248
Senior Design Final Report Professor J.A. Sykes May 12, 2006 By Team #7: Larae Baker Maxine Bent Jonathan Bush Mike Heslinga Adam Jones

Styrene Production

Embed Size (px)

Citation preview

Page 1: Styrene Production

Senior Design Final Report Professor J.A. Sykes

May 12, 2006

By Team #7: Larae Baker Maxine Bent

Jonathan Bush Mike Heslinga

Adam Jones

Page 2: Styrene Production

Abstract: A new process to produce styrene monomer is under development by Dow

Chemical and Snamprogetti. Team #7 has designed and simulated an industrial plant to

produce two billion pounds of styrene monomer per year. An advantage to the new

process is that it starts with a less expensive raw material, ethane, instead of ethylene.

The process has three key stages: 1.) A distillation reactor alkylates benzene and

ethylene to make ethylbenzene. 2.) A dehydrogenation reactor where ethylbenzene and

ethane are converted into styrene and ethylene respectively. 3.) A distillation train where

a purity of 99.93% styrene is achieved. Styrene can be produced at an estimated market

price of $0.99/lb with this process.

Page 3: Styrene Production

Table of Contents

1 INTRODUCTION..................................................................................................... 4

2 THE CHEMISTRY .................................................................................................. 4

2.1 ALKYLATION ....................................................................................................... 4 2.2 DEHYDROGENATION ............................................................................................ 6 2.3 POLYMERIZATION ................................................................................................ 7

3 OBJECTIVES ........................................................................................................... 8

4 PROCESS DESCRIPTION ..................................................................................... 9

4.1 DESIGN ALTERNATIVES ....................................................................................... 9 4.1.1 Styrene from Ethylene and Benzene.............................................................. 10 4.1.2 Co-Production of Styrene and Propylene Oxide .......................................... 10

4.2 AREA 100 – ALKYLATION.................................................................................. 10 4.2.1 Equipment Design......................................................................................... 11 4.2.2 Catalyst Design............................................................................................. 13

4.3 AREA 200 – DEHYDROGENATION ...................................................................... 13 4.3.1 Equipment Design......................................................................................... 14 4.3.2 Catalyst Design............................................................................................. 16

4.4 AREA 300 – SEPARATIONS OF AROMATIC PRODUCTS ........................................ 17 4.4.1 Separations Train and Column Design......................................................... 17 4.4.2 Separations Inhibitors................................................................................... 20

4.5 AREA 400 – LIGHT GAS SEPARATION ................................................................ 21 4.6 HEAT EXCHANGER DESIGN................................................................................ 22 4.7 PUMP, COMPRESSOR AND TURBINE DESIGN ...................................................... 23 4.8 MATERIALS OF CONSTRUCTION ......................................................................... 24

5 ENVIRONMENTAL, HEALTH AND SAFETY ISSUES.................................. 25

5.1 ENVIRONMENTAL CONCERNS ............................................................................ 25 5.2 CHEMICAL HAZARDS ......................................................................................... 26 5.3 SAFETY HAZARDS.............................................................................................. 27

6 CONTROL DESIGN.............................................................................................. 28

6.1 CONTROL DESIGN ON AREA 100........................................................................ 28 6.2 CONTROL DESIGN ON AREA 200........................................................................ 29 6.3 CONTROL DESIGN ON AREA 300........................................................................ 30 6.4 CONTROL DESIGN ON AREA 400........................................................................ 32

7 ECONOMIC ANALYSIS ...................................................................................... 32

8 UNCERTAINTIES AND ASSUMPTIONS.......................................................... 34

9 FUTURE WORK.................................................................................................... 34

Page 4: Styrene Production

1 Introduction Styrene is a precursor to many polymer products such as polystyrene, acrylonitile

butadiene styrene (ABS), styrene-acrylonitrile, and various styrene-butadiene

products. These materials are used around the world in a variety of ways including

food storage, packaging, and automobile parts.1 The market for styrenics has seen

overall growth in the previous decade despite a recent down year. The market is

expected to recover and see large gains in the near future. Therefore, now is an

excellent time to join the market, particularly if current styrene production cannot

meet future demand.2

The process of producing styrene is well established. It was first produced in the

1930’s by I. G. Farben in Germay and Dow Chemical in the United States. Styrene

is a clear liquid at room temperature with an aromatic odor. It is currently sold with

a minimum purity of 99.8% but is more commonly produced at 99.93%. The price

of styrene remains largely dependant on the cost of its raw materials.3

2 The Chemistry

Production of styrene requires two reactions, an alkylation and a dehydrogenation.

2.1 Alkylation

The alkylation is a basic Friedl-Crafts alkylation, where ethylene reacts with benzene

to form ethylbenzene by Reaction 1a:3

Page 5: Styrene Production

(Rxn 1a)

This reaction is exothermic and takes place in a distillation reactor system that is

partially packed with catalyst. The benzene is in vapor-liquid equilibrium and it is

alkylated as it passes through the catalyst.4 This alkylated product has a lower

boiling point than benzene and will therefore become the distillate product in the

column. The catalyst is a molecular sieve known as EBZ-500S available through

UOP, LLC. EBZ-500S minimizes the amount of byproduct, such as polyaklylated

and oligomerized products.5 The polyalkylated products that are formed come off in

the bottoms of the distillation. They are sent to a transalkylation reactor to be

converted back to ethylbenzene by Reaction 1b:

(Rxn 1b)

The catalyst in this reaction is EBZ-100, also available through UOP, LLC.

Oligomerization products are caused by the partial polymerization of ethylene.

These may either come off the top of the column or aklylate with benzene to form

byproducts that include cumene, n-propylbenzene, butylbenzenes as well as other

heavy alkybenzenes. Other byproducts come from the raw materials; for example,

toluene and C6 non-aromatics can be present in the benzene feedstock, up to

Page 6: Styrene Production

1000ppm and 2000ppm respectively. These can also be alkylated, and leave as a

bottoms product.3

2.2 Dehydrogenation

The dehydrogenation occurs in a fluidized catalyst cracking reactor, or FCC.6 An

FCC was chosen over other reactor systems because it has the advantage of

continuous catalyst regeneration. The catalyst is comprised of gallium oxide

(Ga2O3), platinum, iron oxide (Fe2O3), potassium oxide (K2O) and silica suspended

on alumina.7 It is unique in that is used to simultaneously dehydrogenate ethane and

ethylbenzene via reactions 2a and 2b:

(Rxn 2a)

(Rxn 2b)

These reactions are highly endothermic. The energy for the reaction is provided by

the catalyst in the regeneration reactor, where it is heated to 660°C upon decoking.

The catalyst needs to be decoked continuously because two side reactions occur that

form toluene, benzene and coke, as shown in Reactions 2c and 2d:

H2

H2

Page 7: Styrene Production

(Rxn 2c)

(Rxn 2d)

The coke deposits on the catalyst, reducing the number of active sites, and thus

lowering the conversion of the desired reactions, 2a and 2b.8 Toluene can also lose

another carbon to become benzene. These reactions account for total of 3% loss in

conversion.3 Reactions 2a and 2b are also highly selective with 90-94% and 90-93%

selectivities respectively.9

Other byproducts in the dehydrogenation form from byproducts in the alkylation.

For example, dehydrogenated cumene becomes α-methylstyrene and n-

propylbenzene becomes allylbenzene. Other byproducts include vinlytoluenes,

xylenes, ethyltoluenes, phenylacetylene, unconverted alkylation byproducts and

heavy aromatics. These byproducts are insignificant in terms of yield loss, but

greatly affect the cost of purification and quality of the product.3

2.3 Polymerization

Under the right conditions styrene can polymerize violently. This is an exothermic

reaction; therefore, once polymerization begins it can escalate out of control.3

Polymerization is most likely to occur in the purification and storage phases of

production. Inhibitors are necessary to prevent this. For the storage tanks 4-tert-

Coke

Coke

Page 8: Styrene Production

Butylcatechol, or 4-TBC, is used in a concentration of 15 ppm. The tank is held

below 75°F and oxygen is bubbled through the tank to increase the lifetime of the

styrene product. In the distillation columns 2,4-Dinitrophenol is fed continuously.10

These steps allow the final product to be sold at a purity of 99.93% styrene

monomer, this is equal to the industry standard.

3 Objectives The following objectives were satisfied in the design:

1.) To design a plant with the capacity to produce styrene monomer at a rate of 2.2

billion lbs/yr with a purity at or above the industrial standard of 99.93 wt%

2.) To analyze the design to determine whether it is economically competitive at the

average market price over the past three years

3.) To develop the design with the following design norms in mind:

a. Justice and caring – Design decisions were made that consider the rights

and needs of all stakeholders, even those seemingly unaffected by the

plant. If styrene products can be made available to more people at a

lower cost, people of a wider economic range might be able to benefit

more from this product.

b. Trustworthy – People living around this plant need to trust that they will

be safe, even in the case of an accident. Customers need to be able to

trust the operators of the plant to have the amount of styrene promised at

the specification needed. Customers rely on knowing that the process

will not only run continuously, but also at the required purity.

Page 9: Styrene Production

c. Stewardship – Caring for the earth and all that is in it was a key motivator

in designing a chemical processing plant. Making sure that the plant is

optimized to not have more adverse affects on the environment than is

necessary and also being sure that none of our starting materials go to

waste, but are used to their fullest potential. Additionally, optimized

equipment allows the plant to operate using the less energy than non-

optimized.

4.) To simulate the design using HYSYS

5.) To choose a suitable location for the plant to be built

6.) To determine the design specifications on the following pieces of process

equipment: compressors, turbines, pumps, heat exchangers, distillation columns

and reactors.

4 Process Description

The process to synthesize styrene monomer from ethane and benzene can be

simplified to four stages: alkylation, dehydrogenation, light gas separations, and

separations of aromatic products. However, starting with different raw materials

would lead to different designs.

4.1 Design Alternatives

There are two major design alternatives prevalent in industry today. The first is the

production of styrene from ethylene and benzene via an ethylbenzene intermediate.

The second is the co-production of styrene and propylene oxide from ethylene,

benzene and propylene.

Page 10: Styrene Production

4.1.1 Styrene from Ethylene and Benzene

The production of styrene from ethylene and benzene is the most common industrial

process to produce styrene. A basic Friedl-Crafts Alkylation occurs between

ethylene and benzene forming ethylbenzene. The ethylbenzene is then

dehydrogenated to form styrene.11 These are the same as reactions 1a and 2a,

respectively. Therefore, the impurities, catalysts, and separations of aromatic

products are the same as with the designed process.

4.1.2 Co-Production of Styrene and Propylene Oxide

Styrene is produced via the oxidation of ethylbenzene (formed from ethylene and

benzene) to ethylbenzene hydroperoxide. The ethylbenzene is epoxidized with

propylene, forming propylene oxide and α-phenylethanol, the later of which is

dehydrated to form styrene. The amount of styrene produced is very dependant on

the market for propylene oxide because this process is a co-production. This process

also requires very complex and costly separations due to the aldehydes that form and

hinder the polymerization of styrene, a major concern for the customer.3

4.2 Area 100 – Alkylation

The distillation reactor system requires four distillation reactors (R-100) run in

parallel, one distillation column (T-100), and four packed bed reactors (R-101) run in

parallel. The process begins with benzene and ethylene reacting to form

ethylbenzene, the precursor to styrene.

Page 11: Styrene Production

4.2.1 Equipment Design

A Friedl-Crafts alkylation occurs in a distillation reactor system. Benzene and

ethylene (recycled from the ethylene and ethane separations process) enter a

distillation reactor. The distillation reactor contains twenty-five trays, but is packed

with catalyst in the upper 30 vol% of the reactor.4 It is 6.5m tall and has a 1.9m

diameter. Two streams enter the reactor system; one is rich in benzene and the other

is rich in ethane with 9.01 mol% ethylene. The ethane exits as the distillate of R-

100, thus removing a distillation column from the Area-300 design. The inlet stream

with ethylene can operate at concentrations up to 95% ethane, with the remainder

ethylene. The boiling point of ethylbenzene is greater than ethane or benzene, so

once the ethylbenzene is formed it falls down the reactor as the bottoms product.

This reactor design has several advantages over the more industrially common

packed bed reactor:4

1.) High conversion of ethylene is controlled by having a 10:1 ratio of benzene to

ethylene and sufficiently large height of packed catalyst. This minimization of

unreacted ethylene reduces separation and recovery problems.

2.) The benzene that comes off the reactor as the distillate is recycled back to the

reactor feed. A purge is added so that very light gasses do not accumulate. Only

the benzene that has reacted leaves the distillation reactor.

3.) The continued removal of the alkylated and polyakylated products forces the

chemistry in Reaction 1a to favor the products. This also minimizes both the

polysubstitution and decomposition of the product.

Page 12: Styrene Production

4.) Because the compounds in the distillation reactor are boiling, the temperature at

which the reaction takes place is controlled by the boiling point of the mixture.

This has the further advantage that as the exothermic alkylation takes place the

reaction enthalpy increases the boil-up.

5.) The rate of reaction and distribution can be well controlled by regulating the

system pressure. Thus, upon piloting this process, the distillation reactor

efficiency can be increased significantly.

6.) Two stages are condensed into one; the first stage would consist of the reaction

of benzene and ethylene to ethylbenzene. The second would be the separation of

benzene from ethylbenzene. These two processes occur in one distillation

reactor.

The bottom products from the distillation reactor are then sent to a distillation

column, where the polyalkylated benzenes (mostly di- and tri- ethylbenzene) are

separated from ethylbenzene. This design achieves a purity of 99.78 mol%

ethylbenzene in the distillate. The bottoms product is entirely byproducts. The

polyalkylated benzenes, along with the heavier impurities, are sent to a

transalkylation reactor where reaction 1b occurs. The transalkylation unit is a

packed bed reactor. In the presence of more benzene, the formation of ethylbenzene

from the polyalkylated benzenes is favored.3 The unconverted polyalkylbenzenes

are then recycled to distillation column T-100. The 99.78 mol% pure ethylbenzene

is sent on to the dehydrogenation.

Page 13: Styrene Production

4.2.2 Catalyst Design

There are two catalysts used in Area-100. EBZ-500S is available from UOP and is

used in the distillation reactor. It’s a zeolite catalyst in the solid β-phase. It has a

spherical shape with a nominal diameter of 2.2mm and is absent of precious metals.

Unwanted side-reactions are minimized and it more resistant to poisons like water,

oxygenates, olefins, chlorides and sulfur. EBZ-500S has a life time of five years

without regeneration and can be regenerated up to three times, thus allowing the

catalyst to be used for 20 years before replacement.5 It is available from UOP for

approximately $105 per pound.12 When used in conjunction with EBZ-100 in the

transalkyation, a purity of 99.97% ethylbenzene can be achieved. EBZ-100 is

another catalyst also available through UOP. It is specifically designed to operate in

the transalkylation. It is also a solid zeolite catalyst with no precious metals and has

a nominal diameter of 1.6mm with an extrudated shape. Its life time is five years

without regeneration and it can be regenerated three times, and needs to be replaced

every 20 years.13 Its cost is $40 per pound.12 Together these solid catalysts will

provide the desired conversion for the distillation reaction system.

4.3 Area 200 – Dehydrogenation

The fresh ethane feed and the ethylbenzene formed in Area-100 enter the

dehydrogenation . Four reaction vessels designed to the specifications of R-200 and

R-201 are used in parallel, allowing for temporary shutdown of one reactor. Here

Reactions 2a and 2b form the main product, styrene, along with ethylene. Side

reactions occur to form toluene, benzene, and coke.

Page 14: Styrene Production

4.3.1 Equipment Design

The fluidized catalyst cracking reactor (FCC) has two reaction vessels, RV-200 and

R-201. Ethane and ethylbenzene enter R-200 and form the dehydrogenated products

ethylene and styrene respectively. At the inlet of R-200 the ethane to ethylbenzene

volumetric feed ratio is 4.08:1. At this feed ratio, the product of conversion and

selectivity for Reaction 2a is 48% and for Reaction 2b is 9.7%.7 R-200 uses the

Optimix™ LSi FCC feed distribution system available through UOP LLC. The

ethane and ethylbenzene carry the solid catalyst to the top of the reactor, where it

exits through special disengaging arms which generate a centrifugal flow pattern.14,15

This is designed to disperse the catalyst uniformly in the riser of the reaction vessel.

The catalyst remains fluidized by the reagent mixture in the gaseous phase. The

dynamics of the reaction vessel cause the catalyst to move downward (due to

gravity) and components in the gaseous phase to move counter-current to the

catalyst. This causes thorough mixing between the catalyst and reaction

components. Ethane, ethylene, ethylbenzene, styrene, toluene, and benzene are the

major compounds leaving the FCC chamber, along with the dehydrogenated form of

the Area-100 byproducts. A solid side product, coke, is produced via Reactions 2c

and 2d, and deposits onto the catalyst.3 The gaseous products leave the reactor

through a solid filtering technique, known as cyclones. The cyclones extend towards

the bottom of the riser, but stop before the catalytic stripping part of R-200. This

design is common in VSS reactor systems available through UOP LLC. It contains

the hydrocarbons to the riser of the reactor and pre-strips the catalyst.15 The catalyst

falls further to an AF™ spent catalyst stripper, also available through UOP LLC. In

Page 15: Styrene Production

the catalyst stripper, absorbed hydrocarbons leave the catalyst particles. The catalyst

falls to the bottom of the stripping trays and is sent to regenerator R-201.16

In the regenerator the coke deposited on the catalyst is burned off via air at 560°C,

producing carbon-dioxide. Hydrogen, recycled from Area-400, also enters R-201

and is combusted to produce water. By this process, the catalyst is heated to 680°C

and transported back to R-200. The high temperature of the catalyst provides the

heat of reaction for Reaction 2a and 2b to occur. There are several reasons to use a

reactor-regenerator system:7

1.) The catalyst is continually regenerated. By continually removing coke the

catalyst will not degrade over time. This means the operating parameters and

catalyst performance will be constant for the lifetime of the plant.

2.) The heat for Reactions 2a and 2b are provided by the catalyst, thus super-heating

ovens are not needed.

3.) The re-mixing of the fluidized bed prevents hot spots from forming, which would

lower selectivity.

4.) The hydrogen can be recycled to R-201, where it is burned.

5.) The process can be made continuous without changing the operating parameters

of the plant over its lifetime.

6.) R-200 and R-201 are physically separate. This disallows mixing between the

hydrocarbons and any oxygen, an inherent process danger.

Page 16: Styrene Production

7.) Less inert gas needs to be used in the feeding to the reactor, thus higher

concentrations of the reactants can be used, which lead to higher reaction

selectivites.

4.3.2 Catalyst Design

This process is very catalyst-specific. Therefore, the design and development of the

catalyst is crucial. The catalyst in Area-200 is comprised of less than 10 wt% Ga2O3,

20 wt% Fe2O3, 100 ppm platinum, and the remainder alumina. The catalyst is

synthesized in a four-step process. The promoters are added to the carrier via an

aliquot. The sample dried at 150°C and calcinated at 900°C. The iron oxide and

remaining promoters are added to the carrier. The catalyst is dried and calcinated

again, as described previously.7 In order to determine the amount of catalyst needed

for a given feed composition, data from Figure 1 was taken from US patents

#6,031,143:

Weight of Catalyst vs. Ethane to EB Volumetric Ratio

y = 498.18x-0.6678

R2 = 0.9967

y = 17.28x0.5396

R2 = 0.9996

0

50

100

150

200

250

300

0 2 4 6 8 10 12

Ethane/EB vol

g/h

/kg

ca

t

Styrene Ethane

Figure 1: Weight of Catalyst vs. Ethane and Ethylbenzene Volumetric Ratio

Page 17: Styrene Production

The catalyst for the selective combustion of hydrogen is available through UOP and

is OC-5™. It is a solid sphere with a nominal diameter of 3.8mm and a density of

750 kg/m3.17 OC-5™ uses platinum as a promoter and is available at $115 per

pound.12

4.4 Area 300 – Separations of Aromatic Products

The separations system is set up to recover styrene at a purity of 99.93%, toluene at a

purity of 99.75%, benzene at a purity of 99.85%, and ethylbenzene at a purity of

98%. This system uses seven distillation columns of which three are for the

purification of styrene. The inhibitor 2,4-dinitrophenol is used in this system to

prevent the polymerization of styrene. The components that enter Area-300 can be

simplified into six categories: Light gases, C6 non-aromatics (modeled as n-hexane),

benzene, toluene, ethylbenzene, styrene, and heavy aromatics.

4.4.1 Separations Train and Column Design

In column T-300, light gases such as ethane and ethylene are vented to the light

gases area. Toluene and benzene are separated from ethylbenzene and styrene. To

ensure minimal styrene polymerization product the temperatures should stay low. T-

300 is a packed column which uses Flexipac® HC® structured packing, available

through Koch-Glitsch. The advantage to using structured packing is that there is a

small pressure drop across each stage of approximately 0.05 psi. This minimizes the

temperature difference across the column and therefore the temperature necessary in

the reboiler, which is crucial in preventing polymerization of the styrene product.

Page 18: Styrene Production

The column operates at vacuum conditions with a pressure of 26.7 kPa. It contains

66 stages, with the feed entering in the 50th stage. The diameter is 2.04m and its

height is 40.23m. The reflux ratio is optimized at 12:1. The distillate product is rich

in toluene (49.6 mol%) and benzene (49.1 mol%), with some n-hexane (1.2 mol%)

and the remainder ethylbenzene (0.1 mol%). These products are sent to column T-

301.

In T-301, a column of 23 trays, toluene is purified and leaves as the bottoms product.

It has a purity of 99.8% toluene, which is then to spot sold as high-grade toluene. T-

301 is a sieve-tray column with a diameter of 2.04m (6.7ft) and a height of 14.02m

(46ft). Sieve trays are used because polymerization in not a concern, and is less

expensive. The operating pressure is 26.7 kPa. The reflux ratio is optimized at 3.4:1

and the optimum feed inlet is tray ten. The distillate is mainly benzene, with some

non-aromatic impurities. It is then sent to column T-302 for further separation.

Column T-302 separates benzene from non-aromatic C6 hydrocarbons in 40 sieve

trays. This process is economically viable because the recovered benzene can be

recycled to Area-100. Like column T-302, sieve trays are used because costs can be

reduced without sacrificing product purity. The optimum feed inlet is in tray 28, and

optimum reflux ratio is 15:1. The diameter is 2.1m (6.9ft) with a height of 14.63m

(48ft). The operating pressure is 26.7 kPa. The benzene is purified to 99.85 mol%.

Page 19: Styrene Production

The bottoms product from column T-300 contains ethylbenzene (49.4 mol%),

styrene (50.4 mol%), the toluene (0.17 mol%) and the remainder heavy aromatic

byproducts. These are sent to column T-303, where the ethylbenzene is separated off

the top to be recycled to Area-200. Like T-300, this column uses Flexipac® HC® to

reduce pressure drop across the column. T-303 is 72 stages, with an optimum feed

inlet at stage 48 and optimum reflux ratio of 10:1. To further reduce operating

temperatures, and thus the possibility of polymerization, the pressure is decreased to

7.99 kPa. The diameter of T-303 is 5.33m and the height is 43.89m.

The remainder of the styrene product is then sent to T-304, where it is then purified.

Column T-304 incorporates the same packing as previously mentioned above the

feed inlet, and trays in the stages below the feed inlet. The advantage to designing a

hybrid column like this is due to some of the styrene monomer beginning to

polymerize. If any styrene polymerizes enough to form a solid within the column

then it will deposit onto the tray. Occasionally the column will need to be opened

and the trays cleaned to remove any solid polymer residue. This is easy to do with a

sieve tray and very difficult with packing. Since the highest temperatures are in the

reboiler, the polymers are most likely to form at the bottom of the column, on the

sieve trays. T-304 operates at a lower pressure (5.33 kPa) than column T-303. It has

a height of 27.4m and a diameter of 5.2m. The optimum reflux ratio is 0.75:1. The

total number of trays is 45 and the feed enters on the 24th tray. The bottoms product

is then further purified in T-305. The distillate is purified styrene and is sent to

storage or to the customer.

Page 20: Styrene Production

Column T-305 has a similar design to T-304. It is another hybrid column with

structured packing from stages one to fifteen and sieve trays from sixteen to the last

tray, thirty. It operates at 5.33 kPa, with a height of 18.3m and a diameter of 3.3m

(10.9ft). The optimum reflux ratio is 1.29:1. The bottoms product is sent to column

T-306. The distillate joins with the distillate from T-304 and goes to storage and for

sale.

The final column in Area-300 is T-306. It has the same dimensions as T-305 and

same tray design. The only difference is that it operates with a reflux ratio of 15:1.

The distillate product in columns T-304, T-305 and T-306 are mixed to produce the

final styrene product available at a purity of 99.93 wt% styrene. The bottom

products of T-306 are the heavy side-products. They are mixed with the heavy

byproducts from the alkylation and sent to be incinerated.

4.4.2 Separations Inhibitors

Without inhibitors the distillation design in Area-300 would not work.

Polymerization would occur often, causing the columns to need to be shut down

frequently for cleaning. Therefore, the inhibitors that are used, and where they enter

the process, are important. There are two different types of inhibitors: retarders

(which slow polymerization) and true inhibitors (which stop polymerization in the

free radical stage).

Page 21: Styrene Production

The inhibitor which retards the polymerization process is 2,4-dinitrophenol. It is

added in the liquid stream coming from the condenser on column T-303, the first

column where the styrene product is purified. It will then fall through column T-

303, where the concentration of styrene increases as the inhibitor moves down the

column. It is carried through T-306 and removed before the styrene is sent to storage

tanks.

After removal of the 2,4-dinitrophenol, but before storage, the inhibitor 4-TBC is

mixed into the styrene product stream. It stops polymerization by interacting with

the free radicals formed in the initiation step of the polymerization mechanism. In

the storage tanks, oxygen is bubbled through the tank to activate the 4-TBC. The

styrene product is sent to customers with the 4-TBC present. Customers remove it

by adsorption when polymerization is desired.

4.5 Area 400 – Light Gas Separation

The products from Area-200 are cooled to -50°C and then separated in V-202 so that

the vapor products are rich in ethane, ethylene, nitrogen, and hydrogen and the liquid

products contain the aromatic products from the dehydrogenation. The vapor

products are then sent to Area-400, the light gas separations. Here the ethane and

ethylene are separated from the hydrogen and nitrogen via a series of compression,

cooling, expanding and two-phase separations. The necessary equipment includes

33 compressors in eleven compression stages, 30 heat exchangers, ten turbines, and

ten two-phase separators. Under ideal circumstances, ten throttling valves would be

used instead of turbines that operate at 85% efficiency. However, HYSYS could not

Page 22: Styrene Production

correctly model an isoentropic expansion for this case. If throttling valves were used

a cost reduction could be seen in both the equipment savings and in the compressor

duty. Because the turbine is not 100% efficient, some of the enthalpy of expanding

the gas goes to entropy, which must be made up by the compressors. The two-phase

separators operate at a range of temperatures from -68.5°C in the first stage to

-168.2°C in the last stage. The temperatures after compression get as high as 42°C.

Three streams leave Area-400. The first is the bottoms product of the first two phase

separator and consists of mostly styrene, ethylbenzene, and other aromatics. The

second is the distillate recovered after ten two-phase separators. At -159.4°C, it is

comprised of 64.9 mol% nitrogen, 34.9% hydrogen, and the remainder ethane and

ethylene. This stream is sent to Area-200 and is burned in R-201 to provide heat for

the reaction. The third stream is the mixture of the bottoms of each two-phase

separator, and is rich in ethane and ethylene at 90.0 mol% and 9.98 mol%

respectively. This stream is fed to Area-100 and supplies the ethylene feed for

Reaction 1a. Area-400 is the most expensive area in the process.

4.6 Heat Exchanger Design

Sixty-six heat exchangers have been designed in the process. The fundamental

design equation is:17

lmTUAq ∆= Equation 1

where q is the total heat transferred, U the overall heat transfer coefficient, ∆Tlm is

the log-mean temperature difference, and A is the area used for exchanger design.

The overall heat transfer coefficient is estimated from design tables provided by

Peters, Timmerhaus and West.18 Water is the coolant for streams needing to be

Page 23: Styrene Production

cooled down to 15°C. It is used in the condensers in Area-300 and on exchanger E-

202.1. The coolant, R-22, is available to -60°C and is primarily used in Area-400.19

The reboilers in Area-300 use exhaust steam available at 150 kPa and 109.95°C for

heating the product streams. However, one exchanger uses saturated steam at 3550

kPa and 243.38°C. Area-300 accounts for a total of sixteen exchangers. Area-400

uses thirty exchangers for interstage cooling after compression. Eleven exchangers

are used in Area-100 and ten exchangers are used in Area-200. The pressure drop

across the tube and shell side of each exchanger can be calculated. An example

calculation can be seen in Appendix E.1. The pressure drops were also increased to

account for losses due to piping and to ensure that estimates are on the conservative

side. The specifications on each exchanger can be seen in Appendix A.2. The cost

is a function of exchanger area and duty of the coolant or steam.

4.7 Pump, Compressor and Turbine Design

There are fifteen places in the plant design where vapor compression is necessary.

At each point the compressor arrangement is optimized. Forty-one compressors

operating at 75% efficiency are used in the process. The optimum arrangement

requires anywhere from one to six compressors with interstage cooling. Area-400

requires thirty-two of these compressors in order to separate ethane and ethylene

from nitrogen and hydrogen. The optimum arrangement was determined by

specifying that the duty on each compressor in one chain is equal, and a cost analysis

done for each case. This required over eighty various arrangements to be evaluated

and the optimum fifteen to be taken from this. The cost of each compressor was

determined from the material of construction, size and duty required. The cost of

Page 24: Styrene Production

each compression chain was the sum of the compressor and heat exchanger costs

annualized over twenty years.

There are ten turbines in the process; all of which are used in Area-400. Each

turbine is 85% efficient and used to cool the vapor into the two phase region. The

cost on each turbine is determined from the material of construction, size and duty.

There are four pumps needed in the process. They are on the benzene feed to Area-

100, benzene recycle from Area-400 to Area-100, and the toluene and styrene

products from Area 300. The cost of each pump is determined from its material of

construction, capacity, duty and pressure. Calculations and specifications for each

compressor, turbine and pump can be seen in Appendices A.1, A.6 and A.3,

respectively.

4.8 Materials of Construction

Carbon or stainless steel is used in all areas of the plant. Carbon steel is generally

less expensive than stainless steel, but has two problems. First, it degrades at

temperatures above 455°C. Carbon will segregate from the piping, putting graphite-

like deposits into the process.19 Therefore, in all areas operating above 455°C

stainless steel is used. This is most prominent in Area 200. Reactors T-200 and T-

201 reach temperatures above 600°C. The product stream is cooled below 400°C

after exchanger E-200. However, the product stream contains hydrogen gas. The

second problem with carbon steel is that hydrogen gas can imbed itself within the

material, degrading the steel over time.18 Therefore, carbon steel cannot be used

Page 25: Styrene Production

again until Area-300 and cannot be used at all in Area-400. The materials of

construction greatly effect equipment cost. Therefore, whenever possible carbon

steel is used instead of stainless steel.

5 Environmental, Health and Safety Issues

Christian engineers are called not only to design for profit, but to design in a manner

that glorifies God’s creation and respects His people. Therefore, the design of this

plant includes taking consideration of environmental issues, as well as concerns for

the well-being of all people that might be impacted by the plant or its products. This

concern for the stakeholders in the plant guides this design.

5.1 Environmental Concerns

One of the design objectives is to show stewardship and therefore minimize the

impact on the environment. The importance of this objective cannot be overstated.

The environment consists of the land, water, air, animals and people near the plant.

One major byproduct is carbon dioxide. This is created from the incineration of

gaseous hydrocarbon side products and the burning of coke on the catalyst. Streams

306 and 311 are to be combusted to carbon dioxide and water. Purge stream 227

also contains carbon dioxide. All products are to be sent though scrubbers to reduce

the carbon monoxide content from side combustion reactions and bring the limits

within the National Ambient Air Quality standards of 9ppm per 8 hour non-

overlapping average.20 Unfortunately, the modeling of the incineration process and

estimations of the side combustion reactions are beyond the scope of the design. As

of 2004, the average American produced 5.76 metric tons of carbon dioxide per

Page 26: Styrene Production

year.21 The designed process produces the equivalent amount of 5750 Americans in

one production year. This is a weakness of the design, and would need to be reduced

before implementation.

The other byproducts consist of heavy hydrocarbons. These are incinerated when

possible and treated when they cannot be incinerated. The modeling of this process,

and the reactions that govern it, is also beyond the scope of the design. Water

generated from the combustion of hydrogen in T-202 is sent for treatment as well.

The significant benefit to the process is that the dehydrogenation reactions (2a and

2b) occur simultaneously. Thus the designs for ethane to ethylene and ethylbenzene

to styrene plants are incorporated into one design. This is evidenced by the need for

two separations process, Area-300 and Area-400. A possible pollution reduction can

be accomplished by incorporating two plants into one. An in depth analysis of this

hypothesis is beyond the scope of the design.

5.2 Chemical Hazards

Caution should be taken when dealing with several compounds in the process.

Styrene monomer should not have contact with skin. If it does, the skin should be

washed with water for at least fifteen minutes. Styrene is extremely flammable and

can travel a considerable distance to an ignition source and should be put out using a

dry chemical, alcohol foam or carbon dioxide. Pure styrene has a penetrating odor.

The flammability limits lie from 1.1 wt% to 6.1 wt%. Styrene waste should be

mixed with a more flammable solvent and then be atomized into an incinerator.22

Page 27: Styrene Production

The precursor to styrene, ethylbenzene, is also dangerous. It should never be inhaled

and CPR may be needed after doing so. It is labeled as a severe fire hazard and the

same method of fire fighting used for styrene should be applied to ethylbenzene.23

Benzene is an eye irritant and causes nausea, unconsciousness, and a change in blood

composition when breathed in. It is also a fire hazard, and should be put out with the

same method as styrene and ethylbenzene. The flammability limits are from 1.3

vol% to 7.9 vol%. A self contained breathing apparatus should always be used when

around benzene that could enter the surrounding air.24 Ethane is non-toxic but can

cause asphyxiation. It is also a fire hazard. If a cylinder is exposed to fire it may

rupture. The flammability limits are from 3.0 vol% to 12.5 vol%.25 Ethylene can

cause dizziness, asphyxiation, drowsiness, unconsciousness and muscular weakness

from overexposure. It is flammable, with limits from 3.1 vol% to 32.0 vol%. Fires

for both ethane and ethylene are best treated by removing or shutting off the

source.26

5.3 Safety Hazards

Safety is a primary concern in all areas of the process. There are three major

variables that affect equipment safety. They are the operating pressures,

temperatures, and the chemicals present. Choosing the appropriate materials of

construction (see sect 4.8) reduces the dangers associated with temperature and

certain chemicals. For example, carbon steel cannot be used above 455°C or with

hydrogen gas, thus stainless steel is the appropriate material in streams which carbon

steel cannot be used. For equipment operating at high pressures, the thickness of

equipment must be increased. This is taken into account as a pressure factor used

Page 28: Styrene Production

when costing equipment. The flammability of each stream is also taken into

consideration. The only streams with oxygen present enter regenerator R-201. The

oxygen is consumed in the reaction. All other streams operate well above the upper

flammability limits. Using pressure, temperature, level, and flow controllers the

streams can be kept within the designated safety ranges.

6 Control Design

Whatever can be controlled in the process should be controlled.27 Controls are vital

to the safety of a process and are, therefore, incorporated in the design to converge

the real-world variables to the design variables. They are designed to check for

unsteady states, minimize the occurrence of unsteady states, and then correct the

problem. As such, the time lag between the occurrence of a problem and the

correction needs to be minimized. This is done by placing controls where they can

have the fastest impact.

6.1 Control Design on Area 100

The fresh benzene feed is to be controlled via a flow controller, which measures the

flow rate of incoming benzene. This controller disallows backflow to benzene

storage tanks and adjust the feed so that the benzene to ethylene ratio is 10:1 in R-

100. A temperature controller is used to verify this specification and is on the

reboiler, so that it will have a direct impact on space time and reaction temperature

inside R-100. Since there are actually four R-100 reactors in parallel, the feed

controller needs to be on each incoming stream. This would allow for temporary

shutdown or production rate decrease. However, the process is designed to operate

Page 29: Styrene Production

under constant production conditions and not vary with market demand or equipment

failure. R-100 has a flow controller on the condenser, which affects the ethane going

to Area-200. Column T-100 has two level controls; one on the reboiler and

condenser each. The bottoms of T-100 are sent to R-101, but with a flow control on

the purge stream. Like the benzene inlet control on R-100, this control varies the

polyalkylated benzene feed to keep its ratio with benzene constant.

6.2 Control Design on Area 200

The ethylbenzene and ethane from Area-100 is mixed with ethylbenzene from Area-

300 and fresh ethane feed. There is a feed controller on the ethane feed, controlled

based on the product from Area-100. The mixed stream is sent though exchanger E-

200, where a temperature control is used to stabilize temperature fluctuations. The

ethylbenzene is sent though a series of compressions and then mixed with inert gas.

This stream is sent though E-201, where the temperature entering the reaction needs

to be consistent and is controlled by a temperature controller. The product from T-

200 is sent through a flow control, which is modified based on the temperature after

E-202. After filtration, another temperature is used for exchanger E-204, so that the

temperature into the two-phase separator, V-200, is consistent and will cause the

aromatic products to be sent to Area-300 and the light gases to Area-400. Because

this controller determines the split in V-200 it will affect the entire process.

The air feed to Area-200 has a flow controller across a gate valve and then a pressure

controller on compressor K-201. This stream is heated by the product from T-201,

thus a flow controlled bypass is used to control the temperature of this stream. Its

Page 30: Styrene Production

temperature is vital because it causes the combustion in T-201 to occur, which

provides the energy for the reactions in T-200. The product stream from T-201 is

also heat exchanged with the hydrogen and nitrogen inlet from Area-400. A flow

controlled bypass is again used to control the temperature of both streams. The

product stream is filtered and another temperature controller used across the heat

exchanger before V-201. After a series of compression, where a pressure controller

is used, E-202 has a temperature control. When separated in V-200, the gaseous

nitrogen and carbon dioxide are sent across a flow control. This control varies how

much is purged and how much is sent to R-200 to fluidize the reactor bed.

6.3 Control Design on Area 300

There are three parameters that need to be controlled in Area-300. They are: the exit

composition of each column, the column pressure, and the reflux ratio on each

condenser. The first controller is a flow controller used directly before T-300. The

column then has six controllers. Because this column operates under vacuum

pressure, the pressure control is crucial. Depending on the column pressure, the

temperature, reflux and flows will all change. Therefore, it is essential that the

pressure meets the specs by which the column was designed. The pressure control

can open a gate valve used to vent off gases in case the pressure is too high. The

temperature control is on the column. The equilibrium within the column dictates

that a specific composition resides at a specific temperature. Thus a flow control is

connected to the reboiler exhaust steam. A level control varies what leaves T-300

through the bottoms and another level control is used on the condenser. On the

condenser, the level control operates a gate valve on the product stream. Its function

Page 31: Styrene Production

is to set the reflux ratio, which should be converged to the designed optimum reflux

ratio. Lastly, a flow controller controls how much reflux is sent back to T-300.

Since this is the first column in the distillation chain, it may be tempting to put two

temperature controllers on the column, each one to specify the composition on either

end. However, studies have shown that this creates many problems because the two

controllers are not mutually exclusive. One controller can interfere with the other

based on how much it tries to control the exchanger duty. Using only one

temperature controller is easier and still does a good job.

Columns T-301, T-302, and T-303 are designed in a similar manner, with six

controllers per column used to control the composition, pressure and reflux ratio.

For each of these columns, the reflux ratio is greater than one, and so the gate valve

for the level control on the condenser is positioned on the product stream. When the

reflux ratio is less than one, then the level control is on the condenser coolant, as

with T-304 and T-305. The flow control is on the product stream, and another flow

control manages the reboiler steam. A level control operates a gate valve on the

bottoms product. T-306 has a reflux ratio above 1, so there is a level control on the

distillate, and flow control on the reflux. However, the bottoms are designed with

the level control on the product stream, and the flow control on the reboiler steam.

The mixed styrene product stream is then sent to storage. There is a flow control on

this final stream.

Page 32: Styrene Production

6.4 Control Design on Area 400

Even though Area-400 has eighty two pieces of equipment, the control design is

simple. Every compressor has a pressure control. Every heat exchanger has a

temperature control and a flow control on the coolant. Every turbine has a pressure

control as well. Therefore, there are 102 controls used in Area-400 total.

7 Economic Analysis

Capital, utility and raw material costs along with revenue from the products

determine the profitability of the design. The purchase and installation of

equipment, land and piping affect the capital cost. Of these, the largest contributor to

the capital cost is from the equipment. This is priced according the cost spreadsheets

available from Peters, Timmerhaus and West. Direct costs, indirect costs, and

working capital affect the total capital investment. A few direct costs are the

purchased equipment, delivery, installation, piping and instrumentation costs.

Indirect costs are things like construction and legal expenses, engineering and

supervision, contractor fees, and contingency costs. Working capital is the cash on

hand needed to start the plant. The total capital investment is 2,508.7 million dollars.

Raw material costs are from ethane, benzene, air, OC-5, EBZ-100, EBZ-500S, TBC,

and DNP. The annual cost of all raw materials is 731.5 million dollars. Electricity,

refrigeration, steam, water treatment, and cooling water usage determine utility costs.

The total is 197.8 million dollars per year. The revenue generated from the products

styrene and toluene is 1,976.2 million dollars per year. The selling price for styrene

is $0.99 per pound. The variable costs consist of raw material costs, utilities and

Page 33: Styrene Production

general expenses; projected at 1,084 million dollars per year. The fixed costs include

fixed charges, plant overhead and general expenses; and are 297.7 million dollars per

year.18

The price for the styrene is chosen by varying the Investor’s Rate of Return (IRR). If

the IRR is set to 15.0%, the price of styrene is $0.99 per pound as shown in Figure 1:

IRR Analysis - Product Price Fluctuation

-5.0%

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

30.0%

35.0%

$0.70 $0.80 $0.90 $1.00 $1.10 $1.20 $1.30 $1.40

Styrene Monomer Product Price ($/lb)

IRR

Figure 2: IRR Analysis – Product Price Fluctuation

15.0% IRR is a common value and a good starting point.28 The Net Present Value

for this IRR is 1.99 million dollars, which is basically zero when compared to the

high capital costs. Equation 2 can be used to solve for the IRR:

∑= +

=

n

ii

i

IRR

CF

0 )1(0 (Equation 2)

Page 34: Styrene Production

The return on investment (ROI) stabilizes after the sixth production year, where it is

15.4% for the lifetime of the plant.

8 Uncertainties and Assumptions

Most of the process specifications used in the HYSYS simulation came directly from

the patents. Generally, having some data is better than no data. This is true of the

data provided in the patents as well. However, the patents often provide one value

for one experiment. Without having multiple experiments run for each point, one

must trust the validity of that data point. In designing a pilot plant, this may not be a

big deal. When designing a plant to accumulate 14% of an already competitive

market more data would be better.

In HYSYS, the design was simulated using the General NRTL fluid package. The

NRTL is a local-composition thermodynamic model, and therefore, analyzes the

system according to its molecular interactions.

9 Future Work

Broadening the scope of the design would lead to the possibility to do a lot of further

work. Some of the most important work could be done to minimize pollutants. The

current design produces 33,098,000 kg/hr of carbon dioxide. This amount needs to

be reduced. Public opinion of processes that produce greenhouse gases is

continually becoming more negative. In order to be good stewards, the amount of

pollutants placed in the atmosphere must be reduced. To do this analysis, a

simulation of the combustion and side reactions should be done in HYSYS. A way

Page 35: Styrene Production

to model the formation of carbon monoxide would make the simulation more

realistic. This leads to stack scrubbing costs having an impact on the economic

analysis because the costs associated with the treatment of this gas can rise quickly.

Too much carbon monoxide production (or inadequate smokestack design) would

lead to fines from the EPA.

The fluidized catalyst cracking reactor could be designed with greater detail. If a

kinetic model could be developed and then used to design the various parameters of

the reactor, then the estimates on the reactor size could be improved. This would

help in pricing the reactor system. The reactor price is currently an educated

estimate. A more accurate price would improve the economic analysis as a whole.

FCC simulation software is also available. This would help because interpolated

values in the patents do not account for catalyst degradation. In fact, the values in

the patents are for a very specific system, using a specific catalyst and reactor set-up.

Any method for further modeling the FCC system that allows these parameters to

change would only improve the simulation.

The computer simulation software, HYSYS, can simulate processes which involve

solids. However, the HYSYS software used for this design does not have this

license available. A solid modeling license would allow the catalyst regeneration

step to be simulated, thus making the simulation more realistic. Filters that remove

solid catalyst particles from the regeneration product stream could also be simulated.

Page 36: Styrene Production

A better estimate of the pressure drop across a filter could be determined. Currently,

a valve simulates the pressure drop across a filter in HYSYS.

The HYSYS simulation also has another problem: it cannot model throttling valves.

Therefore, the designed process used expanders that were 85% efficient. Since this

caused a loss of energy and increased equipment costs, the turbines are far less

favorable than throttling valves.

There are sixty-six heat exchangers used in the process. The overall heat transfer

coefficients for each exchanger could be improved. Currently, all heat transfer

values are estimated using Peters, Timmerhaus and West, which gives a range of 250

to 600 W/m2K for medium organics cooled with water, and a range of 250 to 500

W/m2K for medium organics heated with steam.18 These temperature ranges can

vary the exchanger area significantly. Because the components are generalized and

the heat transfer coefficient given a broad range of possible values, it is likely that

the estimated heat transfer coefficients used for doing heat transfer area design are

wrong. A detailed analysis of all sixty-six exchangers would be ideal.

Page 37: Styrene Production

WORKS CITED

(1) SIRC: International Styrene Industry Forum. 9 Dec. 2005 http://www.styrene.org/international.html.

(2) Tullo, Alexander H. "Spotlight on Polymers." Chemical and Engineering News, 12 September 2005, 19-24.

(3) Kroschwitz, Jacqueline I., Raymond E. Kirk, Donald F. Othmer, and Mary Howe-Grant. "Styrene." Encyclopedia of Chemical Technology. 4th ed. New York City: Wiley, 1998.

(4) Smith, Jr., Lawrence A.; Arganbright, Robert P.; Hearn, Dennis. “Process for the preparation of ethyl benzene” listed in US Patent #5,476,978; Nov 29, 1991.

(5) "EBZ 500S Catalyst." Ethylbenzene and Styrene. 2006. UOP. 20 Apr. 2006 <http://www.uop.com/objects/EBZ%20500S%20Catalyst.pdf>.

(6) Jones, Mark. "Ethane Plus Benzene." E-mail to the author. 18 Oct. 2005.

(7) Iezzi, Rodolfo; Buonomo, Franco, Sanfilippo, Domenico. “Catalytic Composition for the Dehydrogenation of C2-C5 Paraffins” listed in US Patent # 5,143,886; Sept 1, 1992.

(8) Buonomo, Franco; Sanfilippo, Domenico; Iezzi, Rodolfo; Micheli, Emilio. “Catalytic System and Proces for Dehydrogenating Ethylbenzene to Stryene” listed in US Patent # 6,242,660; June 5, 2001.

(9) Buonomo, Franco; Donati, Dianni; Micheli, Emilio; Tagliabue, Lorenzo. “Process for the Production of Styrene” listed in US Patent #6,031,143; Feb 29, 2000.

(10) http://www.novachem.com/productservices/docs/StyMon_Safety_Guide.pdf

(11) Watson, Keith. Calvin College, Grand Rapids, MI. 5 Oct. 2005.

(12) Cooper, Geoff. "Catalyst Costs for a School Project." E-mail to the author. 1 May 2006

(13) "EBZ 100 Catalyst." Ethylbenzene and Styrene. 2006. UOP. 20 Apr. 2006 http://www.uop.com/objects/EBZ%20100%20Catalyst.pdf>.

(14) “Optimix™ FCC Feed Distribuition Systsem” http://www.uop.com/objects/FCC%20Optimix.pdf

(15) “FCC Vortex™ Separation Technology: The VDS™ Design and VSS™ Design” http://www.uop.com/objects/FCC%20Vortex.pdf

(16) “AF™ FCC Spent Catalyst Stripper Technology” http://www.uop.com/objects/ 20%20AF%20Stripper%20Tech%20Sheet.pdf

Page 38: Styrene Production

(17) "OC 5 Catalyst." Ethylbenzene and Styrene. 2006. UOP. 20 Apr. 2006 <http://www.uop.com/objects/OC%205%20Catalyst.pdf>.

(18) Peters, Max S.; Timmerhaus, Klaus D.; West, Ronald E.; “Plant Design and Economics for Chemical Engineers”. 5th Ed. University of Colorado. 2003.

(19) Perry, Robert H.; Green, Don W.; “Perry’s Chemical Engineers’ Handbook”. 7th Ed. McGraw-Hill. New York. 1997.

(20) http://www.epa.gov/oar/oaqps/greenbk/o3co.html (21) http://pages.ca.inter.net/~jhwalsh/wfsesr.html (22) http://msds.ehs.cornell.edu/msds/msdsdod/a98/m48796.htm#Section5 (23) http://msds.ehs.cornell.edu/msds/msdsdod/a401/m200166.htm#Section5 (24) http://msds.ehs.cornell.edu/msds/msdsdod/a49/m24066.htm#Section11 (25) http://msds.ehs.cornell.edu/msds/msdsdod/a328/m163906.htm (26) http://msds.ehs.cornell.edu/msds/msdsdod/a194/m96822.htm (27) VanAntwerp, Jeremy. In Class Lecture. Engr. 342. May 8, 2006. (28) Medema, Robert. Interview. Feb. 22, 2006.

Chen, Kaidong, Alexis T. Bell, and Enrique Iglesia. "Kinetics and Mechanism of Oxidative Dehydrogenation of Propane on Vandium, Molybdenum, and Tungsten Oxides." J. Phys. Chem 104 (2000): 1292-99.

Chemical Industry Intelligence - Chemical Pricing Reports. www.icislor.com.

Dessau, Ralph M. “Dehydrogenation and Dehydrocyclization Using a Non-Acidic NU-87 Catalyst” listed in US Patent # 5,254,787.

Diephouse, Dan, Scott Dykstra, and Derek Ferwerda. Hot for Hydrogen. Grand Rapids, MI: Calvin College, 2004.

Dreise, Manuel, Randall Elenbaas, and Eric Smith. Bond...H-Bond. Grand Rapids, MI: Calvin College, 2004.

Egloff, Gustav. “Production of Styrene” listed in US Patent # 2,376,532; May 22, 1945.

Frash, M V., and R A. Santen. "Activation of Small Alkanes in Ga-Exchanged Zeolites: A Quantum Chemical Study of Ethane Dehydrogenation." J. Phys. Chem 104 (2000): 2468-75.

Page 39: Styrene Production

Iezzi, Rodolfo; Barolini, Andrea; Buonomo, Franco. “Process for Activating Catalyst Precursors for the Dehydrogenation of C2-C5 Paraffins, and a Catalytic Composition Activated by the Process” listed in US Patent # 5,308,822; May 3, 1994.

Iezzi, Rodolfo; Sanfilippo, Domenico. “Process for the Dehydrogenation of Ethylbenzene to Styrene” listed in US Patent # 6,841,712; Jan 11, 2005.

Iezzi, Rodolfo; Bartolini, Andrea; Buonomo, Franco. “Process for Activating Catalyst Percursors for the Dehydrogenation of C2-C5 Paraffins, and a Catalytic Composition Activated by the Process” listed in US Patent # 5,414,182; May 9, 1995.

Polystyrene Packaging Council Homepage. http://www.polystyrene.org/.

Ogunnaike, Babatunde A., and Harmon W. Ray. Process Dynamics, Modeling, and Control. New York: Oxford University Press, 1994.

Seider, Warren D., J D. Seader, and Daniel R. Lewin. Product & Process Design Principles. 2nd ed. New York City: Wiley, 2004

Stichlmair, Johann G., and James R. Fair. Distillation Principles and Practices. New York: Wiley-VCH, 1998.

Styrene Producers Price Capacity. http://www.the-innovation-group.com/ChemProfiles/Styrene.htm.

Wankat, Phillip C. Equilibrium Stated Separations. Upper Saddle River, NJ: Prentice Hall, 1988.

Wood, Andrew. "Dow Joins Snamprogetti to Develope Ethane-Based Styrene Process." Chemical Week, 20 April 2005, 17.

Wood, Andrew. "Celanese, Dow Revisit Catalytic Route from Ethane to Ethylene." Chemical Week, 15 June 2005, 25.

Zhou, Ying; Cavis, Stephen M. “Dehydrogenation Catalysts and Process for Preparing the Catalysts” listed in US Patent # 5,219,816; June 15, 1993.

Page 40: Styrene Production

Appendix Table of Contents

Appendix A: Equipment Spec. Sheets

A.1 Compressor Specifications

A.2 Heat Exchanger Specifications

A.3 Pump Specifications

A.4 Tank Specifications

A.5 Two Phase Separator Specifications

A.6 Turbine Specifications

A.7 Distillation Specifications

Appendix B: PFD / PID / Layout

B.1 PFD: Alkylation Unit – Area 100

B.2 PFD: Dehydrogenation Unit – Area 200

B.3 PFD: Separations Unit – Area 300a

B.4 PFD: Separations Unit – Area 300b

B.5 PFD: Light Gas Separations – Area 400

B.6 PFD: Compressor Chains

B.7 P&ID: Alkylation Unit – Area 100

B.8 P&ID: Dehydrogenation Unit – Area 200

B.9 P&ID: Separations Unit – Area 300a

B.10 P&ID: Separations Unit – Area 300b

B.11 P&ID: Light Gas Separations – Area 400

B.12 P&ID: Compressor Chains

B.13 Plant Layout

B.14 Plant Layout, Front View

Appendix C: Separations

C.1 Separations Hand Calculations

C.2 Estimates of Column Height

C.3 Fenske Equation

C.4 Dimensioning of Packed Columns

C.5 MathCad Packed Column

C.6 Summary of All Columns

C.7 Optimization Reflux Ratio

Appendix D: Compressor Optimization

D.1 Compressor Optimization Analysis

D.2 K-404 Optimization Analysis Example

D.3 Compressor Hand Calculation Example

Appendix E: Heat Exchanger Design

E.1 Example Pressure Drop Calculation

E.2 Styrene Tank Heat Exchanger Size

Appendix F: Reactor Sizing

F.1 Dehydrogenation Reactor Size

Appendix G: Economic Optimization

G.1 Investment Summary

G.2 Economic Summary

G.3 Profitability Measures

G.4 IRR Analysis – Product Price Fluctuation

Page 41: Styrene Production

Appendix A: Equipment Spec. Sheets

Page 42: Styrene Production

ID Number: K-200.1 Date: 5/8/2006

Description: Dehydrogenation Feed Compressor Train Prepared By: ACJ

No. Required 1 Checked By: MJH

0.0000

0.0000

0.0001

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

Carbon Dioxide

0.8452

0.0001

0.0000

0.0003

0.0000

0.1542

0.0000

0.0000

0.0000

Cumene

n-Propyl Benzene

Alpha Metal Styrene

Meta Diethyl Benzene

Benzene

Ethyl Benzene

Hydrogen

Oxygen

Ethane

n-Hexane

1 Meta 3 Ethyl Benzene

Toluene

Compressor Specifications

Fluid Properties

Process Feed Flow Rate (m3/hr) 418300

142.4

Vapor Composition (mol%)

Inlet Temperature (°C)

Outlet Temperature (°C)

Inlet Pressure (kPa)

Nitrogen

Water

Ethylene

Styrene

n-Butyl Benzene

Max Design Pressure (kPa)

Max Design Temperature (°C)

Adiabatic Efficiency

Design Power (Kw)

Theoretical Power (Kw)

Centrifugal

Horizontal

Carbon Steel

461590

4000

480

75%

5872

5321

A.1: Compressor Specifications (1 of 41)

Design Capacity (m3/hr)

Material of Construction

Orientation

Design Specifications

Compressor Type

Outlet Pressure (kPa)

78.7

96.2

102.4

Page 43: Styrene Production

ID Number: K-200.2 Date: 5/8/2006

Description: Dehydrogenation Feed Compressor Train Prepared By: ACJ

No. Required 1 Checked By: MJH

A.1: Compressor Specifications (2 of 41)

Design Capacity (m3/hr)

Material of Construction

Orientation

Design Specifications

Compressor Type

Outlet Pressure (kPa)

96.2

113.0

142.4

Theoretical Power (Kw)

Centrifugal

Horizontal

Carbon Steel

348500

4000

480

75%

5872

5321

Max Design Pressure (kPa)

Max Design Temperature (°C)

Adiabatic Efficiency

Design Power (Kw)

194.9

Vapor Composition (mol%)

Inlet Temperature (°C)

Outlet Temperature (°C)

Inlet Pressure (kPa)

Nitrogen

Water

Ethylene

Styrene

n-Butyl Benzene

Compressor Specifications

Fluid Properties

Process Feed Flow Rate (m3/hr) 315800

Ethane

n-Hexane

1 Meta 3 Ethyl Benzene

Toluene

Benzene

Ethyl Benzene

Hydrogen

Oxygen

Cumene

n-Propyl Benzene

Alpha Metal Styrene

Meta Diethyl Benzene

Carbon Dioxide

0.8452

0.0001

0.0000

0.0003

0.0000

0.1542

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0001

0.0000

0.0000

Page 44: Styrene Production

ID Number: K-200.3 Date: 5/8/2006

Description: Dehydrogenation Feed Compressor Train Prepared By: ACJ

No. Required 1 Checked By: MJH

0.0000

0.0000

0.0001

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

Carbon Dioxide

0.8452

0.0001

0.0000

0.0003

0.0000

0.1542

0.0000

0.0000

0.0000

Cumene

n-Propyl Benzene

Alpha Metal Styrene

Meta Diethyl Benzene

Benzene

Ethyl Benzene

Hydrogen

Oxygen

Ethane

n-Hexane

1 Meta 3 Ethyl Benzene

Toluene

Compressor Specifications

Fluid Properties

Process Feed Flow Rate (m3/hr) 241200

263.3

Vapor Composition (mol%)

Inlet Temperature (°C)

Outlet Temperature (°C)

Inlet Pressure (kPa)

Nitrogen

Water

Ethylene

Styrene

n-Butyl Benzene

Max Design Pressure (kPa)

Max Design Temperature (°C)

Adiabatic Efficiency

Design Power (Kw)

Theoretical Power (Kw)

Centrifugal

Horizontal

Carbon Steel

266100

4000

480

75%

5872

5321

A.1: Compressor Specifications (3 of 41)

Design Capacity (m3/hr)

Material of Construction

Orientation

Design Specifications

Compressor Type

Outlet Pressure (kPa)

113.0

129.2

194.9

Page 45: Styrene Production

ID Number: K-201 Date: 5/8/2006

Description: Air Feed Compressor Prepared By: ACJ

No. Required 1 Checked By: MJH

A.1: Compressor Specifications (4 of 41)

Design Capacity (m3/hr)

Material of Construction

Orientation

Design Specifications

Compressor Type

Outlet Pressure (kPa)

25.0

59.5

101.3

Theoretical Power (Kw)

Centrifugal

Horizontal

Carbon Steel

141760

4000

480

75%

1624

1471

Max Design Pressure (kPa)

Max Design Temperature (°C)

Adiabatic Efficiency

Design Power (Kw)

135.8

Vapor Composition (mol%)

Inlet Temperature (°C)

Outlet Temperature (°C)

Inlet Pressure (kPa)

Nitrogen

Water

Ethylene

Styrene

n-Butyl Benzene

Compressor Specifications

Fluid Properties

Process Feed Flow Rate (m3/hr) 128680

Ethane

n-Hexane

1 Meta 3 Ethyl Benzene

Toluene

Benzene

Ethyl Benzene

Hydrogen

Oxygen

Cumene

n-Propyl Benzene

Alpha Metal Styrene

Meta Diethyl Benzene

Carbon Dioxide

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.2100

0.7900

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

Page 46: Styrene Production

ID Number: K-202.1 Date: 5/8/2006

Description: Recycle Stream Compressor Train Prepared By: ACJ

No. Required 1 Checked By: MJH

0.0057

0.0000

0.0000

0.0000

0.0000

0.0246

0.0000

0.0000

0.0000

Carbon Dioxide

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.9697

Cumene

n-Propyl Benzene

Alpha Metal Styrene

Meta Diethyl Benzene

Benzene

Ethyl Benzene

Hydrogen

Oxygen

Ethane

n-Hexane

1 Meta 3 Ethyl Benzene

Toluene

Compressor Specifications

Fluid Properties

Process Feed Flow Rate (m3/hr) 163200

186.8

Vapor Composition (mol%)

Inlet Temperature (°C)

Outlet Temperature (°C)

Inlet Pressure (kPa)

Nitrogen

Water

Ethylene

Styrene

n-Butyl Benzene

Max Design Pressure (kPa)

Max Design Temperature (°C)

Adiabatic Efficiency

Design Power (Kw)

Theoretical Power (Kw)

Centrifugal

Horizontal

Carbon Steel

180720

4000

480

75%

3388

3059

A.1: Compressor Specifications (5 of 41)

Design Capacity (m3/hr)

Material of Construction

Orientation

Design Specifications

Compressor Type

Outlet Pressure (kPa)

25.0

69.2

128.8

Page 47: Styrene Production

ID Number: K-202.2 Date: 5/8/2006

Description: Recycle Stream Compressor Train Prepared By: ACJ

No. Required 1 Checked By: MJH

A.1: Compressor Specifications (6 of 41)

Design Capacity (m3/hr)

Material of Construction

Orientation

Design Specifications

Compressor Type

Outlet Pressure (kPa)

31.1

75.2

183.8

Theoretical Power (Kw)

Centrifugal

Horizontal

Carbon Steel

129160

4000

480

75%

3388

3059

Max Design Pressure (kPa)

Max Design Temperature (°C)

Adiabatic Efficiency

Design Power (Kw)

264.9

Vapor Composition (mol%)

Inlet Temperature (°C)

Outlet Temperature (°C)

Inlet Pressure (kPa)

Nitrogen

Water

Ethylene

Styrene

n-Butyl Benzene

Compressor Specifications

Fluid Properties

Process Feed Flow Rate (m3/hr) 116640

Ethane

n-Hexane

1 Meta 3 Ethyl Benzene

Toluene

Benzene

Ethyl Benzene

Hydrogen

Oxygen

Cumene

n-Propyl Benzene

Alpha Metal Styrene

Meta Diethyl Benzene

Carbon Dioxide

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.9697

0.0246

0.0000

0.0000

0.0000

0.0057

0.0000

0.0000

0.0000

0.0000

Page 48: Styrene Production

ID Number: K-300 Date: 5/8/2006

Description: Ethyl Benzene Recycle Stream Compressor Prepared By: ACJ

No. Required 1 Checked By: MJH

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0002

0.0000

Carbon Dioxide

0.0000

0.0000

0.0000

0.0041

0.0000

0.9957

0.0000

0.0000

0.0000

Cumene

n-Propyl Benzene

Alpha Metal Styrene

Meta Diethyl Benzene

Benzene

Ethyl Benzene

Hydrogen

Oxygen

Ethane

n-Hexane

1 Meta 3 Ethyl Benzene

Toluene

Compressor Specifications

Fluid Properties

Process Feed Flow Rate (m3/hr) 380800

105.0

Vapor Composition (mol%)

Inlet Temperature (°C)

Outlet Temperature (°C)

Inlet Pressure (kPa)

Nitrogen

Water

Ethylene

Styrene

n-Butyl Benzene

Max Design Pressure (kPa)

Max Design Temperature (°C)

Adiabatic Efficiency

Design Power (Kw)

Theoretical Power (Kw)

Centrifugal

Horizontal

Carbon Steel

425190

4000

480

75%

3404

3049

A.1: Compressor Specifications (7 of 41)

Design Capacity (m3/hr)

Material of Construction

Orientation

Design Specifications

Compressor Type

Outlet Pressure (kPa)

61.7

137.4

8.0

Page 49: Styrene Production

ID Number: K-400 Date: 5/8/2006

Description: Light Gases Stream Compressor Train Prepared By: ACJ

No. Required 1 Checked By: MJH

A.1: Compressor Specifications (8 of 41)

Design Capacity (m3/hr)

Material of Construction

Orientation

Design Specifications

Compressor Type

Outlet Pressure (kPa)

-50.0

-28.1

124.0

Theoretical Power (Kw)

Centrifugal

Horizontal

Stainless Steel

315360

4000

900

75%

5050

4574

Max Design Pressure (kPa)

Max Design Temperature (°C)

Adiabatic Efficiency

Design Power (Kw)

173.5

Vapor Composition (mol%)

Inlet Temperature (°C)

Outlet Temperature (°C)

Inlet Pressure (kPa)

Nitrogen

Water

Ethylene

Styrene

n-Butyl Benzene

Compressor Specifications

Fluid Properties

Process Feed Flow Rate (m3/hr) 285600

Ethane

n-Hexane

1 Meta 3 Ethyl Benzene

Toluene

Benzene

Ethyl Benzene

Hydrogen

Oxygen

Cumene

n-Propyl Benzene

Alpha Metal Styrene

Meta Diethyl Benzene

Carbon Dioxide

0.5804

0.0000

0.0000

0.0000

0.0000

0.0000

0.1199

0.0000

0.2367

0.0000

0.0630

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

Page 50: Styrene Production

ID Number: K-401.1 Date: 5/8/2006

Description: Light Gases Stream Compressor Train Prepared By: ACJ

No. Required 1 Checked By: MJH

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0630

0.0000

0.0000

Carbon Dioxide

0.5804

0.0000

0.0000

0.0000

0.0000

0.0000

0.1199

0.0000

0.2367

Cumene

n-Propyl Benzene

Alpha Metal Styrene

Meta Diethyl Benzene

Benzene

Ethyl Benzene

Hydrogen

Oxygen

Ethane

n-Hexane

1 Meta 3 Ethyl Benzene

Toluene

Compressor Specifications

Fluid Properties

Process Feed Flow Rate (m3/hr) 320300

187.4

Vapor Composition (mol%)

Inlet Temperature (°C)

Outlet Temperature (°C)

Inlet Pressure (kPa)

Nitrogen

Water

Ethylene

Styrene

n-Butyl Benzene

Max Design Pressure (kPa)

Max Design Temperature (°C)

Adiabatic Efficiency

Design Power (Kw)

Theoretical Power (Kw)

Centrifugal

Horizontal

Stainless Steel

353570

4000

900

75%

8730

7907

A.1: Compressor Specifications (9 of 41)

Design Capacity (m3/hr)

Material of Construction

Orientation

Design Specifications

Compressor Type

Outlet Pressure (kPa)

-68.6

-30.1

101.3

Page 51: Styrene Production

ID Number: K-401.2 Date: 5/8/2006

Description: Light Gases Stream Compressor Train Prepared By: ACJ

No. Required 1 Checked By: MJH

A.1: Compressor Specifications (10 of 41)

Design Capacity (m3/hr)

Material of Construction

Orientation

Design Specifications

Compressor Type

Outlet Pressure (kPa)

-50.0

-12.6

184.4

Theoretical Power (Kw)

Centrifugal

Horizontal

Stainless Steel

212010

4000

900

75%

8730

7907

Max Design Pressure (kPa)

Max Design Temperature (°C)

Adiabatic Efficiency

Design Power (Kw)

325.2

Vapor Composition (mol%)

Inlet Temperature (°C)

Outlet Temperature (°C)

Inlet Pressure (kPa)

Nitrogen

Water

Ethylene

Styrene

n-Butyl Benzene

Compressor Specifications

Fluid Properties

Process Feed Flow Rate (m3/hr) 192030

Ethane

n-Hexane

1 Meta 3 Ethyl Benzene

Toluene

Benzene

Ethyl Benzene

Hydrogen

Oxygen

Cumene

n-Propyl Benzene

Alpha Metal Styrene

Meta Diethyl Benzene

Carbon Dioxide

0.5804

0.0000

0.0000

0.0000

0.0000

0.0000

0.1199

0.0000

0.2367

0.0000

0.0630

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

Page 52: Styrene Production

ID Number: K-401.3 Date: 5/8/2006

Description: Light Gases Stream Compressor Train Prepared By: ACJ

No. Required 1 Checked By: MJH

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0630

0.0000

0.0000

Carbon Dioxide

0.5804

0.0000

0.0000

0.0000

0.0000

0.0000

0.1199

0.0000

0.2367

Cumene

n-Propyl Benzene

Alpha Metal Styrene

Meta Diethyl Benzene

Benzene

Ethyl Benzene

Hydrogen

Oxygen

Ethane

n-Hexane

1 Meta 3 Ethyl Benzene

Toluene

Compressor Specifications

Fluid Properties

Process Feed Flow Rate (m3/hr) 109880

568.3

Vapor Composition (mol%)

Inlet Temperature (°C)

Outlet Temperature (°C)

Inlet Pressure (kPa)

Nitrogen

Water

Ethylene

Styrene

n-Butyl Benzene

Max Design Pressure (kPa)

Max Design Temperature (°C)

Adiabatic Efficiency

Design Power (Kw)

Theoretical Power (Kw)

Centrifugal

Horizontal

Stainless Steel

121320

4000

900

75%

8730

7907

A.1: Compressor Specifications (11 of 41)

Design Capacity (m3/hr)

Material of Construction

Orientation

Design Specifications

Compressor Type

Outlet Pressure (kPa)

-50.0

-12.6

322.2

Page 53: Styrene Production

ID Number: K-401.4 Date: 5/8/2006

Description: Light Gases Stream Compressor Train Prepared By: ACJ

No. Required 1 Checked By: MJH

A.1: Compressor Specifications (12 of 41)

Design Capacity (m3/hr)

Material of Construction

Orientation

Design Specifications

Compressor Type

Outlet Pressure (kPa)

-50.0

-12.6

565.3

Theoretical Power (Kw)

Centrifugal

Horizontal

Stainless Steel

69151

4000

900

75%

8730

7907

Max Design Pressure (kPa)

Max Design Temperature (°C)

Adiabatic Efficiency

Design Power (Kw)

997.2

Vapor Composition (mol%)

Inlet Temperature (°C)

Outlet Temperature (°C)

Inlet Pressure (kPa)

Nitrogen

Water

Ethylene

Styrene

n-Butyl Benzene

Compressor Specifications

Fluid Properties

Process Feed Flow Rate (m3/hr) 62628

Ethane

n-Hexane

1 Meta 3 Ethyl Benzene

Toluene

Benzene

Ethyl Benzene

Hydrogen

Oxygen

Cumene

n-Propyl Benzene

Alpha Metal Styrene

Meta Diethyl Benzene

Carbon Dioxide

0.5804

0.0000

0.0000

0.0000

0.0000

0.0000

0.1199

0.0000

0.2367

0.0000

0.0630

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

Page 54: Styrene Production

ID Number: K-401.5 Date: 5/8/2006

Description: Light Gases Stream Compressor Train Prepared By: ACJ

No. Required 1 Checked By: MJH

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0630

0.0000

0.0000

Carbon Dioxide

0.5804

0.0000

0.0000

0.0000

0.0000

0.0000

0.1199

0.0000

0.2367

Cumene

n-Propyl Benzene

Alpha Metal Styrene

Meta Diethyl Benzene

Benzene

Ethyl Benzene

Hydrogen

Oxygen

Ethane

n-Hexane

1 Meta 3 Ethyl Benzene

Toluene

Compressor Specifications

Fluid Properties

Process Feed Flow Rate (m3/hr) 35836

1750.0

Vapor Composition (mol%)

Inlet Temperature (°C)

Outlet Temperature (°C)

Inlet Pressure (kPa)

Nitrogen

Water

Ethylene

Styrene

n-Butyl Benzene

Max Design Pressure (kPa)

Max Design Temperature (°C)

Adiabatic Efficiency

Design Power (Kw)

Theoretical Power (Kw)

Centrifugal

Horizontal

Stainless Steel

39564

4000

900

75%

8730

7907

A.1: Compressor Specifications (13 of 41)

Design Capacity (m3/hr)

Material of Construction

Orientation

Design Specifications

Compressor Type

Outlet Pressure (kPa)

-47.9

-10.6

997.2

Page 55: Styrene Production

ID Number: K-401.6 Date: 5/8/2006

Description: Light Gases Stream Compressor Train Prepared By: ACJ

No. Required 1 Checked By: MJH

A.1: Compressor Specifications (14 of 41)

Design Capacity (m3/hr)

Material of Construction

Orientation

Design Specifications

Compressor Type

Outlet Pressure (kPa)

-38.4

-1.6

1747.0

Theoretical Power (Kw)

Centrifugal

Horizontal

Stainless Steel

23534

4000

900

75%

8730

7907

Max Design Pressure (kPa)

Max Design Temperature (°C)

Adiabatic Efficiency

Design Power (Kw)

3003.0

Vapor Composition (mol%)

Inlet Temperature (°C)

Outlet Temperature (°C)

Inlet Pressure (kPa)

Nitrogen

Water

Ethylene

Styrene

n-Butyl Benzene

Compressor Specifications

Fluid Properties

Process Feed Flow Rate (m3/hr) 21318

Ethane

n-Hexane

1 Meta 3 Ethyl Benzene

Toluene

Benzene

Ethyl Benzene

Hydrogen

Oxygen

Cumene

n-Propyl Benzene

Alpha Metal Styrene

Meta Diethyl Benzene

Carbon Dioxide

0.5804

0.0000

0.0000

0.0000

0.0000

0.0000

0.1199

0.0000

0.2367

0.0000

0.0630

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

Page 56: Styrene Production

ID Number: K-402.1 Date: 5/8/2006

Description: Light Gases Stream Compressor Train Prepared By: ACJ

No. Required 1 Checked By: MJH

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0650

0.0000

0.0000

Carbon Dioxide

0.5550

0.0000

0.0000

0.0000

0.0000

0.0000

0.1277

0.0000

0.2520

Cumene

n-Propyl Benzene

Alpha Metal Styrene

Meta Diethyl Benzene

Benzene

Ethyl Benzene

Hydrogen

Oxygen

Ethane

n-Hexane

1 Meta 3 Ethyl Benzene

Toluene

Compressor Specifications

Fluid Properties

Process Feed Flow Rate (m3/hr) 255200

229.5

Vapor Composition (mol%)

Inlet Temperature (°C)

Outlet Temperature (°C)

Inlet Pressure (kPa)

Nitrogen

Water

Ethylene

Styrene

n-Butyl Benzene

Max Design Pressure (kPa)

Max Design Temperature (°C)

Adiabatic Efficiency

Design Power (Kw)

Theoretical Power (Kw)

Centrifugal

Horizontal

Stainless Steel

281630

4000

900

75%

9509

8614

A.1: Compressor Specifications (15 of 41)

Design Capacity (m3/hr)

Material of Construction

Orientation

Design Specifications

Compressor Type

Outlet Pressure (kPa)

-99.6

-52.6

101.3

Page 57: Styrene Production

ID Number: K-402.2 Date: 5/8/2006

Description: Light Gases Stream Compressor Train Prepared By: ACJ

No. Required 1 Checked By: MJH

A.1: Compressor Specifications (16 of 41)

Design Capacity (m3/hr)

Material of Construction

Orientation

Design Specifications

Compressor Type

Outlet Pressure (kPa)

-52.6

-8.8

229.5

Theoretical Power (Kw)

Centrifugal

Horizontal

Stainless Steel

158030

4000

900

75%

9509

8614

Max Design Pressure (kPa)

Max Design Temperature (°C)

Adiabatic Efficiency

Design Power (Kw)

443.6

Vapor Composition (mol%)

Inlet Temperature (°C)

Outlet Temperature (°C)

Inlet Pressure (kPa)

Nitrogen

Water

Ethylene

Styrene

n-Butyl Benzene

Compressor Specifications

Fluid Properties

Process Feed Flow Rate (m3/hr) 143200

Ethane

n-Hexane

1 Meta 3 Ethyl Benzene

Toluene

Benzene

Ethyl Benzene

Hydrogen

Oxygen

Cumene

n-Propyl Benzene

Alpha Metal Styrene

Meta Diethyl Benzene

Carbon Dioxide

0.5550

0.0000

0.0000

0.0000

0.0000

0.0000

0.1277

0.0000

0.2520

0.0000

0.0650

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

Page 58: Styrene Production

ID Number: K-402.3 Date: 5/8/2006

Description: Light Gases Stream Compressor Train Prepared By: ACJ

No. Required 1 Checked By: MJH

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0650

0.0000

0.0000

Carbon Dioxide

0.5550

0.0000

0.0000

0.0000

0.0000

0.0000

0.1277

0.0000

0.2520

Cumene

n-Propyl Benzene

Alpha Metal Styrene

Meta Diethyl Benzene

Benzene

Ethyl Benzene

Hydrogen

Oxygen

Ethane

n-Hexane

1 Meta 3 Ethyl Benzene

Toluene

Compressor Specifications

Fluid Properties

Process Feed Flow Rate (m3/hr) 75477

845.5

Vapor Composition (mol%)

Inlet Temperature (°C)

Outlet Temperature (°C)

Inlet Pressure (kPa)

Nitrogen

Water

Ethylene

Styrene

n-Butyl Benzene

Max Design Pressure (kPa)

Max Design Temperature (°C)

Adiabatic Efficiency

Design Power (Kw)

Theoretical Power (Kw)

Centrifugal

Horizontal

Stainless Steel

83311

4000

900

75%

9509

8614

A.1: Compressor Specifications (17 of 41)

Design Capacity (m3/hr)

Material of Construction

Orientation

Design Specifications

Compressor Type

Outlet Pressure (kPa)

-50.0

-6.3

440.6

Page 59: Styrene Production

ID Number: K-402.4 Date: 5/8/2006

Description: Light Gases Stream Compressor Train Prepared By: ACJ

No. Required 1 Checked By: MJH

A.1: Compressor Specifications (18 of 41)

Design Capacity (m3/hr)

Material of Construction

Orientation

Design Specifications

Compressor Type

Outlet Pressure (kPa)

-50.0

-6.3

842.5

Theoretical Power (Kw)

Centrifugal

Horizontal

Stainless Steel

43568

4000

900

75%

9509

8614

Max Design Pressure (kPa)

Max Design Temperature (°C)

Adiabatic Efficiency

Design Power (Kw)

1617.0

Vapor Composition (mol%)

Inlet Temperature (°C)

Outlet Temperature (°C)

Inlet Pressure (kPa)

Nitrogen

Water

Ethylene

Styrene

n-Butyl Benzene

Compressor Specifications

Fluid Properties

Process Feed Flow Rate (m3/hr) 39467

Ethane

n-Hexane

1 Meta 3 Ethyl Benzene

Toluene

Benzene

Ethyl Benzene

Hydrogen

Oxygen

Cumene

n-Propyl Benzene

Alpha Metal Styrene

Meta Diethyl Benzene

Carbon Dioxide

0.5550

0.0000

0.0000

0.0000

0.0000

0.0000

0.1277

0.0000

0.2520

0.0000

0.0650

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

Page 60: Styrene Production

ID Number: K-402.5 Date: 5/8/2006

Description: Light Gases Stream Compressor Train Prepared By: ACJ

No. Required 1 Checked By: MJH

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0650

0.0000

0.0000

Carbon Dioxide

0.5550

0.0000

0.0000

0.0000

0.0000

0.0000

0.1277

0.0000

0.2520

Cumene

n-Propyl Benzene

Alpha Metal Styrene

Meta Diethyl Benzene

Benzene

Ethyl Benzene

Hydrogen

Oxygen

Ethane

n-Hexane

1 Meta 3 Ethyl Benzene

Toluene

Compressor Specifications

Fluid Properties

Process Feed Flow Rate (m3/hr) 21763

3003.0

Vapor Composition (mol%)

Inlet Temperature (°C)

Outlet Temperature (°C)

Inlet Pressure (kPa)

Nitrogen

Water

Ethylene

Styrene

n-Butyl Benzene

Max Design Pressure (kPa)

Max Design Temperature (°C)

Adiabatic Efficiency

Design Power (Kw)

Theoretical Power (Kw)

Centrifugal

Horizontal

Stainless Steel

24020

4000

900

75%

9509

8614

A.1: Compressor Specifications (19 of 41)

Design Capacity (m3/hr)

Material of Construction

Orientation

Design Specifications

Compressor Type

Outlet Pressure (kPa)

-37.0

5.8

1617.0

Page 61: Styrene Production

ID Number: K-403.1 Date: 5/8/2006

Description: Light Gases Stream Compressor Train Prepared By: ACJ

No. Required 1 Checked By: MJH

A.1: Compressor Specifications (20 of 41)

Design Capacity (m3/hr)

Material of Construction

Orientation

Design Specifications

Compressor Type

Outlet Pressure (kPa)

-116.0

-26.7

101.3

Theoretical Power (Kw)

Centrifugal

Horizontal

Stainless Steel

137710

4000

900

75%

8495

7671

Max Design Pressure (kPa)

Max Design Temperature (°C)

Adiabatic Efficiency

Design Power (Kw)

396.8

Vapor Composition (mol%)

Inlet Temperature (°C)

Outlet Temperature (°C)

Inlet Pressure (kPa)

Nitrogen

Water

Ethylene

Styrene

n-Butyl Benzene

Compressor Specifications

Fluid Properties

Process Feed Flow Rate (m3/hr) 124400

Ethane

n-Hexane

1 Meta 3 Ethyl Benzene

Toluene

Benzene

Ethyl Benzene

Hydrogen

Oxygen

Cumene

n-Propyl Benzene

Alpha Metal Styrene

Meta Diethyl Benzene

Carbon Dioxide

0.0173

0.0000

0.0000

0.0000

0.0000

0.0000

0.2374

0.0000

0.4684

0.0000

0.1215

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

Page 62: Styrene Production

ID Number: K-403.2 Date: 5/8/2006

Description: Light Gases Stream Compressor Train Prepared By: ACJ

No. Required 1 Checked By: MJH

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.1215

0.0000

0.0000

Carbon Dioxide

0.0173

0.0000

0.0000

0.0000

0.0000

0.0000

0.2374

0.0000

0.4684

Cumene

n-Propyl Benzene

Alpha Metal Styrene

Meta Diethyl Benzene

Benzene

Ethyl Benzene

Hydrogen

Oxygen

Ethane

n-Hexane

1 Meta 3 Ethyl Benzene

Toluene

Compressor Specifications

Fluid Properties

Process Feed Flow Rate (m3/hr) 45424

1088.0

Vapor Composition (mol%)

Inlet Temperature (°C)

Outlet Temperature (°C)

Inlet Pressure (kPa)

Nitrogen

Water

Ethylene

Styrene

n-Butyl Benzene

Max Design Pressure (kPa)

Max Design Temperature (°C)

Adiabatic Efficiency

Design Power (Kw)

Theoretical Power (Kw)

Centrifugal

Horizontal

Stainless Steel

50302

4000

900

75%

8495

7671

A.1: Compressor Specifications (21 of 41)

Design Capacity (m3/hr)

Material of Construction

Orientation

Design Specifications

Compressor Type

Outlet Pressure (kPa)

-50.0

34.6

393.8

Page 63: Styrene Production

ID Number: K-403.3 Date: 5/8/2006

Description: Light Gases Stream Compressor Train Prepared By: ACJ

No. Required 1 Checked By: MJH

A.1: Compressor Specifications (22 of 41)

Design Capacity (m3/hr)

Material of Construction

Orientation

Design Specifications

Compressor Type

Outlet Pressure (kPa)

-50.0

34.6

1085.0

Theoretical Power (Kw)

Centrifugal

Horizontal

Stainless Steel

18251

4000

900

75%

8495

7671

Max Design Pressure (kPa)

Max Design Temperature (°C)

Adiabatic Efficiency

Design Power (Kw)

3000.0

Vapor Composition (mol%)

Inlet Temperature (°C)

Outlet Temperature (°C)

Inlet Pressure (kPa)

Nitrogen

Water

Ethylene

Styrene

n-Butyl Benzene

Compressor Specifications

Fluid Properties

Process Feed Flow Rate (m3/hr) 16480

Ethane

n-Hexane

1 Meta 3 Ethyl Benzene

Toluene

Benzene

Ethyl Benzene

Hydrogen

Oxygen

Cumene

n-Propyl Benzene

Alpha Metal Styrene

Meta Diethyl Benzene

Carbon Dioxide

0.0173

0.0000

0.0000

0.0000

0.0000

0.0000

0.2374

0.0000

0.4684

0.0000

0.1215

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

Page 64: Styrene Production

ID Number: K-404.1 Date: 5/8/2006

Description: Light Gases Stream Compressor Train Prepared By: ACJ

No. Required 1 Checked By: MJH

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.1326

0.0000

0.0000

Carbon Dioxide

0.0968

0.0000

0.0000

0.0000

0.0000

0.0000

0.2591

0.0000

0.5114

Cumene

n-Propyl Benzene

Alpha Metal Styrene

Meta Diethyl Benzene

Benzene

Ethyl Benzene

Hydrogen

Oxygen

Ethane

n-Hexane

1 Meta 3 Ethyl Benzene

Toluene

Compressor Specifications

Fluid Properties

Process Feed Flow Rate (m3/hr) 108700

409.6

Vapor Composition (mol%)

Inlet Temperature (°C)

Outlet Temperature (°C)

Inlet Pressure (kPa)

Nitrogen

Water

Ethylene

Styrene

n-Butyl Benzene

Max Design Pressure (kPa)

Max Design Temperature (°C)

Adiabatic Efficiency

Design Power (Kw)

Theoretical Power (Kw)

Centrifugal

Horizontal

Stainless Steel

120400

4000

900

75%

7683

6937

A.1: Compressor Specifications (23 of 41)

Design Capacity (m3/hr)

Material of Construction

Orientation

Compressor Type

Outlet Pressure (kPa)

-123.1

-31.8

101.3

Page 65: Styrene Production

ID Number: K-404.2 Date: 5/8/2006

Description: Light Gases Stream Compressor Train Prepared By: ACJ

No. Required 1 Checked By: MJH

A.1: Compressor Specifications (24 of 41)

Design Capacity (m3/hr)

Material of Construction

Orientation

Compressor Type

Outlet Pressure (kPa)

-50.0

37.1

406.6

Theoretical Power (Kw)

Centrifugal

Horizontal

Stainless Steel

44629

4000

900

75%

7683

6937

Max Design Pressure (kPa)

Max Design Temperature (°C)

Adiabatic Efficiency

Design Power (Kw)

1106.0

Vapor Composition (mol%)

Inlet Temperature (°C)

Outlet Temperature (°C)

Inlet Pressure (kPa)

Nitrogen

Water

Ethylene

Styrene

n-Butyl Benzene

Compressor Specifications

Fluid Properties

Process Feed Flow Rate (m3/hr) 40301

Ethane

n-Hexane

1 Meta 3 Ethyl Benzene

Toluene

Benzene

Ethyl Benzene

Hydrogen

Oxygen

Cumene

n-Propyl Benzene

Alpha Metal Styrene

Meta Diethyl Benzene

Carbon Dioxide

0.0968

0.0000

0.0000

0.0000

0.0000

0.0000

0.2591

0.0000

0.5114

0.0000

0.1326

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

Page 66: Styrene Production

ID Number: K-404.3 Date: 5/8/2006

Description: Light Gases Stream Compressor Train Prepared By: ACJ

No. Required 1 Checked By: MJH

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.1326

0.0000

0.0000

Carbon Dioxide

0.0968

0.0000

0.0000

0.0000

0.0000

0.0000

0.2591

0.0000

0.5114

Cumene

n-Propyl Benzene

Alpha Metal Styrene

Meta Diethyl Benzene

Benzene

Ethyl Benzene

Hydrogen

Oxygen

Ethane

n-Hexane

1 Meta 3 Ethyl Benzene

Toluene

Compressor Specifications

Fluid Properties

Process Feed Flow Rate (m3/hr) 14856

3000.0

Vapor Composition (mol%)

Inlet Temperature (°C)

Outlet Temperature (°C)

Inlet Pressure (kPa)

Nitrogen

Water

Ethylene

Styrene

n-Butyl Benzene

Max Design Pressure (kPa)

Max Design Temperature (°C)

Adiabatic Efficiency

Design Power (Kw)

Theoretical Power (Kw)

Centrifugal

Horizontal

Stainless Steel

16453

4000

900

75%

7683

6937

A.1: Compressor Specifications (25 of 41)

Design Capacity (m3/hr)

Material of Construction

Orientation

Compressor Type

Outlet Pressure (kPa)

-50.0

37.1

1103.0

Page 67: Styrene Production

ID Number: K-405.1 Date: 5/8/2006

Description: Light Gases Stream Compressor Train Prepared By: ACJ

No. Required 1 Checked By: MJH

A.1: Compressor Specifications (26 of 41)

Design Capacity (m3/hr)

Material of Construction

Orientation

Compressor Type

Outlet Pressure (kPa)

-132.0

-39.8

101.3

Theoretical Power (Kw)

Centrifugal

Horizontal

Stainless Steel

105410

4000

900

75%

7012

6331

Max Design Pressure (kPa)

Max Design Temperature (°C)

Adiabatic Efficiency

Design Power (Kw)

427.2

Vapor Composition (mol%)

Inlet Temperature (°C)

Outlet Temperature (°C)

Inlet Pressure (kPa)

Nitrogen

Water

Ethylene

Styrene

n-Butyl Benzene

Compressor Specifications

Fluid Properties

Process Feed Flow Rate (m3/hr) 95210

Ethane

n-Hexane

1 Meta 3 Ethyl Benzene

Toluene

Benzene

Ethyl Benzene

Hydrogen

Oxygen

Cumene

n-Propyl Benzene

Alpha Metal Styrene

Meta Diethyl Benzene

Carbon Dioxide

0.0428

0.0000

0.0000

0.0000

0.0000

0.0000

0.2783

0.0000

0.5493

0.0000

0.1296

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

Page 68: Styrene Production

ID Number: K-405.2 Date: 5/8/2006

Description: Light Gases Stream Compressor Train Prepared By: ACJ

No. Required 1 Checked By: MJH

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.1296

0.0000

0.0000

Carbon Dioxide

0.0428

0.0000

0.0000

0.0000

0.0000

0.0000

0.2783

0.0000

0.5493

Cumene

n-Propyl Benzene

Alpha Metal Styrene

Meta Diethyl Benzene

Benzene

Ethyl Benzene

Hydrogen

Oxygen

Ethane

n-Hexane

1 Meta 3 Ethyl Benzene

Toluene

Compressor Specifications

Fluid Properties

Process Feed Flow Rate (m3/hr) 35962

1129.6

Vapor Composition (mol%)

Inlet Temperature (°C)

Outlet Temperature (°C)

Inlet Pressure (kPa)

Nitrogen

Water

Ethylene

Styrene

n-Butyl Benzene

Max Design Pressure (kPa)

Max Design Temperature (°C)

Adiabatic Efficiency

Design Power (Kw)

Theoretical Power (Kw)

Centrifugal

Horizontal

Stainless Steel

39824

4000

900

75%

7012

6331

A.1: Compressor Specifications (27 of 41)

Design Capacity (m3/hr)

Material of Construction

Orientation

Compressor Type

Outlet Pressure (kPa)

-50.0

38.5

424.2

Page 69: Styrene Production

ID Number: K-405.3 Date: 5/8/2006

Description: Light Gases Stream Compressor Train Prepared By: ACJ

No. Required 1 Checked By: MJH

A.1: Compressor Specifications (28 of 41)

Design Capacity (m3/hr)

Material of Construction

Orientation

Compressor Type

Outlet Pressure (kPa)

-50.0

38.5

1127.0

Theoretical Power (Kw)

Centrifugal

Horizontal

Stainless Steel

15000

4000

900

75%

7012

6331

Max Design Pressure (kPa)

Max Design Temperature (°C)

Adiabatic Efficiency

Design Power (Kw)

3000.0

Vapor Composition (mol%)

Inlet Temperature (°C)

Outlet Temperature (°C)

Inlet Pressure (kPa)

Nitrogen

Water

Ethylene

Styrene

n-Butyl Benzene

Compressor Specifications

Fluid Properties

Process Feed Flow Rate (m3/hr) 13541

Ethane

n-Hexane

1 Meta 3 Ethyl Benzene

Toluene

Benzene

Ethyl Benzene

Hydrogen

Oxygen

Cumene

n-Propyl Benzene

Alpha Metal Styrene

Meta Diethyl Benzene

Carbon Dioxide

0.0428

0.0000

0.0000

0.0000

0.0000

0.0000

0.2783

0.0000

0.5493

0.0000

0.1296

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

Page 70: Styrene Production

ID Number: K-406.1 Date: 5/8/2006

Description: Light Gases Stream Compressor Train Prepared By: ACJ

No. Required 1 Checked By: MJH

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0880

0.0000

0.0000

Carbon Dioxide

0.0280

0.0000

0.0000

0.0000

0.0000

0.0000

0.2973

0.0000

0.5867

Cumene

n-Propyl Benzene

Alpha Metal Styrene

Meta Diethyl Benzene

Benzene

Ethyl Benzene

Hydrogen

Oxygen

Ethane

n-Hexane

1 Meta 3 Ethyl Benzene

Toluene

Compressor Specifications

Fluid Properties

Process Feed Flow Rate (m3/hr) 86480

436.2

Vapor Composition (mol%)

Inlet Temperature (°C)

Outlet Temperature (°C)

Inlet Pressure (kPa)

Nitrogen

Water

Ethylene

Styrene

n-Butyl Benzene

Max Design Pressure (kPa)

Max Design Temperature (°C)

Adiabatic Efficiency

Design Power (Kw)

Theoretical Power (Kw)

Centrifugal

Horizontal

Stainless Steel

95756

4000

900

75%

6508

5874

A.1: Compressor Specifications (29 of 41)

Design Capacity (m3/hr)

Material of Construction

Orientation

Compressor Type

Outlet Pressure (kPa)

-136.2

-43.0

101.3

Page 71: Styrene Production

ID Number: K-406.2 Date: 5/8/2006

Description: Light Gases Stream Compressor Train Prepared By: ACJ

No. Required 1 Checked By: MJH

A.1: Compressor Specifications (30 of 41)

Design Capacity (m3/hr)

Material of Construction

Orientation

Compressor Type

Outlet Pressure (kPa)

-50.0

40.1

433.2

Theoretical Power (Kw)

Centrifugal

Horizontal

Stainless Steel

36512

4000

900

75%

6508

5874

Max Design Pressure (kPa)

Max Design Temperature (°C)

Adiabatic Efficiency

Design Power (Kw)

1142.0

Vapor Composition (mol%)

Inlet Temperature (°C)

Outlet Temperature (°C)

Inlet Pressure (kPa)

Nitrogen

Water

Ethylene

Styrene

n-Butyl Benzene

Compressor Specifications

Fluid Properties

Process Feed Flow Rate (m3/hr) 32965

Ethane

n-Hexane

1 Meta 3 Ethyl Benzene

Toluene

Benzene

Ethyl Benzene

Hydrogen

Oxygen

Cumene

n-Propyl Benzene

Alpha Metal Styrene

Meta Diethyl Benzene

Carbon Dioxide

0.0280

0.0000

0.0000

0.0000

0.0000

0.0000

0.2973

0.0000

0.5867

0.0000

0.0880

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

Page 72: Styrene Production

ID Number: K-406.3 Date: 5/8/2006

Description: Light Gases Stream Compressor Train Prepared By: ACJ

No. Required 1 Checked By: MJH

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0880

0.0000

0.0000

Carbon Dioxide

0.0280

0.0000

0.0000

0.0000

0.0000

0.0000

0.2973

0.0000

0.5867

Cumene

n-Propyl Benzene

Alpha Metal Styrene

Meta Diethyl Benzene

Benzene

Ethyl Benzene

Hydrogen

Oxygen

Ethane

n-Hexane

1 Meta 3 Ethyl Benzene

Toluene

Compressor Specifications

Fluid Properties

Process Feed Flow Rate (m3/hr) 12544

3000.0

Vapor Composition (mol%)

Inlet Temperature (°C)

Outlet Temperature (°C)

Inlet Pressure (kPa)

Nitrogen

Water

Ethylene

Styrene

n-Butyl Benzene

Max Design Pressure (kPa)

Max Design Temperature (°C)

Adiabatic Efficiency

Design Power (Kw)

Theoretical Power (Kw)

Centrifugal

Horizontal

Stainless Steel

13898

4000

900

75%

6508

5874

A.1: Compressor Specifications (31 of 41)

Design Capacity (m3/hr)

Material of Construction

Orientation

Compressor Type

Outlet Pressure (kPa)

-50.0

40.1

1139.0

Page 73: Styrene Production

ID Number: K-407.1 Date: 5/8/2006

Description: Light Gases Stream Compressor Train Prepared By: ACJ

No. Required 1 Checked By: MJH

A.1: Compressor Specifications (32 of 41)

Design Capacity (m3/hr)

Material of Construction

Orientation

Compressor Type

Outlet Pressure (kPa)

-141.4

-47.9

101.3

Theoretical Power (Kw)

Centrifugal

Horizontal

Stainless Steel

87432

4000

900

75%

6097

5501

Max Design Pressure (kPa)

Max Design Temperature (°C)

Adiabatic Efficiency

Design Power (Kw)

448.1

Vapor Composition (mol%)

Inlet Temperature (°C)

Outlet Temperature (°C)

Inlet Pressure (kPa)

Nitrogen

Water

Ethylene

Styrene

n-Butyl Benzene

Compressor Specifications

Fluid Properties

Process Feed Flow Rate (m3/hr) 78950

Ethane

n-Hexane

1 Meta 3 Ethyl Benzene

Toluene

Benzene

Ethyl Benzene

Hydrogen

Oxygen

Cumene

n-Propyl Benzene

Alpha Metal Styrene

Meta Diethyl Benzene

Carbon Dioxide

0.0159

0.0000

0.0000

0.0000

0.0000

0.0000

0.3133

0.0000

0.6183

0.0000

0.0525

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

Page 74: Styrene Production

ID Number: K-407.2 Date: 5/8/2006

Description: Light Gases Stream Compressor Train Prepared By: ACJ

No. Required 1 Checked By: MJH

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0525

0.0000

0.0000

Carbon Dioxide

0.0159

0.0000

0.0000

0.0000

0.0000

0.0000

0.3133

0.0000

0.6183

Cumene

n-Propyl Benzene

Alpha Metal Styrene

Meta Diethyl Benzene

Benzene

Ethyl Benzene

Hydrogen

Oxygen

Ethane

n-Hexane

1 Meta 3 Ethyl Benzene

Toluene

Compressor Specifications

Fluid Properties

Process Feed Flow Rate (m3/hr) 30448

1157.0

Vapor Composition (mol%)

Inlet Temperature (°C)

Outlet Temperature (°C)

Inlet Pressure (kPa)

Nitrogen

Water

Ethylene

Styrene

n-Butyl Benzene

Max Design Pressure (kPa)

Max Design Temperature (°C)

Adiabatic Efficiency

Design Power (Kw)

Theoretical Power (Kw)

Centrifugal

Horizontal

Stainless Steel

33731

4000

900

75%

6097

5501

A.1: Compressor Specifications (33 of 41)

Design Capacity (m3/hr)

Material of Construction

Orientation

Compressor Type

Outlet Pressure (kPa)

-50.0

41.0

445.1

Page 75: Styrene Production

ID Number: K-407.3 Date: 5/8/2006

Description: Light Gases Stream Compressor Train Prepared By: ACJ

No. Required 1 Checked By: MJH

A.1: Compressor Specifications (34 of 41)

Design Capacity (m3/hr)

Material of Construction

Orientation

Compressor Type

Outlet Pressure (kPa)

-50.0

41.0

1154.0

Theoretical Power (Kw)

Centrifugal

Horizontal

Stainless Steel

13014

4000

900

75%

6097

5501

Max Design Pressure (kPa)

Max Design Temperature (°C)

Adiabatic Efficiency

Design Power (Kw)

3000.0

Vapor Composition (mol%)

Inlet Temperature (°C)

Outlet Temperature (°C)

Inlet Pressure (kPa)

Nitrogen

Water

Ethylene

Styrene

n-Butyl Benzene

Compressor Specifications

Fluid Properties

Process Feed Flow Rate (m3/hr) 11743

Ethane

n-Hexane

1 Meta 3 Ethyl Benzene

Toluene

Benzene

Ethyl Benzene

Hydrogen

Oxygen

Cumene

n-Propyl Benzene

Alpha Metal Styrene

Meta Diethyl Benzene

Carbon Dioxide

0.0159

0.0000

0.0000

0.0000

0.0000

0.0000

0.3133

0.0000

0.6183

0.0000

0.0525

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

Page 76: Styrene Production

ID Number: K-408.1 Date: 5/8/2006

Description: Light Gases Stream Compressor Train Prepared By: ACJ

No. Required 1 Checked By: MJH

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0258

0.0000

0.0000

Carbon Dioxide

0.0074

0.0000

0.0000

0.0000

0.0000

0.0000

0.3252

0.0000

0.6417

Cumene

n-Propyl Benzene

Alpha Metal Styrene

Meta Diethyl Benzene

Benzene

Ethyl Benzene

Hydrogen

Oxygen

Ethane

n-Hexane

1 Meta 3 Ethyl Benzene

Toluene

Compressor Specifications

Fluid Properties

Process Feed Flow Rate (m3/hr) 72360

458.4

Vapor Composition (mol%)

Inlet Temperature (°C)

Outlet Temperature (°C)

Inlet Pressure (kPa)

Nitrogen

Water

Ethylene

Styrene

n-Butyl Benzene

Max Design Pressure (kPa)

Max Design Temperature (°C)

Adiabatic Efficiency

Design Power (Kw)

Theoretical Power (Kw)

Centrifugal

Horizontal

Stainless Steel

80145

4000

900

75%

5707

5150

A.1: Compressor Specifications (35 of 41)

Design Capacity (m3/hr)

Material of Construction

Orientation

Compressor Type

Outlet Pressure (kPa)

-147.9

-55.9

101.3

Page 77: Styrene Production

ID Number: K-408.2 Date: 5/8/2006

Description: Light Gases Stream Compressor Train Prepared By: ACJ

No. Required 1 Checked By: MJH

A.1: Compressor Specifications (36 of 41)

Design Capacity (m3/hr)

Material of Construction

Orientation

Compressor Type

Outlet Pressure (kPa)

-55.9

34.3

458.4

Theoretical Power (Kw)

Centrifugal

Horizontal

Stainless Steel

30712

4000

900

75%

5707

5150

Max Design Pressure (kPa)

Max Design Temperature (°C)

Adiabatic Efficiency

Design Power (Kw)

1187.0

Vapor Composition (mol%)

Inlet Temperature (°C)

Outlet Temperature (°C)

Inlet Pressure (kPa)

Nitrogen

Water

Ethylene

Styrene

n-Butyl Benzene

Compressor Specifications

Fluid Properties

Process Feed Flow Rate (m3/hr) 27739

Ethane

n-Hexane

1 Meta 3 Ethyl Benzene

Toluene

Benzene

Ethyl Benzene

Hydrogen

Oxygen

Cumene

n-Propyl Benzene

Alpha Metal Styrene

Meta Diethyl Benzene

Carbon Dioxide

0.0074

0.0000

0.0000

0.0000

0.0000

0.0000

0.3252

0.0000

0.6417

0.0000

0.0258

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

Page 78: Styrene Production

ID Number: K-408.3 Date: 5/8/2006

Description: Light Gases Stream Compressor Train Prepared By: ACJ

No. Required 1 Checked By: MJH

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0258

0.0000

0.0000

Carbon Dioxide

0.0074

0.0000

0.0000

0.0000

0.0000

0.0000

0.3252

0.0000

0.6417

Cumene

n-Propyl Benzene

Alpha Metal Styrene

Meta Diethyl Benzene

Benzene

Ethyl Benzene

Hydrogen

Oxygen

Ethane

n-Hexane

1 Meta 3 Ethyl Benzene

Toluene

Compressor Specifications

Fluid Properties

Process Feed Flow Rate (m3/hr) 11029

3000.0

Vapor Composition (mol%)

Inlet Temperature (°C)

Outlet Temperature (°C)

Inlet Pressure (kPa)

Nitrogen

Water

Ethylene

Styrene

n-Butyl Benzene

Max Design Pressure (kPa)

Max Design Temperature (°C)

Adiabatic Efficiency

Design Power (Kw)

Theoretical Power (Kw)

Centrifugal

Horizontal

Stainless Steel

12223

4000

900

75%

5707

5150

A.1: Compressor Specifications (37 of 41)

Design Capacity (m3/hr)

Material of Construction

Orientation

Compressor Type

Outlet Pressure (kPa)

-50.0

40.0

1184.0

Page 79: Styrene Production

ID Number: K-409.1 Date: 5/8/2006

Description: Light Gases Stream Compressor Train Prepared By: ACJ

No. Required 1 Checked By: MJH

A.1: Compressor Specifications (38 of 41)

Design Capacity (m3/hr)

Material of Construction

Orientation

Compressor Type

Outlet Pressure (kPa)

-155.6

-66.6

101.3

Theoretical Power (Kw)

Centrifugal

Horizontal

Stainless Steel

73585

4000

900

75%

5364

4840

Max Design Pressure (kPa)

Max Design Temperature (°C)

Adiabatic Efficiency

Design Power (Kw)

470.8

Vapor Composition (mol%)

Inlet Temperature (°C)

Outlet Temperature (°C)

Inlet Pressure (kPa)

Nitrogen

Water

Ethylene

Styrene

n-Butyl Benzene

Compressor Specifications

Fluid Properties

Process Feed Flow Rate (m3/hr) 66440

Ethane

n-Hexane

1 Meta 3 Ethyl Benzene

Toluene

Benzene

Ethyl Benzene

Hydrogen

Oxygen

Cumene

n-Propyl Benzene

Alpha Metal Styrene

Meta Diethyl Benzene

Carbon Dioxide

0.0026

0.0000

0.0000

0.0000

0.0000

0.0000

0.3322

0.0000

0.6555

0.0000

0.0097

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

Page 80: Styrene Production

ID Number: K-409.2 Date: 5/8/2006

Description: Light Gases Stream Compressor Train Prepared By: ACJ

No. Required 1 Checked By: MJH

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0097

0.0000

0.0000

Carbon Dioxide

0.0026

0.0000

0.0000

0.0000

0.0000

0.0000

0.3322

0.0000

0.6555

Cumene

n-Propyl Benzene

Alpha Metal Styrene

Meta Diethyl Benzene

Benzene

Ethyl Benzene

Hydrogen

Oxygen

Ethane

n-Hexane

1 Meta 3 Ethyl Benzene

Toluene

Compressor Specifications

Fluid Properties

Process Feed Flow Rate (m3/hr) 25128

1228.0

Vapor Composition (mol%)

Inlet Temperature (°C)

Outlet Temperature (°C)

Inlet Pressure (kPa)

Nitrogen

Water

Ethylene

Styrene

n-Butyl Benzene

Max Design Pressure (kPa)

Max Design Temperature (°C)

Adiabatic Efficiency

Design Power (Kw)

Theoretical Power (Kw)

Centrifugal

Horizontal

Stainless Steel

27820

4000

900

75%

5364

4840

A.1: Compressor Specifications (39 of 41)

Design Capacity (m3/hr)

Material of Construction

Orientation

Compressor Type

Outlet Pressure (kPa)

-66.6

21.0

470.8

Page 81: Styrene Production

ID Number: K-409.3 Date: 5/8/2006

Description: Light Gases Stream Compressor Train Prepared By: ACJ

No. Required 1 Checked By: MJH

A.1: Compressor Specifications (40 of 41)

Design Capacity (m3/hr)

Material of Construction

Orientation

Compressor Type

Outlet Pressure (kPa)

-50.0

37.4

1225.0

Theoretical Power (Kw)

Centrifugal

Horizontal

Stainless Steel

11570

4000

900

75%

5364

4840

Max Design Pressure (kPa)

Max Design Temperature (°C)

Adiabatic Efficiency

Design Power (Kw)

3000.0

Vapor Composition (mol%)

Inlet Temperature (°C)

Outlet Temperature (°C)

Inlet Pressure (kPa)

Nitrogen

Water

Ethylene

Styrene

n-Butyl Benzene

Compressor Specifications

Fluid Properties

Process Feed Flow Rate (m3/hr) 10437

Ethane

n-Hexane

1 Meta 3 Ethyl Benzene

Toluene

Benzene

Ethyl Benzene

Hydrogen

Oxygen

Cumene

n-Propyl Benzene

Alpha Metal Styrene

Meta Diethyl Benzene

Carbon Dioxide

0.0026

0.0000

0.0000

0.0000

0.0000

0.0000

0.3322

0.0000

0.6555

0.0000

0.0097

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

Page 82: Styrene Production

ID Number: K-410 Date: 5/8/2006

Description: Light Gases Stream Compressor Train Prepared By: ACJ

No. Required 1 Checked By: MJH

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0031

0.0000

0.0000

Carbon Dioxide

0.0008

0.0000

0.0000

0.0000

0.0000

0.0000

0.3350

0.0000

0.6611

Cumene

n-Propyl Benzene

Alpha Metal Styrene

Meta Diethyl Benzene

Benzene

Ethyl Benzene

Hydrogen

Oxygen

Ethane

n-Hexane

1 Meta 3 Ethyl Benzene

Toluene

Compressor Specifications

Fluid Properties

Process Feed Flow Rate (m3/hr) 61520

138.0

Vapor Composition (mol%)

Inlet Temperature (°C)

Outlet Temperature (°C)

Inlet Pressure (kPa)

Nitrogen

Water

Ethylene

Styrene

n-Butyl Benzene

Max Design Pressure (kPa)

Max Design Temperature (°C)

Adiabatic Efficiency

Design Power (Kw)

Theoretical Power (Kw)

Centrifugal

Horizontal

Stainless Steel

68172

4000

900

75%

730

659

A.1: Compressor Specifications (41 of 41)

Design Capacity (m3/hr)

Material of Construction

Orientation

Compressor Type

Outlet Pressure (kPa)

-163.4

-151.1

101.3

Page 83: Styrene Production

ID Number: E-100 Date: 5/9/2006

Description:Prepared By: ACJ

No. Required 1 Checked By: MJH

Inlet Outlet Inlet Outlet

0 366000 121640 0

366000 0 0 121640

-120 25 111 111

101 101 150 147

584 1.22 0.85 52.08

0.0000 0.0095 0.0125 0.0000

0.2517 0.0000 0.0000 0.2490

72.03 51.96 39.87 75.92

0.0000 0.0213 0.0254 0.0000

0.1840 0.0000 0.0000 0.6847

Viscosity - Liquid (cP)

Unit Construction

Fluid

Total Heat Transfer Area (m2)

Process Streams

Specific Heat (J/mol-K)

Thermal Conductivity - Vapor (W/m-K)

Flow Rate - Vapor (kg/hr)

Heat Flux (kJ/hr-m2-K)

391 4697

Thermal Conductivity - Liquid (W/m-K)

Duty (MJ/hr)

270680

A.2: Heat Exchanger Specifications (1 of 61)

Heat Exchanger Specifications

Unit Performance & Fluid Properties

Tube Side

Ethane/Ethylene Return Heater

Shell Side

Exhaust Steam

Flow Rate - Liquid (kg/hr)

Density (kg/m3)

Viscosity - Vapor (cP)

Temperature (°C)

Pressure (kPa)

Material of Construction Carbon Steel

Shell Side

1

Carbon Steel

Tube Side

Number of Passes 2

Page 84: Styrene Production

ID Number: T-100C Date: 5/9/2006

Description:Prepared By: ACJ

No. Required 1 Checked By: MJH

Inlet Outlet Inlet Outlet

124100 124100 0 46639

0 0 46639 0

148 148 15 111

136 133 150 147

4.12 4.12 1015.00 0.85

0.0083 0.0083 0.0000 0.0125

0.0000 0.0000 1.1360 0.0000

178.70 178.70 75.44 39.87

0.0199 0.0199 0.0000 0.0254

0.0000 0.0000 0.5953 0.0000

Cooling Water

Material of Construction Carbon Steel

Shell Side

1

Carbon Steel

Unit Construction

Flow Rate - Liquid (kg/hr)

Process StreamsFluid

A.2: Heat Exchanger Specifications (2 of 61)

Heat Exchanger Specifications

Unit Performance & Fluid Properties

Tube Side

Column T-100 Condenser

Shell Side

Thermal Conductivity - Vapor (W/m-K)

Flow Rate - Vapor (kg/hr)

Thermal Conductivity - Liquid (W/m-K)

Density (kg/m3)

Viscosity - Vapor (cP)

Viscosity - Liquid (cP)

Temperature (°C)

Pressure (kPa)

Specific Heat (J/mol-K)

Number of Passes

Total Heat Transfer Area (m2) Heat Flux (kJ/hr-m

2-K)

955 966

Tube Side

2

Duty (MJ/hr)

122700

Page 85: Styrene Production

ID Number: T-100R Date: 5/9/2006

Description:Prepared By: ACJ

No. Required 1 Checked By: MJH

Inlet Outlet Inlet Outlet

0 0 93690 0

37920 37920 0 93690

194 194 243 243

136 133 3550 3547

714 714 14.89 804

0.0000 0.0000 0.0172 0.0000

0.1863 0.1863 0.0000 0.1099

322.10 322.10 74.72 86.22

0.0000 0.0000 0.0374 0.0000

0.1052 0.1052 0.0000 0.6242

High Pressure Steam

Material of Construction Carbon Steel

Shell Side

1

Carbon Steel

Unit Construction

Flow Rate - Liquid (kg/hr)

Process StreamsFluid

A.2: Heat Exchanger Specifications (3 of 61)

Heat Exchanger Specifications

Unit Performance & Fluid Properties

Tube Side

Column T-100 Reboiler

Shell Side

Thermal Conductivity - Vapor (W/m-K)

Flow Rate - Vapor (kg/hr)

Thermal Conductivity - Liquid (W/m-K)

Density (kg/m3)

Viscosity - Vapor (cP)

Viscosity - Liquid (cP)

Temperature (°C)

Pressure (kPa)

Specific Heat (J/mol-K)

Number of Passes

Total Heat Transfer Area (m2) Heat Flux (kJ/hr-m

2-K)

1922 1736

Tube Side

2

Duty (MJ/hr)

164800

Page 86: Styrene Production

ID Number: R-100C Date: 5/9/2006

Description:Prepared By: ACJ

No. Required 4 Checked By: MJH

Inlet Outlet Inlet Outlet

31025 31025 0 46640

0 0 46640 0

148 148 15 111

136 133 150 147

4.12 4.12 1015.00 0.85

0.0083 0.0083 0.0000 0.0125

0.0000 0.0000 1.1360 0.0000

178.70 178.70 75.44 39.87

0.0199 0.0199 0.0000 0.0254

0.0000 0.0000 0.5953 0.0000

Viscosity - Liquid (cP)

Unit Construction

Fluid

Total Heat Transfer Area (m2)

Process Streams

Specific Heat (J/mol-K)

Thermal Conductivity - Vapor (W/m-K)

Flow Rate - Vapor (kg/hr)

Heat Flux (kJ/hr-m2-K)

239 966

Thermal Conductivity - Liquid (W/m-K)

Duty (MJ/hr)

30675

A.2: Heat Exchanger Specifications (4 of 61)

Heat Exchanger Specifications

Unit Performance & Fluid Properties

Tube Side

Column R-100 Condenser

Shell Side

Cooling Water

Flow Rate - Liquid (kg/hr)

Density (kg/m3)

Viscosity - Vapor (cP)

Temperature (°C)

Pressure (kPa)

Material of Construction Carbon Steel

Shell Side

1

Carbon Steel

Tube Side

Number of Passes 2

Page 87: Styrene Production

ID Number: R-100R Date: 5/9/2006

Description:Prepared By: ACJ

No. Required 4 Checked By: MJH

Inlet Outlet Inlet Outlet

0 0 23423 0

9480 9480 0 23423

194 194 243 243

136 133 3550 3547

714 714 14.89 804

0.0000 0.0000 0.0172 0.0000

0.1863 0.1863 0.0000 0.1099

322.10 322.10 74.72 86.22

0.0000 0.0000 0.0374 0.0000

0.1052 0.1052 0.0000 0.6242

Viscosity - Liquid (cP)

Unit Construction

Fluid

Total Heat Transfer Area (m2)

Process Streams

Specific Heat (J/mol-K)

Thermal Conductivity - Vapor (W/m-K)

Flow Rate - Vapor (kg/hr)

Heat Flux (kJ/hr-m2-K)

480 1736

Thermal Conductivity - Liquid (W/m-K)

Duty (MJ/hr)

41200

A.2: Heat Exchanger Specifications (5 of 61)

Heat Exchanger Specifications

Unit Performance & Fluid Properties

Tube Side

Column R-100 Reboiler

Shell Side

High Pressure Steam

Flow Rate - Liquid (kg/hr)

Density (kg/m3)

Viscosity - Vapor (cP)

Temperature (°C)

Pressure (kPa)

Material of Construction Carbon Steel

Shell Side

1

Carbon Steel

Tube Side

Number of Passes 2

Page 88: Styrene Production

ID Number: E-200 Date: 5/9/2006

Description: Dehydrogenation Feed VaporizerPrepared By: ACJ

No. Required 1 Checked By: MJH

Inlet Outlet Inlet Outlet

481500 612700 29670 0

131100 0 0 29670

62 79 111 111

105 102 150 147

1.72 1.47 0.85 52.08

0.0104 0.0107 0.0125 0.0000

0.3762 0.0000 0.0000 0.2490

75.15 73.49 39.87 75.92

0.0242 0.0246 0.0254 0.0000

0.1290 0.0000 0.0000 0.6847

Exhaust Steam

Material of Construction Stainless Steel

Shell Side

1

Carbon Steel

Unit Construction

Flow Rate - Liquid (kg/hr)

Process StreamsFluid

A.2: Heat Exchanger Specifications (6 of 61)

Heat Exchanger Specifications

Unit Performance & Fluid Properties

Tube Side Shell Side

Flow Rate - Vapor (kg/hr)

Thermal Conductivity - Liquid (W/m-K)

Density (kg/m3)

Viscosity - Vapor (cP)

Viscosity - Liquid (cP)

Temperature (°C)

Pressure (kPa)

Specific Heat (J/mol-K)

Thermal Conductivity - Vapor (W/m-K)

Number of Passes

Total Heat Transfer Area (m2) Heat Flux (kJ/hr-m

2-K)

1059 1546

Tube Side

2

Duty (MJ/hr)

66020

Page 89: Styrene Production

ID Number: E-201 Date: 5/9/2006

Description:Prepared By: ACJ

No. Required 1 Checked By: MJH

Inlet Outlet Inlet Outlet

612700 612700 738600 738600

0 0 0 0

129 420 600 388

263 260 133 130

3.29 1.91 0.63 0.81

0.0123 0.0209 0.0281 0.0230

0.0000 0.0000 0.0000 0.0000

81.87 124.20 104.30 89.24

0.0308 0.0726 0.1025 0.0738

0.0000 0.0000 0.0000 0.0000

Viscosity - Liquid (cP)

Unit Construction

Fluid

Total Heat Transfer Area (m2)

Process Streams

Specific Heat (J/mol-K)

Thermal Conductivity - Vapor (W/m-K)

Flow Rate - Vapor (kg/hr)

Heat Flux (kJ/hr-m2-K)

3387 800

Thermal Conductivity - Liquid (W/m-K)

Duty (MJ/hr)

443300

A.2: Heat Exchanger Specifications (7 of 61)

Heat Exchanger Specifications

Unit Performance & Fluid Properties

Tube Side

Dehydrogenation Feed Heater/Product

Cooler

Shell Side

Process Streams

Flow Rate - Liquid (kg/hr)

Density (kg/m3)

Viscosity - Vapor (cP)

Temperature (°C)

Pressure (kPa)

Material of Construction Stainless Steel

Shell Side

1

Stainless Steel

Tube Side

Number of Passes 2

Page 90: Styrene Production

ID Number: E-202.1 Date: 5/9/2006

Description:Prepared By: ACJ

No. Required 1 Checked By: MJH

Inlet Outlet Inlet Outlet

236100 236100 0 0

0 0 64290 64290

69 31 15 50

187 184 220 217

1.83 2.02 1015 988

0.0200 0.0183 0.0000 0.0000

0.0000 0.0000 1.1360 0.5442

29.54 29.34 75.44 79.03

0.0287 0.0261 0.0000 0.0000

0.0000 0.0000 0.5953 0.6432

Cooling Water

Material of Construction Stainless Steel

Shell Side

1

Carbon Steel

Unit Construction

Flow Rate - Liquid (kg/hr)

Process StreamsFluid

A.2: Heat Exchanger Specifications (8 of 61)

Heat Exchanger Specifications

Unit Performance & Fluid Properties

Tube Side

Nitrogen Recycle Stream Cooler

Shell Side

Thermal Conductivity - Vapor (W/m-K)

Flow Rate - Vapor (kg/hr)

Thermal Conductivity - Liquid (W/m-K)

Density (kg/m3)

Viscosity - Vapor (cP)

Viscosity - Liquid (cP)

Temperature (°C)

Pressure (kPa)

Specific Heat (J/mol-K)

Number of Passes

Total Heat Transfer Area (m2) Heat Flux (kJ/hr-m

2-K)

176 1610

Tube Side

2

Duty (MJ/hr)

9494

Page 91: Styrene Production

ID Number: E-202.2 Date: 5/9/2006

Description:Prepared By: ACJ

No. Required 1 Checked By: MJH

Inlet Outlet Inlet Outlet

236100 232400 0 148200

0 3757 148200 0

75 -50 -60 -5

265 262 220 217

2.55 0.14 1465 8.53

0.0202 0.0146 0.0000 0.0112

0.0000 0.0000 0.4134 0.0000

29.57 29.92 90.86 52.86

0.0291 0.0203 0.0000 0.0094

0.0000 0.4680 0.1273 0.0000

Viscosity - Liquid (cP)

Unit Construction

Fluid

Total Heat Transfer Area (m2)

Process Streams

Specific Heat (J/mol-K)

Thermal Conductivity - Vapor (W/m-K)

Flow Rate - Vapor (kg/hr)

Heat Flux (kJ/hr-m2-K)

310 1609

Thermal Conductivity - Liquid (W/m-K)

Duty (MJ/hr)

40860

A.2: Heat Exchanger Specifications (9 of 61)

Heat Exchanger Specifications

Unit Performance & Fluid Properties

Tube Side

Nitrogen Recycle Stream Cooler

Shell Side

R-22

Flow Rate - Liquid (kg/hr)

Density (kg/m3)

Viscosity - Vapor (cP)

Temperature (°C)

Pressure (kPa)

Material of Construction Stainless Steel

Shell Side

1

Carbon Steel

Tube Side

Number of Passes 2

Page 92: Styrene Production

ID Number: E-203 Date: 5/9/2006

Description:Prepared By: ACJ

No. Required 1 Checked By: MJH

Inlet Outlet Inlet Outlet

739200 739200 0 0

0 0 0 0

451 451 0 0

260 257 0 0

1.67 1.67 0 0

0.0242 0.0242 0 0

0.0000 0.0000 0 0

105.00 105.00 0 0

0.0716 0.0716 0 0

0.0000 0.0000 0 0

Used For Start Up

Material of Construction Stainless Steel

Shell Side

1

Carbon Steel

Unit Construction

Flow Rate - Liquid (kg/hr)

Process StreamsFluid

A.2: Heat Exchanger Specifications (10 of 61)

Heat Exchanger Specifications

Unit Performance & Fluid Properties

Tube Side

Dehydrogenation Startup/Control

Exchanger

Shell Side

Thermal Conductivity - Vapor (W/m-K)

Flow Rate - Vapor (kg/hr)

Thermal Conductivity - Liquid (W/m-K)

Density (kg/m3)

Viscosity - Vapor (cP)

Viscosity - Liquid (cP)

Temperature (°C)

Pressure (kPa)

Specific Heat (J/mol-K)

Number of Passes

Total Heat Transfer Area (m2) Heat Flux (kJ/hr-m

2-K)

803 0

Tube Side

2

Duty (MJ/hr)

0

Page 93: Styrene Production

ID Number: E-204 Date: 5/9/2006

Description:Prepared By: ACJ

No. Required 1 Checked By: MJH

Inlet Outlet Inlet Outlet

738600 738600 126500 126500

0 0 0 0

388 320 -50 846

130 127 262 259

0.81 0.88 3.95 0.79

0.0230 0.0221 0.0146 0.0523

0.0000 0.0000 0.0000 0.0000

89.24 83.14 28.74 33.09

0.0738 0.0645 0.0204 0.0713

0.0000 0.0000 0.0000 0.0000

Process Streams

Material of Construction Stainless Steel

Shell Side

1

Stainless Steel

Unit Construction

Flow Rate - Liquid (kg/hr)

Process StreamsFluid

A.2: Heat Exchanger Specifications (11 of 61)

Heat Exchanger Specifications

Unit Performance & Fluid Properties

Tube Side

Separations Feed Stream Cooler

Shell Side

Thermal Conductivity - Vapor (W/m-K)

Flow Rate - Vapor (kg/hr)

Thermal Conductivity - Liquid (W/m-K)

Density (kg/m3)

Viscosity - Vapor (cP)

Viscosity - Liquid (cP)

Temperature (°C)

Pressure (kPa)

Specific Heat (J/mol-K)

Number of Passes

Total Heat Transfer Area (m2) Heat Flux (kJ/hr-m

2-K)

253 1032

Tube Side

2

Duty (MJ/hr)

125500

Page 94: Styrene Production

ID Number: E-205 Date: 5/9/2006

Description:Prepared By: ACJ

No. Required 1 Checked By: MJH

Inlet Outlet Inlet Outlet

21490 490800 0 2236100

0 240700 2236100 0

320 -50 -60 -5

126 123 220 217

0.87 2.58 1465 8.53

0.0212 0.0088 0.0000 0.0112

0.0000 1.9410 0.4134 0.0000

83.14 51.06 90.86 52.86

0.0645 0.0221 0.0000 0.0094

0.0000 0.1590 0.1273 0.0000

Viscosity - Liquid (cP)

Unit Construction

Fluid

Total Heat Transfer Area (m2)

Process Streams

Specific Heat (J/mol-K)

Thermal Conductivity - Vapor (W/m-K)

Flow Rate - Vapor (kg/hr)

Heat Flux (kJ/hr-m2-K)

2438 1610

Thermal Conductivity - Liquid (W/m-K)

Duty (MJ/hr)

616400

A.2: Heat Exchanger Specifications (12 of 61)

Heat Exchanger Specifications

Unit Performance & Fluid Properties

Tube Side

Separations Feed Stream Cooler

Shell Side

R-22

Flow Rate - Liquid (kg/hr)

Density (kg/m3)

Viscosity - Vapor (cP)

Temperature (°C)

Pressure (kPa)

Material of Construction Stainless Steel

Shell Side

1

Carbon Steel

Tube Side

Number of Passes 2

Page 95: Styrene Production

ID Number: E-206 Date: 5/9/2006

Description:Prepared By: ACJ

No. Required 1 Checked By: MJH

Inlet Outlet Inlet Outlet

268300 236100 0 0

2122 34300 84711 84711

186 25 15 111

130 127 220 217

0.23 1.66 1015 988

0.0661 0.0180 0.0000 0.0000

0.2882 0.8904 1.1360 0.5442

38.64 37.82 75.44 79.03

0.0918 0.0256 0.0000 0.0000

0.0382 0.6110 0.5953 0.6432

Cooling Water

Material of Construction Stainless Steel

Shell Side

1

Carbon Steel

Unit Construction

Flow Rate - Liquid (kg/hr)

Process StreamsFluid

A.2: Heat Exchanger Specifications (13 of 61)

Heat Exchanger Specifications

Unit Performance & Fluid Properties

Tube Side

Nitrogen Recycle Stream Cooler

Shell Side

Thermal Conductivity - Vapor (W/m-K)

Flow Rate - Vapor (kg/hr)

Thermal Conductivity - Liquid (W/m-K)

Density (kg/m3)

Viscosity - Vapor (cP)

Viscosity - Liquid (cP)

Temperature (°C)

Pressure (kPa)

Specific Heat (J/mol-K)

Number of Passes

Total Heat Transfer Area (m2) Heat Flux (kJ/hr-m

2-K)

676 410

Tube Side

2

Duty (MJ/hr)

34360

Page 96: Styrene Production

ID Number: E-207 Date: 5/9/2006

Description:Prepared By: ACJ

No. Required 1 Checked By: MJH

Inlet Outlet Inlet Outlet

118700 118700 270400 270400

0 0 0 0

25 550 580 186

135 133 132 130

1.05 0.38 0.55 0.89

0.0153 0.0348 0.0318 0.0223

0.0000 0.0000 0.0000 0.0000

28.96 31.39 32.91 31.02

0.0516 0.1099 0.0546 0.0355

0.0000 0.0000 0.0000 0.0000

Viscosity - Liquid (cP)

Unit Construction

Fluid

Total Heat Transfer Area (m2)

Process Streams

Specific Heat (J/mol-K)

Thermal Conductivity - Vapor (W/m-K)

Flow Rate - Vapor (kg/hr)

Heat Flux (kJ/hr-m2-K)

208 1037

Thermal Conductivity - Liquid (W/m-K)

Duty (MJ/hr)

97430

A.2: Heat Exchanger Specifications (14 of 61)

Heat Exchanger Specifications

Unit Performance & Fluid Properties

Tube Side

Nitrogen/Light Gases Exchanger

Shell Side

Process Streams

Flow Rate - Liquid (kg/hr)

Density (kg/m3)

Viscosity - Vapor (cP)

Temperature (°C)

Pressure (kPa)

Material of Construction Stainless Steel

Shell Side

1

Stainless Steel

Tube Side

Number of Passes 2

Page 97: Styrene Production

ID Number: E-208 Date: 5/9/2006

Description:Prepared By: ACJ

No. Required 1 Checked By: MJH

Inlet Outlet Inlet Outlet

151700 151700 268300 270400

0 0 2122 0

59 560 713 480

136 133 134 131

1.42 0.56 0.43 0.55

0.0204 0.0411 0.0393 0.0318

0.0000 0.0000 0.1910 0.0000

29.36 32.29 34.36 32.91

0.0284 0.0582 0.0684 0.0546

0.0000 0.0000 0.0382 0.0000

Process Streams

Material of Construction Stainless Steel

Shell Side

1

Stainless Steel

Unit Construction

Flow Rate - Liquid (kg/hr)

Process StreamsFluid

A.2: Heat Exchanger Specifications (15 of 61)

Heat Exchanger Specifications

Unit Performance & Fluid Properties

Tube Side

Nitrogen/Air Exchanger

Shell Side

Thermal Conductivity - Vapor (W/m-K)

Flow Rate - Vapor (kg/hr)

Thermal Conductivity - Liquid (W/m-K)

Density (kg/m3)

Viscosity - Vapor (cP)

Viscosity - Liquid (cP)

Temperature (°C)

Pressure (kPa)

Specific Heat (J/mol-K)

Number of Passes

Total Heat Transfer Area (m2) Heat Flux (kJ/hr-m

2-K)

283 1052

Tube Side

2

Duty (MJ/hr)

81250

Page 98: Styrene Production

ID Number: E-300 Date: 5/9/2006

Description: Distillation Chain Feed HeaterPrepared By: ACJ

No. Required 1 Checked By: MJH

Inlet Outlet Inlet Outlet

26 3657 20854 0

240700 237100 0 20854

-50 40 111 111

101 101 220 217

878 73.06 0.85 52.08

0.0081 0.0099 0.0125 0.0000

1.9440 0.5134 0.0000 0.2490

149.20 176.20 39.87 75.92

0.0174 0.0225 0.0254 0.0000

0.1590 0.1369 0.0000 0.6847

Heat Flux (kJ/hr-m2-K)

584 569

Tube Side

Unit Construction

Duty (MJ/hr)

36680

Total Heat Transfer Area (m2)

A.2: Heat Exchanger Specifications (16 of 61)

Heat Exchanger Specifications

Unit Performance & Fluid Properties

Tube Side Shell Side

Exhaust Steam

Flow Rate - Liquid (kg/hr)

Density (kg/m3)

Viscosity - Vapor (cP)

Fluid Process Streams

Flow Rate - Vapor (kg/hr)

Viscosity - Liquid (cP)

Temperature (°C)

Pressure (kPa)

Material of Construction

Number of Passes

Specific Heat (J/mol-K)

Thermal Conductivity - Vapor (W/m-K)

Thermal Conductivity - Liquid (W/m-K)

Stainless Steel

Shell Side

1

Carbon Steel

2

Page 99: Styrene Production

ID Number: E-301 Date: 5/9/2006

Description: Styrene Product CondenserPrepared By: ACJ

No. Required 1 Checked By: MJH

Inlet Outlet Inlet Outlet

112200 0 0 0

0 112200 601200 601200

61 44 15 34

5 5 220 217

0.20 885 1015 1001

0.0063 0.0000 0.0000 0.0000

0.0000 0.5634 1.1360 0.7332

137.00 184.70 75.44 76.14

0.0120 0.0000 0.0000 0.0000

0.0000 0.1411 0.5953 0.6237

Cooling Water

Material of Construction Stainless Steel

Shell Side

1

Carbon Steel

Unit Construction

Flow Rate - Liquid (kg/hr)

Process StreamsFluid

A.2: Heat Exchanger Specifications (17 of 61)

Heat Exchanger Specifications

Unit Performance & Fluid Properties

Tube Side Shell Side

Flow Rate - Vapor (kg/hr)

Thermal Conductivity - Liquid (W/m-K)

Density (kg/m3)

Viscosity - Vapor (cP)

Viscosity - Liquid (cP)

Temperature (°C)

Pressure (kPa)

Specific Heat (J/mol-K)

Thermal Conductivity - Vapor (W/m-K)

Number of Passes

Total Heat Transfer Area (m2) Heat Flux (kJ/hr-m

2-K)

5675 366

Tube Side

2

Duty (MJ/hr)

48142

Page 100: Styrene Production

ID Number: T-300C Date: 5/9/2006

Description:Prepared By: ACJ

No. Required 1 Checked By: MJH

Inlet Outlet Inlet Outlet

66800 66800 0 0

0 0 374100 374100

59 59 15 40

27 27 220 217

0.82 0.82 1015 996

0.0073 0.0073 0.0000 0.0000

0.0000 0.0000 1.1360 0.6514

105.30 105.30 75.44 76.15

0.0122 0.0122 0.0000 0.0000

0.0000 0.0000 0.5953 0.6315

Viscosity - Liquid (cP)

Unit Construction

Fluid

Total Heat Transfer Area (m2)

Process Streams

Specific Heat (J/mol-K)

Thermal Conductivity - Vapor (W/m-K)

Flow Rate - Vapor (kg/hr)

Heat Flux (kJ/hr-m2-K)

1697 778

Thermal Conductivity - Liquid (W/m-K)

Duty (MJ/hr)

39440

A.2: Heat Exchanger Specifications (18 of 61)

Heat Exchanger Specifications

Unit Performance & Fluid Properties

Tube Side

Column T-300 Condenser

Shell Side

Cooling Water

Flow Rate - Liquid (kg/hr)

Density (kg/m3)

Viscosity - Vapor (cP)

Temperature (°C)

Pressure (kPa)

Material of Construction Carbon Steel

Shell Side

1

Carbon Steel

Tube Side

Number of Passes 2

Page 101: Styrene Production

ID Number: T-300R Date: 5/9/2006

Description:Prepared By: ACJ

No. Required 1 Checked By: MJH

Inlet Outlet Inlet Outlet

0 0 29834 0

228500 228500 0 29834

96 96 111 111

27 27 220 217

818 818 0.85 52.08

0.0000 0.0000 0.0125 0.0000

0.3037 0.3037 0.0000 0.2490

205.00 205.00 39.87 75.92

0.0000 0.0000 0.0254 0.0000

0.1253 0.1253 0.0000 0.6847

Viscosity - Liquid (cP)

Unit Construction

Fluid

Total Heat Transfer Area (m2)

Process Streams

Specific Heat (J/mol-K)

Thermal Conductivity - Vapor (W/m-K)

Flow Rate - Vapor (kg/hr)

Heat Flux (kJ/hr-m2-K)

3903 1073

Thermal Conductivity - Liquid (W/m-K)

Duty (MJ/hr)

66390

A.2: Heat Exchanger Specifications (19 of 61)

Heat Exchanger Specifications

Unit Performance & Fluid Properties

Tube Side

Column T-300 Reboiler

Shell Side

Exhaust Steam

Flow Rate - Liquid (kg/hr)

Density (kg/m3)

Viscosity - Vapor (cP)

Temperature (°C)

Pressure (kPa)

Material of Construction Carbon Steel

Shell Side

1

Carbon Steel

Tube Side

Number of Passes 2

Page 102: Styrene Production

ID Number: T-301C Date: 5/9/2006

Description:Prepared By: ACJ

No. Required 1 Checked By: MJH

Inlet Outlet Inlet Outlet

3673 3673 0 0

0 0 82220 82220

42 42 15 30

27 27 220 217

0.80 0.80 1015 1004

0.0073 0.0073 0.0000 0.0000

0.0000 0.0000 1.1360 0.7972

88.81 88.81 75.44 76.09

0.0109 0.0109 0.0000 0.0000

0.0000 0.0000 0.5953 0.6182

Cooling Water

Material of Construction Carbon Steel

Shell Side

1

Carbon Steel

Unit Construction

Flow Rate - Liquid (kg/hr)

Process StreamsFluid

A.2: Heat Exchanger Specifications (20 of 61)

Heat Exchanger Specifications

Unit Performance & Fluid Properties

Tube Side

Column T-301 Condenser

Shell Side

Thermal Conductivity - Vapor (W/m-K)

Flow Rate - Vapor (kg/hr)

Thermal Conductivity - Liquid (W/m-K)

Density (kg/m3)

Viscosity - Vapor (cP)

Viscosity - Liquid (cP)

Temperature (°C)

Pressure (kPa)

Specific Heat (J/mol-K)

Number of Passes

Total Heat Transfer Area (m2) Heat Flux (kJ/hr-m

2-K)

370 780

Tube Side

2

Duty (MJ/hr)

5194

Page 103: Styrene Production

ID Number: T-301R Date: 5/9/2006

Description:Prepared By: ACJ

No. Required 1 Checked By: MJH

Inlet Outlet Inlet Outlet

0 0 1596 0

4252 4252 0 1596

70 70 111 111

27 27 220 217

822 822 0.85 52.08

0.0000 0.0000 0.0125 0.0000

0.3448 0.3448 0.0000 0.2490

167.90 167.90 39.87 75.92

0.0000 0.0000 0.0254 0.0000

0.1249 0.1249 0.0000 0.6847

Exhaust Steam

Material of Construction Carbon Steel

Shell Side

1

Carbon Steel

Unit Construction

Flow Rate - Liquid (kg/hr)

Process StreamsFluid

A.2: Heat Exchanger Specifications (21 of 61)

Heat Exchanger Specifications

Unit Performance & Fluid Properties

Tube Side

Column T-301 Reboiler

Shell Side

Thermal Conductivity - Vapor (W/m-K)

Flow Rate - Vapor (kg/hr)

Thermal Conductivity - Liquid (W/m-K)

Density (kg/m3)

Viscosity - Vapor (cP)

Viscosity - Liquid (cP)

Temperature (°C)

Pressure (kPa)

Specific Heat (J/mol-K)

Number of Passes

Total Heat Transfer Area (m2) Heat Flux (kJ/hr-m

2-K)

79 1076

Tube Side

2

Duty (MJ/hr)

3552

Page 104: Styrene Production

ID Number: T-302C Date: 5/9/2006

Description:Prepared By: ACJ

No. Required 1 Checked By: MJH

Inlet Outlet Inlet Outlet

103 103 0 0

0 0 52610 52610

33 33 15 28

27 27 220 217

0.90 0.90 1015 1005

0.0060 0.0060 0.0000 0.0000

0.0000 0.0000 1.1360 0.8418

141.80 141.80 75.44 76.03

0.0130 0.0130 0.0000 0.0000

0.0000 0.0000 0.5953 0.6147

Viscosity - Liquid (cP)

Unit Construction

Fluid

Total Heat Transfer Area (m2)

Process Streams

Specific Heat (J/mol-K)

Thermal Conductivity - Vapor (W/m-K)

Flow Rate - Vapor (kg/hr)

Heat Flux (kJ/hr-m2-K)

453 612

Thermal Conductivity - Liquid (W/m-K)

Duty (MJ/hr)

2768

A.2: Heat Exchanger Specifications (22 of 61)

Heat Exchanger Specifications

Unit Performance & Fluid Properties

Tube Side

Column T-302 Condenser

Shell Side

Cooling Water

Flow Rate - Liquid (kg/hr)

Density (kg/m3)

Viscosity - Vapor (cP)

Temperature (°C)

Pressure (kPa)

Material of Construction Carbon Steel

Shell Side

1

Carbon Steel

Tube Side

Number of Passes 2

Page 105: Styrene Production

ID Number: T-302R Date: 5/9/2006

Description:Prepared By: ACJ

No. Required 1 Checked By: MJH

Inlet Outlet Inlet Outlet

0 0 577 0

3570 3570 0 577

42 42 111 111

27 27 220 217

854 854 0.85 52.08

0.0000 0.0000 0.0125 0.0000

0.4838 0.4838 0.0000 0.2490

131.40 131.40 39.87 75.92

0.0000 0.0000 0.0254 0.0000

0.1266 0.1266 0.0000 0.6847

Viscosity - Liquid (cP)

Unit Construction

Fluid

Total Heat Transfer Area (m2)

Process Streams

Specific Heat (J/mol-K)

Thermal Conductivity - Vapor (W/m-K)

Flow Rate - Vapor (kg/hr)

Heat Flux (kJ/hr-m2-K)

17 1080

Thermal Conductivity - Liquid (W/m-K)

Duty (MJ/hr)

1284

A.2: Heat Exchanger Specifications (23 of 61)

Heat Exchanger Specifications

Unit Performance & Fluid Properties

Tube Side

Column T-302 Reboiler

Shell Side

Exhaust Steam

Flow Rate - Liquid (kg/hr)

Density (kg/m3)

Viscosity - Vapor (cP)

Temperature (°C)

Pressure (kPa)

Material of Construction Carbon Steel

Shell Side

1

Carbon Steel

Tube Side

Number of Passes 2

Page 106: Styrene Production

ID Number: T-303C Date: 5/9/2006

Description:Prepared By: ACJ

No. Required 1 Checked By: MJH

Inlet Outlet Inlet Outlet

116100 116100 0 0

0 0 68340 68340

62 62 15 30

8 8 220 217

0.30 0.30 1015 1004

0.0064 0.0064 0.0000 0.0000

0.0000 0.0000 1.1360 0.7972

144.50 144.50 75.44 76.09

0.0124 0.0124 0.0000 0.0000

0.0000 0.0000 0.5953 0.6182

Cooling Water

Material of Construction Carbon Steel

Shell Side

1

Carbon Steel

Unit Construction

Flow Rate - Liquid (kg/hr)

Process StreamsFluid

A.2: Heat Exchanger Specifications (24 of 61)

Heat Exchanger Specifications

Unit Performance & Fluid Properties

Tube Side

Column T-303 Condenser

Shell Side

Thermal Conductivity - Vapor (W/m-K)

Flow Rate - Vapor (kg/hr)

Thermal Conductivity - Liquid (W/m-K)

Density (kg/m3)

Viscosity - Vapor (cP)

Viscosity - Liquid (cP)

Temperature (°C)

Pressure (kPa)

Specific Heat (J/mol-K)

Number of Passes

Total Heat Transfer Area (m2) Heat Flux (kJ/hr-m

2-K)

11301 987

Tube Side

2

Duty (MJ/hr)

431700

Page 107: Styrene Production

ID Number: T-303R Date: 5/9/2006

Description:Prepared By: ACJ

No. Required 1 Checked By: MJH

Inlet Outlet Inlet Outlet

0 0 11519 0

112400 112400 0 11519

70 70 111 111

8 8 220 217

861 861 0.85 52.08

0.0000 0.0000 0.0125 0.0000

0.4197 0.4197 0.0000 0.2490

192.10 192.10 39.87 75.92

0.0000 0.0000 0.0254 0.0000

0.1348 0.1348 0.0000 0.6847

Exhaust Steam

Material of Construction Carbon Steel

Shell Side

1

Carbon Steel

Unit Construction

Flow Rate - Liquid (kg/hr)

Process StreamsFluid

A.2: Heat Exchanger Specifications (25 of 61)

Heat Exchanger Specifications

Unit Performance & Fluid Properties

Tube Side

Column T-303 Reboiler

Shell Side

Thermal Conductivity - Vapor (W/m-K)

Flow Rate - Vapor (kg/hr)

Thermal Conductivity - Liquid (W/m-K)

Density (kg/m3)

Viscosity - Vapor (cP)

Viscosity - Liquid (cP)

Temperature (°C)

Pressure (kPa)

Specific Heat (J/mol-K)

Number of Passes

Total Heat Transfer Area (m2) Heat Flux (kJ/hr-m

2-K)

10431 1063

Tube Side

2

Duty (MJ/hr)

461800

Page 108: Styrene Production

ID Number: T-304C Date: 5/9/2006

Description:Prepared By: ACJ

No. Required 1 Checked By: MJH

Inlet Outlet Inlet Outlet

78580 78580 0 0

0 0 208700 208700

61 61 15 42

5 5 220 217

0.20 0.20 1015 995

0.0063 0.0063 0.0000 0.0000

0.0000 0.0000 1.1360 0.6274

137.00 137.00 75.44 76.14

0.0120 0.0120 0.0000 0.0000

0.0000 0.0000 0.5953 0.6340

Viscosity - Liquid (cP)

Unit Construction

Fluid

Total Heat Transfer Area (m2)

Process Streams

Specific Heat (J/mol-K)

Thermal Conductivity - Vapor (W/m-K)

Flow Rate - Vapor (kg/hr)

Heat Flux (kJ/hr-m2-K)

1046 755

Thermal Conductivity - Liquid (W/m-K)

Duty (MJ/hr)

23770

A.2: Heat Exchanger Specifications (26 of 61)

Heat Exchanger Specifications

Unit Performance & Fluid Properties

Tube Side

Column T-304 Condenser

Shell Side

Cooling Water

Flow Rate - Liquid (kg/hr)

Density (kg/m3)

Viscosity - Vapor (cP)

Temperature (°C)

Pressure (kPa)

Material of Construction Carbon Steel

Shell Side

1

Carbon Steel

Tube Side

Number of Passes 2

Page 109: Styrene Production

ID Number: T-304R Date: 5/9/2006

Description:Prepared By: ACJ

No. Required 1 Checked By: MJH

Inlet Outlet Inlet Outlet

0 0 23911 0

33840 33840 0 23911

61 61 111 111

5 5 220 217

869 869 0.85 52.08

0.0000 0.0000 0.0125 0.0000

0.4635 0.4635 0.0000 0.2490

189.60 189.60 39.87 75.92

0.0000 0.0000 0.0254 0.0000

0.1370 0.1370 0.0000 0.6847

Viscosity - Liquid (cP)

Unit Construction

Fluid

Total Heat Transfer Area (m2)

Process Streams

Specific Heat (J/mol-K)

Thermal Conductivity - Vapor (W/m-K)

Flow Rate - Vapor (kg/hr)

Heat Flux (kJ/hr-m2-K)

977 1073

Thermal Conductivity - Liquid (W/m-K)

Duty (MJ/hr)

53210

A.2: Heat Exchanger Specifications (27 of 61)

Heat Exchanger Specifications

Unit Performance & Fluid Properties

Tube Side

Column T-304 Reboiler

Shell Side

Exhaust Steam

Flow Rate - Liquid (kg/hr)

Density (kg/m3)

Viscosity - Vapor (cP)

Temperature (°C)

Pressure (kPa)

Material of Construction Carbon Steel

Shell Side

1

Carbon Steel

Tube Side

Number of Passes 2

Page 110: Styrene Production

ID Number: T-305C Date: 5/9/2006

Description:Prepared By: ACJ

No. Required 1 Checked By: MJH

Inlet Outlet Inlet Outlet

26940 26940 0 0

0 0 122000 122000

61 61 15 42

5 5 220 217

0.20 0.20 1015 995

0.0063 0.0063 0.0000 0.0000

0.0000 0.0000 1.1360 0.6274

137.00 137.00 75.44 76.14

0.0120 0.0120 0.0000 0.0000

0.0000 0.0000 0.5953 0.6340

Cooling Water

Material of Construction Carbon Steel

Shell Side

1

Carbon Steel

Unit Construction

Flow Rate - Liquid (kg/hr)

Process StreamsFluid

A.2: Heat Exchanger Specifications (28 of 61)

Heat Exchanger Specifications

Unit Performance & Fluid Properties

Tube Side

Column T-305 Condenser

Shell Side

Thermal Conductivity - Vapor (W/m-K)

Flow Rate - Vapor (kg/hr)

Thermal Conductivity - Liquid (W/m-K)

Density (kg/m3)

Viscosity - Vapor (cP)

Viscosity - Liquid (cP)

Temperature (°C)

Pressure (kPa)

Specific Heat (J/mol-K)

Number of Passes

Total Heat Transfer Area (m2) Heat Flux (kJ/hr-m

2-K)

611 756

Tube Side

2

Duty (MJ/hr)

13900

Page 111: Styrene Production

ID Number: T-305R Date: 5/9/2006

Description:Prepared By: ACJ

No. Required 1 Checked By: MJH

Inlet Outlet Inlet Outlet

0 0 11073 0

6893 6893 0 11073

61 61 111 111

5 5 220 217

869 869 0.85 52.08

0.0000 0.0000 0.0125 0.0000

0.4641 0.4641 0.0000 0.2490

190.20 190.20 39.87 75.92

0.0000 0.0000 0.0254 0.0000

0.1369 0.1369 0.0000 0.6847

Exhaust Steam

Material of Construction Carbon Steel

Shell Side

1

Carbon Steel

Unit Construction

Flow Rate - Liquid (kg/hr)

Process StreamsFluid

A.2: Heat Exchanger Specifications (29 of 61)

Heat Exchanger Specifications

Unit Performance & Fluid Properties

Tube Side

Column T-305 Reboiler

Shell Side

Thermal Conductivity - Vapor (W/m-K)

Flow Rate - Vapor (kg/hr)

Thermal Conductivity - Liquid (W/m-K)

Density (kg/m3)

Viscosity - Vapor (cP)

Viscosity - Liquid (cP)

Temperature (°C)

Pressure (kPa)

Specific Heat (J/mol-K)

Number of Passes

Total Heat Transfer Area (m2) Heat Flux (kJ/hr-m

2-K)

453 1075

Tube Side

2

Duty (MJ/hr)

24640

Page 112: Styrene Production

ID Number: T-306C Date: 5/9/2006

Description:Prepared By: ACJ

No. Required 1 Checked By: MJH

Inlet Outlet Inlet Outlet

6715 6715 0 0

0 0 352400 352400

61 61 15 42

5 5 220 217

0.20 0.20 1015 995

0.0063 0.0063 0.0000 0.0000

0.0000 0.0000 1.1360 0.6274

137.00 137.00 75.44 76.14

0.0120 0.0120 0.0000 0.0000

0.0000 0.0000 0.5953 0.6340

Viscosity - Liquid (cP)

Unit Construction

Fluid

Total Heat Transfer Area (m2)

Process Streams

Specific Heat (J/mol-K)

Thermal Conductivity - Vapor (W/m-K)

Flow Rate - Vapor (kg/hr)

Heat Flux (kJ/hr-m2-K)

1781 748

Thermal Conductivity - Liquid (W/m-K)

Duty (MJ/hr)

40140

A.2: Heat Exchanger Specifications (30 of 61)

Heat Exchanger Specifications

Unit Performance & Fluid Properties

Tube Side

Column T-306 Condenser

Shell Side

Cooling Water

Flow Rate - Liquid (kg/hr)

Density (kg/m3)

Viscosity - Vapor (cP)

Temperature (°C)

Pressure (kPa)

Material of Construction Carbon Steel

Shell Side

1

Carbon Steel

Tube Side

Number of Passes 2

Page 113: Styrene Production

ID Number: T-306R Date: 5/9/2006

Description:Prepared By: ACJ

No. Required 1 Checked By: MJH

Inlet Outlet Inlet Outlet

0 0 19242 0

178 178 0 19242

73 73 111 111

5 5 220 217

838 838 0.85 52.08

0.0000 0.0000 0.0125 0.0000

0.4730 0.4730 0.0000 0.2490

228.50 228.50 39.87 75.92

0.0000 0.0000 0.0254 0.0000

0.1324 0.1324 0.0000 0.6847

Viscosity - Liquid (cP)

Unit Construction

Fluid

Total Heat Transfer Area (m2)

Process Streams

Specific Heat (J/mol-K)

Thermal Conductivity - Vapor (W/m-K)

Flow Rate - Vapor (kg/hr)

Heat Flux (kJ/hr-m2-K)

239 4707

Thermal Conductivity - Liquid (W/m-K)

Duty (MJ/hr)

42820

A.2: Heat Exchanger Specifications (31 of 61)

Heat Exchanger Specifications

Unit Performance & Fluid Properties

Tube Side

Column T-306 Reboiler

Shell Side

Exhaust Steam

Flow Rate - Liquid (kg/hr)

Density (kg/m3)

Viscosity - Vapor (cP)

Temperature (°C)

Pressure (kPa)

Material of Construction Carbon Steel

Shell Side

1

Carbon Steel

Tube Side

Number of Passes 2

Page 114: Styrene Production

ID Number: E-400 Date: 5/9/2006

Description:Prepared By: ACJ

No. Required 1 Checked By: MJH

Inlet Outlet Inlet Outlet

498000 498000 0 0

0 0 1378200 1378200

-28 -47 -60 -50

174 171 220 217

2.22 2.41 1465 1437

0.0096 0.0089 0.0000 0.0000

0.0000 0.0000 0.4134 0.3730

40.06 38.83 90.86 92.12

0.0246 0.0225 0.0000 0.0000

0.0000 0.0000 0.1273 0.1230

R-22

Material of Construction Stainless Steel

Shell Side

1

Carbon Steel

Unit Construction

Flow Rate - Liquid (kg/hr)

Process StreamsFluid

A.2: Heat Exchanger Specifications (32 of 61)

Heat Exchanger Specifications

Unit Performance & Fluid Properties

Tube Side

Light Gases Cooler

Shell Side

Thermal Conductivity - Vapor (W/m-K)

Flow Rate - Vapor (kg/hr)

Thermal Conductivity - Liquid (W/m-K)

Density (kg/m3)

Viscosity - Vapor (cP)

Viscosity - Liquid (cP)

Temperature (°C)

Pressure (kPa)

Specific Heat (J/mol-K)

Number of Passes

Total Heat Transfer Area (m2) Heat Flux (kJ/hr-m

2-K)

777 1615

Tube Side

2

Duty (MJ/hr)

14580

Page 115: Styrene Production

ID Number: E-401 Date: 5/9/2006

Description:Prepared By: ACJ

No. Required 1 Checked By: MJH

Inlet Outlet Inlet Outlet

497900 497900 0 0

0 0 67721 67721

-2 -25 -60 -50

3003 3000 220 217

34.71 38.00 1465 1437

0.0115 0.0107 0.0000 0.0000

0.0000 0.0000 0.4134 0.3730

41.84 40.24 90.86 92.12

0.0301 0.0277 0.0000 0.0000

0.0000 0.0000 0.1273 0.1230

Viscosity - Liquid (cP)

Unit Construction

Fluid

Total Heat Transfer Area (m2)

Process Streams

Specific Heat (J/mol-K)

Thermal Conductivity - Vapor (W/m-K)

Flow Rate - Vapor (kg/hr)

Heat Flux (kJ/hr-m2-K)

1530 311

Thermal Conductivity - Liquid (W/m-K)

Duty (MJ/hr)

18600

A.2: Heat Exchanger Specifications (33 of 61)

Heat Exchanger Specifications

Unit Performance & Fluid Properties

Tube Side

Light Gases Cooler

Shell Side

R-22

Flow Rate - Liquid (kg/hr)

Density (kg/m3)

Viscosity - Vapor (cP)

Temperature (°C)

Pressure (kPa)

Material of Construction Stainless Steel

Shell Side

1

Carbon Steel

Tube Side

Number of Passes 2

Page 116: Styrene Production

ID Number: E-401.1 Date: 5/9/2006

Description:Prepared By: ACJ

No. Required 1 Checked By: MJH

Inlet Outlet Inlet Outlet

497900 497900 0 0

0 0 559980 559980

-30 -50 -60 -35

187 184 220 217

2.42 2.59 1465 1394

0.0096 0.0088 0.0000 0.0000

0.0000 0.0000 0.4134 0.3231

39.93 38.67 90.86 94.28

0.0244 0.0222 0.0000 0.0000

0.0000 0.0000 0.1273 0.1163

R-22

Material of Construction Stainless Steel

Shell Side

1

Carbon Steel

Unit Construction

Flow Rate - Liquid (kg/hr)

Process StreamsFluid

A.2: Heat Exchanger Specifications (34 of 61)

Heat Exchanger Specifications

Unit Performance & Fluid Properties

Tube Side

Light Gases Cooler

Shell Side

Thermal Conductivity - Vapor (W/m-K)

Flow Rate - Vapor (kg/hr)

Thermal Conductivity - Liquid (W/m-K)

Density (kg/m3)

Viscosity - Vapor (cP)

Viscosity - Liquid (cP)

Temperature (°C)

Pressure (kPa)

Specific Heat (J/mol-K)

Number of Passes

Total Heat Transfer Area (m2) Heat Flux (kJ/hr-m

2-K)

429 1615

Tube Side

2

Duty (MJ/hr)

14920

Page 117: Styrene Production

ID Number: E-401.2 Date: 5/9/2006

Description:Prepared By: ACJ

No. Required 1 Checked By: MJH

Inlet Outlet Inlet Outlet

497900 497900 0 106200

0 0 106200 0

-13 -50 -60 -18

325 322 220 217

3.92 4.53 1465 8.95

0.0103 0.0089 0.0000 0.0107

0.0000 0.0000 0.4134 0.0000

41.09 38.67 90.86 51.52

0.0264 0.0223 0.0000 0.0088

0.0000 0.0000 0.1273 0.0000

Viscosity - Liquid (cP)

Unit Construction

Fluid

Total Heat Transfer Area (m2)

Process Streams

Specific Heat (J/mol-K)

Thermal Conductivity - Vapor (W/m-K)

Flow Rate - Vapor (kg/hr)

Heat Flux (kJ/hr-m2-K)

447 1615

Thermal Conductivity - Liquid (W/m-K)

Duty (MJ/hr)

28470

A.2: Heat Exchanger Specifications (35 of 61)

Heat Exchanger Specifications

Unit Performance & Fluid Properties

Tube Side

Light Gases Cooler

Shell Side

R-22

Flow Rate - Liquid (kg/hr)

Density (kg/m3)

Viscosity - Vapor (cP)

Temperature (°C)

Pressure (kPa)

Material of Construction Stainless Steel

Shell Side

1

Carbon Steel

Tube Side

Number of Passes 2

Page 118: Styrene Production

ID Number: E-401.3 Date: 5/9/2006

Description:Prepared By: ACJ

No. Required 1 Checked By: MJH

Inlet Outlet Inlet Outlet

497900 497900 0 106200

0 0 106200 0

-13 -50 -60 -18

568 565 220 217

6.85 7.95 1465 8.95

0.0104 0.0089 0.0000 0.0107

0.0000 0.0000 0.4134 0.0000

41.09 38.67 90.86 51.52

0.0267 0.0226 0.0000 0.0088

0.0000 0.0000 0.1273 0.0000

R-22

Material of Construction Stainless Steel

Shell Side

1

Carbon Steel

Unit Construction

Flow Rate - Liquid (kg/hr)

Process StreamsFluid

A.2: Heat Exchanger Specifications (36 of 61)

Heat Exchanger Specifications

Unit Performance & Fluid Properties

Tube Side

Light Gases Cooler

Shell Side

Thermal Conductivity - Vapor (W/m-K)

Flow Rate - Vapor (kg/hr)

Thermal Conductivity - Liquid (W/m-K)

Density (kg/m3)

Viscosity - Vapor (cP)

Viscosity - Liquid (cP)

Temperature (°C)

Pressure (kPa)

Specific Heat (J/mol-K)

Number of Passes

Total Heat Transfer Area (m2) Heat Flux (kJ/hr-m

2-K)

447 1615

Tube Side

2

Duty (MJ/hr)

28470

Page 119: Styrene Production

ID Number: E-401.4 Date: 5/9/2006

Description:Prepared By: ACJ

No. Required 1 Checked By: MJH

Inlet Outlet Inlet Outlet

497900 497900 0 0

0 0 1528700 1528700

-13 -48 -60 -43

997 994 220 217

12.01 13.89 1465 1418

0.0105 0.0092 0.0000 0.0000

0.0000 0.0000 0.4134 0.3497

41.09 38.80 90.86 93.02

0.0270 0.0233 0.0000 0.0000

0.0000 0.0000 0.1273 0.1201

Viscosity - Liquid (cP)

Unit Construction

Fluid

Total Heat Transfer Area (m2)

Process Streams

Specific Heat (J/mol-K)

Thermal Conductivity - Vapor (W/m-K)

Flow Rate - Vapor (kg/hr)

Heat Flux (kJ/hr-m2-K)

886 1656

Thermal Conductivity - Liquid (W/m-K)

Duty (MJ/hr)

26740

A.2: Heat Exchanger Specifications (37 of 61)

Heat Exchanger Specifications

Unit Performance & Fluid Properties

Tube Side

Light Gases Cooler

Shell Side

R-22

Flow Rate - Liquid (kg/hr)

Density (kg/m3)

Viscosity - Vapor (cP)

Temperature (°C)

Pressure (kPa)

Material of Construction Stainless Steel

Shell Side

1

Carbon Steel

Tube Side

Number of Passes 2

Page 120: Styrene Production

ID Number: E-401.4 Date: 5/9/2006

Description:Prepared By: ACJ

No. Required 1 Checked By: MJH

Inlet Outlet Inlet Outlet

497900 497900 0 79263

0 0 79263 0

-11 -38 -60 -16

1750 1747 220 217

20.92 23.36 1465 8.89

0.0108 0.0098 0.0000 0.0107

0.0000 0.0000 0.4134 0.0000

41.22 39.40 90.86 51.73

0.0280 0.0251 0.0000 0.0089

0.0000 0.0000 0.1273 0.0000

R-22

Material of Construction Stainless Steel

Shell Side

1

Carbon Steel

Unit Construction

Flow Rate - Liquid (kg/hr)

Process StreamsFluid

A.2: Heat Exchanger Specifications (38 of 61)

Heat Exchanger Specifications

Unit Performance & Fluid Properties

Tube Side

Light Gases Cooler

Shell Side

Thermal Conductivity - Vapor (W/m-K)

Flow Rate - Vapor (kg/hr)

Thermal Conductivity - Liquid (W/m-K)

Density (kg/m3)

Viscosity - Vapor (cP)

Viscosity - Liquid (cP)

Temperature (°C)

Pressure (kPa)

Specific Heat (J/mol-K)

Number of Passes

Total Heat Transfer Area (m2) Heat Flux (kJ/hr-m

2-K)

385 1615

Tube Side

2

Duty (MJ/hr)

21340

Page 121: Styrene Production

ID Number: E-402 Date: 5/9/2006

Description:Prepared By: ACJ

No. Required 1 Checked By: MJH

Inlet Outlet Inlet Outlet

463100 463100 0 53835

0 0 53835 0

6 -14 -60 -5

3003 3000 220 217

33.45 36.02 1465 8.53

0.0119 0.0112 0.0000 0.0112

0.0000 0.0000 0.4134 0.0000

41.84 40.50 90.86 52.86

0.0315 0.0293 0.0000 0.0094

0.0000 0.0000 0.1273 0.0000

Viscosity - Liquid (cP)

Unit Construction

Fluid

Total Heat Transfer Area (m2)

Process Streams

Specific Heat (J/mol-K)

Thermal Conductivity - Vapor (W/m-K)

Flow Rate - Vapor (kg/hr)

Heat Flux (kJ/hr-m2-K)

323 1588

Thermal Conductivity - Liquid (W/m-K)

Duty (MJ/hr)

14840

A.2: Heat Exchanger Specifications (39 of 61)

Heat Exchanger Specifications

Unit Performance & Fluid Properties

Tube Side

Light Gases Cooler

Shell Side

R-22

Flow Rate - Liquid (kg/hr)

Density (kg/m3)

Viscosity - Vapor (cP)

Temperature (°C)

Pressure (kPa)

Material of Construction Stainless Steel

Shell Side

1

Carbon Steel

Tube Side

Number of Passes 2

Page 122: Styrene Production

ID Number: E-402.2 Date: 5/9/2006

Description:Prepared By: ACJ

No. Required 1 Checked By: MJH

Inlet Outlet Inlet Outlet

463100 463100 0 108120

0 0 108120 0

-9 -50 -60 -14

444 441 220 217

5.21 6.14 1465 8.82

0.0106 0.0090 0.0000 0.0108

0.0000 0.0000 0.4134 0.0000

40.86 38.28 90.86 51.93

0.0276 0.0230 0.0000 0.0090

0.0000 0.0000 0.1273 0.0000

R-22

Material of Construction Stainless Steel

Shell Side

1

Carbon Steel

Unit Construction

Flow Rate - Liquid (kg/hr)

Process StreamsFluid

A.2: Heat Exchanger Specifications (40 of 61)

Heat Exchanger Specifications

Unit Performance & Fluid Properties

Tube Side

Light Gases Cooler

Shell Side

Thermal Conductivity - Vapor (W/m-K)

Flow Rate - Vapor (kg/hr)

Thermal Conductivity - Liquid (W/m-K)

Density (kg/m3)

Viscosity - Vapor (cP)

Viscosity - Liquid (cP)

Temperature (°C)

Pressure (kPa)

Specific Heat (J/mol-K)

Number of Passes

Total Heat Transfer Area (m2) Heat Flux (kJ/hr-m

2-K)

418 1616

Tube Side

2

Duty (MJ/hr)

29230

Page 123: Styrene Production

ID Number: E-402.3 Date: 5/9/2006

Description:Prepared By: ACJ

No. Required 1 Checked By: MJH

Inlet Outlet Inlet Outlet

463100 463100 0 114080

0 0 114080 0

-6 -50 -60 -11

846 843 220 217

9.85 11.73 1465 8.74

0.0108 0.0092 0.0000 0.0109

0.0000 0.0000 0.4134 0.0000

41.02 38.28 90.86 52.19

0.0282 0.0235 0.0000 0.0091

0.0000 0.0000 0.1273 0.0000

Viscosity - Liquid (cP)

Unit Construction

Fluid

Total Heat Transfer Area (m2)

Process Streams

Specific Heat (J/mol-K)

Thermal Conductivity - Vapor (W/m-K)

Flow Rate - Vapor (kg/hr)

Heat Flux (kJ/hr-m2-K)

420 1615

Thermal Conductivity - Liquid (W/m-K)

Duty (MJ/hr)

31010

A.2: Heat Exchanger Specifications (41 of 61)

Heat Exchanger Specifications

Unit Performance & Fluid Properties

Tube Side

Light Gases Cooler

Shell Side

R-22

Flow Rate - Liquid (kg/hr)

Density (kg/m3)

Viscosity - Vapor (cP)

Temperature (°C)

Pressure (kPa)

Material of Construction Stainless Steel

Shell Side

1

Carbon Steel

Tube Side

Number of Passes 2

Page 124: Styrene Production

ID Number: E-402.4 Date: 5/9/2006

Description:Prepared By: ACJ

No. Required 1 Checked By: MJH

Inlet Outlet Inlet Outlet

463100 463100 0 80896

0 0 80896 0

-6 -37 -60 -11

1617 1614 220 217

18.83 21.28 1465 8.74

0.0110 0.0099 0.0000 0.0109

0.0000 0.0000 0.4134 0.0000

41.02 39.07 90.86 52.19

0.0289 0.0256 0.0000 0.0091

0.0000 0.0000 0.1273 0.0000

R-22

Material of Construction Stainless Steel

Shell Side

1

Carbon Steel

Unit Construction

Flow Rate - Liquid (kg/hr)

Process StreamsFluid

A.2: Heat Exchanger Specifications (42 of 61)

Heat Exchanger Specifications

Unit Performance & Fluid Properties

Tube Side

Light Gases Cooler

Shell Side

Thermal Conductivity - Vapor (W/m-K)

Flow Rate - Vapor (kg/hr)

Thermal Conductivity - Liquid (W/m-K)

Density (kg/m3)

Viscosity - Vapor (cP)

Viscosity - Liquid (cP)

Temperature (°C)

Pressure (kPa)

Specific Heat (J/mol-K)

Number of Passes

Total Heat Transfer Area (m2) Heat Flux (kJ/hr-m

2-K)

359 1612

Tube Side

2

Duty (MJ/hr)

21990

Page 125: Styrene Production

ID Number: E-403 Date: 5/9/2006

Description:Prepared By: ACJ

No. Required 1 Checked By: MJH

Inlet Outlet Inlet Outlet

214100 214100 0 100160

0 0 100160 0

35 -50 -60 -5

3000 2997 220 217

26.03 35.86 1465 8.53

0.0149 0.0117 0.0000 0.0112

0.0000 0.0000 0.4134 0.0000

35.17 32.61 90.86 52.86

0.0442 0.0311 0.0000 0.0094

0.0000 0.0000 0.1273 0.0000

Viscosity - Liquid (cP)

Unit Construction

Fluid

Total Heat Transfer Area (m2)

Process Streams

Specific Heat (J/mol-K)

Thermal Conductivity - Vapor (W/m-K)

Flow Rate - Vapor (kg/hr)

Heat Flux (kJ/hr-m2-K)

256 1617

Thermal Conductivity - Liquid (W/m-K)

Duty (MJ/hr)

27610

A.2: Heat Exchanger Specifications (43 of 61)

Heat Exchanger Specifications

Unit Performance & Fluid Properties

Tube Side

Light Gases Cooler

Shell Side

R-22

Flow Rate - Liquid (kg/hr)

Density (kg/m3)

Viscosity - Vapor (cP)

Temperature (°C)

Pressure (kPa)

Material of Construction Stainless Steel

Shell Side

1

Carbon Steel

Tube Side

Number of Passes 2

Page 126: Styrene Production

ID Number: E-403.1 Date: 5/9/2006

Description:Prepared By: ACJ

No. Required 1 Checked By: MJH

Inlet Outlet Inlet Outlet

214100 214100 0 0

0 0 154840 154840

-27 -50 -60 -32

397 394 220 217

4.30 4.71 1465 1384

0.0120 0.0110 0.0000 0.0000

0.0000 0.0000 0.4134 0.3130

33.27 32.61 90.86 94.85

0.0349 0.0319 0.0000 0.0000

0.0000 0.0000 0.1273 0.1147

R-22

Material of Construction Stainless Steel

Shell Side

1

Carbon Steel

Unit Construction

Flow Rate - Liquid (kg/hr)

Process StreamsFluid

A.2: Heat Exchanger Specifications (44 of 61)

Heat Exchanger Specifications

Unit Performance & Fluid Properties

Tube Side

Light Gases Cooler

Shell Side

Thermal Conductivity - Vapor (W/m-K)

Flow Rate - Vapor (kg/hr)

Thermal Conductivity - Liquid (W/m-K)

Density (kg/m3)

Viscosity - Vapor (cP)

Viscosity - Liquid (cP)

Temperature (°C)

Pressure (kPa)

Specific Heat (J/mol-K)

Number of Passes

Total Heat Transfer Area (m2) Heat Flux (kJ/hr-m

2-K)

183 1609

Tube Side

2

Duty (MJ/hr)

7408

Page 127: Styrene Production

ID Number: E-403.2 Date: 5/9/2006

Description:Prepared By: ACJ

No. Required 1 Checked By: MJH

Inlet Outlet Inlet Outlet

214100 214100 0 100160

0 0 100160 0

35 -50 -60 -5

1088 1085 220 217

9.44 12.99 1465 8.53

0.0146 0.0112 0.0000 0.0112

0.0000 0.0000 0.4134 0.0000

35.17 32.61 90.86 52.86

0.0431 0.0324 0.0000 0.0094

0.0000 0.0000 0.1273 0.0000

Viscosity - Liquid (cP)

Unit Construction

Fluid

Total Heat Transfer Area (m2)

Process Streams

Specific Heat (J/mol-K)

Thermal Conductivity - Vapor (W/m-K)

Flow Rate - Vapor (kg/hr)

Heat Flux (kJ/hr-m2-K)

257 1609

Thermal Conductivity - Liquid (W/m-K)

Duty (MJ/hr)

27610

A.2: Heat Exchanger Specifications (45 of 61)

Heat Exchanger Specifications

Unit Performance & Fluid Properties

Tube Side

Light Gases Cooler

Shell Side

R-22

Flow Rate - Liquid (kg/hr)

Density (kg/m3)

Viscosity - Vapor (cP)

Temperature (°C)

Pressure (kPa)

Material of Construction Stainless Steel

Shell Side

1

Carbon Steel

Tube Side

Number of Passes 2

Page 128: Styrene Production

ID Number: E-404 Date: 5/9/2006

Description:Prepared By: ACJ

No. Required 1 Checked By: MJH

Inlet Outlet Inlet Outlet

189700 189700 0 90583

0 0 90583 0

37 -50 -60 -5

3000 2997 220 217

24.98 34.70 1465 8.53

0.0153 0.0120 0.0000 0.0112

0.0000 0.0000 0.4134 0.0000

33.51 31.49 90.86 52.86

0.0466 0.0359 0.0000 0.0094

0.0000 0.0000 0.1273 0.0000

R-22

Material of Construction Stainless Steel

Shell Side

1

Carbon Steel

Unit Construction

Flow Rate - Liquid (kg/hr)

Process StreamsFluid

A.2: Heat Exchanger Specifications (46 of 61)

Heat Exchanger Specifications

Unit Performance & Fluid Properties

Tube Side

Light Gases Cooler

Shell Side

Thermal Conductivity - Vapor (W/m-K)

Flow Rate - Vapor (kg/hr)

Thermal Conductivity - Liquid (W/m-K)

Density (kg/m3)

Viscosity - Vapor (cP)

Viscosity - Liquid (cP)

Temperature (°C)

Pressure (kPa)

Specific Heat (J/mol-K)

Number of Passes

Total Heat Transfer Area (m2) Heat Flux (kJ/hr-m

2-K)

229 1610

Tube Side

2

Duty (MJ/hr)

24970

Page 129: Styrene Production

ID Number: E-404.1 Date: 5/9/2006

Description:Prepared By: ACJ

No. Required 1 Checked By: MJH

Inlet Outlet Inlet Outlet

189700 189700 0 0

0 0 90583 90583

-32 -50 -60 -37

410 407 220 217

4.38 4.71 1465 16.18

0.0122 0.0114 0.0000 0.0000

0.0000 0.0000 0.4134 0.3282

31.88 31.49 90.86 94.02

0.0363 0.0338 0.0000 0.0000

0.0000 0.0000 0.1273 0.1171

Viscosity - Liquid (cP)

Unit Construction

Fluid

Total Heat Transfer Area (m2)

Process Streams

Specific Heat (J/mol-K)

Thermal Conductivity - Vapor (W/m-K)

Flow Rate - Vapor (kg/hr)

Heat Flux (kJ/hr-m2-K)

160 53

Thermal Conductivity - Liquid (W/m-K)

Duty (MJ/hr)

168

A.2: Heat Exchanger Specifications (47 of 61)

Heat Exchanger Specifications

Unit Performance & Fluid Properties

Tube Side

Light Gases Cooler

Shell Side

R-22

Flow Rate - Liquid (kg/hr)

Density (kg/m3)

Viscosity - Vapor (cP)

Temperature (°C)

Pressure (kPa)

Material of Construction Stainless Steel

Shell Side

1

Carbon Steel

Tube Side

Number of Passes 2

Page 130: Styrene Production

ID Number: E-404.2 Date: 5/9/2006

Description:Prepared By: ACJ

No. Required 1 Checked By: MJH

Inlet Outlet Inlet Outlet

189700 189700 0 90583

0 0 90583 0

37 -50 -60 -5

1106 1103 220 217

9.21 12.77 1465 8.53

0.0150 0.0116 0.0000 0.0112

0.0000 0.0000 0.4134 0.0000

33.51 31.49 90.86 52.86

0.0456 0.0344 0.0000 0.0094

0.0000 0.0000 0.1273 0.0000

Viscosity - Liquid (cP)

Unit Construction

Fluid

Total Heat Transfer Area (m2)

Process Streams

Specific Heat (J/mol-K)

Thermal Conductivity - Vapor (W/m-K)

Flow Rate - Vapor (kg/hr)

Heat Flux (kJ/hr-m2-K)

229 1610

Thermal Conductivity - Liquid (W/m-K)

Duty (MJ/hr)

24970

A.2: Heat Exchanger Specifications (48 of 61)

Heat Exchanger Specifications

Unit Performance & Fluid Properties

Tube Side

Light Gases Cooler

Shell Side

R-22

Flow Rate - Liquid (kg/hr)

Density (kg/m3)

Viscosity - Vapor (cP)

Temperature (°C)

Pressure (kPa)

Material of Construction Stainless Steel

Shell Side

1

Carbon Steel

Tube Side

Number of Passes 2

Page 131: Styrene Production

ID Number: E-405 Date: 5/9/2006

Description:Prepared By: ACJ

No. Required 1 Checked By: MJH

Inlet Outlet Inlet Outlet

171600 171600 0 82675

0 0 82675 0

38 -50 -60 -5

3000 2997 220 217

24.17 33.71 1465 8.53

0.0155 0.0123 0.0000 0.0112

0.0000 0.0000 0.4134 0.0000

32.12 30.58 90.86 52.86

0.0487 0.0375 0.0000 0.0094

0.0000 0.0000 0.1273 0.0000

R-22

Material of Construction Stainless Steel

Shell Side

1

Carbon Steel

Unit Construction

Flow Rate - Liquid (kg/hr)

Process StreamsFluid

A.2: Heat Exchanger Specifications (49 of 61)

Heat Exchanger Specifications

Unit Performance & Fluid Properties

Tube Side

Light Gases Cooler

Shell Side

Thermal Conductivity - Vapor (W/m-K)

Flow Rate - Vapor (kg/hr)

Thermal Conductivity - Liquid (W/m-K)

Density (kg/m3)

Viscosity - Vapor (cP)

Viscosity - Liquid (cP)

Temperature (°C)

Pressure (kPa)

Specific Heat (J/mol-K)

Number of Passes

Total Heat Transfer Area (m2) Heat Flux (kJ/hr-m

2-K)

207 1610

Tube Side

2

Duty (MJ/hr)

22790

Page 132: Styrene Production

ID Number: E-405.1 Date: 5/9/2006

Description:Prepared By: ACJ

No. Required 1 Checked By: MJH

Inlet Outlet Inlet Outlet

171600 171600 0 0

0 0 160040 160040

-39 -50 -60 -45

427 424 220 217

4.60 4.77 1465 1423

0.0122 0.0117 0.0000 0.0000

0.0000 0.0000 0.4134 0.3546

30.74 30.58 90.86 92.82

0.0370 0.0356 0.0000 0.0000

0.0000 0.0000 0.1273 0.1207

Viscosity - Liquid (cP)

Unit Construction

Fluid

Total Heat Transfer Area (m2)

Process Streams

Specific Heat (J/mol-K)

Thermal Conductivity - Vapor (W/m-K)

Flow Rate - Vapor (kg/hr)

Heat Flux (kJ/hr-m2-K)

145 1570

Thermal Conductivity - Liquid (W/m-K)

Duty (MJ/hr)

2571

A.2: Heat Exchanger Specifications (50 of 61)

Heat Exchanger Specifications

Unit Performance & Fluid Properties

Tube Side

Light Gases Cooler

Shell Side

R-22

Flow Rate - Liquid (kg/hr)

Density (kg/m3)

Viscosity - Vapor (cP)

Temperature (°C)

Pressure (kPa)

Material of Construction Stainless Steel

Shell Side

1

Carbon Steel

Tube Side

Number of Passes 2

Page 133: Styrene Production

ID Number: E-405.2 Date: 5/9/2006

Description:Prepared By: ACJ

No. Required 1 Checked By: MJH

Inlet Outlet Inlet Outlet

171600 171600 0 82675

0 0 82675 0

38 -50 -60 -5

1130 1127 220 217

9.10 12.67 1465 8.53

0.0153 0.0119 0.0000 0.0112

0.0000 0.0000 0.4134 0.0000

32.12 30.58 90.86 52.86

0.0478 0.0361 0.0000 0.0094

0.0000 0.0000 0.1273 0.0000

Viscosity - Liquid (cP)

Unit Construction

Fluid

Total Heat Transfer Area (m2)

Process Streams

Specific Heat (J/mol-K)

Thermal Conductivity - Vapor (W/m-K)

Flow Rate - Vapor (kg/hr)

Heat Flux (kJ/hr-m2-K)

207 1610

Thermal Conductivity - Liquid (W/m-K)

Duty (MJ/hr)

22790

A.2: Heat Exchanger Specifications (51 of 61)

Heat Exchanger Specifications

Unit Performance & Fluid Properties

Tube Side

Light Gases Cooler

Shell Side

R-22

Flow Rate - Liquid (kg/hr)

Density (kg/m3)

Viscosity - Vapor (cP)

Temperature (°C)

Pressure (kPa)

Material of Construction Stainless Steel

Shell Side

1

Carbon Steel

Tube Side

Number of Passes 2

Page 134: Styrene Production

ID Number: E-406 Date: 5/9/2006

Description:Prepared By: ACJ

No. Required 1 Checked By: MJH

Inlet Outlet Inlet Outlet

156600 156600 0 76689

0 0 76689 0

40 -50 -60 -5

3000 2997 220 217

23.44 32.86 1465 8.53

0.0158 0.0125 0.0000 0.0112

0.0000 0.0000 0.4134 0.0000

31.10 29.92 90.86 52.86

0.0509 0.0392 0.0000 0.0094

0.0000 0.0000 0.1273 0.0000

R-22

Material of Construction Stainless Steel

Shell Side

1

Carbon Steel

Unit Construction

Flow Rate - Liquid (kg/hr)

Process StreamsFluid

A.2: Heat Exchanger Specifications (52 of 61)

Heat Exchanger Specifications

Unit Performance & Fluid Properties

Tube Side

Light Gases Cooler

Shell Side

Thermal Conductivity - Vapor (W/m-K)

Flow Rate - Vapor (kg/hr)

Thermal Conductivity - Liquid (W/m-K)

Density (kg/m3)

Viscosity - Vapor (cP)

Viscosity - Liquid (cP)

Temperature (°C)

Pressure (kPa)

Specific Heat (J/mol-K)

Number of Passes

Total Heat Transfer Area (m2) Heat Flux (kJ/hr-m

2-K)

191 1608

Tube Side

2

Duty (MJ/hr)

21140

Page 135: Styrene Production

ID Number: E-406.1 Date: 5/9/2006

Description:Prepared By: ACJ

No. Required 1 Checked By: MJH

Inlet Outlet Inlet Outlet

156600 156600 0 76689

0 0 76689 0

-43 -50 -60 -48

436 433 220 217

4.64 4.75 1465 1432

0.0123 0.0120 0.0000 0.0000

0.0000 0.0000 0.4134 0.3662

30.00 29.92 90.86 92.36

0.0383 0.0373 0.0000 0.0000

0.0000 0.0000 0.1273 0.1222

Viscosity - Liquid (cP)

Unit Construction

Fluid

Total Heat Transfer Area (m2)

Process Streams

Specific Heat (J/mol-K)

Thermal Conductivity - Vapor (W/m-K)

Flow Rate - Vapor (kg/hr)

Heat Flux (kJ/hr-m2-K)

145 1627

Thermal Conductivity - Liquid (W/m-K)

Duty (MJ/hr)

1605

A.2: Heat Exchanger Specifications (53 of 61)

Heat Exchanger Specifications

Unit Performance & Fluid Properties

Tube Side

Light Gases Cooler

Shell Side

R-22

Flow Rate - Liquid (kg/hr)

Density (kg/m3)

Viscosity - Vapor (cP)

Temperature (°C)

Pressure (kPa)

Material of Construction Stainless Steel

Shell Side

1

Carbon Steel

Tube Side

Number of Passes 2

Page 136: Styrene Production

ID Number: E-406.2 Date: 5/9/2006

Description:Prepared By: ACJ

No. Required 1 Checked By: MJH

Inlet Outlet Inlet Outlet

156600 156600 0 76689

0 0 76689 0

40 -50 -60 -5

1142 1139 220 217

8.92 12.48 1465 8.53

0.0155 0.0121 0.0000 0.0112

0.0000 0.0000 0.4134 0.0000

31.10 29.92 90.86 52.86

0.0500 0.0378 0.0000 0.0094

0.0000 0.0000 0.1273 0.0000

Viscosity - Liquid (cP)

Unit Construction

Fluid

Total Heat Transfer Area (m2)

Process Streams

Specific Heat (J/mol-K)

Thermal Conductivity - Vapor (W/m-K)

Flow Rate - Vapor (kg/hr)

Heat Flux (kJ/hr-m2-K)

191 1608

Thermal Conductivity - Liquid (W/m-K)

Duty (MJ/hr)

21140

A.2: Heat Exchanger Specifications (54 of 61)

Heat Exchanger Specifications

Unit Performance & Fluid Properties

Tube Side

Light Gases Cooler

Shell Side

R-22

Flow Rate - Liquid (kg/hr)

Density (kg/m3)

Viscosity - Vapor (cP)

Temperature (°C)

Pressure (kPa)

Material of Construction Stainless Steel

Shell Side

1

Carbon Steel

Tube Side

Number of Passes 2

Page 137: Styrene Production

ID Number: E-407 Date: 5/9/2006

Description:Prepared By: ACJ

No. Required 1 Checked By: MJH

Inlet Outlet Inlet Outlet

145400 145400 0 71828

0 0 71828 0

41 -50 -60 -5

3000 2997 220 217

22.86 32.15 1465 8.53

0.0159 0.0126 0.0000 0.0112

0.0000 0.0000 0.4134 0.0000

30.23 29.36 90.86 52.86

0.0527 0.0406 0.0000 0.0094

0.0000 0.0000 0.1273 0.0000

R-22

Material of Construction Stainless Steel

Shell Side

1

Carbon Steel

Unit Construction

Flow Rate - Liquid (kg/hr)

Process StreamsFluid

A.2: Heat Exchanger Specifications (55 of 61)

Heat Exchanger Specifications

Unit Performance & Fluid Properties

Tube Side

Light Gases Cooler

Shell Side

Thermal Conductivity - Vapor (W/m-K)

Flow Rate - Vapor (kg/hr)

Thermal Conductivity - Liquid (W/m-K)

Density (kg/m3)

Viscosity - Vapor (cP)

Viscosity - Liquid (cP)

Temperature (°C)

Pressure (kPa)

Specific Heat (J/mol-K)

Number of Passes

Total Heat Transfer Area (m2) Heat Flux (kJ/hr-m

2-K)

178 1607

Tube Side

2

Duty (MJ/hr)

19800

Page 138: Styrene Production

ID Number: E-407.1 Date: 5/9/2006

Description:Prepared By: ACJ

No. Required 1 Checked By: MJH

Inlet Outlet Inlet Outlet

145400 145400 0 1625

0 0 1625 0

-48 -50 -60 -5

448 445 220 217

4.76 4.77 1465 8.53

0.0123 0.0122 0.0000 0.0112

0.0000 0.0000 0.4134 0.0000

29.38 29.36 90.86 52.86

0.0392 0.0389 0.0000 0.0094

0.0000 0.0000 0.1273 0.0000

Viscosity - Liquid (cP)

Unit Construction

Fluid

Total Heat Transfer Area (m2)

Process Streams

Specific Heat (J/mol-K)

Thermal Conductivity - Vapor (W/m-K)

Flow Rate - Vapor (kg/hr)

Heat Flux (kJ/hr-m2-K)

10 1735

Thermal Conductivity - Liquid (W/m-K)

Duty (MJ/hr)

448

A.2: Heat Exchanger Specifications (56 of 61)

Heat Exchanger Specifications

Unit Performance & Fluid Properties

Tube Side

Light Gases Cooler

Shell Side

R-22

Flow Rate - Liquid (kg/hr)

Density (kg/m3)

Viscosity - Vapor (cP)

Temperature (°C)

Pressure (kPa)

Material of Construction Stainless Steel

Shell Side

1

Carbon Steel

Tube Side

Number of Passes 2

Page 139: Styrene Production

ID Number: E-408 Date: 5/9/2006

Description:Prepared By: ACJ

No. Required 1 Checked By: MJH

Inlet Outlet Inlet Outlet

137800 137800 0 67257

0 0 67257 0

40 -50 -60 -5

3000 2997 220 217

22.55 31.62 1465 8.53

0.0160 0.0127 0.0000 0.0112

0.0000 0.0000 0.4134 0.0000

29.57 31.62 90.86 52.86

0.0538 0.0416 0.0000 0.0094

0.0000 0.0000 0.1273 0.0000

R-22

Material of Construction Stainless Steel

Shell Side

1

Carbon Steel

Unit Construction

Flow Rate - Liquid (kg/hr)

Process StreamsFluid

A.2: Heat Exchanger Specifications (58 of 61)

Heat Exchanger Specifications

Unit Performance & Fluid Properties

Tube Side

Light Gases Cooler

Shell Side

Thermal Conductivity - Vapor (W/m-K)

Flow Rate - Vapor (kg/hr)

Thermal Conductivity - Liquid (W/m-K)

Density (kg/m3)

Viscosity - Vapor (cP)

Viscosity - Liquid (cP)

Temperature (°C)

Pressure (kPa)

Specific Heat (J/mol-K)

Number of Passes

Total Heat Transfer Area (m2) Heat Flux (kJ/hr-m

2-K)

167 1608

Tube Side

2

Duty (MJ/hr)

18540

Page 140: Styrene Production

ID Number: E-407.2 Date: 5/9/2006

Description:Prepared By: ACJ

No. Required 1 Checked By: MJH

Inlet Outlet Inlet Outlet

145400 145400 0 71828

0 0 71828 0

41 -50 -60 -5

448 445 220 217

8.82 12.38 1465 8.53

0.0157 0.0123 0.0000 0.0112

0.0000 0.0000 0.4134 0.0000

30.23 29.36 90.86 52.86

0.0518 0.0393 0.0000 0.0094

0.0000 0.0000 0.1273 0.0000

R-22

Material of Construction Stainless Steel

Shell Side

1

Carbon Steel

Unit Construction

Flow Rate - Liquid (kg/hr)

Process StreamsFluid

A.2: Heat Exchanger Specifications (57 of 61)

Heat Exchanger Specifications

Unit Performance & Fluid Properties

Tube Side

Light Gases Cooler

Shell Side

Thermal Conductivity - Vapor (W/m-K)

Flow Rate - Vapor (kg/hr)

Thermal Conductivity - Liquid (W/m-K)

Density (kg/m3)

Viscosity - Vapor (cP)

Viscosity - Liquid (cP)

Temperature (°C)

Pressure (kPa)

Specific Heat (J/mol-K)

Number of Passes

Total Heat Transfer Area (m2) Heat Flux (kJ/hr-m

2-K)

178 1607

Tube Side

2

Duty (MJ/hr)

19800

Page 141: Styrene Production

ID Number: E-408.1 Date: 5/9/2006

Description:Prepared By: ACJ

No. Required 1 Checked By: MJH

Inlet Outlet Inlet Outlet

137800 137800 0 62904

0 0 62904 0

34 -50 -60 -5

1187 1184 220 217

9.09 12.49 1465 8.53

0.0156 0.0124 0.0000 0.0112

0.0000 0.0000 0.4134 0.0000

29.53 28.96 90.86 52.86

0.0522 0.0405 0.0000 0.0094

0.0000 0.0000 0.1273 0.0000

Viscosity - Liquid (cP)

Unit Construction

Fluid

Total Heat Transfer Area (m2)

Process Streams

Specific Heat (J/mol-K)

Thermal Conductivity - Vapor (W/m-K)

Flow Rate - Vapor (kg/hr)

Heat Flux (kJ/hr-m2-K)

162 1610

Thermal Conductivity - Liquid (W/m-K)

Duty (MJ/hr)

17340

A.2: Heat Exchanger Specifications (59 of 61)

Heat Exchanger Specifications

Unit Performance & Fluid Properties

Tube Side

Light Gases Cooler

Shell Side

R-22

Flow Rate - Liquid (kg/hr)

Density (kg/m3)

Viscosity - Vapor (cP)

Temperature (°C)

Pressure (kPa)

Material of Construction Stainless Steel

Shell Side

1

Carbon Steel

Tube Side

Number of Passes 2

Page 142: Styrene Production

ID Number: E-409 Date: 5/9/2006

Description:Prepared By: ACJ

No. Required 1 Checked By: MJH

Inlet Outlet Inlet Outlet

133500 133500 0 63194

0 0 63194 0

37 -50 -60 -5

3000.0 2997.0 220.0 217.0

22.52 31.31 1465 8.53

0.0160 0.0128 0.0000 0.0112

0.0000 0.0000 0.4134 0.0000

29.17 28.72 90.86 52.86

0.0543 0.0423 0.0000 0.0094

0.0000 0.0000 0.1273 0.0000

Viscosity - Liquid (cP)

Unit Construction

Fluid

Total Heat Transfer Area (m2)

Process Streams

Specific Heat (J/mol-K)

Thermal Conductivity - Vapor (W/m-K)

Flow Rate - Vapor (kg/hr)

Heat Flux (kJ/hr-m2-K)

127 2029

Thermal Conductivity - Liquid (W/m-K)

Duty (MJ/hr)

17420

A.2: Heat Exchanger Specifications (60 of 61)

Heat Exchanger Specifications

Unit Performance & Fluid Properties

Tube Side

Light Gases Cooler

Shell Side

R-22

Flow Rate - Liquid (kg/hr)

Density (kg/m3)

Viscosity - Vapor (cP)

Temperature (°C)

Pressure (kPa)

Material of Construction Stainless Steel

Shell Side

1

Carbon Steel

Tube Side

Number of Passes 2

Page 143: Styrene Production

ID Number: E-409.2 Date: 5/9/2006

Description:Prepared By: ACJ

No. Required 1 Checked By: MJH

Inlet Outlet Inlet Outlet

133500 133500 0 51295

0 0 51295 0

21 -50 -60 -5

1228 1225 220 217

9.73 12.80 1465 8.53

0.0152 0.0125 0.0000 0.0112

0.0000 0.0000 0.4134 0.0000

29.09 28.72 90.86 52.86

0.0512 0.0412 0.0000 0.0094

0.0000 0.0000 0.1273 0.0000

R-22

Material of Construction Stainless Steel

Shell Side

1

Carbon Steel

Unit Construction

Flow Rate - Liquid (kg/hr)

Process StreamsFluid

A.2: Heat Exchanger Specifications (61 of 61)

Heat Exchanger Specifications

Unit Performance & Fluid Properties

Tube Side

Light Gases Cooler

Shell Side

Thermal Conductivity - Vapor (W/m-K)

Flow Rate - Vapor (kg/hr)

Thermal Conductivity - Liquid (W/m-K)

Density (kg/m3)

Viscosity - Vapor (cP)

Viscosity - Liquid (cP)

Temperature (°C)

Pressure (kPa)

Specific Heat (J/mol-K)

Number of Passes

Total Heat Transfer Area (m2) Heat Flux (kJ/hr-m

2-K)

143 1612

Tube Side

2

Duty (MJ/hr)

14140

Page 144: Styrene Production

ID Number: P-100 Date: 5/8/2006

Description: Benzene Feed Pump Prepared By: MJH

No. Required 1 Checked By: JRB

Brake Power (hp) 2.5

Pump Efficiency (%) 75

Hydraulic Power (hp) 1.9

Design Pressure (kPa) 4000 (max)

Design Temperature (°C) 300 (max)

Material of Construction Cast Iron

Process Fluid Mass Flow Rate (kg/hr) 97082

Design Specifications

Pump Type Centrifugal

Orientation Horizontal

Inlet Pressure (kPa) 101.3

Outlet Pressure (kPa) 135.8

Inlet Temperature (°C) 25.0

Outlet Temperature (°C) 25.0

99.85% Benzene

Process Fluid Compsition (mol%) 0.1% n-Hexane

0.05% Toluene

A.3: Pump Specifications (1 of 4)

Pump Specifications

Fluid Properties

Process Fluid Mass Flow Rate (kg/hr) 88117

Page 145: Styrene Production

ID Number: P-300 Date: 5/8/2006

Description: Benzene Recycle Pump Prepared By: MJH

No. Required 1 Checked By: JRB

A.3: Pump Specifications (2 of 4)

Process Fluid Mass Flow Rate (kg/hr)

Material of Construction

Orientation

Design Specifications

Pump Type

99.85% Benzene

0.14% n-Hexane

0.01% Toluene

Outlet Pressure (kPa)

Brake Power (hp)

Centrifugal

Horizontal

Cast Iron

3946

4000 (max)

300 (max)

75

0.25

0.33

Design Pressure (kPa)

Design Temperature (°C)

Pump Efficiency (%)

Hydraulic Power (hp)

41.8

41.9

26.7

135.8

Process Fluid Compsition (mol%)

Inlet Temperature (°C)

Outlet Temperature (°C)

Inlet Pressure (kPa)

Pump Specifications

Fluid Properties

Process Fluid Mass Flow Rate (kg/hr) 3570

Page 146: Styrene Production

ID Number: P-301 Date: 5/8/2006

Description: Toluene Product Pump Prepared By: MJH

No. Required 1 Checked By: JRB

Brake Power (hp) 0.28

Pump Efficiency (%) 75

Hydraulic Power (hp) 0.21

Design Pressure (kPa) 4000 (max)

Design Temperature (°C) 300 (max)

Material of Construction Cast Iron

Process Fluid Mass Flow Rate (kg/hr) 4698

Design Specifications

Pump Type Centrifugal

Orientation Horizontal

Inlet Pressure (kPa) 26.7

Outlet Pressure (kPa) 101.3

Inlet Temperature (°C) 69.5

Outlet Temperature (°C) 69.6

99.75% Toluene

Process Fluid Compsition (mol%) 0.24% Ethylbenzene

0.01% Benzene

A.3: Pump Specifications (3 of 4)

Pump Specifications

Fluid Properties

Process Fluid Mass Flow Rate (kg/hr) 4252

Page 147: Styrene Production

ID Number: P-302 Date: 5/8/2006

Description: Styrene Product Pump Prepared By: MJH

No. Required 1 Checked By: JRB

Brake Power (hp) 9.6

0.01% Toluene

Pump Efficiency (%) 75

Hydraulic Power (hp) 7.2

Design Pressure (kPa) 4000 (max)

Design Temperature (°C) 300 (max)

Material of Construction Cast Iron

Process Fluid Mass Flow Rate (kg/hr) 124710

Design Specifications

Pump Type Centrifugal

Orientation Horizontal

Inlet Pressure (kPa) 2.3

Outlet Pressure (kPa) 105.0

Inlet Temperature (°C) 43.7

Outlet Temperature (°C) 43.8

99.93% Styrene

Process Fluid Compsition (mol%) 0.04% Cumene

Trace Heavies

A.3: Pump Specifications (4 of 4)

Pump Specifications

Fluid Properties

Process Fluid Mass Flow Rate (kg/hr) 112240

Page 148: Styrene Production

ID Number: Tank-100 Date: 5/8/2006

Description: Prepared By: MJH

No. Required 3 Checked By: MSB

External CoolerType

Styrene Monomer Product Tank

Liquid Level (%) 88.5 Media H2O

Residence Time (days)

20

10

Tank Height (m)

Tank Diameter (m)

11,310

Type

Material of Construction

Vessel Orientation

Design Temperature (°C) 480 (max)

Y36

Max Speed (rpm)

Heat Exchange?

Impeller Diameter (m)

NA

NA

Design Pressure (kPa)

Design Volume (m3)

4000 (max)

>99.93% Styrene Monomer

Agitation Required? N

Power (hp)

Carbon Steel

NA

A.4: Tank Specifications (1 of 8)

Tank Specifications

Operating Conditions

Design Specifications

Fluid Composition (by mass)

Operating Temperature (°C)

Operating Pressure (kPa)

Service Volume (m3)

Vertical

23.9

16.2

274

Atmospheric

10,010

Media Flowrate (kg/s)

Area (m2)

Cone Roof

Page 149: Styrene Production

ID Number: Tank-101 Date: 5/8/2006

Description: Styrene Monomer Off-Specification Tank Prepared By: MJH

No. Required 1 Checked By: MSB

Media Flowrate (kg/s) 11.2

Area (m2) 189

Liquid Level (%) 85 Media H2O

Residence Time (days) 2 Type External Cooler

Tank Height (m) 25 Heat Exchange? Y

Tank Diameter (m) 19 Max Speed (rpm) NA

Design Volume (m3) 7,090 Impeller Diameter (m) NA

Design Pressure (kPa) 4000 (max) Power (hp) NA

Design Temperature (°C) 480 (max) Agitation Required? N

Material of Construction Carbon Steel

Vessel Orientation Vertical

Service Volume (m3) 6,008

Design Specifications

Type Cone Roof

Operating Temperature (°C) 23.9

Operating Pressure (kPa) Atmospheric

A.4: Tank Specifications (2 of 8)

Tank Specifications

Operating Conditions

Fluid Composition (by mass) <99.93% Styrene Monomer

Page 150: Styrene Production

ID Number: Tank-103 Date: 5/8/2006

Description: Benzene Feed Tank Prepared By: MJH

No. Required 8 Checked By: MSB

Media Flowrate NA

Area (m2) NA

Liquid Level (%) 85 Media NA

Residence Time (days) 30 Type NA

Tank Height (m) 34 Heat Exchange? N

Tank Diameter (m) 20 Max Speed (rpm) NA

Design Volume (m3) 10,681 Impeller Diameter (m) NA

Design Pressure (kPa) 4000 (max) Power (hp) NA

Design Temperature (°C) 480 (max) Agitation Required? N

Material of Construction Carbon Steel

Vessel Orientation Vertical

Service Volume (m3) 9,026

Design Specifications

Type Cone Roof

Operating Temperature (°C) Atmospheric

Operating Pressure (kPa) Atmospheric

A.4: Tank Specifications (3 of 8)

Tank Specifications

Operating Conditions

Fluid Composition (by mass) >99.8% Benzene

Page 151: Styrene Production

ID Number: Tank-104 Date: 5/8/2006

Description: Benzene Off-Specification Tank Prepared By: MJH

No. Required 1 Checked By: MSB

Media Flowrate NA

Area (m2) NA

Liquid Level (%) 90 Media NA

Residence Time (days) 2 Type NA

Tank Height (m) 29.5 Heat Exchange? N

Tank Diameter (m) 17 Max Speed (rpm) NA

Design Volume (m3) 6,696 Impeller Diameter (m) NA

Design Pressure (kPa) 4000 (max) Power (hp) NA

Design Temperature (°C) 480 (max) Agitation Required? N

Material of Construction Carbon Steel

Vessel Orientation Vertical

Service Volume (m3) 6,007

Design Specifications

Type Cone Roof

Operating Temperature (°C) Atmospheric

Operating Pressure (kPa) Atmospheric

A.4: Tank Specifications (4 of 8)

Tank Specifications

Operating Conditions

Fluid Composition (by mass) <99.8% Benzene

Page 152: Styrene Production

ID Number: Tank-105 Date: 5/8/2006

Description: Ethylbenzene Startup Tank Prepared By: MJH

No. Required 1 Checked By: MSB

Media Flowrate NA

Area (m2) NA

Liquid Level (%) 90 Media NA

Residence Time (days) 2 Type NA

Tank Height (m) 35.5 Heat Exchange? N

Tank Diameter (m) 23 Max Speed (rpm) NA

Design Volume (m3) 14,750 Impeller Diameter (m) NA

Design Pressure (kPa) 4000 (max) Power (hp) NA

Design Temperature (°C) 480 (max) Agitation Required? N

Material of Construction Carbon Steel

Vessel Orientation Vertical

Service Volume (m3) 13,274

Design Specifications

Type Cone Roof

Operating Temperature (°C) Atmospheric

Operating Pressure (kPa) Atmospheric

A.4: Tank Specifications (5 of 8)

Tank Specifications

Operating Conditions

Fluid Composition (by mass) ~99.8% Ethylbenzene

Page 153: Styrene Production

ID Number: Tank-106 Date: 5/8/2006

Description: Ethylbenzene Off-Specification Tank Prepared By: MJH

No. Required 1 Checked By: MSB

Media Flowrate NA

Area (m2) NA

Liquid Level (%) 90 Media NA

Residence Time (days) 2 Type NA

Tank Height (m) 35.5 Heat Exchange? N

Tank Diameter (m) 23 Max Speed (rpm) NA

Design Volume (m3) 14,750 Impeller Diameter (m) NA

Design Pressure (kPa) 4000 (max) Power (hp) NA

Design Temperature (°C) 480 (max) Agitation Required? N

Material of Construction Carbon Steel

Vessel Orientation Vertical

Service Volume (m3) 13,274

Design Specifications

Type Cone Roof

Operating Temperature (°C) Atmospheric

Operating Pressure (kPa) Atmospheric

A.4: Tank Specifications (6 of 8)

Tank Specifications

Operating Conditions

Fluid Composition (by mass) <99.8% Ethylbenzene

Page 154: Styrene Production

ID Number: Tank-107 Date: 5/8/2006

Description: Toluene Product Storage Tank Prepared By: MJH

No. Required 1 Checked By: MSB

Media Flowrate NA

Area (m2) NA

Liquid Level (%) 90 Media NA

Residence Time (days) 10 Type NA

Tank Height (m) 16.5 Heat Exchange? N

Tank Diameter (m) 10 Max Speed (rpm) NA

Design Volume (m3) 1,375 Impeller Diameter (m) NA

Design Pressure (kPa) 4000 (max) Power (hp) NA

Design Temperature (°C) 480 (max) Agitation Required? N

Material of Construction Carbon Steel

Vessel Orientation Vertical

Service Volume (m3) 1,177

Design Specifications

Type Cone Roof

Operating Temperature (°C) Atmospheric

Operating Pressure (kPa) Atmospheric

A.4: Tank Specifications (7 of 8)

Tank Specifications

Operating Conditions

Fluid Composition (by mass) >99.7% Toluene

Page 155: Styrene Production

ID Number: Tank-108 Date: 5/8/2006

Description: Toluene Off-Spec Storage Tank Prepared By: MJH

No. Required 1 Checked By: MSB

Media Flowrate NA

Area (m2) NA

Liquid Level (%) 90 Media NA

Residence Time (days) 2 Type NA

Tank Height (m) 11 Heat Exchange? N

Tank Diameter (m) 5.5 Max Speed (rpm) NA

Design Volume (m3) 261 Impeller Diameter (m) NA

Design Pressure (kPa) 4000 (max) Power (hp) NA

Design Temperature (°C) 480 (max) Agitation Required? N

Material of Construction Stainless Steel

Vessel Orientation Vertical

Service Volume (m3) 236

Design Specifications

Type Cone Roof

Operating Temperature (°C) Atmospheric

Operating Pressure (kPa) Atmospheric

A.4: Tank Specifications (8 of 8)

Tank Specifications

Operating Conditions

Fluid Composition (by mass) <99.7% Toluene

Page 156: Styrene Production

ID Number: V-100 Date: 5/11/2006

Description: Two-Phase Separator Prepared By: LJBNo. Required 1 Checked By: MJH

Vapor Feed

Vapor Effluent

Liquid Effluent

-50.0124.0

N

A.5: Two Phase Separator Specifications (1 of 13)

Two-Phase Separator Specifications

Process Stream Conditions

Inlet Flows

Ethane (52.2%), Nitrogen (21.0%), Hydrogen (10.7%)

21490 kgmol/hr Ethylene (5.6%), Ethylbenzene (5.1%), Styrene (5.0%)

Trace: n-Hexane, Toluene, Benzene

Outlet Flows

Ethane (58.0%), Nitrogen (23.7%), Hydrogen (12.0%)

19080 kgmol/hr Ethylene (6.30%)

Ethylbenzene (45.2%), Styrene (44.7%), Ethane (5.6%),

2409 kgmol/hr Toluene (2.1%), Benzene (1.9%)Trace: n-Hexane, Nitrogen, Heavies

Operating Conditions

Inlet Exit

Temperature (°C) Temperature (°C) -50.0Pressure (kPa) Pressure (kPa) 124.0

Design Data

Type Two Phase Separator

Position Vertical

Height (m) 9.07

Diameter (m) 2.59

Material of Construction Carbon Steel

Volume (m3) 47.79

Additional Equipment

Heat Exchange Required? Agitation Required? N

Page 157: Styrene Production

ID Number: V-101 Date: 5/11/2006

Description: Two-Phase Separator Prepared By: LJBNo. Required 1 Checked By: MJH

Vapor Feed

Vapor Effluent

Liquid Effluent

25.0128.8

N

A.5: Two Phase Separator Specifications (2 of 13)

Two-Phase Separator Specifications

Process Stream Conditions

Inlet Flows

Nitrogen (79.2%), Water (20.4%)

10380 kgmol/hr Trace: Carbon Dioxide

Outlet Flows

Nitrogen (97.0%), Water (2.5%)

8477 kgmol/hr Trace: Carbon Dioxide

Water (100%)

1904 kgmol/hr

Operating Conditions

Inlet Exit

Temperature (°C) Temperature (°C) 25.0Pressure (kPa) Pressure (kPa) 128.8

Design Data

Type Two Phase Separator

Position Vertical

Height (m) 6.93

Diameter (m) 1.98

Material of Construction Carbon Steel

Volume (m3) 21.34

Additional Equipment

Heat Exchange Required? Agitation Required? N

Page 158: Styrene Production

ID Number: V-102 Date: 5/11/2006

Description: Two-Phase Separator Prepared By: LJBNo. Required 1 Checked By: MJH

Vapor Feed

Vapor Effluent

Liquid Effluent

-50.0261.9

N

A.5: Two Phase Separator Specifications (3 of 13)

Two-Phase Separator Specifications

Process Stream Conditions

Inlet Flows

Nitrogen (97.0%), Water (2.5%)

8477 kgmol/hr Trace: Carbon Dioxide

Outlet Flows

Nitrogen (99.4%)

8268 kgmol/hr Trace: Carbon Dioxide

Water (100%)

208.5 kgmol/hr Trace: Carbon Dioxide

Operating Conditions

Inlet Exit

Temperature (°C) Temperature (°C) -50.0Pressure (kPa) Pressure (kPa) 261.9

Design Data

Type Two Phase Separator

Position Vertical

Height (m) 4.27

Diameter (m) 1.22

Material of Construction Carbon Steel

Volume (m3) 4.99

Additional Equipment

Heat Exchange Required? Agitation Required? N

Page 159: Styrene Production

ID Number: V-400 Date: 5/11/2006

Description: Two-Phase Separator Prepared By: LJBNo. Required 1 Checked By: MJH

Vapor Feed

Vapor Effluent

Liquid Effluent

-68.6101.3

N

A.5: Two Phase Separator Specifications (4 of 13)

Two-Phase Separator Specifications

Process Stream Conditions

Inlet Flows

Ethane (58.0 mol%), Nitrogen (23.7%), Hydrogen (12.0%),

19080 kgmol/hr Ethylene (6.3%)

Outlet Flows

Ethane (58.0 mol%), Nitrogen (23.7%), Hydrogen (12.0%),

19080 kgmol/hr Ethylene (6.3%)

0 kgmol/hr

Operating Conditions

Inlet Exit

9.60Height (m)

Temperature (°C) Temperature (°C) -68.6Pressure (kPa) Pressure (kPa) 101.3

Design Data

Type Two Phase Separator

Position Vertical

Additional Equipment

Heat Exchange Required? Agitation Required? N

Volume (m3) 56.61

Diameter (m) 2.74

Material of Construction Stainless Steel

Page 160: Styrene Production

ID Number: V-401 Date: 5/11/2006

Description: Two-Phase Separator Prepared By: LJBNo. Required 1 Checked By: MJH

Vapor Feed

Vapor Effluent

Liquid Effluent

-115.3101.3

N

A.5: Two Phase Separator Specifications (5 of 13)

Two-Phase Separator Specifications

Process Stream Conditions

Inlet Flows

Ethane (58.0 mol%), Nitrogen (23.7%), Hydrogen (12.0%),

19080 kgmol/hr Ethylene (6.3%)

Outlet Flows

Ethane (55.5 mol%), Nitrogen (25.2%), Hydrogen (12.8%),

17920 kgmol/hr Ethylene (6.5%)

Ethane (97.3%), Ethylene (2.7%)

1161 kgmol/hr Trace: Benzene, Nitrogen

Operating Conditions

Inlet Exit

Temperature (°C) Temperature (°C) -115.3Pressure (kPa) Pressure (kPa) 101.3

Design Data

Type Two Phase Separator

Position Vertical

Height (m) 8.00

Diameter (m) 2.29

Material of Construction Stainless Steel

Volume (m3) 32.95

Additional Equipment

Heat Exchange Required? Agitation Required? N

Page 161: Styrene Production

ID Number: V-402 Date: 5/11/2006

Description: Two-Phase Separator Prepared By: LJBNo. Required 1 Checked By: MJH

Vapor Feed

Vapor Effluent

Liquid Effluent

-116.0101.3

N

A.5: Two Phase Separator Specifications (6 of 13)

Two-Phase Separator Specifications

Process Stream Conditions

Inlet Flows

Ethane (55.5 mol%), Nitrogen (25.2%), Hydrogen (12.8%),

17920 kgmol/hr Ethylene (6.5%)

Outlet Flows

Ethane (17.3 mol%), Nitrogen (46.8%), Hydrogen (23.7%),

9642 kgmol/hr Ethylene 12.2%)

Ethane (100%)

8281 kgmol/hr

Operating Conditions

Inlet Exit

Temperature (°C) Temperature (°C) -116.0Pressure (kPa) Pressure (kPa) 101.3

Design Data

Type Two Phase Separator

Position Vertical

Height (m) 9.60

Diameter (m) 2.74

Material of Construction Stainless Steel

Volume (m3) 56.61

Additional Equipment

Heat Exchange Required? Agitation Required? N

Page 162: Styrene Production

ID Number: V-403 Date: 5/11/2006

Description: Two-Phase Separator Prepared By: LJBNo. Required 1 Checked By: MJH

Vapor Feed

Vapor Effluent

Liquid Effluent

-123.1101.3

N

A.5: Two Phase Separator Specifications (7 of 13)

Two-Phase Separator Specifications

Process Stream Conditions

Inlet Flows

Ethane (17.3 mol%), Nitrogen (46.8%), Hydrogen (23.7%),

9642 kgmol/hr Ethylene 12.2%)

Outlet Flows

Nitrogen (51.1%), Hydrogen (25.9%), Ethylene (13.3%)

8831 kgmol/hr Ethane (9.7 mol%)

Ethane (100%)

810.2 kgmol/hr

Operating Conditions

Inlet Exit

Temperature (°C) Temperature (°C) -123.1Pressure (kPa) Pressure (kPa) 101.3

Design Data

Type Two Phase Separator

Position Vertical

Height (m) 5.87

Diameter (m) 1.68

Material of Construction Stainless Steel

Volume (m3) 13.01

Additional Equipment

Heat Exchange Required? Agitation Required? N

Page 163: Styrene Production

ID Number: V-404 Date: 5/11/2006

Description: Two-Phase Separator Prepared By: LJBNo. Required 1 Checked By: MJH

Vapor Feed

Vapor Effluent

Liquid Effluent

-132.0101.3

N

A.5: Two Phase Separator Specifications (8 of 13)

Two-Phase Separator Specifications

Process Stream Conditions

Inlet Flows

Nitrogen (51.1%), Hydrogen (25.9%), Ethylene (13.3%)

8831 kgmol/hr Ethane (9.7%)

Outlet Flows

Nitrogen (54.9%), Hydrogen (27.8%), Ethylene (13.0%)

8222kgmol/hr Ethane (4.3%)

Ethane (82.6%), Ethylene (17.4%)

609 kgmol/hr

Operating Conditions

Inlet Exit

Temperature (°C) Temperature (°C) -132.0Pressure (kPa) Pressure (kPa) 101.3

Design Data

Type Two Phase Separator

Position Vertical

Height (m) 5.30

Diameter (m) 1.52

Material of Construction Stainless Steel

Volume (m3) 9.62

Additional Equipment

Heat Exchange Required? Agitation Required? N

Page 164: Styrene Production

ID Number: V-405 Date: 5/11/2006

Description: Two-Phase Separator Prepared By: LJBNo. Required 1 Checked By: MJH

Vapor Feed

Vapor Effluent

Liquid Effluent

-136.2101.3

N

A.5: Two Phase Separator Specifications (9 of 13)

Two-Phase Separator Specifications

Process Stream Conditions

Inlet Flows

Nitrogen (54.9%), Hydrogen (27.8%), Ethylene (13.0%)

8222kgmol/hr Ethane (4.3%)

Outlet Flows

Nitrogen (58.7%), Hydrogen (29.7%), Ethylene (8.8%)

7697 kgmol/hr Ethane (2.8%)

Ethylene (74.0%), Ethane (26.0%),

524.9 kgmol/hr

Operating Conditions

Inlet Exit

Temperature (°C) Temperature (°C) -136.2Pressure (kPa) Pressure (kPa) 101.3

Design Data

Type Two Phase Separator

Position Vertical

Height (m) 5.33

Diameter (m) 1.52

Material of Construction Stainless Steel

Volume (m3) 9.67

Additional Equipment

Heat Exchange Required? Agitation Required? N

Page 165: Styrene Production

ID Number: V-406 Date: 5/11/2006

Description: Two-Phase Separator Prepared By: LJBNo. Required 1 Checked By: MJH

Vapor Feed

Vapor Effluent

Liquid Effluent

-141.4101.3

N

A.5: Two Phase Separator Specifications (10 of 13)

Two-Phase Separator Specifications

Process Stream Conditions

Inlet Flows

Nitrogen (58.7%), Hydrogen (29.7%), Ethylene (8.8%)

7697 kgmol/hr Ethane (2.8%)

Outlet Flows

Nitrogen (61.8%), Hydrogen (31.3%), Ethylene (5.3%)

7304 kgmol/hr Ethane (1.6%)

Ethylene (74.7%), Ethane (25.3%),

393.3 kgmol/hr

Operating Conditions

Inlet Exit

Temperature (°C) Temperature (°C) -141.4Pressure (kPa) Pressure (kPa) 101.3

Design Data

Type Two Phase Separator

Position Vertical

Height (m) 4.80

Diameter (m) 1.37

Material of Construction Stainless Steel

Volume (m3) 7.08

Additional Equipment

Heat Exchange Required? Agitation Required? N

Page 166: Styrene Production

ID Number: V-407 Date: 5/11/2006

Description: Two-Phase Separator Prepared By: LJBNo. Required 1 Checked By: MJH

Vapor Feed

Vapor Effluent

Liquid Effluent

-147.9101.3

N

A.5: Two Phase Separator Specifications (11 of 13)

Two-Phase Separator Specifications

Process Stream Conditions

Inlet Flows

Nitrogen (61.8%), Hydrogen (31.3%), Ethylene (5.3%)

7304 kgmol/hr Ethane (1.6%)

Outlet Flows

Nitrogen (64.2%), Hydrogen (32.5%), Ethylene (2.6%)

7038 kgmol/hr Trace: Ethane

Ethylene (75.8%), Ethane (24.2%),

393.3 kgmol/hr

Operating Conditions

Inlet Exit

Temperature (°C) Temperature (°C) -147.9Pressure (kPa) Pressure (kPa) 101.3

Design Data

Type Two Phase Separator

Position Vertical

Height (m) 4.80

Diameter (m) 1.37

Material of Construction Stainless Steel

Volume (m3) 7.08

Additional Equipment

Heat Exchange Required? Agitation Required? N

Page 167: Styrene Production

ID Number: V-408 Date: 5/11/2006

Description: Two-Phase Separator Prepared By: LJBNo. Required 1 Checked By: MJH

Vapor Feed

Vapor Effluent

Liquid Effluent

-155.6101.3

N

A.5: Two Phase Separator Specifications (12 of 13)

Two-Phase Separator Specifications

Process Stream Conditions

Inlet Flows

Nitrogen (64.2%), Hydrogen (32.5%), Ethylene (2.6%)

7038 kgmol/hr Trace: Ethane

Outlet Flows

Nitrogen (65.6%), Hydrogen (33.2%)

6890 kgmol/hr Trace: Ethylene, Ethane

Ethylene (77.2%), Ethane (22.8%),

148.7 kgmol/hr

Operating Conditions

Inlet Exit

Temperature (°C) Temperature (°C) -155.6Pressure (kPa) Pressure (kPa) 101.3

Design Data

Type Two Phase Separator

Position Vertical

Height (m) 4.80

Diameter (m) 1.37

Material of Construction Stainless Steel

Volume (m3) 7.08

Additional Equipment

Heat Exchange Required? Agitation Required? N

Page 168: Styrene Production

ID Number: V-409 Date: 5/11/2006

Description: Two-Phase Separator Prepared By: LJBNo. Required 1 Checked By: MJH

Vapor Feed

Vapor Effluent

Liquid Effluent

-163.4101.3

N

A.5: Two Phase Separator Specifications (13 of 13)

Two-Phase Separator Specifications

Process Stream Conditions

Inlet Flows

Nitrogen (65.6%), Hydrogen (33.2%)

6890 kgmol/hr Trace: Ethylene, Ethane

Outlet Flows

Nitrogen (66.1%), Hydrogen (33.5%)

6832 kgmol/hr Trace: Ethylene, Ethane

Ethylene (78.6%), Ethane (21.4%),

58.1 kgmol/hr

Operating Conditions

Inlet Exit

Temperature (°C) Temperature (°C) -163.4Pressure (kPa) Pressure (kPa) 101.3

Design Data

Type Two Phase Separator

Position Vertical

Height (m) 4.27

Diameter (m) 1.22

Material of Construction Stainless Steel

Volume (m3) 4.99

Additional Equipment

Heat Exchange Required? Agitation Required? N

Page 169: Styrene Production

ID Number: M-400 Date: 5/8/2006

Description: 1st Turbine Prepared By: MJH

No. Required 1 Checked By: LJB

Power Output (kW) 4739

23.67% Nitrogen

11.99% Hydrogen

Adiabatic Efficiency 85

Material of Construction Stainless Steel

Design Capacity (kg/hr) 549770

Design Specifications

Expander Type Centrifugal

Orientation Horizontal

Inlet Pressure (kPa) 173.5

Outlet Pressure (kPa) 101.3

Inlet Temperature (°C) -47.5

Outlet Temperature (°C) -68.63

58.04% Ethane

Vapor Composition (mol%)

6.30% Ethylene

Trace Amounts Heavies

A.6: Turbine Specifications (1 of 10)

Turbine Specifications

Fluid Properties

Process Feed Flow Rate (kg/hr) 497960

Page 170: Styrene Production

ID Number: M-401 Date: 5/8/2006

Description: 2nd Turbine Prepared By: MJH

No. Required 1 Checked By: LJB

Power Output (kW) 25280

Design Capacity (kg/hr) 549740

Adiabatic Efficiency 85

Orientation Horizontal

Material of Construction Stainless Steel

Outlet Pressure (kPa) 101.3

Design Specifications

Expander Type Centrifugal

Outlet Temperature (°C) -115.3

Inlet Pressure (kPa) 3000.0

6.30% Ethylene

Trace Amounts Heavies

Inlet Temperature (°C) -25.4

58.04% Ethane

23.67% Nitrogen

Vapor Composition (mol%) 11.99% Hydrogen

A.6: Turbine Specifications (2 of 10)

Turbine Specifications

Fluid Properties

Process Feed Flow Rate (kg/hr) 497920

Page 171: Styrene Production

ID Number: M-402 Date: 5/8/2006

Description: 3rd Turbine Prepared By: MJH

No. Required 1 Checked By: LJB

Power Output (kW) 24900

Design Capacity (kg/hr) 511190

Adiabatic Efficiency 85

Stainless Steel

Outlet Pressure (kPa) 101.3

Design Specifications

Expander Type Centrifugal

Orientation Horizontal

Material of Construction

Outlet Temperature (°C) -100.3

Inlet Pressure (kPa) 3000.0

6.54% Ethylene

Inlet Temperature (°C) -15.7

55.50% Ethane

25.20% Nitrogen

12.77% Hydrogen

Vapor Composition (mol%)

A.6: Turbine Specifications (3 of 10)

Turbine Specifications

Fluid Properties

Process Feed Flow Rate (kg/hr) 463070

Page 172: Styrene Production

ID Number: M-403 Date: 5/8/2006

Description: 4th Turbine Prepared By: MJH

No. Required 1 Checked By: LJB

Power Output (kW) 10820

Design Capacity (kg/hr) 237330

Adiabatic Efficiency 85

Orientation Horizontal

Material of Construction Stainless Steel

Outlet Pressure (kPa) 101.3

Design Specifications

Expander Type Centrifugal

Outlet Temperature (°C) -123.1

Inlet Pressure (kPa) 3000

12.15% Ethylene

Inlet Temperature (°C) -50.0

17.27% Ethane

56.84% Nitrogen

Vapor Composition (mol%) 23.74% Hydrogen

A.6: Turbine Specifications (4 of 10)

Turbine Specifications

Fluid Properties

Process Feed Flow Rate (kg/hr) 214070

Page 173: Styrene Production

ID Number: M-404 Date: 5/8/2006

Description: 5th Turbine Prepared By: MJH

No. Required 1 Checked By: LJB

Adiabatic Efficiency 85

Power Output (kW) 9811

Material of Construction Stainless Steel

Design Capacity (kg/hr) 210370

Orientation Horizontal

Inlet Pressure (kPa) 3000

Outlet Pressure (kPa) 101.3

Design Specifications

Expander Type Centrifugal

13.26% Ethylene

-50.0

Outlet Temperature (°C) -132.0

Inlet Temperature (°C)

9.68% Ethane

51.14% Nitrogen

Vapor Composition (mol%) 25.91% Hydrogen

A.6: Turbine Specifications (5 of 10)

Turbine Specifications

Fluid Properties

Process Feed Flow Rate (kg/hr) 189700

Page 174: Styrene Production

ID Number: M-405 Date: 5/8/2006

Description: 6th Turbine Prepared By: MJH

No. Required 1 Checked By: LJB

Adiabatic Efficiency 85

Power Output (kW) 8963

Material of Construction Stainless Steel

Design Capacity (kg/hr) 190400

Orientation Horizontal

Inlet Pressure (kPa) 3000

Outlet Pressure (kPa) 101.3

Design Specifications

Expander Type Centrifugal

12.96% Ethylene

-50.0

Outlet Temperature (°C) -136.2

Inlet Temperature (°C)

4.28% Ethane

54.93% Nitrogen

Vapor Composition (mol%) 27.83% Hydrogen

A.6: Turbine Specifications (6 of 10)

Turbine Specifications

Fluid Properties

Process Feed Flow Rate (kg/hr) 171600

Page 175: Styrene Production

ID Number: M-406 Date: 5/8/2006

Description: 7th Turbine Prepared By: MJH

No. Required 1 Checked By: LJB

Adiabatic Efficiency 85

Power Output (kW) 8209

Material of Construction Stainless Steel

Design Capacity (kg/hr) 173860

Orientation Horizontal

Inlet Pressure (kPa) 3000

Outlet Pressure (kPa) 101.3

Design Specifications

Expander Type Centrifugal

8.80% Ethylene

-50.0

Outlet Temperature (°C) -141.4

Inlet Temperature (°C)

2.80% Ethane

58.67% Nitrogen

Vapor Composition (mol%) 29.73% Hydrogen

A.6: Turbine Specifications (7 of 10)

Turbine Specifications

Fluid Properties

Process Feed Flow Rate (kg/hr) 156600

Page 176: Styrene Production

ID Number: M-407 Date: 5/8/2006

Description: 8th Turbine Prepared By: MJH

No. Required 1 Checked By: LJB

Adiabatic Efficiency 85

Power Output (kW) 7634

Material of Construction Stainless Steel

Design Capacity (kg/hr) 161500

Orientation Horizontal

Inlet Pressure (kPa) 3000

Outlet Pressure (kPa) 101.3

Design Specifications

Expander Type Centrifugal

5.25% Ethylene

-50.0

Outlet Temperature (°C) -147.9

Inlet Temperature (°C)

1.59% Ethane

61.83% Nitrogen

Vapor Composition (mol%) 31.33% Hydrogen

A.6: Turbine Specifications (8 of 10)

Turbine Specifications

Fluid Properties

Process Feed Flow Rate (kg/hr) 145370

Page 177: Styrene Production

ID Number: M-408 Date: 5/8/2006

Description: 9th Turbine Prepared By: MJH

No. Required 1 Checked By: LJB

Adiabatic Efficiency 85

Power Output (kW) 7276

Material of Construction Stainless Steel

Design Capacity (kg/hr) 153180

Orientation Horizontal

Inlet Pressure (kPa) 3000

Outlet Pressure (kPa) 101.3

Design Specifications

Expander Type Centrifugal

2.58% Ethylene

-50.0

Outlet Temperature (°C) -155.6

Inlet Temperature (°C)

0.74% Ethane

64.17% Nitrogen

Vapor Composition (mol%) 32.52% Hydrogen

A.6: Turbine Specifications (9 of 10)

Turbine Specifications

Fluid Properties

Process Feed Flow Rate (kg/hr) 137780

Page 178: Styrene Production

ID Number: M-409 Date: 5/8/2006

Description: 10th Turbine Prepared By: MJH

No. Required 1 Checked By: LJB

Inlet Temperature (°C)

Design Specifications

Expander Type Centrifugal

Vapor Composition (mol%)

Outlet Pressure (kPa) 101.3

Power Output (kW) 7136

Design Capacity (kg/hr) 148560

Adiabatic Efficiency 85

Orientation Horizontal

Material of Construction Stainless Steel

Outlet Temperature (°C) -163.4

Inlet Pressure (kPa) 3000

0.97% Ethylene

-50.0

0.26% Ethane

65.55% Nitrogen

33.22% Hydrogen

A.6: Turbine Specifications (10 of 10)

Turbine Specifications

Fluid Properties

Process Feed Flow Rate (kg/hr) 133540

Page 179: Styrene Production

ID Number: T-300 Date: 5/11/2006

Description: Toluene/Ethylbenzene Distillation Column Prepared By: MSB

No. Required 1 Checked By: ACJ

Function

Feed Fluid

Material of Construction Carbon Steel

Tray Type Flexipac HC

Tower Diameter (m) 2.12

Tower Height (m) 40.23

Design Temperature (°C) 95.54

Design Pressure (kPa) 26.66

0.0000

0.0000

0.0000

0.00020.0000

0.4913

0.0012

0.0000

0.0000

0.0003

0.0000

0.0000

0.0003

0.0000

0.0128

0.0002

0.0000 0.0000

0.0000

0.0000

0.0000

0.0002

0.0001

H2O

Ethylene

0.0000

0.0000

0.0005

0.0002

0.0223

0.0000

Tower Construction

Number of Trays

Tray Spacing (in.)

Feed Tray 50

24

Flood Vapor Velocity (ft/s)

Design Vapor Vel. (ft/s)

A.7: Distillation Specifications (1 of 8)

Distillation Specifications

Operating Conditions

Design Specifications

0

Composition (mol fraction)

Styrene

n-Bbenzene

Cumene

Temperature (°C)

Pressure (kPa)

Height of Packing (m) 11.58

66

3.856

3.878

59.08

26.66

95.54

0.0202

0.4808

Oxygen

Nitrogen

Carbon

AMS

m-DiEBenzene

CO2

n-Pbenzene

Flow Rate (kg/hr)

Vapor Fraction

Feed

236400

0.4947

Distillate

7924

1

Methane

Ethane

n-Hexane

0.0020

0.0000

0.5014

0.0000

0.0000

0.0000

Bottoms

228500

0

Reflux Ratio

Pressure Drop (kPa)

Tray Efficiency 0.95

3.3

12

26.66

40

26.66

0.0000 0.0000

0.0000 0.0000

0.0000

0.0000

0.0000 0.0000

1M3-EBenzene

0.0000

0.0000 0.0000 0.0000

Toluene

Benzene

E-Benzene

Hydrogen

0.0000

0.0001

0.4958

0.0000 0.0000 0.0000

0.4754 0.0000

0.0000

0.0000

Page 180: Styrene Production

ID Number: T-301 Date: 5/11/2006

Description: Benzene/Toluene Distillation Column Prepared By: MSB

No. Required 1 Checked By: ACJ

Function

Feed Fluid

Material of Construction Carbon Steel

Tray Type Sieve Tray

Tower Diameter (m) 0.80

Tower Height (m) 14.02

Design Temperature (°C) 69.54

Design Pressure (kPa) 26.66

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.9975

0.0001

0.0024

0.0000

0.0000

0.0000

0.0254

0.0012

0.0000

0.0000

0.0000

0.0000

0.4947

0.4913

0.0128

0.0000 0.0000

0.0000 0.0000

n-Pbenzene

AMS

0.0000

0.0001

0.9745

0.0000E-Benzene

Oxygen

n-Bbenzene

Ethylene

0.0000

69.54

0.0000

Reflux Ratio

Pressure Drop (kPa)

Tray Efficiency 0.85

1.15

3.41

Bottoms

4252

0

Distillate

3673

1

Methane

26.66

59.08

0.0000

0.0000

0.0000

0.0000

n-Hexane

m-DiEBenzene

Pressure (kPa)

Flow Rate (kg/hr)

Vapor Fraction

Feed

7924

23

13.033

13.033

26.6626.66

41.54

Ethane

Cumene

Temperature (°C)

Hydrogen

1M3-EBenzene

Toluene

Benzene

A.7: Distillation Specifications (2 of 8)

Distillation Specifications

Operating Conditions

Design Specifications

1

Composition (mol fraction)

CO2

Styrene

Carbon

H2O

Nitrogen

Tower Construction

Number of Trays

Tray Spacing (in.)

Feed Tray 10

24

Flood Vapor Velocity (ft/s)

Design Vapor Vel. (ft/s)

0.0000

0.0000 0.0000

0.0000

0.0000 0.0000

0.0000 0.0000

0.0000 0.0000

0.0000 0.0000

Page 181: Styrene Production

ID Number: T-303 Date: 5/11/2006

Description: Ethylbenzene/Styrene Distillation Column Prepared By: MSB

No. Required 1 Checked By: ACJ

Function

Feed Fluid

Material of Construction Carbon Steel

Tray Type Flexipac HC

Tower Diameter (m) 5.63

Tower Height (m) 43.89

Design Temperature (°C) 69.77

Design Pressure (kPa) 8.00

0.0000

0.0001

0.0000

0.0000

0.0000

0.0041

0.0000

0.0000

0.0000

0.0000

Pressure (kPa)

Tower Construction

Design Specifications

112400116100228500

0.0000

0.0000

0.0000 0.0000

CO2

Styrene

n-Bbenzene

Ethylene

Cumene

AMS

Feed Tray 48

24

Flood Vapor Velocity (ft/s)Number of Trays

Tray Spacing (in.)

A.7: Distillation Specifications (3 of 8)

Distillation Specifications

Operating Conditions

0

Feed

m-DiEBenzene

n-Pbenzene

Composition (mol fraction)

0.0000Ethane 0.0000

0.5014

0.0000

0.0000

Carbon

61.68

0.0000 0.0000

Temperature (°C)

12.19

72

21.84

21.85

Height of Packing (m)

Design Vapor Vel. (ft/s)

Methane

n-Hexane

Flow Rate (kg/hr)

Vapor Fraction

0.0000

1M3-EBenzene

Toluene

Benzene

E-Benzene

Distillate

1

0.0000

8.00

69.77

Bottoms

0

0.0000

0.0005

0.0000

0.0000

Reflux Ratio

Pressure Drop (kPa)

Tray Efficiency 0.95

3.6

10

8.0026.66

95.54

Oxygen 0.0000

0.0000

0.0000

0.0000

0.0000

H2O

0.9957

0.0000 0.0000Hydrogen

Nitrogen 0.0000

0.0000

0.0000

0.4958 0.0002 0.9982

0.0000

0.0002

0.0020

0.0000

0.0000

0.0003 0.0000 0.0005

0.0000

0.0003 0.0000 0.0005

0.0000

0.0000

0.0002

0.0000 0.0000 0.0000

0.0001

Page 182: Styrene Production

ID Number: T-304 Date: 5/11/2006

Description: Styrene/Heavies Distillation Column Prepared By: MSB

No. Required 1 Checked By: ACJ

Function

Feed Fluid

Material of Construction Carbon Steel

Tray Type Flexipac HC

Tower Diameter (m) 5.61

Tower Height (m) 27.43

Design Temperature (°C) 60.65

Design Pressure (kPa) 5.33

0.0002

0.0000

0.0000

0.0005

0.0000

0.0000

0.0005

0.0000

0.0000

0.0000

0.0000

0.0000 0.0007

0.0000 0.0000

0.0000 0.0000

0.0001 0.0013

0.0000 0.0000 0.0000

0.0000 0.0000 0.0000

0.0000 0.0000

0.0000 0.0000 0.0000

0.0000 0.0000 0.0000

0.0001 0.0001 0.0000

0.0000 0.0000 0.0000

0.0005

AMS

n-Hexane

0.0000 0.0000

0.9982 0.9994 0.9954

0.00000.0000

0.0000

5.338.00

Design Vapor Vel. (ft/s)

45

Oxygen

0.0000

0.0003

0.0000

H2O

Nitrogen

n-Pbenzene

0.0000

0.0000

0.0000

Reflux Ratio

Pressure Drop (Psi.)

Tray Efficiency 0.95

2.25

0.76 19.51Height of Packing (m)

Distillate

78580

1

60.65

Bottoms

33840

0

0.0000

Feed

112400

Hydrogen

1M3-EBenzene

Toluene

Benzene

E-Benzene

Methane

5.33

Flow Rate (kg/hr)

Vapor Fraction

Ethane

0.0010

0.0000

0.0000

69.77

Cumene

Temperature (°C)

Pressure (kPa)

0.0000

Carbon

60.6

m-DiEBenzene

A.7: Distillation Specifications (4 of 8)

Distillation Specifications

Operating Conditions

Design Specifications

0

Composition (mol fraction)

CO2

Styrene

n-Bbenzene

Ethylene

0.0016

Tower Construction

Number of Trays

Tray Spacing (in.)

Feed Tray 24

24

Flood Vapor Velocity (ft/s)

22.573

22.575

Page 183: Styrene Production

ID Number: T-305 Date: 5/11/2006

Description: Styrene/Heavies Distillation Column Prepared By: MSB

No. Required 1 Checked By: ACJ

Function

Feed Fluid

Material of Construction Carbon Steel

Tray Type Flexipac HC

Tower Diameter (m) 3.59

Tower Height (m) 18.29

Design Temperature (°C) 60.82

Design Pressure (kPa) 5.33

0.0000 0.0000 0.0000

0.0000 0.0000 0.0000

0.0016 0.0000 0.0078

0.0007 0.0000 0.0037

0.0010 0.0005 0.0028

0.0000 0.0000 0.0000

0.9954 0.9994 0.9798

0.0000 0.0000 0.0000

0.0000 0.0000 0.0000

0.0000 0.0000 0.0000

0.0000 0.0000 0.0000

0.0000 0.0000 0.0000

0.0000 0.0000 0.0000

0.0000 0.0000 0.0000

0.0000 0.0000 0.0000

0.0000 0.0000 0.0000

0.0000 0.0000 0.0000

0.0013 0.0001 0.0058

0.0000 0.0000

0.0000 0.0000

Tower Construction

Number of Trays

Tray Spacing (in.)

Feed Tray 16

24

Flood Vapor Velocity (ft/s)

19.51

18.93

18.93

A.7: Distillation Specifications (5 of 8)

Distillation Specifications

Operating Conditions

Design Specifications

0

Composition (mol fraction)

CO2

Styrene

n-Bbenzene

Ethylene

Carbon

60.61Temperature (°C)

Pressure (kPa)

Height of Packing (m)

Design Vapor Vel. (ft/s)

30

60.65

5.335.33

1.29

Flow Rate (kg/hr)

Vapor Fraction

Ethane

Feed

33840

Hydrogen

1M3-EBenzene

Toluene

Benzene

E-Benzene

Methane

Distillate

26940

1

5.33

60.82

Bottoms

6893

0

0.0000

0.0000

Oxygen

Reflux Ratio

Pressure Drop (Psi.)

Tray Efficiency 0.95

1.5

m-DiEBenzene

n-Pbenzene

AMS

n-Hexane

Cumene

H2O

Nitrogen

Page 184: Styrene Production

ID Number: T-306 Date: 5/11/2006

Description: Styrene/Heavies Distillation Column Prepared By: MSB

No. Required 1 Checked By: ACJ

Function

Feed Fluid

Material of Construction Carbon Steel

Tray Type Flexipac HC

Tower Diameter (m) 3.64

Tower Height (m) 18.29

Design Temperature (°C) 73.30

Design Pressure (kPa) 5.33

0.1632

0.0000 0.0000 0.0000

0.0037 0.0000

0.0000 0.0000 0.0004

0.10000.0028 0.0006

0.0000 0.0000 0.0000

0.13120.9798 0.9994

0.0000 0.0000 0.0000

0.00000.0000 0.0000

0.0000 0.0000 0.0000

0.00000.0000 0.0000

0.0000 0.0000 0.0000

0.00000.0000 0.0000

0.0058 0.0000 0.2572

0.00000.0000 0.0000

0.0078 0.0000

0.0000

0.3480

0.0000 0.0000

0.0000 0.0000

0.0000

0.0000

0.0000

0.0000

m-DiEBenzene

n-Pbenzene

AMS

n-Hexane

Cumene

H2O

Nitrogen

5.335.33

15

Oxygen

Reflux Ratio

Pressure Drop (Psi.)

Tray Efficiency 0.95

1.5

5.33

73.3

Bottoms

178

0

0.0000

0.0000

0.0000

0.0000

Distillate

6715

1

Feed

6893

Hydrogen

1M3-EBenzene

Toluene

Benzene

E-Benzene

Methane

Flow Rate (kg/hr)

Vapor Fraction

Ethane

Pressure (kPa)

Height of Packing (m)

Design Vapor Vel. (ft/s)

30

60.82

Carbon

60.6Temperature (°C)

0.0000 0.0000

A.7: Distillation Specifications (6 of 8)

Distillation Specifications

Operating Conditions

Design Specifications

0

Composition (mol fraction)

CO2

Styrene

n-Bbenzene

Ethylene

Tower Construction

Number of Trays

Tray Spacing (in.)

Feed Tray 16

24

Flood Vapor Velocity (ft/s)

17.07

4.571

4.614

Page 185: Styrene Production

ID Number: T-302 Date: 5/11/2006

Description: n-Hexane/Benzene Distillation Column Prepared By: MSB

No. Required 1 Checked By: ACJ

Function

Feed Fluid

Material of Construction Carbon Steel

Tray Type Sieve Tray

Tower Diameter (m) 0.34

Tower Height (m) 24.38

Design Temperature (°C) 41.82

Design Pressure (kPa) 26.66

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.9985

0.0000

0.0000

0.0000

0.0000

0.0001

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.7520

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.2480

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0001

0.9745

0.0000

0.0000

0.0000

0.0000

0.0254

0.0000

Nitrogen

Tower Construction

Number of Trays

Tray Spacing (in.)

Feed Tray 28

24

Flood Vapor Velocity (ft/s)40

7.976

A.7: Distillation Specifications (7 of 8)

Distillation Specifications

Operating Conditions

Design Specifications

1

Composition (mol fraction)

CO2

Styrene

n-Bbenzene

Ethylene

Pressure (kPa)

Carbon

26.66

38.27

Benzene

E-Benzene

Methane

Ethane

41.51

Cumene

Temperature (°C)

H2O

Flow Rate (kg/hr)

Vapor Fraction

Distillate

366.2

1

Feed

3673

41.82

Bottoms

3307

0

0.0000

0.0000

0.0014

0.0000

Reflux Ratio

Pressure Drop (Psi.)

Tray Efficiency 0.85

2

15

26.66 26.66

Design Vapor Vel. (ft/s)

3.449

m-DiEBenzene

n-Pbenzene

AMS

n-Hexane

Oxygen

Hydrogen

1M3-EBenzene

Toluene

Page 186: Styrene Production

Distillation Specifications

ID Number: T-101 Date:

Description: Ethylbenzene Recovery Prepared By: MSB

No. Required 1 Checked By: ACJ

Function

Feed Fluid

Operating Conditions

Design Specifications

Tower Construction

Material of Construction Carbon Steel

Tray Type Sieve Tray

Tower Diameter (m) 3.55

Tower Height (m) 29.87

Design Temperature (°C) 69.54

Design Pressure (kPa) 26.66

0.0000

0.9340

0.0000

0.0000

0.0000

0.0660

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0002

0.0000

0.0000

0.0000

0.0000

0.0000

0.0009

0.0000

0.9982

0.0000

0.0000

0.0000

0.0000

0.0001

0.0004

0.0000

0.0000 0.0000

0.0004

0.0000

0.0000

193.9

135.8

Bottoms

37920

0

Feed Tray

0.0000 0.0000

0.0011

0.0000

0.0000

0.0000

0.1591

0.0000

0.2343

Flood Vapor Vel. (ft/s)

Design Vapor Vel. (ft/s)

49

Nitrogen

Number of Trays

Tray Spacing (in.)

H2O

0.0000

0.0000

0.0000

A.7: Distillation Specifications (8 of 8)

0

Composition (mol fraction)

CO2

Styrene

Flow Rate (kg/hr)

Vapor Fraction

Methane

0.0000

0.7444

0.0000

0.0094

0.8299

0.0000 0.0000

0.0000

0.0207

Ethane

Cumene

Temperature (°C)

Hydrogen

1M3-EBenzene

Toluene

Benzene

Carbon

152.50

0.0000

155.6

0.0000

0.0000

0.0000

0.0000

Feed 1

111800

1

n-Hexane

m-DiEBenzene

Pressure (kPa)

E-Benzene

Oxygen

n-Bbenzene

Ethylene

3

135.8

4.793

4.793

135.8135.9

12

24

Pressure Drop (kPa)

Tray Efficiency 0.85

4.9

n-Pbenzene

AMS 0.0000

147.5

Reflux Ratio

0.0000

0.0000

0.0005

0.0000

0.0000

0.0000

0.0001

0.0000

0.0002

5/11/2006

0.0000

0.0000

0.0000

Feed 2

50190

0.0459

Distillate

124100

Page 187: Styrene Production

ID Number: R-100 Date: 5/8/2006

Description: Dehydrogenation Reactor Prepared By: MJH

No. Required 4 Checked By:

Vapor Feed

Vapor Effluent

451.2

260.3

N

Design Data

Temperature (°C)

Pressure (kPa)

Temperature (°C)

Pressure (kPa)

600.0

132.7

A.8: Reactor Specifications (1 of 4)

Reactor Specifications

Process Stream Conditions

Operating Conditions

Inlet Flows

Hydrogen (10.6%), Ethylene (5.6%), Styrene (5.0%)

Exit

19160 kgmol/hr

Ethane (64.6 mol%), Nitrogen (23.6%), Ethylbenzene (11.8%)

Trace: n-Hexane, Toluene, Styrene, Ethylene, Cumene

Diethylbenzene, Heavy Polyalkylates

Ethane (52.0 mol%), Nitrogen (21.0%), Ethylbenzene (5.1%)

Inlet

Trace: Benzene, Toluene, Cumene, Carbon, Polyalkylates

21540 kgmol/hr

Outlet Flows

Type Fluidized Catyst Cracking

Position Vertical

Tube Length (m)

3.8

38.3

Material of Construction

Tube Diameter (m)

Stainless Steel

440.9Volume (m3)

Additional Equipment

Heat Exchange Required? Agitation Required? N

Page 188: Styrene Production

ID Number: R-10 Date: 5/8/2006

Description: Catalyst Regenerator Prepared By: MJH

No. Required 4 Checked By:

Vapor Feed

Vapor Effluent

554.7

134.3

N

Additional Equipment

Heat Exchange Required? Agitation Required? N

Vertical

Material of Construction Stainless Steel

Tube Length (m) 14.2

1.4Tube Diameter (m)

Process Stream Conditions

Inlet Flows

Hydrogen (18.1 mol%), Oxygen (9.7%), Nitrogen (72.0%)

11408 kgmol/hr Trace: Ethane, Ethylene, Carbon

Type Regenerator

Position

Exit

10380 kgmol/hr

Temperature (°C)

Pressure (kPa) 134.3

712.6

Trace: Carbon Dioxide

Operating Conditions

Inlet

A.8: Reactor Specifications (2 of 4)

Reactor Specifications

Design Data

Volume (m3) 220.4

Outlet Flows

Nitrogen (79.2 mol%), Water (20.4%)

Pressure (kPa)

Temperature (°C)

Page 189: Styrene Production

ID Number: R-200 Date: 5/8/2006

Description: Alkylation Reactor Prepared By: MJH

No. Required 4 Checked By:

Vapor Feed

Vapor Effluent

Liquid Effluent

25.0

135.8

N

Void Volume (m3)

Packed Volume (m3)

0.7

0.3

Additional Equipment

Heat Exchange Required? Agitation Required? N

Packed Diameter (m) 1.9

Packed Length (m) 6.5

Material of Construction Stainless Steel

Volume (m3) 124

Design Data

Type Distillation Reactor

Position Vertical

Temperature (°C) Temperature (°C) 152.5

Pressure (kPa) Pressure (kPa) 135.8

Trace: Cumene, Polyalkylates, Styrene

Operating Conditions

Inlet Exit

Outlet Flows

Ethylbenzene (79.4 mol%), Diethylbenzene (19.3%)

1008 kgmol/hr n-Butylbenzene (1.1%)

Ethane (99.99 mol%)

11060 kgmol/hr Trace: n-Hexane, Nitrogen, Ethylene

Ethane (83.5 mol%), Benzene (7.6%), Ethylene (8.9%)

31144 kgmol/hr Trace: n-Hexane, Toluene, Ethylbenzene, Nitrogen

A.8: Reactor Specifications (3 of 4)

Reactor Specifications

Process Stream Conditions

Inlet Flows

Page 190: Styrene Production

ID Number: R-201 Date: 5/8/2006

Description: Transalkylator Prepared By: MJH

No. Required 4 Checked By:

Liquid Feed

Liquid Effluent

121.4

135.8

N

Additional Equipment

Heat Exchange Required? Agitation Required? N

Tube Diameter (m) 1.1

Tube Length (m) 19.1

Void Volume (m3) 0.75

Packed Volume (m3) 0.25

Material of Construction Stainless Steel

Volume (m3) 17

Design Data

Type Packed Bed

Position Vertical

Temperature (°C) Temperature (°C) 155.6

Pressure (kPa) Pressure (kPa) 135.8

Trace: Cumene, Toluene, Polyalkylates

Operating Conditions

Inlet Exit

Outlet Flows

Diethylbenzene (23.4 mol%), n-Butylbenzene (2.1%)

441 kgmol/hr Ethylbenzene (74.4%)

Diethylbenzene (93.4 mol%), n-Butylbenzene (6.6%)

441 kgmol/hr Trace: Cumene, Ethylbenzene, Toluene, Polyalkylates

A.8: Reactor Specifications (4 of 4)

Reactor Specifications

Process Stream Conditions

Inlet Flows

Page 191: Styrene Production

Appendix B: PFD / PID / Layout

Page 192: Styrene Production

Ethylbenzene and Ethane

To Dehydrogenation

Benzene Feed

Benzene

From Separations

Ethylene and Ethane

From L.G. Separations

R-100T-100

R-101

P-100

Byproducts

To Separations

1

49

12

100

101

104/

327

102

103

118

119

108

109

110

111

112

113/

324

114/

202

115

116

117

E-100

105/

452

106

B.1 PFD: Alkylation Unit – Area 100

Page 193: Styrene Production

Ethylbenzene and Ethane

From Alkylation

Ethane Feed

Air Feed

Products

To Separations

Ethylbenzene

From Separations

R-200

R-

201

K-201

E-208

E-200

E-207

E-201

E-204 E-205

E-202

E-206

V-201K-202

V-200

K-200

Water treatment

E-203

V-202

Light Gas

To L.G.Separations

Hydrogen and Nitrogen

From L.G. Separations

200 201

114/

202

203/

316

204

205

206

207

208 209

210

212

211

213/

455

214

215

216 217

218

219

220

221

223 222

224

225

230

231

232 233 234

235/

301

236/

401

K-200

PFD pg. 6

PFD pg. 6

K-202

B.2 PFD: Dehydrogenation Unit – Area 200

Purge

226

227

Page 194: Styrene Production

Products

From Dehydrogenation

Products

From L.G. Separations

235/

301

453/

302

Benzene

To Alkylation

Ethylbenzene

To Dehydrogenation

P-301

K-303

Light Gases

Vented

Toluene For

Sale

E-300

Incinerated

P-302

inerts

Steam

Steam

T-300

T-303

Styrene Finish

To Separations pg. 2

inerts

inerts

Steam

T-301

inerts

Steam

T-302

315

314

313

312

311

310

309

308

307

306

305304303

203/

316

327

B.3 PFD: Separations Unit – Area 300a

Page 195: Styrene Production

Steam

inerts

Steam

T-304

T-305

T-306

P-303E-302

Steam

inerts

inerts

FC

E-301

318

317

315

Byproducts

From Alkylation

Heavy Byproducts

To Treatment

Styrene Finish

From Separations pg. 1

323

325

113/

324

322

321

320

319

329

328

B.4 PFD: Separations Unit – Area 300b

to Customer

and Storage

Styrene

P-1017

P-1018

P-1019

Page 196: Styrene Production

Ethylene and Ethane

To Alkylation

Light Gas

From Dehydrogenation

E-400K-400 M-400

V-400236/

401404403402

E-401K-401 M-401

V-401405 408407406

E-402K-402 M-402

V-402409 413412411

410 414

E-403K-403 M-403

V-403415 418417416

E-404K-404 M-404

V-404420 423422421

419

E-405K-405 M-405

V-405425 428427426

424 429

E-406K-406 M-406

V-406430 433432431

E-407K-407 M-407

V-407435 438437436

E-408K-408 M-408

V-408440 443442441

434 439 444

E-409K-409 M-409

V-409445 448447446

449

K-410

450 451Hydrogen and Nitrogen

To Dehydrogenation

Products

To Separations

B.5 PFD: Light Gas Separations—Area 400

105/

452

453/

302

E-410

454213/

455

456

To Treatment

PFD pg. 6PFD pg. 6

PFD pg. 6 PFD pg. 6 PFD pg. 6

PFD pg. 6 PFD pg. 6 PFD pg. 6

PFD pg. 6

Page 197: Styrene Production

Dehydrogenation

K-200

205

K-200.1 K-200.2 K-200.3 E-200.1

206205.

3

205.

2

205.

1

Dehydrogenation

K-202

221

K-202.1 E-202.1 K-202.2

221.

1

221.

2

E-202.2

221.

3222

L.G. Separations

K-401

K-401.1

405.

1405

E-401.1 K-401.2

405.

3

405.

2

E-401.2

K-401.3

405.

5

405.

4

E-401.3 K-401.4

405.

7

405.

6

E-401.4

K-401.5

405.

9

405.

8

E-401.5 K-401.6

406405.

10

L.G. Separations

K-402

K-402.1

409.

1409

E-402.1 K-402.2

409.

3

409.

2

E-402.2

K-402.3

409.

5

409.

4

E-402.3 K-402.4

409.

7

409.

6

E-402.4

402.5

411

409.

8

L.G. Separations

K-403

K-403.1

415.

1415

E-403.1 K-403.2

415.

3

415.

2

E-403.2

415.

4

K-403.3

416

L.G. Separations

K-404

K-404.1

420.

1420

E-404.1 K-404.2

420.

3

420.

2

E-404.2

420.

4

K-404.3

421

L.G. Separations

K-405

K-405.1

425.

1425

E-405.1 K-405.2

425.

3

425.

2

E-405.2

425.

4

K-405.3

426

L.G. Separations

K-406

K-406.1

430.

1430

E-406.1 K-406.2

430.

3

430.

2

E-406.2

430.

4

K-406.3

431

L.G. Separations

K-407

K-407.1

435.

1435

E-407.1 K-407.2

435.

3

435.

2

E-407.2

435.

4

K-407.3

436

L.G. Separations

K-408

K-408.1

440.

1440

E-408.1 K-408.2

440.

3

440.

2

E-408.2

440.

4

E-408.3

441

K-409.1

445.

1445

E-250 E-251

445.

3

445.

2

E-248

445.

4

E-252

446

L.G. Separations

K-409

B.6 PFD: PFD pg. 6 – Compressor Chains

Page 198: Styrene Production

Ethylbenzene and Ethane

To Dehydrogenation

Benzene Feed

Benzene

From Separations

Ethylene and Ethane

From L.G. Separations

R-100T-100

R-101

P-100

Byproducts

To Separations

FC

1

49

12

FC

FC

100

101

104/

327

102

103

118

119

108

109

110

111

112

113/

324

114/

202

115

116

117

E-100

105/

452

106

LC

LC

V-93

B.7 P&ID: Alkylation Unit – Area 100

FC

Page 199: Styrene Production

Ethylbenzene and Ethane

From Alkylation

Ethane Feed

Air Feed

Products

To Separations

Ethylbenzene

From Separations

R-200

R-

201

K-201

E-208

E-200

E-207

E-201

E-204

E-205

E-202

E-206

K-202

K-200

Water treatment

FC

FC PC

TC

TC

TC

TC

TC

TC

TC

E-203TC

Light Gas

To L.G.Separations

Hydrogen and Nitrogen

From L.G. Separations

200 201

114/

202

203/

316

204

205

206

207

208 209

210

212

211

213/

455

214

215

216 217

218

219

220

221

223 222

224

225

230

231

232 233 234

235/

301

236/

401

K-200

P&ID pg. 6

P&ID pg. 6

K-202

B.8 P&ID: Dehydrogenation Unit – Area 200

FC

FC

Purge

226

227

Page 200: Styrene Production

Products

From Dehydrogenation

Products

From L.G. Separations

235/

301

453/

302

Benzene

To Alkylation

Ethylbenzene

To Dehydrogenation

P-301

K-303

Light Gases

Vented

Toluene For

Sale

E-300

Incinerated

P-302

FC

PC

LC

inerts

TC FC

LC

FC

PC

LC

TCFC

LC

Steam

Steam

T-300

T-303

Styrene Finish

To Separations pg. 2

inerts

FC

PC

LC

inerts

TCFC

LC

Steam

T-301

FC

PC

LC

inerts

TC FC

LC

Steam

T-302

FC

315

314

313

312

311

310

309

308

307

306

305304303

203/

316

327

B.9 P&ID: Separations Unit – Area 300a

Page 201: Styrene Production

PC

TC

FC

LC

Steam

inerts

PC

FC

LC

Steam

T-304

T-305

PC

FC

LC

T-306

E-181E-101

Steam

inerts

inerts

LCFC

E-301

FC

318

317

315

Byproducts

From Alkylation

Heavy Byproducts

To Treatment

Styrene Finish

From Separations pg. 1

323

326325

113/

324

322

321

320

319

329

328

B.10 P&ID: Separations Unit – Area 300b

FC

LC

TC

FC

LC

TC

Page 202: Styrene Production

Ethylene and Ethane

To Alkylation

Light Gas

From Dehydrogenation

E-400K-400 M-400

V-400

236/

401404403402

E-401K-401 M-401

V-401

405 408407406

E-402K-402 M-402

V-402

409 413412411

410 414

E-403K-403 M-403

V-403

415 418417416

E-404K-404 M-404

V-404

420 423422421

419

E-405K-405 M-405

V-405

425 428427426

424 429

E-406K-406 M-406

V-406

430 433432431

E-407K-407 M-407

V-407

435 438437436

E-408K-408 M-408

V-408

440 443442441

434 439 444

E-409K-409 M-409

V-409

445 448447446

449

K-410

450 451Hydrogen and Nitrogen

To Dehydrogenation

Products

To Separations

B.11 P&ID: Light Gas Separations—Area 400

105/

452

453/

302

E-410

454213/

455

456

To Treatment

P&ID pg. 6P&ID pg. 6

P&ID pg. 6 P&ID pg. 6 P&ID pg. 6

P&ID pg. 6 P&ID pg. 6 P&ID pg. 6

P&ID pg. 6

Page 203: Styrene Production

Dehydrogenation

K-200

205

K-200.1 K-200.2 K-200.3 E-200.1

206205.

3

205.

2

205.

1

Dehydrogenation

K-202

221

K-202.1 E-202.1 K-202.2

221.

1

221.

2

E-202.2

221.

3222

L.G. Separations

K-401

K-401.1

405.

1405

E-401.1 K-401.2

405.

3

405.

2

E-401.2

K-401.3

405.

5

405.

4

E-401.3 K-401.4

405.

7

405.

6

E-401.4

K-401.5

405.

9

405.

8

E-401.5 K-401.6

406405.

10

L.G. Separations

K-402

K-402.1

409.

1409

E-402.1 K-402.2

409.

3

409.

2

E-402.2

K-402.3

409.

5

409.

4

E-402.3 K-402.4

409.

7

409.

6

E-402.4

402.5

411

409.

8

L.G. Separations

K-403

K-403.1

415.

1415

E-403.1 K-403.2

415.

3

415.

2

E-403.2

415.

4

K-403.3

416

L.G. Separations

K-404

K-404.1

420.

1420

E-404.1 K-404.2

420.

3

420.

2

E-404.2

420.

4

K-404.3

421

L.G. Separations

K-405

K-405.1

425.

1425

E-405.1 K-405.2

425.

3

425.

2

E-405.2

425.

4

K-405.3

426

L.G. Separations

K-406

K-406.1

430.

1430

E-406.1 K-406.2

430.

3

430.

2

E-406.2

430.

4

K-406.3

431

L.G. Separations

K-407

K-407.1

435.

1435

E-407.1 K-407.2

435.

3

435.

2

E-407.2

435.

4

K-407.3

436

L.G. Separations

K-408

K-408.1

440.

1440

E-408.1 K-408.2

440.

3

440.

2

E-408.2

440.

4

E-408.3

441

K-409.1

445.

1445

E-250 E-251

445.

3

445.

2

E-248

445.

4

E-252

446

L.G. Separations

K-409

FC

F

TC

PC

Controls for each Compressor and

Heat Exchanger in the Process

B.12 P&ID: P&ID pg. 6 – Compressor Chains

Page 204: Styrene Production

V-403

V-404

V-406

V-402

V-408

V-405

V-400

V-401

V-407

T-300

T-301

T-303

T-304

T-305

T-

30

2

T-306

2.12m.

0.80m.0.80m.

0.34m.

5.63m.

5.61m.

3.59m.

3.64m.

DehydroDehydroDehydrogenation

DehydrogenationDehydrogenation

Dehydrogenation

3.80m. 3.80m.

3.80m. 3.80m.

Alkylator

Trans

Akylator

Alkylation Tower

Trans

Akylator

Trans

Akylator

Trans

Akylator

1.90m.1.90m.

3.55m.

1.10m. 1.10m.1.10m. 1.10m.1.10m. 1.10m.1.10m.

Alkylator

1.90m.1.90m.

Alkylator

1.90m.1.90m.

Alkylator

1.90m.1.90m.

AREA 100 --

ALKYLATION

AREA 300 --

SEPARATIONS

AREA 400 –

LIGHT GASES SEPARATION

AREA 200 --

DEHYDROGENATION

V-409

FRONT

B.13: Plant Layout

Page 205: Styrene Production

Dehydro DehydroDehydro Dehydro

T-300

T

-

3

0

2

T-304

T-306

V-

40

7

V-

40

8

V-

40

9

T

-

3

0

1

Alkyl

ator

Alkyl

ator

Alkyl

ator

Alkyl

ator

Alkylation

Tower

V-400

V-

40

6

V-

40

5

V-

40

4

V-402

V-401

V-

403

Tr

a

n

s

Al

k

yl

at

or

Tr

a

n

s

Al

k

yl

at

or

Tr

a

n

s

Al

k

yl

at

or

Tr

a

n

s

Al

k

yl

at

or

10.00m.

10.00m.

10.00m.

10.00m.

10.00m.

B.14: Plant Layout, Front View

Page 206: Styrene Production

Appendix C: Separations

Page 207: Styrene Production

Flv 0.914=

FlvWl

Wv

ρv

ρl

0.5

⋅:=

Wl

Wv28.833=

Wv V MWv⋅:=

Wl L MWl⋅:=

NumberOfTrays 66:=lb

ft3

ρl 51.077:=lb

ft3

ρv 5.1336 102−

⋅:=

dyne

cmσ 21.913:=

lbmol

hrV 205.1:=

lbmol

hrL 4791:=

cPµv 7.3254 103−

⋅:=

lb

lbmolMWl 105.15:=

lb

lbmolMWv 85.187:=

KT 368.69:=R 1.314:=atmP 0.2631:=

atm ft3

lbmol K⋅

Calculations for Column Diameter in Separations Unit : Tray Column T-300 Bottom of Column

C.1: Separations Hand Calculations (1 of 3)

Page 208: Styrene Production

mDiameter 2.012=

Diameter Dia30.48

100

⋅:=

ftDia 6.6=

Dia4 V⋅ MWv⋅( )

π η ρv⋅ fraction⋅ uflood⋅ 3600⋅( )

0.5

:=

η 0.95:=

Finding the Diameter using equation 12-14 Wankat

uop 2.909=

uop fraction( ) uflood⋅:=

fraction 0.75:=

uflood 3.878=

uflood Kρl ρv−

ρv

0.5

⋅:=

ρl 51.077=

ρv 0.051=

K 0.123=

K Csbσ

20

0.2

⋅:=

Csb 0.121=

Csb 10logCsb

:=

Finding Csb:

logCsb .94506− 0.70234 log Flv( )⋅− 0.22618 log Flv( )( )2

⋅−:=

From Wankat equation 12-10e for 24-in tray spacing

Page 209: Styrene Production

Flv 0.914=

FlvWl

Wv

ρv

ρl

0.5

⋅:=

Wl

Wv28.833=

Wv V MWv⋅:=

Wl L MWl⋅:=

NumberOfTrays 66:=lb

ft3

ρl 51.077:=lb

ft3

ρv 5.1336 102−

⋅:=

dyne

cmσ 21.913:=

lbmol

hrV 205.1:=

lbmol

hrL 4791:=

cPµv 7.3254 103−

⋅:=

lb

lbmolMWl 105.15:=

lb

lbmolMWv 85.187:=

KT 363.45:=R 1.314:=atmP 0.2631:=

atm ft3

lbmol K⋅

Calculations for Column Diameter in Separations Unit : Tray Column T-300 Middle of Column

C.1: Separations Hand Calculations (2 of 3)

Page 210: Styrene Production

mDiameter 2.012=

Diameter Dia30.48

100

⋅:=

ftDia 6.6=

Dia4 V⋅ MWv⋅( )

π η ρv⋅ fraction⋅ uflood⋅ 3600⋅( )

0.5

:=

η 0.95:=

Finding the Diameter using equation 12-14 Wankat

uop 2.909=

uop fraction( ) uflood⋅:=

fraction 0.75:=

uflood 3.878=

uflood Kρl ρv−

ρv

0.5

⋅:=

ρl 51.077=

ρv 0.051=

K 0.123=

K Csbσ

20

0.2

⋅:=

Csb 0.121=

Csb 10logCsb

:=

Finding Csb:

logCsb .94506− 0.70234 log Flv( )⋅− 0.22618 log Flv( )( )2

⋅−:=

From Wankat equation 12-10e for 24-in tray spacing

Page 211: Styrene Production

Flv 0.914=

FlvWl

Wv

ρv

ρl

0.5

⋅:=

Wl

Wv28.833=

Wv V MWv⋅:=

Wl L MWl⋅:=

NumberOfTrays 66:=lb

ft3

ρl 51.077:=lb

ft3

ρv 5.1336 102−

⋅:=

dyne

cmσ 21.913:=

lbmol

hrV 205.1:=

lbmol

hrL 4791:=

cPµv 7.3254 103−

⋅:=

lb

lbmolMWl 105.15:=

lb

lbmolMWv 85.187:=

KT 332.23:=R 1.314:=atmP 0.2631:=

atm ft3

lbmol K⋅

Calculations for Column Diameter in Separations Unit : Tray Column T-300 Top of Column

C.1: Separations Hand Calculations (3 of 3)

Page 212: Styrene Production

mDiameter 2.012=

Diameter Dia30.48

100

⋅:=

ftDia 6.6=

Dia4 V⋅ MWv⋅( )

π η ρv⋅ fraction⋅ uflood⋅ 3600⋅( )

0.5

:=

η 0.95:=

Finding the Diameter using equation 12-14 Wankat

uop 2.909=

uop fraction( ) uflood⋅:=

fraction 0.75:=

uflood 3.878=

uflood Kρl ρv−

ρv

0.5

⋅:=

ρl 51.077=

ρv 0.051=

K 0.123=

K Csbσ

20

0.2

⋅:=

Csb 0.121=

Csb 10logCsb

:=

Finding Csb:

logCsb .94506− 0.70234 log Flv( )⋅− 0.22618 log Flv( )( )2

⋅−:=

From Wankat equation 12-10e for 24-in tray spacing

Page 213: Styrene Production

C.2: Estimates of Column Height (1 of 3)Separations Unit at 100% Capacity

T-300 Toluene/EB Column T-302 n-Hexane/Benzene Split

Pressure 0.2666 bar Pressure 0.267 bar

1.0133 bar/atm 1.013 bar/atm

0.2631 atm 0.263 atm

deg Celsius K deg Celsius K

Top 59.08 332.23 Top 38.27 311.42

Middle 90.3 363.45 Middle 41.51 314.66

Bottom 95.54 368.69 Bottom 41.82 314.97

Average 81.64 354.79 Average 40.53 313.68

Tray Spacing 24 in. Tray Spacing 24 in.

Number of Trays 66 Number of Trays 40

Column Height 1584 in. 132 ft Column Height 960 in. 80.00 ft

39.37 in./m 39.37 in./m

40.23 m 24.38 m

Column Diameter Column Diameter

Top 2.12 m 6.96 ft Top 0.34 m 1.10 ft

Based on Previous Models the Diameter of the

Total Column will be assumed to not change drastically

because changes in temperature are minimal

Diameter of Packing 1.31 m 4.29 ft

According to vendor information KOCH-GLITSCH

Column diameter range is from 3-9ft or 1.0-2.7m

T-301 Benzene/Toluene Column T-303 EB/Styrene Column

Pressure 0.2666 bar Pressure 0.080 bar

1.0133 bar/atm 1.013 bar/atm

0.2631 atm 0.079 atm

deg Celsius K deg Celsius K

Top 41.51 314.66 Top 61.68 334.83

Middle 58.17 331.32 Middle 62.42 335.57

Bottom 69.54 342.69 Bottom 69.77 342.92

Average 56.41 329.56 Average 64.62 337.77

Tray Spacing 24 in. Tray Spacing 24 in.

Number of Trays 23 46.00 ft Number of Trays 72

Column Height 552 in. Column Height 1728 in. 144 ft

39.37 in./m 39.37 in./m

14.02 m 43.89 m

Column Diameter Column Diameter

Top 0.80 m 0.00 ft Top 5.63 m 18.47 ft

Diameter of Packing 6.38 m 20.94 ft

According to vendor information KOCH-GLITSCH

Column diameter range is from 7.5-over 29ft or 2.3-~9m

Page 214: Styrene Production

C.2: Estimates of Column Height (2 of 3)Styrene Finish

T-304 T-306

Pressure 0.053 bar Pressure 0.053 bar

1.013 bar/atm 1.013 bar/atm

0.053 atm 0.053 atm

deg Celsius K deg Celsius K

Top 60.6 333.75 Top 60.6 333.75

Middle 60.61 333.76 Middle 60.69 333.84

Bottom 60.65 333.8 Bottom 73.3 346.45

Average 60.62 333.77 Average 64.86 338.01

Tray Spacing 24 in. Tray Spacing 24 in.

Number of Trays 45 Number of Trays 30

Column Height 1080 in. 90.00 ft Column Height 720 in. 60.00 ft

39.37 in./m 39.37 in./m

27.43 m 18.29 m

Column Diameter Column Diameter

Top 5.61 m 18.41 ft Top 3.64 m 11.96 ft

Diameter of Packing 5.88 m 19.27 ft Diameter of Packing 1.72 m 5.63 ft

According to vendor information KOCH-GLITSCH According to vendor information KOCH-GLITSCH

Column diameter range is from 7-17.5ft or 2.1-~5.3m Column diameter range is from 7-17.5ft or 2.1-~5.3m

T-305

Pressure 0.053 bar

1.013 bar/atm

0.053 atm

deg Celsius K

Top 60.61 333.76

Middle 60.63 333.78

Bottom 60.82 333.97

Average 60.69 333.84

Tray Spacing 24 in.

Number of Trays 30

Column Height 720 in. 60.00 ft

39.37 in./m

18.29 m

Column Diameter

Top 3.59 m 11.77 ft

Diameter of Packing 3.44 m 11.29 ft

According to vendor information KOCH-GLITSCH

Column diameter range is from 7-17.5ft or 2.1-~5.3m

Page 215: Styrene Production

C.2: Estimates of Column Height (3 of 3)Alkylation Unit

T-101

Pressure 1.358 bar

1.013 bar/atm

1.340 atm

deg Celsius K

Top 147.5 420.65

Middle 193.8 466.95

Bottom 193.9 467.05

Average Temp 178.4 451.55

Tray Spacing 24 in.

Number of Trays 49

Column Height 1176 in. 98.00 ft

39.37 in./m

29.87 m

Column Diameter

Top 3.55 m 11.65 ft

Page 216: Styrene Production

C.3: Fenske Equation (1 of 3)Hand Calculations for Minimum Reflux using Fenske's equation

Mix 3 going into separations B-100 Ethylbenzene/Styrene Split

By Products MW Bp K alpha Mol fraction By Products MW Bp K alpha Mol fraction

Hydrogen 2.02 -252.6 8.72E+03 0.0000 Hydrogen 2.02 -252.6 8.72E+03 0.0000

Nitrogen 28.01 -195.8 4.31E+03 2.02 0.0000 Nitrogen 28.01 -195.8 4.31E+03 2.02 0.0000

Ethylene 28.05 -103.75 3.11E+02 13.84 0.0000 Ethylene 28.05 -103.75 3.11E+02 13.84 0.0000

Ethane 30.07 -88.6 2.46E+02 1.27 0.0000 Ethane 30.07 -88.6 2.46E+02 1.27 0.0000

n-Hexane 86.18 68.73 1.18E+00 207.78 0.0005 n-Hexane 86.18 68.73 1.18E+00 207.78 0.0000

Benzene 78.11 80.09 7.85E-01 1.51 0.0200 Benzene 78.11 80.09 7.85E-01 1.51 0.0000

Toluene 92.14 110.65 2.70E-01 2.91 0.0223 Toluene 92.14 110.65 2.70E-01 2.91 0.0021

Ethylbenzene 106.17 136.2 1.01E-01 2.67 0.4821 Ethylbenzene 106.17 136.2 1.01E-01 2.67 0.5025

Styrene 104.15 145.16 6.86E-02 1.47 0.4744 Styrene 104.15 145.16 6.86E-02 1.47 0.4945

cumene 120.19 152.41 4.39E-02 1.56 0.0002 cumene 120.19 152.41 4.39E-02 1.56 0.0002

n-p-benzene 120.19 159.24 8.49E-03 5.17 0.0000 n-p-benzene 120.19 159.24 8.49E-03 5.17 0.0000

1M3-EBenzene 120.19 161.33 3.52E-02 0.24 0.0002 1M3-EBenzene 120.19 161.33 3.52E-02 0.24 0.0002

α-methylstyrene 118.18 165.5 2.70E-02 1.31 0.0002 α-methylstyrene 118.18 165.5 2.70E-02 1.31 0.0002

m-DiEBenzene 134.22 181.14 1.30E-02 2.07 0.0001 m-DiEBenzene 134.22 181.14 1.30E-02 2.07 0.0001

n-Butyl-Benzene 134.22 183.3 9.95E-03 1.31 0.0000 n-Butyl-Benzene 134.22 183.3 9.95E-03 1.31 0.0000

All taken from HYSYS

The closer to 1 the harder to separate Vent Gas Distillate

Distillate Bottoms

T-300 Bottoms T-303αBEB 7.79 αTS 3.93

αBT 2.91 αTEB 2.67

αTT 1.00 αEBEB 1.00

αEBT 0.37 αSEB 0.68

zB 0.0200 zT 2.11E-03

zEB 0.4821 zS 0.49

zT 0.0223 zEB 0.50

FRA,dist 0.9999 FRA,dist 0.98

FRB,dist 0.9999 FRB,dist 0.98

Nmin 19 Nmin 20

FRC,dist 0.9999 FRC,dist 1.00

Page 217: Styrene Production

C.3: Fenske Equation (2 of 3)

Styrene/Cumene Split Styrene/Cumene Split

By Products MW Bp K alpha Mol fraction By Products MW Bp K alpha Mol fraction

Hydrogen 2.02 -252.6 8.72E+03 0.0000 Hydrogen 2.02 -252.6 8.72E+03 0.0000

Nitrogen 28.01 -195.8 4.31E+03 2.02 0.0000 Nitrogen 28.01 -195.8 4.31E+03 2.02 0.0000

Ethylene 28.05 -103.75 3.11E+02 13.84 0.0000 Ethylene 28.05 -103.75 3.11E+02 13.84 0.0000

Ethane 30.07 -88.6 2.46E+02 1.27 0.0000 Ethane 30.07 -88.6 2.46E+02 1.27 0.0000

n-Hexane 86.18 68.73 1.18E+00 207.78 0.0000 n-Hexane 86.18 68.73 1.18E+00 207.78 0.0000

Benzene 78.11 80.09 7.85E-01 1.51 0.0000 Benzene 78.11 80.09 7.85E-01 1.51 0.0000

Toluene 92.14 110.65 2.70E-01 2.91 0.0000 Toluene 92.14 110.65 2.70E-01 2.91 0.0000

Ethylbenzene 106.17 136.2 1.01E-01 2.67 0.0001 Ethylbenzene 106.17 136.2 1.01E-01 2.67 0.0000

Styrene 104.15 145.16 6.86E-02 1.47 0.9982 Styrene 104.15 145.16 6.86E-02 1.47 0.9955

cumene 120.19 152.41 4.39E-02 1.56 0.0005 cumene 120.19 152.41 4.39E-02 1.56 0.0010

n-p-benzene 120.19 159.24 8.49E-03 5.17 0.0000 n-p-benzene 120.19 159.24 8.49E-03 5.17 0.0000

1M3-EBenzene 120.19 161.33 3.52E-02 0.24 0.0005 1M3-EBenzene 120.19 161.33 3.52E-02 0.24 0.0013

α-methylstyrene 118.18 165.5 2.70E-02 1.31 0.0005 α-methylstyrene 118.18 165.5 2.70E-02 1.31 0.0016

m-DiEBenzene 134.22 181.14 1.30E-02 2.07 0.0002 m-DiEBenzene 134.22 181.14 1.30E-02 2.07 0.0007

n-Butyl-Benzene 134.22 183.3 9.95E-03 1.309709 0.0000 n-Butyl-Benzene 134.22 183.3 9.95E-03 1.309709 0.0000

Distillate T-305 Distillate

Bottoms αEBC 2.30 Bottoms

T-304 αEBS 1.47

αEBC 2.30 αSS 1.00

αEBS 1.47 αCS 0.64

αSS 1.00 zEB 0.000

αCS 0.64 zC 0.001

zEB 0.000 zS 1.00

zC 0.001 FRA,dist 0.9993

zS 1.00 FRB,dist 0.9993

FRA,dist 0.9993 Nmin 32

FRB,dist 0.9993 FRC,dist 1.00

Nmin 32

FRC,dist 1.00

Page 218: Styrene Production

C.3: Fenske Equation (3 of 3)

Styrene/Cumene Split

By Products MW Bp K alpha Mol fraction

Hydrogen 2.02 -252.6 8.72E+03 0.0000

Nitrogen 28.01 -195.8 4.31E+03 2.02 0.0000

Ethylene 28.05 -103.75 3.11E+02 13.84 0.0000

Ethane 30.07 -88.6 2.46E+02 1.27 0.0000

n-Hexane 86.18 68.73 1.18E+00 207.78 0.0000

Benzene 78.11 80.09 7.85E-01 1.51 0.0000

Toluene 92.14 110.65 2.70E-01 2.91 0.0000

Ethylbenzene 106.17 136.2 1.01E-01 2.67 0.0000

Styrene 104.15 145.16 6.86E-02 1.47 0.9800

cumene 120.19 152.41 4.39E-02 1.56 0.0028

n-p-benzene 120.19 159.24 8.49E-03 5.17 0.0005

1M3-EBenzene 120.19 161.33 3.52E-02 0.24 0.0057

α-methylstyrene 118.18 165.5 2.70E-02 1.31 0.0078

m-DiEBenzene 134.22 181.14 1.30E-02 2.07 0.0000

n-Butyl-Benzene 134.22 183.3 0.0099538 1.309709 0.0037

T-306

αEBC 2.30 Distillate

αEBS 1.47 Bottoms

αSS 1.00

αCS 0.64

zEB 0.000

zC 0.003

zS 0.98

FRA,dist 0.9983

FRB,dist 0.9983

Nmin 28

FRC,dist 1.00

Page 219: Styrene Production

C.4: Dimensioning of Packed Columns (1 of 2)Values used in Calculation the Diameter of the Packed Column

At 100% Capacity

T-300 T-303

Molar Mass: Liquid Vapor Molar Mass: Liquid Vapor

Molar Mass (kg/kgmole) 105.15 85.19 Molar Mass (kg/kgmole) 104.18 106.11

Surface tension Surface tension

dyne/cm 21.913 dyne/cm 25.695

kg/s2 0.021913 kg/s2 0.025695

Viscosity Viscosity

cP 0.30367 0.007325 cP 0.41967 0.0063562

kg/m*s 3.04E-04 7.33E-06 kg/m*s 4.20E-04 6.3562E-06

Flows Flows

kmol/h 2421 102.8 kmol/h 1199 1222

kmol/s 0.6725 0.0286 kmol/s 0.3331 0.3394

T-304 T-305

Molar Mass: Liquid Vapor Molar Mass: Liquid Vapor

Molar Mass (kg/kgmole) 104.23 104.16 Molar Mass (kg/kgmole) 104.51 104.16

Surface tension Surface tension

dyne/cm 26.67 dyne/cm 26.619

kg/s2 0.02667 kg/s2 0.026619

Viscosity Viscosity

cP 0.46345 0.006295 cP 0.46407 0.0062951

kg/m*s 4.63E-04 6.30E-06 kg/m*s 4.64E-04 6.30E-06

Flows Flows

kmol/h 360.7 838.3 kmol/h 73.27 287.4

kmol/s 0.100194 0.23286 kmol/s 0.02035 0.07983

Page 220: Styrene Production

C.4: Dimensioning of Packed Columns (2 of 2)

T-306

Molar Mass: Liquid Vapor

Molar Mass (kg/kgmole) 119.68 104.16

Surface tension

dyne/cm 23.651

kg/s2 0.023651

Viscosity

cP 0.47297 0.006295

kg/m*s 4.73E-04 6.30E-06

Flows

kmol/h 1.634 71.64

kmol/s 0.000454 0.0199

Page 221: Styrene Production

kg

m s⋅Viscosity ηg 7.33 106−

⋅:=kg

m s⋅Liqflow 0.6725:=

Gasflow 0.0286:=kmol

s

kmol

s

Assumption of Operational gas flow rate:

Flow 2.0:= Pa0.5

ugFlow

ρg0.5( )

:=

m

sug 2.205=

Vg GasflowMg

ρg⋅:=

Vg 2.963=m

3

s

C.5: Dimensioning a Packed Column

Taken from Fair, J. and Stichlmair, J. p. 457

Liquid Phase Gas Phasekg

kmolMolar Mass Ml 105.15:=kg

kmolMg 85.19:=

kg

m3Density ρl 818.17:=

kg

m3ρg 0.82233:=

Surface Tension σ 0.021913:=kg

s2

ηl 3.04 104−

⋅:=

Page 222: Styrene Production

Cross section Ac

AcVg

ug:=

Ac 1.343= m2

Dc 4Ac

π⋅

0.5

:=

Dc 1.308= m

Page 223: Styrene Production

C.6: Summary of All Columns in the Process

Separations Unit

Column Height (m) Column Diameter (m) Packing Height (m) Packing Diameter (m)

T-300 40.23 2.12 11.58 1.31

T-301 14.02 0.80

T-302 24.38 0.34

T-303 43.89 5.63 12.19 6.38

T-304 27.43 5.61 19.51 5.88

T-305 18.29 3.59 19.51 3.44

T-306 18.29 3.64 17.07 1.72

Alkylation Unit

Column Height (m) Column Diameter (m)

T-101 29.87 3.55

HETP assumed as 2 ft

Page 224: Styrene Production

C.7: Optimization Reflux Ratio (1 of 6)The amount of EB recovered is not a specification in this optimization due to the degrees of freedom restriction on the distillation columns

Minimum Reflux From HYSYS Shortcut Calculation

Column 100 Column 100 Column 100

Pressure(kPa) 26.66 Pressure(kPa) 26.66 Pressure(kPa) 26.66

Condenser Temp (deg C) 86.23 Condenser Temp (deg C) 82.23 Condenser Temp (deg C) 73.20

Reboiler Temp (deg C) 97.09 Reboiler Temp (deg C) 96.95 Reboiler Temp (deg C) 96.48

Comp Recovery of Toluene 0.9999 Comp Recovery of Toluene 0.9999 Comp Recovery of Toluene 0.9999

Reflux Ratio 3 Reflux Ratio 5 Reflux Ratio 10

Total Trays w/o C & R 67 Total Trays w/o C & R 67 Total Trays w/o C & R 67

Tray Position 50 Tray Position 50 Tray Position 50

Composition of Exiting streams Composition of Exiting streams Composition of Exiting streams

Chemicals Overhead exiting Bottoms Exiting Chemicals Overhead exiting Bottoms Exiting Chemicals Overhead exiting Bottoms Exiting

Methane 0.0000 0.0000 Methane 0.0000 0.0000 Methane 0.0000 0.0000

Ethane 0.0698 0.0000 Ethane 0.0931 0.0000 Ethane 0.1510 0.0000

n-Hexane 0.0022 0.0000 n-Hexane 0.0030 0.0000 n-Hexane 0.0049 0.0000

Ethyl Toluene(1M3-Ebenzene) 0.0000 0.0000 Ethyl Toluene(1M3-Ebenzene) 0.0000 0.0000 Ethyl Toluene(1M3-Ebenzene) 0.0000 0.0000

Toluene 0.1129 0.0000 Toluene 0.1508 0.0000 Toluene 0.2444 0.0000

Benzene 0.1118 0.0000 Benzene 0.1492 0.0000 Benzene 0.2419 0.0000

Ethyl Benzene 0.5757 0.3287 Ethyl Benzene 0.5909 0.3447 Ethyl Benzene 0.3429 0.3985

Hydrogen 0.0001 0.0000 Hydrogen 0.0001 0.0000 Hydrogen 0.0001 0.0000

Oxygen 0.0000 0.0000 Oxygen 0.0000 0.0000 Oxygen 0.0000 0.0000

Nitrogen 0.0023 0.0000 Nitrogen 0.0030 0.0000 Nitrogen 0.0049 0.0000

Water 0.0000 0.0000 Water 0.0000 0.0000 Water 0.0000 0.0000

Ethylene 0.0046 0.0000 Ethylene 0.0061 0.0000 Ethylene 0.0099 0.0000

Styrene 0.1207 0.6640 Styrene 0.0037 0.6486 Styrene 0.0000 0.5954

n-B-Benzene 0.0000 0.0000 n-B-Benzene 0.0000 0.0000 n-B-Benzene 0.0000 0.0000

Cumene 0.0000 0.0023 Cumene 0.0000 0.0021 Cumene 0.0000 0.0019

n-P-Benzene 0.0000 0.0026 n-P-Benzene 0.0000 0.0024 n-P-Benzene 0.0000 0.0022

AMS 0.0000 0.0023 AMS 0.0000 0.0021 AMS 0.0000 0.0019

Heating Duties Heating Duties Heating Duties

Condenser (kJ/h) 6.36911E+07 Condenser (kJ/h) 7.93204E+07 Condenser (kJ/h) 9.88086E+07

Reboiler (kJ/h) 1.04578E+08 Reboiler (kJ/h) 1.14809E+08 Reboiler (kJ/h) 1.28452E+08

Vessel Parameters Vessel Parameters Vessel Parameters

Vessel Reboiler Condenser Vessel Reboiler Condenser Vessel Reboiler Condenser

Diameter (m) 1.193 1.193 Diameter (m) 1.193 1.193 Diameter (m) 1.193 1.193

Height(m) 1.789 1.789 Height(m) 1.789 1.789 Height(m) 1.789 1.789

Volume(m3) 2.000 2.000 Volume(m

3) 2.000 2.000 Volume(m

3) 2.000 2.000

Liq Vol. (%) 50.000 50.000 Liq Vol. (%) 50.000 50.000 Liq Vol. (%) 50.000 50.000

Level Calculator Horizontal cylinder Horizontal cylinder Level Calculator Horizontal cylinder Horizontal cylinder Level Calculator Horizontal cylinder Horizontal cylinder

Fraction Calculator Use levels and nozzles Use levels and nozzles Fraction Calculator Use levels and nozzles Use levels and nozzles Fraction Calculator Use levels and nozzles Use levels and nozzles

Vessel Delta P (kPa) 0.00 0.00 Vessel Delta P (kPa) 0.00 0.00 Vessel Delta P (kPa) 0.00 0.00

Fixed Vessel P Spec. (kPa) 26.66 26.66 Fixed Vessel P Spec. (kPa) 26.66 26.66 Fixed Vessel P Spec. (kPa) 26.66 26.66

Tray Section Tray Section Tray Section

Diameter (m) 1.500 Diameter (m) 1.500 Diameter (m) 1.500

Tray/Packed Space (m) 0.550 Tray/Packed Space (m) 0.550 Tray/Packed Space (m) 0.550

Tray/Packed Vol.(m3) 0.972 Tray/Packed Vol.(m

3) 0.972 Tray/Packed Vol.(m

3) 0.972

Hold up (m3) 0.088 Hold up (m

3) 0.088 Hold up (m

3) 0.088

Page 225: Styrene Production

C.7: Optimization Reflux Ratio (2of 6)

Figure 1A: Optimization of Reflux Ratio

Comp Recovery of Toluene = 0.9999

0.0E+00

2.0E+07

4.0E+07

6.0E+07

8.0E+07

1.0E+08

1.2E+08

3 5 10 15

Reflux Ratio

Co

nd

en

se

r D

uty

(k

J/h

)

Figure 1B: Optimization of Reflux Ratio

Comp Recovery of Toluene =0.9999

0.0E+00

2.0E+07

4.0E+07

6.0E+07

8.0E+07

1.0E+08

1.2E+08

1.4E+08

1.6E+08

3 5 10 15

Reflux Ratio

Re

bo

ile

r D

uty

(k

J/h

)

Figure1C: Optimization of Reflux Ratio

Comp Recovery of Toluene =0.9999

0.0000

0.0200

0.0400

0.0600

0.0800

0.1000

0.1200

0.1400

0 2 4 6 8 10 12 14 16

Reflux Ratio

Mo

le F

rac

tio

n o

f S

tyre

ne

in

th

e o

ve

rhe

ad

Figure1D: Optimization of Reflux Ratio

Comp Recovery of Toluene =0.9999

0.5700

0.5800

0.5900

0.6000

0.6100

0.6200

0.6300

0.6400

0.6500

0.6600

0.6700

0 2 4 6 8 10 12 14 16

Reflux Ratio

Mo

le F

racti

on

of

Sty

ren

e i

n t

he b

ott

om

s

Page 226: Styrene Production

C.7: Optimization Reflux Ratio (3 of 6)The amount of toluene recovered is not a specification in this optimization due to the degrees of freedom restriction on the distillation columns

Minimum Reflux From HYSYS Shortcut Calculation

Column 100 Column 100 Column 100

Pressure(kPa) 26.66 Pressure(kPa) 26.66 Pressure(kPa) 26.66

Condenser Temp (deg C) 43.59 Condenser Temp (deg C) 49.96 Condenser Temp (deg C) 51.86

Reboiler Temp (deg C) 95.48 Reboiler Temp (deg C) 96.02 Reboiler Temp (deg C) 96.26

Comp Recovery of Ethylbenzene 0.9999 Comp Recovery of Ethylbenzene 0.9999 Comp Recovery of Ethylbenzene 0.9999

Reflux Ratio 3 Reflux Ratio 5 Reflux Ratio 10

Total Trays w/o C & R 67 Total Trays w/o C & R 67 Total Trays w/o C & R 67

Tray Position 50 Tray Position 50 Tray Position 50

Composition of Exiting streams Composition of Exiting streams Composition of Exiting streams

Chemicals Overhead exiting Bottoms Exiting Chemicals Overhead exiting Bottoms Exiting Chemicals Overhead exiting Bottoms Exiting

Methane 0.0000 0.0000 Methane 0.0000 0.0000 Methane 0.0000 0.0000

Ethane 0.2965 0.0000 Ethane 0.2472 0.0000 Ethane 0.2299 0.0000

n-Hexane 0.0095 0.0000 n-Hexane 0.0080 0.0000 n-Hexane 0.0074 0.0000

Ethyl Toluene(1M3-Ebenzene) 0.0000 0.0000 Ethyl Toluene(1M3-Ebenzene) 0.0000 0.0000 Ethyl Toluene(1M3-Ebenzene) 0.0000 0.0000

Toluene 0.1890 0.0186 Toluene 0.3238 0.0059 Toluene 0.3709 0.0001

Benzene 0.4750 0.0000 Benzene 0.3960 0.0000 Benzene 0.3684 0.0000

Ethyl Benzene 0.0007 0.4169 Ethyl Benzene 0.0005 0.4223 Ethyl Benzene 0.0005 0.4248

Hydrogen 0.0002 0.0000 Hydrogen 0.0002 0.0000 Hydrogen 0.0002 0.0000

Oxygen 0.0000 0.0000 Oxygen 0.0000 0.0000 Oxygen 0.0000 0.0000

Nitrogen 0.0096 0.0000 Nitrogen 0.0080 0.0000 Nitrogen 0.0075 0.0000

Water 0.0000 0.0000 Water 0.0000 0.0000 Water 0.0000 0.0000

Ethylene 0.0195 0.0000 Ethylene 0.0163 0.0000 Ethylene 0.0151 0.0000

Styrene 0.0000 0.5587 Styrene 0.0000 0.5659 Styrene 0.0000 0.5692

n-B-Benzene 0.0000 0.0000 n-B-Benzene 0.0000 0.0000 n-B-Benzene 0.0000 0.0000

Cumene 0.0000 0.0018 Cumene 0.0000 0.0018 Cumene 0.0000 0.0019

n-P-Benzene 0.0000 0.0021 n-P-Benzene 0.0000 0.0021 n-P-Benzene 0.0000 0.0021

AMS 0.0000 0.0018 AMS 0.0000 0.0018 AMS 0.0000 0.0019

Heating Duties Heating Duties Heating Duties

Condenser (kJ/h) 1.39669E+07 Condenser (kJ/h) 2.79917E+07 Condenser (kJ/h) 6.01163E+07

Reboiler (kJ/h) 3.87203E+07 Reboiler (kJ/h) 5.37519E+07 Reboiler (kJ/h) 8.63321E+07

Vessel Parameters Vessel Parameters Vessel Parameters

Vessel Reboiler Condenser Vessel Reboiler Condenser Vessel Reboiler Condenser

Diameter (m) 1.193 1.193 Diameter (m) 1.193 1.193 Diameter (m) 1.193 1.193

Height(m) 1.789 1.789 Height(m) 1.789 1.789 Height(m) 1.789 1.789

Volume(m3) 2.000 2.000 Volume(m

3) 2.000 2.000 Volume(m

3) 2.000 2.000

Liq Vol. (%) 50.000 50.000 Liq Vol. (%) 50.000 50.000 Liq Vol. (%) 50.000 50.000

Level Calculator Horizontal cylinder Horizontal cylinder Level Calculator Horizontal cylinder Horizontal cylinder Level Calculator Horizontal cylinder Horizontal cylinder

Fraction Calculator Use levels and nozzles Use levels and nozzles Fraction Calculator Use levels and nozzles Use levels and nozzles Fraction Calculator Use levels and nozzles Use levels and nozzles

Vessel Delta P (kPa) 0.00 0.00 Vessel Delta P (kPa) 0.00 0.00 Vessel Delta P (kPa) 0.00 0.00

Fixed Vessel P Spec. (kPa) 26.66 26.66 Fixed Vessel P Spec. (kPa) 26.66 26.66 Fixed Vessel P Spec. (kPa) 26.66 26.66

Tray Section Tray Section Tray Section

Diameter (m) 1.500 Diameter (m) 1.500 Diameter (m) 1.500

Tray/Packed Space (m) 0.550 Tray/Packed Space (m) 0.550 Tray/Packed Space (m) 0.550

Tray/Packed Vol.(m3) 0.972 Tray/Packed Vol.(m

3) 0.972 Tray/Packed Vol.(m

3) 0.972

Hold up (m3) 0.088 Hold up (m

3) 0.088 Hold up (m

3) 0.088

Page 227: Styrene Production

C.7: Optimization Reflux Ratio (4 of 6)

Column 100

Optimal RefluxPressure(kPa) 26.66

Condenser Temp (deg C) 51.90

Reboiler Temp (deg C) 96.27

Comp Recovery of Ethylbenzene 0.9999

Reflux Ratio 12

Total Trays w/o C & R 67

Tray Position 50

Composition of Exiting streams

Chemicals Overhead exiting Bottoms Exiting

Methane 0.0000 0.0000

Ethane 0.2298 0.0000

n-Hexane 0.0074 0.0000

Ethyl Toluene(1M3-Ebenzene) 0.0000 0.0000

Toluene 0.3715 0.0000

Benzene 0.3681 0.0000

Ethyl Benzene 0.0005 0.4248

Hydrogen 0.0002 0.0000

Oxygen 0.0000 0.0000

Nitrogen 0.0075 0.0000

Water 0.0000 0.0000

Ethylene 0.0151 0.0000

Styrene 0.0000 0.5693

n-B-Benzene 0.0000 0.0000

Cumene 0.0000 0.0019

n-P-Benzene 0.0000 0.0021

AMS 0.0000 0.0019

Heating Duties

Condenser (kJ/h) 7.21977E+07

Reboiler (kJ/h) 9.84124E+07

Vessel Parameters

Vessel Reboiler Condenser

Diameter (m) 1.193 1.193

Height(m) 1.789 1.789

Volume(m3) 2.000 2.000

Liq Vol. (%) 50.000 50.000

Level Calculator Horizontal cylinder Horizontal cylinder

Fraction Calculator Use levels and nozzles Use levels and nozzles

Vessel Delta P (kPa) 0.00 0.00

Fixed Vessel P Spec. (kPa) 26.66 26.66

Tray Section

Diameter (m) 1.500

Tray/Packed Space (m) 0.550

Tray/Packed Vol.(m3) 0.972

Hold up (m3) 0.088

Figure 2A: Optimization of Reflux Ratio

Comp Recovery of EB = 0.9999

0.00E+00

5.00E+07

1.00E+08

1.50E+08

2.00E+08

2.50E+08

3.00E+08

3.50E+08

3 5 10 12 15 20 30 40 50

Reflux Ratio

Co

nd

en

ser

Du

ty (

kJ/h

)

Figure 2B: Optimization of Reflux Ratio

Comp Recovery of EB =0.9999

0

10

20

30

40

50

60

3 5 10 12 15 20 30 40 50

Reflux Ratio

Reb

oiler

Du

ty (

kJ/h

)

Figure 2C: Optimization of Reflux Ratio

Comp Recovery of EB =0.9999

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0 10 20 30 40 50 60

Reflux Ratio

Mo

le F

racti

on

of

Sty

ren

e in

th

e o

verh

ead

Figure 1A: Optimization of Reflux Ratio

Comp Recovery of Toluene = 0.9999

0.00E+00

2.00E+07

4.00E+07

6.00E+07

8.00E+07

1.00E+08

1.20E+08

3 5 10 15

Reflux Ratio

Co

nd

en

ser

Du

ty (

kJ/h

)

Page 228: Styrene Production

C.7: Optimization Reflux Ratio (5 of 6)General Trends:

Reflux Ratio Solved by HYSYS

As the number of columns decreases the duty on the condenser and reboiler increases

As the number of columns decreases the mol fraction of ethyl benzene exiting in the distillate increases

As the number of columns decreases the purity of styrene increases because of the amount of ethyl benzene exiting in the distillate, but there is a point where you start getting less purity of styrene.

Column 100 Column 100 Column 100

Pressure(kPa) 26.66 Pressure(kPa) 26.66 Pressure(kPa) 26.66

Condenser Temp (deg C) 51.88 Condenser Temp (deg C) 51.88 Condenser Temp (deg C) 51.88

Reboiler Temp (deg C) 96.27 Reboiler Temp (deg C) 96.27 Reboiler Temp (deg C) 96.26

Comp Recovery of Ethylbenzene 0.9999 Comp Recovery of Ethylbenzene 0.9999 Comp Recovery of Ethylbenzene 0.9999

Reflux Ratio 12 Reflux Ratio 12 Reflux Ratio 12

Total Trays w/o C & R 67 Total Trays w/o C & R 66 Total Trays w/o C & R 65

Tray Position 50 Tray Position 50 Tray Position 50

Chemicals Overhead exiting Bottoms Exiting Chemicals Overhead exiting Bottoms Exiting Chemicals Overhead exiting Bottoms Exiting

Methane 0.0000 0.0000 Methane 0.0000 0.0000 Methane 0.0000 0.0000

Ethane 0.2298 0.0000 Ethane 0.2298 0.0000 Ethane 0.2298 0.0000

n-Hexane 0.0074 0.0000 n-Hexane 0.0074 0.0000 n-Hexane 0.0074 0.0000

Ethyl Toluene(1M3-Ebenzene) 0.0000 0.0000 Ethyl Toluene(1M3-Ebenzene) 0.0000 0.0000 Ethyl Toluene(1M3-Ebenzene) 0.0000 0.0000

Toluene 0.3715 0.0000 Toluene 0.3714 0.0000 Toluene 0.3712 0.0001

Benzene 0.3681 0.0000 Benzene 0.3682 0.0000 Benzene 0.3682 0.0000

Ethyl Benzene 0.0005 0.4248 Ethyl Benzene 0.0005 0.4248 Ethyl Benzene 0.0005 0.4248

Hydrogen 0.0002 0.0000 Hydrogen 0.0002 0.0000 Hydrogen 0.0002 0.0000

Oxygen 0.0000 0.0000 Oxygen 0.0000 0.0000 Oxygen 0.0000 0.0000

Nitrogen 0.0075 0.0000 Nitrogen 0.0075 0.0000 Nitrogen 0.0075 0.0000

Water 0.0000 0.0000 Water 0.0000 0.0000 Water 0.0000 0.0000

Ethylene 0.0151 0.0000 Ethylene 0.0151 0.0000 Ethylene 0.0151 0.0000

Styrene 0.0000 0.5693 Styrene 0.0000 0.5693 Styrene 0.0000 0.5693

n-B-Benzene 0.0000 0.0000 n-B-Benzene 0.0000 0.0000 n-B-Benzene 0.0000 0.0000

Cumene 0.0000 0.0019 Cumene 0.0000 0.0019 Cumene 0.0000 0.0019

n-P-Benzene 0.0000 0.0021 n-P-Benzene 0.0000 0.0021 n-P-Benzene 0.0000 0.0021

AMS 0.0000 0.0019 AMS 0.0000 0.0019 AMS 0.0000 0.0019

Heating Duties Heating Duties Heating Duties

Condenser (kJ/h) 7.21977E+07 Condenser (kJ/h) 7.21863E+07 Condenser (kJ/h) 7.21704E+07

Reboiler (kJ/h) 9.84124E+07 Reboiler (kJ/h) 9.84041E+07 Reboiler (kJ/h) 9.83869E+07

Vessel Parameters Vessel Parameters Vessel Parameters

Vessel Reboiler Condenser Vessel Reboiler Condenser Vessel Reboiler Condenser

Diameter (m) 1.193 1.193 Diameter (m) 1.193 1.193 Diameter (m) 1.193 1.193

Height(m) 1.789 1.789 Height(m) 1.789 1.789 Height(m) 1.789 1.789

Volume(m3) 2.000 2.000 Volume(m

3) 2.000 2.000 Volume(m

3) 2.000 2.000

Liq Vol. (%) 50.000 50.000 Liq Vol. (%) 50.000 50.000 Liq Vol. (%) 50.000 50.000

Level Calculator Horizontal cylinder Horizontal cylinder Level Calculator Horizontal cylinder Horizontal cylinder Level Calculator Horizontal cylinder Horizontal cylinder

Fraction Calculator Use levels and nozzles Use levels and nozzles Fraction Calculator Use levels and nozzlesUse levels and nozzles Fraction Calculator Use levels and nozzles Use levels and nozzles

Vessel Delta P (kPa) 0.00 0.00 Vessel Delta P (kPa) 0.00 0.00 Vessel Delta P (kPa) 0.00 0.00

Fixed Vessel P Spec. (kPa) 26.66 26.66 Fixed Vessel P Spec. (kPa) 26.66 26.66 Fixed Vessel P Spec. (kPa) 26.66 26.66

Tray Section Tray Section Tray Section

Diameter (m) 1.500 Diameter (m) 1.500 Diameter (m) 1.500

Tray/Packed Space (m) 0.550 Tray/Packed Space (m) 0.550 Tray/Packed Space (m) 0.550

Tray/Packed Vol.(m3) 0.972 Tray/Packed Vol.(m

3) 0.972 Tray/Packed Vol.(m

3) 0.972

Hold up (m3) 0.088 Hold up (m

3) 0.088 Hold up (m

3) 0.088

Composition of Exiting streamsComposition of Exiting streamsComposition of Exiting streams

Page 229: Styrene Production

C.7: Optimization Reflux Ratio (6 of 6)

OPTIMAL STAGE FROM SHORT-CUT DIST. IN HYSYS

Column 100 Column 100 Column 100

Pressure(kPa) 26.66 Pressure(kPa) 26.66 Pressure(kPa) 26.66

Condenser Temp (deg C) 51.88 Condenser Temp (deg C) 51.90 Condenser Temp (deg C) 51.90

Reboiler Temp (deg C) 96.27 Reboiler Temp (deg C) 96.27 Reboiler Temp (deg C) 96.27

Comp Recovery of Ethylbenzene 0.9999 Comp Recovery of Ethylbenzene 0.9999 Comp Recovery of Ethylbenzene 0.9999

Reflux Ratio 12 Reflux Ratio 12 Reflux Ratio 12

Total Trays w/o C & R 66 Total Trays w/o C & R 66 Total Trays w/o C & R 66

Tray Position 50 Tray Position 10 Tray Position 20

Chemicals Overhead exiting Bottoms Exiting Chemicals Overhead exiting Bottoms Exiting Chemicals Overhead exiting Bottoms Exiting

Methane 0.0000 0.0000 Methane 0.0000 0.0000 Methane 0.0000 0.0000

Ethane 0.2298 0.0000 Ethane 0.2297 0.0000 Ethane 0.2297 0.0000

n-Hexane 0.0074 0.0000 n-Hexane 0.0074 0.0000 n-Hexane 0.0074 0.0000

Ethyl Toluene(1M3-Ebenzene) 0.0000 0.0000 Ethyl Toluene(1M3-Ebenzene) 0.0000 0.0000 Ethyl Toluene(1M3-Ebenzene) 0.0000 0.0000

Toluene 0.3714 0.0000 Toluene 0.3717 0.0000 Toluene 0.3717 0.0000

Benzene 0.3682 0.0000 Benzene 0.3679 0.0000 Benzene 0.3680 0.0000

Ethyl Benzene 0.0005 0.4248 Ethyl Benzene 0.0005 0.4249 Ethyl Benzene 0.0005 0.4249

Hydrogen 0.0002 0.0000 Hydrogen 0.0002 0.0000 Hydrogen 0.0002 0.0000

Oxygen 0.0000 0.0000 Oxygen 0.0000 0.0000 Oxygen 0.0000 0.0000

Nitrogen 0.0075 0.0000 Nitrogen 0.0075 0.0000 Nitrogen 0.0075 0.0000

Water 0.0000 0.0000 Water 0.0000 0.0000 Water 0.0000 0.0000

Ethylene 0.0151 0.0000 Ethylene 0.0151 0.0000 Ethylene 0.0151 0.0000

Styrene 0.0000 0.5693 Styrene 0.0000 0.5693 Styrene 0.0000 0.5693

n-B-Benzene 0.0000 0.0000 n-B-Benzene 0.0000 0.0000 n-B-Benzene 0.0000 0.0000

Cumene 0.0000 0.0019 Cumene 0.0000 0.0019 Cumene 0.0000 0.0019

n-P-Benzene 0.0000 0.0021 n-P-Benzene 0.0000 0.0021 n-P-Benzene 0.0000 0.0021

AMS 0.0000 0.0019 AMS 0.0000 0.0019 AMS 0.0000 0.0019

Heating Duties Heating Duties Heating Duties

Condenser (kJ/h) 7.21863E+07 Condenser (kJ/h) 7.22308E+07 Condenser (kJ/h) 7.22285E+07

Reboiler (kJ/h) 9.84041E+07 Reboiler (kJ/h) 9.84525E+07 Reboiler (kJ/h) 9.84495E+07

Vessel Parameters Vessel Parameters Vessel Parameters

Vessel Reboiler Condenser Vessel Reboiler Condenser Vessel Reboiler Condenser

Diameter (m) 1.193 1.193 Diameter (m) 1.193 1.193 Diameter (m) 1.193 1.193

Height(m) 1.789 1.789 Height(m) 1.789 1.789 Height(m) 1.789 1.789

Volume(m3) 2.000 2.000 Volume(m

3) 2.000 2.000 Volume(m

3) 2.000 2.000

Liq Vol. (%) 50.000 50.000 Liq Vol. (%) 50.000 50.000 Liq Vol. (%) 50.000 50.000

Level Calculator Horizontal cylinder Horizontal cylinder Level Calculator Horizontal cylinder Horizontal cylinder Level Calculator Horizontal cylinder Horizontal cylinder

Fraction Calculator Use levels and nozzles Use levels and nozzles Fraction Calculator Use levels and nozzlesUse levels and nozzles Fraction Calculator Use levels and nozzles Use levels and nozzles

Vessel Delta P (kPa) 0.00 0.00 Vessel Delta P (kPa) 0.00 0.00 Vessel Delta P (kPa) 0.00 0.00

Fixed Vessel P Spec. (kPa) 26.66 26.66 Fixed Vessel P Spec. (kPa) 26.66 26.66 Fixed Vessel P Spec. (kPa) 26.66 26.66

Tray Section Tray Section Tray Section

Diameter (m) 1.500 Diameter (m) 1.500 Diameter (m) 1.500

Tray/Packed Space (m) 0.550 Tray/Packed Space (m) 0.550 Tray/Packed Space (m) 0.550

Tray/Packed Vol.(m3) 0.972 Tray/Packed Vol.(m

3) 0.972 Tray/Packed Vol.(m

3) 0.972

Hold up (m3) 0.088 Hold up (m

3) 0.088 Hold up (m

3) 0.088

Composition of Exiting streams Composition of Exiting streams Composition of Exiting streams

Page 230: Styrene Production

Appendix D: Compressor Optimization

Page 231: Styrene Production

Compressors Total Cost/Year Compressors Total Cost/Year Compressors Total Cost/Year

1 135,211,913.38$ 1 83,109,284.25$ 1 16,723,672.81$

2 46,301,845.84$ 2 36,885,784.77$ 2 13,259,425.74$

3 36,120,548.92$ 3 31,026,285.60$ 3 12,954,054.50$

4 34,700,489.93$ 4 30,567,660.67$ 4 12,974,991.53$

5 34,117,414.99$ 5 30,323,544.51$ 5 13,112,584.04$

6 34,019,360.00$ 6 30,344,373.78$ 6 13,270,201.88$ 7 34,056,600.61$ 7 30,474,470.36$ 7 13,343,714.61$

Compressors Total Cost/Year Compressors Total Cost/Year Compressors Total Cost/Year

1 14,393,491.14$ 1 11,799,344.63$ 1 11,552,286.13$

2 11,988,687.07$ 2 10,330,926.05$ 2 10,271,294.13$

3 11,738,395.62$ 3 10,156,880.73$ 3 10,070,266.22$

4 11,816,536.09$ 4 10,263,640.47$ 4 10,211,462.87$

5 11,976,656.42$ 5 10,423,114.77$ 5 10,394,355.66$

6 12,141,798.15$ 6 10,534,134.01$ 6 10,482,010.82$ 7 12,181,480.61$ 7 10,598,345.00$ 7 10,562,234.00$

Compressors Total Cost/Year Compressors Total Cost/Year Compressors Total Cost/Year

1 9,993,175.16$ 1 9,442,799.04$ 1 8,645,010.91$

2 9,272,843.40$ 2 9,054,784.68$ 2 8,584,023.83$

3 9,079,644.47$ 3 8,820,671.40$ 3 8,343,378.82$

4 9,266,368.96$ 4 9,072,796.99$ 4 8,654,569.23$

5 9,465,635.45$ 5 9,210,912.53$ 5 8,748,205.56$

6 9,515,501.58$ 6 9,321,584.03$ 6 8,897,823.72$ 7 9,613,541.49$ 7 9,418,821.32$ 7 8,968,179.58$

Compressors Total Cost/Year Compressors Total Cost/Year Compressors Total Cost/Year

1 442,471.46$ 1 3,085,513.74$ 1 11,254,434.85$

2 453,857.44$ 2 3,284,760.49$ 2 10,294,761.84$

3 454,264.96$ 3 3,424,930.82$ 3 10,194,445.14$ 4 471,742.91$ 4 3,742,178.44$ 4 10,546,200.01$

5 10,949,864.13$

Compressors Total Cost/Year Compressors Total Cost/Year

1 928,140.44$ 1 4,124,658.09$ Compressors Total Cost/Year

2 960,210.75$ 2 4,081,197.03$ 1 1,749,431.52$ 3 968,565.58$ 3 4,144,069.67$ 2 3,673,363.34$

4 4,328,521.09$ 5 4,486,006.45$

K-200

K-300

K-202

K-401 K-402 K-403

K-406

K-407 K-408 K-409

K-201

D.1: Compressor Optimization Analysis

K-404 K-405

K-410 K-400

Page 232: Styrene Production

D.2: K-404 Optimization Analysis

$11,500,000.00

$12,000,000.00

$12,500,000.00

$13,000,000.00

$13,500,000.00

$14,000,000.00

$14,500,000.00

$15,000,000.00

1 2 3 4 5 6 7

# Compressors

Co

st

An

nu

ally

Page 233: Styrene Production

Pad 7.904 106

× W=

(10-65a)Pad G Had⋅:=

Had 4.882 104

× Sv=

(10-64a)Had

k Rc⋅ T1⋅

k 1−

p2

p1

k 1−( )

k

1−

⋅:=

Rc 8.314J

mol K⋅⋅

1

MW

⋅:=k 1.1204:=

MWG

M:=G 5.8282 10

5⋅

kg

hr:=

p1 135.78 103

⋅ Pa⋅:=p2 263.38 103

× Pa⋅:=

T1 273.15 86.93+( )K:=T2 273.15 122.03+( )K:=

M 13841 103

⋅mol

hr⋅:=

(10-67)

( ) kk

p

pTT

/1

1

212

=

Assume polytropic behavior that approaches adiabatic (Perry's page 10-37)

D.3: Compressor Hand Calculation Example

Page 234: Styrene Production

Appendix E: Heat Exchanger Design

Page 235: Styrene Production

Constants:

Density: np 2:= Kc 0.3:= S 0.5:=

ρ 2.224kg

m3

⋅:=kconstant 0.000163

kg m⋅

s4

A⋅

⋅:=

Equations:

Ac π Di2

⋅:= GMt

Ac NP⋅:=

k 1 S−( )2

Kc+0.5 np 1−( )⋅

np

+:= ReDi G⋅

µ:= Pr

Cp µ⋅

kconstant

:=

Taverage

Tin Tout+

2:= f 0.046 Re

.2−⋅:=

∆T1 Totherin Taverage−:=

B 1

0.51 k⋅ np⋅ ∆T1⋅µ

µw

0.28

Tout Tin−( ) Pr

2

3⋅

+:=

φ 1.02µ

µw

0.14

⋅:=

P2 B⋅ f⋅ G

2⋅ Length⋅ np⋅

ρ Di⋅ φ⋅:=

P 80.234 Pa=

E.1: Example Pressure Drop Calculation (1 of 2)Tube Side Pressure Estimation of E-1000

From "Plant Design and Economics for Chemical Engineers" Pg. 667

Tube Diameter: Mass Flow: Visocity (At Bulk and Wall):

Di .15 m⋅:= Mt 519200kg

hr⋅:=

µ .00956 poise⋅:=

Number of Tubes: µw .01241 poise⋅:=

NP 200:=Temp. In and Out:

Cp at Bulk Temp.:Tin 28.2− 273.15+( ) K⋅:=

Cp 1.542 1000⋅J

kg C⋅⋅:=

Tout 47.5− 273.15+( ) K⋅:=

Totherin 60− 273.15+( ) K⋅:=Length:

Length 6 m⋅:=

Page 236: Styrene Production

∆P 5.542 Pa=

∆P4 f⋅ Gs

2⋅ Ds⋅ 1 Nb+( )⋅

2 ρ⋅ De⋅µ

µw

0.14

:=

ReDe Gs⋅

µ:=

De

4 0.86 Pt2

⋅ 0.25 π⋅ Do2

⋅−

π Do⋅:=

Nb

Ls

Lb tb+1−:=

Gs

Mt

Sm

:=Sm

Ds Pd⋅ Lb⋅

Pt

:=

Equations:

Do 0.1 m⋅:=tb 0.1 m⋅:=

f 0.025:=Pt 0.2 m⋅:=

Ls 6 m⋅:=Lb 3 m⋅:=

Pd 0.1 m⋅:=Ds 2.5 m⋅:=

µw .4251 poise⋅:=ρ 1465kg

m3

⋅:=

µ .41330 poise⋅:=Mt 1435000

kg

hr⋅:=

Known:

From "Plant Design and Economics for Chemical Engineers" Pg. 706-707

Shell Side Pressure Drop Estimation E-100 Coolant

E.1: Example Pressure Drop Calculation (2 of 2)

Page 237: Styrene Production

A 274.11 m2

=Aq

Uhe ∆Tlm⋅:=

Uhe 425W

m2K

:=

∆Tlm 5.832K=∆Tlm

Tsin Two−( ) Tso Twin−( )−

lnTsin Two−( )Tso Twin−( )

:=

Water and Styrene

q 6.794 105

× W=q Utank A⋅ ∆T⋅:=

∆T 13.889 K=∆T Tair Tsin−:=

A 2.576 103

× m2

=A πD h⋅ πD

2

2

⋅+:=

D 20m:=h 36m:=

Utank 18.987kg

s3K

=Utank1

1

hair

∆xsteel

ksteel

+1

hs

+

:=

Air and Styrene

∆xsteel 0.075m:=

ksteel 45W m⋅

m2K

:=hs 1000W

m2K

:=hair 20W

m2K

:=

Tair 273.15 37.77778+( )K:=

Tso 273.15 18.3333+( )K:=Tsin 273.15 23.88889+( )K:=

Two 293.15K:=Twin 283.15K:=

E.2: Styrene Tank Heat Exchanger Size

Page 238: Styrene Production

Appendix F: Reactor Sizing

Page 239: Styrene Production

F.1: Dehydrogenation Reactor Size

Time 8000 hr⋅:=GHSV 225 hr

1−⋅:=

Molar_Flow 19158000mole

hr⋅:=

Vol_FlowMolar_Flow

48.281mole

m3

:= Vol_Flow 110.223m

3

s=

VolVol_Flow

GHSV:=

Vol 1.764 103

× m3

=

Numreactors 4:=

Volreactor

Vol

Numreactors

:=

Volreactor 440.891 m3

=

Page 240: Styrene Production

Appendix G: Economic Optimization

Page 241: Styrene Production

Direct Costs

Purchased Equipment Costs: $384.6

Delivery Costs: $38.5

Installation Costs: $198.8

Instrumentation & Controls: $152.3

Piping: $287.7

Electrical Systems: $46.5

Buildings: $76.2

Yard Improvements: $42.3

Service Facilities: $296.1

Total Direct Costs: $1,523.0

Total Direct Costs:

Indirect Costs

Engineering and Supervision: $139.6

Construction Expenses: $173.5

Legal Expenses: $16.9

Contractor's Fee: $93.1

Contingency: $186.1

Total Indirect Costs: $609.2

Total Indirect Costs:

FIXED CAPITAL INVESTMENT

Working Capital

Working Capital: $376.5

Total Working Capital: $376.5

TOTAL CAPITAL INVESTMENT

G.1: Investment SummaryStyrene Monomer Production Process

TOTAL

$1,523.0

$609.2

$2,508.7

$2,132.2

Page 242: Styrene Production

Raw Material Price Annual Amount Annual Cost of Raw Material

($/kg) (million kg/yr) (million $)

Ethane 0.34 317.07 108.1Benzene 0.83 704.93 581.8Air 0.45 9.43 4.2Dehydrogenation Catalyst 115.00 0.24 27.8Alkylation Catalyst 105.00 0.02 1.7Transalkylation Catalyst 40.00 0.01 0.3TBC (Inhibitor) 63.80 0.02 1.4DNP (Inhibitor) 260.00 0.02 6.2

Total 731.5

Product Price Annual Amount Annual Value of Product

($/kg) (million kg/yr) (million $)

Styrene 2.17 898.11 1950.3Toluene 0.76 34.01 25.9

Total 1976.2

Utility Price Annual Amount Annual Cost of Utility

(million $)

Electricity 7.54 ¢/kWh 1.16E+09 87.7Refrigeration (to -50°C) 14 $/GJ 5.68E+06 79.5Steam, Saturated

3550 kPa (243.38°C) 8 $/1000kg 1.51E+06 12.1150 kPa (109.95°C) 2 $/1000kg 3.88E+05 0.8

Water Treatment 36 $/1000kg 3.05E+05 11.0

Cooling Water (15°C) 8 ¢/m3

8.51E+07 6.8

Total 197.8

Raw Material, Product, & Utility Summary

G.2: Economic Summary (1 of 5)

Page 243: Styrene Production

Current Chemical Engineering Index (for 2006) = 493Projected Chemical Engineering Index for 2007 = 519

Equipment Type Equipment Cost(2007 MM$)

REACTOR VESSELS 6.447DISTILLATION VESSELS 14.690TRAY COSTS 2.411HEAT EXCHANGERS 94.289COMPRESSORS 189.822PUMPS 0.115TURBINES 69.590STORAGE TANKS 9.644

TOTAL 387.008

G.2: Economic Summary (2 of 5)Purchased Equipment Cost Summary

Page 244: Styrene Production

Raw Materials

Benzene

Ethane

Air

Dehydogenation Catalyst

Alkylation Catalyst

Transalkyation Catalyst

TBC (Inhibitor)DNP (Inhibitor)

Total Raw Materials:

Utilties

Waste Treatment

General Expenses

Operating Labor

Operating Supervision

Maintainance/Repairs

Operating SuppliesLaboratory Charges

Total Byproducts:

TOTAL

Variable Cost Summary

G.2: Economic Summary (3 of 5)

TOTAL

$0.294 per lb of Styrene $581.8

Styrene Production Process

Per lb Styrene

$0.003 per lb of Styrene $6.8

$0.006 per lb of Styrene $12.1

$0.055 per lb of Styrene

$0.002 per lb of Styrene

$0.000 per lb of Styrene

$197.8

$0.044 per lb of Styrene $87.7

$731.5

$0.000 per lb of Styrene $0.8

$0.37 per lb of Styrene $731.5

$0.001 per lb of Styrene $2.7

$0.0100 per lb of Styrene $197.8

$0.000 per lb of Styrene $0.4

$0.066 per lb of Styrene $131.4

$0.010 per lb of Styrene $19.7$0.000 per lb of Styrene $0.4

$0.078 per lb of Styrene $154.6 $154.6

$0.547 per lb of Styrene $1,084.0 $1,084.0

$0.003 per lb of Styrene

$0.014 per lb of Styrene

$0.001 per lb of Styrene

$0.001 per lb of Styrene

$27.8

$4.2

$108.1

$79.5

$6.2$1.4

$0.3

$1.7

$11.0

High Pressure Steam

Low Pressure Steam

Cooling Water

Refrigeration

Electricity

Total Utilities:

$0.040 per lb of Styrene

$0.005 per lb of Styrene

Page 245: Styrene Production

Fixed Charges

Property Taxes $43.8

Insurance $21.9

Total Fixed Charges: $65.7

Plant Overhead

General Plant Overhead $80.7

Total Plant Overhead: $80.7

General Expense

Administration $26.9

Distribution/Selling $69.1

Research & Development $55.3

Total General Expense: $151.3

TOTAL

Styrene Monomer Production ProcessTOTAL

$65.7

Fixed Cost Summary

G.2: Economic Summary (4 of 5)

$80.7

$151.3

$297.7

Page 246: Styrene Production

Year

Percentage

of Design

Capacity

Sales Capital Costs Working Capital Variable Costs Fixed Costs

Depreciation

Allowance

(MACRES)

Taxable IncomeIncome Tax

CostsNet Earnings

Annual Cash

Flow

Cumulative Net

Present Value at

15.0%

2007 0.0% Construction -$319.8 -$319.8 -$319.8

2008 0.0% Construction -$746.3 -$746.3 -$968.8

2009 0.0% Construction -$1,066.1 -$376.5 -$1,442.6 -$2,059.6

2010 45.0% $988.1 -$542.0 -$148.8 -426.4 $0.0 $0.0 $297.3 $297.3 -$1,864.1

2011 90.0% $1,976.2 -$1,084.0 -$297.7 -682.3 $0.0 $0.0 $594.6 $594.6 -$1,524.2

2012 90.0% $1,976.2 -$1,084.0 -$297.7 -409.4 $185.2 -$64.8 $529.7 $529.7 -$1,260.8

2013 90.0% $1,976.2 -$1,084.0 -$297.7 -245.2 $349.3 -$122.3 $472.3 $472.3 -$1,056.6

2014 90.0% $1,976.2 -$1,084.0 -$297.7 -245.2 $349.3 -$122.3 $472.3 $472.3 -$879.1

2015 90.0% $1,976.2 -$1,084.0 -$297.7 -123.7 $470.9 -$164.8 $429.7 $429.7 -$738.6

2016 90.0% $1,976.2 -$1,084.0 -$297.7 $594.6 -$208.1 $386.5 $386.5 -$628.7

2017 90.0% $1,976.2 -$1,084.0 -$297.7 $594.6 -$208.1 $386.5 $386.5 -$533.2

2018 90.0% $1,976.2 -$1,084.0 -$297.7 $594.6 -$208.1 $386.5 $386.5 -$450.2

2019 90.0% $1,976.2 -$1,084.0 -$297.7 $594.6 -$208.1 $386.5 $386.5 -$377.9

2020 90.0% $1,976.2 -$1,084.0 -$297.7 $594.6 -$208.1 $386.5 $386.5 -$315.1

2021 90.0% $1,976.2 -$1,084.0 -$297.7 $594.6 -$208.1 $386.5 $386.5 -$260.5

2022 90.0% $1,976.2 -$1,084.0 -$297.7 $594.6 -$208.1 $386.5 $386.5 -$213.0

2023 90.0% $1,976.2 -$1,084.0 -$297.7 $594.6 -$208.1 $386.5 $386.5 -$171.7

2024 90.0% $1,976.2 -$1,084.0 -$297.7 $594.6 -$208.1 $386.5 $386.5 -$135.8

2025 90.0% $1,976.2 -$1,084.0 -$297.7 $594.6 -$208.1 $386.5 $386.5 -$104.6

2026 90.0% $1,976.2 -$1,084.0 -$297.7 $594.6 -$208.1 $386.5 $386.5 -$77.4

2027 90.0% $1,976.2 -$1,084.0 -$297.7 $594.6 -$208.1 $386.5 $386.5 -$53.8

2028 90.0% $1,976.2 -$1,084.0 -$297.7 $594.6 -$208.1 $386.5 $386.5 -$33.32029 90.0% $1,976.2 $376.5 -$1,084.0 -$297.7 $594.6 -$208.1 $386.5 $763.0 $2.0

**All numbers are in millions of dollars

Styrene Monomer Production Process

Cash Flow Summary

G.2: Economic Summary (5 of 5)

Page 247: Styrene Production

**All numbers are in millions of dollars

The Investor's Rate of Return (IRR) for this Project is: 15.0%

The Net Present Value (NPV) at 15% for this Project is: $1.99

ROI Analysis (Seventh Production Year)

Annual Sales:

Annual Costs:

Depreciation:

Income Tax:

Net Earnings:

Total Capital Investment:

ROI:

G.3: Profitability MeasuresStyrene Monomer Production Process

$1,976.2

-$1,381.7

15.40%

$0.0

-$208.1

$386.5

$2,508.7

Page 248: Styrene Production

Product Prices

Product Prices ($/lb) $0.75 $0.80 $0.85 $0.90 $0.95 $0.99 $1.05 $1.10 $1.15 $1.20 $1.25 $1.30 $1.35

Product Prices ($/kg) $1.65 $1.76 $1.87 $1.98 $2.09 $2.17 $2.31 $2.43 $2.54 $2.65 $2.76 $2.87 $2.98

IRR -0.8% 3.6% 7.2% 10.4% 13.2% 15.0% 18.2% 20.4% 22.4% 24.2% 26.1% 27.8% 29.5%

G.4: IRR Analysis - Product Price FluctuationStyrene Monomer Production Process

IRR Analysis - Product Price Fluctuation

-5.0%

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

30.0%

35.0%

$0.70 $0.80 $0.90 $1.00 $1.10 $1.20 $1.30 $1.40

Styrene Monomer Product Price ($/lb)

IRR