5
Structual Geology and Resources 2012 43 l KEYNOTE Structural Controls to, and Exploration for, Epithermal Au-Ag Deposits GREG CORBETT Structural Controls to, and Exploration for, Epithermal Au-Ag Deposits GREG CORBETT Introduction Structural controls to the formation of epithermal Au-Ag deposits within magmatic arc (extending into back arc) environments are apparent as: Localisation by major structures, Provision of fluid flow paths to enable fluid evolution, Dilatant settings of enhanced fluid flow and mineral deposition, Sites of mineral deposition by fluid mixing, locally at structural intersections. Structural controls to epithermal Au-Ag mineralisation must be considered as an interaction with other factors such as mineralisation style, host rock characteristics and mechanisms of precious metal deposition. e path to discovery delineated herein relies on the use of evolving geological models, built up from consideration of many exploration examples (Corbett, 2009), but which should never be treated too rigidly (Lowell, 2012). Classification of Epithermal Deposits Epithermal Au-Ag deposits are classified (Corbett and Leach, 1998; Corbett, 2009 and references therein) as formed above the porphyry environment at crustal levels within about 1 km of the surface and subdivided on the basis of ore mineralogy, hydrothermal alteration and fluid flow paths (figure 1). Figure 1. Conceptual model for the styles of Au-Ag-Cu mineralization developed within magmatic arcs (from Corbett, 2009).

Structural Controls to, and exploration for, epithermal Au-Ag Deposits

  • Upload
    vodien

  • View
    256

  • Download
    9

Embed Size (px)

Citation preview

Page 1: Structural Controls to, and exploration for, epithermal Au-Ag Deposits

Structual Geology and Resources 2012

43 l ke

ynot

e

Structural Controls to, and exploration for, epithermal Au-Ag Deposits

GReG CoRBett

Structural Controls to, and Exploration for, Epithermal Au-Ag Deposits

GREG CORBETT

Introduction Structural controls to the formation of epithermal Au-Ag deposits within magmatic arc (extending into back arc) environments are apparent as:• Localisationbymajorstructures,• Provisionoffluidflowpathstoenablefluidevolution,• Dilatantsettingsofenhancedfluidflowandmineral

deposition,• Sitesofmineraldepositionbyfluidmixing,locallyat

structural intersections.Structural controls to epithermal Au-Ag mineralisation must be considered as an interaction with other factors

suchasmineralisationstyle,hostrockcharacteristicsandmechanisms of precious metal deposition. The path to discoverydelineatedhereinreliesontheuseofevolvinggeologicalmodels,builtupfromconsiderationofmanyexplorationexamples(Corbett,2009),butwhichshouldneverbetreatedtoorigidly(Lowell,2012).

Classification of Epithermal Deposits Epithermal Au-Ag deposits are classified (Corbett and Leach,1998;Corbett,2009andreferencestherein)asformedabovetheporphyryenvironmentatcrustallevelswithinabout1kmofthesurfaceandsubdividedonthebasisoforemineralogy,hydrothermalalterationandfluidflowpaths(figure1).

Figure 1. Conceptual model for the styles of Au-Ag-Cu mineralization developed within magmatic arcs (from Corbett, 2009).

Page 2: Structural Controls to, and exploration for, epithermal Au-Ag Deposits

Structual Geology and Resources 2012

44 l

High sulphidation epithermal Au+Ag+Cu deposits arecharacterisedbythereactionwithwallrocksofhotacidicfluidstoformhydrothermalalterationwhichiszonedoutwardsasmineralassemblagesdominatedbyvughysilica,silica-alunite,pyrophyllite-diaspore,andmoremarginaldickite-kaolin.AuintheSWPacific,withadditionalAginLatinAmerica,andCuatdeepercrustallevels,areassociatedwithenargite-pyrite-barite-alunite,partlyoverprintingalteration.Hydrothermalfluidflowiscontrolledinitiallybystructurethenpermeablelithologiesaswell as phreatomagmatic (diatreme) breccia pipes. LowsulphidationepithermalAu-Agdepositsarecharacterisedbyneutralwallrockalterationassemblagesdominatedbyilliticclays,althoughacidicwaterscollapsingfrom near surfical acid sulphate caps deposit kaolin within someoreassemblages(below).Magmaticallyderivedhydrothermalfluidsdepositquartz-sulphideAu+Cuveinsearliestandcommonly(butnotalways)atdeepercrustallevels,andthendivergeintotwofluidflowtrends(figure1).Typicallyinextensionalsettings,suchasbackarcenvironments,polymetallicAg-AudepositsdominateinLatinAmerica(SierraMadreofNorthernMexico,Peru,Patagonia),andareverticallyzonedpassingfromAu-Cudominant at depth to higher level Ag with associated sphalerite-galenaandsulphosaltsandquartz-carbonategangue.Thesedepositspassupwardstobandedchalcedony-ginguroepithermalAu-Agorescharacterisedbybandsofchalcedony,depositedfromdominantlymetroricwaters,andginguro(pyrite-electrum-sulphosalts)derivedfromthe magmatic source. These deposits are well represented throughoutthecircumPacificrimmagmaticarcs(Hishikari,Japan;Kupol,Siberia;Waihi,NewZealand;VeraNancy-Pajingo,Queensland;MidasUS;Ares,Peru;CerroMoroandCerroVanguadia,Patagonia).Epithermaloresdepositedfrommainlyintrusion-relatedfluidsarerecognisedinSWPacificrimmagmaticarcsgradingfromquartz-sulphideAu+Cutocarbonate-basemetalAu,andatthehighestcrustallevel,epithermalquartzAu-Agstylemineralisation(CorbettandLeach,1998;Corbett,2009;figure1).Augradesincreaseintheevolvinghydrothermalfluidinitiallylocalisedwithinsulphideswhichvaryintimeandspacetowardshighercrustallevels,fromearlypyriteandlesserchalcopyriteatdepth,tosphalerite>galenaandsulphosalts,andthenganguepoorhighfinenessfreeAuathighestcrustallevels.Dilatantstructuresarerequiredtobleedorefluidsfromtheintrusionsource rocks at depth to cooler elevated settings where mineral deposition takes place and also to facilitate the mixingofrisingorefluidswithoxidisingnearsurficalwatersto promote Au deposition. Carlin(sedimenthostedreplacementAu)depositsformbythereactionofquartz-sulphidefluidswithimpurelimestonehost rocks at elevated crustal settings and are not confined to thewesternUS.Thetransitionbetweenporphyryandepithermaloresisapparentaslowsulphidationquartz-sulphideAu+

Cumineralisationwithindilatantsheetedveinsystems,commonlyreferredtoaswallrockporphyries,locallyextendingsomedistanceawayfromthesourceintrusion,butwithtypicallylowmetalgrades(Cadia,NSW;MaricungaBelt,Chile;Gaby,Ecuador;WhitewashMo,Queensland).

Major Structures Majorcrustal-scalestructureswhichlocalizemagmaticsource rocks for low and high sulphidation epithermal Au-Agdepositsaredivided(Corbett,1994;CorbettandLeach,1998)into3classesas:• Arcparallelstructures(DomeykoFault,Chile;Gilmore

Suture,NSW;KalimantanSuture,Borneo),whichcommonlydevelopedasterrainboundarieswithdominantlyreversesensesofmovement,oftenundergotransient changes to strike-slip deformation to localise oresystemsindilatantstructuralsites.Arcparallelstructuresmayalsoparallelthestructuralgraininextensionalsettings(Carlin,GoldstrikeTrends,Nevada;northernMexico)wheretheymayactasregionalfeederstructuresorhostveins,locallywithinlistricfaultssuchas in the Sierra Madre (below).

• ArcnormaltransferstructuresmayextendthroughmagmaticarcsintotheunderlyingbasementtotapmantlederivedmeltsassourcesofAumineralization,orfocusoverprintingmagmatismandlocallydelineatechangesinthediporrateofsubductioninadjacentplates(Porgera,WafiandGrasbergTransferstructures,NewGuinea;LachlanTransferZone,NSW).

• Conjugatefracturesarerecognizedascontrolstomagma emplacement in some orthogonal magmatic arcs (Andes,NorthSulawesiandBandaarc),commonlyatthe intersections with arc-parallel terrain boundaries. Strike-slipmovementonthesefracturesystemsduringorthogonal compression or transient episodes of relaxation aids the creation of dilatant structural sites for ore formation.

Hydrothermal Fluid EvolutionEpithermaldepositsdevelopbyorefluidevolutionduringstructurallycontrolledflow.Highsulphidationepithermalorefluidsdisplaycharacteristic evolution and vertical separation between the magmatic source and epithermal environment of ore deposition. The structural control therefore represents anessentialelementtofacilitatetheflowofrapidlyrisingvolatile(SO2)richmagmaticfluidswhichbecomedepressurisedandexsolveSO2,whichthenoxidises(toH2SO4)toformhotacidicfluids.Atepithermallevelsthesefluidsareprogressivelycooledandneutralisedbyreactionwithwallrockstoprovidethecharacteristichydrothermalalteration described above. Sulphide mineralisation is depositedbytheliquid-richphaseoftheorefluid,mostlylater.Thisfluidevolutionprovidesalowerlimittohighsulphidation deposits which are therefore rootless.

Structural Controls to, and Exploration for, Epithermal Au-Ag Deposits

GREG CORBETT

Page 3: Structural Controls to, and exploration for, epithermal Au-Ag Deposits

Structual Geology and Resources 2012

45 l

Lowsulphidationveinsystemscommonlycomprisebandedveins in which different bands are deposited within a hoststructurefromvariablefluidsources(Corbett,2008).Dilatantstructuresmayhostshallowcirculatingcellsofmeteoric-dominated waters which deposit barren gangue mineralssuchaschalcedony,carbonateandadularia.SomedeepercirculatingfluidsentrainamagmaticcomponentanddepositquartzwithdisseminatedsulphidesandlowgradeAu.Structuresmayoccasionallytapdeepmagmaticorefluidstodepositmostpreciousmetalsinthinsulphidebands.Ofinteresttoexplorationists,somerecentdiscoveriesfeaturesurficialbarrenquartzunderlainbymineralisedsulphide-bearingveins(HuevosVerdeandCerroMoro,ArgentinePatagonia),asonlysomeelementsofveinshostmineralisation.

Controls to Epithermal OresManyepithermalAudepositshostmostorewithinoreshoots(clavosinSpanish),developedaswiderandhigherpreciousmetalgradeveinportions,mosteasilydiscernibleongramxplots(Corbett,2007).Epithermalveinsystems(mostlylowsulphidation)arecontrolledbythe interaction of:• Competenthostrocksfracturetoaidveinformation.

Volcanicsequencesofinterlayeredcompetent(andesite)andincompetent(tuffs)providestackedflatplungingoreshoots.Thismaybeaccentuatedasmoderatelydippingfaultspreferentiallyhostveinswheretheyrefracttosteeperanglesinbandsofcompetenthostrock(figure2).Thereareanumberofexplorationexamplesofdiscoveryof epithermal veins within competent host rocks obscuredbyoverlyingincompetenttuffs.

• Permeablehostrockscontrolmostlyhighsulphidationepithermalfluidflowwithoreshootsattheintersectionwithfeederstructures,althoughhostpermeabilityislesscommonlyrecognisedinlowsulphidationores(LihirPapuaNewGuinea;RoundMountain,Nevada).

• ThestyleofepithermalmineralisationdescribedaboveinfluencesAugrade,distributionofAgandCuandmetallurgicalcharacteristics,asthestructuralenvironmentinfluencesfluidevolution.Oresmayoccurasveins,brecciamatrixordisseminations.

• Fieldstudiesusingmodelsderivedfromanalysesofmagmatic arc (as different to back-arc) geothermal systems(CorbettandLeach,1998;LeachandCorbett,2008)demonstratebonanzaAugradesmostlyresultfromthemixingofrisingorefluidswithcollapsingnearsurficialwatersorrapidcoolingofrisingorefluids.Boilingdepositsbarrengangueminerals(adularia,quartzpseudomorphingplatycalcite)andmostlylowgradeAu-Ag.Mixingenvironmentsarestronglystructurallycontrolled,typicallyatstructuralintersections(below).

• Structuresalsoinfluencetoformoforeshootsdevelopedatdilatantstructuralsettingsofenhancedfluidflow.

Structural Control to Epithermal OresStructural environments provide the dominant control to the form(typicallyplunge)oforeshootsdevelopedasregionsofelevatedfluidflowunderdifferentconditions(figure2)as:• Orthogonalextension(SierraMadrenorthernMexico,

southernPeru,ArgentinePatagonia;Gosowong,Indonesia;HiddenValley,PNG)generallyoccursonlistricfaultswhichhostepithermalveinswithinflatplunging ore shoots confined to the steeper dipping faultportions.Refractionofdippingfaultsthroughcompetent host rocks will provide steep dipping portions asveinhosts(ElPenon,Chile;PalmarejoMexico;Kupol,Siberia).Variationsofjustafewdegreesdipcontrolchangesfromoreshootstowaste.AtLihir,PapuaNewGuinea,similartoMtStHelens,USA,sectorcollapseof a volcanic edifice has occurred on listric faults which thenhostoreshootsinsteeperportions(MinifieZoneatLihir).CalderacollapseprovidedflatoreshootswithinreactivatedbeddingplanesofadjacentlavasatEmperorGoldMine,Fiji.

• Transpressionalenvironmentscharacterisedbystrike-slip structures host steep plunging ore shoots formed in dilatantstructuralsettingssuchasfaultjogscontainingtensionveinlinksbetweentwostructures,flexuresasbendsinthroughgoingstructures,splaysorhorsetails(inolderliterature).Normal(growth)faultswhichparticipate in pull-apart basin formation host tension veinsatdepthandsplaysatdeepestlevels,withinverticallystackednegativeflowerstructures(CorbettandLeach,1998).Twotranspressionalendmembersareapparentasflexureswithinthroughgoing(champion)veinswithinterveningpoorlymineralisedveinportions(VeraNancy,Queensland),ortensionveinarraysconstrainedbetweenbarrenstrike-slipstructures(Waihi,NewZealand).Cautionisurgedasmineralizedtensionveins formed at high angles to the structural grain of thedistrict(controllingstructures),prospectedastheelongationofsoilgeochemicalanomalies,maythenbesub-parallel to the drilling direction and provide erratic results.Geologicalmappingandnotgridsshouldlocalizedrill holes and veins at low angles will suggest the structuralmodelrequiredfurtherwork.

• Orthogonalcompressionisanuncommonoresettingdespite the overall compressional nature of magmatic arcs.Flatplungingoreshootsdevelopintheflatterdipping portions of moderate dipping reverse faults (Kencana,Gosowong,Indonesia;Hamata,MorobeGoldfield,PapuaNewGuinea)andmaybeblindatthesurface(Kencana).Curiously,eachofthesetwoexamplesis oriented normal to outcropping mineralized veins withinlistricfaults(GosowongveinandHiddenValleyoresystemsabove).

• Plungingoreshoots(ElInido,Chile)developbytheinteractionofstrike-slipandmostlynormalfaultmovement,althoughareversecomponentispossible.

Structural Controls to, and Exploration for, Epithermal Au-Ag Deposits

GREG CORBETT

Page 4: Structural Controls to, and exploration for, epithermal Au-Ag Deposits

Structual Geology and Resources 2012

46 l

Repeatedactivationofthekinematiccontrolstoveinformation promotes the development of banded veins with polyphasaleventsofAu–Agdepositionandassociatedelevated precious metal grades.

Fluid Mixing and Ore ShootsLowsulphidationepithermalveinsystemsmayhostbonanza Au grades derived from the mixing of rising pregnantorefluidswithcollapsingoxidizingnearsurficialwaters.Here,oreshootsofvariableplungearelocalizedatthe intersection of the separate structures which transport thedifferentfluidsandsocommonlydisplayrod-likeforms.Therisinghydrothermalfluidssetupcirculatinghydrothermalcellswhichpromotethecollapseofthenearsurficialwatersdowncrossstructures.LowpHwaterscollapsing from near surficial acid sulphate caps to settings of low sulphidation vein formation provide the best mixing environments,evidencedbyhypogenekaolininthesulphideoreassemblage.Whileaninterestingprospectingmodel,oreshootsmaybottomatthelimitofthedownwardcollapseofthelowpHwaters.Goldisalsodepositedbythemixingofrisingorefluidswithoxidizinggroundwatersevidencedbyhypogenehematiteintheoreassemblage,ormixingwith bicarbonate waters recognized in carbonate-base metalAudeposits(CorbettandLeach,1998;Leachand

Figure 2. Epithermal vein ore shoots in different structural settings including the development of bonanza Au at a site of fluid mixing (modified from Corbett, 2007).

Corbett,2008).Incompetentacidsulphatecapsinhibitveinformationandsomayobscureblindbonanzagradeoresystems(GuadalupeatPalmarejo,Mexico).

ConclusionsMineral exploration benefits from an understanding of the controls to epithermal mineralization as:• Majorstructureslocaliseoresystemsandlocallydisplay

components of movement which control dilational settingsoforeformation.Epithermalfluidsevolveduringfluidflowwithinstructurestoprovideviableoresystems.Thecompositefluidtypesresponsibleforbandedlowsulphidationveinformationmayprovidebarren veins at the surface which are mineralised at depth,anddifferentportionsofveinsmaydisplaydramaticallydifferentpreciousmetalgrades.

• HighsulphidationepithermalAudepositsarecharacterizedbyatwostage(earlyvolatileandlaterliquid)fluiddevelopedbyevolutionduringtherisefroma deep magmatic source to higher crustal level epithermal sitesofmineraldeposition.ManyhighsulphidationepithermalAusystemshostoreshootsattheintersectionoffeederstructuresandpermeablehostrocks,typicallyalteredtovughysilica,anddisplaydistinctbottoms.

Structural Controls to, and Exploration for, Epithermal Au-Ag Deposits

GREG CORBETT

Page 5: Structural Controls to, and exploration for, epithermal Au-Ag Deposits

Structual Geology and Resources 2012

47 l

• Incompetentandcommonlyclayalteredtuffsmayobscureveinswithinunderlyingcompetentandesiteorfelsicsills(Arcata,Peru;ElPenon,Chile).AcidsulphatecapsmayobscurebonanzaAu-Aggradesdevelopedbyfluidmixing(GuadalupeatPalmarejo,Mexico).Rod-likelinear ore shoots develop as a result of Au deposition byfluidmixingatstructuralintersections(COSE,ArgentinePatagonia,Kupol,Siberia).

• Kinematicenvironmentscontroltheformoforeshootswhichhostmostmineralizationinmanyveinsystems.Steepplungingflexuresinstrike-slipstructuresmaybeidentifiedbymagnetitedestructioninandesiteterrains,orusingintegratedresistivityandchargeabilitydatainmorepermeablerocktypes.Onlysteepdippingportionsoflistricfaultshostoreasflatplungingoreshoots,whilesimilarplungingoreshootsinmoderatelydippingreversefaultsarecommonlyblindatthesurface.Interaction of extensional and strike-slip controls are commonandmayprovideplungingoreshoots.

References CitedCorbett,G.J.,2007,ControlstolowsulphidationepithermalAu-Ag:Talk

presentedatameetingoftheSydneyMineralExplorationDiscussionGroup(SMEDG)withpowerpointandtextonSMEDGwebsitewww.smedg.org.au

Corbett,G.J.,2008,Influenceofmagmaticarcgeothermalsystemsonporphyry-epithermalAu-Cu-Agexplorationmodels:TerryLeachSymposium,AustralianInstituteofGeoscientists,Bulletin48,p.25-43.

Corbett,G.J.,2009,Anatomyofporphyry-relatedAu-Cu-Ag-Momineralisedsystems:Someexplorationimplications:NorthernQueenslandExplorationandMining2009,ExtendedAbstracts,p.33-46.

Corbett,G.J.,andLeach,T.M.,1998,SouthwestPacificgold-coppersystems:Structure,alterationandmineralization:SpecialPublication6,SocietyofEconomicGeologists,238p.

Leach,T.M.andCorbett,G.J.,2008,Fluidmixingasamechanismforbonanzagradeepithermalgoldformation:TerryLeachSymposium,AustralianInstituteofGeoscientists,Bulletin48,p.83-92.

Lowell,D.2012,LowellandRebagliatiurgefreethinking:Editorial,NorthernMiner,12-18March,2012,Toronto.

Structural Controls to, and Exploration for, Epithermal Au-Ag Deposits

GREG CORBETT