196
Study on Economic Partnership Projects in Developing Countries in FY2014 Study on Dhaka Mass Rapid Transit East-West Line Project in Bangladesh Final Report October 2015 Prepared for: Ministry of Economy, Trade and Industry Prepared by: Nippon Koei Co., LTD.

Study on Economic Partnership Projects in Developing Countries in

  • Upload
    dinhnhu

  • View
    220

  • Download
    4

Embed Size (px)

Citation preview

Page 1: Study on Economic Partnership Projects in Developing Countries in

Study on Economic Partnership Projects

in Developing Countries in FY2014

Study on Dhaka Mass Rapid Transit East-West Line Project

in Bangladesh

Final Report

October 2015

Prepared for:

Ministry of Economy, Trade and Industry

Prepared by:

Nippon Koei Co., LTD.

Page 2: Study on Economic Partnership Projects in Developing Countries in

Preface

This report is compiled the result of a Feasibility Study for Promotion of International Infrastructure Projects in

fiscal year 2014 ordered by the Ministry of Economic, Trade and Industry to NIPPON KOEI CO., LTD.

The Study on Dhaka Mass Rapid Transit East-West Line Project aims at investigating the feasibility of MRT

East-West line (MRT Line-5N) construction (study target route length: total 16.2km, elevated section 10.8km, 8

elevated stations, underground section:5.4km and 4 underground stations) to solve the chronic traffic congestion at

a budget of approximately 243 billion yen.

We sincerely hope that this report will be the assistance in the realization of the above project and will also serve as

a useful reference for interested parties in Japan.

October 2015

Ken NISHINO Team Leader

NIPPON KOEI CO.,LTD.

Page 3: Study on Economic Partnership Projects in Developing Countries in
Page 4: Study on Economic Partnership Projects in Developing Countries in

Project Location MAP

Source: METI Study Team

LegendMRT Line1

Main Road

Existing RailwayRiverMRT Line2

BRT Line3

MRT Line4MRT Line5(E-W Line)MRT Line6

BRT Line7

0km 7km

DMA

RAJUK

MRT Line 5NPhase1

MRT Line 5N Phase2

MRT Line 5S

Gabtoli

Mirpur10

Banani

Notun Bazar Beraid

Bhulta Bazar

Aftab Nagar

Dhaka Mass Rapid Transit East-West Line Project Location MAP

N

0km 1km 2km 4km

N

MRT Line 5(E-W Line)

Page 5: Study on Economic Partnership Projects in Developing Countries in

List of Abbreviations Abbreviations Long Forms

AC Alternate Current

ADB Asian Development Bank

ADP Annual Development Programme

AGT Automated Guideway Transit

ATC Automatic Train Control

ATO Automatic Train Operation

ATP Automatic Train Protection

ATS Automatic Train Supervision

BBS Bangladesh Bureaus of Statistics

BOT Build-Operate-Transfer

BPDP Bangladesh Power Development Board

BRT Bus Rapid Transit

BRTA Bangladesh Road Transport Authority

BRTC Bangladesh Road Transport Corporation

BTN Backbone Transmission Network

CBD Central Business District

CBTC Communication Based Train Control

CCTV Closed-Circuit Television

CDP United Nations Committee for Development Policy

COD Chemical Oxygen Demand

CNG Compressed Natural Gas

DC Direct current

DC Deputy Commissioner

DCC Dhaka City Corporation

DEE Dhaka Elevated Express Way

DESCO Dhaka Electric Supply Co. Ltd

DHUTS Preparatory Survey on Dhaka Urban Transport Network Development Project

DITS Dhaka Integrated Transport Study

DMA Dhaka Metropolitan Area

DMDP Dhaka Metropolitan Development Plan

DMP Dhaka Metropolitan Police

DMTC Dhaka Mass Transit Company

DNCC Dhaka North City Corporation

DO Dissolved Oxygen

DOE Department of Environment

DOHS Defense Officer Housing Society

Page 6: Study on Economic Partnership Projects in Developing Countries in

DPDC Dhaka Power Distribution

DPP Detailed Project Plan

DSCC Dhaka South City Corporation

DTCA Dhaka Transport Co-ordination Authority

DTCB Dhaka Transport Co-ordination Board

DUTP Dhaka Urban Transport Project

DWASA Dhaka Water Supply and Sewerage Authority

ECA Ecologically Critical Area

ECC Environmental Compliance Certificate

ECOSOC United Nations Economic and Social Council

ECR Environmental Condition Report

ECS Environmental Construction Specifications

EDLC Electric Double Layer Capacitor

EIA Environmental Impact Assessment

EIRR Economic Internal Rate of Return

E&M Electrical and Mechanical

EMU Electric Multiple Unit

ERD Economic Related Division

FIRR Financial Internal Rate of Return

FS Feasibility Study

EVI Economic Vulnerability Index

GDP Gross Domestic Product

GOB Government of Bangladesh

GNI Gross National Income

HAI Human Asset Index

IDA International Development Association

IEC International Electrotechnical Commission

IEE Initial Environmental Examination

IGBT Insulated Gate Bipolar Transistor

IL Inter Locking device

ISO International Organization for Standardization

JICA Japan International Cooperation Agency

KCR Karachi Circular Railway

LA Loan Agreement

LAP Land Acquisition Plan

LDC Least Developed Country

LGED Local Government Engineering Department

LRT Light Rail Transit

Page 7: Study on Economic Partnership Projects in Developing Countries in

METI Ministry of Economy, Trade and Industry

MP Master Plan

MRT Mass Rapid Transit

MOEF Ministry of Environmental Forest

MOR Ministry of Land

MTS Mass Transit System

NDB New Development Bank

MTDS Medium Term Debt Management Strategy

NOC No Objection Certificate

NPV Net Present Value

NWZPDC North West Zone Power Distribution Company Ltd

OCC Operation Control Center

ODA Office Development Assistance

O&M Operation and Maintenance

PABX Private Automatic Branch Exchange

PAPs Project Affected Persons

PAS Passenger Address System

PHPDT Peak Hour Peak Direction Traffic

PIDS Passenger Information Display System

PIS Passenger Information System

PPP Public-Private Partnership

PSD Platform Screen Door

RAJUK Rajdhani Unnayan Kartripakkha

RAP Resettlement Action Plan

RDP Roads Development Plan

REB Rural Electrification Board (The most consumed company)

RFID Radio Frequency Identification

RHD Road and Highways Department

RL Rail Level

RoR Record-of Right

RSTP Revision and Updating of Strategic Transport Plan

RV Re-procurement Value

SCADA Supervisory Control and Data Acquisition

SERF Shadow Exchange Rate Factor

SPM Suspended Particulate Matter

STP Strategic Transportation Plan

SZPDC South Zone Power Distribution Company Ltd

TDS Total Dissolved Solids

Page 8: Study on Economic Partnership Projects in Developing Countries in

TOR Terms of Reference

TSS Total Suspended Solids

TTC Travel Time Cost

TD Train Detector

UN United Nations

VAT Value Added Tax

VOC Vehicle Operating Cost

VVVF Variable Voltage Variable Frequency

WZPDC West Zone Power Distribution Company Ltd

Page 9: Study on Economic Partnership Projects in Developing Countries in

Table of Contents

Preface

Project Location MAP

Abbreviations

Table of Contents

Executive Summary ................................................................................................................................................... 1

(1) Background and Necessity of the Project .................................................................................................. 1

(2) Basic Policies Established for Determining the Project Components ....................................................... 2

(3) Outline of the Project ................................................................................................................................. 3

(4) Preliminary Project Implementation Schedule .......................................................................................... 7

(5) Feasibility on Japanese Yen Loan and Project Implementation ................................................................. 8

(6) Conceived Project Implementation Schedule until Realization of the Project and Envisaged Risks

Hampering the Realization of the Project .............................................................................................................. 9

(7) Project Location Map ................................................................................................................................ 9

Chapter1 Overview of the Host Country and Sector .......................................................................................... 1-1

1.1 Economy of the Country and Financial Condition of the Government .................................................. 1-1

1.1.1 Economic Condition of the Country ............................................................................................... 1-1

1.1.2 Financial Condition of the Government ......................................................................................... 1-2

1.2 Description of the Targeted Sector .......................................................................................................... 1-4

1.3 Description of the Project Area ............................................................................................................... 1-5

Chapter2 Methodology of the Study .................................................................................................................. 2-1

2.1 Contents of the Study .............................................................................................................................. 2-1

2.2 Method and Organization of the Study ................................................................................................... 2-1

2.2.1 Method of the Study ....................................................................................................................... 2-1

2.3 Survey Schedule ..................................................................................................................................... 2-3

Page 10: Study on Economic Partnership Projects in Developing Countries in

Chapter3 Project Contents and Consideration of Technical Aspect ................................................................... 3-1

3.1 Background and Necessity of the Project ............................................................................................... 3-1

3.1.1 Background of the Project .............................................................................................................. 3-1

3.1.2 Conclusion of Upper Level Plan ..................................................................................................... 3-1

3.1.3 Current Condition and Future Forecast ........................................................................................... 3-7

3.1.4 Necessity of the Project ................................................................................................................ 3-10

3.2 Necessary Considerations for Decision of the Project Contents ........................................................... 3-11

3.2.1 Current Condition of the East-West Corridor and Preliminary Survey ........................................ 3-11

3.2.2 Selection of the Study Route ........................................................................................................ 3-19

3.2.3 Mode Selection of MRT Line 5 .................................................................................................... 3-21

3.2.4 Alignment Plan ............................................................................................................................. 3-25

3.2.5 Transportation Accessibility Plan (MRT Line 6, BRT Line 3, MRT Line 1) ................................ 3-47

3.2.6 Train Operation Plan ..................................................................................................................... 3-53

3.2.7 Rolling Stock ................................................................................................................................ 3-59

3.2.8 Depot Plan .................................................................................................................................... 3-64

3.2.9 Railway System Plan .................................................................................................................... 3-71

3.3 Outline of the Project Plan .................................................................................................................... 3-82

3.3.1 Basic Policy for Determination of the Scope of the Project ......................................................... 3-82

3.3.2 Specifications of the Applied Facilities ........................................................................................ 3-85

3.3.3 Contents of the Proposed Project .................................................................................................. 3-85

3.3.4 Issues and Solution to Apply the Proposed Technology and System ............................................ 3-86

Chapter4 Evaluation of Environmental and Social Impacts ............................................................................... 4-1

4.1 Analysis on the Environmental and Social Impact ................................................................................. 4-1

4.2 Environmental Improvement Effects by the Project ............................................................................... 4-9

4.3 Project Influence on Environmental and Social Sectors ......................................................................... 4-9

4.3.1 No Build Alternative ....................................................................................................................... 4-9

Page 11: Study on Economic Partnership Projects in Developing Countries in

4.3.2 Anticipated Environmental Impacts ............................................................................................. 4-10

4.3.3 Land Acquisition ........................................................................................................................... 4-12

4.4 Outline of Related Laws and Regulations on Environmental and Social Considerations .................... 4-25

4.4.1 Environmental Impact Assessment (EIA) ..................................................................................... 4-25

4.4.2 Land Acquisition Plan (LAP) and Resettlement Action Plan (RAP) ............................................ 4-27

4.4.3 JICA Guidelines on Environmental and Social Considerations .................................................... 4-28

4.5 Measures to be Taken by Host Country to Implement the Project........................................................ 4-29

Chapter 5 Financial and Economic Evaluation ................................................................................................... 5-1

5.1 Cost Estimates ........................................................................................................................................ 5-1

5.1.1 Construction Plan ............................................................................................................................ 5-1

5.1.2 Construction Cost ........................................................................................................................... 5-3

5.2 Results of the Preliminary Analysis of the Economic and Financial Viability ....................................... 5-5

5.2.1 Preconditions of the Analysis ......................................................................................................... 5-5

5.2.2 Initial Investment Cost .................................................................................................................... 5-6

5.2.3 Operation and Maintenance (O&M) Cost ....................................................................................... 5-7

5.2.4 Revenue Projection ......................................................................................................................... 5-9

5.2.5 Financial Cash Flow Analysis ....................................................................................................... 5-10

5.2.6 Economic Benefits ........................................................................................................................ 5-13

5.2.7 Economic Indicators ..................................................................................................................... 5-15

Chapter6 Planned Project Implementation Schedule ......................................................................................... 6-1

6.1 Implementation Schedule ....................................................................................................................... 6-1

6.1.1 Construction Method ...................................................................................................................... 6-1

6.1.2 Overall Project Implementation Schedule ...................................................................................... 6-2

6.2 Issues on Project Implementation ........................................................................................................... 6-3

Chapter7 Project Implementing Agencies .......................................................................................................... 7-1

7.1 Overview of the Implementing Agencies of the Host Country ............................................................... 7-1

Page 12: Study on Economic Partnership Projects in Developing Countries in

7.2 Organization for the Implementing Agencies of the Host Country ........................................................ 7-1

7.3 Current Activities of Project Implementing Agency ............................................................................... 7-4

Chapter8 Technical Advantages of Japanese Companies ................................................................................... 8-1

8.1 International Competitiveness of Japanese Companies for the Project Implementation ........................ 8-1

Page 13: Study on Economic Partnership Projects in Developing Countries in

List of Tables

Table 1-1 Foreign Aid Mobilization ............................................................................................................... 1-3

Table 1-2 Comparison of Foreign Aid between World Bank and Japan ......................................................... 1-3

Table 1-3 Ranking of Population and Population Density .............................................................................. 1-6

Table 2-1 Survey Items and Contents ............................................................................................................. 2-1

Table 2-2 Contents of the Site Survey ............................................................................................................ 2-3

Table 2-3 Outline of the Joint Meeting with DTCA ....................................................................................... 2-4

Table 3-1 Development Plan of Public Transport Network under STP .......................................................... 3-2

Table 3-2 Proposal of MTS Network .............................................................................................................. 3-3

Table 3-3 Future Forecast Passengers of Each Line ..................................................................................... 3-10

Table 3-4 Characteristics of Alternative East-West Route ............................................................................ 3-13

Table 3-5 Current Condition of the East-West Corridor ............................................................................... 3-15

Table 3-6 Future Traffic Volume of East-West Line Phase 1 ........................................................................ 3-21

Table 3-7 Comparison of Guide way Transit Systems .................................................................................. 3-21

Table 3-8 Comparison of the Technical Aspects of Guide way Transit System ........................................... 3-22

Table 3-9 Congestion Ratio and Condition of Cabin .................................................................................... 3-24

Table 3-10 Congestion Ratio and Capacity of EMU .................................................................................... 3-24

Table 3-11 Design Standard for Alignment .................................................................................................. 3-25

Table 3-12 Station Location for All Elevated Option ................................................................................... 3-37

Table 3-13 Route Comparison in Cantonment Area ..................................................................................... 3-41

Table 3-14 Station Locations for Partial Underground Option ..................................................................... 3-43

Table 3-15 Types of Junction Station ............................................................................................................ 3-50

Table 3-16 Points of View of Facilitation of Transfer Movement ................................................................ 3-51

Table 3-17 Highlights of the Transport Node ............................................................................................... 3-52

Table 3-18 Functions for Smooth Transfer Mobility .................................................................................... 3-52

Table 3-19 List of Expected Developments .................................................................................................. 3-53

Page 14: Study on Economic Partnership Projects in Developing Countries in

Table 3-20 Speed Restrictions of Curve ....................................................................................................... 3-54

Table 3-21 Speed Restrictions of Switch ...................................................................................................... 3-54

Table 3-22 Classification of Stopping Time ................................................................................................. 3-55

Table 3-23 Minimum Headway of One-sided Turnback Line Operation ..................................................... 3-57

Table 3-24 Minimum Headway of Both-sided Turnback Line Operation .................................................... 3-57

Table 3-25 Condition of “Open Track” Simulation ...................................................................................... 3-58

Table 3-26 Headway and Required Train Sets .............................................................................................. 3-58

Table 3-27 Peak Hour and Off-peak Hour of Road Traffic........................................................................... 3-58

Table 3-28 Basic Specifications of the Rolling Stock of the MRT East-West Line ...................................... 3-62

Table 3-29 Basic Specifications of the Rolling Stock of the East-West Line ............................................... 3-64

Table 3-30 Candidate Sites of the Depot Area .............................................................................................. 3-65

Table 3-31 Train Maintenance Plan .............................................................................................................. 3-67

Table 3-32 Ancillary Facilities of Tracks in the Depot ................................................................................. 3-69

Table 3-33 Examples of Basic Unit of Power Consumption of Train ........................................................... 3-75

Table 3-34 Power for Traction ...................................................................................................................... 3-76

Table 3-35 Receiving Capacity ..................................................................................................................... 3-76

Table 3-36 Functions of Railway Signaling System ..................................................................................... 3-77

Table 3-37 Signaling System of MRT East-West Line ................................................................................. 3-77

Table 3-38 Functions of Railway Telecommunication System ..................................................................... 3-78

Table 3-39 Telecommunication System of the MRT East-West Line ........................................................... 3-78

Table 3-40 General Outline of the System .................................................................................................... 3-79

Table 3-41 AFC System for the MRT East-West Line .................................................................................. 3-81

Table 3-42 Comparison of Cost Estimation .................................................................................................. 3-83

Table 3-43 Comparison between the All Elevated Option and Partial Underground Option ....................... 3-84

Table 3-44 Station Information ..................................................................................................................... 3-86

Table 3-45 Summary of Alignment and Applied System ............................................................................. 3-86

Page 15: Study on Economic Partnership Projects in Developing Countries in

Table 4-1 DOE Ambient Air Standards (µg/m3) ............................................................................................. 4-5

Table 4-2 DOE Ambient Noise Standard (dBA) ............................................................................................. 4-6

Table 4-3 Growth in Number of Motor Vehicles ............................................................................................ 4-8

Table 4-4 Comparison Between Mazar Road and Dar-Us-Salam Road ....................................................... 4-15

Table 4-5 Cost Comparison Among Three Routes in the Cantonment ......................................................... 4-21

Table 4-6 Cost Comparison Between All Elevated and Partial Underground .............................................. 4-21

Table 4-7 Expected Execution Time Frame .................................................................................................. 4-30

Table 5-1 Project Cost Estimation for Partial Tunnel Method ........................................................................ 5-4

Table 5-2 Initial Investment Cost in Financial Prices (At 2015 Constant Prices) ........................................... 5-6

Table 5-3 Initial Investment Cost in Economic Prices (At 2015 Constant Prices) ......................................... 5-7

Table 5-4 Unit of the Number of Staff and Salary .......................................................................................... 5-8

Table 5-5 Unit Costs of Operating and Maintenance Expenses ...................................................................... 5-8

Table 5-6 Estimation of O&M Costs .............................................................................................................. 5-9

Table 5-7 O&M Cost in Economic Prices ...................................................................................................... 5-9

Table 5-8 Estimation of Revenue .................................................................................................................. 5-10

Table 5-9 Financial Cash Flow of the Project for FIRR ............................................................................... 5-11

Table 5-10 Sensitivity Analysis of FIRR ...................................................................................................... 5-12

Table 5-11 Estimation of Value of Time ....................................................................................................... 5-13

Table 5-12 Calculation of Travel Time Saving ............................................................................................. 5-14

Table 5-13 Estimation of Vehicle Operating Costs ....................................................................................... 5-15

Table 5-14 Flow of Economic Cost and Benefit ........................................................................................... 5-16

Table 5-15 Sensitivity Analysis of EIRR ...................................................................................................... 5-17

Table 6-1 Construction Schedule of Partial Underground Option .................................................................. 6-2

Table 6-2 Overall Project Implementation Schedule ...................................................................................... 6-3

Table 7-1 DMTC Shareholders and Number of Shares .................................................................................. 7-2

Table 7-2 Board Members of DMTC and Their Positions .............................................................................. 7-2

Page 16: Study on Economic Partnership Projects in Developing Countries in

Table 8-1 Possibility of Orders from Japanese Companies in Each Package ................................................. 8-2

Table 8-2 List of International Competitive Japanese Technology ................................................................. 8-2

Page 17: Study on Economic Partnership Projects in Developing Countries in

List of Figures

Figure 1-1 GDP Forecast by Goldman Sach ................................................................................................... 1-1

Figure 1-2 Shift of GNI Value, HAI Value, and EVI Value ............................................................................ 1-2

Figure 1-3 City Map of DMA ......................................................................................................................... 1-5

Figure 2-1 Survey Organizational Chart ......................................................................................................... 2-2

Figure 2-2 Site Survey Schedule .................................................................................................................... 2-3

Figure 2-3 Survey Item Schedule ................................................................................................................... 2-4

Figure 3-1 Implementation Scheduleof Dhaka Urban Transport Project ........................................................ 3-1

Figure 3-2 MTS Development Plan ................................................................................................................ 3-4

Figure 3-3 Proposed Route and Depot Location of MRT Line 6 .................................................................... 3-5

Figure 3-4 Traffic Demand Forecast by Year and By Staged Plan ................................................................. 3-5

Figure 3-5 Project Area (Left) and Study and Plan Area (Right) .................................................................... 3-6

Figure 3-6 Urban Development Concept of RSTP ......................................................................................... 3-7

Figure 3-7 Generated Traffic Volume ............................................................................................................. 3-8

Figure 3-8 Modal Share (2014) ...................................................................................................................... 3-8

Figure 3-9 Modal Share (2035) ...................................................................................................................... 3-8

Figure 3-10 Future Changes in VOC and TTC ............................................................................................... 3-9

Figure 3-11 Future Public Transport Network .............................................................................................. 3-10

Figure 3-12 Target Route of the Study .......................................................................................................... 3-11

Figure 3-13 Development Area of East-West Corridor and Control Point ................................................... 3-12

Figure 3-14 Alternative Routes of East-West Corridor ................................................................................. 3-12

Figure 3-15 Picture Location ........................................................................................................................ 3-14

Figure 3-16 MRT East-West Line Route ...................................................................................................... 3-19

Figure 3-17 Demand Comparison of East-West Line North Route and South Route ................................... 3-19

Figure 3-18 Phasing of East-West Line North Route ................................................................................... 3-20

Figure 3-19 Control Points and their Locations ............................................................................................ 3-25

Page 18: Study on Economic Partnership Projects in Developing Countries in

Figure 3-20 Control Point (Crossing Area with MRT Line 6) ...................................................................... 3-26

Figure 3-21 Control Point (Banani DOHS Area) .......................................................................................... 3-27

Figure 3-22 Control Point (Crossing Area with DEE in Case that MRT East-West Line is an Elevated

Structure) .............................................................................................................................................. 3-28

Figure 3-23 Control Point (Gulshan Lake) ................................................................................................... 3-29

Figure 3-24 Control Point (Crossing Area with MRT Line 1) ...................................................................... 3-30

Figure 3-25 Track Layout Route Drawing (All Elevated Option) ................................................................ 3-31

Figure 3-26 Track Layout Route Drawing (Partial Underground Option).................................................... 3-32

Figure 3-27 Required Height for Elevated Section ....................................................................................... 3-33

Figure 3-28 Required Depth for Underground Section ................................................................................ 3-33

Figure 3-29 Transition Section ..................................................................................................................... 3-34

Figure 3-30 Branch Form ............................................................................................................................. 3-35

Figure 3-31 Track Layout of Junction Station with Depot (Beraid Station) ................................................. 3-36

Figure 3-32 Outline of All Elevated Option ................................................................................................. 3-36

Figure 3-33 Condition near CH 1 k 100 m ................................................................................................... 3-38

Figure 3-34 Condition near CH 3k040 m ..................................................................................................... 3-38

Figure 3-35 Comparison Study of Routes in the Cantonment Area ............................................................. 3-39

Figure 3-36 Route in Cantonment Area (Route A) ....................................................................................... 3-39

Figure 3-37 Route in Cantonment Area (Route B) ....................................................................................... 3-40

Figure 3-38 Route in Cantonment Area (Route C) ....................................................................................... 3-41

Figure 3-39 Longitudinal Schematic for All Elevated Option ...................................................................... 3-42

Figure 3-40 Outline of Partial Underground Option ..................................................................................... 3-43

Figure 3-41 Route near Banani DOHS (Partial Underground Option) ......................................................... 3-44

Figure 3-42 Location of Transition Section (between Mirpur 14 Station and Kochukhet Station) .............. 3-45

Figure 3-43 Location of Transition Section (between Natun Bazar Station and Vatara Station) .................. 3-46

Figure 3-44 Longitudinal Schematic for Partial Underground Option ......................................................... 3-47

Figure 3-45 Image of Transport Mobility ..................................................................................................... 3-47

Page 19: Study on Economic Partnership Projects in Developing Countries in

Figure 3-46 Turnback Operation Using One-sided Platform ........................................................................ 3-55

Figure 3-47 Turnback Operation Using both-sided Platform ....................................................................... 3-56

Figure 3-48 One-sided Turnback Line Operation ......................................................................................... 3-56

Figure 3-49 Both-sided Turnback Line Operation ........................................................................................ 3-57

Figure 3-50 Train Operation in 2027 ............................................................................................................ 3-59

Figure 3-51 Train Operation in 2055 ............................................................................................................ 3-59

Figure 3-52 Rolling Stock Gauge ................................................................................................................. 3-60

Figure 3-53 Car Dimension .......................................................................................................................... 3-63

Figure 3-54 Facilities of Rolling Stock ......................................................................................................... 3-64

Figure 3-55 Candidate Sites of the Main Depot Area ................................................................................... 3-65

Figure 3-56 Number of Train Set after Future Extension ............................................................................. 3-68

Figure 3-57 Depot Layout ............................................................................................................................ 3-70

Figure 3-58 Demarcation of Distribution Companies .................................................................................. 3-72

Figure 3-59 Transmission and Distribution Plan .......................................................................................... 3-74

Figure 3-60 Comparison of Vertical Figures................................................................................................. 3-84

Figure 3-61 Applied Facilities of Elevated Option and Underground Option .............................................. 3-85

Figure 3-62 Horizontal Alignment of the Project ......................................................................................... 3-85

Figure 3-63 Anti- inundation measures ........................................................................................................ 3-87

Figure 4-1 Seismic Zoning Map ..................................................................................................................... 4-1

Figure 4-2 Drainage System of Dhaka City (DWASA) .................................................................................. 4-3

Figure 4-3 Water Quality Hotspots in Surface Waters around Dhaka............................................................. 4-4

Figure 4-4 Proposed Land Use Map of RAJUK ............................................................................................. 4-7

Figure 4-5 Alignment of Mazar Road and Dar-Us-Salam Road ................................................................... 4-13

Figure 4-6 Buildings along Mazar Road (Station) where Land Acquisition is Required ............................. 4-13

Figure 4-7 Buildings along Mazar Road (Southern Part) where Land Acquisition is Required ................... 4-14

Figure 4-8 Buildings along Mazar Road (Northern Part) where Land Acquisition is Required ................... 4-14

Page 20: Study on Economic Partnership Projects in Developing Countries in

Figure 4-9 Buildings along Dar-Us-Salam Road (Southern Part) where Land Acquisition is Required ...... 4-15

Figure 4-10 Alignment in Cantonment Area ................................................................................................. 4-16

Figure 4-11 Buildings where Land Acquisition is Required (Yellow Line) ................................................. 4-17

Figure 4-12 Buildings where Land Acquisition is Required (Green Line) ................................................... 4-18

Figure 4-13 Buildings where Land Acquisition is Required (Blue Line) ..................................................... 4-19

Figure 4-14 Proposed Depot Area ................................................................................................................ 4-22

Figure 4-15 Land Use Plan Map of RAJUK ................................................................................................. 4-23

Figure 4-16 Alignment of South Route ......................................................................................................... 4-24

Figure 4-17 Buildings where Land Acquisition is Required (Intersection of Panther Pass and Dhanmondi)

.............................................................................................................................................................. 4-24

Figure 4-18 Buildings where Land Acquisition is Required (Entrance of Aftab Nagar) .............................. 4-25

Figure 4-19 Possible Depot Area .................................................................................................................. 4-25

Figure 4-20 DOE’s EIA Approval Procedure ............................................................................................... 4-27

Figure 5-1 Example for Traffic Conditions at Narrow Road .......................................................................... 5-1

Figure 5-2 Comparison of Total Payment Between PPP and Public Investment .......................................... 5-13

Figure 7-1 Organizational Chart of DMTC .................................................................................................... 7-3

Figure 7-2 Organizational Chart of DMTC Proposed by IDC ........................................................................ 7-3

Page 21: Study on Economic Partnership Projects in Developing Countries in

Executive Summary

Page 22: Study on Economic Partnership Projects in Developing Countries in

S-1

Source: RSTP Study Team

0 141.75 3.5 7 10.5

DMA

MRT Line 5(East‐West)

(1) Background and Necessity of the Project

The population of Dhaka Metropolitan Area (DMA) is rapidly increasing and has reached 13.6 million in 2011, a

40% growth since 2001. In particular, the population density is the highest among the mega cities in the world

standing at 43,500 persons/km2. It is expected that the city will greatly benefit from the development of public

transportation infrastructure network; however, the delay of its implementation is at a serious level hampering

urban economic activities. One of the major manifestations is the critical traffic congestion within the DMA, and

immediate actions for the development of transportation infrastructure are required.

To meet such needs, the Government of Bangladesh formulated a transportation master plan for DMA since 1959.

In 2005, the DMA Strategic Transportation Plan (STP), a master plan with a 20-year horizon from 2005 to 2024,

was formed under the technical assistance of the World Bank. The master plan has been reviewed periodically, at

approximately five years interval. In 2010, the Japan International Cooperation Agency (JICA) has conducted the

Dhaka Urban Transportation Study (DHUTS1) for the review of the order of priority of MRT lines that were

proposed in the STP.

Despite the aforementioned effort, the progress of the implementation of public transportation infrastructure

development has not been realized as planned in STP 2005. At present, MRT Line 6 funded by JICA and MRT Line

3 funded by the World Bank are being implemented.

Other recommended MRT/BRT projects have not moved

forward for implementation.

The serious delay of implementing public transportation

infrastructure development has exacerbated the traffic

congestion in DMA. To solve such serious traffic

congestion and ease the population density of the Dhaka

City Center, the Government of Bangladesh decided to

expand the Dhaka City limits through the development of

sub-city centers in suburban areas. Subsequently in 2013,

the Government of Bangladesh requested JICA to

conduct the study to revise the STP. Accordingly, the

Study on Revised Strategic Transportation Plan

(RSTP) is being carried out, in parallel to the METI

Study, aiming to induce the development of suburban

new towns by extending the MRT and road network for

the study area, i.e., Greater Dhaka area (RAJUK area:

1,528 km2). The RSTP is treated as “Upper Plan” of

the METI F/S for MRT East-West Line, therefore the

proposed alignment of East-West Line should be in

Figure S-1 Public Transportation Network Proposed by RSTP

Page 23: Study on Economic Partnership Projects in Developing Countries in

S-2

Figure S-2 Priority Route and Location of East-West Line

Source: METI Study Team

NMRT6

BRT3

MRT5(East-West)

MRT1

DMA

MRT Line1

MRT Line6

BRT Line3MRT Line5(East-West)

DMA0km 3km

accordance with the proposed MRT network in the RSTP.

Figure S-1 presents the MRT/BRT network of RAJUK area

in 2035, which is proposed in the RSTP. The network

consists of six MRT lines and one BRT line. Among the

seven MRT/BRT lines, MRT Line 6, BRT Line 3, and MRT

Line 1 are recommended as priority projects to be

commissioned by 2025.

The MRT Line 5 (East-West Line), proposed by the METI

Study Team, based on the conceptualized Line 5, originally

planned as a circular line in the STP. The RSTP Team

extended the circular line eastwards to secure access for

commuters residing in the new residential area. The MRT

Line 5 is composed of two routes, i.e., northern route (Line

5N) and southern route (Line 5S) and is defined by the

METI Study Team as the East-West Line. In the RSTP

Study, Line 5N and Line 5S are proposed to be developed by 2035.

As shown in Figure S-2, the three priority lines proposed in RSTP are collectively defined as the north-south

corridor route; however, the priority lines for the east-west corridor have not been proposed yet. The METI Study

Team recommends the early implementation of MRT Line 5 that would establish an organic connection of the

MRT network and enhance the function of the planned urban transportation network.

(2) Basic Policies Established for Determining the Project Components

The following basic policies are established to determine the Project components:

1) Relation of the Plan Proposed in the METI Study with Revised Strategic Transportation Plan (RSTP)

The Revised Strategic Transportation Plan (2016–2035), which is currently formulated by the Dhaka Transportation

Coordination Agency (DTCA) with technical cooperation by JICA, is treated as the Upper Level Plan of the Study.

Based on this understanding, as a policy for determining the Project components, the demand forecast and

transportation network plan approved under RSTP will be applied for the formulation of the plan. Accordingly, the

Study result shall be consistent with the approved RSTP, and will be recognized as a long-term plan.

2) Demand Forecast

The results of the demand forecast for the Pre-Feasibility Study for Dhaka East-West Corridor are based on the

output of the demand forecast that was conducted by the RSTP Study Team. The RSTP Study Team identified the

demand forecast items required for the pre-feasibility study, output of the study, and analysis. Moreover, the

demand forecast model formulated by the RSTP Study Team was utilized for the METI Feasibility Study.

Page 24: Study on Economic Partnership Projects in Developing Countries in

S-3

3) Selection of Priority Development Section of MRT Line 5

MRT Line 5 is planned to originate at Gabtoli Bus Terminal and shall consist of two routes totaling 35 km. The

north route passes through the north of Tejigaon Airport, Gulshan, Natun Bazar and stretches towards the east to

Bhulta township (Gabtoli-Bhulta Section, 23.2 km), while the south route passes through the south of Tejigaon

Airport and stretches eastwards to Aftab Nagar New Town (Gabtoli-Aftab Nagar Section, 11.8 km). The METI

Study Team recommends the phased development of MRT Line 5, starting with the implementation of the 16.2 km

section of the north route between Gabtoli and Beraid as Phase 1, since the demand forecast of the RSTP Study

concludes that this section has high demand. The RSTP proposes the full development of Line 5 by 2035, the

METI Study Team recommends the early implementation of the aforementioned section of Line 5N (Phase 1).

4) Partial Underground Structure for Phase 1 Section

The western section of Line 5N Phase 1 is proposed as a viaduct structure built above the right-of-way (ROW) of

the trunk road. On the other hand, a comparative study was conducted for the determination of the structure type

at the eastern side where the route crosses the cantonment area and business district of Banani and Gulshan. As a

conclusion, the underground structure is recommended over the viaduct structure despite the disadvantages of cost

implication and due to the following reasons: 1) expectation of higher level of surface land utilization in the future

following economic development; 2) avoidance of issues arising from viaduct structure passing near cantonment

area and minimizing resettlement; 3) applicability of shield tunneling technology; and 4) consideration on

preservation of landscape. The adoption of partial underground structure was discussed and agreed in principle in

the mini workshop meetings attended by DTCA, military representatives, and other related agencies.

5) Railway Technical Standard

The Bangladesh MRT Technical Standard (2014), which was prepared under JICA technical cooperation study by

DTCA and adopted in the detailed design of MRT Line 6, was applied as the basis of the basic plan and design of

MRT Line 5.

(3) Outline of the Project

1) Outline of the Route under the METI Study

The subject of the METI Study of MRT Line 5 is the Phase 1 section of north route that stretches 16.2 km and is

located between Gabtoli Bus Terminal and Beraid. The Phase 1 section consists of eight viaduct stations and four

underground stations. The depot is planned at the east end of the line located on a vacant swamp land which will be

a reclaimed land of 24.8 ha. A schematic diagram is presented in Figure S-4 indicating the station locations, and

horizontal and vertical alignment.

Page 25: Study on Economic Partnership Projects in Developing Countries in

S-4

Figure S-3 Study Section and Location of Stations

N

MRT6

BRT3

MRT5(East-West)

MRT1

DMA

MRT Line 5NPhase1

MRT

Line 5N

Phase2

MRT Line 5S

MRT Line1

MRT Line6

BRT Line3MRT Line5(East-West)

DMA

Station

Depot 0km 3km

No. Station name Chainage Station distance

s-1 Gabtoli 0k400m 1,700ms-2 Dar-Us-Salam 2k100m 1,300m s-3 Mirpur1 3k400m 1,300ms-4 Mirpur10 4k700m1,140m s-5 Mirpur14 5k840m 1,240ms-6 Kochukhet 7k080m1,640m s-7 Banani 8k720m 1,000m s-8 Gulshan2 9k720m1,300m s-9 Notun Bazar 11k020m 1,945m s-10 Vatara 12k965m2,035ms-11 Bara Kathaldia 15k000m1,590m

s-12 Beraid 16k590m

Source : METI Study Team

Figure S-4 Schematic Diagram of Horizontal and Vertical Alignment of Study Section

12k9

65m

11k

020m

8k72

0m

7k08

0m

MRT6

9k72

0m

10k9

00m

5k84

0m

4k84

0m

4k70

0m

3k40

0m

2k10

0m

0k40

0m

S9Notun Bazar

S4Mirpur10

S5

Mirpur14S6

KochukhetS7

BananiS8

Gulshan2

S3Mirpur1

S2

Dar-Us-Salam

S1

Gabtoli

MRT1

CantonmentS10

Vatara

S11Bara

KathaldiaS12

Beraid

15k0

00m

16k5

90m

Source : METI Study Team

2) Typical Cross Section

Viaduct structure and underground structure are shown in Figure S-5.

Page 26: Study on Economic Partnership Projects in Developing Countries in

S-5

Figure S-5 Typical Section of Viaduct Structure (Left Figure) and Underground Structure (Right Figure)

15m

25m

3.01.0 1.03.0

Viaduct Section Elevated Station

10~11m

25m

7m (Min)

7m

21m

Tunnel Section Underground Station

Source : METI Study Team

3) Demand Forecast

Table S-1 summarizes the estimated daily passenger and per hour passenger direction trip (PHPDT) from 2025 to

2055, which was estimated by the METI Study Team based on the demand forecast results provided by the RSTP

Study Team. The slight decrease of daily ridership between 2025 and 2035 indicates the transient phenomenon of

passengers taking newly developed alternative lines that will be commissioned within the 10-year period.

Table S-1 Future Daily Ridership and PHPDT

Year 2025 2035 2040 2045 2050 2055 Daily Ridership (Persons)

852,800 783,900 946,500 1,109,100 1,271,700 1,434,500

PHPDT 27,000 27,000 32,500 38,000 43,500 49,000Source: Estimates by the METI Study Team based on information provided from RSTP

4) Rolling Stock

Environmental-minded train which adopts stainless/ Alminium structure, regenerative braking system, and VVVF

inverter system is applied. The basic specification of the proposed train is the same as that of MRT Line 6 trains. In

the opening year (2027), trains will operate in 3 min 50 s headway with 22 train sets of 6-car train including spare

cars. In 2055, headway will be shortened to 2 min with 38 train sets of 6-car train.

5) Depot and Workshop

The depot is located at the east side of Balu River along the Madani Avenue, which is the east end terminal of MRT

Line 5N, Phase1. The depot area is 24.8 ha that can accommodate 38 train sets of 8-car train, which are the required

number of train sets after extension of MRT Line 5N Phase 2. In the depot area, train storage facilities for 38 trains

of 6-car train, which are required for Phase 1 operation are constructed in this Project as well as the train

maintenance facilities, the Dhaka Mass Transit Company (DMTC) building, an administrative building, and

substations. The Operation Control Center (OCC) is planned to be accommodated in the DMTC building. As an

option, this depot, which is located about 6km east from Junction Station of MRT Line-1, can share with MRT

Page 27: Study on Economic Partnership Projects in Developing Countries in

S-6

Line 1 and the trains for MRT Line 1 partial operation can be accommodated.

6) Railway System

(1) Power Equipment

The receiving substation of the railway company constructed in the depot receives electric power of 132 kV 50 Hz

by double system from the substation of Dhaka Electric Supply Co. Ltd (DESCO). The receiving substation

transforms electric power into 33 kV. In the traction substations at Mirpur 1 Station, Banani Station, Vatara Station

and depot, electric power for trains and electric power for services are transformed into 1500 V and 6.6 kV and

supplied to the feeder lines and electric rooms, respectively. Supervisory Control and Data Acquisition (SCADA) is

installed to monitor and supervise the electric rooms in each substation and electric room. Overhead catenary

system is adopted. Regenerative electric power storage apparatus are installed at the traction substation.

(2) Signaling System

For the Automatic Train Protection (ATP) System, Communication Based Train Control (CBTC) is applied. Also,

train detector uses the CBTC method. Automatic Train Supervision (ATS) and Automatic Train Operation (ATO)

are applied and driver-only operation is performed.

(3) Telecommunication System

By using optical fiber cable and transmission terminal, the Backbone Transmission Network, which connects OCC,

station, substation, and depot, is configured. Radio system for the dispatch control between OCC and train, and

closed-circuit television (CCTV) supervising system for overseeing the condition of stations are installed.

Passenger address system, passenger information display system, and clock system are installed in the platform area

of each station.

(4) Automatic Fare Collection

Contactless IC media is adopted as the ticket media. ISO/IEC 18092 (Type C) is selected for IC card because of high

security. Automatic gate of flap door type is selected because of high processing speed and high safety. Ticket

vending machine is not introduced and ticket media is sold at ticket window by person-to-person selling. The Felica

Type C Card has been introduced through JICA Technical Cooperation Project from 2011 as public bus network

ticket and widely accepted by the people in Dhaka.

(5) Platform Screen Door

A half height type is installed at the elevated station. In the case of underground station, a full height type is selected.

7) Project Cost

Table S-2 summarizes the Project cost estimate. Total construction cost including consultant cost is estimated at

BDT 149,492 million.

Page 28: Study on Economic Partnership Projects in Developing Countries in

S-7

Table S-2 Project Cost Estimate and Breakdown

No. Description Breakdown Cost (Million in BDT)

1 Civil and Architectural Works

Viaduct Structure, Tunnel, Station (Viaduct, Underground), Depot/Workshop

61,456

2 System E&M System, Rolling Stock 37,015

3 Price Escalation of Items 1 and 2, Contingency

41,213

4 Consultant Fee 9,807

Total of Construction Cost and Consultant Fee 149,492

(JPY 243.3 billion)

5 Office Administration Cost Land Acquisition, Relocation of Public Utilities, Office Management Cost, Interests

34,777

6 Tax and Duties VAT 15%, Import Duties 34,687

Total Project Cost Estimate 218,995

(JPY 356.4 billion)Source : METI Study Team

8) Preliminary Economic and Financial Analyses

The economic internal rate of return (EIRR) for MRT Line 5N Phase 1 is calculated as 16.2%.

The EIRR is higher than the 12% discount rate applied by ADB for their project appraisal; the benefit cost ratio

(B/C) stands at 1.5, and the NPV is about BDT 32.8 billion. The sensitivity analysis resulted in an EIRR of 12.0%

when the cost fluctuates by 20% upwards and benefit falls by 20%. According to DTCA, the opportunity cost

applied in Bangladesh is 16%, and the EIRR for MRT Line 5N Phase1 exceeds this opportunity cost.

The result of the cash flow calculation based on the financial analysis indicates a financial internal rate of return

(FIRR) of 2.7%. This value is rather low and the Project is considered not feasible for private sector funding. In the

event the expenses decrease to 20% and revenue increases to 20%, the FIRR still stands at 5.3%; thus, it was

concluded that the Project was not feasible from the financial point of view.

9) Socio-environmental Evaluation

Noise and vibration are expected to occur during the construction, however, when the Project is realized, the

reduction of carbon dioxide (CO2) emission as well as mitigation of air pollution can be achieved

For land acquisition and resettlement aspects, the impact is considered to be rather minimal since the route is

planned along the existing road for viaduct section, and the underground section was applied for the cantonment

area and for the congested central business district in Banani and Gulshan areas. The land where the natural gas

station at the corner of Mirpur Road is situated and the depot area need to be acquired.

(4) Preliminary Project Implementation Schedule

Figure S-6 indicates the preliminary Project implementation schedule that was drafted based on the experience of

MRT Line 6.

Page 29: Study on Economic Partnership Projects in Developing Countries in

S-8

Figure S-6 Preliminary Project Implementation Schedule

Year

1 Feasibility studyPreliminary study Feasibility study Fund arrangement

2 Consultancy services1 Consultant selection2 Basic design3 Detail design4 Procurement assistance

3 Construction1 0.2 km - 6.4 km Viaduct, Station2 6.4km - 6.7km Transition3 6.7 km - 11.9 km Underground Station4 6.7 km - 11.9 km Shield Tunnel5 11.9 km - 12.3 km transition6 12.3km - 13.4 km Viaduct Station7 Depot access8 Depot9 Architectural works for stations

4 Track works

5 E & M System

6 Rolling stock

7 Test, Commissioning

8 Operation & Maintenance

9 Land acquisition, Utility diversion

20202015 2016 2017 2018 2019 2027 20352021 2022 2023 2024 2025 2026

Source :METI Study Team

Construction activities that are on the critical path are the tunnel works. In order to shorten the time of the tunneling

works, utilization of four shield machines launched from both ends of the up and down lines can be conceived.

However, this will require the construction of additional intermediate shafts at the underground section. This

method is considered to be technically unrealistic and would incur additional cost; thus, utilization of two shield

machines is considered, at present.

(5) Feasibility on Japanese Yen Loan and Project Implementation

The implementation of the Project by Japanese Yen loan is considerable based on the following situations: 1) The

necessity of the Project is confirmed by the outcome of the on-going RSTP Study which suggests the organic

connectivity with the north-south corridor which is currently being implemented, 2) The implementation of the

Project through private sector finance is financially unfeasible, 3) the first MRT Line 6 of Dhaka is being

implemented by Japanese ODA, and 4) the expectation of the Bangladeshi government towards Japanese

technologies and financial assistance is extremely favorable.

MRT Line 6 is currently in its bidding stage and the Government of Bangladesh expects the participation of

Japanese companies in the bidding for each package of MRT Line 6. The Government of Bangladesh is looking

forward to adopt MRT with Japanese specifications. Among them, the following five technical components are

globally recognized as having superior quality, and its application in the MRT Line 5 Project would realize MRT

construction under Japanese Technology.

Page 30: Study on Economic Partnership Projects in Developing Countries in

S-9

Table S-3 Globally Recognized Japanese Technologies

Technical Components Description

Rail Japanese-made heavy haul (HH) rails which are recognized abroad to have high quality and durability.

Regenerative Electric Power Storage Apparatus

Japanese-made capacitors utilizing lithium batteries are expected to contribute in reducing the power requirement and mitigating environmental impacts, as well as reducing maintenance costs.

Rolling Stock Japanese rolling stock manufacturers have proven to be competitive in winning contracts in the USA, the UK, Singapore, Hong Kong, and in the Middle East.

Shield Tunneling Machines MRT constructed by Japanese shield machines in India, Turkey, and Thailand are recognized and proven to have high-tech engineering.

IC Card and Associated Devices

The Bangladesh National Bus Transportation System adopted the IC card technology in 2012 and its effect is well recognized.

Source :METI Study Team

(6) Conceived Project Implementation Schedule until Realization of the Project and Envisaged Risks Hampering the Realization of the Project

DTCA has identified the implementation of MRT Line 1 and MRT Line 5 as the next MRT projects and has

requested JICA in the end July 2015 to carry out the preparatory study for the two projects. Once JICA accepts the

request, a feasibility study is envisaged to be implemented in April 2016, and design work is expected to

commence in mid-2017. However, DTCA is being approached by the other donors, and the financial source of the

Project implementation is not finalized yet.

(7) Project Location Map

The Project location map is shown in Figure S-7 on the next page.

Page 31: Study on Economic Partnership Projects in Developing Countries in

S-10

Figure S-7 Project Location Map

LegendMRT Line1

Main Road

Existing Railway

RiverMRT Line2

BRT Line3

MRT Line4

MRT Line5(E‐W Line)

MRT Line6

BRT Line7

0km 7km

DMA

RAJUK

MRT Line 5NPhase1

MRT Line 5N Phase2

MRT Line 5S

Gabtoli

Mirpur10

Banani

Notun Bazar Beraid

Bhulta Bazar

Aftab Nagar

Dhaka Mass Rapid Transit East‐West Line Project Location MAP

N

0km 1km 2km 4km

N

MRT Line 5(E‐W Line)

Source :METI Study Team

Page 32: Study on Economic Partnership Projects in Developing Countries in

Chapter1 Overview of the Host Country and Sector

Page 33: Study on Economic Partnership Projects in Developing Countries in

1-1

1.1 Economy of the Country and Financial Condition of the Government

1.1.1 Economic Condition of the Country

Bangladesh, a South Asian country with large population (142.3 million as of 2011 census, and 156.6 million as

reported in World Bank’s World Development Indicators (WDI) Little Database (LD) of 2015), has made

significant progress toward a more prosperous and pluralistic society in recent times. Although Bangladesh’s per

capita income is still relatively low (USD 1,096 in 2014 as reported in World Bank, World Development

Indicators, updated on 1st July, 2015, accessed through http://data.worldbank.org/indicator/NY.GDP.PCAP.CD,

accessed on 28th July, 2015) , its economy has grown at 6% annually for more than a decade; and its current gross

domestic product (GDP) is healthy at USD 158.8 billion (World Bank’s WDI LD of 2015). It may be mentioned

here that its per capita income was only USD 400 in 2004, which testifies that Bangladesh is growing at a very

fast rate. Because of this, leading economic research entities/think tanks like Goldman Sachs and JP Morgan

predicted high-potential economy for Bangladesh. In their Global Economics Paper No 134, “How Solid Are the

BRICS?” (Dec, 2005), Goldman Sachs introduced the Next 11 emerging economics and Bangladesh is included in

the list along with Korea, Indonesia, Mexico and Turkey.

Figure 1-1 GDP Forecast by Goldman Sach

Source: “Global Economics Paper No: 153 - The N-11: More Than an Acronym” and ”BRICs and Beyond”

The economy is increasingly led by export-oriented industrialization. The Bangladesh textile industry is the

second largest in the world after China. Bangladesh's textile industry, which includes knitwear and ready-made

garments (RMG) along with specialized textile products, is the nation's number one export earner, accounting for

USD 21.5 billion in 2013 – 80% of Bangladesh's total exports of USD 27 billion. It may be mentioned here that

current exports in this sector have doubled since 2004. Other key sectors include pharmaceuticals, shipbuilding,

ceramics, leather goods, and electronics.

Being situated in one of the most fertile regions on Earth, agriculture plays a crucial role, with the principal cash

crops including rice, jute, tea, wheat, cotton, and sugarcane. Bangladesh ranks fifth in the global production of

fish and seafood. Remittances from the Bangladeshi migrant workers also provide vital foreign exchange;

remittance amounted to USD 14 billion in 2014. Sector-wise share of the economy is as follows: 16% to

2010 2030 2050

Bnagladesh 81 304 1466

Japan 4604 5814 6677

0

1000

2000

3000

4000

5000

6000

7000

8000

Nominal G

DP(1 billion USD

Page 34: Study on Economic Partnership Projects in Developing Countries in

1-2

agriculture, 28% to industry, and 56% to services (2013 data, World Bank’s WDI LD of 2015). Yearly data shows

steady increase of secondary sector share.

Bangladesh is currently leveled as least developed country (LDC). The United Nations considers three indicators

for graduating a country from the LDC status, i.e., per capita gross national income (GNI), economic vulnerability

index (EVI), and human asset index (HAI). Bangladesh has already fulfilled the necessary conditions of EVI and

is nearly there in terms of the other two. The government expects that by 2018, the country will be able to meet all

three criteria.

Figure 1-2 Shift of GNI Value, HAI Value, and EVI Value

Source: Japanese Embassy in Bangladesh

As a consequence of rapid economic growth, the economy experiences rather high inflation rate. According to the

Bangladesh Bureau of Statistics (BBS) National Accounts Statistics (2013), annual average consumer price index

(CPI) inflation was 8.4% over the period from 2007 to 2013.

1.1.2 Financial Condition of the Government

Because of the rapid growth enjoyed by the country, government expenditure is also increasing. Government

budget is generally divided into development budget and revenue (non-development) budget. In general, revenue

budget includes government’s general expenditure and includes operation and maintenance (O&M) of existing

assets. On the other hand, development budget shows all projected expenditure related to a new project. For

example, a bridge is at first constructed with development budget and after certain years of operation, the bridge

will be transferred to the revenue budget, after which the O&M cost of the bridge will come from the revenue

budget. Usually, the projects under the development budget are listed in the Annual Development Program (ADP).

These two kinds of divisions can be explained in another way. The development budget expenditure is supported

by both domestic resources and foreign aid/loans. These include capital construction, incremental O&M finance,

and technical assistance like investigations and planning studies. The revenue budget covers recurrent expenditure

(like salary of employee), interest on development loans, and some non-development capital expenditures like

building construction.

02‐04 05‐07 08‐10 2012

LDC criteria 900 1086 1190

Bangladesh 403 453 637 840

0

200

400

600

800

1000

1200

1400

GNI (US$)

Shit of GNI Value

2006 2009 2012

LDC criteria 64 66 66

Bangladesh 50.1 53.3 54.7

0

10

20

30

40

50

60

70

Shift of HAI Value

2006 2009 2012

LDC Criteris 38 38 32

Bangladesh 25.8 23.2 32.4

0

5

10

15

20

25

30

35

40

Shift of EVA Value

Page 35: Study on Economic Partnership Projects in Developing Countries in

1-3

Some of the key indicators from the financial year (FY) 2015-16 budget are shown as follows:

Total budget BDT 295,100 cr (about USD 36.9 billion)

Development budget BDT 102,559 cr (about USD 12.9 billion)

Expected external financing BDT 30,134 cr (about USD 3.8 billion)

Development budget in transport sector BDT 21,658 cr (about USD 2,707 million)

Transport budget as % of total development budget 21%

Some of the key financial indicators for FY 2014-15 (extracted from the FY 2015-16 budget document) are as

follows:

Investment (as % of GDP) 28.97%

Forex reserve USD 23.7 billion

Budget amount BDT 239,668 cr (about USD 30 billion)

Development budget BDT 80,476 cr (about USD 10 billion)

Average inflation 6.57%

From the above statistics, it can be concluded that transportation is one of the major thrust sectors of the

government as 21% of the total development budget is earmarked for the transport sector in FY 2015-16.

According to the Aid Scenario Report of 2013-14 of the Economic Relations Division (ERD) of Bangladesh

(original report is in Bangla), the foreign aid mobilization situation is as follows:

Table 1-1 Foreign Aid Mobilization

(Unit in million USD)

Total Grant Loan

Commitment 5,844 497 5,346

Disbursement 3,084 680 2,403

Source: Economic Relations Division

Among the development partners, the World Bank is the leading multilateral donor while Japan is the leading

bilateral partner.

Table 1-2 Comparison of Foreign Aid between World Bank and Japan

(Unit in million USD)

Japan World Bank Total (including other donors)

Commitment 1,215 (21%) 2,743 (47%) 5,844 (100%)

Disbursement 450 (15%) 936 (30%) 3,084 (100%)

Source: Commitment and Disbursement in 2013-14, ERD (http://www.erd.gov.bd/)

Page 36: Study on Economic Partnership Projects in Developing Countries in

1-4

1.2 Description of the Targeted Sector

(1) Issue of Urban Transportation in Dhaka Metropolitan Area

Dhaka Metropolitan Area (DMA), which is the capital city of Bangladesh, is one of the largest mega cities in the

world with over 13.6 million people. In addition, it is the most overpopulated city of the world, since the

population density is 44,000 people / km2, which is ten times of the Tokyo-Yokohama Metropolitan Area.

Bangladesh's economy has achieved strong economic growth of about 6% in the past ten years. The population in

DMA, which is the center of growth, is expected to exceed 20 million in 2025 due to the population influx and the

natural increase from the rural areas. Currently, traffic congestion in DMA is chronic and heavy, and occurs

anywhere in the city because traffic is concentrated on the road, and development of transportation infrastructure

is inadequate. Also, the transportation mode is mixed on the same road such as public buses, rickshaws, and

automobiles.

The traffic jam causes economic losses estimated annually at about BDT 200 billion (2010) and this has become a

major barrier to future economic growth. Traffic pollution of exhaust gas and noise from the cars are also serious.

The development of urban public transportation system has become a pressing issue since this promotes the

improvement of DMA.

(2) Upper Basic Plan Related to Urban Transport

The Strategic Transportation Plan (STP) was formulated by the Bangladesh government with the cooperation of

the World Bank in 2005. The STP prepared the “urban transportation policy" which decided the target period of 20

years from 2004 to 2024. It also presented the establishment of an organization for project implementation and

maintenance, proposal for a mass rapid transit (MRT) with a total of 110 km that has three bus rapid transit (BRT)

routes and three MRT lines (Line 4, Line 5, and Line 6), and development of urban highway with a total of 330

km.

The Japan International Cooperation Agency (JICA) has conducted the Dhaka Urban Transport Network

Development Study (DHUTS) Phases 1 and 2 with Dhaka Transport Coordination Authority (DTCA) as

counterpart organization from March 2009. DHUTS conducted a review of the STP and traffic demand, selected

MRT Line 6 as the priority project, and verified the technical and economical validity of implementation of MRT

Line 6. Based on this, the ODA loan agreement for MRT Line 6 was signed in February 2013, and design and

procurement works are proceeding currently. In addition, BRT Line 3 is planed section between Gajipur-Airpor by

the World Bank (WB) and section between Airport–Jhimir the Asian Development Bank (ADB), whose design is

currently proceeding.

On the other hand, Government of Bangladesh has decided to enlarge Dhaka City to mitigate serious high

population density in the city center. RAJUK has been established to promote sub-urban centers development in

Greater Dhaka Area (RAJUK Area) of 1,584km2. JICA carried out the Revision and Updating of the Strategic

Transportation Plan (RSTP) from 2014. STP will be revised based on the latest survey results, and the next

Page 37: Study on Economic Partnership Projects in Developing Countries in

1-5

priority project will be selected.

Chapter 3 presents the detailed background and overview of these basic plans.

1.3 Description of the Project Area

Dhaka is the capital of Bangladesh. The city is surrounded by rivers in all sides, namely: the Buriganga River in

the south and west, the Balu River in the east, and the Tugar River in the north and west. Dhaka experiences a hot,

wet, and humid tropical climate, with a distinct monsoon and short, dry, and cool winter.

Figure 1-3 City Map of DMA

Source: Geological Survey in Bangladesh

UN Demographia (World Urban Areas 2015, Table 1-3) shows the greater Dhaka area population and density

Page 38: Study on Economic Partnership Projects in Developing Countries in

1-6

compared with other major cities of the world. It can be seen from the table that Dhaka is the most densely

populated urban area in the world, followed by Mumbai. This table also shows that total area of Dhaka is much

smaller compared to other Megacities of the World.

Table 1-3 Ranking of Population and Population Density

Current

Rank

Urban Area Base

Year

Base Year

Population

Area (km2) Density

(person/km2)

1 Tokyo-Yokohama, Japan 2010 37,100,000 8,547 4,400

2 Jakarta, Indonesia 2010 27,300,000 3,225 9,500

3 Delhi, India 2011 22,250,000 2,072 12,100

4 Manila, The Philippines 2010 20,750,000 1,580 15,300

5 Seoul-Inchon, South Korea 2010 22,500,000 2,266 10,400

6 Shanghai, China 2013 22,025,000 3,820 6,100

7 Karachi, Pakistan 2011 19,530,000 945 23,400

8 Beijing, China 2013 20,366,000 3,820 5,500

13 Mumbai, India 2011 16,600,000 546 32,400

16 Dhaka, Bangladesh 2011 13,600,000 360 43,500

46 Hong Kong, China 2011 7,050,000 247 26,400

Source: Demographia (World Urban Areas, 11th Annual Edition, 2015)

Cycle rickshaws and auto rickshaws are the main modes of transport, with close to 400,000 cycle rickshaws

running each day. However, only about 85,000 rickshaws are licensed by the city government. Relatively low-cost

and non-polluting cycle rickshaws nevertheless cause traffic congestion and have been banned from many parts of

the city. Public buses are operated by the state-run Bangladesh Road Transport Corporation (BRTC) and by

private companies and operators; however, the service is inadequate and of low quality.

Dhaka City is administrated mainly by two city corporations, namely, Dhaka North City Corporation (DNCC) and

Dhaka South City Corporation (DSCC). However, these corporations’ mandates are rather limited, mostly

focusing on city roads and garbage collection. There are separate agencies for electricity, gas, water supply,

sewerage, and drainage. The land use plan of Dhaka City is controlled by another authority called the Capital

Development Authority (Rajdhani Unnayan Kartripakkha: RAJUK) was established on April 30, 1987. Its

principal mandate is to develop, improve, extend, and manage Dhaka City and its peripheral areas through proper

development planning and development control (source: www.rajukdhaka.gov.bd). On the other hand, the DTCA

is responsible for coordinating all transport-related issues of the Greater Dhaka area. It may be mentioned here

Page 39: Study on Economic Partnership Projects in Developing Countries in

1-7

that all public buses are currently operated by the BRTC.

Although there is no official data released on the regional GDP of Dhaka, being the center of national economy,

Dhaka contributes about 15% of national GDP (as estimated by one local think tank, Center for Policy Dialogue

(CPD)).

Page 40: Study on Economic Partnership Projects in Developing Countries in

Chapter2 Methodology of the Study

Page 41: Study on Economic Partnership Projects in Developing Countries in

2-1

2.1 Contents of the Study

The public transportation network plan of Dhaka Metropolitan Area (DMA) has been updated every five years

since the Strategic Transportation Plan (STP) 2004 was formulated. Master plans, the Preparatory Survey on

Dhaka Urban Transport Network Development Project (DHUTS) 2010, and the Revision and Updating of Strategic

Transport Plan (RSTP) 2015 have been formed based on the STP. Target route of this study corresponds to the

MRT Line 5, proposed by RSTP, which is implemented in parallel at present. This Project aims to investigate the

feasibility of this target route.

MRT Line 5 has a length of 35 km. Priority route for early opening section for 16.2km is selected based on

demand forecast results. Issues of the routes are: (1) passing through Banani Cantonment, (2) first underground

construction in Bangladesh, and (3) financing.

Thus, feasibility study is carried out through technical, economical, and environmental aspects.

2.2 Method and Organization of the Study

2.2.1 Method of the Study

Survey items and survey contents are summarized in Table 2-1.

Table 2-1 Survey Items and Contents

Items Contents

(1) Confirmation of upper

plan

・Review of STP and DHUTS route planning

・Sharing the new network planning of RSTP

(2) Confirmation of traffic

demand forecast

・ Review of demand forecast results of STP and DHUTS

・ Investigate the demand forecast results of RSTP

(3) Mode selection ・ Mode selection based on the results of peak hour peak direction traffic (PHPDT)

(4) Operation planning ・Formulation of the train performance curve

・Preliminary design of the track layout

(5) Alignment planning ・Preliminary design of the horizontal and vertical alignment

・Comparison of all elevated and partial underground option

(6) Depot planning ・ Land selection for rolling stock to meet demand

・ Track layout plan of depot

(7) System planning ・Preliminary design of electric and telecommunication system (refer to the

Bangladesh MRT Technical Standards)

(8) Rolling stock planning

・Preliminary design of rolling stock planning (refer to the Technical Standards for

MRT in Bangladesh)

・Estimation of train set and train operation headway

Page 42: Study on Economic Partnership Projects in Developing Countries in

2-2

(9) Construction planning

and cost estimation

・Estimation of the project cost includes the construction cost, land acquisition

cost, and E&M cost

(10) Project

implementation schedule

・Formulation of the project implementation plan for the process of loan

agreement (LA) conclusion for the official development assistance (ODA)

implementation

(11) Economic and

financial analysis

・Estimation of economic and financial analysis based on the demand forecast

result, project cost, and implementation schedule

(12) Environmental survey ・ Study of the initial environmental examination (IEE)

Source: METI Study Team

The Study is conducted to prepare the (1) confirmation of upper plan and (2) confirmation of traffic demand

before getting the results of the demand forecast from RSTP. After that, (3) mode selection is conducted. Based on

the mode selection, each planning work from (4) to (8) were carried out; and (9) construction planning and cost

estimation, (10) project implementation schedule, and (12) environmental survey was conducted. Afterwards, (11)

economic and financial analysis was conducted to evaluate the feasibility of the Project.

Figure 2-1 Survey Organizational Chart

Source: METI Study Team

Team Leader/Railway Planning Ken Nishino

Deputy Team Leader/ Railway Design Kazuya Kitamura

Mode Selection/Operation Planning Masaru Furuta

Transport Planning Yasutaka Sakamoto

Alignment Planning Seiji Yamashina

System/Rolling Stock Planning Tadaaki Murakami

Execution Planning/Cost Estimation Hiroshi Shiozaki

Environmental and Social Consideration Islam A.K.M. Nurul

Economic/Financial Analysis Shogo Uchida

Assistance of Railway Planning Yoshiyuki Tajima

Page 43: Study on Economic Partnership Projects in Developing Countries in

2-3

2.3 Survey Schedule

Site survey was conducted four times in the course of the study period. Schedule and contents are summarized in

Figure 2-2 and Table 2-2 below.

Figure 2-2 Site Survey Schedule

Apl May Jun Jul Aug Sep

2014 2015Oct Nov Dec Jan Feb Mar

Source: METI Study Team

Table 2-2 Contents of the Site Survey

Site Survey Schedule Contents

1st Survey October 15~October 28, 2014 ・Investigation of the five alternative routes

・Detailed investigation of a high possibility route (Alt-2)

2nd Survey December 8~December 17, 2014 ・Detailed investigation of the next possibility route (Alt-4)

3rd Survey March 23~April 10, 2015 ・Coordination with RSTP team

・Kick-off meeting

4th Survey May 28~July 3, 2015 ・Detailed investigation for the target project by all experts

Source: METI Study Team

Because of the delay of RSTP’s demand forecast due to social unrest, the METI Study period was extended up to

September 2015. The first amendment was received on February 26, 2015 and the second amendment was

received on February 23.

The schedule of survey items is shown in Figure 2-3 below.

Page 44: Study on Economic Partnership Projects in Developing Countries in

2-4

Figure 2-3 Survey Item Schedule

Survey Items2014 2015

Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep

(1)Confirmation of upper planning

(2)Confirmation of traffic demand forecast

(3)Mode selection

(4)Operation planning

(5)Alignment planning

(6)Depot planning

(7)System planning

(8)Rolling stock planning

(9)Construction planning and cost estimation

(10)Project implementation schedule

(11)Economic and financial analysis

(12)Environmental survey

Submitting of report

Meeting at site

Meeting with METI

Domestic work Site work

DF/R▲

F/R

▲ ▲ ▲▲

▲←▲→▲

(1) (2) (4)

(1)

(3)

▲(2) (3)

▲(4)(5)~(9)

(5)▲

Source: METI Study Team

Domestic work is mainly carried out in April and May 2015 with full swing. In June 2015, site work for field

investigation was carried out by all experts and mini workshops were conducted weekly with the Dhaka Transport

Coordination Authority (DTCA). Outline of joint meetings is summarized in Table 2-3 below.

Table 2-3 Outline of the Joint Meeting with DTCA

Date Visited Outline

October 16, 2014 DTCA ・Study schedule

・Characteristics of East-West Line

December 10, 2014 DTCA ・Confirmation of progress of RSTP

April 9, 2015 DTCA ・Kick-off meeting

May 28, 2015 DTCA

・Sharing of survey schedule, mini workshop,

・Outline of East-West Line alignment

・Implementation plan of the Project

June 4, 2015 DTCA ・1st Mini workshop

June 10, 2015 DTCA ・2nd Mini workshop

June 18, 2015 DTCA ・3rd Mini workshop

Page 45: Study on Economic Partnership Projects in Developing Countries in

2-5

June 24, 2015 DTCA ・4th Mini workshop

July 1, 2015 DTCA ・Interim meeting

September 16, 2015 DTCA ・Final meeting

Source: METI Study Team

Handouts are attached in the Appendix.

Page 46: Study on Economic Partnership Projects in Developing Countries in

Chapter3 Project Contents and Consideration of Technical

Aspect

Page 47: Study on Economic Partnership Projects in Developing Countries in

3-1

3.1 Background and Necessity of the Project

3.1.1 Background of the Project

The population of the Dhaka Metropolitan Area (DMA) is rapidly increasing and has reached 13.6 million in 2011,

a 40% growth since 2001. In particular, the population density is the highest among the mega cities in the world

standing at 43,500 persons/km2. It is expected that the city will greatly benefit from the development of public

transportation infrastructure network; however, the delay of its implementation is at a serious level hampering

urban economic activities. One of the major manifestations is the critical traffic congestion within the DMA, and

immediate actions for the development of transportation infrastructure are required.

The following projects are carried out in the past: Dhaka Master Plan (1959), Dhaka Urban Areas Integrated Urban

Development Plan (1981), Dhaka Metropolitan Area Integrated Transportation Plan (DITS) (1994), Dhaka Urban

Transportation Plan (DUTP), and Strategic Transport Plan for Dhaka (STP) (2005). Based on the STP study, the

Dhaka Urban Transport Network Development Project (DHUTS) was implemented in 2010 and the Revision and

Updating of Strategic Transport Plan (RSTP) was implemented in 2015.

Figure 3-1 Implementation Scheduleof Dhaka Urban Transport Project

:Source METI Study Team besed on DHUTS1 Report

3.1.2 Conclusion of Upper Level Plan

(1) Summary of STP

The STP was formulated by the Dhaka Transport Coordination Board (DTCB) under technical assistance by the

World Bank in 2005. The STP has proposed the policy for strategic transport plan, urban transport policy, and

institutional strengthening and capacity building to ensure the sustainability of the transport sector development.

The implementing agency was DTCB under the Ministry of Communication. The STP prepared the ‘Urban

Revision and Updating of Strategic Transport Plan

2014

: Master Plan

: Feasibility Study

: Review Study

: Detailed Design

Transport Planning

Dhaka Master Plan

Dhaka Urban Areas Integrated Urban Development Plan

Dhaka Metropolitan Area Integrated Transportation Plan

Dhaka Urban Transportation Plan

Dhaka Urban Ares Integrated Urban Development Plan

Strategic Transport Plan

Dhaka Urban Transport Network Development Project

Dhaka More District Plan

CASE Project – Traffic Component

Dhaka Flood Precation Project (ADB) Dhaka Flood Prevention Project (JICA)

Urban Infrastructure Development Project

Dhaka East Bypass Project

Jatorabari Flyover Project

Institutional Strengthening Project of DTCB

Page 48: Study on Economic Partnership Projects in Developing Countries in

3-2

Transportation Policy’ for 20 years (2004-2024), and identified priority issues such as improvement of mass transit

system (buses and rail transportation), development of urban expressway, and establishment of organization for the

implementation and maintenance/operation of the projects.

【 Strategic Transport Plan】

Develop a coherent long-term Strategic Transport Plan (2004-2024), by following and updating the DITS of 1994

and other transport related studies, to address the anticipated transportation needs for future development with

special emphasis on integrating the planned land use for the future growth of the city as presented in the Dhaka

Metropolitan Development Plan (1995-2015) with the transport issues in DMA over the next 20-year planning

horizon under a phased program for the 20-year period.

Table 3-1 Development Plan of Public Transport Network under STP

Source: METI Study Team

【 】Urban Transport Policy

Urban Transportation Policy was formulated under STP study and approved by the Government of Bangladesh

that would guide urban transport development, operations, and management in DMA. The policy shall consider

“Road Investment”, “Mass Transit Investment”, “Demand for Public Transport”, “Need for Traffic Management”,

and “Improvement of the Pedestrian transportation network”.

【 Institutional Strengthe 】ning and Capacity Building

Identify institutional weakness of DTCB, Dhaka City Corporation (DCC), Dhaka Metropolitan Police (DMP),

Capital Development Authority of Bangladesh (Rajdhani Unnayan Kartriphakka: RAJUK), and Bangladesh Road

Transport Authority (BRTA), and prepare a plan for their institutional strengthening and capacity building in the

area of urban transport strategic planning.

Project Cost(millionUSD) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024

F/S D/D C/S

Operation

F/S D/D C/S

Operation

F/S D/D C/S

Operation

D/D

Tender D/D C/S, Test & Commission

Tender D/D C/S, Test & Commission

Tender D/D C/S, Test & Commission

DHUTS2 Tender D/D C/S, Test & Commission     Partial Opening

Phase-1 Phase-2 Phase-3 Phase-4

1 BRT Line-185 Original Plan

Actual Condition

2 BRT Line-285 Original Plan

3 BRT Line-395 Original Plan

Actual Condition

Actual ConditionDHUTS1

Actual Condition

1700 Original Plan

Actual Condition

4

F/S andPreliminary Design

for Metro

Original PlanF/S & P/D

1700 Actual Condition

6 MRT Line-51100 Original Plan

Actual Condition

No Progress

No Progress

No Progress

No Progress

7 MRT Line-6850 Original Plan

5 MRT Line-4

Page 49: Study on Economic Partnership Projects in Developing Countries in

3-3

(2) Summary of DHUTS1, 2

Under the Dhaka Urban Transportation Study (DHUTS1), the JICA Study Team will conduct the study with DTCB

as the counterpart agency with the aim of formulating the basic concept of urban development for DMA in 2025 as

well as formulating the projects for the JICA assistance program required in the medium to long term. The

objectives of the study are as follows:

・ To formulate the Urban Transport Network Development Plan integrated with the urban development plan of

DMA for the period up to 2025.

・ To draw the general outline of the urban transport projects to be implemented on priority basis based on this plan.

・ To clarify the roles of the project implementation agencies and the operation/maintenance/management agencies,

and to propose the development of their implementation capability.

・ To draw an outline of the feasibility study plan for construction of the urban transport system.

Based on the result of review of the STP study, DHUTS1 developed a policy strategic plan, infrastructure plan, and

master plan.

DHUTS1 proposed a mass transit system (MTS) development plan. The plan has created the MTS network plan and

proposed the priority development route. The MTS network plan, which allows the proposed urban development

plan, has been proposed in order to provide accessibility and mobility to the growing population in the future.

Table 3-2 Proposal of MTS Network

Source:DHUTS1 Report

From the Table 3-2, Line 4 to Line 8 show the mass rapid transit (MRT) corridor. Line 7 and Line 8 are part of the

transportation network that supports the urban development plan until 2050. These are lines for development in the

very long term. A comparative analysis of priority development line for MRT was conducted. The comparative

analysis was confirmed from five points, namely: 1) Urban Development, 2) Traffic Demand, 3) Technical

Acceptability, 4) Social and Natural Environment Impact, and 5) Project Implementation.

Based on the results of the comparative analysis, MRT Line 6 has a high comparative advantage. The reason is

Page 50: Study on Economic Partnership Projects in Developing Countries in

3-4

because the transport demand is high and the road space is relatively wide that social issues such as land acquisition

and house relocation are less.

Figure 3-2 MTS Development Plan

Source:DHUTS1 Report

The MRT Line 6 Project was selected in DHUTS1 as a high priority project and it was agreed between the

Government of Bangladesh (GOB) and JICA that this Project will be further studied in DHUTS2 to confirm its

feasibility. The objectives of DHUTS2 are to conduct the feasibility study on the MRT Line 6 Project by confirming

the technical, economical, and financial viability of the Project as well as confirming the environmental and social

aspects. The study area covers the whole length of MRT Line 6, initially from “Uttara Phase 3 New Urban

Development” area to Saidabad but later extended to Bangladesh Bank and its surrounding area.

MRT Line6

BRT Line2

BRT Line1

BRT Line3

Existing RailwayMRT Line4

BRT Line1

BRT Line2

MRTLine6

BRT Line3

MRTLine5

Extension of MRT Line6

Long Term MRT Network

Extension of MRT Line4

Extension of MRT Line4

Long Term MRT Network

Long Term MRT Network

Page 51: Study on Economic Partnership Projects in Developing Countries in

3-5

Figure 3-3 Proposed Route and Depot Location of MRT Line 6

Source:DHUTS2 Report

After careful review of the traffic demand forecast made in DHUTS1, the traffic demand forecast for MRT Line 6 is

carried out more precisely taking into account the staged construction plan mentioned above.

Figure 3-4 Traffic Demand Forecast by Year and By Staged Plan

Source:DHUTS2 Report

AT GRADE 3.9km

Depot Location

VIADUCT 16.2km

STAGE-3 4.7km

STAGE-1 11.0km

STAGE-2 4.4km

LINE 6 ROUTE

STATION

1

10

2

3

4

5

6

7

8

9

11

12

13

14 15

16

No. Station Name 1 UTTARA NORTH 2 UTTARA CENTER 3 UTTARA SOUTH 4 PALLABI 5 IMT 6 MIRPUR 10 7 KAZIPARA 8 TALTALA 9 AGARGAON 10 CHANDRIMA UDDAN 11 FARMGATE 12 SONARGAON 13 NATIONAL MUSEUM 14 BANGLA ACADEMY 15 NATIONAL STADIUM 16 BANGLADESH BANK

Page 52: Study on Economic Partnership Projects in Developing Countries in

3-6

Constructing the 20.1 km length of MRT Line 6 may not be practical because the planned line requires a huge land

during construction period and immense cost. Hence, the following staged construction plan is recommended:

Stage 1: From Pallabi to Sonargaon including Pallabi Depot. Length will be 11.0 km plus 1.3 km access track to the

depot and it will include nine stations.

Stage 2: Extension to Bangladesh Bank from Sonargaon. Length will be 4.4 km and it will include four stations.

Stage 3: Uttara Phase 3 Development area to Pallabi. Length will be 4.7 km and it will include three stations.

(3) Summary of RSTP

The population growth of Dhaka is larger than expected in STP. RSTP is doing a review of STP from 2014. The

study area covers Gajipuru, Narayanganj, Manikukonji, Munshiganj, Narayanganj, and Norushinji districts.

Figure 3-5 Project Area (Left) and Study and Plan Area (Right)

Source:RSTP Study Team

[Objectives of the Project]

1) To revise and update the STP which was approved by the GOB in 2005.

2) To select plans and formulate a roadmap that would consist of high priority projects to solve current urban

transport issues.

[Goals of the Project]

・ The STP will be revised appropriately to promote an effective and efficient urban transportation development

in Dhaka, Gazipur, Narayanganj, and Narshingdi districts.

・ By implementing the urban public transportation projects to be included in the revised STP, economic growth,

alleviation of traffic congestion, and elimination of air pollution are expected.

・ A revised STP that will reflect short- , medium-, and long-term perspectives and a list of high-priority projects.

GDA

Page 53: Study on Economic Partnership Projects in Developing Countries in

3-7

One of the current issues of Dhaka urban transport is that urban transport infrastructure developments had not been

carried out as scheduled in the STP. Thus, new urban developments at Purbachal, Eastern Fringe Area, and other

areas are delayed. One of the main reasons of the existing urban transport problem is the high population density in

DMA. Demands of transport, housing, shopping, and other facilities are too high at the limited area. Road capacity

is wasted due to poor traffic management and lack of coordination among the transport-related agencies.

[Correspondences of RSTP]

・ Formulation of the new urban structure concept for sustainable development of Dhaka

・ Formulation of the revised STP integrated with the new urban structure concept

[Urban Development Concept of RSTP]

The concept involves infrastructure development for implementing sub-urbanization to reduce population density in

the central business district (CBD). Satellite regional centers are connected with the urban core by MRT or bus rapid

transit (BRT). Each satellite regional center is connected by regional highways. Traffic management needs to be

implemented in CBD urgently for increasing the demand of private modes.

Figure 3-6 Urban Development Concept of RSTP

Source:RSTP Study Team

3.1.3 Current Condition and Future Forecast

This study is being conducted on the basis of the home interview survey and traffic volume survey and data

collection that have been carried out in the RSTP. The results obtained are summarized as follows:

(1) The Generated Traffic

The RSTP study conducted the house interview survey, cordon-screen survey, and road inventory survey. Based

on the result, the current generated traffic volume is about 30,000,000 trips/day. In addition, the generated

traffic volume in 2035 is about 55,000,000 trips/day. It was determined using a four-step methodology. The rate

of increase is 1.83 times. It has been calculated including the resident population based on the future land use of

urban development and industrial planning.

Page 54: Study on Economic Partnership Projects in Developing Countries in

3-8

Figure 3-7 Generated Traffic Volume

Source:RSTP Study Team

(2) The Traffic Share

Public transportation share has a high value of 69% in 2014.

Figure 3-8 Modal Share (2014)

Source:RSTP Study Material and METI Study Team

If all the proposed projects under the plan are implemented up to 2035, the public transport share will be 80%. Even

if not carried out, the public transport share indicates a high value of 75%.

Figure 3-9 Modal Share (2035)

Source:RSTP Study Material and METI Study Team

2014 2035 Growth Rate1 South Dhaka 8,764,000 11,093,000 1.272 West Dhaka 6,107,000 8,442,000 1.383 Gulshan 2,745,000 4,398,000 1.604 East Dhaka 921,000 3,259,000 3.545 South East Dhaka 1,504,000 3,529,000 2.356 Tongi 800,000 1,749,000 2.197 Gazipur 1,752,000 4,591,000 2.628 East Gazipur 129,000 285,000 2.219 Kaliganj 226,000 1,966,000 8.70

10 Rupganj 573,000 1,200,000 2.0911 North Sonargaon 249,000 574,000 2.3112 South Sonargaon 356,000 913,000 2.5613 North Narayanganj 1,162,000 2,472,000 2.1314 South Narayanganj 934,000 1,914,000 2.0515 South Kareniganj 342,000 1,013,000 2.9616 North Karaniganj 632,000 1,235,000 1.9517 South Savar 881,000 2,213,000 2.5118 North Savar 1,832,000 4,742,000 2.59

Total 29,909,000 55,588,000 1.86

0% 20% 40% 60% 80% 100%

201413% 69% 5% 13%

CNG Bus,Pub MC Car&Taxi

0% 20% 40% 60% 80% 100%

2035 MP

2035 DN

8%

11%

80%

75%

1%

3%

11%

12%

CNG Bus,Pub MC Car&Taxi

Page 55: Study on Economic Partnership Projects in Developing Countries in

3-9

(3)The Road Distribution Traffic Volume

The road distribution traffic volume results were obtained as follows:

With no track maintenance until 2035, the vehicle operation cost (VOC) is BDT 479,000,000/day and travel time

cost (TTC) is BDT 6,941,000,000/day.

Figure 3-10 Future Changes in VOC and TTC

※Network weight shows the volume of traffic capacity.

Source: RSTP Study Team

(4) Future Transportation Network

From the above analysis, the future public transportation network has been proposed as shown in Table 3-10. (Left:

Year 2025, Right: Year 2035)

Page 56: Study on Economic Partnership Projects in Developing Countries in

3-10

Figure 3-11 Future Public Transport Network

Source: RSTP Study Team

Table 3-3 Future Forecast Passengers of Each Line

Distance (km)

Daily Passenger 2035

PHPDT Implementation Opening Year

MRT Line 1 52 3,000,000 41,250 2025 MRT Line 2 40 1,200,000 15,500 2035 BRT Line 3 42 1,700,000 12,750 Ongoing MRT Line 4 16 690,000 33,750 2035 MRT Line 5 35 1,200,000 20,250 2035 MRT Line 6 41 2,400,000 30,900 Ongoing BRT Line 7 36 490,000 7,650 2035

Source: RSTP Study Material and METI Study Team

3.1.4 Necessity of the Project

MRT Line 5 (East-West Line) has become a second priority after the MRT Line 1 route for passengers based on the

PHPDT results from the demand forecast, excluding the currently ongoing route (MRT Line 6, BRT Line 3). The

MRT Line 1, BRT Line 3, and MRT Line 6 are all lines along the north-south axis, and there is not even one line

along the east-west axis. Therefore, MRT Line 5 can connect organically the north-south axis. As long as realized,

this Project is expected to eliminate traffic jam and further enhance the function of the urban transportation network.

Page 57: Study on Economic Partnership Projects in Developing Countries in

3-11

Figure 3-12 Target Route of the Study

Source:RSTP Study Material and METI Study Team

3.2 Necessary Considerations for Decision of the Project Contents

3.2.1 Current Condition of the East-West Corridor and Preliminary Survey

Under the implementation of MRT Line 6 and BRT Line 3, which are part of the north-south corridor, there is no

specific progress about the development plan of the east-west corridor. One of the main causes is the existence of

control points on north-south direction which are Tejigaon Airport and Banani Cantonment as shown in Figure

3-13. Furthermore, swamp is spread on the eastern and western fringe of DMA. Therefore, the development of the

east-west corridor is relatively delayed.

On the other hand, it is important to connect the north-south corridor and east-west corridor from the viewpoint of

the public transportation network development. In addition, the future development of suburban areas such as the

1 million planned population in Purbachal and 0.5 million planned population in Savar, and the influx of people

from these areas to DMA need to be considered. Potential of MRT development is quite high.

NMRT6

BRT3

MRT5(East-West)

MRT1

DMA

MRT Line1

MRT Line6

BRT Line3MRT Line5(East-West)

DMA0km 3km

Page 58: Study on Economic Partnership Projects in Developing Countries in

3-12

Figure 3-13 Development Area of East-West Corridor and Control Point

Source: METI Study Team

Under the above circumstances, it was supposed to selecte the east-west corridor through the 1st screening and 2nd

screening. However, it is required to investigate the East-West line based on the RSTP proposal by JICA and

DTCA, because of the coordination with upper planning. METI study team follows the RSTP proposal. These

selections were conducted prior to finalization of the RSTP the public transportation plan. These ideas are shared

with the RSTP Team and assisted in the formulation of the public transportation network plan.

(1) Alternative Route Selection and Comparative Consideration

The five alternative routes were identified and site survey was conducted.

Figure 3-14 Alternative Routes of East-West Corridor

Source: METI Study Team

Tejigaon Airport

BananiCantonment

BRT3MRT6

Savar Purvachal

0km 3km

N DMA

Alt‐1

MRT line6

Legend

Alt‐2

Alt‐3

Alt‐4

Alt‐5

East‐West 

Surveyed Line

MRT line3

MRT line1

Purbachar←Ashulia

KurilPallabi

Gulshan2

GabtoliGulshan1

Kawaran Bazar

Aftab Nagar

Kamalapursta.

Page 59: Study on Economic Partnership Projects in Developing Countries in

3-13

The site survey results are summarized in Table 3-4 below.

Table 3-4 Characteristics of Alternative East-West Route

Alternative Route

Characteristics Evaluation

Alt-1 ・Passing through Purbachal with a planned population of 1 million (○)

・Duplicate route with the MRT Line 1 (×)

・Crossing the Kril Flyover ( )

・Low demand between Ashulia and DMA (×)

×

Alt-2 ・Passing through Gulshan 2, which is a central business district (○)

・Passing through Banani, which is a major commercial area (○)

・Passing through the Gabtoli Bus Terminal, which is a transportation Hub (○)

・Good location for station connectivity with MRT Line 6 and BRT Line 3 (○)

・Passing through Banani Cantonment ( )

Alt-3 ・Passing through Gulshan 1, which is a central business district (○)

・Passing through the Tejigaon Airport (×) ×

Alt-4 ・Passing through the Gabtoli Bus Terminal (○)

・Passing through the Kawaran Bazar, which is a commercial area (○)

・Passing through the Dhaka Expressway flyover and MRT Line 6 which are viaduct structures ( )

・Road is wide enough and comparatively easy execution (○)

Alt-5 ・Passing through the Gabtoli Bus Terminal (○)

・Passing through the Kamarapur Station, which is a transportation Hub (○)

・Road is narrow and difficult to construction ( )

・There are low income residential areas, in which the residents may not use MRT ( )

・Duplicate with the MRT Line 6 (×)

×

(○: Good : not good but possible ×: Bad) Source: METI Study Team

As the results, Alt-2 and Alt-4 are selected because of high demand and comparatively easy execution.

(2) Proposed East-West Corridor by RSTP

As mentioned earlier, MRT Line 5, combined with Alt-2 and Alt-4 routes was proposed by the RSTP.

Alt-2 (north route) passes through the Gabtoli Bus Terminal, Dar-Us-Salam Road, Mirpur Road, Banani

Page 60: Study on Economic Partnership Projects in Developing Countries in

3-14

Cantonment, Natun Bazar, and Batara.

Alt-4 (south route) passes through the Gabtoli Bus Terminal, Mirpur Road, Panthapath, Hatirjheel, and Aftab

Nagar.

(3) Preliminary Consideration on RSTP Proposed Route

MRT Line 5, proposed by RSTP, is planned passing through the Banani Cantonment area which is considered as

sensitive area passing through by viaduct structure. On the other hand, underground option might be acceptable

because there is no effect on the building in Banani Cantonment during and after construction. In terms of

construction cost, however, cost of underground work will be 2 to 2.5 times higher than the viaduct works.

Therefore, the Study team recommends applying viaduct section in general, and the underground section shall

consider only for the critical/congested area for formulation of cost attractive scheme. Figure 3-15 and Table 3-5

summarize the survey results of North and South routes of MRT East-West Line.

Figure 3-15 Picture Location

Source: METI Study Team

7

1

2

5

4

3

98

6

10 1112

13 14

16

17 24

18 19

20

21

23

15

22

No. Picture number

Page 61: Study on Economic Partnership Projects in Developing Countries in

3-15

Table 3-5 Current Condition of the East-West Corridor

No. Pitcure Comment

1

Gabtoli Bus Terminal. Although road width is wide enough, two to

three lanes are usually occupied by buses.

2

Mazar Road. Road width is narrow and there is no obvious congestion.

This route will not be selected as MRT Line 5N.

3

Dar-Us-Salam Road. Road width is wide enough for construction of

viaduct structure.

4

Dar-Us-Salam Road. Road width is quite wide for viaduct station

construction. There is a big housing complex along the road.

5

Mirpur 1 Road. Heavy congestion can be seen due to rickshaws and

mini buses at intersection.

6

Mirpur Road. Comparatively calm traffic flow and road width is

enough for construction of viaduct structure.

Page 62: Study on Economic Partnership Projects in Developing Countries in

3-16

7

Mirpur 10 Road. Junction station with MRT Line 6. Intersection

congestion is heavy and traffic signal and roundabout are not working

properly.

8

Mirpur Road. Road width is wide enough and there is no serious

congestion.

9

Mirpur 14 Road. Intersection congestion is seen because rickshaws are

waiting for passengers.

Signal does not work properly.

10

Banani Area. Traffic volume is heavy and congestion occurs

frequently.

11

Between Banani to Gulshan 2. Road width is narrow and tall buildings

exist along the both sides of Road.

12

Gulshan 2 Circle. Signal does not work and traffic flow is unnatural.

Page 63: Study on Economic Partnership Projects in Developing Countries in

3-17

13

Natun Bazar. There are street stores in the center of road.

14

Same as No.13. There are street stores and more in the local area.

15

Mirpur Road. Road width is wide enough for construction of viaduct

structure. Heavy traffic is observed.

16

Junction of Mirpur Road and Ring Road. Road width is wide. Bus

passengers are boarding and alighting here.

17

Junction of Mirpur Road and Lake Road. Road width is wide enough

and traffic congestion is seen only in the intersection.

18

Northern area from Junction of Mirpur Road and Panthapass Road.

Traffic congestion becomes worse upon approaching the intersection.

Page 64: Study on Economic Partnership Projects in Developing Countries in

3-18

19

Panthapass Road. Road is comparatively narrow and obstruction of

traffic flow by rickshaws is observed.

20

In front of the Pan Pacific Hotel. Policeman is always standing and

controlling the traffic flow. It will be the junction station with MRT

Line 6.

21

Near Hatirjheel Lake. Traffic lanes are reduced due to the construction

of flyover. It becomes the bottleneck of congestion.

22

Near Hatirjheel Bridge. Road pavement is quite good and traffic flow

is smooth.

23

Lane reduction by waiting rickshaw and lack of footpath cause mixed

traffic between pedestrians and cars.

24

High voltage transmission line is installed along the center of the road.

There are few buildings and not well developed yet.

Source:METI Study Team

Page 65: Study on Economic Partnership Projects in Developing Countries in

3-19

3.2.2 Selection of the Study Route

Target route of this study for the MRT East-West Line should be selected based on future traffic demand forecast.

The objective is to derive a higher priority (high demand) route among MRT East-West Line routes by phasing. The

development schedule will also be decided.

(1) Phasing of MRT East-West Line

MRT East-West Line is formed by two routes, North route as Line 5N and South route as Line 5S, to the east from

Gabtoli Bus Terminal

Figure 3-16 MRT East-West Line Route

Source:METI Study Team

1) Demand Comparison of East-West Line North Route and South Route

Figure 3-17 shows demand forecast result of RSTP study. The results are about 44,000 passengers per km for the

north route in 2035 while south route has about 20,000 passengers. Therefore, north route has higher demand than

south route. North route will thus be selected as priority line.

Figure 3-17 Demand Comparison of East-West Line North Route and South Route

Source:RSTP Study Material

MRT Line 1

High MRT DemandLow MRT DemandHigh BRT DemandLow BRT Demand

Page 66: Study on Economic Partnership Projects in Developing Countries in

3-20

2) East-West Line Priority Section of North Route

Though the North Route is selected as priority route of MRT Line 5, there are so far no residents found along the

route between Beraid and Bhulta of about 7km stretch. Large scale new town development is planned along the

section in future. On the other hand, the western section of MRT Line 5N between Gabtoli Bus Terminal and

Beraid of 16.2km has certain population along the route and expected high ridership demand for the beginning

stage. It is also expected to develop MRT network by construction of western section of MRT Line 5N together

with a few North-South Corridors.

Considering the above, western section between Gabtoli Bus Terminal and Beraid of 16.2 km stretch shall be

identified as Phase-1 of MRT Line 5N as top priority section.

Figure 3-18 Phasing of East-West Line North Route

Source:METI Study Team

3) Summary of Phasing of East-West Line

The western side of MRT Line 5N is defined as Phase 1 while Phase 2 is the eastern side. The target project of the

Study is then MRT Line 5N Phase1. In addition, the RSTP have set the whole MRT Line 5 to be opened in 2035.

(2) Future Traffic Volume Summary of MRT Line 5N Phase1

In the RSTP study, the future traffic volume of 2025 and 2035 has been estimated as shown in Table 3-6 below.

Therefore, the future traffic volume is assumed by growing the trip by 1.83 times from 2014 to 2035.

N

MRT6

BRT3

MRT5(East-West)

MRT1

DMA

MRT Line 5NPhase1

MRT

Line 5N

Phase2

MRT Line 5S

MRT Line1

MRT Line6

BRT Line3MRT Line5(East-West)

DMAStationDepot 0km 3km

Phase 1 Land Use Situation

Phase 2 Land Use Situation

Page 67: Study on Economic Partnership Projects in Developing Countries in

3-21

Table 3-6 Future Traffic Volume of East-West Line Phase 1

2025 2035 2040 2045 2050 2055

Daily Passenger 852,800 783,900 946,500 1,109,100 1,271,700 1,434,500

Trip Length (km) 5.39 5.64 5.64 5.64 5.64 5.64

※PHPDT( ) 27,000 27,000 32,500 38,000 43,500 49,000

(※)PHPDT: Peak Hour Peak Direction Traffic Source:METI Study Team

3.2.3 Mode Selection of MRT Line 5

The transport capacity is the most important factor for the purpose of selecting public transportation system. In

addition, it is necessary to consider the initial cost of infrastructure, operating speed, resettlement, O&M costs, and

the impact to the surrounding environment. In this section, referring to the demand forecast result for MRT

East-West Line, the candidate guide way transit systems, which have the capacity of several ten thousands of

passenger per hour are selected, and the describing the revalidation of MRT for selection of the Transportation

Mode.

(1) Conditions of Selection for Transportation Mode

Ultralow-floor tram type of the light rail transit (LRT) and automated guide way transit (AGT) are selected as

medium capacity guide way transit systems. Compared to this, the monorail and MRT systems are selected as large

capacity systems. The following Table 3-7 shows the overview of the results of system selection. The evaluation

method uses “+++”, “++”, and “+” markings to score the systems with Excellent, Good and Fail, respectively.

Table 3-7 Comparison of Guide way Transit Systems

System Capacity Initial Cost of Infrastructure

Maximum Speed

Resettlement O&M Cost

Influence of the Environment

LRT(Ultralow-floor tram)

++ +++ + +++ +++ +++

AGT + ++ ++ ++ ++ +++

Monorail ++ ++ +++ ++ ++ ++

MRT +++ ++ +++ ++ ++ ++ +++: Excellent, ++: Good, +: Fair

Source: METI Study Team

Although MRT has higher maximum speed and larger transport capacity than the other systems, it has large impact

on initial cost, resettlement, and the environment.

(2) Feature of Each Guide way Transit System

The following Table 3-8 shows the comparison of guide way transit systems in terms of the technical aspects.

Page 68: Study on Economic Partnership Projects in Developing Countries in

3-22

Table 3-8 Comparison of the Technical Aspects of Guide way Transit System

Source:Chubu Region Development Bureau of MLIT

The estimated PHPDT is more than 27,000 passenger /hr according to the result of the demand forecast for the MRT

East-West Line from 2027 (Opening) to 2035. Consequently, MRT is selected based on the transport capacity in the

table. In addition, MRT Line 6 is planned as MRT and the choice of MRT is also appropriate considering the

technical aspects of management and maintenance of the rolling stock.

ITEM LRT (Ultralow-floor tram)

AGT Monorail MRT

Transport Capacity (PHPDT)

1,000~5,000 1,000~13,000 2,000 ~22,000 4,000~85,000

Infrastructure and Running Surface

Railway track of asphaltic pavement ofroad

Concrete slab on the viaduct

I and/or box-shape slenderbeam on the viaduct

Ballast /concrete Slab track on the viaduct or in the tunnel

Wheel/Module 4 wheels/bogie, 2 bogies/car

4 running wheels/car 4 running wheels/bogie, 2 bogies/car

4 wheels/bogie, 2 bogies/car

Guidance System Steel rail Lateral guidance Guide wheel Steel rail

Maximum Speed 60 km/h 60 km/h 80 km/h 110 km/h

Min. Radius Curve

50 m 50 m 60 m 160 m

Max. Grade 6% 6% 6% 3.5%

Maintenance

Maintenance of brakeand collector isnecessary.

Maintenance of brake,collector and exchange of rubbertires are necessary.

Maintenance of brake andcollector, and exchange ofrubber tires are necessary.

Maintenance ofbrake and collector, and grinding of steel wheels are necessary.

Advantages and Disadvantages

Advantage: Less initalcost as the rail bed onthe existing road. Dis-advantage: Lesstransportation capacity,and un-reliable speed as operated on the roadshared with privatevehicles.

Advantage: Driverless Operation by ATOsystem. Flexiblealgiment design to fitdense urban area. Dis-advantage: Disturbance of landscape and sun-lignt along the route byViaduct Structure.

Advantage: Flexiblealignment design to fitdense urban area. Lessaffect on landscape andsun-light along the routeby simple beam structure. Dis-advantage: Difficult toescape from the trainduring the emergencycase.

Advantage: Large scale transport capacity and high speed transit. Applicable to underground space. Dis-advantage: Less

flexible alignment design for elevated alignment.

Page 69: Study on Economic Partnership Projects in Developing Countries in

3-23

(3) Features of MRT

1) MRT Safety

a) Train Operation System of MRT

Safety management for train operation is based on telecommunication system and signaling system, and

trains are operated through the communication between the traffic dispatcher in the Operation Control Center

(OCC) and the driver. The driver operates a train based on the operation rule and the direction from the traffic

dispatcher.

Automatic Train Protection (ATP) system is provided to secure the safety of trains and the signal from the ATP

system is displayed in the cabin. The ATP system has the capacity to monitor and control trains in order to

observe the designated headway.

b) Train Operation

Practically, there are three methods for Electric Multiple Unit (EMU) driving, namely: 1) Driverless, 2) One-man

Operation (without conductors), and 3) Two-man Operation (with conductors). Recently, One-man Operation of

urban railway is used as the driving method. Although this operation requires facilities and equipment for securing

safety and service, it is significant for cutting off the labor cost.

c) Equipment for Securing Safety and Service

Typical facilities and equipment to ensure the safety of driving are listed as follows:

Station - Platform Screen Door (PSD)

EMU - ATP system, Automatic Train Operation (ATO) system, emergency brake device,

emergency alarm device, and automatic announcement system

2) Transport Capacity of EMU

Transport capacity of EMU is determined by car formation, congestion ratio, and headway, and Transport Capacity

is evaluated by the number of passengers of EMU. Generally, the size is 20 m long and 3 m wide and standardized as

JIS E 7103 (Rolling stock –General requirements of car body for passenger car). The capacity is as follows:

a) End Car

Capacity of end car is 45 seats and 108 standing; total capacity is 153 with a wheelchair space.

b) Middle Car

Capacity of middle car is 54 seats and 111 standing; total capacity is 165.

Capacity of 6-car formation and 8-car formation

・6-car formation (2 end cars and 4 middle cars)

Page 70: Study on Economic Partnership Projects in Developing Countries in

3-24

Capacity: 153×2 + 166×4 = 970 passengers/train set

・8-car formation (2 end cars and 6 middle cars)

Capacity: 153×2 + 166×6 =1,302 passengers/train set

Congestion ratio during peak hour

The following Table 3-9 shows the congestion ratio and the condition of passenger cabin during peak

hour.

Table 3-9 Congestion Ratio and Condition of Cabin

Source:Japan International Transport Institute

Considering the convenience of passenger and train operation, the congestion ratio of EMU is ordinarily set to

150%-190% during train operation planning. The congestion ratio of MRT East-West Line is set to 180% taking into

account the headway, number of the train sets, and scale of the depot area. Under the condition of 180% congestion

ratio, the capacity of 6-car formation and 8-car formation will be 1,746 and 2,343, respectively.

Table 3-10 Congestion Ratio and Capacity of EMU

Source: METI Study Team

3) Energy conservation of MRT

EMU is more energy efficient than automobile, MRT will contribute to energy conservation in transportation of

urban city.

Congestion Ratio Condition of Passenger Cabin 100% All passengers can sit and grasp strap or handrail.

150% Passenger’s shoulders touch each other. 180% Passenger’s body touches each other, but it is possible to read

newspaper. 200% Passengers crowd each other, but it is possible to read

magazine. 250% Passengers are stuffed and cannot move their hands.

Congestion Ratio (%) 100 150 160 170 180 190 200 250

6-car formation (Passengers)

(2 end cars and 4 middle cars) 970 1,455 1,552 1,649 1,746 1,843 1,940 2,425

8-car formation (Passengers)

(2 end cars and 6 middle cars) 1,302 1,953 2,083 2,213 2,343 2,473 2,504 3,255

Page 71: Study on Economic Partnership Projects in Developing Countries in

3-25

3.2.4 Alignment Plan

(1) Design Parameter for Alignment

1) Design Standard

The design standard for the alignment follows the “Technical Standards for the MRT in Bangladesh” (June 2014,

prepared by DTCA and JICA), and the main values are shown in the following Table 3-11.

Table 3-11 Design Standard for Alignment

Item Standard Remarks

Maximum Operation Speed 100 km/h

Maximum Design Speed 110km/h

Minimum Curve Radius

Main line 400 m

Along platform 600 m

Siding 200 m

Maximum Gradient 35‰

Minimum Gradient Elevated section 0‰

Underground section 2‰ 0‰ in station section

Platform Length 170 m 8 cars in the future Source: METI Study Team

2) Control Points

The control points for the alignment plan are shown in the following Figure 3-19.

Figure 3-19 Control Points and their Locations

Source: METI Study Team

Page 72: Study on Economic Partnership Projects in Developing Countries in

3-26

a) MRT Line 6

The MRT Line 5N crosses the MRT Line 6 at CH 4k840 m of MRT Line 5N. MRT Line 6 is planned as an entirely

elevated structure, and the MRT Line 6 reduced level (RL) at crossing point is 21.663 m above mean sea level

(MSL).

In case that the MRT Line 5N is an elevated structure, it will pass over MRT Line 6, and the height of the MRT Line

5N Rail Level (RL) at this location needs to be 30.5 m or more above MSL.

Figure 3-20 Control Point (Crossing Area with MRT Line 6)

Source: METI Study Team

b) Banani DOHS

The MRT Line 5N passes through the Banani DOHS at CH 8k140 m-8k440 m of MRT Line 5N. Six-storey

buildings are built continuously in this area. In case that the MRT Line 5N will pass in this area, it should not be

affected on these buildings.

Page 73: Study on Economic Partnership Projects in Developing Countries in

3-27

The length of pile foundation of the 6-storey buildings is assumed to be 20 m deep. The distance from the edge of

the pile foundation to the tunnel upper edge should be more than the tunnel diameter 1D (= 7.0 m). Height of RL for

the MRT East-West Line in this area should be less than -24.7 m above MSL.

Figure 3-21 Control Point (Banani DOHS Area)

Source: METI Study Team

c) BRT Line3, Dhaka Elevated Expressway, Bangladesh Railway Line (Existing Railway)

The BRT Line 3 and Dhaka Elevated Expressway (DEE) are planned on the New Airport Road near chainage 8k500

m of the MRT Line 5N. In addition, the Bangladesh Railway (BR) runs parallel in the west side of the New Airport

Road.

In the crossing area with the MRT Line 5N, the BRT Line 3 and Bangladesh Railway are at the ground level while

DEE is elevated. In case that the MRT Line 5N is an elevated structure, it will pass over DEE (planned height of

Page 74: Study on Economic Partnership Projects in Developing Countries in

3-28

road surface is 21.5 m above MSL). Therefore, the height of RL for the MRT Line 5N needs to be 30.0 m or more

above MSL.

In case that the MRT Line 5N is an underground structure, it needs to avoid the pile foundation of the DEE viaduct.

Although the length of pile foundation of the DEE viaduct is unknown, in this study, the length of pile foundation is

assumed to be 20 m and the height of RL for MRT Line 5N needs to be less than -24.7 m above MSL as well as

Banani DOHS.

Figure 3-22 Control Point (Crossing Area with DEE in Case that MRT East-West Line is an Elevated

Structure)

Source: METI Study Team

Page 75: Study on Economic Partnership Projects in Developing Countries in

3-29

d) Gulshan Lake

The MRT Line 5N passes Gulshan Lake at CH 9k400 m and 10k400 m of MRT Line 5N. In case that the MRT Line

5N is an underground structure, the thickness of overburden from the lake bed to the tunnel upper edge should be 1D

(= 7.0 m).

The Gulshan Lake has "an average depth of 2.5 m" according to the data ("Disaster Management Research Paper",

BRAC University, Bangladesh) coming from the field survey. Therefore, the depth of Gulshan Lake is assumed to

be 2.5 m in this study.

Figure 3-23 Control Point (Gulshan Lake)

Source: METI Study Team

e) MRT Line 1

The MRT Line 5N crosses MRT Line 1 at CH 10k900 m of MRT Line 5N. Although the detailed plan of MRT Line

1 is not yet decided at present, the underground plan of MRT Line 1 is mentioned in RSTP. Therefore, the

examination in this study is based on the assumption that MRT Line 1 is an underground structure.

In RSTP, since the priority of MRT Line 1 is higher than the MRT Line 5N, it is assumed that MRT Line 1 is

constructed in prior. Therefore, as for grade-separation crossing underground, MRT Line 1 is in the upper position

and the MRT Line 5N is in the lower position.

In this study, it is assumed that the MRT Line 1 station is constructed at the intersection and the MRT Line 5N

passes under the two-level station of MRT Line 1. The height of RL for the MRT Line 5N at the crossing area is

lower than -23.4 m above MSL.

Page 76: Study on Economic Partnership Projects in Developing Countries in

3-30

Figure 3-24 Control Point (Crossing Area with MRT Line 1)

Source: METI Study Team

3) Track Layout

The alignment plan is considered assuming the following track layout. As for station yard layout, it consists of an

elevated station with a pair of separate platforms serving two tracks and an underground station with an island

platform serving two tracks. Gabtoli Station has a scissors crossover for turnback operation. Mirpur 10 Station,

which is a junction station with MRT Line 6, has an emergency crossover considering turnback operation for

accident and trouble. Vatara Station is a junction station with the depot, which has a pair of separate platforms

serving four tracks. In addition, Beraid Station has a track layout in consideration of future extension to the

eastward.

Page 77: Study on Economic Partnership Projects in Developing Countries in

3-31

Figure 3-25 Track Layout Route Drawing (All Elevated Option)

Source: METI Study Team

Page 78: Study on Economic Partnership Projects in Developing Countries in

3-32

Figure 3-26 Track Layout Route Drawing (Partial Underground Option)

Source: METI Study Team

(2) Alignment Plan

1) Design Policy for Alignment Plan

a) Horizontal Alignment

The track alignment follows the center of existing road along the median as much as possible, and land acquisition

and house relocation are minimized by arranging the railway within the road right of way.

b) Vertical Alignment

In terms of vertical alignment, the existing ground level is set to a height of 8.0 m above MSL uniformly.

Moreover, in station section and general section, the required height (required depth) from ground level to RL is

shown in Figure 3-27 and Figure 3-28.

Page 79: Study on Economic Partnership Projects in Developing Countries in

3-33

Figure 3-27 Required Height for Elevated Section

Source: METI Study Team

Figure 3-28 Required Depth for Underground Section

TYPICAL VIADUCT SECTION TYPICAL STATION SECTION

TYPICAL TUNNEL SECTION

Page 80: Study on Economic Partnership Projects in Developing Countries in

3-34

Source: METI Study Team

c) Transition Section

In the transition section from elevated to underground, the civil structure consists of elevated bridge, retaining wall,

excavated structure, box culvert, and shield tunnel. As shown in Figure 3-29 the area is divided in the section

"from the retaining wall to excavated structure", and the road traffic at the ground level is shut off. In case of vertical

gradient of 35‰, the length of “impossible area of crossing” is approximately 500 m.

In addition, the railway structure will occupy a width of about 10 m of the total road width in the transition section.

Based on the above, the position of transition section must be selected so as not to affect the existing road traffic as

much as possible.

Figure 3-29 Transition Section

UNDERGROUND STATION (2 LAYER) UNDERGROUND STATION (3 LAYER)

Page 81: Study on Economic Partnership Projects in Developing Countries in

3-35

Source: METI Study Team

d) Junction Station with Depot (Beraid Station)

The Beraid Station is a junction station with the depot, which has a pair of separate platforms serving four tracks

(two main lines and two depot access lines). In addition, the Beraid Station has track layout in consideration of

future extension.

The track layout for branching to the depot has either “grade separation” or “grade crossing”, as shown in the

following Figure 3-30. It is determined in consideration of the carrying capacity of the main line. Generally,

although grade separation can allow crossing without blocking the opposite train during train operation, it needs

facilities such as elevated bridge. On the other hand, grade crossing can minimize facilities although the carrying

capacity of the main line is reduced.

Although determined in consideration of the carrying capacity of the main line, grade separation is adopted in this

study so that obstruction of train operation in case of future extension may be prevented.

Figure 3-30 Branch Form

Source: METI Study Team

In consideration of a simple junction with the depot, Beraid Station is studied as an elevated station. In case that the

depot access line is considered as a grade separation (depot access line passes under the elevated main line), the

length of the depot access line needs to be about 320 m from the main line crossing part to the depot.

Page 82: Study on Economic Partnership Projects in Developing Countries in

3-36

Figure 3-31 Track Layout of Junction Station with Depot (Beraid Station)

Source: METI Study Team

2) All Elevated Option

The horizontal alignment follows the existing median on the road as much as possible, except in the cantonment

area. Basically, vertical alignment should be based on the height of a typical elevated station; however, in order that

the MRT Line 5N passes over MRT Line 6 and DEE, the vertical height should be higher. Therefore, the height of

Mirpur 10 Station and Banani Station becomes higher at about 9 m compared with the typical elevated station.

Figure 3-32 Outline of All Elevated Option

Source: METI Study Team

12k2

70m

11k0

20m

8k72

0m

6k90

0m

MRT6

9k72

0m

10k9

00m

5k90

0m

4k84

0m

4k70

0m

3k40

0m

2k10

0m

0k40

0m

Dhaka

Elevated

ExpressS9

Notun Bazar

S4

Mirpur10S5

Mirpur14 S6

Kochukhet

S7Banani S8

Gulshan2

S3Mirpur1

S2Dar-Us-Salam

S1Gabtoli

MRT1

S10Vatara

8k50

0m

S11Bara

KathaldiaS12

Beraid

15k0

00m

16k5

90m

Page 83: Study on Economic Partnership Projects in Developing Countries in

3-37

Station locations are planned at intervals of about 1 km. Station location is shown in the following Table 3-12 in

consideration of horizontal alignment, vertical alignment, and junction with other routes.

Table 3-12 Station Location for All Elevated Option

Source: METI Study Team

a) Horizontal Alignment Plan

The salient points of the horizontal alignment plan are described below.

(i) Near CH 1k100 m, between Gabtoli Station and Dar-Us-Salam Station

In order to reduce land acquisition and house relocation, the minimum curve radius R=200 m shall be applied. Land

acquisition and house relocation (gas station), which are shown in the following Figure 3-33, are needed in this

section.

Page 84: Study on Economic Partnership Projects in Developing Countries in

3-38

Figure 3-33 Condition near CH 1 k 100 m

Source: METI Study Team

(ii) Near CH 3k040 m, between Dar-Us-Salam Station and Mirpur 1 Station

In order to avoid the relocation of an 8-storey building at the intersection corner, the minimum curve radius R=200

m is applied at Mirpur 1 intersection

Figure 3-34 Condition near CH 3k040 m

Source: METI Study Team

(iii) Cantonment Area between Kochukhet Station and Banani Station

Although the horizontal alignment is constructed in the existing road space, there is no existing road which connects

Mirpur road with Kemal Ataturk Avenue directly in cantonment area. As mentioned above, in cantonment area,

comparison study of the three routes was carried our as shown in the following Figure 3-35.

Page 85: Study on Economic Partnership Projects in Developing Countries in

3-39

Figure 3-35 Comparison Study of Routes in the Cantonment Area

Source: METI Study Team

The outline of each route is explained as below:

Route A

Kochukhet Station and Banani Station are connected with the shortest distance, and this route is the most desirable route in the view or railway technical design.

Although road width is9 m in Banani DOHS, the route, which needs removal of only the single-sided block facing this road, so that house relocation will be decreased.

Land acquisition in the area and house relocation of army chief’s residence and 6-storey buildings (13 buildings) in Banani DOHS are needed. This has the largest impact to the cantonment area and Banani DOHS among the three routes.

Figure 3-36 Route in Cantonment Area (Route A)

Source: METI Study Team

Page 86: Study on Economic Partnership Projects in Developing Countries in

3-40

Route B

In order to avoid house relocation in Banani DOHS, the route is detoured in the north side of Banani DOHS.

Although there is no house relocation in Banani DOHS, some land acquisition of golf course is needed.

In order to reduce house relocation, S-curve with minimum curve radius of 200 m is applied from the golf course to Banani Station. Seven buildings are relocated at the intersection corner.

Banani Station is situated farthest from the New Airport Road among the three routes. Therefore, the accessibility with BRT Line 3 will be worse.

Figure 3-37 Route in Cantonment Area (Route B)

Source: METI Study Team

Route C

There is the Shadheenata Shoran Road in the south side of Banani DOHS, which crosses the east and west sides of the cantonment area. In order to avoid house relocation in Banani DOHS, the route is detoured on this road.

Road detours largely in the south of Banani DOHS. Therefore, route length between Kochukhet Station and Banani Station is the longest among the three routes.

In order to reduce house relocation as much as possible, the minimum curve radius of 200 m is applied.

Page 87: Study on Economic Partnership Projects in Developing Countries in

3-41

Figure 3-38 Route in Cantonment Area (Route C)

Source: METI Study Team

Table 3-13 Route Comparison in Cantonment Area

Route A Route B Route C

Alignment shape Good Detour

Continuation of curves with small radius

Detour largely

Continuation of curves with small radius

Route length 1.2 km 1.35 km 2.0 km

Construction cost BDT 1,393 million BDT 1,580 million BDT 2,327 million

Land/Building cost BDT 9.3 billion BDT 6.9 billion BDT 6.4 billion

Total cost BDT 10.8 billion BDT 8.5 billion BDT 8.8 billion

Major difficulty in corridor possession

Banani DOHS

Army Chief’s residence

Golf course

Army Chief’s residence

Nil

Minor difficulty in corridor possession

Few Many, but all private Many, but all private

Source: METI Study Team

As mentioned above, although a comparison study of the three routes at the cantonment area was done, each route

for the all elevated option has merits and demerits depending on the viewpoint. Therefore, it is hard to determine the

superiority or inferiority of each route. Accordingly, in this study, Route B, with comparatively small impact on

Banani DOHS and the lowest cost, is adopted. However, in terms of the validity of the alignment from the viewpoint

of train operation, further study is required.

Page 88: Study on Economic Partnership Projects in Developing Countries in

3-42

(iv) Vertical Alignment Plan

The height of each station section is decided and the gradient of station section is set to be level. Then the

vertical alignment connects the height of each station.

In order that the MRT Line 5N can pass over MRT Line 6 and DEE, the vertical height should be high enough in the

crossing areas. Therefore, the height of Mirpur 10 Station and Banani Station becomes about 9 m higher compared

with the typical elevated station.

Figure 3-39 Longitudinal Schematic for All Elevated Option

Source: METI Study Team

3) Partial Underground Option

Similar to the all elevated option, the horizontal alignment follows the existing median of the road as much as

possible, except in the cantonment area. In order to reduce the impact on the cantonment area, the vertical alignment

passes through the underground in this area. Four stations from Kochukhet Station to Natun Bazar Station are

underground stations. The other eight stations are elevated stations.

Page 89: Study on Economic Partnership Projects in Developing Countries in

3-43

Figure 3-40 Outline of Partial Underground Option

Source: METI Study Team

Station is located at intervals of about 1 km in consideration of horizontal alignment, vertical alignment, and

junction with other routes. The station locations from Gabtoli Station to Mirpur10 Station are the same as previously

mentioned in the elevated plan. The station locations are shown in the following Table 3-14.

Table 3-14 Station Locations for Partial Underground Option

Source: METI Study Team

12k9

65m

11k

020m

8k72

0m

7k08

0m

MRT6

9k72

0m

10k9

00m

5k84

0m

4k84

0m

4k70

0m

3k40

0m

2k10

0m

0k40

0m

S9Notun Bazar

S4Mirpur10

S5

Mirpur14S6

KochukhetS7

BananiS8

Gulshan2

S3Mirpur1

S2

Dar-Us-Salam

S1

Gabtoli

MRT1

CantonmentS10

Vatara

S11Bara

KathaldiaS12

Beraid

15k0

00m

16k5

90m

Page 90: Study on Economic Partnership Projects in Developing Countries in

3-44

a) Horizontal Alignment Plan

The horizontal alignment is the same as that of the all elevated option except in the Banani DOHS section.

In Banani DOHS section, the MRT Line 5N runs underground. Therefore, the alignment plan does not need to take

the building block into consideration. In this section, the curve can be reduced and the alignment gets smoother

compared with the all elevated option.

Figure 3-41 Route near Banani DOHS (Partial Underground Option)

Source: METI Study Team

b) Vertical Alignment Plan

As for the elevated section, it is the same as the all elevated option mentioned earlier, i.e., the height of station

section is decided and the vertical alignment connects the height of each station.

As for the underground section, in this study, water leakage from tunnel is gathered together in the station section,

and vertical alignment connects the station section with a gradient of more than 2‰. Vertical alignment does not

form "valley shape" between stations. In addition, the gradient of the station section is level.

Although Kochukhet Station and Gulshan 2 Station are typical two-level underground stations, these stations have

depth of more than three-level underground stations since Banani Station and Natun Bazar Station have nearby

control points. The vertical alignment at the pile foundation section of Banani DOHS can also be made shallower

than the current plan if underpinning construction method is used. However, in this study, not underpinning

construction method but general construction method, which secures a distance of more than 1 D from the pile edge

to the tunnel upper edge, will be applied.

【 About Transition S 】ection

Since the transition section needs a width of about 10 m and road traffic is blocked out in the section of 500 m,

selection of its location should be considered carefully. In the selection of the location of the transition section,

"wide road" and "location which avoids heavily trafficked main intersections" are selected. In this study, two

Page 91: Study on Economic Partnership Projects in Developing Countries in

3-45

transition sections are needed.

Transition Section at WestPoint

Kochukhet Station is planned as an underground station so that the cantonment area may not be affected, and the

transition section is set between Mirpur 14 Station and Kochukhet Station. The width of road (Mirpur Road) in this

section is about 35 m, and since there are no heavily trafficked main intersections, transition section can be set.

In addition, the location of Mirpur 14 Station is decided based on the length of the transition section, and it is located

at about 60 m in the west side compared with the all elevated option.

Figure 3-42 Location of Transition Section (between Mirpur 14 Station and Kochukhet Station)

Source: METI Study Team

Transition Section at East Point

The transition section at the east point is set between Natun Bazar Station and Vatara Station due to the following

reasons:

The depth of Banani Station is about 34 m from the ground because of the pile foundation of Banani DOHS. In addition, since Gulshan Lake is between Banani Station and Gulshan 2 Station, the transition section cannot be set here. Therefore, Gulshan 2 Station must be planned as an underground station.

Since Gulshan Lake and Bir Uttam Rafiqul Islam Avenue are between Gulshan 2 Station and Natun Bazar Station, the transition section cannot be set here. Therefore, Natun Bazar Station also must be planned as an underground station.

Since the width of Vatara Road is about 30 m and there are no main intersections between Natun Bazar Station and Vatara Station, the installation of transition section is possible.

The location of Vatara Station is decided by the length of the transition section, and it is located about 695 m in the

east side compared with the all elevated option.

Page 92: Study on Economic Partnership Projects in Developing Countries in

3-46

Figure 3-43 Location of Transition Section (between Natun Bazar Station and Vatara Station)

Source: METI Study Team

【 About Relation with MRT Line 】1

The MRT Line 5N and MRT Line 1 cross in separated grade underground. In this study, since the priority of MRT

Line 1 is higher than the MRT Line 5N, it is assumed that the MRT Line 1 is constructed in prior. Therefore, as for

grade-separated crossing underground, MRT Line 1 is in the upper position and the MRT Line 5N is in the lower

position. For this reason, the Natun Bazar Station of the MRT Line 5N is located deeper than normal, and the length

of the transition section is longer.

It is necessary to decide by examining further studies whether MRT Line 1 or MRT Line 5N will be located at the

upper position, in consideration of various viewpoints such as the relationship of each route and station, the junction

method of shortcut line in the case of sharing depot, and workability.

Page 93: Study on Economic Partnership Projects in Developing Countries in

3-47

Figure 3-44 Longitudinal Schematic for Partial Underground Option

Source: METI Study Team

3.2.5 Transportation Accessibility Plan (MRT Line 6, BRT Line 3, MRT Line 1)

(1) Development Objects for Intermodal Facility

Transport mobility is employed everywhere from the origin to destination.

Figure 3-45 Image of Transport Mobility

Source:The investigation team made a report based on the Ministry of Land, Infrastructure, Transport and Tourism

In this study, transport mobility has to promote through smooth transit to other modes at MRT stations. Therefore, it

is important to reduce the transfer resistance for the smooth planning of a transfer facility. Also, it should be

promoted modal shift from existing transport modes to the proposed MRT. Especially, transfer resistance is said to

occur in the following cases:

「・The generation of up and down transit movement, ・The distance of transit movement is more than 200 m」

Page 94: Study on Economic Partnership Projects in Developing Countries in

3-48

(2) Junction Station with MRT Line 5

At present, the MRT Line 6 and BRT Line 3 projects are promoted in Dhaka. Also, RSTP identified the MRT Line 1

as a priority project. The three routes are being implemented and planned, and these routes run through Dhaka from

north to south. Thus, the Junction Stations with MRT Line 5N are most important considering the current traffic

condition in Dhaka. However, traffic node is important in order to construct the future transport network of Dhaka.

Moreover, MRT Line 5N is considered necessary in order to connect with BRT Line 3 for the efficient transit city

planning in Dhaka. Thus, the node is shown with “MRT 6”, “BRT 3”, and “MRT 1”. The proposed station location

and transition to other lines are also shown.

1) Junction Station with MRT Line 6 (Mirpur 10)

【Location of the Station】

●Mirpur 10

【Transfer Resistance】

To MRT Line 6 Station

To Stadium

Distance

140 m 200 m

Access Time(Approx.)

2 min 3 min

Total Transit Time (Approx.)

5 min 6 min

Note:80 m/min

【Advantage of Junction station】 ・ By connection of the public

transportation, convenience of public transportation network is improved.

・ The demand can be expected to transfer to MRT Line 6.

【Method of Junction station】

Separation-type connection by

elevated pedestrian deck.

○Both MRT station.○Both elevated station

Page 95: Study on Economic Partnership Projects in Developing Countries in

3-49

2) Junction Station with BRT Line 3 (Banani)

3) Junction Station with MRT Line 1 (Natun Bazar)

【Location of the Station】

●Banani

【Transfer Resistance】

To BRT Line 3 Station

Distance

150 m

Access Time (Approx.)

2 min

Total Transit Time (Approx.)

5 min

Note: 80 m/min

【Advantages of Junction station】 ・ By connection of the public

transportation, convenience of public transportation network is improved.

・ The demand can be expected to transfer to MRT Line 3.

【Method of Junction station】 Separation-type connection by

underground pedestrian tunnel.

○BRT St. and MRT St.○At grade St. and underground St.

【Location of the Station】

●Natun Bazar

【Transfer Resistance】

To MRT Line 1 Station

Distance

Max. 200 m

Access Time(Approx.)

Max. 3 min

Total Transit Time (Approx.)

Max. 6 min

Note: 80 m/min ※The resistance will be reduced by the

【Advantages of station node】 ・ By connection of the public

transportation, convenience of public transportation network is improved.

・ The demand can be expected to transfer to MRT Line1.

【Methods of station node】 ・ Separation-type connection ・ Cross-type connection ・ Connection by underground pedestrian approach

○ Both MRT station○ Both underground St. ○ No exact station location yet

BRT3

East-WestMRT5

BananiDOHS

150m

Page 96: Study on Economic Partnership Projects in Developing Countries in

3-50

(3) Classification of Junction Station

The junction station is classified as "parallel type", "cross type", or "separation type". The type of junction station

should consider the difference of horizontal distance and vertical distance and the restrictions for the type of station

connection. Table 3-15 describes the characteristics of different type of Junction Stations.

Table 3-15 Types of Junction Station

Type Image Horizontal Distance (Advantages)

Vertical Distance (Advantages)

parallel type

Same Platform

It has minimum distance because movement is only in the platform.

None

Parallel Platforms ・Although mobility in the platform has short distance, it is changed by the attachment of stairs and the presence and absence of concourse. (separation platform : a side)

・The mobility in the platform has the maximum distance to transfer the edge spacing.

・The mobility has long distance to transfer to the platform. (separation platform : longitudinal)

・Transfer distance is the difference of mutually positioned platform (either location of platform or move over a side)

・The distance of mobility is decided by the difference of the platform level of both lines.

cross-type

Cross type

(The station overlaps bilaterally)

There are necessary transfers to the platform, concourse, and passage but they are short distances.

The distance of mobility is decided by the difference of platform level.

・In general, the mobility entails short distance in the case of interlaced opposite platform and island platform.

T cross type

(The station closes bilaterally)

Although the distance of transfer to the platform needs to move edge spacing, the distance to another platform is short distance.

L cross type

(The station closes bilaterally)

Mobility of platform needs to transfer from edge spacing, and it is maximum distance.

separation type

Separation type

Although transfer station is near, the stations are connected not only by crossover but also by passageway.

・There are necessary transfers to platform, concourse, and passage.

・Due to the large share of passage, the horizontal distance is maximum distance.

Although the range of mobility is decided by the difference of platform level, in general, separated station has long vertical distance.

Source:Japan Railway Engineer’s Association Report

(4) Facilities for Smooth Transit

In order to transfer smoothly, “improvement of a facility’s scale”, “convenience of facilities”, “ease to follow a

facility”, and “comfort of facilities” have to be considered. Table 3-16 compiles the major points of provision of

Page 97: Study on Economic Partnership Projects in Developing Countries in

3-51

smooth transit facilities,

Table 3-16 Points of View of Facilitation of Transfer Movement

Study Point Examination Item Contents for Discussion Related User

Improvement of a facility’s scale

・Securing the capacity of facility

・ Optimization of facility’s configuration

・The subway station cannot secure the scale for facilities because it is built the space is under the road.

・Measures for capacity during rush/peak period and the method for appropriate facility location should be considered.

・Commuter

Convenience of facilities

・Reduce the transfer resistance

・ Reduce the complicated passenger flow

・The resistance increases because it is not only far for transit, but also there are corners of passage and up and down stairs.

・Thus, it is considered to reduce the resistance method or alleviate the resistance method.

・All users

・Commuter

Clear guidance toward destination

・Easy to understand guide display

・A subway has complex architecture because of constrained condition of the spaces.

・Thus, it might be difficult to understand for an inexperienced user, so information signs for proper guidance should be considered.

・Business

・ Non-commuters, e.g. shoppers

・Commuter

Comfortability for facility users

・ Create the comfortable space

・In the future, it is necessary to develop not only a mere subway station but also comfortable spaces as a community area where people can gather should be considered in the future spaces.

・Business

・ Non-commuters, e.g. shoppers

・Commuter Source:The METI investigation team made a report based on the Japan Railway Engineer’s Association Report

(5) Proposal of Improvement of Transport Mobility

In this study, MRT Line 5N proposes the improvement of traffic nodes with MRT Line 6, BRT Line 3, and MRT

Line 1 as important junction stations. The proposal focuses on the important points of each of the transport nodes

which show the location of the MRT Line 5N Station.

Page 98: Study on Economic Partnership Projects in Developing Countries in

3-52

Table 3-17 Highlights of the Transport Node

List Contents

Reinforcement of public transportation network ・ Synergy of the number of passenger (increasing passenger)

・ Moderation of facility location ・ Enhanced the facility volume ・ Easy to understand guidance

Reduce the transfer resistance ・ Principle of continuity of mobility (transfer fare, train diaphragm)

・ Reduce the complicated passenger flow ・ Convenience (time, length)

Shift to private mode from public mode ・ Measures against traffic jam ・ Create the comfortable space

Safety ・ Measures against traffic jam ・ Traffic manners

Source:METI Study Team

(6) Formulation of Transport Node Improvement Related to Smooth Transfer Movement

Smooth transfer movement requires four functions. The four functions are called “accessibility”, “information

guide”, “queue”, and “transportation node”. The necessity of each function in the different locations is described in

Table 3-18 below.

Table 3-18 Functions for Smooth Transfer Mobility

Function List Station Yard Station Front Passage and Railway Station Plaza

Transport node Improvement of the station front

Parking area, depot ○ △ Bicycle parking area ○ ○

Accessibility Escalator ◎ Elevator ◎ Banister ◎ ○ Braille for the feet ◎ ◎ ◎ Audio guide ◎ ◎ ◎ Removal of the mismatch in height at joint

◎ ◎ ◎

Disabled ◎ ○ Information guide

Train information guide ○ Transfer and site map for facilities

◎ ◎

Information guide board in multiple languages

◎ ○ △

Queue Bench ◎ ○ Waiting space ○ ○ Roof of depot (rain cover, blind)

○ ○

◎:Essential、○:Necessary、 :Consideration Source:METI Study Team

(7) Large-scale Development of Station Plaza/Improvement of Station Plaza

There is a need to develop sub-urban transportation hub at MRT terminal stations to protect the traffic flow to the

Page 99: Study on Economic Partnership Projects in Developing Countries in

3-53

city center. It is also necessary to develop public transportation hubs in city center such as junction stations, city

market, and business center for smooth transit. In a suburban station plaza, construction of a terminal facility

should be secured during the planning phase and it should be set as an aggregation of existing transport. Moreover,

it is necessary to focus on the protection of traffic flow to the city center.

Station front is considered not only a transportation node but also an amenity such as a place to gather citizens. Thus,

the characteristics and necessary services of the station front in the future should be considered.

Table 3-19 List of Expected Developments

Station Name Station Plaza Development

Smooth Transfer for Facilities

Station Plaza Existing Station and Relocation of Bus Stop

Utilization of Undercrossing/ Tunnel

Mirpur 10

(MRT 6) ○ ○ ○ ○

Banani

(BRT 3) ○ ○ ○

Natun Bazar

(MRT 1) ○ ○

Gabtoli

(Bus Terminal)

○ ○ ○ ○ ○

Source:METI Study Team

3.2.6 Train Operation Plan

The train operation of MRT Line 5N is planned taken into account the road traffic condition during peak hours in

Dhaka City area and the performance of MRT, in addition train operation is planned the required train formation,

number of train sets and frequency of train operation for each year.

(1) Maximum Train Operation Speed

The maximum train operation speed of the Line 5N was set to 100 km/h in consideration of civil structure, average

distance between stations, and energy conservation.

(2) Speed Restriction Curve

Speed restriction at curve section is designed for the prevention of rollover accident and comfortable ride.

1) Cant to be Installed for Curves of Railways

The speed restriction of the curve section is set according to the following basic formula, although the speed limit

for radius below 230 m is set referring to other case.

Page 100: Study on Economic Partnership Projects in Developing Countries in

3-54

Table 3-20 Speed Restrictions of Curve

Radius (m) Maximum Speed (km/h) 160 45 200 50 230 60 250 70 300 75 350 80 400 85 450 90 500 95

Over 550 100 Source:METI Study Team

2) Speed Limit for Turnout and Incidental Curve

Cant is not provided in turnout and incidental curve sections and speed restriction is computed according to the

following formula.

Table 3-21 Speed Restrictions of Switch

Radius (m) Maximum Speed (km/h) 100 25 125 30 150 35 175 35 200 40 225 45 250 45 300 50 350 50 400 55 450 60 500 60 550 60 600 65

Source:METI Study Team

(3) Stopping Time of Stations

The following

Table 3-22 shows the classification of stopping time of stations in accordance with the number of passengers at the

station. The stopping time at these stations involves turnback time.

Basic formula

V= 4.3×√R

V: Speed (km/h)

R: Radius (m)

Basic formula

V= 4.3×√R - 20

V: Speed (km/h)

R: Radius (m)

Page 101: Study on Economic Partnership Projects in Developing Countries in

3-55

Table 3-22 Classification of Stopping Time

Daily Passenger Stopping Time (s)

Over 100,001 45

70,001-100,000 40

40,001-70,000 35

20,001-40,000 30

Under 20,000 25 Source:METI Study Team

(4) Turnback Time of Station

There are scissors crossing for turning at Gabtoli and Vatara terminal stations. Turnback time at the terminal stations

is different between Gabtoli and Vatara because the train needs shunting to the lead track in Vatara. Turnback time

depends on the headway, turnback facilities, passengers boarding/alighting time, point switching time, and drivers’

transit time.

1) Turnback Time at Gabtoli Station

Scissors crossing is installed at the turnout of Gabtoli Station for the turnback of the main line. Trains pass through

the scissors crossing before arrival at the platform in this layout.

a) Turnback Operation using One-sided Platform

The required minimum passing through time at the scissors crossing is 1 min and 30 s and in addition to that, more

time for getting on and off the train for passengers should also be added. In case of headway of 3 min 50 s, the

stopping time for train getting on and off can be set to 2 min 20 s.

Figure 3-46 Turnback Operation Using One-sided Platform

Source:METI Study Team

b) Turnback Operation using Both-sided Platform

In case of short headway, train operation uses both-sided platform. As shown in the following figure, the stopping

Line No,1

Line No,1

90sec. 90 sec.2min.20sec. 2min.20sec.

3min.50sec. 3min.50sec.

Line No,2

Page 102: Study on Economic Partnership Projects in Developing Countries in

3-56

time of getting on and off the train for passengers is 1 min, and the headway of 2 min can be allowed by

simultaneous approach and exit of the train.

Figure 3-47 Turnback Operation Using both-sided Platform

Source:METI Study Team

2) Turnback Time at Vatara SBeraid

The turnout of Vatara Station is installed with scissors crossing for turnback. Trains pass through the scissors

crossing after arrival at the platform in this layout.

a) Turnback Operation using One-sided Turnback Line

Figure 3-48 One-sided Turnback Line Operation

Source:METI Study Team

The following Table 3-23 shows the normal turnback operation pattern. The required turnback time is 2 min 18 s

in this case. Minimum headway of using one-sided turnback line operation is 2 min by the simultaneous approach

and exit at 2RT and 3RT positions.

Line No,2

Line No,1

Line No,2

Line No,1

30sec.

2min.

30sec.1min. 30sec. 1min.

2min. 2min.2min.

1min.

4RT

6RT

5RT

3RT

2RT

1 RT

Line No,1

Line No,2

Page 103: Study on Economic Partnership Projects in Developing Countries in

3-57

Table 3-23 Minimum Headway of One-sided Turnback Line Operation

Position Required Time (s) Remarks Arrival at platform (3RT) - Scissors crossing 3RT→5RT 53 5RT stopping time 12 Driver rides on both end car 5RT→2RT 43

Arrival at platform, boarding and alighting time (2RT)

30

Total 138 2 min 18 s Source:METI Study Team

b) Turnback Operation Using Both-sided Platform

The minimum headway of both-sided turnback line operation is examined in this subsection.

Figure 3-49 Both-sided Turnback Line Operation

Source:METI Study Team

In the case of using both-sided turnback line, the minimum headway will be 4 min 50 s due to the restricted

function of the scissors crossing.

Table 3-24 Minimum Headway of Both-sided Turnback Line Operation

Position Required Time (s) Remarks Arrival at platform, alighting time (3RT) 27 Scissors crossing 3RT→ 5RT 53 5RT stopping time 137 A driver rides on the end car 5RT→2RT 43 Arrival at platform, boarding time (2RT) 30

Total 290 4 min 50 s Source:METI Study Team

(5) Scheduled Speed and Headway of Train

In order to calculate the scheduled speed between Gabtoli Station and Berail Station, the “Open Track" simulation

software is used to a create train performance curve. The condition of the simulation is shown in Table 3-25.

4RT

6RT

5RT

3RT

2RT

1 RT

Line No,1

Line No,2

Page 104: Study on Economic Partnership Projects in Developing Countries in

3-58

Table 3-25 Condition of “Open Track” Simulation

Item Specification Model of EMU JR-East E233 Type Load condition 180% congestion ratio Acceleration ratio 0.92 m/s2 Deceleration for service brake 0.97 m/s2

Source:METI Study Team

The scheduled speed of the eastbound train and westbound train is estimated at 33.0 km/h according to the

simulation. The following Table 3-26 summarizes the simulation results of the scheduled speed and the peak hour

transportation capacity (PHPDT).

Table 3-26 Headway and Required Train Sets

Year 2027 2030 2035 2040 2045 2050 2055

PHPDT 27,000 27,000 27,000 32,500 38,000 43,500 49,000

Train Sets (Car) 6 6 6 6 6 6 6

Headway 3 min 50 s 3 min 50 s 3 min 50 s 3 min 10 s 2 min 40 s 2 min 20 s 2 min

Required Train Sets

19 19 19 22 26 30 35

Spare Train Sets 3 3 3 3 3 3 3

Total Train Sets 22 22 22 25 29 33 38

Total Cars (Car) 132 132 132 150 174 198 228 Source:METI Study Team

From the opening year of MRT East-West Line in 2027 and until 2035, headway is planned to be 3 min and 50 s.

After 2035, the scheduled headway will be shorter and becomes 2 min.

(6) Service Frequency at Peak Hour and Off-peak Hour

The following Table 3-27 shows the time zone of peak hour and off-peak hour at the Dhaka urban area.

Table 3-27 Peak Hour and Off-peak Hour of Road Traffic

Source:METI Study Team

Time Zone Hour Congestion Ratio per

hour of Road Traffic Condition

6:00 a.m. – 8:00 a.m. 2.0 - Off-peak hour

8:00 a.m.–10:30 a.m. 2.5 13% Morning peak hour

10:30 a.m.– 4:30 p.m. 6.0 9 -11% Daytime

4:30 p.m. – 7:00 p.m. 2.5 10% Evening peak hour

7:00 p.m. – 00:00 5 - Off-peak hour

Total 18.0

Page 105: Study on Economic Partnership Projects in Developing Countries in

3-59

1) Headway and Round Trips in 2027

On weekdays, headway is set at 3 min and 30 s during peak hour, 5 min during daytime, and 5 to 10 min during

off-peak time, and the number of round trips will be 179 trains a day. Headway on weekends and holidays is set at 7

min during daytime, and the number of round trips is 144 trains a day.

Figure 3-50 Train Operation in 2027

Source:METI Study Team

2) Headway and Round Trips in 2055

On weekdays, headway is set at 2 min during peak hour, 5 min at daytime, and 5 to 8 min during off-peak time, and

the number of round trips will be 282 trains a day. Headway on weekends and holidays is set at 5 min during daytime,

and the number of round trips is 192.

Figure 3-51 Train Operation in 2055

Source:METI Study Team

3.2.7 Rolling Stock

(1) Basic Specifications Based on Technical Standards

The summary of the explanations about rolling stock described in the "Bangladesh MRT technical standards"

established by DTCA and JICA is shown below. The MRT East-West Line and MRT Line 6 follow these technical

standards.

Headway 3′50″

40 tripCongestion ratio     

180%

Headway 7’~10’

35 trip

AM6:00 8:00 10:30 PM4:30 7:00

72

Headway7’~10’

14 trip

WEEK DAY

WEEK END

Headway7′

50 trip

Headway 3’50”

40 trip

Headway7′

95 trip

Headway7’~10’

14 trip

Headway7’~10’

35 trip

Headway 2′

75 tripCongestion ratio     

180%

Headway 5’~8’

73 trip

AM6:00 8:00 10:30 PM4:30 7:00

72

Headway5’~8’

17 trip

WEEK DAY

WEEK END

Headway5′

72 trip

Headway 2’

75 trip

Headway5’~8’

373trip

Headway5’~8’

17 trip

Headway5′

132 trip

Page 106: Study on Economic Partnership Projects in Developing Countries in

3-60

【 "Bangladesh MRT technical standards"(Abstract)】

1) Rolling Stock Gauge

The rolling stock gauge shown in Figure 3-52 below shall be adopted.

Figure 3-52 Rolling Stock Gauge

2) Weight of Rolling Stock

The weight of the rolling stock per one pair of wheels shall be 16 t at the maximum under the stopped and

loaded condition. For the civil design, nominal load which is used for the structure design shall adopt the

condition of the fully loaded train which consists of 20 m long cars which have 4 axles with 16 t of each

axle load.

3) Car Body Material

Aluminum alloy or stainless steel shall be used as the main material of rolling stock car body structure.

4) Brake Device

Rolling stock shall be equipped with brake devices that comply with the following standards:

a) Shall be able to decelerate or stop the rolling stock without failure; b) Shall be applied to all the cars in conjunction with the control from the crew cabin; c) Shall be free from failure caused by vibration, impact, and other factors; d) Shall be able to apply braking force continuously; e) Shall be applied automatically at the time when vehicles are separated; f) Shall be able to bring a train to a rapid stop; and g) Shall be able to prevent the train from departing when the braking effort would be adversely

affected without securing the breaking power supply source.

5) Structure of Car Body

Rolling stock car body shall be made sturdy with enough strength and be capable of withstanding train

operation.

Facilities to prevent passengers on the platform from falling into the gap between coupled cars shall be

Page 107: Study on Economic Partnership Projects in Developing Countries in

3-61

provided at the coupling portion of the railway rolling stock. However, this shall not apply to cases where

facilities are in place on the platform to prevent passengers from falling into the gap.

6) Structure of Driver’s Cabin

Driver’s cabin shall be partitioned from the passenger room. Driver’s cabin shall have a partition with a

door so that passengers cannot easily come into contact with the equipment in the cab. An exterior

entrance/exit for the crew shall be provided.

7) Structure of Passenger Car

The height of the bottom border of the openable window at the side surface of seat or behind a seat in the

passenger room shall be 800 mm or more from the floor surface.

One or more wheelchair spaces shall be provided in each passenger train.

The passenger car shall provide for the appropriate number of passenger seats. Seating capacity shall be

calculated by dividing the seat width by the length occupied by a passenger. The length occupied by a

passenger shall be 430 mm or more.

The standing capacity shall be calculated by dividing the floor area, where the effective width of not less

than 550 mm and the effective length of not less than 1,900 mm are secured from the seat areas and the

area of 250 mm from the front end of the seats are excluded in the passenger cabin floor area, by the area

occupied by one passenger. The area occupied by one passenger shall be 0.3 m2.

8) Structure of Passenger Entrance Door

Doors shall be provided on both sides of the passenger cars.

The effective width of the doors shall be 1,300 mm or more and the effective height shall be 1,800 mm or

more. A device for automatic door operation shall be provided for the doors. Doors shall have a structure

which prevents departing until doors are closed.

9) Rolling Stock Accessory Devices

Rolling stock shall be equipped with the following facilities;

a) A sign device on which the departure sign is performed by the conductor, and transmission and receiving shall only be performed reciprocally among crew members.

b) Communication device (Excluding the rolling stock operated as a single car.) c) Whistle device (At the front end of the first car of trains) d) Onboard public address system which shall be enabled to guidance information to all rooms

on passenger cars. Emergency alarm device e) Emergency stopping device f) Marker light (White-color front marker lights shall be provided and the rear markers should

be red lamps and shall be capable of shining from the rear at night) g) Onboard guidance equipment which provides the information relating to the train operation,

etc. by displaying characters and by audio broadcast. h) Destination guidance devices which displays the destination and type of service of the train

on the side of the car body.

10) Countermeasures Against Rolling Stock Fire

Car body shall be made of incombustible material and flame-retardant material.

Page 108: Study on Economic Partnership Projects in Developing Countries in

3-62

Incombustible material: Roof, External sheeting, Passenger room ceiling, Inside panel, Floor panel, Under floor surface, Under floor equipment box

Flame-retardant material: Floor covering, Filler material under floor covering, Seat, Window shade, Gangway bellows

Others: Roof top surface shall be covered with a flame-retardant insulated material. Equipment and hardware mounted to the roof shall be insulated from the car body or shall be covered with a flame-retardant material.

11) Train Operation

Train shall be operated under the ATC system as the regular method of train operation.

Source: Bangladesh MRT technical standards (DTCA, JICA)

(2) Rolling Stock of the MRT East-West Line

From ease of maintenance and energy conservation measures points of view, composition of the recent mainstream

commuter trains in the urban area in the world is as follows:

a) The stainless steel, which has corrosive resistance, is used as the main material of the car body

because painting is not needed.

b) The bolsterless bogie, with few component parts and reduced wear parts, is adopted.

c) As main motor, an AC motor, which does not have contacted parts and is maintenance-free except for

the axle bearing, is adopted. Main circuit is controlled by inverter.

The rolling stock of MRT Line 6 follows the Technical Standards of the MRT in Bangladesh, and is adopting the

mainstream composition of the latest commuter train such as Variable Voltage Variable Frequency (VVVF) inverter

control and regenerative braking system. The specification of this train is the typical urban commuter railway of

recent years.

For the MRT East-West Line, the rolling stock whose basic specifications are similar to that of MRT Line 6 is

proposed. By using similar rolling stock, facilitating the technology transfer from the MRT Line 6 engineer and

information exchange for improvement of maintenance technology with the MRT Line 6 engineer are expected.

The basic specifications of the rolling stock proposed for the MRT East-West Line is shown in Table 3-28 below.

Table 3-28 Basic Specifications of the Rolling Stock of the MRT East-West Line

Item Description

Train Configuration (Line 5N Phase 1) 6-car train: Tc-M-M-M-M-Tc

Gauge 1,435 mm

Car Dimension End car: 20,300 mm (L) x 3,000 mm (W) x 4,100 mm (H)

Middle car: 20,000 mm (L) x 3,000 mm (W) x 4,100 mm (H)

Passenger Capacity End car: Seated:45, Standees (Nominal):108, (Maximum): 153

Middle car: Seated:54, Standees (Nominal):112, (Maximum): 166

Performance Maximum running speed: 110 km/ h

Acceleration: 3.3 km/h/s (0.92 m/s2)

Page 109: Study on Economic Partnership Projects in Developing Countries in

3-63

Deceleration Normal: 3.5 km/h/s (0.97 m/s2)

Deceleration Emergency: 4.5 km/h/s (1.25 m/s2)

Minimum Curve Radius Main line (Unavoidable Case):R=160 m, Depot: R=100 m

Maximum Gradient 35 ‰

Car Body Material Stainless steel / Alminium

Side Entrance 4 doors/car each side, 1,300 mm (W) x 1,850 mm (H)

Electric Power Supply Catenary, DC 1,500 V

Traction Motor Squirrel-cage rotor type, three phase induction motors

Controller VVVF inverter control (Insulated Gate Bipolar Transistor: IGBT)

Brakes Electric Command Brake (Regenerative Brake)

Operation Protection System Automatic Train Control (ATC)

Source: METI Study Team

Figure 3-53 Car Dimension

Source: METI Study Team

Middle Car

End Car (Colored portion indicates the standees area)

Page 110: Study on Economic Partnership Projects in Developing Countries in

3-64

Figure 3-54 Facilities of Rolling Stock

Source: METI Study Team

The number of trains to be purchased for MRT Line 5N phase 1 based on the train operation plan is shown in

Table 3-29.

Table 3-29 Basic Specifications of the Rolling Stock of the East-West Line

Year 2027 2030 2035 2040 2045 2050 2055

Number of required train sets (6-car train) 22 22 22 25 29 33 38

Number of cars 132 132 132 150 174 198 228

Completion year of procurement 2027 2039 2044 2049 2054

Number of train sets to be procured 22 3 4 4 5

Number of cars 132 18 24 24 30

Source: METI Study Team

3.2.8Depot Plan

(1) Basic Concept of the Depot Plan

The main function of the depot is train storage and train maintenance. The periodical maintenance can be

categorized to light maintenance and heavy maintenance. Light maintenance is carried out every several days or

every several months. Heavy maintenance is carried out every four years or every eight years. For heavy

maintenance, the large-scale facilities for dividing vehicles into the body and bogie, and disassembling parts are

needed. The depot of the MRT East-West Line is planned based on the following concept:

a) The depot is constructed nearby or along the railway line of MRT Line 5N Phase 1. The depot

mainly consists of the train storage tracks, a main workshop (factory), the inspection tracks for the

train maintenance and inspection, a DMTC operation center, an administrative building, a depot

(Interior)

Entrance Dimension1800x1300 or more

Wheel Chair Space

Onboard Guidance Equipment

Exterior Entrance/Exit for crew

Height of bottom border of window: 800mm or more from the floor

Seat width: 430mm or more

Facility to prevent passengers falling

Stainless Steel

Bolsterless Bogie Inverter Motor

Single Arm Pantograph

Auxiliary Power Unit VVVF inverter controller

Destination Guidance Device

Page 111: Study on Economic Partnership Projects in Developing Countries in

3-65

control room, the office buildings, the warehouses, and a traction substation. In the DMTC operation

center, OCC which controls the train operation of the MRT East-West Line is installed.

b) When the MRT Line 5N Phase 2 is extended, the capacity of the abovementioned depot is expanded

and the additional trains of MRT Line 5N Phase 2 are stored and maintained in the depot.

c) When MRT Line 5S is extended, the route length of the MRT East-West Line becomes relatively

long. Thus, by taking into account the efficiency of train operation, it is recommended that an

additional satellite depot which has storage tracks and light maintenance facility for the additional

trains of MRT Line 5S is constructed along the railway line of MRT Line 5S. The facilities for heavy

maintenance are not installed in this satellite depot. Heavy maintenance of the additional trains for

MRT Line 5S is carried out at the main workshop in depot.

d) A connecting line between MRT Line 6 and the MRT East-West Line is not constructed. Trains of the

MRT East-West Line are stored in its own depots and heavy maintenance is carried out in the main

workshop.

(2) Location

During the site survey, five candidate sites of the depot area could be found nearby or along the railway line of

Line5N Phase 1. Based on the evaluation described in Table 3-30 below, candidate No. 5 is selected as the location

of the depot of the MRT East-West Line.

Figure 3-55 Candidate Sites of the Main Depot Area

Source: METI Study Team

Table 3-30 Candidate Sites of the Depot Area

Candidate Location Condition Evaluation

1 West side of the Turag River and north side of Dhaka-Aricha Highway

A 200 m long bridge is needed to go over the Turag River.

Bridge construction cost is a disadvantageous point. 2 West side of the Turag

River and south side of Dhaka-Aricha Highway

3 South side of the Gabtoli Bus Terminal

Currently this area is a grassland of 30 ha or more. This area is categorized as

conservation area according to the structure plan prepared by the Ministry of Housing and Public

This area is not appropriate because of the conservation area.

Page 112: Study on Economic Partnership Projects in Developing Countries in

3-66

Works.

4 East side of urban or residential area North side of the East-West

Line

A lot of ponds are located.

Large-scale reclamation is needed for the depot construction.

As a result of an investigation of landowner, it was judged that land acquisition of this area is difficult.

5 Southwest side of the new residential development area which is sandwiched between Balu River and Shitalakkha River. South side of the

East-West Line

This area is being divided from Dhaka city area by Balu River and land development is not progressing at present. Northeast side of this candidate is a

planned site of the large scale residential development.

This area is selected as the depot site..

Source: METI Study Team

Candidates 1, 2 A 200 m long bridge is

needed.

Candidate 3 This area is

categorized as a conservation area.

Candidate 4 A lot of ponds are

located.

Candidate 5 There is no bridge

crossing the Balu River on the route and a land

development is not progressing.

Source: METI Study Team

(3) Train Maintenance Plan

In relation to the estimation of the required scale of depot and workshop, train maintenance plan is shown below.

According to the technical standards, performance of three kinds of periodical maintenance (every three months,

every four years or within 600,000 running-km, every eight years) is requested.

Page 113: Study on Economic Partnership Projects in Developing Countries in

3-67

【 "Bangladesh MRT technical standards"(Abstract)】

Periodic Inspection of Rolling Stock

Inspection of the rolling stock shall be carried out periodically within the respective period specified

in the table pursuant to the pre-determined items and methods according to their type, structure and

usage.

Kind of Rolling Stock

Period

Inspection of Condition And Function

Inspection of Important and Critical part Overall inspection

Passenger 3 months 4 years, or the period of traveled mileage of the rolling stock being not exceeding 600 thousand km, of which shorter period is selected.

8 years

Source: Bangladesh MRT technical standards (DTCA, JICA)

In reality, daily maintenance and unscheduled maintenance are added to the abovementioned maintenance.

Table 3-31 Train Maintenance Plan

Kinds of Inspection

Cycle Description Required

Period Work Area

Daily Inspection

Every several days

Visual check and self-diagnosis monitor check

2 hr Storage Tracks

Monthly Inspection

Every three months

It is carried out without disassembling vehicles. Inspection by test equipment. Replacement of the consumables.

1 day Light Maintenance Area

Intermediate Inspection

Every four years or within 600,000 running km

The bogie is separated from the car body. The power generating equipment of vehicles, running device, and the brake equipment are disassembled and inspected and maintained.

24 days Heavy Maintenance Area

Overhaul Every eight years

The bogie is separated from the car body. All equipment are disassembled and inspected and maintained.

30 days Heavy Maintenance Area

Unscheduled Maintenance

Occasional Repair of unexpected failure --- Light Maintenance Area

Source: METI Study Team

(4) Required Capacity of the Depot

According to the train operation plan, the number of required train sets for transport service of MRT Line 5N Phase

1 is 22 train sets (6-car train) in the opening year and 38 train sets (6-car train) in the future (2055). During the

construction of MRT Line 5N Phase 1, a depot which has a capacity for storage and maintenance of 38 (6-car train)

train sets which is required in the future is constructed.

Meanwhile, the depot capacity itself will be expanded in a phased manner in accordance with the extension of MRT

Line 5N Phase 2 and MRT Line 5S. According to the estimation shown below, in the ultimate stage of the MRT

East-West Line, the depot shall have the capacity of heavy maintenance for 23 trains of MRT Line 5S, in addition to

the capacities for storage and maintenance of the 38 train sets (including 8-car train) of MRT Line 5N Phase 2. This

Page 114: Study on Economic Partnership Projects in Developing Countries in

3-68

estimation referred to the demand forecast done by RSTP.

Figure 3-56 Number of Train Set after Future Extension

Future Extension

Number of Required Trains (2055)

Description

Accommodated Location

Operation Spare Total Storage Heavy Maintenance

MRT Line 5N Phase 2

18+17 3 38

6-car train x 19 sets 8-car train x 19 sets

Depot Main Workshop (MWS)

MRT Line 5S

14+7 2 23 6-car train x 23 sets

Satellite depot

Main Workshop

Total (5) 56 (6) 5 (7) 61 61 train sets Depot:

38 train sets

MWS: 61 train sets

Source: METI Study Team

Furthermore, the depot of the MRT East-West Line can be shared with MRT Line 1 and the trains for MRT Line 1

partial operation can be accommodated in the depot of the MRT East-West Line. Although MRT Line 1 partial

Page 115: Study on Economic Partnership Projects in Developing Countries in

3-69

operation is expected between the vicinity of the airport and business district, the planned location of the MRT Line

1 depot is far from the section of this partial operation. Therefore, stabling and maintenance of trains are problems

for the MRT Line 1 partial operation. Sharing of the depot of the MRT East-West Line can contribute to the

implementation of the MRT Line 1 partial operation. There are three plans to accommodate the MRT Line 1 trains

in the depot as follows:

a) From the start of operation of MRT East-West Line to when the 1st trains come around 2039, 22

train (6-car train) sets are accommodated in the depot which has a capacity of 36 trains (6-car train).

If the length of train of MRT Line 1 is less or equal to 6-car train, 16 train sets can be stored in the

depot in this period.

b) If MRT Line 1 adopts 8-car train, a depot which adopts a layout of the ultimate stage and has a

capacity of 36 trains (8-car train) is constructed in the construction period of phase 1 of MRT

East-West Line 5N.

(8) When the number of trains for partial operation of MRT Line 1 is more than 16 train sets or when the

depot construction of MRT Line 1 is overdue, a layout which exceeds the capacity of the depot for

ultimate stage is applied. When the transport service of Line 5N Phase 1 is started, 36 train sets of MRT

Line 1 can be accommodated in the depot. Even if the number of train sets of MRT East-West Line is

increased in future, at least 20 train sets of MRT Line 1 can be stored in this depot.Depot Layout

The maintenance tracks are planned so that train maintenance can be carried out for 8-car train. Since the MRT

East-West Line has a lot of opportunity to add train, a space and exclusive track for train installation by trailer are

prepared in the depot. Facilities shown in Table 3-32 below will be installed in each track.

Table 3-32 Ancillary Facilities of Tracks in the Depot

Track Function Ancillary Facilities

Outdoor

Storage tracks Storage of the train Train crew access platform, Shed (roof) of storage tracks

Train-wash lines Washing the train Automatic train washing machine,Platforms for manually washing

Wheel turning track Making the worn and deformed wheel become smooth

Ground wheel lathe, Shed

MV storage tracks Storage of the maintenance vehicles Maintenance vehicle shed Train installation track Carrying of the vehicles conveyed

by the trailer from the harbor Unloading area Catenary is not installed for crane operation.

Test track Test run for new delivered rains Test run after intermediate inspection or overhaul

Straight track with length of 1,280 m

In the MWS

Air blast track Cleaning the under floor equipment by blasting compressed air

Air blast machine

Light maintenance track For monthly inspection and unscheduled maintenance

Inspection deck on roof, Inspection pit

Heavy maintenance track For intermediate inspection and overhaul

Lifting jack or overhead travelling crane

Source: METI Study Team

Page 116: Study on Economic Partnership Projects in Developing Countries in

3-70

Inspection Deck on Roof, Pit Heavy Maintenance Track Overhead Travelling Crane

Source: METI Study Team

Figure 3-57 Depot Layout

(A) MRT Line 5N Phase 1 Construction Area

(B) Ultimate Stage (Depot for Whole Line Operation of the East-West Line)

From MRT Line 5N Phase 1, 28 storage tracks, 2 train-wash lines, 1 shunting track and wheel turning track are

extended for 8-car train. (Red colored tracks)

Area: 24.8 ha Storage capacity: 38 train sets (6-car train)

Page 117: Study on Economic Partnership Projects in Developing Countries in

3-71

(C) Option: Storage Capacity Expanding Plan for Depot Shared Use with MRT Line 1

Compared with the ultimate stage, an additional land area of 1.6 ha is required. 20 storage tracks are extended and

storage capacity for 20 trains is increased. (Red colored tracks)

Source: METI Study Team

3.2.9Railway System Plan

(1) Power Equipment

1) Power Receiving System

In Bangladesh, in order that the electric power supply meets the demand, electrical infrastructure improvement such

as installation of electric generating plant and improvement of electric power distribution network shall be

undertaken. The electric power sector in Bangladesh is divided into three categories, i.e., power generation, power

transmission, and power distribution.

Area: 24.8 ha Storage capacity: 38 train sets (8-car train)

Area: 26.4 ha Storage capacity: 58 train sets (8-car train)

Page 118: Study on Economic Partnership Projects in Developing Countries in

3-72

The MRT East-West Line receives electric power from the power distribution company. Seven distribution

companies exist in Bangladesh and the two companies of Dhaka Electric Supply Company Limited (DESCO) and

Dhaka Power Distribution Company (DPDC) are distributing electric power to Dhaka. The MRT East-West Line is

located in the area covered by DESCO.

Figure 3-58 Demarcation of Distribution Companies

Note) DESCO: Dhaka Electric Supply Co. Ltd DPDC: Dhaka Power Distribution Company Ltd BPDP: Bangladesh Power Development Board WZPDC: West Zone Power Distribution Company Ltd NWZPDP: North West Zone Power Distribution Company Ltd SZPDC: South Zone Power Distribution Company Ltd REB: Rural Electrification Board

(REB distributes electric power to the rural area of the whole country) Source: CRM Practices in the Electricity Distribution Sector in Bangladesh (LIRNEasia, March 2013)

Generally, there are two methods of power supply for railway system, namely:

a) The railway company receives electric power from the power distribution company at its respective

traction substations directly.

b) The railway company receives electric power from the power distribution company at its receiving

substation and distributes electric power to the respective traction substations.

The former system is cheap compared with the latter system, and can respond flexibly to future extension. However,

the former system requires that the electric power company has many suitable power lines and the power situation is

stable. From the viewpoint of power situation in Dhaka, the MRT East-West Line applies the latter system. The

power receiving method from DESCO shall take into account of the electric power system and its stability, and will

be decided by further discussion with DESCO. Along the MRT Line 5N phase 1 route, DESCO has the substations

at Mirpur and Bashundhara which is located at about 2 km north from Vatara.

Bangladesh (Except area of REB)

Dhaka (Except area of REB)

Page 119: Study on Economic Partnership Projects in Developing Countries in

3-73

2) Traction Substation

The required electric power for the electric railway system consists of two categories. One is to operate the train,

which is called the “electric power for train”. The other category is referred to as the “electric power for services”,

which is required for the electromechanical equipment (lighting, ventilator, air conditioner, lift and escalator, office

machinery) in the station, substation, and depot.

In each traction substation, the electric power for train is transformed from 33 kV into DC 1,500 V and is supplied to

the feeder lines. And the electric power for services is transformed into 6.6 kV and is supplied to the electric rooms

in the station and depot by double system.

Generally, the installation interval of the traction substation of the railway system of the DC 1,500 V is about 4~5

km. Since the route length of MRT Line 5N Phase 1 is about 16 km, three traction substations are installed in the

Minpur 1 Station, Banani Station and Vatara station. And another traction substation is installed at the depot.

3) Transmission and Distribution Plan

・ An electric power supply adopts reliable double system. It has composition which can operate usually

even if one system breaks down.

・ The receiving substation of the railway company constructed in the depot receives electric power of 132

kV 50 Hz by double system from the substation of DESCO. The receiving substation transforms electric

power into 33 kV.

・ In the traction substations at Minpur 1 station, Banani Station, Vatara station, and depot, electric power

for train and electric power for services are transformed into 1,500 V and 6.6 kV and supplied to the

feeder lines and the electric rooms, respectively.

・ In the electric room, in order to distribute low voltage power to the electrical facilities in the station, AC

6.6 kV which is received from the high voltage line is transformed into 220 V and 440 V.

Page 120: Study on Economic Partnership Projects in Developing Countries in

3-74

Figure 3-59 Transmission and Distribution Plan

Source: METI Study Team

4) Supervisory Control and Data Acquisition (SCADA)

Centralized monitoring and supervision for the electric system is carried out at OCC through the installed SCADA

system. SCADA system can monitor and supervise the equipment installed in the receiving substation, traction

substations, and electric rooms by using the remote supervision and control system which is connected through the

communication line.

5) Catenary System

In accordance with the Technical Standards for the MRT in Bangladesh, a simple catenary system or a feeder

messenger catenary system is adopted.

Simple Catenary System Feeder Messenger Catenary System Overhead Conductor Rail System

Source: METI Study Team

Messenger

Trolley wire

Feeder Line

Feeder Messenger

Trolley wire

Page 121: Study on Economic Partnership Projects in Developing Countries in

3-75

6) Regenerative Electric Power Storage Apparatus

For the countermeasure against abeyance of the regenerative breaking system of the train, and by taking into

consideration the electric power condition of Dhaka, installation of the regenerative electric power storage device is

proposed. The regenerative power storage device has various types such as the one which uses a lithium-ion battery,

an electric double layer capacitor (EDLC), and a nickel metal hydride battery.

This apparatus can store the regeneration electric power of the surplus currently which was consumed as heat

heretofore. And it can recycle electric power by emitting electric power at the needed time. Furthermore, it

prevents regeneration loss, provides voltage drop compensation, and executes peak cut at transfer substations.

7) Power Receiving Capacity

The basic units of electric power consumption of train of Japanese railway in 2013 are shown in Table 3-36 below.

These Japanese railway companies are operating the energy conservation commuter trains which are similar to the

proposed trains of the East-West Line in this Project. Basic unit of electric power consumption of train is calculated

by dividing the electric power consumption (kWh) by car-running kilometer (car-km).

Table 3-33 Examples of Basic Unit of Power Consumption of Train

Basic Unit ofConsumption

Power Consumption by Train Running

Railway company kwh/car-km 1000 kwh/year Remarks

East Japan Railway Company 1.75 2,760,000 Except Shinkansen

Odakyu Electric Railway Co., Ltd. 1.75 302,246

Keihin Electric Express Railway Co.,Ltd. 1.81 208,000

TOBU RAILWAY CO., LTD. 1.92 n/a

SAGAMI RAILWAY Co., Ltd. 1.92 90,220

Tokyo Metro Co., Ltd. 1.96 565,000

SEIBU RAILWAY Co., Ltd. 1.97 337,795

Tokyu Corporation 2.02 289,082 Source:2014 CSR Report or 2014 Environment Report of each company

a) Basic Unit of Power Consumption of Train in the East-West Line

The basic unit of power consumption of train in the East-West line is assumed as 1.93 kWh/car-km.

In the above table, in the case of Odakyu Electric Railway Co., Ltd., the energy conservation commuter train which

has VVVF inverter and regenerative brake accounts for the large proportion of 97.5% of fleet in 2013. Since the

trains of the East-West Line also adopt VVVF inverter and regenerative brake, it is expected that the basic unit of

electric power consumption of the East-West Line can achieve 1.75 kWh/car-km of the same level as that of Odakyu

Electric Railway Co., Ltd. However, in the case of the MRT East-West Line, the electric power consumption of

auxiliary machines including air conditioner shall be increased by taking into account the differences of climate

between Dhaka and Tokyo. When it is assumed that the electric power consumption of the auxiliary machine is 10%

of the whole consumption of train and the workload of auxiliary machine in Dhaka is 200% of that of Tokyo, the

basic unit of electric power consumption of the MRT East-West Line is calculated by the following formula:

Page 122: Study on Economic Partnership Projects in Developing Countries in

3-76

Basic unit of electric power consumption of the MRT East-West Line

= (1.75 x 10% x 200%) + (1.75 x (1-10%)) = 1.93 kWh/car-km

b) Power Demand of Station and Depot

In the case of an at-grade station which is equipped with facilities such as lighting, signaling, telecommunication,

Automatic Fare Collection (AFC), and Platform Screen Door (PSD, the power demand is assumed to be 250

kW/station. The power demand of an elevated station is calculated at 350 kW/station by the addition of the lift and

elevator (100 kW) to the at-grade station. The power demand of an underground station is calculated at 1,150

kW/station by the addition of the lift and elevator (100 kW), air conditioning (600 kW), and additional lighting (200

kW) to the at-grade station.

The power demand of the depot is assumed to be 1,800 kW which includes the maintenance facility in the main

workshop (1,000 kW), lighting and air conditioning of main workshop (500 kW), lighting in the depot area (300

kW), and others (100 kW).

c) Power Receiving Capacity

The surplus ratio of substation and power factor are assumed as 1.2 and 0.9, respectively. The required capacity of

the receiving substation of MRT Line 5N Phase 1 in the future is calculated as 29.0 MVA (all elevated option) and

33.3 MVA (partial underground option).

Table 3-34 Power for Traction

Item Year 2025 Year 2055 Basic unit of power consumption (kWh/car-km) (including auxiliary machines)

1.93

Route length (km) 16.2 Train configuration (car/train) 6 cars (4M2T) Headway in peak hour 3 min 50 s 2 min Number of train operation (trains/hour/direction) 15.6 30 Running distance/hour (car-km/hour) 3,033 5,832 Total maximum power per hour for traction (kWh) 5,853 11,256 Instantaneous maximum power for traction (kW) 12,166 19,979

Source: METI Study Team

Table 3-35 Receiving Capacity

Year 2025 Year 2055

Route option All Elevated Partial Underground

All Elevated Partial Underground

Power demand for station and depot (MW) 6.0 9.2 6.0 9.2

Instantaneous maximum power for traction (MW) 12.2 12.2 20.0 20.0

Instantaneous maximum power, total (MW) 18.2 21.4 26.0 29.2

Required receiving substation capacity (MVA) 24.2 28.5 34.6 38.9 Source: METI Study Team

Page 123: Study on Economic Partnership Projects in Developing Countries in

3-77

(2) Signaling System

1) Functions of Signaling System

The general functions of railway signaling system are shown in Table 3-36 below.

Table 3-36 Functions of Railway Signaling System

Function System Remarks Prevention of a train collision

Block system Dividing a track into a certain section, and allowing only one train to go into the one section.

Control of the train interval between stations

ATP: Automatic Train Protection

It is related to the block system which keeps the safety distance between running trains. The block system includes a fixed block system and a moving block system.

ATC: Automatic Train Control

ATC has the function to show the allowable running speed of the train automatically according to an interval from a precedence train and conditions of a route, and to reduce a train speed in accordance with the signal.

Detection of the train TD: Train Detector

A continuous sensing system using the track circuit is being adopted for the existing railway. When the ATP with the moving block system is applied, train detection by communication-based train control (CBTC) is applicable.

Control of the route of the turnout

IL: Interlocking

An interlocking system between the point and route is installed at the station and depot equipped with the point.

Supervision of the train operation

ATS: Automatic Train Supervision

It has the following functions: Supervision of the condition of train operation; Preparation and control of the train operation diagram; and Restoration of the train diagram in case the trains were disrupted.

Automatic train operation

ATO: Automatic Train Operation

It is required when performing driver-only operation and driverless operation.

Source: METI Study Team

2) Signaling System for the MRT East-West Line

Table 3-37 Signaling System of MRT East-West Line

System Description ATP, ATC The MRT East-West Line adopts ATP with the moving block system.

When a driver ignores or misunderstands the signal or sign, ATP brings the brake into operation automatically if the train advances in defiance of danger, starts erroneously, or exceeds the speed limit. ATP is the system to check and control the train speed based on the speed condition information which is continuously directed in accordance with the location of a preceding train and the condition of railway section.

As for the blocking system, CBTC which is a global trend in new route construction is proposed.TD Since ATP adopts CBTC, it is proposed that TD also adopts CBTC. IL In the station and depot which is equipped with the point machine, the interlocking system

which interlocks the point machine and the route is installed.

Route setting of the main line and the tracks in the depot is basically performed by remote control from an operation control device in OCC. The operation panel installed at each station and depot can be operated manually for the individual route setting in each station and depot.

Page 124: Study on Economic Partnership Projects in Developing Countries in

3-78

ATS The MRT East-West Line adopts ATS. ATO The MRT East-West Line adopts ATO with driver-only operation. On-board ATP for speed control

On the approach tracks of the depot and the storage yard in the depot, the trains are operated manually since neither ATO nor CBTC is installed. (On-board ATP for speed control, train collision prevention, and overrun prevention are installed.) Manual train operation using wayside signal is adopted at the maintenance yard in the depot.

Source: METI Study Team

(3) Telecommunication System

1) Functions of Telecommunication System

Table 3-38 Functions of Railway Telecommunication System

Function System Dispatching control Emergency protection

Radio communication system

Monitoring of passenger Information dissemination to the passenger

Passenger Information System (PIS) Passenger Address System (PAS) Passenger Information Display System (PIDS) Clock System

Distributing information from passenger

Emergency call unit Interphone system

Remote monitoring of the stations and depot Closed-circuit television (CCTV) system Communication among related parties Common network service

Telephone system Backbone Transmission Network (BTN)

Source: METI Study Team

2) Telecommunication System for the MRT East-West Line

Table 3-39 Telecommunication System of the MRT East-West Line

System Description Radio System In addition to the dispatch control between OCC and the train and the emergency protection

communication from the train to OCC, communication between OCC and passenger is available.

CCTV System OCC staff can supervise the condition of station yard by CCTV supervision system. The monitoring cameras are installed at the station concourse, escalator exit, ticket window, and platform. The train driver checks the situation of the boarding and alighting of passengers with the image of the camera, and operates the door to close. In the depot, the cameras are focused on the draw-out track, storage tracks, train-wash line, and approach tracks. And the train movement in the depot is supervised in the depot control room. The video picture taken with the camera is digitized and recorded on a digital video recorder.

PIS, PAS, PIDS PIDS is the visual display service which provides the information with regard to a train entering a platform and departure train, as well as the clock time and special announcement at each station. PIDS is installed in the platform area.

The broadcasting of information regarding the train operation and emergency broadcasting are carried out from OCC to the passengers in the station yard and trains. The broadcast is performed with the voice or the recorded sound of an OCC staff to all or specific stations and trains. Also, manual broadcasting at each station can be performed.

Clock System Clock is installed at OCC, mechanical rooms in the whole line, stations, and depot. A master clock which has high reliability and becomes the basis of other clocks in the station is installed in OCC. And other clocks are synchronized with this clock. The master clock is linked to the GPS system in order to get the correct updated information.

Emergency Call Unit

By pushing the emergency call button equipped in the platform of the station, the emergency bells in OCC and the station will sound. The emergency call unit installed in the train shall enable talking with the train crew.

Page 125: Study on Economic Partnership Projects in Developing Countries in

3-79

Interphone System

The interphone system with which the passenger on the platform and station staff can talk is installed.

Telephone System

Telephone system consists of a landline phone with PABX, a dispatch telephone, a wayside telephone, and an O&M telephone. The dispatch telephone is installed in OCC, each station, each substation, maintenance division, and the depot. As for the O&M telephone, which is the communication tool among OCC, depot, and maintenance staff, mobile phone is prepared.

BTN By using optical fiber cable and transmission terminal, BTN, which connects OCC, station, substation, and depot, is configured. In order to secure the redundancy as the core communication system, the ring network which is made by connecting the network terminals is adopted.

BTN is used for data transmission for CCTV, PA, PIDS, telephone system, signaling, telecommunication, and AFC.

Source: METI Study Team

(4) Automatic Fare Collection (AFC)

1) Merit by Introduction

The AFC system consists of contactless IC card, contactless IC card handling system, ticket vending machine,

automatic gate, ticket office machine, central server, network facilities, and cash handling equipment.

By introducing the AFC system, work saving of station staff and minimizing the station area as well as preventing

an illegal ride are expected. Moreover, the AFC system can manage fare revenue and collect the passenger

utilization data which is helpful for improvement of transport service.

According to the Technical Standards for the MRT in Bangladesh, the AFC system which is introduced in Dhaka is

being requested as follows: AFC is a convenient system for passengers.

- To secure the mutual availability with the contactless IC cards which are used for the other

public transport system in Dhaka.

- To be designed by taking into account passengers’ safety and convenience, especially the

aged, children, expectant mothers, and handicapped, into the design.

2) General Outline of the System

Table 3-40 General Outline of the System

System Description Ticket Media Magnetic ticket and IC ticket, which the machine can read/write, are used. In recent years,

contactless IC ticket, which has multiple functions, high security, and can quickly process ticket gate passage, became the mainstream. In the IC ticket system, IC card is used for seasonal pass and stored fare card while IC token is used for single journey ticket.

Contactless IC media is used for railway AFC system.

The contactless IC card used for railway AFC can be NFC Type A which carries IC chip of ISO/IEC14443 and NFC Type C which carries IC chip of ISO/IEC 18092.

Although both types have several versions in terms of the differences of data retention value and transmission speed, the security level of Type C is higher than that of Type A.

Automatic Gate As for the automatic gate for railway, there are three types, namely: flap door type, retractable type, and turnstile type. The processing speeds are 60 persons/min for the flap door type, 40 persons/min for the retractable type, and 30 persons/min for the turnstile type.

Page 126: Study on Economic Partnership Projects in Developing Countries in

3-80

The retractable type has the highest prevention against illegal passenger followed by the turnstile type, and then the flap door type. However, when a passenger is caught by the door, the flap door type is the safest.

Ticket Vending Machine (TVM)

TVM sells various kinds of railway tickets and charges the money to the IC card. TVM shall have the function to discriminate bank notes in order to detect and reject fake or unacceptable bank notes.

Source: METI Study Team

Flap Door Type Retractable Type Turnstile Type

Source: METI Study Team

3) AFC System for East-West Line

The Technical Standards for the MRT in Bangladesh describes the basic specifications of the ticket media, ticket

vending machine, and automatic gate of AFC. The main items are summarized below.

【"Bangladesh MRT technical standards"(Abstract)】

a) AFC System

・ The AFC system shall follow the standards of ISO/IEC15408 (information security valuation basis for development, manufacturing, and operation of security products and systems) or ISO/IEC14443 (which defines a means of communication by the international standard of small electric power IC technology (RFID)).

・ Every card shall be numbered uniquely.

b) Contactless IC Card

・ Shape of contactless IC card shall be credit card size (85.6 mm x 53.98 mm). ・ Base material of the card shall be plastic. ・ Contactless IC card shall be powered by modulated radio frequency signal

transmitted from read /write units of each AFC machine. Contactless IC card shall not have battery inside.

・ Data retention period shall be at least ten years under normal use. ・ Data transfer rate shall be at least 212 kbps. ・ Data retention shall be such that even when power supply to the card is interrupted

while writing the card, the card shall assure data integrity by logically retaining the previous data.

c) Ticket Vending Machine

・ The ticket vending machine shall accept bills and coins of Bangladesh. ・ The ticket vending machine shall detect and reject fake or unacceptable bills and

coins. ・ The ticket vending machine shall have escrow function. ・ The ticket vending machine shall be able to give change back to the passengers. ・ Machines such as ticket vending machine shall be designed so that station staffs do

not need to touch money, unless there are troubles such as when jamming occurs.

Page 127: Study on Economic Partnership Projects in Developing Countries in

3-81

・ The ticket vending machine shall have the function to issue stored fare card, day ticket, and single journey ticket, to deposit the money to stored card, and to show the data inside card.

・ The ticket vending machine shall issue receipts upon passenger’s demand. ・ The ticket vending machine shall be able to handle at least four passengers per

minute.

d) Automatic Gate

・ Installation of two types of automatic gates, namely, normal width and wide width, shall be considered. Wide-width gate shall be able to accommodate wheelchairs.

・ The automatic gate shall be able to pass at least 60 passengers per minute. ・ Automatic gate shall be of horizontally swinging flap door type. ・ Measures shall be taken to prevent an unauthorized person. ・ The gate status shall be indicated to passengers.

Source: Bangladesh MRT technical standards (DTCA, JICA)

Table 3-41 AFC System for the MRT East-West Line

System Description Ticket Media Contactless IC media is applied.

As the same as MRT Line 6, ISO/IEC 18092 (Type C) is selected for IC card. Automatic Gate Flap door type is selected in order to fulfil the processing speed requested by the technical

standards.

Reader/writer of an automatic gate shall be multitype so that the media which includes any type of IC chip can be accepted. When ticket media is IC card, the fare shall be collected by the automatic gate from the amount of the deposited money in the ticket media.

Ticket Vending Machine (TVM)

Among the bank notes of Bangladesh, most of the notes which will be used to purchase the train ticket is worn currency. It is difficult to discriminate worn bank notes by the machine. Since the ability requested by the technical standard cannot be fulfilled, TVM is not introduced and ticket media is sold at the ticket window through person-to-person selling.

Source: METI Study Team

(5) Platform Screen Door (PSD)

1) Merit by Introduction

There are two types of PSD, namely, full-height PSD and half-height PSD.

Full-height PSD Half-height PSD

Source: METI Study Team

By introduction of PSD, the accident of passenger falling from the platform to the track can be prevented. Moreover,

the accident of passenger touching the moving train at the platform edge is also prevented. Therefore, the number of

station staff to secure the safety on the platform can be reduced.

Page 128: Study on Economic Partnership Projects in Developing Countries in

3-82

In the case of underground station where the tunnel is not refrigerated, the full-height PSD can keep the air

conditioning in the platform. Thus, the platform can be air-conditioned efficiently and economically by PSD. In the

case of underground station where the train passes, the full-height PSD can protect passengers from train wind.

2) Basin Concept of PSD for the MRT East-West Line

The half-height PSD is installed in the elevated station from the viewpoint of securing the safety on the platform. In

the case of underground air conditioned station, full-height PSD is adopted to secure the safety of passengers and

save the energy of air conditioning.

The train configuration of the MRT East-West Line is 6-car train during MRT Line 5N Phase1 and 8-car train will

be added in MRT Line 5N Phase 2. The train which has four doors per one side of car is being proposed. Allocation

of PSD door shall conform to the number and position of the doors of the train.

3) System Configuration of PSD

The PSD consists of the following systems:

a) Fixed barrier (wall) and movable barrier (wall)

b) Entrance door for driver

c) Control and monitoring system

d) Safety system including sensor, alarm, and display

e) Power supply system including uninterruptible power supply system

The PSD needs to have a combined function with the ATO, train antenna, and CCTV on the platform.

3.3 Outline of the Project Plan

3.3.1 Basic Policy for Determination of the Scope of the Project

(1) Basic Policy of Dhaka City and Outline Design

In the implementation of MRT Line 6, elevated structures for the whole line were accepted. The MRT Line 5N has

been planned to build elevated viaducts like in MRT Line 6, and to cross the cantonment area between Kochukhet

Station and Banani Station where many five-storey residential buildings, an 18-hole golf course, and sensitive

facilities are compactly located. Demolition and land acquisition are required to construct viaduct structure for

MRT Line 5N. The precedent report says that the area is so wide that there are no alternate routes to avoid it, and

it is agreed by the Study Team. Therefore, an underground tunnel method has been envisaged to avoid land

acquisition, demolition of residential buildings, and environmental issues. There are no experiences of shield

tunnels and underground stations in Dhaka which may be far more expensive than the elevated viaducts. However,

it becomes acceptable to adopt better plans based on the recent powerful economic growth even though they are

costlier. At the mini workshop of this study, DTCA has curiously asked how large is the gap between the amount

of all elevated option and partial underground option.

Page 129: Study on Economic Partnership Projects in Developing Countries in

3-83

(2) Comparative Study of All Elevated Option and Partial Underground Option

The Study Team presented the schematic drawing of shield tunnel and underground station to DTCA, and then

compared the preliminary project costs between them as shown in Table 3-42.

Table 3-42 Comparison of Cost Estimation

Source: METI Study Team

Although the all elevated option is more economical than the partial underground option, it was foreseen that there

will be great difficulties in negotiating with the army to acquire the land in the cantonment area, demolish

residential buildings, and manage the environmental issues. Therefore, both DTCA and the Study Team have

agreed to adopt the partial underground option. DTCA deems it to be financially feasible and the Study Team

Unit :Million BDT(Bangladesh)

No

Item Unit Q'ty Unit Amount Unit Q'ty Unit AmountMillionBDT/unit MillionBDT MillionBDT/unit MillionBDT

1 Civil Works 41,311 61,456 Viaduct km 16.8 1,206 20,267 km 10.9 1,200 12,251 Tunnel Km 0 0 Km 5.9 2,600 14,955 Station nos. 12 1,024 12,291 nos. 12 2,399 25,498 Depot LS 1 8,753 8,753 LS 1 9,610 8,753

2 Procurement of Equipment 36,389 37,015 E & M system LS 1 21,794 21,794 LS 1 22,420 Rolling stock LS 1 14,595 14,595 LS 1 14,595

3 Base cost for onstruction LS 1 77,700 77,700 LS 1 98,4713 Escalation cost LS 1 27,361 27,361 LS 1 34,5673 Physical Contingency LS 1 5,252 5,252 LS 1 6,646

4 Consulting Services LS 1 7,566 LS 1 9,807 Base cost LS 1 5,774 5,774 LS 1 3,086 7,445 Escalation cost LS 1 1,436 1,436 LS 1 760 1,896 Physical Contingency LS 1 356 356 LS 1 15,966 467

5 Sub-total (3+4) 117,879 149,492

6 Local Administration cost 33,108 26,728Land acquisition LS 1 28,913 28,913 LS 1 21,474Utiity diversion LS 1 1,407 1,407 LS 1 1,714Administration cost LS 1 2,672 2,672 LS 1 3,391Interests LS 1 117 117 LS 1 149

7 Price Escalation above 6 LS 1 9,988 LS 1 8,048

8 Tax 25,958 34,687VAT (15%) LS 1 17,678 17,678 LS 1 22,420Import tax LS 1 8,280 8,280 LS 1 12,267

9 Grand total (5+6+7+8) 186,934 218,955

All Elevated Option Partial Underground Option

Page 130: Study on Economic Partnership Projects in Developing Countries in

3-84

considers that it is more suitable for the Project to mobilize the technique, cooperation, and financial assistance

from Japan for the tunnel method. The comparison of merits and demerits between the all elevated option and the

partial underground option is shown in Table 3-43.

In addition, full underground option was additionally assessed based on the request of DTCA. The results are

complied in Appendix 4, including the cost estimate, construction plan, project implementation schedule,

economic and financial analysis results. This is for reference only and the Study team recommends that the

Partial-Underground option is the optimim scheme for MRT Line-5N, Phase-1.

Table 3-43 Comparison between the All Elevated Option and Partial Underground Option

Items All Elevated Partial Underground

Techni

cal

Contractor International contractor ○ International contractor ○

Traffic

Management

All sections and stations

4 lanes ⇒2 lanes △

Only at the station area

4 lanes ⇒2 lanes △

Transition Section None ○ 500 m×2 places △

Environment (Landscape) Viaduct structure and station on

Banani – Gulshan Road △

No viaduct structure on Banani

– Gulshan Road ○

Social

(Land acquisition)

・Depot

・Gas station

・Banani Cantonment

・Banani College Area

・Golf course

・Depot

・Gas station

Cantonment issue Viaduct structures on the

cantonment area and golf course △ Pass through the underground ○

Institutional experience Experienced from MRT Line 6 ○ None ×

Overall Evaluation Depend on Cantonment Issue △ Feasible ○

(○: Possible △ : possible, but there are some difficulties ×: Impossible)

Source: METI Study Team

Figure 3-60 Comparison of Vertical Figures

Source: METI Study Team

All elevated

Partial Underground

12k9

65m

11k

020m

8k72

0m

7k08

0m

MRT6

9k72

0m

10k9

00m

5k84

0m

4k84

0m

4k70

0m

3k40

0m

2k10

0m

0k40

0m

S9Notun Bazar

S4Mirpur10

S5

Mirpur14S6

KochukhetS7

BananiS8

Gulshan2

S3Mirpur1

S2

Dar-Us-Salam

S1Gabtoli

MRT1

CantonmentS10

Vatara

S11Bara

KathaldiaS12

Beraid

15k0

00m

16k5

90m

12k2

70m

11k0

20m

8k72

0m

6k90

0m

MRT6

9k72

0m

10k9

00m

5k90

0m

4k84

0m

4k70

0m

3k40

0m

2k10

0m

0k40

0m

Dhaka

Elevated

ExpressS9

Notun Bazar

S4

Mirpur10S5

Mirpur14 S6

Kochukhet

S7Banani S8

Gulshan2

S3Mirpur1

S2Dar-Us-Salam

S1Gabtoli

MRT1

S10

Vatara

8k50

0m

S11Bara

KathaldiaS12

Beraid

15k0

00m

16k5

90m

Page 131: Study on Economic Partnership Projects in Developing Countries in

3-85

3.3.2 Specifications of the Applied Facilities

The structures of the elevated and underground options are shown in Figure 3-61 below. Applied facilities do not

have any effect on road traffic under both elevated and underground options. Regarding the elevated structure, two

lanes are occupied at all sections during construction. On the other hand, regarding the underground structure,

although two lanes are occupied at the station, there is no effect on road traffic at the other section thanks to the

shield tunnel.

Figure 3-61 Applied Facilities of Elevated Option and Underground Option

Source: METI Study Team

3.3.3 Contents of the Proposed Project

Route information and applied system are reproduced in Figure 3-62 below.

Figure 3-62 Horizontal Alignment of the Project

Source: METI Study Team

15m

25m

3.01.0 1.03.0

Viaduct Section Elevated Station

10~11m

25m

7m (Min)

7m

21m

Tunnel Section Underground Station

Page 132: Study on Economic Partnership Projects in Developing Countries in

3-86

Table 3-44 Station Information

Source: METI Study Team

Table 3-45 Summary of Alignment and Applied System

Item Contents

Length 16.2 km (Elevated: 10.8 km, Underground: 5.4 km)

Number of Stations 12 (Elevated: 8, Underground: 4)

Depot Area 24.8 ha

Signal System ATP, TD, IL, ATS, ATO

Telecommunication System

Radio System, CCTV system,

AFC Magnetic ticket and IC ticket, flap door-type automatic gate Source: METI Study Team

3.3.4 Issues and Solution to Apply the Proposed Technology and System

(1) Shield Tunnel

Underground construction period is extended compared with viaduct construction. Application of the double

shield machine, considering that tunnel construction is the critical path, is also considered in order to meet the

early commercial operation because it is desired to open the line as earlier. However, Banani Cantonment exists at

the tunnel section. Furthermore, although shaft should be prepared for the shield machine installation, it is unclear

where to find it. It is a quite sensitive issue; therefore, the details should be discussed in the next feasibility study

stage.

(2) Traffic Management during Construction of Underground Station

In general, road is open for the construction of the underground station, and the station width will be occupied on

the road for the construction. The western side of Gulshan 2 Station, which is the narrowest section in this study,

Page 133: Study on Economic Partnership Projects in Developing Countries in

3-87

is 20 m wide, and the station width is also 20 m. Therefore, road is completely blocked during construction, if no

appropriate construction method is taken into account. In fact, it would be a big problem to block the road, which

is the center of the office area of Dhaka. Considering the chronic traffic congestion in the area, half of the station

should be completed first without completely closing the road. After that, road decking panel will cover the

completed part. Traffic can pass through it, therefore it can contribute to traffic management.

(3) About the anti-inundation measures of the transition section and the underground station

In cases that flood and local severe rain occur, the serious damage to affect a human life may occur, besides

paralysis of traffic by the flood from the opening of a subway.

As the opening of subway, there are pithead of transition section, station entrance, and ventilation opening. And

the following is mentioned as main anti-inundation measures.

Pithead of transition section => Installation of flood wall or pithead gate for anti-inundation

Station entrance => Mount-up of station entrance, installation of water shut plate or watertight door

Ventilation opening => Installation of flood prevention machine, installation of the ventilating tower which

has an opening in high position

Figure 3-63 Anti- inundation measures

Anti-inundation measures for pithead of transition section

Flood wall Pithead gate for anti-inundation

Anti-inundation measures for station entrance

Page 134: Study on Economic Partnership Projects in Developing Countries in

3-88

Mount-up of station entrance, watertight door Water shut plate

Anti-inundation measures for ventilation opening

Flood prevention machine

Ventilation tower Source: METI Study Team based on the data of Tokyo Metro

(4) Coordination with Other Projects

Total coordination of transport project is poor, but many projects are ongoing in parallel including this Project.

Flyover is now constructed in DMA without coordination, so overlapping with other flyover at the road space

above usually happens. Original planning does not go well. Regarding the crossing section at Natun Bazar, which

is the junction station between MRT Line 1 and MRT Line 5, for example, the vertical alignment of MRT Line 1 is

underground. In addition, MRT Line 1 is the priority line in RSTP. Therefore, the vertical alignment of the

East-West Line will pass under the MRT Line 1. However, if vertical alignment of MRT Line 1 becomes an

elevated structure at this section, the alignment of MRT Line 5 will be revised again and there is an effect on cost

estimation. In this case, the total project cost will decrease because depth will be shallow. But the worse case may

happen in other projects without coordination. Accordingly, it is important to properly coordinate with RSTP and

to collect information.

Page 135: Study on Economic Partnership Projects in Developing Countries in

Chapter4 Evaluation of Environmental and Social Impacts

Page 136: Study on Economic Partnership Projects in Developing Countries in

4-1

4.1 Analysis on the Environmental and Social Impact

The current situation regarding the environment and social aspects of the Project is briefly described below.

Geology and Soils

Dhaka lies in the extreme south of the Madhupur Tract, which is situated in the central-eastern part of Bangladesh.

The planning area is covered mainly by the Pleistocene Madhupur Clay, a yellowish brown to highly oxidized

reddish brown silty clay, and by Holocene sediments in the south, west, and east, which is made up of alluvial silt

and clay, and marshy clay and peat.

Earthquake Risk

Dhaka City falls in seismic zone II based on the seismic zoning map of Bangladesh as show in Figure 4-1. It is

classified as being on the upper end of the scale for moderate risk. Significant damaging past earthquakes has

occurred in and around Bangladesh, and damaging earthquakes of moderate magnitude occur every few years.

Faults and lineaments that have occurred due to tectonic movements appear along the edge of the Dhaka Terrace

on the east, trending south-west, and along the Tongi Khal in Tongi-Uttara-Uttar Khan area, trending east-west.

Figure 4-1 Seismic Zoning Map

Source: Bangladesh National Building Code

Z= design coeficient

Page 137: Study on Economic Partnership Projects in Developing Countries in

4-2

Subsidence

According to Higgins (InSAR measurements of compaction and subsidence in the Ganges-Brahmaputra Delta,

Bangladesh, Stephanie Higgins, University of Colorado Boulder, CSDMS meeting of 2014), land subsidence in

Dhaka occurs at the rate of 0 to > 10 mm/yr, and is likely related to groundwater abstraction. Variations in the rate

of subsidence correspond to local variations in shallow subsurface sediments. According to some surveyed data

(Updated Environmental Impact Assessment (EIA) of MRT Line 6, 2015), subsidence rates in the order of 2-4

mm/yr are typical in the Project area.

Groundwater

The total groundwater abstraction from licensed production wells operated by the Dhaka Water Supply and

Sewerage Authority (DWASA) and private (mainly industrial) operators is around 700 million cubic meters

(MCM) per year. In addition to DWASA tube wells, there are more than 1,000 privately managed deep tube wells

that are primarily unlicensed and for which no abstraction data are available. Some deep tube wells reach greater

than 400 m.

Groundwater levels throughout the city have fallen drastically over the last 15-20 years. Data tabulated by Zahid

et al. (Excessive Withdrawal of Groundwater for Urban Demand of Dhaka City: Emergency Measures Needs to be

Implemented to Protect the Aquifer, Anwar Zahid, M Qumrul Hassan, M Abdul Karim and M Ashraful Islam,

Ground Water Hydrology, Bangladesh Water Development Board, undated) indicated that groundwater levels

have fallen from 23 to 47 m in three areas of the city from 1980 to 2007.

Groundwater quality data as reported in the updated EIA of MRT Line 6, 2015, shows the following:

High arsenic level in some shallow well

Deep well water seems very fresh

Drainage

A generalized drainage map for Dhaka is shown in Figure 4-2. This map shows the main drainage channels for the

Project area as follows:

Drainage is not yet fully developed in the north and east side.

The section from Pallabi to Mirpur is drained through the Digun Khal (Rupnagar) and the water flows north

and is discharged through the same pump station to the Turag River.

The section of the MRT Line 5 alignment near Mirpur drains through the Kallyanpur Khal and into the

Buriganga through the Kallyanpur Khal Pump Station.

Begum Bhari Khal drains the area in the vicinity of Sonargaon and Shahbagh toward the east to the

Shityalakya River.

Page 138: Study on Economic Partnership Projects in Developing Countries in

4-3

Figure 4-2 Drainage System of Dhaka City (DWASA)

Source: DWASA

Surface Water Quality

The surface water quality (except rivers) in Dhaka City shows many pollutants according to the Updated EIA of

MRT Line 6, 2015.

Dissolved oxygen (DO) is generally high, near saturation, in all the lakes, but near zero in the khals.

pH in the lakes is neutral to slightly alkaline, depending on the season; whereas it is slightly acidic in the

khals, approaching the pH lower limit of the Department of Environment (DOE).

Conductivity and total dissolved solids (TDS) are consistently low in the lake water. The khal contains

twice the amount of TDS, and conductivity is two times higher than the average of all lake samples. These

are indicators of inorganic salts present in water from human activity, which are not generally present in the

lake samples.

Chemical oxygen demand (COD), total suspended solids (TSS), turbidity, and coliform bacteria are high in

the lake samples during the dry period, but are reduced significantly in the wet season.

The following Figure 4-3 shows the water quality hot spots of Dhaka City.

Page 139: Study on Economic Partnership Projects in Developing Countries in

4-4

Figure 4-3 Water Quality Hotspots in Surface Waters around Dhaka

Source: The Buriganga - Turag - Stitalakya - Balu River Rehabilitation Strategy

General Weather Conditions

Dhaka experiences a hot, wet, and humid tropical climate. The city is within the monsoon climate zone, with an

annual average temperature of 25 °C (77 °F) and monthly mean temperature varying between 18 °C (64 °F) in

January and 29 °C (84 °F) in August. Nearly 80% of the annual average rainfall of 1,854 mm (73 in) occurs

between May and September.

Page 140: Study on Economic Partnership Projects in Developing Countries in

4-5

Air Quality

Air quality is measured directly as suspended particulate matter as total SPM and PM10, the fraction smaller than 10

µm, nitrous oxides (NOx), sulfur oxides (SOx), carbon monoxide (CO), and lead (Pb). DOE sets ambient standards

for four of these pollutant parameters as shown in Table 4-1.

Table 4-1 DOE Ambient Air Standards (µg/m3)

Land Use Category SPM SO2 CO NOx

a. Industrial and mixed 500 120 5000 100

b. Commercial and mixed 400 100 5000 100

c. Residential and rural 200 80 2000 80

d. Sensitive 100 30 1000 30

Source: METI Study Team

According to the Updated EIA of MRT Line 6, 2015, for pollutants that have specific limits set by DOE (SPM, CO,

NOx, and SO2):

All but one (92% of total 12 sampling points) of the monitoring locations produced daytime SPM values in

excess of the residential standard, and six locations (50%) exceeded the standard for commercial and mixed

land uses. Nighttime values are within the limit set by DOE for commercial and mixed land uses.

The DOE NOx standard for commercial and mixed land uses was exceeded in eight out of 12 samples

(66%) for both day and night values.

The CO standard for commercial and mixed land uses was exceeded in seven out of 12 samples (58%)

taken during daytime hours, and in six out of 12 samples (50%) taken at night.

SO2 is generally within the limits set by DOE, with none of the monitoring results exceeding the residential

standard. Daytime SO2 levels are generally 66% higher than nighttime levels.

Air quality is better during the rainy season (second data set), with values typically 50-70% lower than the

dry season results.

Noise Level

Noise is measured in weighted decibel units, typically in 10-minute averages, but may also be in 1-hour, or

day-night (24-hour) averages. DOE ambient noise criteria are shown in Table 4-2.

Page 141: Study on Economic Partnership Projects in Developing Countries in

4-6

Table 4-2 DOE Ambient Noise Standard (dBA)

Category Day Night

a. Silent zone 45 35

b. Residential area 50 40

c. Mixed area 60 50

d. Commercial area 70 60

e. Industrial area 75 70

Source: METI Study Team

In general, Dhaka is a noisy city, at least along the roadside. According to the Updated EIA of MRT Line 6, 2015,

only six locations out of the 40 measured sites have a noise level of less than 60 dB. On the other hand, there were

26 locations where noise levels exceeded 70 dB. In Mirpur 10, noise level is 70.7 dB, while it is 72.7 dB in

Shahbagh.

Protected Areas

The DOE designation of an Ecologically Critical Area (ECA) is intended to identify an environmental protection

zone. There is no protected area or ECA within or near the Project area.

Flora and Fauna

Because Dhaka City is urbanized, there are few natural forest areas remaining. Still, the vegetation of Dhaka City

has a variety of indigenous and exotic species especially in parks and gardens. Although there are varieties of

mammals and birds existing in Dhaka, none of them are endangered or protected.

Land Use

Dhaka City’s growth is moderated and directed according to land use classification and zoning set up by the

Capital Development Authority (Rajdhani Unnayan Kartripakkha: RAJUK). RAJUK publishes land use map

referred to as “Comprehensive Detailed Area Plan on RS Mauza [base] Map” which both fixes and designates

land uses. The current Dhaka Metropolitan Development Plan (DMDP) was prepared in 1997 for the period

1995 to 2015. However, the new DMDP for 2015 to 2035 is now under preparation. A draft version is available

from July 2015. The newly proposed land use map is shown in Figure 4-4 below.

Page 142: Study on Economic Partnership Projects in Developing Countries in

4-7

Figure 4-4 Proposed Land Use Map of RAJUK

Source: RAJUK

Transport Assets

Growth of transport vehicles is shown in Table 4-3. Overall growth of passenger vehicles is 49% over the last five

Page 143: Study on Economic Partnership Projects in Developing Countries in

4-8

years. Recurring growth is gradually falling from 13% to 3.3%, which shows that the saturation level (0% growth)

may be reached in the next five years. Congestion on roads and lack of road space for driving and parking will

force people not to buy more vehicles.

Motorcycles (76.4% growth over the last five years) will supersede cars and other 4-wheelers soon. Many old

buses and mini buses are operating on the roads and cause air pollution. They are planned to be replaced in phases.

Growth in the public transportation system is not high.

Growth of goods vehicles is very high. In the last five years, their combined growth is 177%. The number of

trucks has increased 2.5 times over the last five years. While the increase in freight traffic is a sign of prosperity,

maintenance of the national and regional highways needs to be improved, and development of new regional roads

is needed to cope with the challenges of growing freight traffic.

Table 4-3 Growth in Number of Motor Vehicles

Type of Vehicles Up to 2009 2010 2011 2012 2013 May-14

Number of Public Transport Vehicles

Car/Jeep/Taxi 197,660 218,535 231,708 241,179 251,521 258,019

Bus 15,552 16,783 18,284 19,502 20,473 20,967

Mini Bus 9,341 9,490 9,629 9,732 9,815 9,846

Micro bus 40,503 46,202 49,742 52,385 54,612 56,245

Motorcycle 179,383 210,081 244,789 277,599 303,930 316,370

Auto Tempo 1,659 1,662 1,663 1,663 1,663 1,663

Auto Rickshaw 7,612 7,664 7,775 7,835 7,837 7,868

Total 451,710 510,417 563,590 609,895 649,851 670,978

Recurring Growth 13.0% 10.4% 8.2% 6.6% 3.3%

Cumulative

Growth 13% 25% 35% 44% 49%

Number of Goods Vehicles

LGV 30,557 39,979 50,463 57,637 65,780 70,510

Truck 22,299 26,922 68,972 71,796 75,318 78,599

Tanker 719 817 969 1,059 1,195 1,277

Page 144: Study on Economic Partnership Projects in Developing Countries in

4-9

Type of Vehicles Up to 2009 2010 2011 2012 2013 May-14

Other Types 9,152 12,224 16,590 19,573 22,135 23,315

Total 62,727 79,942 136,994 150,065 164,428 173,701

Recurring Growth 27.4% 71.4% 9.5% 9.6% 5.6%

Cumulative

Growth

27% 118% 139% 162% 177%

Source: BRTA

4.2 Environmental Improvement Effects by the Project

The Project will mainly and significantly contribute in reducing the travel time and also vehicle operation cost. In

turn, this will help in reducing traffic congestion. There are a number of environmental benefits associated with the

Project. These are briefly explained below.

Positive Impacts: Green House Gas Reduction

The Project mitigates climate change by bringing about a reduction in greenhouse gas emissions in comparison with

a base case scenario without the Project. The estimate of emissions reduction due to the Project is based on reduction

of polluting cars operation.

Positive Impacts: Air Quality Improvement

As the car and bus operations will be reduced due to modal shift, the emission of CO, SOx and NOx will also be

reduced.

4.3 Project Influence on Environmental and Social Sectors

4.3.1 No Build Alternative

The Project is considered within the framework of the Revised Strategic Transport Plan (RSTP) of 2015 through a

series of planning decisions. The RSTP is a long-term plan for the target horizon of 2035. The MRT Line 5 is the

only east-west connection among the seven proposed and ongoing MRT and BRT lines. A “No Build Alternative”

is simply not acceptable as without this MRT Line 5, no effective network can be realized.

In the economic analysis of this Study, it was mentioned that with the implementation of MRT Line 5, the travel

speed will increase from 10 km/h to 35 km/h. Also, it was found that yearly economic benefit from MRT Line 5

will be around BDT 20 billion/year. It was also confirmed that the Project is economically viable.

Page 145: Study on Economic Partnership Projects in Developing Countries in

4-10

Based on the above discussion, it can be concluded that “No Build Alternative” is far less logical than the

implementation of MRT Line 5.

4.3.2 Anticipated Environmental Impacts

Environmental assessment involves weighing the likelihood of an event and the magnitude of its impact on an

affected resource. Environmental impacts can be minimized in the planning and design of the Project, and

mitigation measures can be applied during construction and operation phases. A detailed impact assessment of the

MRT Line 5 Project is expected to be carried out in the later stage of the Project during a full-scale feasibility study.

In this Study, anticipated impacts are briefly discussed.

Noise

Noise issues during the construction phase are significant, in particular during depot land development, while noise

emissions during operation are less significant. Construction of foundations and piers, and erection of precast

viaduct sections, will generate moderate noise. On the other hand, construction of underground section will not

generate any noise at the ground level.

Noise levels during construction along the alignment are not expected to exceed the adopted standard. Nonetheless,

it might be exceeded at times. The following mitigation measures are proposed to reduce noise impacts from

construction:

Use heavy equipment with built-in noise abatement, especially pavement breakers, crawler cranes,

excavators, and concrete cutters;

Construct temporary noise barriers between noisy activities and noise-sensitive receivers;

Place equipment on construction and casting yards as far away from noise-sensitive sites as possible;

Construct walled enclosures around especially noisy activities or clusters of noisy equipment;

Combine noisy operations to occur in the same time period, if possible;

Avoid nighttime activities where there is sensitivity to noise, such as hospitals; and

Provide noise-dampened equipment such as quiet and enclosed air compressors and properly working

mufflers on all engines.

The noise from train operation depends on track type, rail curvature, track structure, and speed. The transit noises

generated by MRT Line 6 for ballast less track, and with 2 m parapet, are 62.4 dB for train speed of 45 km/h at radius

of 160 m and 57.9 dB for train speed of 95 km/h at radius of more than 500 m. Thus, it can be stated that noise is not

an issue for straight sections, but it is more than 60 dB (mixed area daytime DOE limit) for curved sections.

However, by placing noise- and vibration-proof track like Mass Spring System (MSS), it is possible to reduce the

generated noise by 3 to 5 dB. Thus, it can be said that transit noise can be managed with the proper arrangements.

For underground section, there is no issue of noise both during construction and operation phases.

Vibration:

Vibration is measured in Vibration decibels (VdB) and in Peak Particle Velocity (PPV, mm/sec). It may be noted that

there is currently no vibration-related standards in Bangladesh.

Page 146: Study on Economic Partnership Projects in Developing Countries in

4-11

Vibration during operation is not a significant issue; vibration will be at the higher side at curve sections, but this can

be mitigated by introducing noise- and vibration-proof tracks like MSS. On the other hand, normal construction

equipment does not cause severe vibration except for sand compaction or dynamic compaction equipment. At this

stage of the Project, it is not certain which equipment will be used. Hence, it is suggested that this should be

investigated in more detail in the feasibility study stage of the Project.

For underground section, there is no issue of vibration both during construction and operation phases.

Air Quality

Air emissions can be generated during construction of the viaduct and stations by equipment operations and

entrainment of dust along roadways near construction sites, yards, and haul routes. Operation of the transit system

and stations do not generate air pollution.

Air quality impacts associated with construction activities should be minimized by the following measures:

Spray water at work sites and on unpaved surfaces within fabrication yards;

Cover and/or wet down materials onsite;

Loads will be covered during transportation of loose sand, aggregate, and spoil materials by truck;

Provide washing facilities at the gates of casting yards and materials storage sites, if necessary, to remove

mud from wheels and undercarriages; and

Provide certification that construction equipment brought onto the job complies with exhaust emissions

standards, and assure equipment is properly maintained.

Traffic Congestion

Although traffic congestion can be significant during operations in the vicinity of stations, it is more significant

during construction of viaduct and overhead station as well as underground station construction (as those are

constructed using open cut method). Traffic congestion in construction zones can be addressed through proper

traffic management planning such as:

Reducing demand by promoting the use of public transportation;

Restrictions on rickshaws entering the main thoroughfares;

Debottlenecking of traffic flow at key intersections;

Partial restrictions on roadside parking and loading at peak traffic periods; and

Diversion of private and bus traffic around the construction zones.

For underground section, there is no issue of traffic congestion for tunnel construction.

Drainage and Water Quality

This impact is mainly associated with the construction phase. Drainage design is aimed at preventing standing

water and flooding in the vicinity of work sites by providing positive drainage to the point of outfall. Poor water

quality at the point of discharge or open water can affect public health and aquatic ecosystems. The main impact

during construction is due to suspended solids entrained in runoff that can soil surfaces and clog drainage systems.

However, with proper drainage plan, this impact can be minimized easily.

Page 147: Study on Economic Partnership Projects in Developing Countries in

4-12

Visual Impact

The elevated portion including viaduct and stations can have some visual impact. However, it is very subjective

and can be minimized by introducing motifs and colors to blend the imposing structures into its surroundings.

For the underground section, there is no issue of visual impact during construction and operation phases.

Other Negative Impacts

There are possibilities of some other impacts at insignificant level such as groundwater, solid waste, tree cutting,

and occupational health. Impacts from these can be mitigated easily.

4.3.3 Land Acquisition

(1) General Condition

In the earlier chapters, it was explained that the north route of MRT Line 5 (Line 5N) will be considered as

priority route of MRT Line 5, while within this MRT Line 5N, Phase 1 is marked as the section between Gabtoli

and Beraid for immediate implementation. This section passes through the congested areas including cantonment

area. Various types of options are considered including partial underground at the central portion. A very rough

assessment is carried out for the land requirement and estimation of the market value.

In general, for straight portion of the alignment, there is no need for land acquisition as the viaduct will be placed

at the center of the road. The expected width of viaduct is about 10 m and most of the alignment will pass through

roads much wider than 10 m. Impact, however, arises from the curve section, as the minimum allowable curve

radius is 200 m. Stations are proposed in such a way that there should not be any land requirement. It is to be

noted that, entry/exit from the elevated stations might need some minor land requirement, which can also be

confirmed during the detailed design stage.

Three elevated options are considered for passing through the cantonment area. A separate land acquisition cost is

estimated for each of the alternatives. However, it is to be noted that apart from this section, there are land

acquisition required at other locations of the alignment.

Also, costs for depot are estimated. In addition, as for reference, a brief estimate of the land acquisition has also

been made for the south route of MRT Line 5 (Line 5S) as well.

(2) Between Gabtoli and Mirpur 1

The RSTP Team proposed the alignment to follow Dar-Us-salam Road as shown below (yellow line). However,

alternate analysis was carried out for Mazar Road (green line).

Page 148: Study on Economic Partnership Projects in Developing Countries in

4-13

Figure 4-5 Alignment of Mazar Road and Dar-Us-Salam Road

Source: METI Study Team

In both cases, there would be land acquisition. However, as Mazar Road is very narrow (average road width is

only 13 m), a large number of buildings need to be demolished at the station site as shown below.

Figure 4-6 Buildings along Mazar Road (Station) where Land Acquisition is Required

Source: METI Study Team

Page 149: Study on Economic Partnership Projects in Developing Countries in

4-14

The demolition of buildings in the southern and northern ends of the road will also be massive, as respectively

shown below.

Figure 4-7 Buildings along Mazar Road (Southern Part) where Land Acquisition is Required

Source: METI Study Team

Figure 4-8 Buildings along Mazar Road (Northern Part) where Land Acquisition is Required

Source: METI Study Team

Page 150: Study on Economic Partnership Projects in Developing Countries in

4-15

On the other hand, for the yellow line, land acquisition is required only in the southern end as shown below. Here,

Purbachal CNG Station and CNG Conversion Factory will be affected along with some tin shade structures.

Figure 4-9 Buildings along Dar-Us-Salam Road (Southern Part) where Land Acquisition is Required

Source: METI Study Team

The comparison shown below concluded that Dar-Us-Salam Road is recommended.

Table 4-4 Comparison Between Mazar Road and Dar-Us-Salam Road

Mazar Road Dar-Us-Salam Road

Average road width 13 m 35 m

Station Requires a lot of land acquisition and

building demolition

No land acquisition

Viaduct Construction will be difficult Less construction problem

Aesthetics/ Landscape Will be severely affected Will be moderately affected

Ridership catering A large number of potential riders will face

difficulty to access

More suitable for large number

of potential riders

Source: METI Study Team

Page 151: Study on Economic Partnership Projects in Developing Countries in

4-16

For Dar-Us-Salam option, there will be a land requirement of around 2,500 m2 at the gas station. The estimated

cost of compensation is around BDT 5,610 million.

(3) Cantonment Area

For the elevated viaduct, three options are considered for the cantonment area as shown below, namely: (a) yellow

line through Banani Defense Officers Housing Society (DOHS), (b) green line through the golf course, and (c)

blue line through the existing road.

Figure 4-10 Alignment in Cantonment Area

Source: METI Study Team

Yellow Route

The yellow route passes through the Banani DOHS, where the road width is only 9 m, so the entire one side of the

block has to be removed. In addition, there are few demolition work required between Kochukhet and Banani

DOHS.

Page 152: Study on Economic Partnership Projects in Developing Countries in

4-17

Figure 4-11 Buildings where Land Acquisition is Required (Yellow Line)

Source: METI Study Team

For this option, the total compensation is BDT 9,530 million. The breakdown is as follows:

1. Between Kochukhet and Banani DOHS

a. Land required: 15,000 m2

b. Building damage: few tin shed buildings

c. Passes through the residence of the Chief of Army Staff

d. Approximate cost: BDT 1,580 million

2. Within Banani DOHS

a. Land required: 5,000 m2

b. Building damage: 13 6-storey buildings and one mosque (entire one side of the road)

c. Approximate cost: BDT 7,950 million

Green Route

The green route passes through the golf course as well as Banani intersection, where there are some universities.

Page 153: Study on Economic Partnership Projects in Developing Countries in

4-18

Figure 4-12 Buildings where Land Acquisition is Required (Green Line)

Source: METI Study Team

For this option, the total compensation is BDT 7,070 million. The breakdown is as follows:

1. Land in Cantonment

a. Land required: 23,000 m2

b. Building damage: few tin shed buildings

c. Passes through the residence of the Chief of Army Staff and army golf course

d. Approximate cost: BDT 2,420 million

2. Banani Intersection

a. Land required: 3,000 m2

b. Building damage: 2 universities, 1 bank, 1 8-storey and 3 small buildings

c. Approximate cost: BDT 4,650 million

Page 154: Study on Economic Partnership Projects in Developing Countries in

4-19

Blue Route

The blue route passes through the existing road but needs a lot of land acquisition.

Figure 4-13 Buildings where Land Acquisition is Required (Blue Line)

Page 155: Study on Economic Partnership Projects in Developing Countries in

4-20

Source: METI Study Team

For this option, the total compensation is BDT 6,545 million. The breakdown is as follows:

1. Banani Intersection

a. Land required: 2,200 m2

b. Building damage: UAE market, 10-storey buildings and others

c. Approximate cost: BDT 5,035 million

2. Garison Intersection

a. Land required: 1,400 m2

b. Building damage: one garments factory

c. Approximate cost: BDT 900 million

3. Kachukhet Intersection

a. Land required: 2,000 m2

b. Building damage: about 15 shops

c. Approximate cost: BDT 340 million

4. At Kachukhet – Mirpur 14 Intersection,

a. Land required: 2,200 m2

b. Building damage: Two 6-storey government quarters

c. Approximate cost: BDT 270 million

Page 156: Study on Economic Partnership Projects in Developing Countries in

4-21

(4) Comparison among Three Elevated Options within Cantonment Area

As explained in the earlier sections, the land acquisition and compensation costs for the three elevated alternatives

within the cantonment area are as follows:

Yellow route BDT 9,530 million = JPY 15.2 billion

Green route BDT 7,070 million = JPY 11.3 billion

Blue route BDT 6,545 million = JPY 10.5 billion

Although it seems that the Blue Route is the cheapest in terms of land and compensation, the construction cost

would be different as the length of the alternative routes are different. The comparison table is shown below:

Table 4-5 Cost Comparison Among Three Routes in the Cantonment

Yellow (Center) Green (North) Blue (South)

Land/ Compensation Cost BDT 9.5 billion BDT 7 billion BDT 6.5 billion

Length 1.2 km 1.35 km 2.0 km

Construction Cost BDT 1.3 billion BDT 1.6 billion BDT 2.3 billion

Total Cost BDT 11 billion BDT 8.7 billion BDT 8.9 billion

Source: METI Study Team

Thus, it can be said that the Green Route (north, through the golf course) is the cheapest among the three elevated

alternatives.

(5) Underground Option

In case of underground option, there will be no land requirement within the cantonment area. However, the

construction cost would be different. It may be noted here that land acquisition will still be required at the

technical intersection even for the underground option. As explained in Section 4.3.2, the estimated compensation

cost is BDT 5.6 billion. The comparison of civil construction cost and land/compensation cost for elevated and

underground is shown below. For underground option, the Yellow Route (underground) will be used, while for all

elevated portion the Green Route will be used.

Table 4-6 Cost Comparison Between All Elevated and Partial Underground

Item All Elevated Partial Underground

Viaduct BDT 17 billion BDT 8.9 billion

Tunnel 0 BDT 1.5 billion

Station BDT 11.2 billion BDT 20.7 billion

Land/Compensation (Technical Intersection) BDT 5.6 billion BDT 5.6 billion

Page 157: Study on Economic Partnership Projects in Developing Countries in

4-22

Land/Compensation (Cantonment Area) BDT 7 billion 0

Total of Civil and Land Acquisition Only BDT 44.1 billion BDT 50.8 billion

Source: METI Study Team

Although the partial underground does not require land acquisition at the cantonment area, the combined cost

would be higher.

(6) Depot Area

As explained in the previous chapters, the land requirement for the depot is about 24 ha. Depot could be located

anywhere in the line. For MRT Line 5N, investigations were made at the end of the route, namely, at the end of

Gabtoli and end of Beraid. It was found that land availability at the Gabtoli end is rather limited and price is high.

Thus, it is proposed to establish the depot at the Beraid end, on the eastern side of Balu River

As shown in the following Figure 4-14, after about 1 km from Beraid Station towards east, there are empty lands

on both sides of the proposed alignment. There are enough areas to locate a 24 ha depot on either side. As the

northern side is now developed for future housing area, the depot is proposed on the southern side on mostly

uninhabited area.

Figure 4-14 Proposed Depot Area

It may be noted here that RAJUK is now preparing a future land use plan for 2016 to 2035, which is expected to

be released in early 2016. As shown in Figures 4-4 and 4-15, the proposed depot area at the east side of the Balu

River may be identified as conservation area, which would not be allowed for any development activities for the

Page 158: Study on Economic Partnership Projects in Developing Countries in

4-23

next 20 years. The land use map is revised every 20 years by RAJUK taking into accont the land development

and natural environmental conservation needs. The land development needs should be properly assessed for the

finalization of land use plan for the next 20 years. Thus, it is recommended that DTCA/DMTC shall submit

application for the land development at the east bank of Balu River as Depot Area of MRT Line 5N for the

concerned agencies to assess the needs of land development and conservation. It is also required that the further

detailed investigation for the depot area should be conducted in technical, environmental and social viewpoints in

the next detailed feasibility study stage.

From the land availability aspect, it can be said that land for depot area (around 24 ha) is possible to secure at

anywhere between the Beraid and the proposed Vatara station at any side of the road. Although the initial

investment cost and operation cost might be less for a depot location close to Vatara station, a depot location just

by the bank of the Balu river can initiate “Transit oriented development” in these currently sparsely populated area.

At this stage of the Study, it is not possible to finalize the exact depot location in the absence of topo survey and

basic geotechnical investigation. For the purpose of this Study, depot location is propsed as mentioned above. It is

expected that the depot location will be finalized at the full feasibility study stage with results of topo and geo

investigation.

Figure 4-15 Land Use Plan Map of RAJUK

Source: RAJUK

(7) Supplementary Study on the Southern Route of MRT Line 5 (Line 5S)

It was explained in the earlier chapters that RSTP proposed MRT Line 5 to have two loops, a part of the northern

loop has been considered as priority project and subject to this METI Study. However, as future reference, this

Study investigated the land acquisition requirement for the southern loop also. The southern loop runs from

Gabtoli to Aftab Nagar as shown in the following Figure 4-16.

Proposed Depot Area

Page 159: Study on Economic Partnership Projects in Developing Countries in

4-24

Figure 4-16 Alignment of South Route

Source: METI Study Team

Near the Panthapath Dhanmondi Intersection: When the line turns from the Mirpur Road (Dhanmondi) to

Panthapath, land acquisition is required at that intersection. The expected land requirement is about 1,500 m2 and

will require the removal of New Model School and College. Approximate cost is about BDT 350 million.

Figure 4-17 Buildings where Land Acquisition is Required (Intersection of Panther Pass and Dhanmondi)

Source: METI Study Team

Entrance of Aftab Nagar: When the alignment enters into Aftab Nagar from the Hatirjheel area, land will be

required, where currently a DWASA building is located. The expected land requirement is about 15,000 m2 and

will require removal of the DWASA building. Approximate cost is BDT 1,590 million.

Page 160: Study on Economic Partnership Projects in Developing Countries in

4-25

Figure 4-18 Buildings where Land Acquisition is Required (Entrance of Aftab Nagar)

Source: METI Study Team

Therefore, the land acquisition-related cost compensation for the southern loop of MRT Line 5 is about BDT

1,940 million. In case a depot of about 30 ha is considered at the Aftab Nagar end, the depot land cost can be

about BDT 18,200 million. The possible depot location is shown in the following Figure 4-19.

Figure 4-19 Possible Depot Area

Source: METI Study Team

4.4 Outline of Related Laws and Regulations on Environmental and

Social Considerations

4.4.1 Environmental Impact Assessment (EIA)

The Bangladesh National Environmental Policy, approved in May 1992, sets out the basic framework for

environmental protection together with a set of broad sector guidelines. The policy states that an Environmental

Impact Assessment (EIA) should be conducted before any large-scale transport development project is

undertaken.

The Environmental Conservation Act (ECA), 1995 (and its subsequent amendments in 2000 and 2002) sets the

establishment of the Department of Environment (DOE), among others. This Act also empowered DOE to do the

Page 161: Study on Economic Partnership Projects in Developing Countries in

4-26

following:

Declaration of Ecologically Critical Areas

Requirement of obtaining Environmental Clearance Certificate (ECC) for any project.

Regulation with respect to vehicles emitting harmful smoke into the environment.

Promulgation of standards for air, water, and noise quality for different land uses and purposes.

Promulgation of acceptable limits for discharging and emitting wastewater.

Environment Conservation Rules, 1997 (and its subsequent amendments in 2002 and 2003) are the first set of

rules promulgated under the ECA 1995, which provides the following:

National Environmental Quality Standards (EQS) for ambient air; surface water and groundwater; drinking

water; industrial effluents; and air, noise and vehicular exhaust emissions;

Categorization of industries, development projects, and other activities on the basis of anticipated

environmental impact;

Procedure for obtaining and renewing an environmental clearance over the construction phase, and

obtaining an environmental clearance for operation of the project;

Requirement for undertaking Initial Environmental Examination (IEE) and EIA in keeping with the

category of the proposed activity (including guidelines of EIA preparation); and

Procedure for claiming damage by persons affected by polluting activities or actions that adversely affect

the conduct of ordinary civic life.

Among many other environmental-related regulations, the Sound Pollution (Control) Rules, 2006 are relevant to

this Project, which set the values of noise limit.

The DOE, an agency under the Ministry of Environment and Forest (MOEF), is the regulatory body and the

enforcement agency of all environmental-related activities. Like all other projects, this Project also needs to meet

the requirements of the DOE. An EIA study needs to be undertaken for obtaining the environmental clearance. As

per ECR 1997, this Project will be considered as ‘Red Category’ as it falls under

“construction/reconstruction/extension of bridges over 100 m in length”. The steps to be followed for obtaining

the ECC for Red Category from DOE are outlined in Figure 4-20. Public participation or consultation is not a

condition in the ECR 1997 and/or EIA Guidelines; however, DOE prefers the proponent to engage in public

participation and put conditions while providing site clearance or during the approval of the terms of reference

(TOR) of the EIA.

Page 162: Study on Economic Partnership Projects in Developing Countries in

4-27

Figure 4-20 DOE’s EIA Approval Procedure

Source: METI Study Team

4.4.2 Land Acquisition Plan (LAP) and Resettlement Action Plan (RAP)

The current legislation governing land acquisition in Bangladesh is the “Acquisition and Requisition of

Immovable Property Ordinance” 1982 (hereinafter referred to as “the Ordinance”) and subsequent amendments

(1989, 1993, 1994 and 2004). The Ordinance provides certain safeguards for landowners and has provisions for

payment of ‘fair value’ for the property acquired. The 1994 amendment also made provision for payment of crop

compensation to tenant cultivators. However, it does not cover project-affected persons (PAPs) without title or

ownership record such as informal settler/squatters, occupiers, and informal tenants and lease-holders (without

document) and does not ensure replacement value of the property acquired. It does not permit the affected persons

to take the salvageable materials for which compensation has been paid. It has no provision for resettlement

assistance and transitional allowances for restoration of livelihoods of the non-titled affected persons.

According to the Ordinance, the Ministry of Land (MOL) is authorized to deal with land acquisition; however, in

practice, MOL deals with the issue through the concerned Deputy Commissioner (DC), who is the head of the

district administration. The DC processes land acquisition under the Ordinance and pays compensation to the legal

owners of the acquired land.

  A) Application for Site Clearance

Supported by:

Initial Environmental Examination (IEE); Proposed Terms of Reference (ToR) for the EIA ;

Treasury Chalan; No Objection Certificate (NOC) from the Local Authorities; and Any additional documentation. 

Returned to Application for Modification

A1) Site Clearance Granted

Site clearance granted, subject to conditions, and ToR approved

B) Submission of EIA

EIA Submitted as per the approved ToR

B1) EIA Approved

EIA Approved and Environmental Clearance Certificate awarded

Returned to Application for Modification

Page 163: Study on Economic Partnership Projects in Developing Countries in

4-28

Under this Ordinance, the executing agency needs to prepare the land schedule required to be accrued, and places

the acquisition request to concern DC. Following the Ordinance, the DC determines the: (i) market value of

acquired assets on the date of notice of acquisition (based on the registered value of similar property bought

and/or sold in the area over the preceding 12 months); and (ii) 50% premium on the assessed value (other than

crops) due to compulsory acquisition. The DC payment awarded to owners is called ‘cash compensation under

law’ (CCL). The value paid as CCL is invariably less than the “market value” as owners customarily report

undervalued land transaction prices in order to pay a lower stamp duty and registration fee. As a result,

compensation for land paid by DC, including premiums, remains less than the real market price or replacement

value (RV).

The landowner has to establish ownership by producing a record-of-rights (RoR) in order to be eligible for

compensation under the law. ROR records prepared under Section 143 or 144 of the State Acquisition and

Tenancy Act 1950 (revised 1994) are not always updated and as a result, legal landowners have faced difficulties

trying to “prove” ownership. The PAPs must also produce a rent receipt or receipt of land development tax.

It is usually recommended that khas (i.e., government owned) lands should be acquired first in preference to

private land. If a project acquires only khas, the land will be transferred through an inter-ministerial meeting

following the preparation of an acquisition proposal submitted to DC/MOL. Places of worship, graveyards, and

cremation grounds are discouraged to be acquired.

As explained above, the DC payments as CCL are, in most cases, less than the RV as defined by the Asian

Development Bank or the World Bank. As a result, it is customary in Bangladesh for all official development

assistance (ODA) projects that “additional” payments are made to PAPs following World Bank’s OP 4.12 or its

equivalent. Some of the important elements of such practice are listed below:

Compensation must be based on the full replacement cost as much as possible.

Compensation and other kinds of assistance must be provided prior to displacement.

Resettlement action plans (RAPs) must be prepared and made available to the public.

In preparing a RAP, consultations must be held with the affected people.

Appropriate and accessible grievance mechanisms must be established for the affected people and their

communities.

Eligibility of benefits not only include the PAPs who have formal legal rights to land, but also the PAPs who

do not have formal legal rights to land at the time of census, but have a claim to such land or assets, and

even the PAPs who have no recognizable legal right to the land they are occupying.

4.4.3 JICA Guidelines on Environmental and Social Considerations

Financing of this Project is not finalized yet. However, there is an indication that the Bangladesh side might ask

for Japanese assistance, first in the form of technical assistance to carry out the feasibility study, and then in the

form of yen loan for the implementation.

In case the Bangladesh side applies for Japanese assistance and Japanese side agrees to support, this Project will

be under the JICA’s Guidelines for Environmental and Social Considerations of 2010. As explained in the

Page 164: Study on Economic Partnership Projects in Developing Countries in

4-29

previous sections, the legal framework of Bangladesh will comply with the JICA guidelines.

According to the JICA guidelines, the Project will come under category A and will require full EIA, Bangladesh

regulation also calls for full EIA for this kind of project. Similarly, for social issues like resettlement and

compensation, the JICA guidelines follow the World Bank OP 4.12. Although the Bangladesh legal framework

does not comply with World Bank OP 4.12, all ODA projects in Bangladesh including JICA-financed projects are

required to follow the donor agency’s requirements. Thus, it is obvious that the Project proponent will follow the

JICA guidelines for land acquisition and resettlement compensation issues.

4.5 Measures to be Taken by Host Country to Implement the Project

During the full feasibility study, the Project proponent must prepare the EIA and RAP documents. The EIA

document should be submitted to DOE to get ECC. Also, the RAP has to be approved by the competent authority.

These steps are required for loan processing from development partners (like JICA).

During the detailed design stage, the EIA and the RAP document should be updated following the Project details

confirmed at that stage. These updated EIA and RAP documents again have to be approved.

Based on the approved EIA, the Environmental Construction Specification (ECS) should be prepared and

included in the main contractors bidding document, so that all environmental management measures can be

implemented by the contractor. For the RAP implementation, the Proponent must engage an implementing

non-governmental organization (NGO) to carry out the activities as prescribed by the RAP document.

Safeguard-related activities and their expected execution time frame are shown in Table 4-7 below.

Page 165: Study on Economic Partnership Projects in Developing Countries in

4-30

Table 4-7 Expected Execution Time Frame

Environmental Activity Feasibility Funding

Arrangement

Design Procurement Implementation

EIA preparation

ECC from DOE

EIA updating

Environmental

specification

EMP implementation and

monitoring

Land Acquisition Activity Feasibility Funding

Arrangement

Design Procurement Implementation

RAP preparation

LAP preparation

RAP updating

RAP implementation

Source: METI Study Team

Page 166: Study on Economic Partnership Projects in Developing Countries in

Chapter 5 Financial and Economic Evaluation

Page 167: Study on Economic Partnership Projects in Developing Countries in

5-1

5.1 Cost Estimates

5.1.1 Construction Plan

(1) Elevated Viaduct

During site investigation, the width of the road where the MRT East-West Line is planned on is recognized to be

comparatively narrow for construction. For example, it is only 21 m wide at locations of bridges between lakes

(Chainage: 9k400 m to 9k450 m and 10k320 m to 10k460 m) as shown in Figure 5-1. Actually, the bridge is

composed of three consecutive box culverts as a channel, approximately 20 m long and 15 m wide. Once the

construction starts, only one lane each way will be maintained in spite of heavy traffic due to civil construction

works such as piling, foundation, pier, and viaduct.

Fortunately, during this Study through discussions with DTCA, shield tunnel method under the cantonment area is

preferably adopted, and this will extend to this section solving the narrow road issue above.

Figure 5-1 Example for Traffic Conditions at Narrow Road

Source: METI Study Team

As another example, at the end of the eastern side connecting to the planned depot, which is not a developed area,

only one lane each way is paved with pre-stressed concrete bridge. In that case, track centerline shall be

coordinated with the future road development plan and additional land acquisition for connections with the depot

access lines shall be required.

At present Under construction

After completion

2 lanes 1 lane 2 lanes

1.5 

[email protected]+0.5=7.5    

2.5 

3.75    3.25     2.0         6.5           2.0        

10.25

C.L. of Road C.L. of Road& Track

10.25

9.5 9.25

10.25

2.0      

Page 168: Study on Economic Partnership Projects in Developing Countries in

5-2

The footing of the pier is composed of four pieces of bored piles, reinforced concrete, and temporary retaining

walls instead of one pile for one pier according to the study of the MRT Line 6. The pier and the pier top would be

made of in-situ cast concrete or pre-cast concrete. A viaduct will be erected by temporary launching girders, which

hang up pre-cast concrete blocks from the ground to the designed position and combine them into a bridge with

post tension pre-stressed system. This launching method will be able to shorten the construction period and the

influence on the road traffic. This construction method will be referred to the study of MRT Line 6. Working area

for construction on the road requires a minimum width of 10 m at the middle of the road for the above foundation

and viaduct works.

The design and construction methods for stations on the ground shall be finalized at the feasibility study, basic

design, and detailed design stages, while their locations, environmental conditions of surrounding areas,

connections to other metro lines, and road traffic control methods will be thoroughly researched.

(2) Shield Tunnel and Underground Station

The plan for the underground tunnel through the cantonment area has advantage of not demolishing residential

buildings. The tunnel shall be set vertically lower than one outside diameter (O.D.) of the shield tunnel machine

from the tip of the pile foundation of the building, which is said to be 18 m long; therefore, the rail level will be 34

m below the ground. This will inflate the construction cost due to the length of the tunnel and depth of the station.

The transition connecting to the elevated structure from the tunnel, which is made of box culverts and U-shaped

retaining walls, shall occupy the road permanently, which will largely affect the road traffic situation.

At present, the Study Team does not have enough preparation and time to investigate the details for tunnel and

underground station so that the construction plan is envisioned with typical model as follows:

a) Vertical shafts for departure and exit of shield machines.

b) Shield tunnel O.D. = 7.0 m for single line, up and down, two lanes.

c) Underground station which will be built by top-down method with diaphragm walls.

d) Transition from tunnel to viaduct, composed of box culvert and U-shaped wall.

e) Ventilation shaft, if necessary, evacuation system, and flood prevention facilities.

The construction of underground station will start from diaphragm walls which are excavated with slurry and

replaced by high-grade concrete together with fabricated reinforcement steel bars. Each shape of the excavation of

diaphragm wall is like a long rectangular pile and each element shall be connected vertically with special

technique to serve as continuous wall against water seepage. It will work as retaining wall and structural outer

wall permanently. For this work, the road will be divided by two lots longitudinally, one for construction, and the

other for traffic unless the road is so wide that whole construction area can be prepared within the road. Once one

side of the diaphragm wall is completed, the construction and traffic lots will be switched. Diversion, remaking

sidewalk as traffic pavement, and temporary steel decking system would be adopted to maintain the traffic, if

Page 169: Study on Economic Partnership Projects in Developing Countries in

5-3

necessary. After the completion of the diaphragm walls, the excavation and slab concrete works will be executed

from top (near the ground) to the bottom, i.e., top-down method. Each slab concrete acts as strut which support the

diaphragm walls against earth pressure due to excavation. In case the distance between concrete slabs is wide,

temporary struts will be required. Equipment for these works will be installed on the road by making limited

working zone to maintain the traffic. After casting the bottom slab concrete, the shield machines will pass on it,

followed by the platform concrete, installation of elevators and escalators, and architectural finishing works. Road

will be reinstated after completion of the station structures with entrances.

The location of vertical shaft (departure) is critical for tunnel works. It is built on the line of track and situated at

an open space to assemble shield machines, supply materials (e.g., segment which is made of concrete or steel and

installed as circular outer structure combining several blocks in-situ), replenish consumables, and haul out

excavated soil from the tunnel. It shall be connected with the logistics yards for the storage of segments and

excavated soil to be stabilized, so that the location of vertical shaft and the size of supplemental yards will heavily

affect the road traffic and progress of the tunnel. The vertical shaft itself is inherently a temporary facility but it

would remain as ventilation shaft or evacuation stairs occasionally.

Utilities shall be away from the area of underground stations and transitions before construction.

Smoke dispersion, ventilation, evacuation facilities, and flood measures shall be prepared in the tunnel.

5.1.2 Construction Cost

The cost of viaducts is estimated by quantity, which is calculated by schematic drawings considering the tentative

span of piers to be 25 m, and unit rate, which follows the estimation standards in Japan but adjusted to local

conditions. The costs for shield tunnel, underground station, electrical and mechanical (E&M) systems, and

rolling stocks are referred to those of similar previous projects. Construction cost is composed of three parts, i.e.:

civil works, procurement of equipment, and consulting services. The Project cost includes the construction cost,

which is composed of escalation cost, contingency, land acquisition, value-added tax (VAT), import tax,

administration cost, etc., as shown in Table 5-1. The cost is presented in Bangladesh Taka (BDT, local currency) as

requested by DTCA.

Exchange rate is BDT 1.0 = JPY 1.628, USD 1.0= JPY 123.96 as of June 2015.

Total Project cost becomes BDT 218 billion as shown in Table 5-1.

Page 170: Study on Economic Partnership Projects in Developing Countries in

5-4

Table 5-1 Project Cost Estimation for Partial Tunnel Method

Source: METI Study Team

Item Unit Quntity Unit Rate Amount Unit Rate Amount Unit Rate Amount1 Structural works

1 0.265 km - 6.366 km1 1 Viaduct Type-1 km 3.6 6.0 33.0 36.71 2 Viaduct Type-2 km 2.5 6.0 33.2 36.91 Sub total 6.1 12.0 66.2 73.6

2 6.366 km - 12.285 km 2 3 Shield tunnel km 5.2 192.3 13.1 131.22 4 Cut & Cover km 0.7 11.4 6.9 13.92 5 Vertical shaft nos. 2.0 3.5 2.1 4.22 Sub total 5.9 207.2 22.1 149.4

3 12.285 km - 13.446 km3 1 Viaduct Type-1 km 4.8 8.0 44.0 48.93 Sub total 8.0 44.0 48.9

Civil structure Total km 16.8 227.2 132.4 271.9

4 1 Depot civil building works LS 1 12.5 69.2 76.84 2 Depot access LS 1 1.7 9.6 10.74 Sub total 14.3 78.8 87.5

5 Station with E&M5 1 Station above ground nos 7 20.7 50.9 63.65 2 Station for high riise station nos 1 4.5 11.0 13.75 3 Underground Station civil nos 4 119.6 73.5 146.95 4 Architectural underground statio nos 4 10.0 24.6 30.75 Sub total 154.8 159.9 255.0

1 Sub-total for Structural Construction cost 396.2 371.0 614.4

2 System works1 Track works LS 1 49.5 13.0 43.42 E & M System LS 1 257.0 17.5 175.43 Test, Commissioning LS 1 4.8 0.3 3.34 Spare parts LS 1 3.3 0.1 2.15 Rolling stock LS 1 225.7 7.3 145.9

Su-total for System 540.3 38.3 370.1

3 1 Base cost Construction (1+2) L.S. 1 936.5 409.3 984.53 2 Price Escalation LS 1 195.8 225.4 345.73 3 Physical Contingency LS 1 108.2 0.0 66.5

4 Consultancy service1 Base cost LS 1 72.7 29.8 74.42 Price Escalation LS 1 11.0 12.2 19.03 Physical Contingency LS 1 7.6 0.0 4.7

Sub-total for Consultancy LS 1 91.3 42.0 98.1

5 Sub-total (3+4) LS 1 1331.8 676.7 1494.8

6 Local Administration cost1 Land acquisition LS 1 214.7 214.72 Utiity diversion LS 1 17.1 17.13 Administration cost LS 1 33.9 33.94 Interests LS 1 2.43 0.0 1.5

Sub-total LS 1 2.4 265.8 267.3

7 Price Escalation LS 1 0.30 80.3 80.5

8 Tax1 VAT (15%) LS 1 224.2 224.22 Import tax LS 1 122.7 122.7

Sub total LS 1 346.9 346.9

9 Grand total (5+6+7+8) LS 1 1334.5 1369.7 2189.4

FC (100MillionJP\) LC (100MillionBDT) Sum (100MillionBDT)No.

Page 171: Study on Economic Partnership Projects in Developing Countries in

5-5

5.2 Results of the Preliminary Analysis of the Economic and Financial Viability

5.2.1 Preconditions of the Analysis

(1) Evaluation Period

The evaluation period of 40 years is applied to the economic and financial analyses of the Project. It is assumed

that the construction of the Project (including engineering services) would start in 2018 and end in 2026, and the

commercial operation would start in July 2027 after the commissioning for half year.

(2) Asset Lives

The asset lives of the civil structure, rolling stock, and other investment materials in the Project are assumed as

follows:

- Civil structure (50 years from the beginning of operation)

- Rolling stock (25 years from the beginning of operation)

- E&M equipment including control system, telecommunications and signaling, power distribution, and automatic

fare collection (AFC) (20 years from the beginning of operation)

The residual values at the end of the evaluation period are calculated based on the asset lives, and the

reinvestments would take place according to the asset lives during the evaluation period.

(3) Discount Rate

The discount rate is used for the calculation of the net present value (NPV) and the benefit to cost ratio (B/C). The

value differs between the economic and financial analyses. In the economic analysis, the Study employed a

discount rate of 16%, which is suggested by DCTA as the general opportunity cost in Bangladesh, although

commonly used value for economic analysis is approximately 10-12% in developing countries.

On the other hand, the long-term real interest rate is generally used in financial analysis. In the Study, the discount

rate for the financial analysis is calculated at 7.1% from the long-term lending rate of 12% in Bangladesh and the

price escalation of 4.9% that is assumed in the Study.

(4) Currency and Base Year

All prices are valued in the domestic price numerate (taka) at 2015 constant prices. The yen portion of the Project

cost estimates are converted into taka at an exchange rate of BDT 1 = JPY 1.628. The Shadow Exchange Rate

Factor (SERF), which is used to convert financial costs in foreign currency to economic costs, is assumed as 1.0.

The income tax rate is approximately 15%. Since the personnel cost accounts for a large part of E/S and

administration cost, a conversion rate of 0.85 is used for these costs in domestic currency, while 0.9 is used for the

Page 172: Study on Economic Partnership Projects in Developing Countries in

5-6

other costs.

(5) Yearly Conversion

The results of the demand forecast and the operation plan represent daily values. The yearly values are calculated

by using 330 days per year considering the holidays.

5.2.2 Initial Investment Cost

The initial investment cost in the financial analysis is estimated at BDT 155.4 billion from the result of the cost

estimates by excluding the price escalation and the interest during construction. The initial investment cost in

economic prices is estimated from the financial cost by excluding VAT, import tax, and the income tax of the

personnel cost. Since the income tax of the personnel cost cannot be directly calculated, it is estimated by

multiplying conversion factors to the domestic currency portion. The economic cost is estimated at BDT 130.8

billion.

Table 5-2 Initial Investment Cost in Financial Prices (At 2015 Constant Prices)

Source: Estimated by the Consultant

Financial Cost Local portion Unit: BDT million

Year E/S Civil E&MRollingStock

LandAcquisition

PhiscalContingency

Admin Cost VAT Total

2018 0 0 0 0 0 0 0 0 02019 313 0 0 0 0 16 212 81 6212020 625 0 0 0 1,796 31 424 162 3,0382021 625 0 0 0 14,209 31 424 162 15,4512022 469 5,364 236 73 1,796 307 424 1,031 9,7002023 250 5,364 0 0 1,796 281 424 948 9,0622024 250 10,727 473 146 1,796 580 424 1,890 16,2862025 250 10,727 709 219 1,796 595 424 1,939 16,6592026 250 3,576 827 255 0 245 424 837 6,4142027 94 0 118 36 0 12 212 71 544Total 3,127 35,758 2,363 730 23,188 2,099 3,391 7,120 77,775

Financial Cost Foreign portion Unit: BDT million

Year E/S Civil E&MRollingStock

LandAcquisition

PhiscalContingency

Admin Cost VAT Total

2018 0 0 0 0 0 0 0 0 02019 469 0 0 0 0 23 0 74 5662020 938 0 0 0 0 47 0 148 1,1332021 938 0 0 0 0 47 0 148 1,1332022 704 3,852 2,006 1,387 0 397 0 1,252 9,5972023 375 3,852 0 0 0 211 0 666 5,1052024 375 7,705 4,011 2,773 0 743 0 2,341 17,9492025 375 7,705 6,017 4,160 0 913 0 2,875 22,0452026 375 2,568 7,020 4,853 0 741 0 2,334 17,8912027 141 0 1,003 693 0 92 0 289 2,218Total 4,690 25,682 20,057 13,865 0 3,215 0 10,126 77,636

Financial Cost Total Unit: BDT million

Year E/S Civil E&MRollingStock

LandAcquisition

PhiscalContingency

Admin Cost VAT Total

2018 0 0 0 0 0 0 0 0 02019 782 0 0 0 0 39 212 155 1,1882020 1,563 0 0 0 1,796 78 424 310 4,1712021 1,563 0 0 0 14,209 78 424 310 16,5842022 1,173 9,216 2,242 1,460 1,796 705 424 2,283 19,2972023 625 9,216 0 0 1,796 492 424 1,614 14,1672024 625 18,432 4,484 2,919 1,796 1,323 424 4,231 34,2342025 625 18,432 6,726 4,379 1,796 1,508 424 4,814 38,7042026 625 6,144 7,847 5,108 0 986 424 3,170 24,3052027 235 0 1,121 730 0 104 212 360 2,762Total 7,817 61,440 22,420 14,595 23,188 5,314 3,391 17,246 155,411

Page 173: Study on Economic Partnership Projects in Developing Countries in

5-7

Table 5-3 Initial Investment Cost in Economic Prices (At 2015 Constant Prices)

Source: Estimated by the Consultant

5.2.3 Operation and Maintenance (O&M) Cost

(1) Estimation Method

The O&M cost is estimated by applying the unit costs to the corresponding O&M items consisting of track, E&M,

rolling stock, station, operation, and traction power. Each O&M cost, except for traction power, is decomposed

into personnel cost and material cost.

(2) Personnel Cost

The number of staff required for O&M is estimated by applying ratios of the number of staff to explanatory

variables such as train-km, number of stations, route length, and number of cars by each O&M activity. The ratios

Economic Cost Local portion Unit: BDT millionYear E/S Civil E&M Rolling Land Phiscal Admin Cost VAT TotalCF 0.85 0.90 0.90 0.90 0.90 0.90 0.85 0

2018 0 0 0 0 0 0 0 02019 266 0 0 0 0 14 180 4602020 532 0 0 0 1,616 28 360 2,5362021 532 0 0 0 12,788 28 360 13,7082022 399 4,827 213 66 1,616 276 360 7,7572023 213 4,827 0 0 1,616 253 360 7,2692024 213 9,655 425 131 1,616 522 360 12,9222025 213 9,655 638 197 1,616 536 360 13,2152026 213 3,218 744 230 0 221 360 4,9862027 80 0 106 33 0 11 180 410Total 2,658 32,182 2,126 657 20,869 1,889 2,882 0 63,264

Economic Cost Foreign portion Unit: BDT millionYear E/S Civil E&M Rolling Land Phiscal Admin Cost VAT TotalCF 1 1 1 1 1 1 1 0

2018 0 0 0 0 0 0 0 02019 469 0 0 0 0 23 0 4922020 938 0 0 0 0 47 0 9852021 938 0 0 0 0 47 0 9852022 704 3,852 2,006 1,387 0 397 0 8,3452023 375 3,852 0 0 0 211 0 4,4392024 375 7,705 4,011 2,773 0 743 0 15,6082025 375 7,705 6,017 4,160 0 913 0 19,1692026 375 2,568 7,020 4,853 0 741 0 15,5572027 141 0 1,003 693 0 92 0 1,929Total 4,690 25,682 20,057 13,865 0 3,215 0 0 67,509

Economic Cost Total Unit: BDT millionYear E/S Civil E&M Rolling Land Phiscal Admin Cost VAT Total2018 0 0 0 0 0 0 0 02019 735 0 0 0 0 38 180 9522020 1,470 0 0 0 1,616 75 360 3,5212021 1,470 0 0 0 12,788 75 360 14,6932022 1,102 8,680 2,218 1,452 1,616 674 360 16,1032023 588 8,680 0 0 1,616 464 360 11,7082024 588 17,359 4,437 2,904 1,616 1,265 360 28,5302025 588 17,359 6,655 4,357 1,616 1,449 360 32,3842026 588 5,786 7,764 5,083 0 962 360 20,5432027 220 0 1,109 726 0 103 180 2,339Total 7,348 57,864 22,184 14,522 20,869 5,104 2,882 0 130,773

Page 174: Study on Economic Partnership Projects in Developing Countries in

5-8

are assumed based on samples of existing metros. The unit costs for the personnel costs are assumed based on the

present level of the standard salary in Dhaka.

Table 5-4 Unit of the Number of Staff and Salary

Occupation No. of Staff per Variable Yearly Salary (BDT)

Driver 100 drive-km/day per driver 360,000

Station Staff (Management) 2 per station 480,000

Station Staff 20 per station 240,000

Track Engineer 1.1 per route kilometer 360,000

E&M Engineer 2.3 per route kilometer 360,000

Car Engineer 0.8 per car 360,000

Head Office 5% of the sum of personnel

cost of the above occupations

960,000

Source: 1) The consultant’s estimation is based on various studies on urban transport systems.

2) Salary is estimated based on the standard salary level in Dhaka surveyed by the consultant

(3) Expenses

The expenses are also estimated from unit costs considering the scale of the system by work item as shown in

Table 5-5 below, which are based on a similar study on urban rail system in Karachi, Pakistan.

Table 5-5 Unit Costs of Operating and Maintenance Expenses

Cost Item Unit Cost

Track BDT 2.64 million per route kilometer

E&M BDT 4.79 million per route kilometer

Rolling Stock BDT 1.12 million per car

Station BDT 20.55 million per station

Operation BDT 4.27 million per route kilometer

Traction Power BDT 7.5 per kWh

Source: Estimates are based on the KCR Study in Pakistan (2012), JICA

(4) Traction Power Cost

It is assumed that the energy consumption for traction of trains is 1.93 kWh per car-km (Refer to Chapter 3). The

unit cost of the electricity consumption is assumed to be BDT 7.2 per kWh, based on the tariff table (Category-H,

Flat Rate) of the Dhaka Electric Supply Company Limited (DESCO).

(5) Results of O&M Estimates

Table 5-6 below shows the results of the estimation of O&M cost of the Project (16.8 km). The O&M cost in 2030

is estimated at BDT 912 million. The result is close to the estimated O&M cost of JPY 1,238 million (BDT 760

Page 175: Study on Economic Partnership Projects in Developing Countries in

5-9

million) of MRT Line 6 Stages 1 and 2 (15.4 km).

Table 5-6 Estimation of O&M Costs

Source: Estimated by the Consultant

Table 5-7 O&M Cost in Economic Prices

Source: Estimated by the Consultant

(6) Additional Investment

According to the transport plan, it will be necessary to purchase 3-4 train sets every five years after 2035.

Although a train set is composed of six cars, it is assumed that 3-5 cars will be procured every year in the

investment plan.

5.2.4 Revenue Projection

(1) Present Fare Level of Public Transport in Dhaka

The fare of existing buses in Dhaka is approximately BDT 1.5-1.6/km, while that of CNGs, which are popular

three-wheel auto cars, is BDT 30 for the first 2 km.

(2) Fare Setting in the Demand Forecast

In the demand forecast carried out by the JICA RSTP Team, the fare of the MRT network was assumed to be BDT

16 as the minimum charge plus BDT 2/km, with the condition that transfer to other lines is free of charge.

(3) Assumption of the Fare Structure

The fare setting used in the RSTP is used because the result of the demand forecast in the PSTP (interim stage) is

used for the demand forecast. The demand forecast in the RSTP includes transfer passengers between MRT

East-West Line and other lines, and MRT East-West Line cannot necessarily take all the minimum charges which

Unit: BDT millionYear 2027 2030 2035 2040 2045 2050 2055Track 21 43 43 43 43 43 43E&M 39 78 78 78 78 78 78Rolling Stock 74 147 147 167 194 221 254Train Operation 35 69 69 69 69 69 69Station 117 235 235 235 235 235 235Employment 101 202 202 210 220 229 241Traction Power 69 138 138 150 161 173 191Total 456 912 912 951 999 1,046 1,111

Economic Cost Unit: BDT millionYear 2027 2030 2035 2040 2045 2050 2055Personnel Cost 86 172 172 178 187 195 205Power & materials 319 639 639 667 701 736 783Total 405 811 811 845 888 930 988

Page 176: Study on Economic Partnership Projects in Developing Countries in

5-10

are paid by the transfer passengers. It is assumed that transfer passengers account for 20% of the total passengers,

and MRT East-West Line takes 50% of the minimum charge paid by the transfer passengers as revenue.

(4) Non-rail Business

Non-rail business, such as property development around stations, rental of the station space, and advertisement, is

one of the revenue sources in railway projects. In this study, the investment on non-rail business is not considered,

but the revenue from advertisement and space rental is included in the total revenue considering that the amount

of revenue is very small. It is assumed that the revenue from the non-rail business accounts for 5% of the

passenger fare revenue.

(5) Revenue Projection

The result of the revenue projection is shown in Table 5-8 below. Since the commercial operation in the first year

(2027) is half of the year, the revenue is estimated as half of the yearly projection.

Table 5-8 Estimation of Revenue

Source: Estimated by the Consultant

5.2.5 Financial Cash Flow Analysis

(1) Financial Cash Flow

The financial cash flow is calculated using the constant prices, which is applied in the project appraisals by

international organizations in general. In this case, the internal rate of return is compared with the real interest rate.

Table 5-9 below shows the financial cash flow. The reinvestment of E&M is scheduled 20 years after the

commencement of operation. Additional investments will be necessary for rolling stock according to the increase

in demand, while the reinvestment of rolling stock is scheduled 25 years after the commencement the operation.

The financial internal rate of return (FIRR) is calculated at 2.7%. FIRR is same as the return of the Project when

all the investment cost is prepared as equity. Since the FIRR is lower than the real interest rate of 7.1% in

Bangladesh, the profitability of the Project is low; therefore, implementation by the private sector would be

difficult.

MillionYear 2027 2030 2035 2040 2045 2050 2055No. of passengers (a) 132 270 281 339 396 453 511Passenger-km (b) 736 1,489 1,517 1,826 2,135 2,444 2,753Fare revenue (BDT) (c) 3,366 6,868 7,086 8,530 9,973 11,417 12,860Non-rail revenue (BDT) 168 343 354 426 499 571 643Revenue (BDT) 3,535 7,211 7,441 8,956 10,472 11,988 13,503(c) = (0.8+0.2*0.5)*(a) * 16.0 + (b) *2.0

Page 177: Study on Economic Partnership Projects in Developing Countries in

5-11

Table 5-9 Financial Cash Flow of the Project for FIRR

Source: Estimated by the Consultant

Table 5-10 below shows the result of the sensitivity analysis of FIRR. Even if the cost increases by 20% and the

revenue decreases by 20%, FIRR is not negative. On the other hand, FIRR is less than the real interest rate of

Discount rate at 7.10% Unit: BDT. MillionCost

Civil EM RollingStockl

Others O&M Total Revenue Total

2018 0 0 0 0 0 02019 0 0 0 1,188 1,188 -1,188 2020 0 0 0 4,171 4,171 -4,171 2021 0 0 0 16,584 16,584 -16,584 2022 9,216 2,242 1,460 6,380 19,297 -19,297 2023 9,216 0 0 4,951 14,167 -14,167 2024 18,432 4,484 2,919 8,399 34,234 -34,234 2025 18,432 6,726 4,379 9,167 38,704 -38,704 2026 6,144 7,847 5,108 5,206 24,305 -24,305 2027 0 1,121 730 911 456 3,218 3,510 2932028 0 0 912 912 7,081 6,1692029 0 0 912 912 7,142 6,2302030 0 0 912 912 7,202 6,2902031 0 0 912 912 7,263 6,3512032 0 0 912 912 7,324 6,4122033 0 0 912 912 7,384 6,4722034 0 0 912 912 7,445 6,5332035 0 442 912 1,354 7,506 6,1512036 0 442 920 1,362 7,811 6,4492037 0 332 928 1,259 8,117 6,8582038 0 442 935 1,378 8,423 7,0452039 0 332 943 1,275 8,729 7,4542040 0 553 951 1,504 9,034 7,5312041 0 553 960 1,513 9,340 7,8272042 0 553 970 1,523 9,646 8,1232043 2,242 553 980 3,774 9,952 6,1772044 4,484 442 989 5,915 10,258 4,3422045 6,726 553 999 8,278 10,563 2,2862046 7,847 553 1,008 9,408 10,869 1,4612047 1,121 553 1,018 2,692 11,175 8,4832048 0 553 1,027 1,580 11,481 9,9012049 0 5,307 1,037 6,344 11,787 5,4432050 0 5,528 1,046 6,575 12,092 5,5182051 0 5,528 1,057 6,585 12,398 5,8132052 0 663 1,067 1,730 12,704 10,9732053 0 663 1,077 1,741 13,010 11,2692054 0 663 1,088 1,751 13,315 11,5642055 0 0 1,098 1,098 13,621 12,5232056 0 0 1,098 1,098 13,621 12,5232057 0 0 1,098 1,098 13,621 12,5232058 -23,347 -10,089 -15,178 -48,615 48,615

NPV 107,794 103,955 -51,723 IRR 2.7%

Page 178: Study on Economic Partnership Projects in Developing Countries in

5-12

7.1% in the case of 20% increase in the revenue and 20% decrease in the cost, which means the profitability of the

Project is very low.

Table 5-10 Sensitivity Analysis of FIRR

Source: Estimated by the Consultant

(2) Applicability of Public-Private Partnership (PPP) Scheme

PPP projects can be categorized into two large groups, namely, financially free-standing projects by the private

sector such as BOT and projects in which the public sector purchases the services provided by the private sector.

Since the Project is not commercially viable as shown in the results of the FIRR calculation and not possible as a

financially independent project, it is difficult to apply the BOT scheme.

In case that the Project should be implemented by the private sector as a financially independent project,

additional business other than railway such as urban development along the railway line that can produce profit is

necessary. However, the implementation by this approach will be difficult due to the lack of land for real estate

development because the alignment of MRT East-West Line passes through developed areas. This is also

unrealistic because it is necessary to wait for the proposal of the private sector which engages in real estate

development along MRT East-West Line.

Vertical separation, which means separating the railway business into the infrastructure by public and the

operation by private based on the concept that the infrastructure of the railway is a part of public assets like roads,

is one of the measures to make the railway project commercially viable. To evaluate the vertical separation, FIRR

is calculated for the case when the private sector makes investment on E&M and rolling stock, which are

categorized in the cost estimates, and run the business by taking the responsibility of O&M. The FIRR of the

above case is calculated at 8%, which is higher than the assumed real interest rate of 7.1%, and the project will be

commercially viable. However, if the Project is implemented by the private sector, the return of the Project is

required to be higher than the interest rate of banks considering the risk premium for the Project.

In case that the private sector constructs and operates MRT Line 6 with the payment by the public sector for the

services provided by the private sector, the public sector will pay the private sector for the initial investment cost

in installments in the future. Since the profit of the private sector is added to the payment, the total amount of

payment by the public sector will be larger than the repayment of principal and interests in the case of using a soft

loan.

RevenueCost 20% 15% 10% 5% 0% -5% -10% -15% -20%

-20% 5.3% 5.1% 4.8% 4.4% 4.1% 3.8% 3.5% 3.1% 2.7%-15% 4.9% 4.6% 4.4% 4.1% 3.7% 3.4% 3.1% 2.7% 2.4%-10% 4.6% 4.3% 4.0% 3.7% 3.4% 3.1% 2.7% 2.4% 2.1%

-5% 4.2% 3.9% 3.6% 3.4% 3.1% 2.7% 2.4% 2.1% 1.8%0% 3.9% 3.6% 3.3% 3.0% 2.7% 2.4% 2.1% 1.8% 1.5%5% 3.6% 3.3% 3.0% 2.7% 2.5% 2.2% 1.8% 1.5% 1.2%

10% 3.3% 3.0% 2.7% 2.5% 2.2% 1.9% 1.6% 1.3% 1.0%15% 3.0% 2.7% 2.5% 2.2% 1.9% 1.6% 1.3% 1.0% 0.7%20% 2.7% 2.5% 2.2% 2.0% 1.7% 1.4% 1.1% 0.8% 0.5%

Page 179: Study on Economic Partnership Projects in Developing Countries in

5-13

Figure 5-2 Comparison of Total Payment Between PPP and Public Investment

Source: Estimated by METI Team

Currently, the fare system of the mass transit network in Dhaka has not been concluded yet. In view of users’

benefit, the integrated fare system that does not require additional charge for the transfer of lines is desirable,

although it is necessary to establish a mechanism to distribute the passenger revenue to each operator in case of

BOT scheme.

5.2.6 Economic Benefits

(1) Method

For the economic analysis of the Project, the total transport cost approach, which calculates the reduction in the

total transport cost between “With Case” and “Without Case”, shall be adopted. The economic benefit of the

Project consists of (a) reduction of travel time of passengers who shifted their transport mode from buses to the

metro; and (b) reduction of vehicle operating costs of buses due to the reduction in vehicle kilometers of buses.

(2) Value of Time

The value of time, which is used to calculate the time saving benefit, is estimated from the average hourly income,

which is estimated from the average monthly salary and the average working hours in Dhaka.

The average monthly salary in the urban area of Bangladesh was BDT 16,477 in 2010, according to the

Household Income and Expenditure Survey 2010 by the Bangladesh Bureau of Statistics (BBS). To estimate the

average monthly income in 2015 from this data, it is assumed that the income level has increased at the same ratio

of the GDP per capita. According to the World Bank database, the per capita GDP in 2015 is 1.27 times that of

2010 at 2005 constant prices. The average monthly working hours is assumed to be 170 hours. The value of time

of car users is estimated by adjusting that of bus passengers using the value of time by income class in 2015,

which is estimated in the JICA study (October 2011).

Table 5-11 Estimation of Value of Time

Value of Time (BDT/hour) Remark

Bus passengers 123 16,477 * 1.27 / 170

Private car users 236 123 * ( 403.2/210.3)

Source: Estimated by METI Team

Initial Investment O&M Financial cost Profit, dividend

Initial Investment O&M

PPP method

PublicInvestment

Cost reduction by private

Financing, returns to stakeholders

Page 180: Study on Economic Partnership Projects in Developing Countries in

5-14

(3) Reduction in Travel Time

The travel time reduction is estimated by comparing the travel time by metro with that by road in “Without Case”

which runs in parallel with the metro.

Benefit of Travel Time Reduction

= (passenger-hours in “Without Case” – passenger-hours in “With Case”) * value of time (BDT/hour/person)

The average speed of buses is assumed to be 8.65 km/hour based on the RSTP, while that of the MRT East-West

Line is 33 km/h according to the operation plan. The average travel speed of a private car is assumed as 16 km/h.

The route runs through the cantonment area, where a parallel road does not exist. It is assumed that passengers

travelling on the route would make a detour with the length of 4.2 km.

Although the traffic congestion along MRT East-West Line will be relieved because of the reduction in the

number of bus and private cars, the present available data is not enough to analyze this impact. In this Study, the

benefit of the decongestion is estimated by assuming that the travel time will be reduced by eight minutes per

person for 50,000 car users per day along MRT East-West Line, considering the present traffic situation.

Table 5-12 below shows the results of the benefit of the travel time reduction.

Table 5-12 Calculation of Travel Time Saving

Source: Estimated by METI Team

(4) Reduction in Vehicle Operating Cost (VOC)

The Project will reduce the frequency of bus services because of the shift of transit passengers from buses to the

metro, which can reduce the VOC of buses. The reduction in VOC is calculated according to the following

formula:

Unit: Million (except for m, n)2027 2030 2035 2040 2045 2050 2055

Passengers from busPassenger-km (Bus) a 977 1,991 2,053 2,472 2,890 3,308 3,727

along MRT-5 b 652 1,337 1,393 1,677 1,961 2,244 2,528detour c 325 654 660 795 929 1,064 1,198

Passenger-hour (Bus) d 113 230 237 286 334 382 431Passenger-hour (MRT) e 20 41 42 51 59 68 77Saving (Bus->MRT-5) f 11,463 23,331 24,007 28,897 33,787 38,677 43,568Passengers from carPassenger-km (Car) g 109 221 228 275 321 368 414

along MRT-5 h 72 149 155 186 218 249 281detour i 36 73 73 88 103 118 133

Passenger-hour (Car) j 6.8 13.8 14.3 17.2 20.1 23.0 25.9Passenger-hour (MRT) k 2.2 4.5 4.7 5.6 6.6 7.6 8.5Saving (Car->MRT-5) l 1,083 2,199 2,257 2,716 3,176 3,636 4,095Car usersNo. of car users m 25,000 50,000 50,000 50,000 50,000 50,000 50,000Time reduction (min) n 8 8 8 8 8 8 8Saving (Car->Car) o 243 486 486 486 486 486 486Total p 12,789 26,017 26,750 32,100 37,450 42,800 48,150

Page 181: Study on Economic Partnership Projects in Developing Countries in

5-15

VOC = UC * (PKM/OR)

Where:

UC: VOC of buses per vehicle-kilometer (BDT/vehicle-km)

PKM: Passenger-kilometer of the metro per year

OR: Average occupancy rate of buses

The occupancy rate of buses fluctuates daily, showing high occupancy rates in peak hours and low rates in

off-peak hours. In this Study, it is assumed that the passenger occupancy rate of a bus is 40 passengers on average.

The VOCs per vehicle-km of buses in Bangladesh are estimated in several reports. The Road User Cost Study

(2009) estimated the financial and economic VOC of buses by type, in which the VOCs of minibuses, which is the

most common bus type along the route, are estimated at BDT 31.35/km for financial VOC and BDT 28.21/km for

economic VOC.

Table 5-13 Estimation of Vehicle Operating Costs

Source: Estimated by METI Team

5.2.7 Economic Indicators

(1) Benefit and Cost Flow

Table 5-14 below shows the flow of economic cost and benefit of the Project. The economic internal rate of return

(EIRR) was calculated as 16.2%. Since this is higher than the opportunity cost of capital in Bangladesh, the

Project is economically feasible. On the other hand, B/C is as small as 1.02, and the net present value (NPV) is as

small as approximately BDT 0.75 billion compared with the investment cost. In case that the discount rate of 12%

is used, B/C is calculated at 1.5 and NPV is calculated at BDT 32.8 billion.

Unit: Million2027 2030 2035 2040 2045 2050 2055

Bus Pax-km (from bus) a 1,013 2,064 2,127 2,560 2,993 3,427 3,860Veh-km (from bus) b 28.4 57.8 59.6 71.7 83.8 95.9 108.1VOC (from bus) c 2,032 4,141 4,267 5,136 6,005 6,874 7,743

Car Pax-km (from car) d 72 149 155 186 218 249 281Veh-km (from car) e 48.3 99.0 103.2 124.2 145.2 166.2 187.3VOC (from car) f 777 1,594 1,661 2,000 2,338 2,677 3,015

Total VOC g 2,809 5,735 5,928 7,136 8,343 9,551 10,758

Page 182: Study on Economic Partnership Projects in Developing Countries in

5-16

Table 5-14 Flow of Economic Cost and Benefit

Source: METI Team

(2) Sensitivity Analysis

The sensitivity analysis was carried out to evaluate the stability of the results of the economic analysis by applying

smaller benefits and larger costs than those of the analyzed case as shown in Table 5-15 below. The blue color

Unit: BDT millionEconomic Cost Economic Benefit Net

Capital Cost O&M Total Total CashCivil E&M RS Others Subtotal Flow

20182019 952 952 952 -952 2020 3,521 3,521 3,521 -3,521 2021 14,693 14,693 14,693 -14,693 2022 8,680 2,218 1,452 3,753 16,103 16,103 -16,103 2023 8,680 3,028 11,708 11,708 -11,708 2024 17,359 4,437 2,904 3,829 28,530 28,530 -28,530 2025 17,359 6,655 4,357 4,013 32,384 32,384 -32,384 2026 5,786 7,764 5,083 1,910 20,543 20,543 -20,543 2027 1,109 726 504 2,339 405 2,744 12,789 2,809 15,598 12,8542028 811 811 25,724 5,657 31,381 30,5702029 811 811 25,870 5,696 31,566 30,7562030 811 811 26,017 5,735 31,752 30,9412031 811 811 26,163 5,773 31,937 31,1262032 811 811 26,310 5,812 32,122 31,3112033 811 811 26,457 5,851 32,307 31,4972034 811 811 26,603 5,889 32,493 31,6822035 811 811 26,750 5,928 32,678 31,8672036 440 440 818 1,258 27,820 6,170 33,989 32,7322037 440 440 825 1,265 28,890 6,411 35,301 34,0362038 330 330 831 1,161 29,960 6,653 36,612 35,4512039 440 440 838 1,278 31,030 6,894 37,924 36,6462040 330 330 845 1,175 32,100 7,136 39,235 38,0602041 550 550 854 1,404 33,170 7,377 40,547 39,1432042 550 550 862 1,412 34,240 7,619 41,858 40,4462043 2,218 550 2,768 871 3,639 35,310 7,860 43,170 39,5312044 4,437 550 4,987 879 5,866 36,380 8,102 44,481 38,6152045 6,655 440 7,095 888 7,983 37,450 8,343 45,793 37,8102046 7,764 550 8,314 896 9,211 38,520 8,585 47,104 37,8942047 1,109 550 1,659 905 2,564 39,590 8,826 48,416 45,8522048 550 550 913 1,463 40,660 9,068 49,727 48,2642049 550 550 922 1,472 41,730 9,309 51,039 49,5672050 5,281 5,281 930 6,211 42,800 9,551 52,350 46,1402051 5,501 5,501 939 6,440 43,870 9,792 53,662 47,2222052 5,501 5,501 949 6,449 44,940 10,034 54,973 48,5242053 660 660 958 1,618 46,010 10,275 56,285 54,6672054 660 660 967 1,627 47,080 10,517 57,596 55,9692055 660 660 976 1,636 48,150 10,758 58,908 57,2722056 976 976 48,150 10,758 58,908 57,9322057 976 976 48,150 10,758 58,908 57,9322058 -21,988 -11,092 -15,102 -48,183 -48,183 48,183

Discount Rate = 16% NPV 752.7IRR 16.2%B/C 1.02

TTC VOC

Page 183: Study on Economic Partnership Projects in Developing Countries in

5-17

means that the EIRR is 16% or more, while the red color means that the EIRR is less than 16%. In case of 10%

increase in the economic cost, or 10% decrease in the economic benefit, the EIRR will be smaller than 16%,

which is suggested by DCTA. Even in the case that the economic benefit is smaller than 20% and the economic

cost is larger than 20%, the EIRR is still larger than 12%, which is commonly used for appraisal by international

banks including the Asian Development Bank (ADB).

Table 5-15 Sensitivity Analysis of EIRR

Source: METI Study Team

(3) Conclusion

The results of the financial analysis show that the return on investment of the Project is so low that its

implementation by the private sector will be difficult. On the other hand, the Project can be established by using

loans with low interest rates such as Japanese Yen Loan, because its FIRR is calculated as positive.

In the economic analysis, EIRR exceeds 16%, which is given by the counterpart as the opportunity cost in

Bangladesh. This means that the Project is economically feasible.

BenefitCost 20% 15% 10% 5% -5% -10% -15% -20%

-20% 21.1% 20.5% 19.9% 19.4% 18.8% 18.1% 17.5% 16.9% 16.2%-15% 20.3% 19.7% 19.2% 18.6% 18.0% 17.4% 16.8% 16.2% 15.5%-10% 19.6% 19.0% 18.5% 17.9% 17.4% 16.8% 16.2% 15.5% 14.9%

-5% 18.9% 18.4% 17.8% 17.3% 16.7% 16.2% 15.6% 15.0% 14.3%18.3% 17.8% 17.2% 16.7% 16.2% 15.6% 15.0% 14.4% 13.8%

5% 17.7% 17.2% 16.7% 16.2% 15.6% 15.1% 14.5% 13.9% 13.3%10% 17.2% 16.7% 16.2% 15.7% 15.1% 14.6% 14.0% 13.5% 12.9%15% 16.6% 16.2% 15.7% 15.2% 14.7% 14.1% 13.6% 13.0% 12.4%20% 16.2% 15.7% 15.2% 14.7% 14.2% 13.7% 13.2% 12.6% 12.0%

Page 184: Study on Economic Partnership Projects in Developing Countries in

Chapter6 Planned Project Implementation Schedule

Page 185: Study on Economic Partnership Projects in Developing Countries in

6-1

6.1 Implementation Schedule

6.1.1 Construction Method

It is important for the Project to reasonably forecast the construction schedule. Construction is composed of civil

works, track works, electrical and mechanical (E&M) system works, and test and commissioning. Construction of

the depot shall be provided earlier than the track works, and testing and training of rolling stocks. In case of

elevated viaduct, the whole line will be divided to several construction blocks to manage traffic, quality, safety,

cost, and schedule. Generally, the more the number of these divisions are, the shorter the construction time is, but

the more cost there is. In other words, this type of construction, i.e., long distance of structure on the ground, is

easily adjustable in terms of schedule and cost as variations. Not only the civil works but also subsequent works

such as track and E&M system works can be managed within the schedule by appropriate measures.

In case of the shield tunnel, the critical path of the schedule is simple and not flexible to changing situation, which

consists of the design and manufacture of the shield machine, construction of underground station where the

shield machine will pass on the bottom slab concrete, completion of the tunnel, track works in the tunnel, and

E&M system works in the tunnel. Therefore, once troubles come up such as delay of underground station due to

land acquisition or utilities diversion, the excavation of tunnel due to the mismatch of the machine with the

geotechnical conditions or abnormal ground conditions, it would be difficult to make up the schedule. It is of great

importance to investigate the soil conditions and the design including construction sequence for tunnels and

underground stations prior to the construction.

The sequence of constructing piers of viaduct structure is bored piles, driving steel sheet piles, excavation, base

concrete, pier concrete, backfilling, removing steel sheet piles, and pier top concrete, which would take two

months. A block is 200 m in length, and the construction will proceed block by block together with traffic control.

At the same time, precast concrete blocks for the viaduct will start to be produced and stored at the fabrication

yard. Temporary launching girders will be set on piers and bridges will be constructed span by span using the

pre-stressed method. Four pieces of launching girders will be provided for the 11.3 km length of viaduct so that

construction period is expected to take four years.

In case of tunnel construction, these activities will start simultaneously with the design and fabrication of shield

machines and construction of vertical shaft and underground stations, which is foreseen to take two years because

of the depth. The excavation speed of shield machine is expected to be 200 m to 300 m per month except in the

initial stages. A shield machine per single line is provided for a length of 5.2 km; therefore, the whole construction

period will take five years as shown in Table 6-1. Subsequent works such as track, cable, communication, and

ventilation can only commence after the shield machine is demolished from the tunnel. If the number of shield

machines is set to four, the construction period will be dramatically shortened. This analysis will be done in the

next study.

Page 186: Study on Economic Partnership Projects in Developing Countries in

6-2

Table 6-1 Construction Schedule of Partial Underground Option

YearMonth 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12

Station Distance0k000

No1 Station 0k400

1k000

2k000No2 Station 2K100

3k000

No3 Station 3k400

4k000

No4 Station 4K7005k000

No5 Station 5K8406k0006k366

6k735

7k000No6 Station 7K080

8k000

No7 Station 8k7209k000

No8 Station 9k72010k000

No9 Station 11k000

11k91912k00012k285

N0.10 Station 12k96513k000

13k446

Depot Access14k000

1 2 3 4 5

Pier & footing, ctc.25mA construction block =200m2 months per one block

Superstructure ,  One span=25m5 days per one  span erection= 8 days for calender day8*8=64days, about 2months / span

Station architectural works     12months per a station

Underground stationDiaphragm wall, Top down method to Base concret

Vertical shaft (departure)Shield Machine fabrication & mobilization to the site

TransitionBox‐culvert and U‐shape wall

Shield tunnel construction

TransitionBox‐culvert and U‐shape wall

Track works     E & M system works

Track works     E & M system works

Track works     E & M system works

Architectural works for underground station

Source: METI Study Team

6.1.2 Overall Project Implementation Schedule

The overall project schedule is shown in Table 6-2.

Page 187: Study on Economic Partnership Projects in Developing Countries in

6-3

Table 6-2 Overall Project Implementation Schedule

Year

1 Feasibility studyPreliminary study Feasibility study Fund arrangement

2 Consultancy services1 Consultant selection2 Basic design3 Detail design4 Procurement assistance

3 Construction1 0.2 km - 6.4 km Viaduct, Station2 6.4km - 6.7km Transition3 6.7 km - 11.9 km Underground Station4 6.7 km - 11.9 km Shield Tunnel5 11.9 km - 12.3 km transition6 12.3km - 13.4 km Viaduct Station7 Depot access8 Depot9 Architectural works for stations

4 Track works

5 E & M System

6 Rolling stock

7 Test, Commissioning

8 Operation & Maintenance

9 Land acquisition, Utility diversion

20202015 2016 2017 2018 2019 2027 20352021 2022 2023 2024 2025 2026

Source: METI Study Team

6.2 Issues on Project Implementation

Remarkable construction activities, which would affect the cost and implementation of the Project, are seen during

the site visit. One is the reclamation with pumps around the planned depot area and the other is a great number of

building constructions at the central part of Dhaka City. In addition to these construction activities, MRT, BRT,

and flyover projects are going to be developed and land readjustment plan will be enforced in the near future.

From the point of view of recent economical growth in Dhaka, the construction cost would be swollen more than

expected and land acquisition would be critical for proceeding with this Project. It is desirable to establish the

cooperation between the public and private parties in obtaining the land for public works like MRT project. For

example, the entrance from both elevated and underground stations will generally be located on the sidewalk in

case of enough width of the road, while it would be a positive idea to combine the public structure (entrance) and

private equity (e.g., shopping mall, condominiums) in case of narrow road. The location of the entrance of the

underground station, which is composed of staircases, escalators, and elevators, is of great importance. It will be

an advantage for the passengers to ride the MRT smoothly and to develop the business environment surrounding

the stations.

In case of tunnel, the design of tunnel as well as underground stations shall be taken into consideration in the

Page 188: Study on Economic Partnership Projects in Developing Countries in

6-4

construction method more thoroughly than that for elevated structure; otherwise, unexpected troubles would

happen often during construction.

Where tunnel passes under residential buildings, psychological and environmental issues may occur during the

construction stage or permanently. It is of great importance to spread information widely before construction.

Integrated engineering technology about tunnel construction experienced in Japan shall be available. This is a

great opportunity to introduce tunnel technique to the MRT East-West Line Project in Dhaka.

.

Page 189: Study on Economic Partnership Projects in Developing Countries in

Chapter7 Project Implementing Agencies

Page 190: Study on Economic Partnership Projects in Developing Countries in

7-1

7.1 Overview of the Implementing Agencies of the Host Country

For any metro rail-related projects in Dhaka, two agencies are directly concerned, namely, Dhaka Transport

Coordination Authority (DTCA) and Dhaka Mass Transit Company Ltd. (DMTC). DTCA, as the coordinating

authority of all transportation system in Dhaka, is also mandated to conduct planning like feasibility studies.

DMTC, on the other hand, is a state-owned company (SOC) responsible to implement any metro rail project in

Dhaka. However, if the project is implemented through public-private partnership (PPP), implementation

mechanism can be different and will depend on the extent of engagement of the private sector. For example, in

case of build-operate-transfer (BOT), a special purpose organization (SPO) might be formed. However, if the PPP

engagement is in the form of concession only, it is still possible that DMTC will be the implementing agency. In

this chapter, assessment will be made for DMTC only.

As mentioned above, DMTC is an SOC and is governed according to its own regulations. Legally, all SOCs are

autonomous bodies but the respective ministries appoint their board of directors. Effectively, the SOCs reflect

their line ministry positions. However, as the SOC’s board can take all decisions, the paper work involving the

ministry can be reduced and thus many processes can be expedited. DMTC, like all SOCs, is legally separated

from the government but heavily depends on the financial issuances of the government like loans and subsidies.

7.2 Organization for the Implementing Agencies of the Host Country

The DMTC is an SOC mandated to implement and operate all metro rails on behalf of the government. Its

formation dates back to the 2010 JICA Dhaka Urban Transportation Study (DHUTS), which proposed to form an

authority for the implementation of MRT Line 6 and later for any other lines. Later, the Study for Institutional

Strengthening and Capacity Enhancement of Transport Related Agencies in Dhaka City (SISCETRA) was

undertaken by DTCB (currently DTCA) engaging local consultants. The study recommended the formation of an

authority which is essentially in line with the proposal of DHUTS and proposed the name “Dhaka Mass Transit

Company”. They also suggested that DMTC can be developed in stages and in the beginning it should be formed

with just 18 officials.

During the implementation of MRT Line 6, an institutional development consultant (IDC) was engaged, who will

formulate the full expansion of DMTC. IDC is expected to complete his/her work by 2015 and his/her scope

includes organogram, job description, business plan, financial plan, and work procedure, among others.

DMTC was formed in line with the Metro Rail Act of 2015 and complying with the Companies Act of 1994. The

registration date of DMTC was June 3, 2013 and the registration number is C-109 490/13. The mandate

mentioned in its Memorandum and Articles of Association is as follows (Sec III A 1):

To establish, operate, and maintain including planning, designing, development, construction, and financing

of MRT system in and around Dhaka City (as defined and specified in the Dhaka Transport Coordination Act,

2012 (Act No. 8 of 2012)) so as to meet the urban transport needs of Dhaka and its neighbouring areas. MRT

Page 191: Study on Economic Partnership Projects in Developing Countries in

7-2

system covers metro railway, light railway, mono rail, sky bus, or any similar people mover system operating

on a dedicated guide way at surface, above or below the ground level.

In Sec III A 5b, DMTC is also mandated to carry out feasibility study of the system; thus, the feasibility study of

the MRT Line 5e can be undertaken by DMTC.

The authorized share capital of the company is BDT 10,000,000,000,000 (10,000 cr), which is approximately

equivalent to USD 800 million. There are eight shareholders of DMTC and their share numbers are shown in Table

7-1 below.

Table 7-1 DMTC Shareholders and Number of Shares

Shareholders Number of Shares

Secretary, Road Transport and Highways Division 9,999,999,930

Executive Director, Dhaka Transport Coordination Authority 10

Representative from the Prime Minister Office (Not below the rank of Director General) 10

Additional Secretary, Local Government Division 10

Additional Secretary, Ministry of Finance 10

Representative from the Ministry of Railway, (Not Below the rank of Joint Secretary) 10

Joint Secretary, Power Division 10

Managing Director, Dhaka Mass Transit Company Limited 10

Source: METI Study Team

As mentioned in Sec 33 (i), the number of directors shall not be less than nine and not more than 13 until otherwise

determined by the company in its general meeting. The board of DMTC currently consists of 11 members and the

formation is shown in Table 7-2 below.

Table 7-2 Board Members of DMTC and Their Positions

Member Position

Secretary, Road Transport and Highways Division Chairman

Executive Director, Dhaka Transport Coordination Authority Member

Representative from the Prime Minister Office (Not below the rank of Director General) Member

Additional Secretary, Local Government Division Member

Additional Secretary, Ministry of Finance Member

Representative from the Ministry of Railway, (Not Below the rank of Joint Secretary)

Member

Joint Secretary, Power Division Member

One Professor of the Department of Civil Engineering, Bangladesh University of Engineering and Technology (BUET)

Member

Page 192: Study on Economic Partnership Projects in Developing Countries in

7-3

A Qualified Chartered Accountant from the Institute of Chartered Accountants Member

Member, An Advocate Specialized in Company Laws Nominated by the Government Member

Managing Member of Director, Dhaka Mass Transit Company Limited Member

Source: METI Study Team

At present, DMTC is still in the early stages of formation. Currently, one managing director, one deputy managing

director, two directors, two chief engineers, and few deputy general managers are mobilized from different

government agencies. The IDC is supposed to submit its report by end of 2015 outlining the organogram,

manpower, job description, accounting system, and recruitment plan. It is expected that recruitment will start from

2016. In addition, IDC will also prepare a detailed training program for management and financial positions.

Figure 7-1 Organizational Chart of DMTC

Source: Home Page of DMTC

Figure 7-2 Organizational Chart of DMTC Proposed by IDC

Source: Draft Final Report of IDC

Project Director

Additional Project Director

Director, Finance and Admin

Director, Strategy and Planning

General Manager,Admin

General Manager,Finance and Accounts

Chief Engineer, Civil Chief Engineer, Electrical and Mechanical

Manager, Human  Resources and Training

Manager, Legal Affairs

Manager, Survey and Land Acquisition

Manager, Finance and Accounts

DGM, Environment and Rehabilitation

Manager, Environment &Pollution Control

Manager, Rehabilitation

DGM, Transport Planning

Manager, Transport  Planning

DGM, Traffic Engineerinhg

Manager, Traffic Engineerinhg

DGM, Urban Planning

Manager, Urban Planning

DGM, Project Management

Manager, Project Management

DGM, Electrical and Mechanical

Manager, Electrical Manager, Mechanical

Manager (IT)

GM (HR& Admin.)

Managing Director

Company Secretary/ DGM

Manager (PR)Manager

(Internak Audit)

Manager

(Quality Audit)

Manager(Safety Audit)

DGM

(Safety&QC Audit)

Astt.Manager

(Internal Audit)PR Officer

Astt.Manager 

(Comp.Aff)

Internal Audit officer

PR AssistantCompany Aff. Assistant

Director

(Finance&Admin.)

Manager (IT) DGM (HR)DGM/Principal 

(Training Institute)

Manager(HR) Manager (Training Institute)

Manager  Manager Manager 

GM(Fin.&Accts)

DGM DGM(Finance)

Manager 

(Finance)

Manager

(MIS)

Director

(Planning & 

Contract Mgt. Assistant

Chief Engineer 

Development (Civil)

DCE Development (Civil)

Chief Engineer 

Development)

DCE Development 

(E&M)

Chief Engineer

(Planning)

DCE(Proj.&Prop.D

ev. Planning)

Manager 

Manager(Contract Mgt.)

Page 193: Study on Economic Partnership Projects in Developing Countries in

7-4

On the other hand, the General Consultant (GC) of MRT Line 6 will prepare the operation and maintenance

(O&M)-related manpower requirement, recruitment plan, and training schedule. It may be mentioned that this will

be prepared mainly focusing on the operation of MRT Line 6 only. For additional lines, such arrangement has to

be updated.

7.3 Current Activities of Project Implementing Agency

DMTC is formed to implement and operate the urban metro rail system. However, this is a new system and there

is no readily available in-country skilled manpower. It is naturally anticipated that DMTC will face difficulties in

recruiting qualified personnel.

DMTC started with very few staff. The MRT Line 6 implementation was planned in a very effective way so that

the GC can nourish the DMTC in its infancy. GC will prepare the total organizational setup related to O&M. GC

will then help in recruitment and provide training. On the other hand, IDC will prepare the management and

financial organization of DMTC.

Although it is expected that DMTC will get significant exposure through the implementation of MRT Line 6, it

cannot be expected that with the implementation of just one line, DMTC can handle all the complex and

interrelated technical, contractual, accounting, and management aspects of a metro rail implementation. Further,

the underground construction associated with MRT Line 5 will present a whole new set of issues. Thus, it is

recommended that at least for the next line also, a GC should be appointed to take the role of an “Engineer”,

rather than to employ the fragmented services of a design and procurement consultant (DPC), a construction

supervision consultant (CSC), and a management support consultant (MSC). By having a GC, DMTC can get

on-the-job training very effectively. In addition, periodic training must be provided to DMTC officials for their

capacity development.

Page 194: Study on Economic Partnership Projects in Developing Countries in

Chapter8 Technical Advantages of Japanese Companies

Page 195: Study on Economic Partnership Projects in Developing Countries in

8-1

8.1 International Competitiveness of Japanese Companies for the Project Implementation

Construction technology in urban railway in Japan is known as high level technology in the world, including

bridge construction technology in narrow construction space, tunnel construction, rolling stock, depot equipment,

signaling, power, telecommunication, train operation control system, and station equipment. Japanese companies

have various experiences in overseas projects, and they have been highly appreciated in the view of quality,

schedule, safety and overall project management.

MRT Line 6, with a total length of 20 km and which has been selected as the top priority line under the Dhaka

Urban Transportation Study (DHUTS), is currently in progress as one of the projects financed under official

development assistance (ODA) loans. Dhaka Mass Transit Company (DMTC), owner of the MRT Line 6 Project,

expects Japanese companies to participate in the various construction packages (construction, rolling stock, and

railway system) in this Project.

In addition, there is a possibility of utilizing Japanese technology and knowhow such as management,

maintenance, and staff education. Therefore, there is high possibility of orders for railway system and

maintenance from Japanese companies under this Project.

Advantages of railway technology of Japan in the international competition are mentioned below.

1) Safety, Stability

The number of MRT passengers in Japan is large in the world. Japanese railway is ultra-high density

transportation, however serious accident rate is very small, even in comparison with other countries.

2) Energy Saving

Stable mass transit, reduced weight rolling stock, and highly efficient regenerative braking are enabling to reduce

the energy consumption and carbon dioxide.

3) Construction Technology

Since railway structure is often constructed in narrow and congested site in Japanese urban area, construction

technology in Japan have much experience for safety and quickly construction in the city center. Most the city of

Southeast Asia is dense areas like Japan, Japanese construction technology will be useful for minimizing adverse

effects during construction.

Table 8-1 summarizes the capability of Japanese companies in different procurement packages.

Page 196: Study on Economic Partnership Projects in Developing Countries in

8-2

Table 8-1 Possibility of Orders from Japanese Companies in Each Package

Item Competitiveness of Japanese Companies

Civil (Elevated) In the special condition of narrow construction yard, Japanese

companies have a lot of knowledge and experience.

Civil (Underground) Japanese shield tunnel technology is leading in the world, and it

has gained international acclaim.

Rolling Stock Japanese rolling stock, which has high safety, has gained

confidence in the world market; it has high competitiveness in

North America , UK and Asian countries.

Signalling System ATC has already many domestic achievements, and CBTC also

has experience of orders in India, South Korea, and Brazil.

Source: METI Study Team

Table 8-2 listed up the international competitive Japanese technologies related to MRT construction.

Table 8-2 List of International Competitive Japanese Technology

Item Expected main

specification

Content

HH Rail UIC 60 Rail In the railway business around the world, the Japanese

heat-treated rail has high quality and durability, and has

gained a high reputation abroad.

Regenerative

Energy Storage

System

Li-ion Battery

Storage System

Regenerative energy storage system using a lithium

battery technology made in Japan has an advantage due

to reduction of environmental and maintenance costs.

Rolling Stock Maximum

operation speed

100 km/h

VVVF inverter

In recent years, Japanese rolling stock has been ordered

in the United States, the United Kingdom, Singapore,

Hong Kong, Middle East, and Egypt by winning in

international competition. If orders were made from a

Japanese manufacturer in MRT Line 6, opportunity of

orders can also be expected in this Project.

Shield Tunnel Shield tunnel

method

In India, Turkey, and Bangkok, shield tunnel has already

been ordered and constructed. Japanese technology has

been demonstrated by the Japanese companies.

IC Card and

Related

Facilities

AFC (Non-contact

IC card)

The contactless IC card technology system that has been

used in Japanese railway was introduced in the

state-owned bus company from 2012, and it has shown a

huge positive impact.

Source: METI Study Team