21
Stuart Mangel, Ph.D. March 27, 2015 Professor, Dept. of Neuroscience E-mail: [email protected] ; 2-5753 BIOPHYSICS 6702 – ENCODING NEURAL INFORMATION IN THE RETINA AND BRAIN I. Basic Features of Principal Retinal Circuits a. photoreceptor cells hyperpolarize to light b. horizontal cells hyperpolarize to light (sign- conserving synapse) c. Depolarizing and hyperpolarizing bipolar cells (sign- conserving and sign-inverting synapses) d. Receptive field structure of bipolar cells (center- surround organization; horizontal cells provide receptive field surround using lateral inhibition) e. Receptive field structure of ganglion cells (generation of action potentials; center-surround organization; perceived brightness contrast) f. Parallel processing (“trigger” features; non-linear response mechanisms) - amacrine cells (e.g. starburst amacrine cells) - ganglion cells (e.g. transient vs. sustained; directionally selective, etc.)

Stuart Mangel, Ph.D.March 27, 2015 Professor, Dept. of Neuroscience E-mail: [email protected]; [email protected] BIOPHYSICS 6702 – ENCODING NEURAL

Embed Size (px)

Citation preview

Page 1: Stuart Mangel, Ph.D.March 27, 2015 Professor, Dept. of Neuroscience E-mail: mangel.1@osu.edu; 2-5753mangel.1@osu.edu BIOPHYSICS 6702 – ENCODING NEURAL

Stuart Mangel, Ph.D. March 27, 2015Professor, Dept. of NeuroscienceE-mail: [email protected]; 2-5753

BIOPHYSICS 6702 – ENCODING NEURAL INFORMATION IN THE RETINA AND BRAIN

I. Basic Features of Principal Retinal Circuits a. photoreceptor cells hyperpolarize to light b. horizontal cells hyperpolarize to light (sign-conserving synapse) c. Depolarizing and hyperpolarizing bipolar cells (sign-conserving and sign-inverting

synapses) d. Receptive field structure of bipolar cells (center-surround organization; horizontal

cells provide receptive field surround using lateral inhibition) e. Receptive field structure of ganglion cells (generation of action potentials; center-

surround organization; perceived brightness contrast) f. Parallel processing (“trigger” features; non-linear response mechanisms)

- amacrine cells (e.g. starburst amacrine cells)- ganglion cells (e.g. transient vs. sustained; directionally selective, etc.)

Page 2: Stuart Mangel, Ph.D.March 27, 2015 Professor, Dept. of Neuroscience E-mail: mangel.1@osu.edu; 2-5753mangel.1@osu.edu BIOPHYSICS 6702 – ENCODING NEURAL
Page 3: Stuart Mangel, Ph.D.March 27, 2015 Professor, Dept. of Neuroscience E-mail: mangel.1@osu.edu; 2-5753mangel.1@osu.edu BIOPHYSICS 6702 – ENCODING NEURAL
Page 4: Stuart Mangel, Ph.D.March 27, 2015 Professor, Dept. of Neuroscience E-mail: mangel.1@osu.edu; 2-5753mangel.1@osu.edu BIOPHYSICS 6702 – ENCODING NEURAL
Page 5: Stuart Mangel, Ph.D.March 27, 2015 Professor, Dept. of Neuroscience E-mail: mangel.1@osu.edu; 2-5753mangel.1@osu.edu BIOPHYSICS 6702 – ENCODING NEURAL

On-Bipolar Cells

Stimulus

Spot

(Center)

Horizontal CellsOff-Bipolar Cells

Annulus

(Surround)

Spot + Annulus

Horizontal cells provide the receptive field surround to bipolar cells

Page 6: Stuart Mangel, Ph.D.March 27, 2015 Professor, Dept. of Neuroscience E-mail: mangel.1@osu.edu; 2-5753mangel.1@osu.edu BIOPHYSICS 6702 – ENCODING NEURAL
Page 7: Stuart Mangel, Ph.D.March 27, 2015 Professor, Dept. of Neuroscience E-mail: mangel.1@osu.edu; 2-5753mangel.1@osu.edu BIOPHYSICS 6702 – ENCODING NEURAL

Synaptic connections that produce the center-surround receptive field organization of bipolar cells

Bipolar cell receptive field

OFF-BC: Hyperpol

ON-BC: Depol

OFF-BC: Depol

ON-BC: Hyperpol

Cones hyperpolarize

Cones hyperpolarize

Horizontal cellshyperpolarize

Light stimulation over small, central

retinal area

Light stimulation over larger, surrounding

retinal area

excitatory (“sign-conserving”) synapse

inhibitory (“sign-inverting”) synapse

Page 8: Stuart Mangel, Ph.D.March 27, 2015 Professor, Dept. of Neuroscience E-mail: mangel.1@osu.edu; 2-5753mangel.1@osu.edu BIOPHYSICS 6702 – ENCODING NEURAL

Synaptic connections that produce the center-surround receptive field organization of bipolar cells

Bipolar cell receptive field

OFF-BC: Hyperpol

ON-BC: Depol

OFF-BC: Depol

ON-BC: Hyperpol

Cones hyperpolarize

Cones Depolarize

Cones hyperpolarize

Horizontal cellshyperpolarize

Light stimulation over small, central

retinal area

Light stimulation over larger, surrounding

retinal area

excitatory (“sign-conserving”) synapse

inhibitory (“sign-inverting”) synapse

Page 9: Stuart Mangel, Ph.D.March 27, 2015 Professor, Dept. of Neuroscience E-mail: mangel.1@osu.edu; 2-5753mangel.1@osu.edu BIOPHYSICS 6702 – ENCODING NEURAL

Na+K+2Cl-

GABA

Cl-

GABAA

receptor

Na-K-2Cl (NKCC)

GABA-Evoked Depolarization

K+ Cl-

GABA

GABAA

receptor

Cl-

K-Cl (KCC)

GABA-Evoked Hyperpolarization

Cl-

ON-BC DENDRITE OFF-BC DENDRITE

1. The GABA released from horizontal cells depolarizes ON-BC dendrites, but hyperpolarizes OFF-BC dendrites. 2. The chloride cotransporters, Na-K-2Cl (NKCC) and K-Cl (KCC), determine whether GABAA receptor activation, which opens Cl- channels, depolarizes or hyperpolarizes neurons, respectively.

Cl-

Page 10: Stuart Mangel, Ph.D.March 27, 2015 Professor, Dept. of Neuroscience E-mail: mangel.1@osu.edu; 2-5753mangel.1@osu.edu BIOPHYSICS 6702 – ENCODING NEURAL
Page 11: Stuart Mangel, Ph.D.March 27, 2015 Professor, Dept. of Neuroscience E-mail: mangel.1@osu.edu; 2-5753mangel.1@osu.edu BIOPHYSICS 6702 – ENCODING NEURAL
Page 12: Stuart Mangel, Ph.D.March 27, 2015 Professor, Dept. of Neuroscience E-mail: mangel.1@osu.edu; 2-5753mangel.1@osu.edu BIOPHYSICS 6702 – ENCODING NEURAL
Page 13: Stuart Mangel, Ph.D.March 27, 2015 Professor, Dept. of Neuroscience E-mail: mangel.1@osu.edu; 2-5753mangel.1@osu.edu BIOPHYSICS 6702 – ENCODING NEURAL
Page 14: Stuart Mangel, Ph.D.March 27, 2015 Professor, Dept. of Neuroscience E-mail: mangel.1@osu.edu; 2-5753mangel.1@osu.edu BIOPHYSICS 6702 – ENCODING NEURAL

Receptive field profiles of ganglion cell subtypes

X-type ganglion cell

Y-type ganglion cell

Page 15: Stuart Mangel, Ph.D.March 27, 2015 Professor, Dept. of Neuroscience E-mail: mangel.1@osu.edu; 2-5753mangel.1@osu.edu BIOPHYSICS 6702 – ENCODING NEURAL

- from Barlow and Levick, 1965

ON-OFF direction selective ganglion cells

Page 16: Stuart Mangel, Ph.D.March 27, 2015 Professor, Dept. of Neuroscience E-mail: mangel.1@osu.edu; 2-5753mangel.1@osu.edu BIOPHYSICS 6702 – ENCODING NEURAL

Response properties of ON-OFF direction selective ganglion cells

Page 17: Stuart Mangel, Ph.D.March 27, 2015 Professor, Dept. of Neuroscience E-mail: mangel.1@osu.edu; 2-5753mangel.1@osu.edu BIOPHYSICS 6702 – ENCODING NEURAL

Models of direction selectivity in the retina

Page 18: Stuart Mangel, Ph.D.March 27, 2015 Professor, Dept. of Neuroscience E-mail: mangel.1@osu.edu; 2-5753mangel.1@osu.edu BIOPHYSICS 6702 – ENCODING NEURAL

ROLE OF ION TRANSPORTERS IN NEURAL NETWORK FUNCTION

Fig. 2. The dendrites of starburst amacrine cells (green), a type of interneuron in the retina, hyperpolarize to light stimuli that move from the periphery to the cell body (bottom left) and depolarize to light stimuli that move from the cell body to the periphery (bottom right). These directionally-selective responses are generated in part by the differential distribution of the Na-K-2Cl (NKCC) cotransporter (pink) on the cell body and proximal dendrites and the K-Cl (KCC2) cotransporter (blue) on the distal dendrites. The expression patterns of Na-K-2Cl and K-Cl are represented as pink to purple and purple to blue gradients, respectively, on the dendrites and cell body of this starburst cell.

GABA-evoked depolarization

GABA-evoked hyperpolarization

Fig. 1. The chloride cotransporters, Na-K-2Cl (NKCC) and K-Cl (KCC2), determine whether the neurotransmitter GABA, which opens Cl- channels, depolarizes or hyperpolarizes neurons, respectively.

Fig. 1

Fig. 2

- modified from Gavrikov et al., 2006, PNAS

Fig. 3. The GABA reversal potential at the starburst amacrine cell (SAC) distal dendrite is more hyperpolarized than at the proximal dendrite due to KCC2 activity. (A, B) GABA was applied onto the proximal dendrite (A) and onto the distal dendrite (B) ~ 100 m from the cell body of a SAC in the presence of cobalt (2 mM) to block synaptic transmission. (C) Average EGABA of the proximal and distal dendrites of SACs were significantly different (p < 0.01). (D) Average EGABA of distal dendrites before and during bath application of FUR (25 M), a selective inhibitor of KCC2 activity, were significantly different (p < 0.01).

Fig. 3

Page 19: Stuart Mangel, Ph.D.March 27, 2015 Professor, Dept. of Neuroscience E-mail: mangel.1@osu.edu; 2-5753mangel.1@osu.edu BIOPHYSICS 6702 – ENCODING NEURAL

A MODEL OF DIRECTION SELECTIVITY IN THE RETINA

- modified from Gavrikov et al., 2003, PNAS

Page 20: Stuart Mangel, Ph.D.March 27, 2015 Professor, Dept. of Neuroscience E-mail: mangel.1@osu.edu; 2-5753mangel.1@osu.edu BIOPHYSICS 6702 – ENCODING NEURAL

Ribelayga, Cao & Mangel, 2008, Neuron

Rod pathways at night under dark conditions

The circadian (24-hr) clock in the retina increases the electrical coupling of rod-cone gap junctions at night

Page 21: Stuart Mangel, Ph.D.March 27, 2015 Professor, Dept. of Neuroscience E-mail: mangel.1@osu.edu; 2-5753mangel.1@osu.edu BIOPHYSICS 6702 – ENCODING NEURAL

Readings for Biophysics 6702 – Lectures on March 25/27, 2015:

Kandel, Schwartz, Jessell, Siegelbaum & Hudspeth, 2013, Principles of Neural Science, 5th Ed., Chapters 21, 26

Masland, 2004, Direction Selectivity

Gavrikov, Nilson, Dmitriev, Zucker & Mangel, 2006, PNAS

Fried, Munch & Werblin, 2002, Nature