18
Journal of Mathematical Sciences, Vo l. 78, No. 5, 1996 GENERALIZED SOLUTIONS OF PARTIAL DIFFERENTIAL EQUATIONS OF THE FIRST ORDER. THE INVARIANCE OF GRAPHS RELATIVE TO DIFFERENTIAL INCLUSIONS A. I. Subbotin UDC 517.974, 517.978 1. Introduction The present paper contains results on the theory of partial differential equations (PDE) of first order. The generalized solutions of these equations, which are defined on the basis of constructions from differential game theory, are considered. As is known, in mathematical control theory an important place is occupied by the investigation of problems, which require the construction of feedback control according to which the warranted result is guaranteed under most unfavorable disturbances or counteractions. Such problems are included in the field of differential game theory. Differential game theory has been widely studied. An important influence on the development of this theory was brought about by [1, 3, 8, 9, 11-15, 34].. In the investigation of game-control problems, results and methods from various fields of mathematics are used. Moreover, the new knowledge obtained in differential gam e theory may prove to be useful within the framework of this theory and its direct applications. For example, the constructions of u-stable and v-stable functions, developed in positional differential gam e theory [5], serve as a basis for determ ining the generalized (minimax) solutions of partial differential equations of first order. This approach is presented in the given paper. In Sec. 2, the definition of a minimax solution of a partial differential equation of first order F(x,u, Du) = O, x 9 G C R" is given. A minimax solution of this equation is defined as a continuous function u(x) (x 9 C1 G), the graph of which is weakly invariant relative to some system of differential equations (this system may be considered as a reduction or relaxation of the characteristic system of ordinary differential equations). In other words, over the set gru = : 9 9 ClG} through any point (z0, Zo) 9 gr u pass trajectories of the ~characteristic" differential inclusion. In infinitesimal form, this definition is expressed as follows: the intersection {(f,g) G R" x R: g = (f,p) - F(x,z,p)} n T(u)(z) # for all (z,u) 9 gru and p 9 R". Here T(u)(z) is a contingent cone ( a Bouligand cone) of the set gru, constructed at the point (z, u) E gr u. In Sec. 2, the compatibility of the notions of minimax and classical solutions of partial differential equations of first order is also shown. In Sec. 3, the notions of upper and lower solutions are considered. They play an important role in the theory of partial differential equations of first order. An upper (lower) solution is defined as a function whose epigraph (subgraph) is weakly invariant relative to the characteristic differential inclusion. A minimax solution can be defined as a function which possesses simultaneously the properties of upper and lower solutions. The origin of the definitions proposed here is related with the constructions of positional differential game theory. It is known (see, e.g., [5]) that the value function of a differential game possesses the properties Translated from Itogi Nauki i Tekhniki, Seriya Sovremennaya Matematika i Ee Prilozheniya. Tematicheskie Obzory. Vol. 13, Dinamicheskie Sistemy-1, 1994. 594 1072-3374/96/7805-0594515.00 9 Plenum Publishing Corporation

Subbotin - Generalized Solutions of PDE of the FO

Embed Size (px)

Citation preview

7/29/2019 Subbotin - Generalized Solutions of PDE of the FO

http://slidepdf.com/reader/full/subbotin-generalized-solutions-of-pde-of-the-fo 1/18

Journal of Mathema tical Sciences, Vo l. 78, No. 5, 1996

G E N E R A L I Z E D S O L U T I O N S O F P A R T I A L D I F F E R E N T I A L E Q U A T I O N S

O F T H E F I R S T O R D E R . T H E I N V A R I A N C E O F G R A P H S R E L A T I V E T OD I F F E R E N T I A L I N C L U S I O N S

A . I . S u b b o t i n U D C 5 1 7. 97 4 , 5 17 .9 78

1 . I n t r o d u c t i o n

T h e p r e s e n t p a p e r c o n t a i n s r e s u l ts o n t h e t h e o r y o f p a r ti a l d i f f er e n ti a l e q u a t i o n s ( P D E ) o f fi rs t o r d e r.

T h e g e n e r a l iz e d s o l u t i o n s o f t h e s e e q u a t i o n s , w h i c h a re d e f i n e d o n t h e b a s is o f c o n s t r u c t i o n s f r o m d i f fe r e n ti a l

g a m e th e o r y , a r e c o n s i d e r e d .

A s is k n o w n , i n m a t h e m a t i c a l c o n t r o l t h e o r y a n i m p o r t a n t p l a c e i s o c c u p i e d b y t h e i n v e s t i g a t i o n o f

p r o b l e m s , w h i c h r e q u i r e t h e c o n s t r u c t i o n o f f e e d b a c k c o n t r o l ac c o r d i n g t o w h i c h t h e w a r r a n t e d r e s u l t is

g u a r a n t e e d u n d e r m o s t u n f a v o r a b l e d i s t u r b a n c e s o r co u n t e r a c t i o n s . S u c h p r o b l e m s a r e i n c l u d e d i n t h e fi el d

o f d i ff e re n t ia l g a m e t h e o r y . D i f f er e n ti a l g a m e t h e o r y h a s b e e n w i d e l y s tu d i e d . A n i m p o r t a n t i n f l u e n c e o n t h ed e v e l o p m e n t o f t h i s t h e o r y w a s b r o u g h t a b o u t b y [ 1 , 3 , 8 , 9 , 1 1 - 1 5 , 3 4] ..

I n t h e i n v e s t i g a t i o n o f g a m e - c o n t r o l p r o b l e m s , r es u l ts a n d m e t h o d s f r o m v a r i o u s f i el d s o f m a t h e m a t i c s

a r e u s e d . M o r e o v e r , t h e n e w k n o w l e d g e o b t a i n e d i n d i f fe r e n ti a l g a m e t h e o r y m a y p r o v e t o b e u s e f u l w i t h i n t h e

f r a m e w o r k o f t h i s t h e o r y a n d i t s d i re c t a p p l i c at i o n s . F o r e x a m p l e , t h e c o n s t r u c t i o n s o f u - s t a b l e a n d v - s t a b le

f u n c t i o n s , d e v e l o p e d i n p o s i t i o n a l d i f f e re n t i a l g a m e t h e o r y [ 5 ], s e r v e a s a b a s i s f o r d e t e r m i n i n g t h e g e n e r a l i z e d

( m i n i m a x ) s o l u t i o n s o f p a r t i a l d i f f e r e n t ia l e q u a t i o n s o f f i rs t o r d e r . T h i s a p p r o a c h i s p r e s e n t e d i n t h e g i v e n

p a p e r .

I n S e c . 2 , t h e d e f i n i t i o n o f a m i n i m a x s o l u t i o n o f a p a r t i a l d i f f e r e n t i a l e q u a t i o n o f f i r st o r d e r

F ( x , u , D u ) = O , x 9 G C R "

i s g iven . A m i n i m a x s o l u t i o n o f th i s e q u a t i o n i s d e f in e d a s a c o n t i n u o u s f u n c t i o n u ( x ) ( x 9 C 1 G ) , t h e g r a p ho f w h i c h is w e a k l y i n v a r i a n t r e l a ti v e t o s o m e s y s t e m o f d i ff e r en t ia l e q u a t io n s ( t h i s s y s t e m m a y b e c o n s i d e r e d

a s a r e d u c t i o n o r r e l a x a t i o n o f t h e c h a r a c t e ri s t ic s y s t e m o f o r d i n a r y d i f fe r e n ti a l e q u a t i o n s ) . I n o t h e r w o r d s ,

o v e r t h e s e t

g r u = : 9 9 C l G }

t h r o u g h a n y p o i n t ( z 0 , Z o) 9 g r u p a s s t r a j e c t o r i e s o f t h e ~ c h a r a c t e r i s t ic " d i f f e r e n t ia l i n c l u s i o n . I n i n f i n i t e s i m a l

f o r m , t h i s d e f i n i t i o n i s e x p r e s s e d a s f o l l o w s : t h e i n t e r s e c t i o n

{ ( f , g ) G R " x R : g = ( f , p ) - F ( x , z , p ) } n T ( u ) ( z ) #

for a l l ( z , u ) 9 g r u a n d p 9 R " . H e r e T ( u ) ( z ) is a con t ingen t cone ( a Boul igand cone) o f t h e s e t g r u ,

c o n s t r u c t e d a t t h e p o i n t ( z , u ) E g r u . I n S e c . 2 , t h e c o m p a t i b i l i ty o f t h e n o t i o n s o f m i n i m a x a n d c la s s ic a ls o l u t io n s o f p a r t i a l d i f f e r e n t i a l e q u a t i o n s o f f i rs t o r d e r i s a ls o s h o w n .

I n S e c. 3, t h e n o t i o n s o f u p p e r a n d l o w e r s o l u t io n s a r e c o n s i d e re d . T h e y p l a y a n i m p o r t a n t r o l e i n th e

t h e o r y o f p a r t i a l d i f f e r e n t i a l e q u a t i o n s o f f i rs t o r d e r . A n upper ( lower) so lu t ion i s d e f i n e d a s a f u n c t i o n w h o s e

e p i g r a p h ( s u b g r a p h ) i s w e a k l y i n v a r i a n t r e l a t i v e to t h e c h a r a c t e r i s t i c d i f f e r e n t ia l i n c l u s i o n . A m i n i m a x s o l u t i o n

c a n b e d e f in e d a s a f u n c t i o n w h i c h p o s s e s se s s i m u l t a n e o u s l y t h e p r o p e r t i e s o f u p p e r a n d l o w e r s o lu t i o n s .

T h e o r i g in o f t h e d e f i n i t i o n s p r o p o s e d h e r e is r e la t e d w i t h t h e c o n s t r u c t i o n s o f p o s i t i o n a l d i f fe r e n ti a l

g a m e th e o r y . I t i s k n o w n ( s e e , e .g . , [ 5] ) t h a t t h e v a l u e f u n c t i o n o f a d i f f e r e n t ia l g a m e p o s s e s s e s t h e p r o p e r t i e s

T r a n s l a t e d f r o m I t o g i N a u k i i T e k h n i k i , S e r iy a S o v r e m e n n a y a M a t e m a t i k a i E e P r i l o z h e n i y a . T e m a t i c h e s k i e O b z o ry .

Vol . 13 , Dinamichesk ie S i s t emy-1 , 1994 .

594 1072-3374 /96/7805-059451 5.00 9 Plenu m Publ ishing Corpora tion

7/29/2019 Subbotin - Generalized Solutions of PDE of the FO

http://slidepdf.com/reader/full/subbotin-generalized-solutions-of-pde-of-the-fo 2/18

o f u - s t a b il i ty a n d v - s t a b i l it y w h i c h r e p r e s e n t t h e o p t i m a l i t y p r in c i p le . T h e s e p r o p e r t i e s c a n b e e x p r e s s e d i n

v a r io u s f o r m s , i n c l u d i n g t h e i r e x p r e s s i o n s a s a p a i r o f i n e q u a l it i e s f o r d i r e c t io n a l d e r i v a t i v e s , w h i c h s a t i sf ie s

o n e a n d o n l y o n e g e n e r a l iz e d ( m i n i m a x ) s o l u t i o n o f t h e C a u c h y p r o b l e m f o r t h e I s a a c s - B e l l m a n e q u a t i o n .

T h i s d e f in i ti o n w a s i n t r o d u c e d i n [1 6, 1 9 ] . T h e p r o p o s e d a p p r o a c h c a n b e u s e d f o r s t u d y i n g a w i d e r a n g e o f

b o u n d a r y - v a l u e p r o b l e m s a n d C a u c h y p r o b l e m s f or v a ri o u s t y p e s o f p a r t i a l d i f f e re n t ia l e q u a t i o n s o f fi rs t o r d e r

[ 17 ]. I n S e c . 3 , t h e c o i n c i d e n c e o f t h e n o t i o n o f a u - s t a b l e ( v - s t a b le ) f u n c t i o n w i t h t h a t o f a n u p p e r ( lo w e r )

s o l u ti o n o f t h e H a m i l t o n - J a c o b i - B e l l m a n - I s a a c s e q u a t i o n is p r o v e d .S t a r t i n g f r o m t h e e a r l y 1 9 8 0 s , t h e i n v e s t i g a t i o n s o f g e n e r a l i z e d s o l u t io n s o f p a r t i a l d i f f e r e n t i a l e q u a t i o n s

o f f ir st o r d e r , w h i c h h a v e b e e n i n t e n s iv e l y ca r r ie d o u t b y f o r e ig n m a t h e m a t i c i a n s , w e r e b a s e d o n t h e n o t i o n

o f v i s c o s i ty s o l u t i o n , i n t r o d u c e d b y M . G . C r a n d a l l a n d P . L . L i o n s - [3 0 , 3 1] . I t is i m p o r t a n t t o n o t e t h a t ,

d i f f e r e n t b y t h e i r f o r m a n d o r i g i n , t h e n o t i o n s o f m i n i m a x a n d v i s c o u s s o l u t i o n s i n t h e f i n a l a n a l y s i s p r o v e t o

b e e q u i v a l e n t . T h i s r e s u l t i s f o r m u l a t e d i n S e c . 3 ,

T h e m a t e r i a l i n S e c s . 2 a n d 3 is o f a r e v i e w c h a r a c t e r . I n th e s e s e c t i o n s , t h e f u n d a m e n t a l n o t i o n s a r e

g i v e n , t h e r e s u l t s o b t a i n e d a r e f o r m u l a t e d , a n d c e r t a i n c l a r if i c a ti o n s a r e p r e s e n t e d . A l l p r o o f s , a s a r u l e , a r e

o m i t t e d .

I n S e c. 4 , t h e b o u n d a r y - v a l u e p r o b l e m o f D i r i c h l e t t y p e f o r t h e p a r t i a l d i f f e r e n t i a l e q u a t i o n o f f i rs t o r d e r

H ( z , D u ) - u = O,

w i t h th e b o u n d a r y c o n d i t io n

u ( z ) = ~ ( z ) ,

w h e r e O G is a b o u n d a r y o f t h e d o m a i n G , is co n s i d e re d .

x E G c R ~'

x E O G ,

T h e p e c u l i a r i t y o f t h i s p r o b l e m c o n s i s t s i n t h e

f a c t t h a t i t i s n e c e s s a r y t o d e f i n e t h e n o t i o n o f a d i s c o n t i n u o u s s o l u t i o n f o r i t. T h i s d e f i n i t i o n i s g ! v e n i n

S e c. 4 . H e r e t h e e x i s te n c e a n d u n i q u e n e s s t h e o r e m o f a m i n i m a x s o l u t io n o f t h e b o u n d a r y - v a l u e p r o b l e m i s

a ls o f o r m u l a t e d . T h e m e a n i n g f u l n e s s o f t h e p r o p o s e d d e f i n i ti o n i s s h o w n b y t h e e x a m p l e o f a t i m e - o p t i m a l

c o n t ro l p r o b l e m . I t is k n o w n t h a t t h e o p t i m a l t i m e a s a f lm c t i o n o f t h e i n i ti a l s t a te o f t h e c o n t r o l s y s t e m m a y

b e d i s c o n ti n u o u s . I t i s s h o w n t h a t t h i s fu n c t i o n ( a f te r s o m e s im p l e t ra n s f o r m a t i o n ) c o i n c id e s w i t h a m i n i m a x

s o l u ti o n o f t h e c o r r e s p o n d i n g b o u n d a r y - v a l u e p r o b l e m .

T o c o n c l u d e t h e p a p e r , i n S e c. 5 t h e p r o o f o f t h e u n i q u e n e s s o f a m i n i m a x s o l u t i o n f o r a D i r i c h l e t- t y p e

b o u n d a r y - v a l u e p r o b l e m i s g iv e n . L e t u s n o t e t h a t i n th i s p r o o f t h e m e t h o d o f L y a p u n o v f u n c t i o n s i s u s e d .

2 . C l a s s i c a l a n d G e n e r a l i z e d C h a r a c t e r i s t i c s

2 . 1 . C o n s i d e r t h e p a r t i a l d i f f e r e n t i a l e q u a t i o n o f f i rs t o r d e r

F ( x , u , D u ) = 0, z e G C 1r (2.1)

H e r e D u : = au aua;7~'"" 9 a -~ ,) is t h e g r a d i e n t o f t h e f u n c t i o n u a n d G i s a n o p e n s e t i n R ~ .

O n e o f t h e f u n d a m e n t a l r e s u l t s o f t h e c l a s si c al th e o r y o f p a r t i a l d i f f e re n t i a l e q u a t i o n s o f f ir s t o r d e r c o n s i s ts

i n t h e f a c t t h a t , u n d e r c e r t a i n c o n d i t i o n s , t h e s o l u t i o n o f E q . ( 2 .1 ) ( t o b e m o r e p r e c i s e , t h e s o l u t i o n o f t h e

C a u c h y p r o b l e m f o r t h i s e q u a t i o n ) i s r e d u c e d t o t h e i n t e g r a t i o n o f t h e c harac t e r i s t i c s y s t e m o f o r d i n a r yd i f f e re n t i a l e q u a t i o n s

{ ~ = D p F ( x , z , p ) ,

[a = - D ~ F ( x , z , p ) - p D z F ( x , z , p ) , (2 .2 )

= (p , D v F ( x , z , p ) ) .

H e r eO F O F ~, O_FF

a n in n e r p r o d u c t o f tw o v e c t o r s p a n d f is d e n o t e d b y t h e s y m b o l ( p , f ) . N o t e t h a t t h e f u n c t i o n F i s a n

i n t e g r a l o f t h e s y s t e m ( 2 . 2) , t h a t i s, i t a s s u m e s a c o n s t a n t v a l u e a l o n g a n y o f t h e s o l u t i o n s o f t h e s y s t e m ( 2 .2 ) .

595

7/29/2019 Subbotin - Generalized Solutions of PDE of the FO

http://slidepdf.com/reader/full/subbotin-generalized-solutions-of-pde-of-the-fo 3/18

M o r e o v er , f o r th e s o l u t io n s o f th i s s y s t e m , u s e d i n th e m e t h o d o f c h a r a c te r i st i c s, t h e f u n c t i o n F a s s u m e s a

z e ro v a l u e. T h e r e f o r e , t h e t h i r d e q u a t i o n o f t h e s y s t e m ( 2 .2 ) ( i t i s c a l l ed t h e characterist ic band equation) is

e q u i v a l e n t t o t h e e q u a t i o n

= ( ~ , p ) - F ( z , z , p ) . (2 .3 )

T h i s t y p e o f n o t a t i o n i s n ec e s s a r y f o r th e d e f i n it io n o f a g e n e r a li z e d ( m i n i m a x ) s o l u t i o n , g i v e n i n S e c .

2 .4 . T h e c o n s t r u c t i o n u s e d i n t h i s d e f i n i t io n m a y b e c o n s i d e r e d a s a r e d u c t i o n o r r e l a x a t i o n o f t h e c la s si ca l

m e t h o d o f c h a r a c t e r i s t i c s .

2.2.

n o n s m o o t h a n a l y s i s a r e u s e d . L e t u s re c a l l t h e s e n o t i o n s .

L e t W b e a c l o s e d s e t i n t h e s p a c e l~ ~ . L e t

d i s t ( y ; W ) : = m i n ~ e w [ [ y - w l] .

T h e s e t

I n t h e d e f i n i t io n o f a m i n i m a x s o l u t i o n , s o m e n o t i o n s fr o m t h e t h e o r y o f d i f fe r e n t ia l i n c l u s io n s a n d

T ( w ; W ) : = { h E R " : l i m i n f d i s t ( w + g h ; w ) = 0 } ( 2 . 4 )sW g

i s c a l l e d t h e contingent cone ( t h e Boul igand cone, t h e tangent cone; s o m e o t h e r n a m e s f o r t h i s s e t a r e a ls o

u s e d ) . I f • > 0 a n d h q T ( w ; W ) , t h e n i t i s n o t d i f f i c u lt t o s e e t h a t ,~h E T (w; W ) , t h a t i s , t h e s e t T ( w ; W )i s r e a ll y a c o n e . O n e c a n s h o w t h a t i t is c lo s e d .

T h e s e t W C R " i s c a l le d weakly inv ariant r e l a t i v e t o t h e d i f f e re n t i a l i n c l u s i o n

~](t) e E(y(t)) C R " ( 2 . 5 )

i f, f o r a n y p o i n t Y0 E W , t h e r e e x i s t s a s o l u t i o n o f t h e d i f f er e n t ia l i n c l u s i o n ( 2 . 5 ) w i t h y ( 0 ) = y o s u c h t h a t

V(t) E W f o r a l l t > 0 . I f t h i s c o n d i t i o n h o l d s , o n e a l s o s a y s t h a t t h e s e t W p o s s e s s e s t h e viability property.

I n v a ri a n t s e t s a n d t h e c o n t r o l p r o b l e m s a s s o c i a t e d w i t h t h e m h a v e b e e n i n v e s t i g a t e d b y m a n y a u t h o r s ( se e,

e . g . , [ 7 , 2 1 , 2 7 , 2 8 , 3 6 , 4 1 ] , a n d t h e r e f e r e n c e s t h e r e i n ) .

W e s h a l l a s s u m e t h a t t h e s e t s E ( y ) a r e c o n v e x a n d c lo s e d f o r a ll y E R = , t h e m u l t i v a l u e d m a p p i n g

y ~ E(y ) i s u p p e r s e m i c o n t i n u o u s w i t h r e s p e c t t o a n i n c l u si o n a n d s a t is f ie s t h e c o n d i t i o n

m ax I lh l l < (1 + I lYl l)# .heS(~) --

I t i s k n o w n ( s e e [ 36 ]) t h a t u n d e r t h e s e a s s u m p t i o n s t h e c l o s e d s e t W i s w e a k l y i n v a r i a n t r e l a t i v e t o th e

d i f fe r e n ti a l i n c l u s i o n ( 2 .5 ) i ff t h e c o n d i t i o n

T ( w ; W ) f3 E ( w ) # z , V w e W (2 .6 )

h o l d s .

2 . 3 . L e t u s p o i n t o u t t h e b a s ic a s s u m p t i o n s r e g a r d i n g t h e f u n c t i o n F , u n d e r w h i c h a m i n i m a x s o l u t io n

o f E q . ( 2 . 1 ) w i l l b e d e f i n e d .

W e s h a l l a s s u m e t h a t t h e f u n c t i o n ( z , z , p ) ~ F ( z , z , p ) i s c o n t i n u o u s , n o n i n c r e a s i n g i n t h e v a r i a b l e z ,t h a t i s ;

F( z , Z l , p ) >_ F ( z , z 2 , p ) , V ( z , Z l , z 2 , p ) e C x R x g x x ~ , Z l < z 2 ,

a n d s a t i s f i e s t h e c o n d i t i o n s

I F ( z , z , 0 )1 < ( 1 + I lz ll + I z l ) ~ , I F ( z , z , p ) - F ( z , z, q ) l < l i p - q l l p ( z ) , ( 2 .7 )

V (z , z , p ,q ) E G I t R ~' R ~,

w h e r e p ( z ) : = ( 1 + I lz l l) # , ~ i s a p o s i t i v e n u m b e r .

T h e a b o v e c o n d i t i o n s m a k e i t p o s s i b le t o s i m p l if y t h e d e f i ni ti o n ; w i t h o u t t h e m t h e c o n s t r u c t i o n o f a

m i n i m a x s o l u t i o n m u s t c o n t a i n s o m e a d d i t i o n a l a p p r o x i m a t e e l em e n t s .

59 6

7/29/2019 Subbotin - Generalized Solutions of PDE of the FO

http://slidepdf.com/reader/full/subbotin-generalized-solutions-of-pde-of-the-fo 4/18

2 . 4 . L e t u s p a s s t o t h e d i r ec t d e f i n it i o n o f a mi n i m ax s o lu t i o n . Co n s i d e r t h e s y s t e m w h i ch co n s is t s o f

t h e d i f f e r en t i a l i n eq u a l i t y an d t h e d i f f e r en t ia l eq u a t i o n

I1~11 p(x ), ~ = (~:,p) - F ( z , z , p ) . (2.8)

H e r e p is s o m e v e c t o r f r o m R " . N o t e t h a t t h e d i f f e re n t ia l e q u a t i o n f o r t h e v a r i a b l e z c o i n c id e s w i t h t h e

ch a rac t e r i s t i c b a n d eq u a t i o n . Sy s t e m (2. 8) c an b e r ew r i t t en i n t h e " fo rm o f t h e d i f f e r en t i a l ( ch a r ac t e r i s t i c )

inc lus ion( & ( t ), /, .( t) ) e E ( x ( t ) , z ( t ) , p ) , (2.9)

w h e r e

E ( x , z , p ) : = { ( f , g ) e R " x R : I lfll -< p ( x ) , g = ( f , p ) - F ( x , z , p ) } , " ( x , z , p ) E G x R x R n. (2 .10)

Let us def ine th e so lu t io n o f Eq . (2 .9 ). A ssum e R + := [0, c r Let (x ( . ) , z ( . ) ) : 1r + ~ I r x l~ be a con t in uou s

fu n c t i o n , ( X T ( . ) , Z T ( ' ) ) be a r es t r i c t ion to the c losed in terva l T : = [ t l , 12] C R + o f th i s funct ion . A c on t in uou s

fu n c t i o n (x ( - ) , z ( - ) ) , s a t i s fy i n g t h e co n d i t i o n : i f

{ ( x ( t ) , y ( t ) ) : t e T } C G ,

t h e n t h e f u n c t i o n ( X T ( ' ) , Z T ( ' )) i s ab s o l u t e l y co n t i n u o u s an d , f o r a l mo s t a l l t e T , t h e i n c l u s i o n (2 . 9 ) h o l d s ,

wi l l be ca l l ed a s o l u t i o n o f t h e s y s t em (2 . 1 ) .

By t h e s y m b o l In v (2 .9 )(P) w e s h a ll d en o t e t h e f am i l y o f c lo s ed s e ts W C c l G x R w eak l y i n v a r i an t r e l a t i v e

to th e d i f f eren t i a l inc lus ion (2 .9 ) fo r f ixed p E R ~.

D e f i n i t i o n . A m i n i m a x s o l u t i o n of Eq . (2 .1 ) i s a con t inuo us func t ion u : c l G - -~ R such t ha t

gru E A Inv(2.s)(p), (2.11)

peR"

w h e r e g r u : = { ( x , u ( x ) ) : x e c l G } is t h e g r a p h o f t h e f u n c t i o n u .

T h u s , t h e c o n t i n u o u s f u n c t i o n u i s c a l l e d t h e m i n i m a x S o l u t i o n of Eq . (2 .1 ) i f, fo r an y p E R ~ and

x 0 E c l G , t h e r e ex i s t s a s o l u t i o n ( a g e n e r a l i z e d c h a r a c t e r i s t i c ) o f t h e d i f f e r en t i a l i n c l u s i o n (2 . 9) s u ch t h a t

z (O ) = x o , z ( t ) = u ( x ( t ) ) fo r a ll t > 0 . O n e can a ls o s ay t h a t t h e m i n i m a x s o l u t i o n i s t h e f u n c t i o n u , t h e

g rap h o f w h i ch co n t a i n s v i ab l e t r a j ec t o r i e s o f t h e d i f f e r en t i a l i n c l u s i o n (2. 9 ) u n d e r a n a r b i t r a ry ch o i ce o f t h e

p a r a m e t e r p.

2 . 5 . L e t u s v e r i fy t h e co m p a t i b i l i t y o f t h e d e f i n i ti o n o f a mi n i m ax s o l u t i o n w i t h t h e n o t i o n o f a c l a s si ca l

s o l u t i o n . N o t e f i r s t t h a t

E ( x , z , p ) A E ( x , z , q ) # z , V ( x , z , p , q ) 6 G x R x R '~ x • " .

In f ac t , f o r p # q , t h i s i n t e r s ec t i o n co n t a i n s an e l eme n t ( f . , g . ) o f t h e fo r m

( 2 . 1 2 )

f . : = [ F ( x , z , p ) - F ( x , z , q ) ] ( p - ' q )

l i p - q l l 2

g . : = ( f . , p ) - F ( x , z , p ) = ( f . , q ) - F ( x , z , q ) .

L e t u b e a c l a s s i ca l so l u t i o n o f E q . ( 2 .1 ) , t h a t is , t h e fu n c t i o n u i s co n t i n u o u s l y d i f f e r en t i ab l e an d s a t is f ie s E q .

(2.1 ). L e t u s s h o w t h a t t h i s f u n c t i o n is a mi n i ma x s o l u t io n o f t h i s eq u a t i o n . L e t u s ch o o s e an y (x 0 , z0) E g ru ,

p E Ir " . Us in g (2 .12) , i t i s no t d i f f i cu l t to ver i fy tha t the re ex i s t s a so lu t io n ( x ( t ) , z ( t ) ) o f t h e d i f f e r en t i a l

inc lus ion

(~ ,1 ;) E E ( z , u ( x ) , D u ( x ) ) A E ( x , u ( z ) , p ) , (2.13)

597

7/29/2019 Subbotin - Generalized Solutions of PDE of the FO

http://slidepdf.com/reader/full/subbotin-generalized-solutions-of-pde-of-the-fo 5/18

7/29/2019 Subbotin - Generalized Solutions of PDE of the FO

http://slidepdf.com/reader/full/subbotin-generalized-solutions-of-pde-of-the-fo 6/18

D e f i n i t i o n .

u : c l G ---* R , s a t i s f y i n g t h e f o l lo w i n g c o n d i t i o n ( 3 . 1 ) ( c o n d i t i o n ( 3 .2 ) ):

e p i u E N I n v ( 2 .9 ) ( p ) ,p E R n

h y p o u E ["1 Inv(2 .D)(p),

pER ~

W e s h a l l d e f i n e a n u p p e r ( l o w e r ) s o l u t i o n o f E q . ( 2 .1 ) a s a lo w e r (u p p e r ) s e m i c o n t i n u o u s f u n c t i o n

(3 .1 )

(3 .2 )

w h e r e e p i u : = { ( x , z ) E c l G x • : z > u ( x ) } a n d h y p o u : = { ( z , z ) E c l G x R : z < u ( x ) } a r e t h e e p i g r a p h

a n d s u b g r a p h o f t h e f u n c t i o n u r e s p e c t i v e l y .

T h u s , t h e l o w e r s e m i c o n t i n u o u s f u n c t i o n u is c a ll e d t h e u p p e r s o l u t i o n i f , f o r a n y p G R ~ , x 0 E c l G , a n d

zo >_ u (x o ) , t h e r e e x i s t s a s o l u t i o n ( z ( t ) , z ( t ) ) o f t h e d i f f e r e n t ia l i n c l u s i o n (2 . 9) s u c h t h a t ( x ( 0 ) , z ( 0 ) ) = (Zo, Zo) ,

z ( t ) > u ( x ( t ) ) f o r a ll t > 0 . T h e e x p l a n a t i o n o f t h e d e f i n i t i o n o f a lo w e r s o l u t i o n is c o m p l e t e l y a n a l o g o u s .

N o t e t h a t t h e m i n i m a x s o l u t i o n d e f i n e d i n S e c . 2 . 4 s a ti s fi e s c o n d i t i o n s ( 3 .1 ) a n d ( 3 .2 ) . U s i n g t h e

c o n n e c t e d n e s s p r o p e r t y o f t h e s e t o f t r a j e c t o r i e s o f t h e d i f f e re n t i a l i n c l u s i o n , i t is n o t d i f f ic u l t t o g e t t h e

c o n v e r s e s t a t e m e n t : i f t h e c o n t i n u o u s f u n c t i o n u s a t is f i es c o n d i t i o n s (3 . 1) a n d ( 3 . 2 ), t h e n t h i s f u n c t i o n i s

a m i n i m a x s o l u t i o n o f E q . ( 2. 1) . T h u s , a m i n i m a x s o l u t i o n ca n b e d e f i n ed as a f u n c t i o n w h i c h p o ss e s s es

s i m u l t a n e o u s l y t h e p r o p e r t i e s o f lo w e r a n d u p p e r s o l u t io n s .

3 . 2 . S o m e m o d i f i c a t i o n s o f t h e d e f i n it i o n s o f u p p e r a n d l o w e r s o l u t i o n s a re p o s s i b l e . F o r e x a m p l e , i n t h e

d e f in i ti o n s o f u p p e r a n d l o w e r m i n i m a x s o l u ti o n s , i n s t e a d o f t h e m u l t iv a l u e d m a p p i n g E o f t h e f o r m ( 2 .1 0 ),

o n e c a n u s e t h e m a p p i n g s ,

( x , z , q ) ~ U ( x , z , q ) , ( x , z , p ) ~ V ( x , z , p ) , ( x , z , q , p ) e I ~ ~ x R x Q x P ,

u p p e r s e m i c o n t i n u o u s w i t h r e s p e c t t o a n i n c lu s i o n , s u c h t h a t U ( x , z , q ) a n d V ( x , z , p ) b o t h a r e c o n v e x s u b s e t s

i n W ' x R , s a t i s f y i n g t h e f o l l o w i n g c o n d i ti o n s :

( ( f , g ) e g ( x , z l , q ) , g l ~_~ z 2 ) ~ { ( f , g + r ) : r ~ > 0 } [ ..J V ( ~ , z2 , q ) # 0 ,

(3 .3 )( ( I , g ) e v ( ~ , z 2 , p ) , ~1 < ~ ] ~ { ( f , g - r ) : r > O } n V ( ~ , ~ l , p ) # ~ ,

s u p m i n [ ( s , / ) - g ] = F ( ~ , z , s ) = i n f m a x [ ( f , s l - g ] , V ( ~ , z , s ) e C • 2 1 5 ~,qeQ f , g ) E U ( . ~ , z , q ) pEP(f,g)eV(x,z,p)

m a x { l l f l l + I g l : ( f , g ) e g ( x , z , q ) u y ( x , z , p ) } < (1 -I -I I~ l l + I~ l ) r (q ,p ) ,

w h e r e r ( q , p ) i s s o m e p o s i t i v e n u m b e r . N o t e t h a t t h e m u l t i v a l u e d m a p p i n g E ( 2. 10 ) s a t is f ie s a ll t h e s e c o n d i -

t i o n s .

I n s t e a d o f t h e d i f f e r e n ti a l -i n c l u s i o n ( 2 . 9 ) , l e t u s c o n s i d e r t w o d i f f e r e n ti a l i n c lu s i o n s :

( ~ , ~ ) e u ( ~ , ~ , q ) , ( 3 . 4 )

( ~ , ~ ) e y ( ~ , z , p ) . ( 3 .5 )O n e c a n s h o w t h a t c o n d i t i o n s ( 3 . 1 ) a n d ( 3 . 2 ) a r e e q u i v a l e n t t o t h e c o n d i t i o n s

e p i u G A I n v ( a . 4 ) (q ) , ( 3 . 6 )qe Q

h y p o u e N I n v ( a .s ) ( p ) ( 3 .7 )p E P

r e s p e c t i v e l y .

C o n d i t i o n ( 3 .6 ) m e a n s t h a t , f o r a n y p E P , x 0 E cl G , a n d Zo >_ U(X o), t h e r e e x i s t s a s o l u t i o n ( x ( t ) , z ( t ) )

o f t h e d i f fe r e n ti a l i n c l u s io n ( 3 . 4 ) s u c h t h a t ( x ( 0 ) , z ( 0 ) ) = ( X o , Z o ) , z ( t ) > u ( z ( t ) ) f o r a l l t _> 0 . N ot e t ha t ,

599

7/29/2019 Subbotin - Generalized Solutions of PDE of the FO

http://slidepdf.com/reader/full/subbotin-generalized-solutions-of-pde-of-the-fo 7/18

i n s t e a d o f t h e i n i t i a l v a l u e s z 0 _> u ( z 0 ) , i t is s u f f ic i e n t to c o n s i d e r t h e v a l u e s Zo = U(Xo) . S u c h a m o d i f i c a t i o n

t a k e s p l a c e a l s o f o r c o n d i t i o n ( 3 . 7 ) .

3 . 3 . T h e a p p r o a c h p r o p o s e d h e r e i s t h e d e v e l o p m e n t o f t h e c o n s t r u c t i o n e la b o r a t e d i n t h e t h e o r y o f

p o s i t i o n a l d if f e r e n t i a l g a m e s [ 5 ] . L e t u s sh o w t h a t f o r t h e B e l l m a n - I s s a c s e q u a t i o n , c o n d i t i o n s ( 3 . 6 ) a n d ( 3 .7 )

c o i n c i d e w i t h t h e u - s t a b i l i t y a n d v - s t a b i l i ty o f t h e v a l u e f u n c t i o n o f t h e d i f f e r e n ti a l g a m e .

C o n s i d e r t h e d i ff e r en t ia l g a m e i n w h i c h t h e m o t i o n o f t h e c o n t r o l s y s t e m i s d e s c r i b e d b y t h e o r d i n a r y

d i f fe r e n t ia l e q u a t i o n

7 ) (t ) = h ( t , y ( t ) , p ( t ) , q ( t ) ) , t o <_ t <_ 0 , y ( t o ) = Y o e R m . ( 3 . 8 )

H e r e p ( t ) E P a n d q ( t ) E Q a r e c o n t r o l s o f t h e f i rs t a n d o f t h e s e c o n d p l a y e r s r e s p e c t i v e ly , P a n d Q a r e

t w o c o m p a c t s e t s . T h e s e c o n t r o l s ar e c h o s e n a c c o r d i n g t o t h e f e e d b a c k l a w , i. e. , w i t h r e s p e c t t o t h e c u r r e n t

p o s i t i o n ( t , y ( t ) ) . T h e f i rs t p l a y e r se e k s t o g u a r a n t e e a m i n i m i z a t i o n o f t h e v a l u e o f t h e p e r f o r m a n c e i n d e x

0

7 ( Y ( ' ) , P ( ' ) , q ( ' ) ) : = a ( y ( O ) ) - / g ( t , y ( t ) , p ( t ) , q ( t ) ) d t .

to

( 3 . 9 )

T h e s e c o n d p l a y e r , o n t h e c o n t r a ry , s e e k s t o g u a r a n t e e a m a x i m i z a t i o n o f t h e v a l u e o f t h is f u n c t i o n a l .

W e s h a l l a s s u m e t h a t t h e f u n c t i o n s h a n d g b o t h a r e c o n t i n u o u s o n [0 , 0 ] x 1 ~" x P x Q a n d s a t i s f y t h e

L i p s c h i t z c o n d i t i o n w i t h r e s p e c t t o t h e v a r i a b l e y , a n d t h e f u n c t i o n ~ r is. c o n t i n u o u s . I t i s a l s o a s s u m e d t h a t

m i n m a x [ ( s , h ( t , y ,p , q ) ) - g ( t , y , p , q ) ] = m a x m i n [ ( s , h ( t , y , p , q ) ) - g ( t , y , p , q ) l := H ( t , y , s ) , (3 .10)pEP qEQ qEQ pE P

( t , y , s ) c [ 0 , 0 ] x R ~ x R " .

I n t h is c a s e , t h e o p t i m a l g u a r a n t e e d r e s u lt s o f t h e f i rs t a n d s e c o n d p l a y e r s c o in c i d e; t h e i r c o m m o n v a l u e i s

c a l l e d t h e v a l u e o f t h e p o s i t io n a l d i f f er e n ti a l g a m e . T h e v a l u e o f t h e g a m e d e p e n d s o n t h e i n i t ia l p o s i t i o n .

T h e r e f o r e , o n e c a n d e f i n e t h e v a l u e f u n c t i o n ( t o , y o ) ~ u ( t o , y0 ) : [0 , 0 ] x R ~ -* R .

I t is k n o w n t h a t t h e v a l u e f u n c t i o n sa ti sf ie s t h e H a m i l t o n - J a c o b i - B e l l m a n - I s a a c s e q u a t i o n

O u0--[ + H ( t , z , D = u ) = 0 ( 3 . t l )

a t t h o s e p o i n t s w h e r e i t i s d i f f e r e n t i a b l e .

I t is a ls o k n o w n t h a t t h e r e e x i st s o n e a n d o n l y o n e c o n t in u o u s " f u n c t i o n w h i c h s a ti sf ie s t h e b o u n d a r y

c o n d i t i o n u ( 8 , y ) = a ( y ) a n d p o s s e ss e s t h e u - s ta b i l it y a n d v - s t a b i l it y p r o p e r t i es . T h i s f u n c t i o n i s th e v a l u e

f u n c t i o n o f t h e d i f f e r e n t ia l g a m e o f t h e f o r m ( 3 .8 ) , ( 3 . 9 ).

L e t u s r e c a ll t h e d e f i n i t i o n o f u - s t a b i l i t y f o r t h e d i f f e r e n t i a l g a m e u n d e r c o n s i d e r a t i o n . A f u n c t i o n u ( t , y )

i s c a l l ed u - s t a b l e i f , f o r a n y ( t 0 , y 0 ) E [ 0 , 0 ] x R ~ a n d q E Q , t h e r e e x i s t s a s o l u t i o n o f t h e d i f f e r e n t i a l i n c l u s i o n

( i / ( t ) , ~ ( t ) ) e c o { ( h ( t , y ( t ) , p , q ) , g ( t , y ( t ) , p , q ) ) : p e P } , t o < t < O , y ( t o ) = y o , z ( t o ) = 0 ,

s u c h t h a t t h e i n e q u a l i t y

~ ( t , y ( t ) ) < ~ ( t o , y o ) + z ( t )

h o l d s f o r all t E [to, 0].

T h e v - s t a b i l i t y p r o p e r t y i s d e f i n e d i n a s i m i l a r w a y . L e t u s s h o w t h a t d e f i n i t i o n s o f u - s t a b i l i t y a n d o f t h e

u p p e r s o l u t i o n o f E q . ( 3 .1 1 ) c o i n c i d e . I t is c l e a r t h a t E q . ( 3 .1 1 ) m a y b e c o n s i d e r e d a s a p a r t i c u l a r c a s e o f

E q . ( 2 . 1 ) , i n w h i c h

= m + 1 , 9 = ( t , y ) , p = ( s o , s ) e R • R ~ ,

F C ~ , ~ , p ) = s o + H C t , ~ , ~ )

600

7/29/2019 Subbotin - Generalized Solutions of PDE of the FO

http://slidepdf.com/reader/full/subbotin-generalized-solutions-of-pde-of-the-fo 8/18

( n o t e t h a t h e r e o n e m a y n o t r e q u i r e th a t t h e f u n c t i o n F s a t is f y t h e L i p sc h i tz c o n d i t i o n w i t h r e s p e c t t o t h e

v a r ia b l e t) . L e t u s d e f i ne t h e m u l t i v a l u e d m a p p i n g

U ( t , y , q ) : = c o { ( 1 , h ( t , y , p , q ) , g ( t , y , p , q ) ) : p E P } c R • 2 1 5 ( t, y , q ) e [ o , a ] • 2 1 5 (3 .12)

N o t e t h a t i t s a ti s f ie s t h e c o n d i t i o n ( 3 . 3 ) , w h i c h , in t h i s c a s e , h a s t h e f o r m

m a x r a i n { S o + ( s , h ) - g : ( 1 , h , g ) 9 U ( x , z , q ) } = m a x m i n [ s o + ( s , h ( t , y , p , q ) ) - g ( t , y , p , q ) ] = s o + H ( t , y , s ) .qEQ qEQ pEP

T a k i n g i n to a c c o u n t t h e r e m a r k g i v e n a t t h e e n d o f S ec . 3 . 2 , w e g e t t h a t t h e u - s t a b i l i ty c o n d i t i o n m e a n s , i n

e s s e n c e , t h e w e a k i n v a r i a n c e o f t h e e p i g r a p h o f t h e f u n c t i o n u ( t , x ) r e la t i v e to t h e d i f f e r e n t i a l i n c l u s i o n

( i , y , k ) 9 U(3.x2)(t , y, q)

f o r e a c h q 9 Q . T h u s , t h e n o t i o n s o f a u - s ta b l e f u n c t i o n a n d a n u p p e r s o l u t i o n a re e q u i v a l e n t. A n a l o g o u s l y ,

o n e c a n s h o w t h e e q u i v a l e n c e o f t h e n o t i o n s o f a v - s t a b l e f u n c t i o n a n d a l o w e r s o l u t i o n . T h e r e f o r e , t h e v a l u e

f u n c t i o n o f t h e d i f fe r e n ti a l g a m e ( 3 . 8 ), ( 3 .9 ) c o i n c id e s w i t h t h e m i n i m a x s o l u t i o n o f t h e C a u c h y p r o b l e m f o r

E q . ( 3 .1 1 ) ( t h e b o u n d a r y c o n d i t i o n i n t h i s p r o b l e m : u ( 0 , y ) = o ' (y ) ) .

3 . 4 . L e t u s c o n t i n u e w i t h t h e c o n s i d e r a t io n o f t h e u p p e r a n d l o w e r s o l u t io n s o f E q . ( 2 .1 ) . T h e w e a ki n v a r i a n c y p r o p e r t y c a n b e e x p r e s s e d i n d i f f e r e n t w a y s , i n c l u d i n g t h a t i n t h e f o r m o f i n e q u a l i t i e s f o r t h e

d i r e c t i o n a l d e r i v a t i v e s . W e s h a l l u s e t h e f o l lo w i n g n o t a t i o n s f o r t h e u p p e r a n d l o w e r D i n i s e m i - d e r i v a t i v e s o f

t h e f u n c t i o n u a t t h e p o i n t x 0 i n t h e d i r e c t i o n f :

d - u ( x o ; f ) = s u p i n f [ u( xo + 6h) - U(Xo)]lg,~>o (6,h)~a

w h e r e A : = { ( 6 , h ) :

d+u(xo; f ) = i n f s u p [ U ( X o + g h ) - u ( x o ) ] / 6 ,~>o (&h)EA

6 9 ( 0 , c ) , l l f - h l l < ~ , S o + g h 9 G } .

P r o p o s i t i o n . Let the fun ct io n F sa t i s fy the condi t ions poin ted out in Sec . 2 . 4 . For the lower (upper)s emi co n t i n u o u s f u n c t i o n u : c l G - - * R to be an upper ( lower) min ima x so lu t ion o f Eq . ( 2 . 1 ) , i t i s necessary

and su f f i c ien t tha t , fo r any Xo E G and p E R" , the inequal it y (3 .13) ( inequal i t y ( 3 . 1 4 ) ) be valid:

i n f { d - u ( x o ; f ) - ( p , f ) + F ( x o , p , u ( x o ) ) : I I f [ I -< p(xo)} _ o, (3 .13)

s u p { d + u ( X o ; ) - ( p, ) - 4 - F ( x o , p , u ( X o ) ) : Ef[l-< ( x o ) } _ > o. ( 3 . 1 4 )

T h e p r o o f i s, e s s e n ti a l ly , s i m i l a r t o t h e p r o o f s o f t h e a n a l o g o u s s t a t e m e n t s i n [ 1 7, 42 ].

T h u s , w e g e t t h a t t h e m i n i m a x s o l u t i o n c an b e d e f in e d as fo ll ow s : t h e m i n i m a x s o l u t i o n o f E q . ( 2 . 1 ) i s

t h e c o n t i n u o u s f u n c t i o n u : cl G ---* R w h i c h , f o r a n y Z o E G a n d p E R " , s a t i s f ie s t h e p a i r o f i n e q u a l i t i e s ( 3 . 1 3 )

a n d ( 3 . 1 4 ) .

A l o n g w i t h c o n d i t i o n s ( 3 . 1 3) a n d ( 3 .1 4 ) , o n e c a n c o n s i d e r th e ( e q u i v a l e n t to t h e m ) i n e q u a l i t i e s

s u p i n f { d - u ( x o ; f ) - g : ( f , g ) E U ( x o, u ( x o ) ,q ) } < O , V x o E G , ( 3 . 1 5 )qEQ

i n f s u p { d + u ( x o ; f ) - g : ( f , g ) E V ( x o , U (X o),p )} > 0 , V x o E G , ( 3 .1 6 )pE P

w h e r e U a n d V b o t h a r e m u l t i v a l u e d m a p p i n g s w h i c h s a ti s fy t h e c o n d i t i o n s p o i n t e d o u t i n S e c . 3 . 2 .

R e m a r k . C o n d i t i o n s ( 3. 13 ) a n d ( 3. 15 ) a r e e q u iv a l e n t i f e a c h of t h e s e i n e q u a li t ie s h o l d f o r a ll x o f r o m s o m e

o p e n d o m a i n . A n a n a l o g o u s r e m a r k i s v a l id f o r c o n d i t i o n s ( 3 .1 4 ) a n d ( 3 . 1 6 ).

601

7/29/2019 Subbotin - Generalized Solutions of PDE of the FO

http://slidepdf.com/reader/full/subbotin-generalized-solutions-of-pde-of-the-fo 9/18

3 . 5 . L e t u s p r e s e n t t h e d e f i n i t i o n o f a v i s c o s i t y s o l u t i o n , g i v e n b y M . G . C r a n d a l l a n d P . L . L i o n s [ 3 0,

31].

D e f i n i t i o n . A superso lu t ion (subso lu t ion) o f E q . ( 2 .1 ) i s a l ow e r ( u p p e r ) s e m i c o n t i n u o u s f u n c t i o n u : c l G

R , s a ti s f y i n g t h e f o l l o w i n g c o n d i t i o n : i f t h e d i f f e r e n c e u ( z ) - ~ ( z ) a t ta i n s a l oc a l m i n i m u m ( m a x i m u m ) a t t h e

p o i n t x 0 E G a n d i f a t t h i s p o i n t t h e f u n c t i o n ~ i s d i f f e re n t i a b le , t h e n t h e f o l l o w i n g i n e q u a l i t i e s h o l d :

F ( Z o , u ( x 0 ) , D ~ ( z o ) ) < 0 , ( 3 . 17 )

F (z o , u ( z o ) , D ~ (xo ) ) >_ O . (3 .18)

A vi scos i t y so lu t ion i s d e f i n e d a s a f u n c t i o n w h i c h i s s i m u l t a n e o u s l y a s u b s o l u t i o n a n d a s u p e r s o l u t i o n .

N o t e t h a t t h e s i g n s o f t h e i n e q u a l i t i e s in ( 3 .1 7 ) a n d ( 3 .1 8 ) a r e o p p o s i t e t o t h o s e o f t h e c o r r e s p o n d i n g

i n e q u a li t ie s in t h e d e f i n i t i o n g iv e n i n [ 30 , 3 1] . T h e p o i n t i s t h a t , i n t h e p a p e r s m e n t i o n e d , t h e n o n d e c r e a s i n g

f u n c t i o n s z ~ F ( z , z , p ) w e r e c o n s i d e r e d . F o r t h e c o n s t r u c t i o n s p r o p o s e d i n t h i s w o r k , i t i s m o r e c o n v e n i e n t

t o c o n s i d e r t h e n o n i n c r e a s i n g f u n c t i o n s z ~ F ( z , z , p ) .

I t is k n o w n t h a t c o n d i t i o n ( 3 . 1 7) i s e q u i v a l e n t to t h e c o n d i t i o n

F ( z , u ( x ) , p ) <_ O , V x e G , p 9 D - u ( x ) ; (3 .19)

h e r e D - u ( x ) i s t h e subdi f f eren t ia l o f t h e f u n c t i o n u a t t h e p o i n t x , w h i c h i s d e f in e d a s t h e s e t

D - u ( z ) : = { p 9 I V ' : O ; u ( z ) < 0}, (3 .20 )

w h e r e

O ; u ( x ) : = s u p { ( p , f ) - O T u ( z ) : f 9 R " } . ( 3 . 2 1 )

A n a l o g o u s l y , c o n d i t i o n ( 3 . 1 8 ) i s e q u i v a l e n t t o t h e c o n d i t i o n

w h e r e

F ( z , u ( z ) , p ) >_ O , V z 9 G, p 9 D + u ( x ) ,

D + u ( x ) : = { p 9 R " : O.pu(x) > 0 } ,

O.pu(x) : = in f { ( p , f ) - O ] u ( z ) : f 9 R " }

( t h e s e t D + u ( x ) i s c a l l e d t h e superd i f f eren t ia l o f t h e f u n c t i o n u a t t h e p o i n t x ) .

( 3 . 2 2 )

3 . 6 . T h e f o ll o w i n g s t a t e m e n t o n th e e q u i v a l e n c e o f t h e v i sc o s i ty a n d m i n i m a x s o l u t i o n s is v a l i d .

P r o p o s i t i o n . Le t t h e f u n c t i o n F s a t i s f y t h e co n d it io n s p o i n ted o u t i n S ec . 2 .4 . Th en , f o r t h e l o wer s em i -

cont inuous funct ion u : c lG - -* R , condi t ions (3 .13 ) a nd (3 .19) are e4uiva len t . Analogous ly , fo r the upper

s em i co n t i n u o u s f u n c t i o n u , co n d i t io n s (3 .14 ) a n d (3 .22 ) are also equivalent .

T h e i m p l i c a t i o n ( 3 . 1 3 ) =~ ( 3 .1 9 ) i s e a s i l y v e r i f i e d . L e t x E G a n d p 9 D - u ( z ) . A c c o r d i n g to ( 3 . 1 3 ) , t h e r e

ex i s t s f 9 R " s u c h t h a t

0 i u C z ) - ( p , f ) + F C x , u ( z ) , p ) < 0.

F r o m ( 3 :2 0) w e h a v e t h e i n e q u a l i t y

< p , f > - a T e ( x ) < 0 .

J o i n i n g t h e s e i n e q u a l i t i e s w e g e t ( 3 .1 9 ) .

T h e p r o o f o f t h e i m p l i c a t i o n ( 3 . 1 9) ~ ( 3 .1 3 ) i s o m i t t e d h e r e ( se e t h e p r o o f o f t h e a n a l o g o u s s t a t e m e n t s

in [17 , 181).

3 . 7 . A s h a s a l r e a d y b e e n s h o w n in S e c . 3 .3 , t h e c o n s t r u c t i o n o f t h e m i n i m a x s o l u t i o n h a s i t s o r i g i n i n

t h e t h e o r y o f p o s i t i o n a l d i f f e r e n t i a l g a m e s .

60 2

7/29/2019 Subbotin - Generalized Solutions of PDE of the FO

http://slidepdf.com/reader/full/subbotin-generalized-solutions-of-pde-of-the-fo 10/18

Note a l so tha t inves t iga tions on the junc t ions o f v is cos ity so lu t ion theo ry and o f op t im al con t ro l theo ry

and d i f fe ren t ia l gam es a re now very subs tan t i a l in num ber .

Am ong th em , in a n um be r of works (see, e .g . , [24, 33, 39, 43]) i t i s shown th at , for d if ferent types of

op t im al con t ro l p rob lem s and d i f fe ren ti a l gam es , the va lue func t ion co inc ides w i th th e v i s cos i ty so lu t ion o f the

c o r re s p o n di n g B e l l m a n - I s a a c s e q ua t i o n. O n t h e o t h e r h a n d , i t is k n o w n t h a t t h e H a m i l t o n - J a c o b i e q u a t i o n o f

a ( su ff i cien tly ) genera l fo rm m a y be cons ide red as the Be l lm an- I s aacs eq ua t ion fo r a d i f f e ren t i a l gam e, chosen

in a ce r ta in way . Such con s t ruc t ions were desc r ibed and used fo r the p roof o f the ex i s tence o f the v i s cosi tyso lut ions o f bounda ry -va lue p rob lem s and o f Cauchy p rob lem s fo r pa r t i a l d i f f e ren t ia l equa t ions o f the f ir st

order (see [32, 33, 35]) . N ote th at the chara cter is t ic d if ferent ia l inclus ion (2 .9) co ntains th e elem ents of such

cons t ruc t ions . A g rea t num ber o f pub l ica t ions is devo ted to th e app l ica t ions o f v i s cos i ty so lu t ion theo ry to

the s tu dy o f va rious p rob lem s o f op t im al con t ro l theo ry and d i f fe ren t ia l gam es .

Th e p roof o f the equ iva lence o f m in im ax and v i s cos i ty so lu t ions g iven in [17 , 18 ] is based on the f ac t o f

s eparab i l i ty o f a convex com pac t and an ep ig raph o f the f i r s t va r ia t ion o f a lower s em icon t inuous func t ion

which is , genera l ly speak ing , nonconvex . Th e d ua l i ty be tween the de f in i tion o f a v i s cos i ty so lu tion , in the

fo rm o f inequa l i t i e s in wh ich the subd i f f e ren t i a l s a r e used , and the de f in i t ion o f a m in im ax so lu t ion , where

the inequal i t ies for the d irect io nal der ivat ives are employed, appe.ars here . This is only one aspec t of the

dua l i ty in t r in s ic to the genera l i zed so lut ions o f pa r t i a l d i f fe ren t ia l equa tions o f th e f i r s t o rder , wh ich conf irm s

the L . Young r em a rk th a t Ham i l ton ians a re in t r in s ica l ly in te r l inked w i th the dua l i ty id ea ( s ee [20 , p . 74 ]) . I ti s a lso appropr ia te to n o te th a t the r ep lacem en t o f the th i rd eq ua t ion o f the sys te m (2 .2 ) ( the cha rac te r i s t i c

band equa t ion ) by equa t ion o f the fo rm (2 . 3 ) i s ve ry s im i la r to the p rob lem o f choos ing o f the "p roper"

Hamil tonian for the opt imal control problem, cons idered in [2 , 20, 40] .

4 . D i s c o n t i n u o u s S o l u t i o n s o f B o u n d a r y - V a l u e P r o b l e m s f o r P a r t i a l D i f f e r e n t i a l E q u a t i o n s o f

t h e F ir s t O r d e r

4 . 1 . Le t u s cons ide r the D i r ich le t - type boundary -va lue p rob lem fo r Eq . (2 .1 ) . W e sha l l a s sum e tha t ,

fo r any x e G and p E R ~ , the func t ion z ~ F ( x , z , p ) is s t r ic t ly decreas ing. Th erefo re , Eq. (2 .1) may be

r e p la c e d b y t h e e q u a t i o n

H ( x , D u ) - u = O , x 9 G C R '~. (4.1)

Thus , we sha l l cons ide r the bound ary -va lue p rob lem fo r Eq . (4.1 ) w i th the b oun dar y co nd i t ion

u ( z ) = a ( x ) , x 9 o a , (4.2)

where O G i s a b o u n d a r y o f t h e d o m a i n G .

Note tha t , in the theo ry o f -genera l ized so lut ions o f pa r t i a l d i f fe ren t ia l equa t ions o f th e f i r s t o rde r , the m ain

resu lt s a r e ob ta ined fo r con t inhous so lu tions . A t the s am e t im e , the re i s a need to in t rod uce d i s con t inuous

so lu t ions . Fo r exam ple , in op t im a l con t ro l theo ry and d i f fe ren ti a l gam es , th e B e l lm a n- I s aac s equa t ion i s

cons idered wh ich satis f ies th e t im e-op t ima l funct ion at a l l points w here i t is d if ferent iable . As is know n, th is

func t ion can be d i s con t inuous . Thus , in th is p rob lem , one and on ly one d i s con t inuous so lu t ion fo r a pa r t i a ld i f fe ren ti a l equ a t ion o f fi r st o rd er i s subs tan t i a l ly de f ined . A t p resen t , a num ber o f works r e la te d to th i s a spec t

have been pub l i shed ( s ee , e .g . , [ 22 , 23 , 37 ] ) . Bu t they d o no t exhaus t the p rob lem . In pa r t i cu la r , ou t o f the

f r am e o f p ropos i t ions p rov id ing the ex i s tence and un iquenes s o f the d i s con t inuous v i s cos i ty so lu t ion i s the

boundary -va lue p rob lem fo r the Be l lm an- I s aacs equa t ion , wh ich appear s in the d i f f e ren t i a l gam e o f pu r su i t

( th is is a typical , pro ble m w ith a d iscon t inuous solut ion) . Below, in Sec. 4 .4 , the def in i t ion of a general ize d

m in im ax (pos s ib le d i s con t inuous ) so lu t ion o f the p rob lem (4 . 1 ) - (4 . 2 ) i s in t roduced and the ex i s tence and

un iqueness cond i t ions fo r it a r e fo rm ula ted . I t i s shown tha t the p roposed no t ion i s adeq ua te fo r th e above-

m en t ioned op t im al con t ro l p rob lem s and d i f fe ren ti a l gam es .

4 . 2 . I t is know n ( see , e . g ., [ 22] ) tha t the boun dary -va lue p rob lem for the Be l lm an equa t ion , w h ich

503

7/29/2019 Subbotin - Generalized Solutions of PDE of the FO

http://slidepdf.com/reader/full/subbotin-generalized-solutions-of-pde-of-the-fo 11/18

a p p e a r s i n t h e t i m e - o p t i m a l c o n t r o l p r o b l e m , is r e d u c e d to ( 4 . 1) , ( 4. 2 ). L e t u s re c a l l t h e c o r r e s p o n d i n g

t r a n s f o r m a t i o n .

L e t t h e c o n t r o l s y s t e m b e d e s c r i b e d b y t h e o r d i n a r y d i ff e re n t ia l ~ q u a t i o n

i ( t ) = f C x ( t ) , p ( t ) ) , t 9 R + , x ( 0 ) = x 0 9 R " , ( 4 . 3 )

w h e r e p ( . ) : g + ---* P i s a m e a s u r a b l e f u n c t i o n ( a n a d m i s s i b l e c o n t r o O , P C I t ~ i s a c o m p a c t s e t . L e t a c l o s e d

t e r m i n a l s e t M b e g i v e n i n t h e p h a s e s p a c e g " . L e t xCt , xo , p ( . ) ) b e t h e . t r aj e c to r y o f t h e s y s t e m ( 4 .3 ) a n d l e t

X ( z o ) = { z ( . , x o , p (. ) ) : p ( .) is a n a d m i s s i b l e c o n t r o l } .

L e t u s a s s u m e

t 0 ( x ( .) ) : = m i n { t _ > 0 : x ( t ) 9 M } , ( 4 .4 )

r 0( X o ) : = m i n { t 0 ( x ( . ) ) : x ( . ) 9 X ( x 0 ) } . ( 4 .5 )

( H e r e t o ( x ( . ) ) = o o i f x ( t ) • M f o r a l l t > 0 . ) A s s u m e t h a t t h e f u n c t i o n f i s c o n t i n u o u s , s a ti s f ie s t h e L i p s c h i t z

c o n d i t io n w i t h r e s p e c t t o t h e v a r i ab l e x , a n d t h e s e t { f ( x , p ) : p 9 P } i s c o n v e x . I n t h i s c a s e , t h e r e e x i s t s a

m i n i m u m in ( 4 . 4 ).

I t is w e l l k n o w n t h a t t h e f u n c t i o n x ~ r 0 ( x ) : R " ~ [ 0, o o] s a t is f ie s t h e B e l l m a n e q u a t i o n

m i n ( D T o ( x ) , f ( z , p ) ) + 1 = 0 (4 .6 )pEP

a t a l l p o i n t s w h e r e i t i s d i f f e r e n t i a b l e .

C o n s i d e r t h e f u n c t i o n ( t h e S . N . K r u z h k o v ' s t r a n s f o r m a t i o n [6])

= 1 - e x p ( -T 0 ( ) ) : R [ 0 , 1 ] . ( 4 . 7 )

F r o m ( 4 .6 ) , ( 4 .7 ) i t f o ll o w s t h a t t h e f u n c t i o n u s a t is f ie s t h e e q u a t i o n

r a in ( D u ( x ) , f ( x , p ) ) - u ( z ) + 1 = 0 (4.8)pEP

a t t h o s e p o i n t s w h e r e i t i s d i f f e re n t i a b l e . I t i s c l e a r t h a t u ( x ) = 0 fo r z 9 M . T h u s , w e c o m e t o t h e p r o b l e m

( 4 . 1 ) , ( 4 . 2 ) , i n w h i c h

G = W ' \ M ' H ( x , s ) = m i n { s , f ( x , p ) } + l , c r ( x ) = O f o r a l l x E O G . ( 4 ' 9 )pEP

T h e t i m e - o p t i m a l f u n c t i o n To i s lo w e r s e m i c o n t i n u o u s ; t h e s e t o f p o i n t s o f d i s c o n t i n u i t y o f t h i s f u n c t i o n i s, a s

u s u a l, n o n e m p t y . I t i s c l e a r t h a t t h e f u n c t i o n u i s al so l o w e r s e m i c o n t i n u o u s a n d h a s t h e s a m e s e t o f p o i n t s

o f d i s c o n ti n u it y . I t i s i m p o r t a n t t o n o t e t h a t t h e f u n c t i o n u ( 4 .7 ) c o i n ci d e s w i t h t h e m i n i m a x s o l u t i o n o f t h e

p r o b l e m ( 4 . 1 ) , ( 4 . 2 ) , ( 4 . 9 ) .

4 . 3 . L e t u s p o i n t o u t t h e a s s u m p t i o n s u n d e r w h i c h w e s h a ll c o n s i d e r t h e p r o b l e m ( 4 . 1 ) - ( 4 .2 ) .

( H 1 ). T h e f u n c t i o n H ( - , 0 ) i s b o u n d e d , i .e .,

] H ( x , 0 ) [ < a f o r a l l x E G . ( 4 . 1 0 )

( H 2 ). T h e r e e x i st s a n u m b e r i t s u c h th a t

[ g ( z , p O - H ( z , p 2 ) [ < _ ( l + [ l x l l ) l [ p l - p 2 ] [ # f o r a l l z e G , p , 9 ( i = 1 , 2 ) . ( 4 . 1 1 )

( H 3 ). L e t A b e a n o p e n , b o u n d e d s u b s e t in G . A s s u m e

r = e • - y l l < 1 } . ( 4 . 1 2 )

I t i s a s s u m e d t h a t , f o r a n y ~ > 0 a n d f o r a n y o p e n b o u n d e d d o m a i n A C G , t h e r e i s a f u n c t i o n w ~ : c l F --~ g +

w i t h t h e f o l l o w i n g p r o p e r t i e s :

604

7/29/2019 Subbotin - Generalized Solutions of PDE of the FO

http://slidepdf.com/reader/full/subbotin-generalized-solutions-of-pde-of-the-fo 12/18

( a ) t h e f u n c t i o n w e s a t is f ie s t h e L i p s c h i t z c o n d i t i o n o n c l F a n d i s c o n t i n u o u s l y d i f f e r e n t i a b t e o n F ;

( b ) f o r a l l ( x , y ) E F , t h e i n e q u a l i t y

w , ( z , y ) + H ( z , - D : , w , ( z , y ) ) - H ( y , D ~ ( x , y ) ) >_ 0

h o l d s ;

( c ) t h e b o u n d s

( 4 . 1 3 )

w e( z , x ) <_ e fo r x 9 (7, (4 .14)l i m i n f { w , ( x , y ) : [ [ x - y ] [ > r } = 0 f o r 0 < r _ < 1 ( 4. 15 )

el0

h o l d ;

( H 4 ) . T h e b o u n d a r y f u n c t i o n o r(x ) i s c o n t i n u o u s o n O G a n d s a t i s f i e s t h e b o u n d

[o '(x)[ < b for a l l x E OG. (4 .16)

L e t u s n o t e t h a t c o n d i t i o n ( H 3 ) is b o r r o w e d f r o m [ 29 , 3 7 ] . T h i s c o n d i t i o n is f o r m u l a t e d i n a g e n e r a l f o r m ,

w h i c h is c o n v e n i e n t f o r u s e i n t h e p r o o f o f t h e u n i q u e n e s s t h e o r e m . L e t u s s h o w t h a t c o n d i t i o n ( H 3 ) h o l d s if

t h e f u n c t i o n H s a t is f i es t h e f o l lo w i n g L i p s c h i t z c o n d i t i o n w i t h r e s p e c t t o t h e v a r i a b l e x :

( H 3* ). F o r a n y b o u n d e d d o m a i n A C G , t h e re is a n u m b e r A s u c h t h a t

I H ( z l , p ) - n ( z 2 , p ) l < A I I z l - ~11(1 + Ilpll), p 9 R ~ , z , e A ( i = 1 ,2 ) . (4 .17)

C o n s i d e r t h e f u n c t i o n

w , ( ~ , y ) : = ( e ~ / ~ + I I~ - y l I 2 ) ~ , ( 4 . 1 8 )

w h e r e 0 < 2 v < m i n { 1, l / A } , e A < 1 - 2 A g . L e t u s v e r if y t h a t t h e f u n c t i o n w ~ o f t h e t y p e ( 4 . 1 8 ) s a t is f i e s th e

i n e q u a l i t y ( 4 .1 3 ) . A s s u m e

s : = 2 , , ( ~ ~ - /" + I I z - y l l ~ ) " - ' ( z - y ) / ~ .

W e h a v e

D = w ~ ( = , y ) = - D , w ~ ( = , y ) = s .

N o t e t h a t

I l sl l I Ix - yl l < 2~ w ,( x, y) , w , ( x , y ) > l l z - y l l ~ V ~ , I l x - y l l ~ > I l x - y ll , V ( x , y ) e F ; ( 4. 19 )

t h e la s t i n e q u a l i t y f o ll o w s f r o m t h e b o u n d s I lx - y [[ < 1 a n d 2 u < 1 . F r o m c o n d i t i o n ( 4 . 1 7 ) a n d t h e b o u n d s

( 4 .1 9 ) w e o b t a i n

w e (x , y ) + H ( z , - D = w , ( x , y ) ) - H ( y , D y w , ( x , y )) = w e (z , y ) + H ( x , - s ) - H ( y , - s ) > w e ( x, Y ) - ~ t l z - Y l l ( l + l l s t l )

_ > ( 1 - 2 ~ ) w , ( ~ , y ) - A I I ~ - y l l > ( 1 - 2 A v ) l l z - y l 1 2 ~ l ~ - A I I z - y l t - > ( 1 - 2 A ~ - ~ ) l l z - y l l l ~ > -- o .

T h e r e f o r e , w e g e t t h a t t h e f u n c t i o n w , o f t h e t y p e ( 4 .1 8 ) s a t is f ie s c o n d i t i o n ( 4 . 1 3 ). I t is n o t d i f f i c u l t t o s e e

t h a t t h i s f u n c t i o n a l s o s a t i s f i e s c o n d i t i o n s ( 4 . 1 4 ) a n d ( 4 . 1 5 ) .

4 . 4 . L e t u s d e f in e t h e u p p e r , l ow e r , a n d m i n i m a x s o l u t i o n s o f t h e p r o b l e m ( 4 . 1 ) , (4 . 2 ).

D e f i n i t i o n . W e s h a l l d e f in e a n upper solution o f t h e p r o b l e m ( 4 .1 ) , ( 4 .2 ) a s a n u p p e r m i n i m a x s o l u t io n o f

E q . ( 4 .1 ) , s a t i s fy i n g t h e b o u n d a r y c o n d i t i o n ( 4 .2 ) a n d t h e b o u n d

] u ( z ) ] < _ c : = m a x { a , b } , V z e c l G . ( 4 .2 0 )

A lower so lu t ion o f t h e p r o b l e m ( 4 .1 ) , ( 4. 2 ) is d e f i n e d a s a lo w e r m i n i m a x s o l u t i o n o f E q . ( 4 . 1 ), w h i c h is

c o n t i n u o u s a t e a c h p o i n t x E 0 G w h i c h s a ti sf ie s t h e b o u n d a r y c o n d i t i o n ( 4. 2) a n d t h e b o u n d ( 4 .2 0 ). A

min ima z so lu t io n o f t h e p r o b l e m ( 4 . 1 ) , (4 .2 ) is d e f i n e d a s a f u n c t i o n u : c l G ~ R s u c h t h a t t h e r e e x i s t a

s e q u e n c e o f u p p e r s o l u t i o n s u (k ) a n d a s e q u e n c e o f l o w e r s o l u t i o n s u k ( k = 1 , 2 , 3 , . . . ) w h i c h p o i n t w i s e c o n v e r g e

t o t h e f u n c t i o n u .

60 5

7/29/2019 Subbotin - Generalized Solutions of PDE of the FO

http://slidepdf.com/reader/full/subbotin-generalized-solutions-of-pde-of-the-fo 13/18

T h e f o l l o w i n g a s s e r t i o n s h o l d .

T h e o r e m 4 .1 . L e t t h e c o n d i t i o n s ( H 1 ) - ( H 4 ) h o l d. T h e n , f o r a n y u p p e r s o l u ti o n u + o f t h e p r o b l e m (4 .1 ) ,

(4 .2) a n d f o r a n y l o w e r s o lu t i o n u - o f t h i s p r o b l em , t h e i n e q u a li t y

~ ,+ (z ) > u - ( z ) , V z e c l O ( 4. 21 )

holds.

T h e o r e m 4 .2 . L e t t h e c o n d i t i o n s ( H 1 ) - ( H 4 ) ho ld and le t there ex i s t a t l eas t one low er so lu t ion o f the

prob lem (4 .1 ) , (4 .2 ) ; t h e n t h e r e e x i s t a n u p p e r s o l u ti o n U o o f t h i s p r o b l e m a n d a p o i n t w i s e c o n v e r g e n t s e q u e n c e

o f lo w e r s o l u t io n s u k ( k = 1 , 2 , 3 , . . . ) s u c h t h a t

l i ra Uk(X) > Uo(X) , V x e c lG . (4 .22 )k--*oo

T h e s e a s s e r t i o n s i m p l y t h e f o l l o w i n g :

T h e o r e m 4 .3 . I f a l l c o n d i t i o n s o f T h e o r e m 4 .2 are va l id , then there ex i s t s one and on ly one min imax

s o l u ti o n o f th e p r o b l e m (4 .1 ) , (4 .2 ) . T h i s m i n i m a x s o l u t i o n i s l o w e r s e m i c o n t i n u o u s a n d c o i n c i d e s w i t h th e

u p p e r m i n i m a x s o l u t i o n .

5 . T h e U n i q u e n e s s o f a S o l u t i o n o f t h e B o u n d a r y - V a l u e P r o b l e m

5 . 1 . L e t u s c o n s i d e r a n a u x i l i a r y a s s e r t i o n , w h i c h w e sh a l l u s e i n Se c . 5 .2 in p r o v i n g T h e o r e m 4 . 1 .

L e t F b e a n o p e n d o m a i n o f t h e t y p e ( 4 . 1 2 ). L e t t h e c o n t i n u o u s f u n c t i o n s

( ~ , y ) ~ p ( x , y ) : r ~ x " ,

b e g i v e n , w h i c h a r e b o u n d e d o n F , i . e . ,

s u p I I p ( ~ , y ) l l < ~ ,(~,~)er

( z , y ) ~ - ~ q ( z , y ) : F - - - ~ R ~ ,

s u p I I q ( x , y ) l l < ~ .( x , ~ ) e r '

C o n s i d e r t h e f o l lo w i n g s y s t e m o f d i f f er e n t ia l in e q u a l i t i e s a n d d i f f er e n t ia l e q u a t i o n s :

II~(t) l l < (1 + IIz (t ) l l ) g ,

~ ( t ) = ( p ( z ( t ) , y ( t ) ) , $ ( t ) ) - H ( z ( t ) , p ( z ( t ) , y ( t ) ) ) + ~ ( t ) , (5 .1 )

I I # ( t ) l l _ < ( 1 - 4 - I l y ( t ) l l ) ~ , ,i l ( t) = (q ( x ( t ) , y ( t ) ) , ~ ) (t )) - H (y ( t ) , q ( x C t ), y ( t ) ) ) + ~ l( t) .

L e t u s d e f i n e a s o l u t i o n o f t h i s s y s t e m . L e t 0 < t l < t ~ < c r T : = [ q , t ~] ,

s ( . ) : t ~ s C t ) : = ( ~ ( t ) , @ , y ( t ) , , ( t ) ) : x + - ~ x " • ~ • r • x

b e a c o n t i n u o u s f u n c t i o n , s T ( - ) : = ( z r ( - ) , ~ r ( ' ) , y r ( ' ) , 7 / T ( ' ) ) b e a r e s t / i c t i o n o f t h i s f u n c t i o n t o t h e d o s e d

i n t e rv a l T . W e s h a h d e f i n e a s o l u t io n o f t h e s y s t e m ( 5 .1 ) a s a c o n t i n u o u s f u n c t i o n s ( - ) s a t i s fy i n g t h e f o l lo w i n g

c o n d i t i o n : i f

{ ( x ( t ) , y ( t ) ) : t e T } C F ,

t h e n t h e f u n c t i o n ( X T ( ' ) , ~ r ( ' ) , Y T (' ), 7 / r (' ) ) i s a b s o l u t e l y c o n t i n u o u s a n d , f o r a l m o s t a l l t e T , c o n d i t i o n s ( 5 .1 )

h o l d .

L e t ( z ( . ) , ~ ( - ) , y ( - ) , ~ /( -) ) b e s o m e s o l u t i o n o f t h e s y s t e m ( 5 . 1) . L e t u s a s s u m e

{ ~ r i r ( x C t ) , y ( t ) ) e r f o r a l l t > O ,

t o ( X ( . ) , u ( . ) , r ) : = m i n { t >_ 0 : ( x ( t ) , y ( t ) ) r F } , o t h e r w i s e . (5 .2 )

L e t u s c h o s e a n a r b i t r a r y p o i n t ( z 0 , y 0 ) E F , a n d l e t ~0 : = u(zo), ~lo : = v (y o ) , w h e r e u i s s o m e u p p e r

s o l u t i o n o f E q . ( 4 . 1 ) , v is a l o w e r s o l u t i o n o f t h i s e q u a t i o n .

60 6

7/29/2019 Subbotin - Generalized Solutions of PDE of the FO

http://slidepdf.com/reader/full/subbotin-generalized-solutions-of-pde-of-the-fo 14/18

P r o p o s i t i o n .

c o n d i t i o n

There i s the so lu t ion s ( . ) : ( x ( . ) , ~ ( . ) , y ( . ) , g ( . ) ) o f t h e s y s t e m ( 5 . 1 ) , sa t i s fy ing the in i t ia l

x ( o ) = ~ o , y ( 0 ) = y o , ~ ( o ) = ~ o : = ~ ( ~ o ) , g ( o ) = g o : = ~ ( y o )

a n d t h e i n e q u a l i t i e s

~ ( t ) _ > u ( ~ ( t ) ) , g ( t ) _ < , ( v ( t ) ) , v t e [O , t o ( z ( . ) , y ( . ) , r ) ] . ( 5 . 3 )

P r o o f .

e q u a t i o n s

L e t u s c h o s e a n a r b i t r a r y 5 > 0 . C o n s i d e r t h e s y s t e m o f d if f e r e n ti a l i n e q u a l i t i e s a n d d i f f e r e n t i a l

{ l :~ , ( t) lt < ( 1 + ] [ ~ 6 ( t ) l l ) # ,

( , ( t ) = ( p 6 ( t ) , k 6 ( t ) ) - H ( z s ( t ) , p 6 ( t ) ) + ~ 6 ( t ),

l i y 6 ( t ) l [ < ( 1 + I l y n ( t ) l [ ) ~ ,r~(t ) = (q~(t ) , ~6(t )) - H C y , ( t ) , q s ( t ) ) + g s ( t ) ,

w h e r e

r e ( t ) : = p ( ~ ( i 6 ) , y ~ ( i 6 ) ) ,

q 6 ( t ) : = q ( x s ( i S ) , y 6 ( i S ) ) fo r i 5 < t < ( i + 1)5,

L e t u s d e f i n e t h e s o l u t i o n ~ ( . ) : = ( ~ ( . ) , ~ ( . ) , y ~ ( - ) , g ~ ( . ) )

(5 .4 )

i = 0 , 1 , 2 , . . . .

o f t h e s y s t e m ( 5 . 4 ), a n d a l s o t h e v a l u e t o ( x 6 ( ' ) , y 6 ( ' ) , F ) , i n t h e s a m e w a y a s w a s a l r e a d y d o n e f o r t h e s y s t e m

( 5 . 1 ) .

S i n c e t h e f u n c t i o n s p 6 ( t) a n d q 6 (t) a r e p i e c e w i s e c o n s t a n t , t h e n t h e d e f i n i t i o n s o f u p p e r a n d l o w e r s o l u t io n s

o f E q . ( 4 .1 ) i m p l y t h e e x i s t e n c e o f t h e s o l u t i o n s 6 (- ) o f t h e s y s t e m ( 5 .4 ) , w h i c h s a ti s fi e s i n e q u a l i t i e s o f

t h e t y p e ( 5 .3 ) a n d i n i t i a l c o n d i t i o n ( z 6 ( 0 ) , ~ s ( 0 ) , y 6 ( 0 ) , y 6 ( 0 ) ) = (X o ,~ 0, y o, g o ). A s s u m e s 6 ( t ) = c o n s t f o r

t _> t o ( ~ ( . ) , v ~ ( - ) , r ) .

L e t u s c h o o s e a z e r o - c o n v e r g i n g s e q u e n c e 6 k ( k = 1 , 2 , . . . ) i n s u c h a w a y t h a t t h e s e q u e n c e ( x 6 k ( ' ) , f 6 ~( ') ,

Y ~ k(') , g 6 ~ (') ) c o r r e s p o n d i n g t o i t i s c o n v e r g e n t t o t h e l i m i t m o t i o n s ( . ) = ( x ( . ) , f ( . ) , y ( .) ,7 7 ( .) ) u n i f o r m l y o n

a n y c l o s e d i n t e r v a l [ 0, 8 ] a n d s a t i s fi e s t h e c o n d i t i o n s

( . , . ( o ) , ~ ( o ) , y ~ k ( o ) , g s ~ ( o ) ) = ( : o , ~ o , v o , g o ) , ( , k ( t ) > ~ ( : . ~ ( t ) ) ,

w h e r e t k : = t o ( x 6 k ( ' ) , Y ' k ( ' ) , r ) "

N o t e t h a t t h e l i m i t m o t i o n s ( . ) s a t i s f i e s t h e s y s t e m ( 5 . 1 ) and

v t e [ o , t 4 ,

( 5 . 5 )

t o ( x ( - ) , y ( . ) , F ) < l i m t = .k-*oo

L e t u s p as s t o a l i m i t i n ( 5 .5 ) . F r o m t h e l o w e r s e m i c o n t i n u i t y o f t h e f u n c t i o n u a n d f r o m t h e u p p e r s e m i c o n -

t i n u i t y o f t h e f u n c t i o n v , i t f ol lo w s t h a t i n e q u a l i ti e s ( 5 . 3 ) h o l d f o r t h e l i m i t m o t i o n .

5 . 2 . P r o o f o f T h e o r e m 4 . 1 . L e t u be a n u p p e r m i n i m a x s o lu t io n o f t h e p r o b l e m ( 4. 1) , (4 .2 ), v b e a

l o w er m i n i m a x s o l u t i o n o f t h i s p r o b l e m . A s s u m e t h e c o n t r a r y , i .e ., t h a t t h e r e i s a p o i n t x 0 6 G s u c h t h a t

: = , ( x o ) - ~ ( x 0 ) > 0 .

C h o o s e a n u m b e r 8 > 0 s u c h t h a t t h e i n e q u a li t y

Ot

c e x p ( - 8 ) <

( 5 . 6 )

( 5 . 7 )

h o l d s, w h e r e c i s a c o n s t a n t f r o m t h e b o u n d ( 4 .2 0 ). D e n o t e b y X ( z o ) t h e s e t o f a ll a b s o l u te l y c o n t i n u o u s

f u n c t i o n s x ( . ) : [ 0 ,8 ] ~ R " s u c h t h a t x ( 0 ) = X o a n d [ [ ~( t) [ [ < ( 1 + [ [ x ( t) ] [) # fo r a l m o s t a l l t e [ 0 , 8 ] . L e t D b e

507

7/29/2019 Subbotin - Generalized Solutions of PDE of the FO

http://slidepdf.com/reader/full/subbotin-generalized-solutions-of-pde-of-the-fo 15/18

a n o p e n d o m a i n i n g " s u c h t h a t D ~ { z ( t ) : t e [ 0 , 0 ], x ( . ) e X ( z o ) } . A s s u m e A : = G f ) D i n t h e c o n d i t i o n

( H 3 ) ( i n e q u a l i t y ( 4 . 1 2 ) ) .

C o n s i d e r t h e s y s t e m o f d i ff e r e n ti a l e q u a t io n s a n d d i f f e r e n ti a l in e q u a l i t i e s

{ I [ ~ l] < _ ( 1 + H z l l ) / ~ , ~ = ( p ( d , ~ > _ H ( x , p ( ' ) ) - ~ ,

I1 ~ 11 < ( 1 + I l y l t ) ~ , , i = ( q ( d , y > - g ( y , q ( d ) _ ~ ? , ( 5 . 8 )p (~ ) = - D ~ w ~ , q ( d = D ~ w ~ ,

w h e r e w ~ i s a f u n c t i o n d e f i n e d i n t h e c o n d i t i o n ( H 3 ) ( s e e S e c . 4 . 3 ) .

D e n o t e b y ( x ~ ( . ) , ~ ( . ) , y ~ ( -) , ~ /~ (. )) a s o l u t i o n o f t h e s y s t e m ( 5 . 8 ) , s a t i s f y i n g t h e c o n d i t i o n s

. ( o ) = y . ( o ) = ~ o , ~ ( o ) = ~ ( ~ o ) , ~ . ( o ) = ~ ( ~ o ) ,( 5 . 9 )

w h e r e t~ = t 0 ( z ~ ( - ), y ~ ( . ) , F ) ( l e t u s r e c a l l t h a t t h e v a l u e t o ( x ( . ) , y ( . ) , F ) i s d e f i n e d b y t h e e q u a l i t y ( 5 . 2 )) . T h e

e x i s te n c e o f a s o l u t i o n ( z ~ ( .) , ~ ( . ) , y , ( . ) , ~ /~ (.) ) w i t h t h e p r o p e r t i e s p o i n t e d o u t h a s a l r e a d y b e e n s h o w n i n S e c .

5.1.

C o n s i d e r t h e f u n c t i o n ( t h e L y a p u n o v f u n c t io n )

L ~ (t, z , y , ~ , , ) : = ~ - ' ( ~ , ( ~ , y ) + ~ - , ) , ( t e a + , ( ~ , y ) e r , ( ~ , , ) e z • R ) . (5 .1 0)

A s s u m e

~( ~) := L , ( ~ , ~ , ( t ) , y ~ ( t ) , ~ ~ ( 5 . 1 1 )

F r o m ( 4 . 1 3 ) , ( 5 . 1 0 ), a n d ( 5 . 8 ) i t f o l lo w s t h a t ; / ~( t) < 0 f o r 0 < t < t ~ . T a k i n g ( 4 . 1 4 ) i n t o a c c o u n t , w e o b t a i n

~ ( ~ ) < ~ , ( 0 ) < ~ , v ~ e [ 0 , ~ , ) . ( 5 . 1 2 )

L e t u s c h o o s e a ( c o n v e r g i n g t o z e r o ) s e q u e n c e e k . > 0 , k = 1 , 2 , . . . . L e t u s i n t r o d u c e t h e f o l lo w i n g

n o t a t i o n s :

t c k ) = t , ~ , ~ c ~ ) ( . ) = ~ , ( . ) , y c ~ ) ( .) = y , ~ ( . ) , . . . , ~ c ~ ) ( . ) = ~ . ( . ) .

W e c a n a s s u m e , w i t h o u t l os s o f g e n e r a l i t y , t h a t t h e r e e x i s ts t h e l i m i t ] i m k - . ~ t (k) E ( 0 , c o ] . T h e f o l l o w i n g t w o

c a s e s a r e p o s s i b l e :

l im t (k) > 0 , (5 .13)k - - * ~

l i m i ( ~ ) < 0 . ( 5 . 1 4 )k--~oo

C o n s i d e r t h e c a s e ( 5 . 1 3 ) . F r o m ( 5 . 9 ) , ( 5 . 1 0 ) , a n d ( 5 . 1 2 ) w e h a v e

~ C ~ ) ( 0 ) = ~ C ~ ) ( ~ o , ~ o ) + u ( ~ o ) - V ( ~ o ) _ > " r C ~ ) ( 0 )

= ~ - ~ ( ~ C ~ ) ( z ( ~ ) ( 0 ) , y C ~ ) (O ) ) + ~ C ~ ) ( O ) _ ~ c ~ ) ( 0 ) ) _ > ~ - ~ ( ~ c ~ ) ( e ) _ ~ c ~ ) ( o ) ) .

T h e n f r o m ( 5 . 9 ) a n d ( 4 . 2 0 ) , w e g e t ~ (k ) (0 ) - ~ 7( k) (0 ) _> - 2 c . T a k i n g t h e b o u n d ( 4 . 14 ) i n t o a c c o u n t , w e

hav e w(~)(zo , Xo) _< e (~) an d u ( z o ) v ( z o ) >_ - 2 c e - ~ - e (~ ) . P a s s i n g t o t h e l i m i t a s k + c o a n d t a k i n g ( 5 . 7 )i n t o a c c o u n t , w e o b t a i n U ( X o ) - v ( z o ) > - a . T h e r e f o r e , i n t h e c a s e ( 5 .1 3 ), w e c o m e to a c o n t r a d i c t i o n w i t h

( 5 . ~ ) .

C o n s i d e r t h e c a s e (5 . 1 4) . W i t h o u t l os s o f g e n e r a l i t y , w e c a n a s s u m e t h a t t h e r e e x i s t t h e l i m i t s

l im~--.oo z(~)(t (~)) an d l i ra~. . .oo y(~)(t(~)) . Le t us show th at

l im z(~)(t (~)) = l im yC~)(t ~)) e O G . (5 .15 )k - - * ~ k - - - *~

F r o m t h e i n e q u a l i t i e s ( 5 . 1 2 ), ( 4 .2 0 ) , a n d ( 5 .3 ) w e h a v e

~ c ~ ) ( ~ c ~ ) ( t c ~ ) ) , u c ~ ) ( t c ~ ) ) ) < ~ , ( ~ ) ( ~ c ~ ) ( ~ o , ~ 0 ) + ~ ( ~ 0 ) - ~ ( ~ 0 ) ) - ~ ( ~ ) ( tc ~ ) ) + , c ~ ) ( t c ~ ) ) _ < ~ 0 ( ~ c ~ ) + 2 c ) + 2 c .

50 8

7/29/2019 Subbotin - Generalized Solutions of PDE of the FO

http://slidepdf.com/reader/full/subbotin-generalized-solutions-of-pde-of-the-fo 16/18

The r e f o r e , by ( 4 . 15 ) , we c onc lude tha t

l i m f l x ( k ) ( tC k l ) - - y ( k l ( t ( ~ ) ) l f = 0 . ( 5 . 1 6 )k - - - * o o

Rec a l l tha t t (k) = to(x(k) ( . ) , y(k) ( .) , F ) ; h en ce f rom (4 .12) an d (5 .2) we hav e

( ~ ( k / ( t ( ~ ) ) , y ( ~ l ( t c ~ l ) ) e 0 r = 0 A • 0 a u { ( x , y ) e ~ x x ~ x : I Ix - y l l = 1 } .

F r o m t h e d e f i n i t i o n o f t h e s e t A i t f o ll o w s t h a t

Thus , u s ing ( 5 . 16 ) we c om e to ( 5 . 15 ) .

F r om ( 5 . 12 ) a nd ( 5 .9 ) i t fo l l ows tha t

~ + u ( , o ) - v ( ~ 0 ) > e - ' c ' ~ [ u ( x r - v ( y ~ ( t ( k ~ ) ) ] .

R e c a l l t h a t t h e f u n c t i o n s u a n d v a r e lo w e r a n d u p p e r s e m i c o n t i n u o u s o n c l G r e s p e c t i v e l y a n d s a t i s fy t h e

b o u n d a r y c o n d i t i o n u(x ) = v ( z ) = r r (z ) for z E OF; h e n c e , p a s s i n g to t h e l i m i t a s k ~ o o in t h e l a s t b o u n d

a n d t a k i n g ( 5 .1 5 ) i n t o a c c o u n t , w e o b t a i n t h e i n e q u a l i t y U(Xo) - v( z a ) _> 0 , wh ic h c on t r a d i c t s ( 5 . 6 ) .T h e o r e m 4 .1 i s p ro v e d .

L I T E R A T U R E C I T E D

1. R. Isaacs, Dif ferent ial Fames [ R uss i a n t r a ns l a t i on ] i M i r , M osc ow ( 1967) .

2 . F . C la rke , Opt i mi za t ion and Non-Smoot h A na l y s i s [ R u s s ia n t r a n s l a t i o n ] , N a u k a , M o s c o w ( 1 9 8 8 ) .

3 . N . N . Kr a sovsk i i , Gam e-Theore t ic Problems on the Encoun ter of Mo t ions [ In R u s s ia n ] , N a u k a , M o s c o w

( 1 9 7 0 ) .

4 . N . N . Kr a sovs k i i , " D i f f e r e n t i a l ga m e o f pu r su i t - - e va s ion , " Izv . Akad . N auk SS SR , Tekh. Kibern. , 2 ,

3- 18 ( 1973) .

5 . N . N . Kr a so vsk i i a nd A . I. S ub bo t in , Posi t ional Di f f erent ial Fames [ I n R uss i a n ] , N a ukn , M osc ow ( 1974) .

6 . S . N . K r u z h k o v , " G e n e r a l i z e d s o l u t io n s o f H a m i l t o n - J a c o b i e q u a t i o n s o f E i k o n a l ty p e , " Mat . Sb. , 9 8 ,

No . 3 , 450 - 493 ( 1975) .

7 . A . B . K u r z h a n s k i i a n d T . F . F i l i p p o v a , " O n a d e s c r i p t i o n o f t h e s e t o f v i a b l e t r a j e c t o r i e s f o r a d i ff e r e n t ia l

i nc lus ion , " Dokl. Akad. N auk SSS R, 289, No. 1 , 38-41 (1986) .

8 . E . F . M i s h c h e n k o , " T h e p r o b l e m s o f p u r s u i t- - e v as i o n i n t h e t h e o r y o f d i f fe r e n t i a l g a m e s , " Izv. Akad.

Nau k SSS R, Tekh. Kibern., 5, 3-9 (1971) .

9 . E . F . M i s h c h e n k o , " O n s o m e g a m e - t h e o r e t i c p r o b l e m s o f p u r s u i t - e v a s i o n , " A v t omat . Te l e me k h . , No. 9 ,

24 - 30 ( 1972) .

1 0. O . A . O l e i n i k , " D i s c o n t i n u o u s s o l u t io n s o f n o n l i n e a r d i f fe r e n t ia l e q u a t i o n s , " Usp. Mat . Nauk , 1 2 ,

537- 566 ( 1957) .

11 . Yu . S . Os ipo v , " D i f f e r e n t i a l ga m e s f o r he r e d i t a r y sys t e m s , " Dokl . A k ad . Nauk SSS R , 1 9 6 , N o . 4 ,

779- 782 ( 1971) .

609

7/29/2019 Subbotin - Generalized Solutions of PDE of the FO

http://slidepdf.com/reader/full/subbotin-generalized-solutions-of-pde-of-the-fo 17/18

12. Yu. S . Osipov, "On the th eory of d i f ferent ia l games for d ist r ibuted para me ter system s," Dokl. Akad.

N a u k S S S R , 223, No. 6, 1314-1317 (1975).

13. L . S . Pon tryag in , "On the di f ferent ia l gam e theory," Usp . Mat . Nauk, 21, No. 4, 219-274 (1966)."

14. L . S . Pontry agin , "Linea r d i f ferent ia l games of pursui t ," Mat. Sb. , 112, No. 3, 307-330 (1980).

15. B. N. Pshenichnyi, "The structure of differential games," D ok l . Akad . Nauk SSSR, 184, No. 2, 285-287

(1969).

16. A. I . Subbo t in , "Th e general izat ion of the basic eq uat ion of d i f ferent ia l gam e theory," Dokl . Akad. Nauk

S S S R , 254, No. 2 , 293-297 (1980) .

17. A. I . Subbotin, Minimax Inequal i t ies and Hamil ton-Jacobi Equat ions [In Russian], Nauka, Moscow

(1991).

18. A. I . Sub bot in , "On a cer ta in p roper ty of a subdif ferent ia l," Mat. Sb. , 182, No. 9, 1315-1330 (1991).

19. A. I. Sub bot in and N. N. Subbot ina, "Necessary and suff ic ient condi t ions for the piec ewise-sm ooth value

of a d i f ferent ia l gam e," Dokl . Akad. Nauk SSSR , 243, No. 4, 862-865 (1978).

20. L. Young, Lectu res on the Calcu lus of Variations and Optima l Control The ory [Russian translation],

Mir, Moscow (1974).

21. J . -P . A ubin and F. Clarke, "M onotone invar iant solut ions to di f ferent ia l inclusions," J . London Math .

Soc., 16, No. 2, 357-366 i1977).

22. M. Bardi a nd P. Soravia , "Ha mil ton -Jaco bi equat ions wi th s in .gular bou nda ry co ndi t ions on a f ree

bou nda ry an d appl icat ion s to di f ferent ia l games," Trans. Am. Math. Soc. , 325, 205-229 (1991).

23. G . Bar l es and M . Per tham e, "Discon t inuous so lut ions o f a de te rmin i s t i c op t im al s topp ing- t im e p rob lem,"

Model . Math . Anal . Numer. , 2,557-579 (1987) .

24. E . N. Barron , L . C. Evan s, and R. Jensen , "Viscosi ty solut ions of I saacs ' equa t ion an d di f ferent ia l game swith Lipschi tz controls ," J . Differ. Equat., 53, 213-233 (1984).

25 . I . Capuzzo-Dolce t t a and H. I sh i i , "Approx imate so lu t ions o f the Be l lman equa t ion o f de te rmin i s t i c

control theory," Appl. Math. Optimiz. , 11,161-181 (1984) .

26. I . Capuzz o-Do lcet ta and P. L. Lions, "Ha mil ton -Jacob i equat ion s wi th s ta te con st raints ," Trans. Am.

Math. Soc. , 318, 643-683 (1990) .

27. F . H. Clarke, " Gen eral ized gradients and appl icat ions," Tran s. Am . M ath . Soc ., 205, 247-262 (1975).

28. M. G. C randa l l , "A genera l izat ion of Pean o 's existence theo rem and f low invar iance," Proc. Am. Math .

Soc., 36, 151-155 (1972).

29. M . G. C randa l l , H. I shi i , and P . L . Lions, "U niqueness of v iscosi ty solut ions revisi ted ," J . Math . Soc .

Jpn. , 39, 581-596 (1987) .

30. M. G. Cra nda l l an d P. L . Lions, "Con di t ion d 'unici te pour les solut ions g6n~ralisSes des 6quat ions

H a m i l to n - J a c o b i d u 1er ordre ," C. R., Acad. Sci . Set . A, 292, 183-186 (1981).

31. M. G. Crand al l and P. L . Lions, "Viscosi ty solut ions of Ha mil to n-Ja cob i equat ions," Trans. Am. Math.

Soc., 277, 1-42 (1983).

32. M . G. Cran dal l and P. L . Lions, "Ham il ton-Jaco bi equa t ions in inf ini te d imen sions. Pa r t I I . Existence

of viscosi ty solut ions," J. Funct. Anal., 65, 368-405 (1986).

610 17

7/29/2019 Subbotin - Generalized Solutions of PDE of the FO

http://slidepdf.com/reader/full/subbotin-generalized-solutions-of-pde-of-the-fo 18/18

33. L. C. Evans a nd P. E. Souganidis, "Differential games and re pre sen tatio n form ulas for solutions of

Hami l ton- Jacob i - I saacs equa t ions , " Ind iana Univ . M ath . J . , 33 , No. 5, 773-797 (1984).

34. W . H. Flem ing, "A n ote on di f ferent ia l games of prescr ibed durat ions," A n n . Ma t h . S t u d . , No. 3,

407-412(1957) .

35. W . H. Fleming , "Th e Cau chy problem for degen erate parabol ic equat ions," J . Ma t h . M ech . , 13, 987-

1008 (1964).

36. G. H adda d, "M ono tone t ra jector ies for d if ferential inclusions and funct ional-di f ferent ia l inclusions wi th

memory , " I s r . J . Ma t h . , 39, No. 1-2, 83-100 (1981).

37. H. I shi i , "Per ron 's method for Hamil ton-Jacobi equat ions," Du ke Ma t h . J . , 55, 369-384 (1987).

38. N. N. Krasovskii and A. I . Subbotin, Ga m e-T h eo r e t ica l C o n t r o l P r o b l ems , Spr inger , N ew Y ork (1988).

39. P . L . Lions and P. E . Souganidis , "Differential gam es, opt imal control and di rect ion al der ivat ives of the

viscosi ty solut ions of Bel lm an 's and Isaacs' equat ions," S I A M J . C o n tr . O p t im i z . , 23, 566-583 (1985).

40. R. T . Rockafel lar , "Existen ce and dual i ty theorem s for convex problem s of Bolza," T r a n s . A m. Ma t h .

Soc. , 159, 1-40 (1971).

41. G. Sonnev end, "Ex istence and num er ical com putat ion of ext rem al invar iant sets in linear d i f ferent ia l

games," Lect . Notes Contr . In f . Sc i . , 22,251-260 (1981) .

42. A. I. Subbot in , "Ex istence and uniqueness resul ts for Ha mil to n-Ja cob i equ at ions ," N o n l i n ea r A n a l . ,

Theory , Meth . , Appl . , 16, 683-689 (1991).

43. A. I. Sub bot in and A. M . Tarasiev, "Stabi l i ty proper t ies of the value funct ion of a d i f ferent ia l gam e and

viscosi ty solut ions of Hamil ton-Jacobi equat ions," P r o bl . U p r . T eo ri i I n f o r m . (Hu n g a r y ) , 15 ,451-463

(1986).

611