm •Requirements •Trades

5/24/2002 CDIO3 Class Project 93

Data Framing

Data framing is essentialWho to send info toWho sent info (Hub, Vehicle 1, Vehicle 2)Type of dataSize of data packetError checking

Ease of transmitting chunks (1 byte)

Type CheckData 1…Data nSizeFrom/To

Header Data Check

8bit 8bit 8bit 8bit ? ?

Start

IntroductionSubsystems•Actuation•Formation Control•Electronics

•Comm•Requirements•Trades•Design•Issues•BudgetEstimates

•Avionics•Structure/Power

OperationsImplementationConclusion

Page 27: Subsystem Requirements - MIT OpenCourseWare ÆTT8) zTransceiver Architecture Introduction Subsystems •Actuation •Formation Control •Electronics •Comm •Requirements •Trades

5/24/2002 CDIO3 Class Project 94

Channel Usage

Cluster Comm Channel6 variables in state vector (Control)4 variables to actuators (EM, RWA)About 800 bits/cycle for controlAbout 500 bits/cycle for health updates

Ground Link Comm ChannelUndefined requirementsOn the order of 400 bits per completecycle

IntroductionSubsystems•Actuation•Formation Control•Electronics

•Comm•Requirements•Trades•Design•Issues•BudgetEstimates

•Avionics•Structure/Power

OperationsImplementationConclusion

Page 28: Subsystem Requirements - MIT OpenCourseWare ÆTT8) zTransceiver Architecture Introduction Subsystems •Actuation •Formation Control •Electronics •Comm •Requirements •Trades

5/24/2002 CDIO3 Class Project 95

Transmission Rates

How frequently to measuresystems/states?

Control runs at 50 HzHealth max set at 10 Hz

Therefore, we can estimate thetransmission rate required:

800 bits/cycle * 50 cycles/sec +500 bits/cycle * 10 cycles/sec = 45kbps

IntroductionSubsystems•Actuation•Formation Control•Electronics

•Comm•Requirements•Trades•Design•Issues•BudgetEstimates

•Avionics•Structure/Power

OperationsImplementationConclusion

Page 29: Subsystem Requirements - MIT OpenCourseWare ÆTT8) zTransceiver Architecture Introduction Subsystems •Actuation •Formation Control •Electronics •Comm •Requirements •Trades

5/24/2002 CDIO3 Class Project 96

Current Capabilities

TT8 to TT8 communicationCurrently connected through UARTchannel

Two byte transmissionSend and receive between twoTT8’s, one direction onlyHigh-Byte, Low-Byte

[1 1 1 1 1 1 1 1] [1 1 1 1 1 1 1 1] = 1111111111111111High Byte | Low Byte

IntroductionSubsystems•Actuation•Formation Control•Electronics

•Comm•Requirements•Trades•Design•Issues•BudgetEstimates

•Avionics•Structure/Power

OperationsImplementationConclusion

Page 30: Subsystem Requirements - MIT OpenCourseWare ÆTT8) zTransceiver Architecture Introduction Subsystems •Actuation •Formation Control •Electronics •Comm •Requirements •Trades

5/24/2002 CDIO3 Class Project 97

Issues

Processor/transceiver shieldingReliability

EM resistanceError probability

Communication channel load

IntroductionSubsystems•Actuation•Formation Control•Electronics

•Comm•Requirements•Trades•Design•Issues•BudgetEstimates

•Avionics•Structure/Power

OperationsImplementationConclusion

Page 31: Subsystem Requirements - MIT OpenCourseWare ÆTT8) zTransceiver Architecture Introduction Subsystems •Actuation •Formation Control •Electronics •Comm •Requirements •Trades

5/24/2002 CDIO3 Class Project 98

Budgets Estimates

0.080.24$275Total (ground station)

0.080.24$275Total (per vehicle)

0.320.96$1100Total (system)

--$70Replacements/repairs

-0.1$100Miscellaneous parts

0.040.02$35each

Transceiver

Power(W)

Mass(kg)

Cost($)

PartIntroductionSubsystems•Actuation•Formation Control•Electronics

•Comm•Requirements•Trades•Design•Issues•BudgetEstimates

•Avionics•Structure/Power

OperationsImplementationConclusion

Page 32: Subsystem Requirements - MIT OpenCourseWare ÆTT8) zTransceiver Architecture Introduction Subsystems •Actuation •Formation Control •Electronics •Comm •Requirements •Trades

5/24/2002 CDIO3 Class Project 99

Avionics

Avionics Board

IntroductionSubsystems•Actuation•Formation Control•Electronics

•Comm•Avionics

•Requirements•Trades•Design•Issues•BudgetEstimates

•Structure/Power

OperationsImplementationConclusion

Page 33: Subsystem Requirements - MIT OpenCourseWare ÆTT8) zTransceiver Architecture Introduction Subsystems •Actuation •Formation Control •Electronics •Comm •Requirements •Trades

5/24/2002 CDIO3 Class Project 100

Subsystem

RequirementsManage timing and resources forall subsystemsRun control loop in real-time

Inputs, calculations, outputs

Administer preprogrammed testsBe easily programmableStay within system budgets

IntroductionSubsystems•Actuation•Formation Control•Electronics

•Comm•Avionics

•Requirements•Trades•Design•Issues•BudgetEstimates

•Structure/Power

OperationsImplementationConclusion

Page 34: Subsystem Requirements - MIT OpenCourseWare ÆTT8) zTransceiver Architecture Introduction Subsystems •Actuation •Formation Control •Electronics •Comm •Requirements •Trades

5/24/2002 CDIO3 Class Project 101

Trades - Metrics

Processing speedInterfaces (I/O)Data storage (RAM/ROM)Constraint considerations

Cost

Size and massEase of use

IntroductionSubsystems•Actuation•Formation Control•Electronics

•Comm•Avionics

•Requirements•Trades•Design•Issues•BudgetEstimates

•Structure/Power

OperationsImplementationConclusion

Page 35: Subsystem Requirements - MIT OpenCourseWare ÆTT8) zTransceiver Architecture Introduction Subsystems •Actuation •Formation Control •Electronics •Comm •Requirements •Trades

5/24/2002 CDIO3 Class Project 102

Trades -

Metrics DetailsProcessor speedI/O capabilities

Digital vs.. analogSubsystem input and output needsnot necessarily the same

RAM and ROM capacityFlash memory

Power consumptionCost

IntroductionSubsystems•Actuation•Formation Control•Electronics

•Comm•Avionics

•Requirements•Trades•Design•Issues•BudgetEstimates

•Structure/Power

OperationsImplementationConclusion

Page 36: Subsystem Requirements - MIT OpenCourseWare ÆTT8) zTransceiver Architecture Introduction Subsystems •Actuation •Formation Control •Electronics •Comm •Requirements •Trades

5/24/2002 CDIO3 Class Project 103

Trades - Interfaces

The avionics team must interface with all subsystems.

INPUTSMetrology:

3 Ultrasonic sensors (digital)1 IR timing (digital)1 rate-gyro (analog)Possibly 2 accelerometers (analog)

CommunicationInter-vehicle data and instructions (digital)

Health Indicators (digital)

IntroductionSubsystems•Actuation•Formation Control•Electronics

•Comm•Avionics

•Requirements•Trades•Design•Issues•BudgetEstimates

•Structure/Power

OperationsImplementationConclusion

Page 37: Subsystem Requirements - MIT OpenCourseWare ÆTT8) zTransceiver Architecture Introduction Subsystems •Actuation •Formation Control •Electronics •Comm •Requirements •Trades

5/24/2002 CDIO3 Class Project 104

Trades - Interfaces

The avionics team must interface with all subsystems.

OUTPUTSCommunication

Requests and commands (digital)

Actuators3 for Y-pole magnet (analog)1 for RW (analog)

Metrology1 for ultrasonic transmitter (digital)1 for IR timing transmitter (digital, split)

IntroductionSubsystems•Actuation•Formation Control•Electronics

•Comm•Avionics

•Requirements•Trades•Design•Issues•BudgetEstimates

•Structure/Power

OperationsImplementationConclusion

Page 38: Subsystem Requirements - MIT OpenCourseWare ÆTT8) zTransceiver Architecture Introduction Subsystems •Actuation •Formation Control •Electronics •Comm •Requirements •Trades

5/24/2002 CDIO3 Class Project 105

Trades: Computer

Comparison

Low

Low

~8kB

~16 kB

4D, 1A in1D, 4A out

50 Hz

Needs

N/AN/A1.8 WattsPower

HighCustom(~$500)Cost

512 kB640 kB256kBROM

16 MB16 MB256kBRAM

N/AD parallel64 I/O

25D I/O8A, 14 time

I/O

167 MHz 1GFLOPS

50MFLOPS

16 MHz

4 MIPSSpeed

6701C40TT8FeatureIntroductionSubsystems•Actuation•Formation Control•Electronics

•Comm•Avionics

•Requirements•Trades•Design•Issues•BudgetEstimates

•Structure/Power

OperationsImplementationConclusion

Page 39: Subsystem Requirements - MIT OpenCourseWare ÆTT8) zTransceiver Architecture Introduction Subsystems •Actuation •Formation Control •Electronics •Comm •Requirements •Trades

5/24/2002 CDIO3 Class Project 106

Trades: other

considerationsOther Computer ConsiderationsSize/weight satisfactory for structure?Available/Replaceable?Easy to use?Expandable?

IntroductionSubsystems•Actuation•Formation Control•Electronics

•Comm•Avionics

•Requirements•Trades•Design•Issues•BudgetEstimates

•Structure/Power

OperationsImplementationConclusion

Page 40: Subsystem Requirements - MIT OpenCourseWare ÆTT8) zTransceiver Architecture Introduction Subsystems •Actuation •Formation Control •Electronics •Comm •Requirements •Trades

5/24/2002 CDIO3 Class Project 107

Design: Hardware

Computer

A/D

D/A

RWA

Metrology

Control

EMPower

Structure

SW

SW

Physical

V in

Comm./OpsIntroductionSubsystems•Actuation•Formation Control•Electronics

•Comm•Avionics

•Requirements•Trades•Design•Issues•BudgetEstimates

•Structure/Power

OperationsImplementationConclusion

Page 41: Subsystem Requirements - MIT OpenCourseWare ÆTT8) zTransceiver Architecture Introduction Subsystems •Actuation •Formation Control •Electronics •Comm •Requirements •Trades

5/24/2002 CDIO3 Class Project 108

Design: Software

Language: CCoding environment

Creating: Metroworks CodeWarriorLoading to vehicle: Motocross

ProceduresControl loop

Metrology updatesMatrix calculationsActuation commands

Test programsHealth, test data reports

IntroductionSubsystems•Actuation•Formation Control•Electronics

•Comm•Avionics

•Requirements•Trades•Design•Issues•BudgetEstimates

•Structure/Power

OperationsImplementationConclusion

Page 42: Subsystem Requirements - MIT OpenCourseWare ÆTT8) zTransceiver Architecture Introduction Subsystems •Actuation •Formation Control •Electronics •Comm •Requirements •Trades

5/24/2002 CDIO3 Class Project 109

Issues

Software is the high-risk item for theavionics subsystem.Preliminary Test Prototyping Designto find complications early.

Develop a clock-interruptBlink an LEDSignal Reproduction via PWM

Preliminary Prototype to becompleted by end of semester.

IntroductionSubsystems•Actuation•Formation Control•Electronics

•Comm•Avionics

•Requirements•Trades•Design•Issues•BudgetEstimates

•Structure/Power

OperationsImplementationConclusion

Page 43: Subsystem Requirements - MIT OpenCourseWare ÆTT8) zTransceiver Architecture Introduction Subsystems •Actuation •Formation Control •Electronics •Comm •Requirements •Trades

5/24/2002 CDIO3 Class Project 110

Budget Estimates

Mass0.028 kg per tattletale

May need two0.028 per subsystem circuit board

PowerHighest power draw: two main computersPower required: 3.6 Watts

CostPer-vehicle needs, system-wide extras$500 total allocated for TT8 repairs$6500 for circuit boards (power, comm.,controls, metrology)

IntroductionSubsystems•Actuation•Formation Control•Electronics

•Comm•Avionics

•Requirements•Trades•Design•Issues•BudgetEstimates

•Structure/Power

OperationsImplementationConclusion

Page 44: Subsystem Requirements - MIT OpenCourseWare ÆTT8) zTransceiver Architecture Introduction Subsystems •Actuation •Formation Control •Electronics •Comm •Requirements •Trades

5/24/2002 CDIO3 Class Project 111

Budget Estimates

(cont.)

?0.1131060Total(vehicle)

7000

6500

500

Cost ($US)

?0.339Total(system)

?0.113Boards

3.60.057TT8 (x2)

Power (W)Mass (kg)Part

IntroductionSubsystems•Actuation•Formation Control•Electronics

•Comm•Avionics

•Requirements•Trades•Design•Issues•BudgetEstimates

•Structure/Power

OperationsImplementationConclusion

Page 45: Subsystem Requirements - MIT OpenCourseWare ÆTT8) zTransceiver Architecture Introduction Subsystems •Actuation •Formation Control •Electronics •Comm •Requirements •Trades

5/24/2002 CDIO3 Class Project 112

Power

Amy Schonsheck

Power

IntroductionSubsystems•Actuation•Formation Control•Electronics•Structure/Power

•Power•Requirements•Trades•Design•Issues•BudgetEstimates

•Structure

OperationsImplementationConclusion

Page 46: Subsystem Requirements - MIT OpenCourseWare ÆTT8) zTransceiver Architecture Introduction Subsystems •Actuation •Formation Control •Electronics •Comm •Requirements •Trades

5/24/2002 CDIO3 Class Project 113

Requirements

No external umbilicalsOn-board power supply

Provide sustainable power for30 minutesUse a renewable orrechargeable energy source

IntroductionSubsystems•Actuation•Formation Control•Electronics•Structure/Power

•Power•Requirements•Trades•Design•Issues•BudgetEstimates

•Structure

OperationsImplementationConclusion

Page 47: Subsystem Requirements - MIT OpenCourseWare ÆTT8) zTransceiver Architecture Introduction Subsystems •Actuation •Formation Control •Electronics •Comm •Requirements •Trades

5/24/2002 CDIO3 Class Project 114

Power Trades

Solar power vs.. batteriesPower requirements toodemanding for solar powerRechargeable batteries the bestoption

Choice of battery chemistry

IntroductionSubsystems•Actuation•Formation Control•Electronics•Structure/Power

•Power•Requirements•Trades•Design•Issues•BudgetEstimates

•Structure

OperationsImplementationConclusion

Page 48: Subsystem Requirements - MIT OpenCourseWare ÆTT8) zTransceiver Architecture Introduction Subsystems •Actuation •Formation Control •Electronics •Comm •Requirements •Trades

5/24/2002 CDIO3 Class Project 115

Battery Selection

For expected voltage and currentrequirements, viable options include:

Lithium Ion (Li-ion)Nickel Cadmium (NiCd)

Nickel Metal Hydride (NiMH)

IntroductionSubsystems•Actuation•Formation Control•Electronics•Structure/Power

•Power•Requirements•Trades•Design•Issues•BudgetEstimates

•Structure

OperationsImplementationConclusion

Page 49: Subsystem Requirements - MIT OpenCourseWare ÆTT8) zTransceiver Architecture Introduction Subsystems •Actuation •Formation Control •Electronics •Comm •Requirements •Trades

5/24/2002 CDIO3 Class Project 116

Battery Selection

Li-ion:High energy densityLow discharge rate (2 Amps max.)

NiCd:Adequate discharge rateLow efficiency at high current draws

NiMH: Final choiceHigh energy densityFast discharge rateEfficient even at high current draw

IntroductionSubsystems•Actuation•Formation Control•Electronics•Structure/Power

•Power•Requirements•Trades•Design•Issues•BudgetEstimates

•Structure

OperationsImplementationConclusion

Page 50: Subsystem Requirements - MIT OpenCourseWare ÆTT8) zTransceiver Architecture Introduction Subsystems •Actuation •Formation Control •Electronics •Comm •Requirements •Trades

5/24/2002 CDIO3 Class Project 117

Power Design

Subsystem power estimates:

60-7012 (min.)EM: Electromagnet

1328?RWA: Reaction Wheel

~ 90 W (max)TOTAL:

0.19-12Comm/Ops: (shares Tattletale)

0.0663Metrology: Transmitters/Receivers

0.3612-18Metrology: Gyros

0.188-30Metrology: Accelerometers

2 (each)9-12 (each)Avionics: Tattletale (x 2?)

Power (W)Voltage (V)Subsystem

IntroductionSubsystems•Actuation•Formation Control•Electronics•Structure/Power

•Power•Requirements•Trades•Design•Issues•BudgetEstimates

•Structure

OperationsImplementationConclusion

Page 51: Subsystem Requirements - MIT OpenCourseWare ÆTT8) zTransceiver Architecture Introduction Subsystems •Actuation •Formation Control •Electronics •Comm •Requirements •Trades

5/24/2002 CDIO3 Class Project 118

Power Design

Total current draw: 7 Amps (current design)Operation time: 30 minutes (min.)Total energy: 3.5 AhCandidate battery: Panasonic HHR200SCP

Voltage - 1.2 VCapacity - 1.9 AhWeight – 42 gDimensions: 23 mm diameter, 34 mm height

IntroductionSubsystems•Actuation•Formation Control•Electronics•Structure/Power

•Power•Requirements•Trades•Design•Issues•BudgetEstimates

•Structure

OperationsImplementationConclusion

Page 52: Subsystem Requirements - MIT OpenCourseWare ÆTT8) zTransceiver Architecture Introduction Subsystems •Actuation •Formation Control •Electronics •Comm •Requirements •Trades

5/24/2002 CDIO3 Class Project 119

Power Design

Candidate battery architecture:1 “Pack” = 15 batteries x 1.2 V (wiredin series)

18 V1.9 Ah

2 Packs wired in parallel18 V3.8 AhSufficient voltage, current for the system

IntroductionSubsystems•Actuation•Formation Control•Electronics•Structure/Power

•Power•Requirements•Trades•Design•Issues•BudgetEstimates

•Structure

OperationsImplementationConclusion

Page 53: Subsystem Requirements - MIT OpenCourseWare ÆTT8) zTransceiver Architecture Introduction Subsystems •Actuation •Formation Control •Electronics •Comm •Requirements •Trades

5/24/2002 CDIO3 Class Project 120

Power Design

Voltage Regulators used tostep down voltages

9-12 V : Tattletale processors5 V : Transmitters/ReceiversGyros, accelerometers may have built-involtage regulators

Switchmode amplifier usedto control current throughelectromagnet

Commercially available

IntroductionSubsystems•Actuation•Formation Control•Electronics•Structure/Power

•Power•Requirements•Trades•Design•Issues•BudgetEstimates

•Structure

OperationsImplementationConclusion

Page 54: Subsystem Requirements - MIT OpenCourseWare ÆTT8) zTransceiver Architecture Introduction Subsystems •Actuation •Formation Control •Electronics •Comm •Requirements •Trades

5/24/2002 CDIO3 Class Project 121

Power Flowchart

15 x 1.2 V

Gyro,

Accel.

RW

5V

Regulator

Trans. /

Receivers

9-12V

Regulator

Tattletales

SwitchmodeAmplifier

EM

15 x 1.2 V

IntroductionSubsystems•Actuation•Formation Control•Electronics•Structure/Power

•Power•Requirements•Trades•Design•Issues•BudgetEstimates

•Structure

OperationsImplementationConclusion

Page 55: Subsystem Requirements - MIT OpenCourseWare ÆTT8) zTransceiver Architecture Introduction Subsystems •Actuation •Formation Control •Electronics •Comm •Requirements •Trades

5/24/2002 CDIO3 Class Project 122

Issues

NiMH batteries have strictcharge/discharge limits

Overcharging decreases performance

Rapid discharge produces heat

Safety precautionsAvoid excessive heatAvoid contact with water

IntroductionSubsystems•Actuation•Formation Control•Electronics•Structure/Power

•Power•Requirements•Trades•Design•Issues•BudgetEstimates

•Structure

OperationsImplementationConclusion

Page 56: Subsystem Requirements - MIT OpenCourseWare ÆTT8) zTransceiver Architecture Introduction Subsystems •Actuation •Formation Control •Electronics •Comm •Requirements •Trades

5/24/2002 CDIO3 Class Project 123

Issues

Possible greater power requirementsCurrent design allows 7 ampsEM may require up to 10 amps

May require more batteriesPossibly switch to next higher batterymodel (much higher mass)

Charging takes ~ 1.2 hoursTwo or three complete battery setsneeded (per vehicle) higher cost

IntroductionSubsystems•Actuation•Formation Control•Electronics•Structure/Power

•Power•Requirements•Trades•Design•Issues•BudgetEstimates

•Structure

OperationsImplementationConclusion

Page 57: Subsystem Requirements - MIT OpenCourseWare ÆTT8) zTransceiver Architecture Introduction Subsystems •Actuation •Formation Control •Electronics •Comm •Requirements •Trades

5/24/2002 CDIO3 Class Project 124

Budget Estimates

Mass:30 batteries

42 g eachTotal battery weight: 1.26 kg

Additional components: ~ 50 g(regulators, amplifier)

IntroductionSubsystems•Actuation•Formation Control•Electronics•Structure/Power

•Power•Requirements•Trades•Design•Issues•BudgetEstimates

•Structure

OperationsImplementationConclusion

Page 58: Subsystem Requirements - MIT OpenCourseWare ÆTT8) zTransceiver Architecture Introduction Subsystems •Actuation •Formation Control •Electronics •Comm •Requirements •Trades

5/24/2002 CDIO3 Class Project 125

Budget Estimates

Cost:Switchmode amp: ~$65

Voltage regulators: ~ $60Batteries: $400 - $500

Power:Supply 100% of EMFFORCEpower needs

IntroductionSubsystems•Actuation•Formation Control•Electronics•Structure/Power

•Power•Requirements•Trades•Design•Issues•BudgetEstimates

•Structure

OperationsImplementationConclusion

Page 59: Subsystem Requirements - MIT OpenCourseWare ÆTT8) zTransceiver Architecture Introduction Subsystems •Actuation •Formation Control •Electronics •Comm •Requirements •Trades

5/24/2002 CDIO3 Class Project 126

Structure

Structure

IntroductionSubsystems•Actuation•Formation Control•Electronics•Structure/Power

•Power•Structure

•Requirements•GeometricalOverview•Trades•Design•BudgetEstimates

OperationsImplementationConclusion

Page 60: Subsystem Requirements - MIT OpenCourseWare ÆTT8) zTransceiver Architecture Introduction Subsystems •Actuation •Formation Control •Electronics •Comm •Requirements •Trades

5/24/2002 CDIO3 Class Project 127

Structure

RequirementsVehicle Casing:

Provide physical interfacing capabilityPrevent damage in case of collisionThermal considerations due to magnetheating

Magnetic Shielding:Protect electronics hardware frommagnetic interference

Air Carriage:Provide adequate cushion height forvehicle mass

IntroductionSubsystems•Actuation•Formation Control•Electronics•Structure/Power

•Power•Structure

•Requirements•GeometricalOverview•Trades•Design•BudgetEstimates

OperationsImplementationConclusion

Page 61: Subsystem Requirements - MIT OpenCourseWare ÆTT8) zTransceiver Architecture Introduction Subsystems •Actuation •Formation Control •Electronics •Comm •Requirements •Trades

5/24/2002 CDIO3 Class Project 128

Geometric Overview

Lid

Body encasing

Base

Air Carriage

IntroductionSubsystems•Actuation•Formation Control•Electronics•Structure/Power

•Power•Structure

•Requirements•GeometricalOverview•Trades•Design•BudgetEstimates

OperationsImplementationConclusion

Page 62: Subsystem Requirements - MIT OpenCourseWare ÆTT8) zTransceiver Architecture Introduction Subsystems •Actuation •Formation Control •Electronics •Comm •Requirements •Trades

5/24/2002 CDIO3 Class Project 129

Geometric OverviewIntroductionSubsystems•Actuation•Formation Control•Electronics•Structure/Power

•Power•Structure

•Requirements•GeometricalOverview•Trades•Design•BudgetEstimates

OperationsImplementationConclusion

Page 63: Subsystem Requirements - MIT OpenCourseWare ÆTT8) zTransceiver Architecture Introduction Subsystems •Actuation •Formation Control •Electronics •Comm •Requirements •Trades

5/24/2002 CDIO3 Class Project 130

Geometric OverviewIntroductionSubsystems•Actuation•Formation Control•Electronics•Structure/Power

•Power•Structure

•Requirements•GeometricalOverview•Trades•Design•BudgetEstimates

OperationsImplementationConclusion

Page 64: Subsystem Requirements - MIT OpenCourseWare ÆTT8) zTransceiver Architecture Introduction Subsystems •Actuation •Formation Control •Electronics •Comm •Requirements •Trades

5/24/2002 CDIO3 Class Project 131

Shielding

Sample kit includes various materialsof different properties.Determine functional material at leastmass.Conduct tests using electronics/electromagnets, andtest shielding material.

IntroductionSubsystems•Actuation•Formation Control•Electronics•Structure/Power

•Power•Structure

•Requirements•GeometricalOverview•Trades•Design•BudgetEstimates

OperationsImplementationConclusion

Page 65: Subsystem Requirements - MIT OpenCourseWare ÆTT8) zTransceiver Architecture Introduction Subsystems •Actuation •Formation Control •Electronics •Comm •Requirements •Trades

5/24/2002 CDIO3 Class Project 132

Air Carriage: Trades

Fabricate vs.. Off-the-ShelfCost, Efficiency

Tanks vs.. CompressorsCost, Power, Mass

Infinite(?) air supply

IntroductionSubsystems•Actuation•Formation Control•Electronics•Structure/Power

•Power•Structure

•Requirements•GeometricalOverview•Trades•Design•BudgetEstimates

OperationsImplementationConclusion

Page 66: Subsystem Requirements - MIT OpenCourseWare ÆTT8) zTransceiver Architecture Introduction Subsystems •Actuation •Formation Control •Electronics •Comm •Requirements •Trades

5/24/2002 CDIO3 Class Project 133

Air Carriage: Design

Objective: For a given weightaccurately predict and obtain amaximum air cushion thicknessDesign variables

Supply pressure

Puck radiusSupply orifice

IntroductionSubsystems•Actuation•Formation Control•Electronics•Structure/Power

•Power•Structure

•Requirements•GeometricalOverview•Trades•Design•BudgetEstimates

OperationsImplementationConclusion

Page 67: Subsystem Requirements - MIT OpenCourseWare ÆTT8) zTransceiver Architecture Introduction Subsystems •Actuation •Formation Control •Electronics •Comm •Requirements •Trades

5/24/2002 CDIO3 Class Project 134

Linear radial pressure distributionfor single, central orifice

Possible compressible effectsnear aperture

Air Carriage: Model

Assumptions

p

passp R

rPPPrP )()( −−=

IntroductionSubsystems•Actuation•Formation Control•Electronics•Structure/Power

•Power•Structure

•Requirements•GeometricalOverview•Trades•Design•BudgetEstimates

OperationsImplementationConclusion

Page 68: Subsystem Requirements - MIT OpenCourseWare ÆTT8) zTransceiver Architecture Introduction Subsystems •Actuation •Formation Control •Electronics •Comm •Requirements •Trades

5/24/2002 CDIO3 Class Project 135

Thin film:h << Rp

very low Reynolds Number

Similarities to Couette andPoiseuielle flows: parabolicvelocity distribution

∝= 2

2

Repa

ppa

a

a

R

hURcU

µρ

µρ

Air Carriage:

Lubrication TheoryIntroductionSubsystems•Actuation•Formation Control•Electronics•Structure/Power

•Power•Structure

•Requirements•GeometricalOverview•Trades•Design•BudgetEstimates

OperationsImplementationConclusion

Page 69: Subsystem Requirements - MIT OpenCourseWare ÆTT8) zTransceiver Architecture Introduction Subsystems •Actuation •Formation Control •Electronics •Comm •Requirements •Trades

5/24/2002 CDIO3 Class Project 136

Air Carriage: Next

Steps…Lubrication flow solver

Pressure gradientFlow VelocityLoadCushion thickness

Assess compressible behaviorAssess puck designs

IntroductionSubsystems•Actuation•Formation Control•Electronics•Structure/Power

•Power•Structure

•Requirements•GeometricalOverview•Trades•Design•BudgetEstimates

OperationsImplementationConclusion