44
Stueckelberg formalism and phenomenology of non-relativistic gravity Sergey Sibiryakov (EPFL & INR RAS) Diego Blas, Oriol Pujolas, S.S., JHEP 0910 : 029, 2009 (arXiv:0906.3046) Phys. Rev. Lett. 104 : 181302, 2010 (arXiv:0909.3525) Phys. Lett. B688 : 350, 2010 (arXiv:0912.0550) + work in progress

Stueckelberg formalism and phenomenology of non-relativistic …cosmo/SW_2010/PPT/Sibiryakov.pdf · 2010-05-12 · M 2 P 2! d3 xdt!! N " K ij K ij ""K 2 "V # a i = N! 1! i N V = !

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Stueckelberg formalism and phenomenology of non-relativistic …cosmo/SW_2010/PPT/Sibiryakov.pdf · 2010-05-12 · M 2 P 2! d3 xdt!! N " K ij K ij ""K 2 "V # a i = N! 1! i N V = !

Stueckelberg formalism and phenomenology of

non-relativistic gravity

Sergey Sibiryakov(EPFL & INR RAS)

Diego Blas, Oriol Pujolas, S.S., JHEP 0910 : 029, 2009 (arXiv:0906.3046)Phys. Rev. Lett. 104 : 181302, 2010 (arXiv:0909.3525)Phys. Lett. B688 : 350, 2010 (arXiv:0912.0550)+ work in progress

Page 2: Stueckelberg formalism and phenomenology of non-relativistic …cosmo/SW_2010/PPT/Sibiryakov.pdf · 2010-05-12 · M 2 P 2! d3 xdt!! N " K ij K ij ""K 2 "V # a i = N! 1! i N V = !

Plan

• Covariant form of non-relativistic gravity. Relation with Einstein-aether model

• Decoupling limit and self-interaction

• Coupling to matter. Phenomenological constraints

• Outlook

Page 3: Stueckelberg formalism and phenomenology of non-relativistic …cosmo/SW_2010/PPT/Sibiryakov.pdf · 2010-05-12 · M 2 P 2! d3 xdt!! N " K ij K ij ""K 2 "V # a i = N! 1! i N V = !

Input from Diego’s talk

• In non-relativistic QG 4d Diffs are broken down to foliation preserving subgroup (FDiffs)

x !" x̃(x, t) , t !" t̃(t)

required for renormalizability Horava (2009)

• This leads to a new degree of freedom -- “scalar graviton”

Page 4: Stueckelberg formalism and phenomenology of non-relativistic …cosmo/SW_2010/PPT/Sibiryakov.pdf · 2010-05-12 · M 2 P 2! d3 xdt!! N " K ij K ij ""K 2 "V # a i = N! 1! i N V = !

• A pathology-free model is given by the action

ds2 = (N2 !NiNi)dt2 ! 2Nidxidt! !ijdxidxj

Kij =!̇ij !"iNj !"jNi

2N

S =M2

P

2

!d3xdt

!!N

"KijK

ij " "K2 " V#

ai = N!1!iN

V = !R! !aiai + (higher order terms)!

suppressed by UV scale M!

Page 5: Stueckelberg formalism and phenomenology of non-relativistic …cosmo/SW_2010/PPT/Sibiryakov.pdf · 2010-05-12 · M 2 P 2! d3 xdt!! N " K ij K ij ""K 2 "V # a i = N! 1! i N V = !

Stueckelberg formalism I

To identify the effect of the new d.o.f.: restore gauge invariance by introducing Stueckelberg field

In case of gravity equivalent to covariantization

• parametrize foliation surfaces with scalar field:

ADM frame = gauge fixing

sets global time

!(x) = const

!

t = !

Page 6: Stueckelberg formalism and phenomenology of non-relativistic …cosmo/SW_2010/PPT/Sibiryakov.pdf · 2010-05-12 · M 2 P 2! d3 xdt!! N " K ij K ij ""K 2 "V # a i = N! 1! i N V = !

Stueckelberg formalism I

To identify the effect of the new d.o.f.: restore gauge invariance by introducing Stueckelberg field

In case of gravity equivalent to covariantization

• parametrize foliation surfaces with scalar field:

ADM frame = gauge fixing

sets global time

!(x) = const

!

t = !

Page 7: Stueckelberg formalism and phenomenology of non-relativistic …cosmo/SW_2010/PPT/Sibiryakov.pdf · 2010-05-12 · M 2 P 2! d3 xdt!! N " K ij K ij ""K 2 "V # a i = N! 1! i N V = !

Stueckelberg formalism I

To identify the effect of the new d.o.f.: restore gauge invariance by introducing Stueckelberg field

In case of gravity equivalent to covariantization

• parametrize foliation surfaces with scalar field:

ADM frame = gauge fixing

sets global time

!(x) = const

!

t = !CHRONON

Page 8: Stueckelberg formalism and phenomenology of non-relativistic …cosmo/SW_2010/PPT/Sibiryakov.pdf · 2010-05-12 · M 2 P 2! d3 xdt!! N " K ij K ij ""K 2 "V # a i = N! 1! i N V = !

• Time reparameterizations in ADM frame

symmetry

Invariant object -- unit normal to the foliation surfaces:

• identify!ij !" Pµ! = gµ! # uµu! , Kij !" Kµ! = P"

µ#"u!

, etc.

uµ = !µ"!(!")2

Stueckelberg formalism II

! !" !̃ = f(!)

ai !" aµ = u!#!uµ

Page 9: Stueckelberg formalism and phenomenology of non-relativistic …cosmo/SW_2010/PPT/Sibiryakov.pdf · 2010-05-12 · M 2 P 2! d3 xdt!! N " K ij K ij ""K 2 "V # a i = N! 1! i N V = !

S = !M2P

2

!d4x"!g

"(4)R + (!! 1)(#µuµ)2 + "uµu!#µu"#!u"

#• obtain the covariant action:

compare with Einstein-aether model

N.B. In our case there are no transverse vector modes

SEA = !M2P

2

!d4x"!g

"(4)R + c1#µu!#µu! + c2#µu!#!uµ

+c3(#µuµ)2 + c4uµu!#µu"#!u" + µ(u!u! ! 1)

#

Jacobson, Mattingly (2001)

Stueckelberg formalism III

Page 10: Stueckelberg formalism and phenomenology of non-relativistic …cosmo/SW_2010/PPT/Sibiryakov.pdf · 2010-05-12 · M 2 P 2! d3 xdt!! N " K ij K ij ""K 2 "V # a i = N! 1! i N V = !

No-ghost theorem

Action contains higher derivatives

Theorem Consider linear perturbations

In the frame where background is in ADM gauge,

e.o.m. for is second order in time

(!µuµ)2 =1

(!")2

!!" " !

µ"!!"

(!")2!µ!!"

"2

! = !̄ + "

!̄ = t

!

Page 11: Stueckelberg formalism and phenomenology of non-relativistic …cosmo/SW_2010/PPT/Sibiryakov.pdf · 2010-05-12 · M 2 P 2! d3 xdt!! N " K ij K ij ""K 2 "V # a i = N! 1! i N V = !

Decoupling limit

chronon perturbations decouple from the metric

MP !"M! !

"!MP

M! !"

!# 1 MP

!fixed

S! =!

d4x

"M2

"

2(!i"̇)2 ! M2

#

2(!")2

#!(!̈!!!) = 0

single propagating mode with linear dispersion relation

!2 =M2

!

M2"

p2

N.B. No decoupling in UV

Page 12: Stueckelberg formalism and phenomenology of non-relativistic …cosmo/SW_2010/PPT/Sibiryakov.pdf · 2010-05-12 · M 2 P 2! d3 xdt!! N " K ij K ij ""K 2 "V # a i = N! 1! i N V = !

Chronon self-interaction

S! =!

d4x

"M2

"

2(!i"̇)2 ! M2

#

2(!")2!M2

# "̇(!")2

+M2"

#"̇!i"̈!i"! !i"̇!j"!i!j"

$+ . . .

%

Page 13: Stueckelberg formalism and phenomenology of non-relativistic …cosmo/SW_2010/PPT/Sibiryakov.pdf · 2010-05-12 · M 2 P 2! d3 xdt!! N " K ij K ij ""K 2 "V # a i = N! 1! i N V = !

Chronon self-interaction

! = !̃ + !̃ ˙̃!• change variables:

S! =!

d4x

"M2

"

2(!i"̇)2 ! M2

#

2(!")2!M2

# "̇(!")2

+M2"

#"̇!i"̈!i"! !i"̇!j"!i!j"

$+ . . .

%

Page 14: Stueckelberg formalism and phenomenology of non-relativistic …cosmo/SW_2010/PPT/Sibiryakov.pdf · 2010-05-12 · M 2 P 2! d3 xdt!! N " K ij K ij ""K 2 "V # a i = N! 1! i N V = !

Chronon self-interaction

S! =!

d4x

"M2

"

2(!i

˙̃")2 ! M2#

2(!"̃)2!M2

#˙̃"(!"̃)2

+M2"

#12

˙̃"(!i˙̃")2 ! !i

˙̃"!j"̃!i!j"̃

$+ . . .

%

Page 15: Stueckelberg formalism and phenomenology of non-relativistic …cosmo/SW_2010/PPT/Sibiryakov.pdf · 2010-05-12 · M 2 P 2! d3 xdt!! N " K ij K ij ""K 2 "V # a i = N! 1! i N V = !

Chronon self-interaction

S! =!

d4x

"M2

"

2(!i

˙̃")2 ! M2#

2(!"̃)2!M2

#˙̃"(!"̃)2

+M2"

#12

˙̃"(!i˙̃")2 ! !i

˙̃"!j"̃!i!j"̃

$+ . . .

%

• normalize canonically: !̃ = M!1/2! M!1/2

" !̂ , t = M!M!1" t̂

Page 16: Stueckelberg formalism and phenomenology of non-relativistic …cosmo/SW_2010/PPT/Sibiryakov.pdf · 2010-05-12 · M 2 P 2! d3 xdt!! N " K ij K ij ""K 2 "V # a i = N! 1! i N V = !

Chronon self-interaction

S! =!

d4x

"(!i

˙̂")2

2! (!"̂)2

2!

M1/2"

M3/2#

˙̂"(!"̂)2

+M1/2

"

2M3/2#

˙̂"(!i˙̂")2 ! M1/2

#

M3/2"

!i˙̂"!j"̂!i!j"̂ + . . .

#

Page 17: Stueckelberg formalism and phenomenology of non-relativistic …cosmo/SW_2010/PPT/Sibiryakov.pdf · 2010-05-12 · M 2 P 2! d3 xdt!! N " K ij K ij ""K 2 "V # a i = N! 1! i N V = !

Chronon self-interaction

S! =!

d4x

"(!i

˙̂")2

2! (!"̂)2

2!

M1/2"

M3/2#

˙̂"(!"̂)2

+M1/2

"

2M3/2#

˙̂"(!i˙̂")2 ! M1/2

#

M3/2"

!i˙̂"!j"̂!i!j"̂ + . . .

#

• read out would-be strong coupling scale

! = min!M!1/2

! M3/2" , M3/2

! M!1/2"

"

Page 18: Stueckelberg formalism and phenomenology of non-relativistic …cosmo/SW_2010/PPT/Sibiryakov.pdf · 2010-05-12 · M 2 P 2! d3 xdt!! N " K ij K ij ""K 2 "V # a i = N! 1! i N V = !

Chronon self-interaction

S! =!

d4x

"(!i

˙̂")2

2! (!"̂)2

2!

M1/2"

M3/2#

˙̂"(!"̂)2

+M1/2

"

2M3/2#

˙̂"(!i˙̂")2 ! M1/2

#

M3/2"

!i˙̂"!j"̂!i!j"̂ + . . .

#

• read out would-be strong coupling scale

! = min!M!1/2

! M3/2" , M3/2

! M!1/2"

"

• goes to zero for (original non-projectable Horava’s action) and (projectable model)! M! ! 0

M! !"

Page 19: Stueckelberg formalism and phenomenology of non-relativistic …cosmo/SW_2010/PPT/Sibiryakov.pdf · 2010-05-12 · M 2 P 2! d3 xdt!! N " K ij K ij ""K 2 "V # a i = N! 1! i N V = !

Chronon self-interaction

S! =!

d4x

"(!i

˙̂")2

2! (!"̂)2

2!

M1/2"

M3/2#

˙̂"(!"̂)2

+M1/2

"

2M3/2#

˙̂"(!i˙̂")2 ! M1/2

#

M3/2"

!i˙̂"!j"̂!i!j"̂ + . . .

#

• read out would-be strong coupling scale

! = min!M!1/2

! M3/2" , M3/2

! M!1/2"

"

• goes to zero for (original non-projectable Horava’s action) and (projectable model)! M! ! 0

M! !"

• for ! !M! M! !M"

strong coupling resolved by higher derivatives

Page 20: Stueckelberg formalism and phenomenology of non-relativistic …cosmo/SW_2010/PPT/Sibiryakov.pdf · 2010-05-12 · M 2 P 2! d3 xdt!! N " K ij K ij ""K 2 "V # a i = N! 1! i N V = !

Chronon self-interaction

S! =!

d4x

"(!i

˙̂")2

2! (!"̂)2

2!

M1/2"

M3/2#

˙̂"(!"̂)2

+M1/2

"

2M3/2#

˙̂"(!i˙̂")2 ! M1/2

#

M3/2"

!i˙̂"!j"̂!i!j"̂ + . . .

#

• read out would-be strong coupling scale

! = min!M!1/2

! M3/2" , M3/2

! M!1/2"

"

• goes to zero for (original non-projectable Horava’s action) and (projectable model)! M! ! 0

M! !"

• for ! !M! M! !M"

strong coupling resolved by higher derivatives

M! ! M!,M"

Page 21: Stueckelberg formalism and phenomenology of non-relativistic …cosmo/SW_2010/PPT/Sibiryakov.pdf · 2010-05-12 · M 2 P 2! d3 xdt!! N " K ij K ij ""K 2 "V # a i = N! 1! i N V = !

Coupling to matter I

uµSM fields couple to

Page 22: Stueckelberg formalism and phenomenology of non-relativistic …cosmo/SW_2010/PPT/Sibiryakov.pdf · 2010-05-12 · M 2 P 2! d3 xdt!! N " K ij K ij ""K 2 "V # a i = N! 1! i N V = !

Coupling to matter I

• with additional derivatives

derivative interaction via

suppressed by

aµ!̄"µ! Kµ!!̄"µ#!!

!

M!

SM fields couple to

Page 23: Stueckelberg formalism and phenomenology of non-relativistic …cosmo/SW_2010/PPT/Sibiryakov.pdf · 2010-05-12 · M 2 P 2! d3 xdt!! N " K ij K ij ""K 2 "V # a i = N! 1! i N V = !

Coupling to matter I

• with additional derivatives

derivative interaction via

suppressed by

aµ!̄"µ! Kµ!!̄"µ#!!

!

M!

SM fields couple to

uµ!̄"µ! uµu!!̄"µ#!! uµu!!̄"µ"!!

• without derivatives

lead to violation of Lorentz symmetry within the SM

Page 24: Stueckelberg formalism and phenomenology of non-relativistic …cosmo/SW_2010/PPT/Sibiryakov.pdf · 2010-05-12 · M 2 P 2! d3 xdt!! N " K ij K ij ""K 2 "V # a i = N! 1! i N V = !

Coupling to matter II

operators of dim ( )

UV modification of dispersion relations

timing of AGN’s and GRB’s

N.B. may be different from

uµu!!̄"µ"!!

M (mat)! ! 1010 ÷ 1011GeV

E2 = m2 + p2 +p4

!M (mat)

!"2 + . . .

> 4

M (mat)! M!

MAGIC (2008)Fermi GMB/LAT (2009)

Page 25: Stueckelberg formalism and phenomenology of non-relativistic …cosmo/SW_2010/PPT/Sibiryakov.pdf · 2010-05-12 · M 2 P 2! d3 xdt!! N " K ij K ij ""K 2 "V # a i = N! 1! i N V = !

Coupling to matter III

operators of dim ( , )tightly constrained

e.g. dim 4 correct “speed of light” for different species

experimental bound: !

A mechanism for suppression of Lorentz breaking at dim up to 4 is required

! 4 uµ!̄"µ! uµu!!̄"µ#!!

E2 = m2 + c2p2

|c! ! cp,e| " 6# 10!22

Page 26: Stueckelberg formalism and phenomenology of non-relativistic …cosmo/SW_2010/PPT/Sibiryakov.pdf · 2010-05-12 · M 2 P 2! d3 xdt!! N " K ij K ij ""K 2 "V # a i = N! 1! i N V = !

Universal coupling

g̃µ! = gµ! + !uµu!

Minimal coupling to effective metric

• trade for

• exploit connection to Einstein-aether

gµ! g̃µ!

S = !M2P

2

!d4x"!g

"(4)R! !#µu!#!uµ

+ "!(#µuµ)2 + #uµu!#µu"#!u"

#

!! 1 + "

Page 27: Stueckelberg formalism and phenomenology of non-relativistic …cosmo/SW_2010/PPT/Sibiryakov.pdf · 2010-05-12 · M 2 P 2! d3 xdt!! N " K ij K ij ""K 2 "V # a i = N! 1! i N V = !

• Absence of gravitational Cherenkov losses by UHECR

• Newton law vs Friedman equation

BBN bound:

! ! 1 ,"! " !

## 1cg , c! ! 1

GN =1

8!M2P (1! "/2)

"= Gcosm =1

8!M2P (1 + 3#!/2! $)

|Gcosm/GN ! 1| " 0.13

! , " , #! ! 0.1

H2 =8!

3Gcosm "

Page 28: Stueckelberg formalism and phenomenology of non-relativistic …cosmo/SW_2010/PPT/Sibiryakov.pdf · 2010-05-12 · M 2 P 2! d3 xdt!! N " K ij K ij ""K 2 "V # a i = N! 1! i N V = !

PPN parameters I

Spherically symmetric solutions the same as in Einstein-aether

all PPN parameters the same as in GR

except , !PPN1 !PPN

2 !measure preferred

frame effects

Page 29: Stueckelberg formalism and phenomenology of non-relativistic …cosmo/SW_2010/PPT/Sibiryakov.pdf · 2010-05-12 · M 2 P 2! d3 xdt!! N " K ij K ij ""K 2 "V # a i = N! 1! i N V = !

PPN parameters II

h00 = !2GNm

r

!1! !PPN

2

2(xivi)2

r2

"

h0i =!PPN

1

2GN

m

rvi

hij = !2GNm

r!ij

|!PPN1 | ! 10!4 , |!PPN

2 | ! 10!7

Gravitational field of a compact object in its rest frame

Solar system bounds:

velocity with respectto preferred frame

Page 30: Stueckelberg formalism and phenomenology of non-relativistic …cosmo/SW_2010/PPT/Sibiryakov.pdf · 2010-05-12 · M 2 P 2! d3 xdt!! N " K ij K ij ""K 2 "V # a i = N! 1! i N V = !

PPN parameters III!PPN

1 = !4(! + 2")

!PPN2 =

(! + 2")(!! #! + 3")2(#! ! ")

• vanish if

• vanishes when , ( )

• barring cancellations

+ Absence of strong coupling upper bound on the scale of quantum gravity

! + 2" = 0!PPN

2 ! = 0 !! = " c! = 1

! , " , #! ! 10"7 ÷ 10"6

M! ! 1015 ÷ 1016GeV

Page 31: Stueckelberg formalism and phenomenology of non-relativistic …cosmo/SW_2010/PPT/Sibiryakov.pdf · 2010-05-12 · M 2 P 2! d3 xdt!! N " K ij K ij ""K 2 "V # a i = N! 1! i N V = !

Lorentz invariance from supersymmetry Nibbelink, Pospelov (2004)

Bolokhov, Nibbelink, Pospelov (2005)Given SUSY, Lorentz invariance emerges as accidental symmetry at low energies

Page 32: Stueckelberg formalism and phenomenology of non-relativistic …cosmo/SW_2010/PPT/Sibiryakov.pdf · 2010-05-12 · M 2 P 2! d3 xdt!! N " K ij K ij ""K 2 "V # a i = N! 1! i N V = !

Lorentz invariance from supersymmetry Nibbelink, Pospelov (2004)

Bolokhov, Nibbelink, Pospelov (2005)Given SUSY, Lorentz invariance emerges as accidental symmetry at low energies

It is impossible to write any LV operator in MSSM ofdim < 5

Page 33: Stueckelberg formalism and phenomenology of non-relativistic …cosmo/SW_2010/PPT/Sibiryakov.pdf · 2010-05-12 · M 2 P 2! d3 xdt!! N " K ij K ij ""K 2 "V # a i = N! 1! i N V = !

Lorentz invariance from supersymmetry Nibbelink, Pospelov (2004)

Bolokhov, Nibbelink, Pospelov (2005)Given SUSY, Lorentz invariance emerges as accidental symmetry at low energies

It is impossible to write any LV operator in MSSM ofdim < 5

Dim 5 operators are CPT odd may be forbidden LV starts from dim 6

Page 34: Stueckelberg formalism and phenomenology of non-relativistic …cosmo/SW_2010/PPT/Sibiryakov.pdf · 2010-05-12 · M 2 P 2! d3 xdt!! N " K ij K ij ""K 2 "V # a i = N! 1! i N V = !

Lorentz invariance from supersymmetry Nibbelink, Pospelov (2004)

Bolokhov, Nibbelink, Pospelov (2005)Given SUSY, Lorentz invariance emerges as accidental symmetry at low energies

It is impossible to write any LV operator in MSSM ofdim < 5

SUSY breaking generates dim 4 LV operators suppressed by !

msoft/M!"2

Dim 5 operators are CPT odd may be forbidden LV starts from dim 6

Page 35: Stueckelberg formalism and phenomenology of non-relativistic …cosmo/SW_2010/PPT/Sibiryakov.pdf · 2010-05-12 · M 2 P 2! d3 xdt!! N " K ij K ij ""K 2 "V # a i = N! 1! i N V = !

LI from SUSY: example of SQED

• SUSY algebra without boosts is closed:

Enough to generate superspace

• field content:

[Q!, Q̄!̇]+ = 2!µ!!̇Pµ

!+ , !! , V

Page 36: Stueckelberg formalism and phenomenology of non-relativistic …cosmo/SW_2010/PPT/Sibiryakov.pdf · 2010-05-12 · M 2 P 2! d3 xdt!! N " K ij K ij ""K 2 "V # a i = N! 1! i N V = !

LI from SUSY: example of SQED

• SUSY algebra without boosts is closed:

Enough to generate superspace

• field content:

[Q!, Q̄!̇]+ = 2!µ!!̇Pµ

!+ , !! , V!

d4! !̄+e2eV !+Keller potential:

Page 37: Stueckelberg formalism and phenomenology of non-relativistic …cosmo/SW_2010/PPT/Sibiryakov.pdf · 2010-05-12 · M 2 P 2! d3 xdt!! N " K ij K ij ""K 2 "V # a i = N! 1! i N V = !

LI from SUSY: example of SQED

• SUSY algebra without boosts is closed:

Enough to generate superspace

• field content:

[Q!, Q̄!̇]+ = 2!µ!!̇Pµ

!+ , !! , V!

d4! !̄+e2eV !+Keller potential: - no Lorentz indices

Page 38: Stueckelberg formalism and phenomenology of non-relativistic …cosmo/SW_2010/PPT/Sibiryakov.pdf · 2010-05-12 · M 2 P 2! d3 xdt!! N " K ij K ij ""K 2 "V # a i = N! 1! i N V = !

LI from SUSY: example of SQED

• SUSY algebra without boosts is closed:

Enough to generate superspace

• field content:

[Q!, Q̄!̇]+ = 2!µ!!̇Pµ

!+ , !! , V

dimW! = 3/2

!d4! !̄+e2eV !+Keller potential: - no Lorentz indices

Page 39: Stueckelberg formalism and phenomenology of non-relativistic …cosmo/SW_2010/PPT/Sibiryakov.pdf · 2010-05-12 · M 2 P 2! d3 xdt!! N " K ij K ij ""K 2 "V # a i = N! 1! i N V = !

LI from SUSY: example of SQED

• SUSY algebra without boosts is closed:

Enough to generate superspace

• field content:

[Q!, Q̄!̇]+ = 2!µ!!̇Pµ

!+ , !! , V

dimW! = 3/2

!d4! !̄+e2eV !+Keller potential: - no Lorentz indices

!d2!W!W"superpotential:

Page 40: Stueckelberg formalism and phenomenology of non-relativistic …cosmo/SW_2010/PPT/Sibiryakov.pdf · 2010-05-12 · M 2 P 2! d3 xdt!! N " K ij K ij ""K 2 "V # a i = N! 1! i N V = !

LI from SUSY: example of SQED

• SUSY algebra without boosts is closed:

Enough to generate superspace

• field content:

[Q!, Q̄!̇]+ = 2!µ!!̇Pµ

!+ , !! , V

dimW! = 3/2

!d4! !̄+e2eV !+Keller potential: - no Lorentz indices

!d2!W!W"superpotential: - antisymmetric in !, "

Page 41: Stueckelberg formalism and phenomenology of non-relativistic …cosmo/SW_2010/PPT/Sibiryakov.pdf · 2010-05-12 · M 2 P 2! d3 xdt!! N " K ij K ij ""K 2 "V # a i = N! 1! i N V = !

LI from SUSY: example of SQED

• SUSY algebra without boosts is closed:

Enough to generate superspace

• field content:

[Q!, Q̄!̇]+ = 2!µ!!̇Pµ

!+ , !! , V

dimW! = 3/2

!d4! !̄+e2eV !+Keller potential: - no Lorentz indices

!d2!W!W"superpotential: - antisymmetric in !, "

!d2! !+"µ!!

Page 42: Stueckelberg formalism and phenomenology of non-relativistic …cosmo/SW_2010/PPT/Sibiryakov.pdf · 2010-05-12 · M 2 P 2! d3 xdt!! N " K ij K ij ""K 2 "V # a i = N! 1! i N V = !

LI from SUSY: example of SQED

• SUSY algebra without boosts is closed:

Enough to generate superspace

• field content:

[Q!, Q̄!̇]+ = 2!µ!!̇Pµ

!+ , !! , V

dimW! = 3/2

!d4! !̄+e2eV !+Keller potential: - no Lorentz indices

!d2!W!W"superpotential: - antisymmetric in !, "

!d2! !+"µ!! - not gauge invariant

Page 43: Stueckelberg formalism and phenomenology of non-relativistic …cosmo/SW_2010/PPT/Sibiryakov.pdf · 2010-05-12 · M 2 P 2! d3 xdt!! N " K ij K ij ""K 2 "V # a i = N! 1! i N V = !

• Non-relativistic quantum gravity possesses interesting phenomenology both at high and low energies

• Existing data constrain the parameters of the model but do not rule it out

Conclusions

Page 44: Stueckelberg formalism and phenomenology of non-relativistic …cosmo/SW_2010/PPT/Sibiryakov.pdf · 2010-05-12 · M 2 P 2! d3 xdt!! N " K ij K ij ""K 2 "V # a i = N! 1! i N V = !

• Non-relativistic quantum gravity possesses interesting phenomenology both at high and low energies

• Existing data constrain the parameters of the model but do not rule it out

Conclusions

• Bounds from binary pulsars

• Implications for cosmology: CMB and LSS

• Inflation

• Phenomenology of instantaneous interaction !(!̈!!!) = "iJ

i

Outlook