57
Subsea Boosting Day 2 November 2015 John Friedemann

Subsea Boosting Day 2 November 2015 John Friedemann thermodynamic design and test evaluation of centrifugal compressors is frequently based upon a polytropic analysis employing perfect-gas

Embed Size (px)

Citation preview

Subsea Boosting Day 2

November 2015 John Friedemann

Multiphase

November 2015 UiO MEK4450

2

Do I even have design tools for this?

Process Mixture @ Pi,Ti

Output Fluid @ Po,To

F

Work

Heat

An Example: Flow Modeling

November 2015 UiO MEK4450

3

Single Phase

Bubbly

Plug

Slug

Stratified / wavy

Annular

Mist

Inc

rea

sing

Ga

s Ra

te

Challenges: Uncertainty

November 2015 UiO MEK4450

4

Ref: Darby, Chemical Engineering Fluid Mechanics 2001

Early Horizontal Flow Map

Early Vertical Flow Map

Spreadsheet

November 2015 UiO MEK4450

5

Pref 1 bar Methane

Tref 288.15 K Tc 190.6

zref 1 Pc 45.4

rhoc 192.66

Qref 4 MSm3/d acentric factor 0.001

46.30 Sm3/s mw 16.043

Wellbore Diameter 0.1524 m R 0.083145

FlowLine Diameter 0.1524 m

Absolute Roughness 0.00000381 m

L Inlet Elevation Outlet Elevation Diameter Segmentation Inlet P Outlet P Z t Qa density viscosity theta Pressure Loss

m m m - bar bar - K m3/s kg/m3 Pa-s rad bar

Well 4000 -5000 -1000 0.15240 80 500.0 414.4 1.288 400 0.166 187.242 2.30E-06 1.5708 85.59

500 -1000 -500 0.15240 10 414.4 404.1 1.175 400 0.182 170.074 2.16E-06 1.5708 10.31

Jumper 5000 -500 -500 0.15240 100 404.1 383.5 1.162 400 0.185 167.684 2.14E-06 0.0000 20.61

Booster 150.0 cooler 333

Seabed 5000 -500 -500 0.15240 100 554.1 538.3 1.479 333 0.143 217.135 2.38E-06 0.0000 15.77

Seabed to shore 50000 -500 0 0.15240 1000 538.3 373.6 1.607 278 0.133 232.448 2.35E-06 0.0100 164.76

November 2015 UiO MEK4450

6

Compressor Modeling

L

The Polytropic Analysis of Centrifugal Compressors

John M. Schultz, Trans. Of the ASME, ASME J. of Engineering for Power, Jan 1962 pp 69-82

The real-gas equations of polytropic analysis are derived in terms of compressibility functions X and Y which supplement the familiar compressibility factor, Z. A polytropic head factor, f, is introduced to adjust test results for deviations from perfect-gas behavior. Functions X and Y are generalized and plotted for gases in corresponding states.

The thermodynamic design and test evaluation of centrifugal compressors is frequently based upon a polytropic analysis employing perfect-gas relations. In many instances real-gas relations would be more accurate, but these are virtually unknown. The purpose of this paper is to derive the real-gas equations of polytropic analysis and to show their application to centrifugal compressor testing and design.

November 2015 UiO MEK4450

7

Back to Classical Thermodynamics

𝐻 −𝐻𝑜 = 𝐶𝑝∗𝑑𝑇 +

𝑇

𝑇0

𝑇𝜕𝑉

𝜕𝑇𝑃

− 𝑉 𝑑𝑃𝑃

0

𝑆 − 𝑆𝑜 = 𝐶𝑝∗

𝑇𝑑𝑇 +

𝑇

𝑇0

𝜕𝑉

𝜕𝑇𝑃

𝑑𝑃𝑃

0

Where C*p is the ideal gas state heat capacity

November 2015 UiO MEK4450

8

Question: Compressible fluid? Treated use entropy-enthalpy balance.

Pressure-Enthalpy Diagram for Water and Steam Based on the IAPWS-97 Formulation for General and Scientific Use

0.01

0.1

1

10

100

1000

0 500 1000 1500 2000 2500 3000 3500 4000

Enthalpy, kJ/kg

Pre

ss

ure

, b

ar

Copyright © 1998 ChemicaLogic Corporation. Drawn with SteamTab Duo V3.0.

DHideal

Dhideal/h

November 2015 UiO MEK4450

10

The problem in 1962

• Schultz needed a convenient model for the fluid

• Little General Access to Process Simulation Tools • Limitations in Equations of State Methods

• BWR 1940, complex solution • RK 1949, limited application to mixtures • NGA 1958, Equilibrium Ratio Data for Computers

Needed an alternative which could be handled using a slide rule

• Ie: Simple log-log relationships • Utilize Corresponding States Models

November 2015 UiO MEK4450

11

Compressor Modeling

Classic Compressor Algorithm: Polytropic

• 𝑃𝑉𝑛 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

•𝑃𝑚

𝑇= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

•𝑃𝑛−1𝑛−𝑚

𝑍= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

Solving Bernoulli’s equation

*

1

212

1

2

1

2* lnlnpC

R

pP

PTT

P

PR

T

TC

D2

1

2

1

2

1

2

1

**0

V

V

T

T

V

V

T

T

dVV

RTdTCPdVdTCWHQ

pp

1)(

*

1

21

*

12

*pC

R

ppP

PTCTTCW

11

1

1

211

P

PVPW

RTPVwhileRCCandC

Cvp

v

p **

*

*

0)()(2

1 22 wf

P

P

oiio hhdP

hhguuo

i

Bernoulli

1st Law

2nd Law D2

1

*

0

T

T

dTT

CS

p

UiO MEK4450 12

November 2015

November 2015 UiO MEK4450

13

Schultz shortcut: Linearization

𝑘 =𝐶𝑝

𝐶𝑣

hp= polytropic efficiency

h𝑝= 𝑉𝑑𝑃

𝑑𝐻=

𝑉

𝜕𝐻𝜕𝑃 𝑇+ 𝐶𝑝𝑑𝑇𝑑𝑃

𝑋 =𝑇

𝑉

𝑑𝑉

𝑑𝑇 𝑃 Z-Factor Charts

𝑌 = −𝑃

𝑉

𝑑𝑉

𝑑𝑃 𝑇

November 2015 UiO MEK4450

14

Hi,Si,Vi,CPi,Cvi

V/F,X,Y,n,m,

Top

Feed at P,T

Flash at Pi,Ti

Calculate To,Po,Vo

Flash at Po,To

Ho,So,To,W

Outputs Inputs • Efficiency • Composition

Schultz Algorithm: Wheel by Wheel

Not Rigorous for Multiphase

Dry Gas Compressors

November 2015 UiO MEK4450

15

Compressor Sizing

30oC 1 bar ?oC

6 bar

Find Power requirement

Feed rate 1000kg/hr

50oC 21 bar

5 oC 21 bar

U- value For 10” piping 10 km long Seawater at 4oC

75% Adiabatic Efficiency 77.9% Polytropic Efficiency

UiO MEK4450 16

November 2015

Key Inputs

Fluid Behaviours

Reservoir Fluids

0

20

40

60

80

100

120

140

160

-200 -100 0 100 200 300 400 500

Temperature, oC

Pre

ssu

re, b

ar

Gas Cap

Oil

20vol% Gas

40vol% Gas

60vol% Gas

80vol% Gas

Bubble Point

Bubble Point

Dew Point

Dew Point

99.99vol% Gas

99.9vol% Gas

99vol% Gas

UiO MEK4450 18

November 2015

Basic Evolution

•the molecules have no volume themselves •there are no forces between the molecules

V

RTP

Ideal gas

van der Waals 2v

a

bv

RTP

• The molecules have a volume, which we call b. The free volume for motion is then v-b • There are forces between the molecules which must be proportional to 1/v2

UiO MEK4450 19

November 2015

Corrections to fit vapor pressure

Fits liquids better but at a cost

SRK PR

) ( b v v

a

b v

RT P

) ( ) ( b v b b v v

a

b v

RT P

c

c

P

RT b 08664 . 0

c

c

P

RT b 0778 . 0

a P

T R a c

2 2

42748 . 0 a P

T R a c

2 2

45724 . 0

( ) [ ] 2

1 1 r T m a ( ) [ ] 2

1 1 r T m a 2

17600 . 0 57400 . 1 48000 . 0 w w a Soave 2

26952 . 0 54226 . 1 3746 . 0 w w a 2

15613 . 0 55171 . 1 48508 . 0 w w a Riazi

UiO MEK4450 20

November 2015

How to Calculate Parameters

Methods are based on one of two options

• Know mw and spgr

– Functions for each

Tc = k mwm spgrn (Riazi Daubert) Pc = l mwo spgrp (Riazi Daubert) Or Polynomials (Pedersen)

• Similar if you know Tb and mw – Twu, etc polynomials

UiO MEK4450 21

November 2015

Mixtures and mixing rules

For b we say that the volume taken up by the molecules is just the sum of the component molecule volumes:

For a we say that this term is still proportional to the number of binary collisions, just as for a single component. For a mixture we then get the expression.

One simple, common and wholly empirical improvement of the mixing rule

is to include a binary interaction parameter per pair:

SRK: determined from binary interaction data PR: (strict) predicted from critical volume

Not exchangeable

𝑎 = 𝑥𝑖𝑥𝑖 𝑎𝑖𝑎𝑗

𝑁

𝑖=1

𝑁

𝑗=1

𝑎 = 𝑥𝑖𝑥𝑖 𝑎𝑖𝑎𝑗

𝑁

𝑖=1

𝑁

𝑗=1

(1 − 𝑘𝑖𝑗)

𝑏 = 𝑥𝑖𝑏𝑖

𝑁

𝑖=1

UiO MEK4450 22

November 2015

Calculation procedure for Flash

n

)-AA(- y + RT G =

n

)-AA(- x + RT G V

i

V

tot

*

i

*iL

i

L

tot

*

i*i

lnln

Minimize free-energy in system

UiO MEK4450 23

November 2015

They are not interchangeable

Peng Robinson Phase Envelope

0.00

50.00

100.00

150.00

200.00

250.00

-100.00 0.00 100.00 200.00 300.00 400.00 500.00 600.00

Temperature, C

Pre

ss

ure

, b

ar

UiO MEK4450 24

November 2015

Issues around EOS use

Be consistent with the operator: use theirs Equilibrium Gas Phase Envelope

0.00

100.00

200.00

300.00

400.00

500.00

600.00

700.00

800.00

-100.00 -50.00 0.00 50.00 100.00 150.00 200.00 250.00 300.00 350.00 400.00

Temperature, C

Pre

ss

ure

, b

ar

Operating Window

Peng-Robinson SRK

Fluid Behaviour based on SRK fit to Reservoir Data

UiO MEK4450 25

November 2015

How can these errors affect us?

November 2015 UiO MEK4450

26

250 bar 4oC

3 bar ?oC

Methane

Flow

Slippage Effect of Slip

Q, Flow Rate

h, head

Twin Screw Performance

UiO MEK4450 27

November 2015

Axial Compressors

Surge Control

November 2015 UiO MEK4450

29

Reservoir Fluids

0

20

40

60

80

100

120

140

160

-200 -100 0 100 200 300 400 500

Temperature, oC

Pre

ssu

re, b

ar

Gas Cap

Oil

20vol% Gas

40vol% Gas

60vol% Gas

80vol% Gas

Bubble Point

Bubble Point

Dew Point

Dew Point

99.99vol% Gas

99.9vol% Gas

99vol% Gas

UiO MEK4450 30

November 2015

Process Threats

November 2015 UiO MEK4450

31

Threat Device Mitigation

Sand Pumps/valves Separators and strainers

Droplets (Carry-over) Compressors Scrubbers and internals

Slugging Pumps/compressors Inlet Separator Volume

Deposits All Chemical Treatment

Subsea Transient Effects

November 2015 UiO MEK4450

32

Device Normal Condition Transient Condition

Pump Liquid filled Gas-filled

Gas slugs

Sand-free Sand «slugs»

Discharge flow Blocked discharge

Compressor Gas-filled Liquid-filled

Liquid slugs

Carry-over

Sand-free Fines

Electric Driver Clean dielectric Gas-contaminated

Sour

Water contaminated

Fines

Bearings Clean Lubricant or Gas Sand

Liquids

Facility Complexity

November 2015 UiO MEK4450

33

Suppliers

Compressor: GE

Switchgear: GE

Variable Speed Drive: GE

UPS: GE

Connectors: Tronic/Deutsch

Scrubber: Aker

Pump: Aker

Recycle Cooler: Aker

Compressor

UiO MEK4450 34

November 2015

Gas-Lift System Overview

November 2015 UiO MEK4450

35

Compressor Station

Gas in Annulus

Mandrels

Control Valve

Artificial Lift Options

November 2015 UiO MEK4450

36

Water-Filled

Co

mp

ress

or/

Pu

mp

Oil-Filled Two-Phase

Co

mp

ress

or/

Pu

mp

Co

mp

ress

or

Liq

uid

Aft

er

Op

era

tio

n o

r fr

om

Ho

ldu

p

Liq

uid

Ho

ldu

p p

lus

Co

nd

en

sati

on

Condensation

Gas Lift

Example Case

November 2015 UiO MEK4450

37

Gas-Lift Point at 1050 m TVD (seabed) Two Tubing Sizes (3.5” and 5.125”) Initial GOR = 110 Sm3/Sm3

PI=250 Sm3/bar/day (all phases) 25% water-cut Simple fluid model (fixed phase split)

Approach

November 2015 UiO MEK4450

38

1. Start-up dynamics • Oil-Filled • Water-Filled

2. Operating Case • 3.5 and 5.125” tubing

Depth0

255075

100125150175200225250275300325350375400425450475500525550575600625650675700725750775800825850875900925950975

1000102510501075 Gaslift?11001125115011751200122512501275130013251350137514001425145014751500152515501575

Two-Phase

Gas-Lift Water / Mud Filled

November 2015 UiO MEK4450

39

Annulus Pressure 120 bar - Need Valve Cv at tree - Gaslift Valve Cv / Orifice - What else?

0

200

400

600

800

1000

1200

1400

0.0 50.0 100.0 150.0

De

pth

, m

Pressure, bar

Seawater

Gas

Oil Filled

November 2015 UiO MEK4450

40

Annulus Pressure 115 bar - Need Valve Cv at tree - Gaslift Valve Cv / Orifice - Is this Interesting?

0

200

400

600

800

1000

1200

1400

0.0 50.0 100.0 150.0D

ep

th,

m

Pressure, bar

OIl

Gas

In Operation

November 2015 UiO MEK4450

41

Annulus Pressure 105 bar + - Need Valve Cv at tree - Gaslift Valve Cv / Orifice - Annulus Pressure Drop

0

200

400

600

800

1000

1200

1400

0.0 50.0 100.0 150.0D

ep

th,

m

Pressure, bar

OIl

Gas

Operation

November 2015 UiO MEK4450

42

Depth0

255075

100125150175200225250275300325350375400425450475500525550575600625650675700725750775800825850875900925950975

1000102510501075 Gaslift?11001125115011751200122512501275130013251350137514001425145014751500152515501575

Two-Phase

Operation

November 2015 UiO MEK4450

43

How about the Compressor

November 2015 UiO MEK4450

44

T C 60 S1,ideal 136.5731 H1, ideal 10516.77 10516.77222 136.5731

1 2 3 4 5 6 P bar 35 Ss,ideal 136.8359 T2, ideal 149.8785 147.7694442 420.9194 136.5731

3 Z 0.954991 H2, Ideal 14082.59 13971.6931

Choke Sizing Calculator 4 mw 19.63837 dH, Ideal 3565.818 3454.920886 175.927

V1.2 5 v/f (volume) - 1.0000 H2, real 14974.04 dh, real 4318.651107 14835.42

6 P bar 110.1 T2, Real 184.58 164.157489

Inlet Pipe ID, in5.13 7 R kj/kmol/K 8.3145 H2, calc 15919.51 14835.42333 4318.651 219.9088

Choke Outlet Pipe ID, in5.13 8 Error -945.469 2.24052E-07

Choke Body ID, in5.13 9 polytropic adiabatic

Valve Style Modifier, Fd 1.00 10 Z 1.001245 0.727242 Z 0.994604

Liquid Pressure Recovery Factor, F11.00 11 efficiency η 0.8 efficiency η 0.8

12

13

14

15 v1/R v2,i/R

16 9.090152349 3.998329106

Tref , C 15.00 17 0.754729488 0.223460311 0.941596

Pref , bar 1.00 Feed 18 v1/R v2,i/R

Component mol% 19 9.090152349 4.16253813

Water 0.00 20 n 1.448968 1.384 k=Cp/Cv 1.32958 0.754729488 0.345024383 1.464132

H2S 0.00 21 1.464132 1.395373 -0.081

CO2 0.95 22 (n-1)/n 0.277 (k-1)/k 0.248

N2 8.85 23

Methane 78.96 24

Ethane 7.75 25

Propane 2.51 26

i-Butane 0.30

n-Butane 0.49

i-Pentane 0.08

n-Pentane 0.07 T C 184.58 T C 169.45

Benzene 0.00

Toluene 0.00

e-Benzene 0.00

o-Xylene 0.00

m-Xylene 0.00 Density

p-Xylene 0.00 mw kg/m3

Hexane 0.02 84.40 670 head kj/kg 181.7094 head kj/kg 178.5325

Heptane 0.01 92.60 734

Octane 0.00 105.20 760

Nonane 0.00 117.70 781

Decane 0.00 171.50 800

Total Head kj/kg 227.1367 Total Head kj/kg 223.1657

pk

k

n

n

h

111

gasideal

1

1

2

1

2k

k

P

P

T

T

gasreal

1

1

2

1

2n

n

P

P

T

T

11

1

1

211n

n

pP

P

MW

RTZ

n

nH

11

1

1

211k

k

aP

P

MW

RTZ

k

kH

11

1

1

1

211n

n

p

totalP

P

MW

RTZ

n

nH

h

2

1

1

2

ln

ln

P

P

n

i

P

P

k

,2

1

1

2

ln

ln

Note: 1st Iteration Result

Solution Strategy

November 2015 UiO MEK4450

45

Schultz Approximation?

November 2015 UiO MEK4450

46

Bubbles: Compressors and Pumps WIP

v2013 Gas

Gas Rate Oil Rate MEG Aqueous Rate Inlet T Inlet P Discharge PDischarge T Gas RateCompressibilityGas DensityGas Mol Wt Gas Cp/Cv Enthalpy

Sm3/d Sm3/d wt% Sm3/d oC bar baroC m3/d Z Tf c,Pf c Tf c,Pf c Tf c,Pf c Change

1 1000.0 0.00 0.00 0.00 60.00 35.00 41.22 72.948 31.5 0.95 26.11 19.64 1.33 25.36408

2 1000.0 0.00 0.00 0.00 72.95 41.22 48.55 86.141 27.8 0.96 29.55 19.64 1.33 26.212

Inlet Pipe ID, in5.13 3 1000.0 0.00 0.00 0.00 86.14 48.55 57.18 99.565 24.6 0.96 33.45 19.64 1.33 27.07727

Choke Outlet Pipe ID, in5.13 4 1000.0 0.00 0.00 0.00 99.57 57.18 67.34 113.210 21.7 0.96 37.85 19.64 1.33 27.96542

Choke Body ID, in5.13 5 1000.0 0.00 0.00 0.00 113.21 67.34 79.31 127.063 19.2 0.97 42.81 19.64 1.32 28.88544

Valve Style Modifier, Fd 1.00 6 1000.0 0.00 0.00 0.00 127.06 79.31 93.40 141.110 17.0 0.97 48.40 19.64 1.32 29.85079

Liquid Pressure Recovery Factor, F11.00 7 1000.0 0.00 0.00 0.00 141.11 93.40 110.01 155.342 15.0 0.98 54.67 19.64 1.32 30.88048

196.2355

Tref , C 15.00

Pref , bar 1.00 Feed

Component mol%

Water 0.00

H2S 0.00

CO2 0.95

N2 8.85

Methane 78.96

Ethane 7.75

Propane 2.51

i-Butane 0.30

n-Butane 0.49

i-Pentane 0.08

n-Pentane 0.07

Benzene 0.00

Toluene 0.00

e-Benzene 0.00

o-Xylene 0.00

m-Xylene 0.00 Density

p-Xylene 0.00 mw kg/m3

Hexane 0.02 84.40 670

Heptane 0.01 92.60 734

Octane 0.00 105.20 760

Nonane 0.00 117.70 781

Decane 0.00 171.50 800

PhasePhase

Optimum: Really?

November 2015 UiO MEK4450

47

The ESP Overview

November 2015 UiO MEK4450

48

Speed Controller

Cable

Motor Pump

ESP Performance

November 2015 UiO MEK4450

49

Rotating EQPT = Vendor Sizing

But We Can Estimate

November 2015 UiO MEK4450

50

Need to consider Operating Points

Seabed Booster System Level

November 2015 UiO MEK4450

51

Power • Variable Speed Drive • Switch Gear • Transformers Process • Slugcatcher • Mixers • Recycle Coolers • Barrier Fluid • Lubricants

Barrier Fluid and Lubricants

November 2015 UiO MEK4450

52

Problem: Protecting the motor and bearings Solution: Applying a pressurized fluid Helps Control Bearings

Mo

tor

Pu

mp

Ba

rrie

r F

luid

Flo

w

Seabed booster

November 2015 UiO MEK4450

53

Compressors and Pumps: Bearings

November 2015 UiO MEK4450

54

How to provide a stiff support for a shaft

1- Support it in a liquid lubricant 2- Support it by magnetism 3- Use rollers

Bearings

November 2015 UiO MEK4450

55

Journal bearing: 1. Simplest and stiffest 2. Lubricant functions as coolant

Magnetic 1. Complex control

Film

Lubrication Models

November 2015 UiO MEK4450

56

Film

Flow Laminar Heat transfer Simple

Finally: Compressor Maps

November 2015 UiO MEK4450

57

Rate

He

ad